WorldWideScience

Sample records for two-channel anisotropic kondo

  1. From four- to two-channel Kondo effect in junctions of XY spin chains

    Directory of Open Access Journals (Sweden)

    Domenico Giuliano

    2016-08-01

    Full Text Available We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.

  2. From four- to two-channel Kondo effect in junctions of XY spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Giuliano, Domenico, E-mail: domenico.giuliano@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende I-87036, Cosenza (Italy); INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Sodano, Pasquale, E-mail: pasquale.sodano02@gmail.com [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Departemento de Física Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Tagliacozzo, Arturo, E-mail: arturo.tagliacozzo@na.infn.it [INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Dipartimento di Fisica, Università di Napoli “Federico II”, Monte S. Angelo-Via Cintia, I-80126 Napoli (Italy); CNR-SPIN, Monte S. Angelo-Via Cintia, I-80126 Napoli (Italy); Trombettoni, Andrea, E-mail: andreatr@sissa.it [CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste (Italy); SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste (Italy)

    2016-08-15

    We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair) channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.

  3. Spin Relaxation in Kondo Lattice Systems with Anisotropic Kondo Interaction

    Science.gov (United States)

    Belov, S. I.; Kutuzov, A. S.

    2016-12-01

    We study the influence of the Kondo effect on the spin relaxation in systems with anisotropic Kondo interaction at temperatures both high and low as compared with the static magnetic field. In the absence of the Kondo effect, the electron spin resonance linewidth is not narrowed in the whole temperature range due to the high anisotropy of the Kondo interaction. The Kondo effect leads to the universal energy scale, which regulates the temperature and magnetic field dependence of different kinetic coefficients and results in a mutual cancelation of their singular parts in a collective spin mode.

  4. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.

    Science.gov (United States)

    Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F

    2015-10-08

    Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

  5. Instability of Non-Fermi Liquid Behavior in the Two-Channel Kondo Model

    Institute of Scientific and Technical Information of China (English)

    YUAN Qing-Shan; CHEN Hong; ZHANG Yu-Mei

    2001-01-01

    The effects of interchannel scattering of conduction electrons by the impu rity and repulsion of conduction electrons at the impurity site on the two-channel Kondo model are simultaneously considered in this paper.It is shown that these two perturbations will substantially modify the usual local non-Fermi liquid behavior of the two-channel Kondo model.With bosonization and unitary transformations we find that the system can be transformed into a single channel Kondo model with anisotropy between longitudinal and transverse exchange couplings.Whatever for originally antiferromagnetic or ferromagnetic isotropic coupling,the system always flows to strong-coupling limit,which exhibits local Fermi liquid behavior at low temperatures.

  6. Universality and scaling in a charge two-channel Kondo device

    NARCIS (Netherlands)

    Mitchell, Andrew K.; Landau, L. A.; Fritz, L.; Sela, E.

    2016-01-01

    We study a charge two-channel Kondo model, demonstrating that recent experiments [Iftikhar et al, Nature 526, 233 (2015)] realize an essentially perfect quantum simulation -- not just of its universal physics, but also nonuniversal effects away from the scaling limit. Numerical renormalization group

  7. Superconductivity of composite particles in a two-channel Kondo lattice.

    Science.gov (United States)

    Hoshino, Shintaro; Kuramoto, Yoshio

    2014-04-25

    Emergence of odd-frequency s-wave superconductivity is demonstrated in the two-channel Kondo lattice by means of the dynamical mean-field theory combined with the continuous-time quantum Monte Carlo method. Around half filling of the conduction bands, divergence of an odd-frequency pairing susceptibility is found, which signals instability toward the superconductivity. The corresponding order parameter is equivalent to a staggered composite-pair amplitude with even frequencies, which involves both localized spins and conduction electrons. A model wave function is constructed for the composite order with the use of symmetry operations such as charge conjugation and channel rotations. Given a certain asymmetry of the conduction bands, another s-wave superconductivity is found that has a uniform order parameter. The Kondo effect in the presence of two channels is essential for both types of unconventional superconductivity.

  8. Two-channel Kondo effect and the low-temperature crossover

    Science.gov (United States)

    Keller, Andrew; Peeters, Lucas; Weymann, Ireneusz; Moca, Cătălin Paşcu; Mahalu, Diana; Umansky, Vladimir; Zaránd, Gergely; Goldhaber-Gordon, David

    2015-03-01

    The two-channel Kondo (2CK) state, where a spin-1/2 impurity is equally exchange-coupled to two independent reservoirs, is a canonical non-Fermi liquid state. Experimental observations are rare because of its sensitivity to common and hard-to-control perturbations. We implement experimentally a 2CK state in a coupled dot-grain system (Potok, et al., doi:10.1038/nature05556), and explore the physics of the low-temperature crossover: how magnetic field and gate voltage drive the system towards a Fermi liquid ground state. Our experimental findings are corroborated by detailed numerical renormalization group modeling of our device.

  9. Universal low-temperature crossover in two-channel Kondo models

    Science.gov (United States)

    Mitchell, Andrew K.; Sela, Eran

    2012-06-01

    An exact expression is derived for the electron Green function in two-channel Kondo models with one and two impurities, describing the crossover from non-Fermi liquid (NFL) behavior at intermediate temperatures to standard Fermi liquid (FL) physics at low temperatures. Symmetry-breaking perturbations generically present in experiment ensure the standard low-energy FL description, but the full crossover is wholly characteristic of the unstable NFL state. Distinctive conductance lineshapes in quantum dot devices should result. We exploit a connection between this crossover and one occurring in a classical boundary Ising model to calculate real-space electron densities at finite temperature. The single universal finite-temperature Green function is then extracted by inverting the integral transformation relating these Friedel oscillations to the t matrix. Excellent agreement is demonstrated between exact results and full numerical renormalization group calculations.

  10. Anisotropic Kondo lattice without Nozieres exhaustion effect

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.N. [Physics Department, Arnold Sommerfeld Center for Theoretical Physics and Center for Nano-Science, Ludwig-Maximilians Universitaet Muenchen, 80333 Munich (Germany)]. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K. [Ben-Gurion University of the Negev, Beer-Sheva, 84105 (Israel)]. E-mail: kikoin@bgumail.bgu.ac.il

    2006-05-01

    The properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in z direction are studied. Each spin possesses its own 2D Kondo cloud, so that the Nozieres' exhaustion problem does not arise. The excitation spectrum is gapless both in charge and spin sectors. Possible experimental realizations of the model are briefly discussed.

  11. Observation of orbital two-channel Kondo effect in a ferromagnetic L10-MnGa film

    Science.gov (United States)

    Zhu, Lijun; Woltersdorf, Georg; Zhao, Jianhua

    2016-09-01

    The experimental existence and stability of the fixed point of the two-channel Kondo (2CK) effect displaying exotic non-Fermi liquid physics have been buried in persistent confusion despite the intensive theoretical and experimental efforts in past three decades. Here we report an experimental realization of the two-level system resonant scattering-induced orbital 2CK effect in a ferromagnetic L10-MnGa film, which is signified by a magnetic field-independent resistivity upturn that has a logarithmic and a square-root temperature dependence beyond and below the Kondo temperature of ~14.5 K, respectively. Our results not only evidence the robust existence of orbital 2CK effect even in the presence of strong magnetic fields and long-range ferromagnetic ordering, but also extend the scope of 2CK host materials from nonmagnetic nanoscale point contacts to diffusive conductors of disordered alloys.

  12. Anomalous Hall effect in L 10-MnAl films with controllable orbital two-channel Kondo effect

    Science.gov (United States)

    Zhu, L. J.; Nie, S. H.; Zhao, J. H.

    2016-05-01

    The anomalous Hall effect (AHE) in strongly disordered magnetic systems has been buried in persistent confusion despite its long history. We report the AHE in perpendicularly magnetized L 10-MnAl epitaxial films with a variable orbital two-channel Kondo (2CK) effect arising from the strong coupling of conduction electrons and the structural disorders of two-level systems. The AHE is observed to excellently scale with ρAH/f =a0ρx x 0+b ρxx 2 at high temperatures where phonon scattering prevails. In contrast, significant deviation occurs at low temperatures where the orbital 2CK effect becomes important, suggesting a negative AHE contribution. The deviation of the scaling agrees with the orbital 2CK effect in the breakdown temperatures and deviation magnitudes.

  13. Stable two-channel Kondo fixed point of an SU(3) quantum defect in a metal: renormalization-group analysis and conductance spikes.

    Science.gov (United States)

    Arnold, Michael; Langenbruch, Tobias; Kroha, Johann

    2007-11-02

    We propose a physical realization of the two-channel Kondo (2CK) effect, where a dynamical defect in a metal has a unique ground state and twofold degenerate excited states. In a wide range of parameters the interactions with the electrons renormalize the excited doublet downward below the bare defect ground state, thus stabilizing the 2CK fixed point. In addition to the Kondo temperature T(K) the three-state defect exhibits another low-energy scale, associated with ground-to-excited-state transitions, which can be exponentially smaller than T(K). Using the perturbative nonequilibrium renormalization group we demonstrate that this can provide the long-sought explanation of the sharp conductance spikes observed by Ralph and Buhrman in ultrasmall metallic point contacts.

  14. Emergence of anisotropic heavy fermions in antiferromagnetic Kondo lattice CeIn3 revealed by photoemission

    Science.gov (United States)

    Zhang, Yun; Lu, Haiyan; Zhu, Xiegang; Tan, Shiyong; Chen, Qiuyun; Feng, Wei; Xie, Donghua; Luo, Lizhu; Zhang, Wen; Lai, Xinchun; Donglai Feng Team; Huiqiu Yuan Team

    One basic concept in heavy fermions systems is the entanglement of localized spin state and itinerant electron state. It can be tuned by two competitive intrinsic mechanisms, Kondo effect and Ruderman-Kittel-Kasuya-Yosida interaction, with external disturbances. The key issue regarding heavy fermions properties is how the two mechanisms work in the same phase region. To investigate the relation of the two mechanisms, the cubic antiferromagnetic heavy fermions compound CeIn3 was investigated by soft x-ray angle resolved photoemission spectroscopy. The hybridization between f electrons and conduction bands in the paramagnetic state was observed directly, providing compelling evidence for Kondo screening scenario and coexistence of two mechanisms. The hybridization strength shows slight and regular anisotropy in K space, implying that the two mechanisms are competitive and anisotropic. This work illuminates the concomitant and competitive relation between the two mechanisms and supplies some evidences for the anisotropic superconductivity of CeIn3

  15. Spin fluctuations in the anisotropic Kondo insulator CeRu4 Sn6

    Science.gov (United States)

    Fuhrman, Wesley T.; Haenel, J.; Rodriguez, J.; Paschen, S.; Broholm, C. L.

    We report and model anisotropic quasi-elastic magnetic neutron scattering from single crystalline CeRu4Sn6. For T ~ 2 K the magnetic neutron scattering is broad in momentum (Q) with a persistent 1 / ℏω spectrum throughout the Brillouin zone. This indicates a lack of spatial coherence and no characteristic energy scale beyond the 0.2 meV resolution of the measurement. We find the Q-dependence of the scattering can be modeled by a Kondo-Heisenberg Hamiltonian that describes residual carriers and incompletely compensated localized electrons. These findings support the interpretation of tetragonal CeRu4Sn6 as an anisotropic or nodal Kondo insulator, markedly different from typical cubic Kondo insulators. We further discuss potential topological implications. Work at IQM was supported by the U.S. Department of Energy, office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-08ER4654. W.T.F. thanks the ARCS foundation and Lockheed Martin for additional support.

  16. Phase diagram of the one-dimensional anisotropic Kondo-necklace model

    Science.gov (United States)

    Mahmoudian, S.; Langari, A.

    2008-01-01

    The one-dimensional anisotropic Kondo-necklace model has been studied by several methods. It is shown that a mean field approach fails to gain the correct phase diagram for the Ising-type anisotropy. We then applied the spin wave theory which is justified for the anisotropic case. We have derived the phase diagram between the antiferromagnetic long range order and the Kondo singlet phases. We have found that the exchange interaction (J) between the itinerant spins and local ones enhances the quantum fluctuations around the classical long range antiferromagnetic order and finally destroy the ordered phase at the critical value Jc . Moreover, our results show that the onset of anisotropy in the XY term of the itinerant interactions develops the antiferromagnetic order for Janisotropic XY interaction. We have justified our results by the numerical Lanczos method where the structure factor at the antiferromagnetic wave vector diverges as the size of system goes to infinity.

  17. Two-Channel Kondo Physics due to As Vacancies in the Layered Compound ZrAs1.58 Se0.39

    Science.gov (United States)

    Cichorek, T.; Bochenek, L.; Schmidt, M.; Czulucki, A.; Auffermann, G.; Kniep, R.; Niewa, R.; Steglich, F.; Kirchner, S.

    2016-09-01

    We address the origin of the magnetic-field-independent -|A |T1 /2 term observed in the low-temperature resistivity of several As-based metallic systems of the PbFCl structure type. For the layered compound ZrAs1.58 Se0.39 , we show that vacancies in the square nets of As give rise to the low-temperature transport anomaly over a wide temperature regime of almost two decades in temperature. This low-temperature behavior is in line with the nonmagnetic version of the two-channel Kondo effect, whose origin we ascribe to a dynamic Jahn-Teller effect operating at the vacancy-carrying As layer with a C4 symmetry. The pair-breaking nature of the dynamical defects in the square nets of As explains the low superconducting transition temperature Tc≈0.14 K of ZrAs1.58 Se0.39 compared to the free-of-vacancies homologue ZrP1.54 S0.46 (Tc≈3.7 K ). Our findings should be relevant to a wide class of metals with disordered pnictogen layers.

  18. Competing Kondo Effects in Non-Kramers Doublet Systems

    OpenAIRE

    Kusunose, Hiroaki

    2016-01-01

    In non-Kramers Kondo systems with a quadrupolar degrees of freedom, an ordinary magnetic Kondo effect can compete with the quadrupolar Kondo effect. We discuss such competition keeping Pr$T_{2}$Zn$_{20}$ ($T$=Ir, Rh) and Pr$T_{2}$Al$_{20}$ ($T$=V, Ti) in mind, where the $\\Gamma_{3}$ non-Kramers crystalline-electric-field (CEF) doublet ground state is realized in Pr$^{3+}$ ion with $(4f)^{2}$ configuration under cubic symmetry. The quadrupolar Kondo effect can be described by the two-channel K...

  19. Dynamical symmetries in Kondo tunneling through complex quantum dots.

    Science.gov (United States)

    Kuzmenko, T; Kikoin, K; Avishai, Y

    2002-10-07

    Kondo tunneling reveals hidden SO(n) dynamical symmetries of evenly occupied quantum dots. As is exemplified for an experimentally realizable triple quantum dot in parallel geometry, the possible values n=3,4,5,7 can be easily tuned by gate voltages. Following construction of the corresponding o(n) algebras, scaling equations are derived and Kondo temperatures are calculated. The symmetry group for a magnetic field induced anisotropic Kondo tunneling is SU(2) or SO(4).

  20. Some transport properties of the two-channel Kondo impurity

    Energy Technology Data Exchange (ETDEWEB)

    Schlottmann, P. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States); Zvyagin, A.A. [B. I. Verkin Institute for Low Temperature Physics and Engineering of the Ukrainian Akademy of Sciences, 47 Lenin Ave., 310164, Kharkov (Ukraine)

    1997-04-01

    We consider conduction electrons moving along a ring in two different orbital channels interacting with a spin-1/2 impurity via isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the orbital symmetry. The tower structure of the finite size corrections to the ground state energy is derived from the Bethe ansatz equations and used to discuss the Aharonov{endash}Bohm{endash}Casher interference pattern in the persistent current and the magnetoresistivity. {copyright} {ital 1997 American Institute of Physics.}

  1. Exact Nonequilibrium Transport in the Topological Kondo Effect

    Science.gov (United States)

    Béri, B.

    2017-07-01

    A leading candidate for the experimental confirmation of the nonlocal quantum dynamics of Majorana fermions is the topological Kondo effect, predicted for mesoscopic superconducting islands connected to metallic leads. We identify an anisotropic, Toulouse-like, limit of the topological Kondo problem where the full nonequilibrium conductance and shot noise can be calculated exactly. Near the Kondo fixed point, we find novel asymptotic features including a universal conductance scaling function and fractional charge quantization observable via the Fano factor. In the universal regime, our results apply for generic anisotropy and even away from the Kondo limit as long as the system supports an emergent topological Kondo fixed point. Our approach thus provides key new qualitative insights and exact expressions for quantitative comparisons to future experimental data.

  2. Competing Kondo Effects in Non-Kramers Doublet Systems

    Science.gov (United States)

    Kusunose, Hiroaki

    2016-06-01

    In non-Kramers Kondo systems with quadrupolar degrees of freedom, an ordinary magnetic Kondo effect can compete with the quadrupolar Kondo effect. We discuss such competition keeping PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V, Ti) in mind, where the Γ3 non-Kramers crystalline-electric-field (CEF) doublet ground state is realized in a Pr3+ ion with a (4f)2 configuration under cubic symmetry. The quadrupolar Kondo effect can be described by the two-channel Kondo model, which leads to the local non-Fermi-liquid (NFL) ground state, while the magnetic Kondo effect favors the ordinary local Fermi-liquid (FL) ground state. On the basis of the minimal extended two-channel Kondo model including the magnetic Kondo coupling as well, we investigate the competition and resulting thermodynamics, and orbital/magnetic and single-particle excitation spectra by Wilson's numerical renormalization group (NRG) method. There is a first-order transition between the NFL and FL ground states. In addition to these two states, the alternative FL state accompanied by a free magnetic spin appears in the intermediate temperature range, which eventually reaches the true NFL ground state, as a consequence of the stronger competition between the magnetic and quadrupolar Kondo effects. In this peculiar state, the magnetic susceptibility shows a Curie-like behavior, while the orbital fluctuation exhibits the FL behavior. Moreover, the single-particle spectra yield a more singular behavior. Implications to the Pr 1-2-20 systems are briefly discussed.

  3. Corrected Kondo temperature beyond the conventional Kondo scaling limit

    Science.gov (United States)

    Li, ZhenHua; Wei, JianHua; Zheng, Xiao; Yan, YiJing; Luo, Hong-Gang

    2017-05-01

    In the Kondo systems such as the magnetic impurity screened by the conduction electrons in a metal host, as well as the quantum dots connected by the leads, the low energy behaviors have universal dependence on the T/T\\text{K}0 or eV/{{k}\\text{B}}T\\text{K}0 , where T\\text{K}0 is the conventional Kondo temperature. However, it was shown that this scaling behavior is only valid at low-energy; this is called the Kondo scaling limit. Here we explore the extention of the scaling parameter range by introducing the corrected Kondo temperature T K, which may depend on the temperature and bias, as well as the other external parameters. We define the corrected Kondo temperature by scaling the local density of states near the Fermi level, obtained by accurate hierarchy of equations of motion approach at finite temperature and finite bias, and thus obtain a phenomenological expression of the corrected Kondo temperature. By using the corrected Kondo temperature as a characteristic energy scale, the conductance of the quantum dot can be well scaled in a wide parameter range, even two orders beyond the conventional scaling parameter range. Our work indicates that the Kondo scaling, although dominated by the conventional Kondo temperature in the low-energy of the Kondo system, could be extended to a higher energy regime, which is useful for analyzing the physics of the Kondo transport in non-equilibrium or high temperature cases.

  4. Corrected Kondo temperature beyond the conventional Kondo scaling limit.

    Science.gov (United States)

    Li, ZhenHua; Wei, JianHua; Zheng, Xiao; Yan, YiJing; Luo, Hong-Gang

    2017-02-20

    In the Kondo systems such as the magnetic impurity screened by the conduction electrons in a metal host, as well as the quantum dots connected by the leads, the low energy behaviors have universal dependence on the [Formula: see text] or [Formula: see text], where [Formula: see text] is the conventional Kondo temperature. However, it was shown that this scaling behavior is only valid at low-energy; this is called the Kondo scaling limit. Here we explore the extention of the scaling parameter range by introducing the corrected Kondo temperature T K, which may depend on the temperature and bias, as well as the other external parameters. We define the corrected Kondo temperature by scaling the local density of states near the Fermi level, obtained by accurate hierarchy of equations of motion approach at finite temperature and finite bias, and thus obtain a phenomenological expression of the corrected Kondo temperature. By using the corrected Kondo temperature as a characteristic energy scale, the conductance of the quantum dot can be well scaled in a wide parameter range, even two orders beyond the conventional scaling parameter range. Our work indicates that the Kondo scaling, although dominated by the conventional Kondo temperature in the low-energy of the Kondo system, could be extended to a higher energy regime, which is useful for analyzing the physics of the Kondo transport in non-equilibrium or high temperature cases.

  5. Correlations between Kondo clouds in nearly antiferromagnetic Kondo lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.N. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K.A

    2004-05-01

    We discuss a novel fluctuational mechanism explaining the physics of nearly antiferromagnetic Kondo lattices (KL). The effective action for KL model is expressed in terms of Bose operators responsible for paramagnetic excitations and semi-bosonic fields describing the dynamic Kondo clouds created by conduction electrons around local spin. The gauge invariant resonance valence bond theory of interacting Kondo clouds describes the spin liquid with strong critical fluctuations imitating itinerant fluctuation magnetism of Moriya type.

  6. Self-sustained oscillations in nanoelectromechanical systems induced by Kondo resonance

    Science.gov (United States)

    Song, Taegeun; Kiselev, Mikhail N.; Kikoin, Konstantin; Shekhter, Robert I.; Gorelik, Leonid Y.

    2014-03-01

    We investigate the instability and dynamical properties of nanoelectromechanical systems represented by a single-electron device containing movable quantum dots attached to a vibrating cantilever via asymmetric tunnel contacts. The Kondo resonance in electron tunneling between the source and shuttle facilitates self-sustained oscillations originating from the strong coupling of mechanical and electronic/spin degrees of freedom. We analyze a stability diagram for the two-channel Kondo shuttling regime due to limitations given by the electromotive force acting on a moving shuttle, and find that the saturation oscillation amplitude is associated with the retardation effect of the Kondo cloud. The results shed light on possible ways to experimentally realize the Kondo-cloud dynamical probe by using high mechanical dissipation tunability as well as supersensitive detection of mechanical displacement.

  7. Lateral manipulation and interplay of local Kondo resonances in a two-impurity Kondo system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jindong; Wu, Xu; Guo, Haiming, E-mail: hmguo@iphy.ac.cn; Pan, Jinbo; Du, Shixuan; Gao, Hong-Jun [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2015-08-17

    The atomic-scale spatial relationship of a two-impurity Kondo system has been determined at varying lateral distance by scanning tunneling microscopy (STM) and spectroscopy. The localized spins of two cobalt magnetic adatoms that are placed on different electrodes of an STM form two individual Kondo singlet states, each showing quite different Kondo coupling, i.e., the tip-Kondo with low Kondo temperature and the sample-Kondo with high Kondo temperature. The differential conductance dI/dV spectra show the continuous changes of the resonance peak feature when approaching the Kondo tip laterally to the local sample-Kondo impurity on the surface. The result indicates a notable interplay between these two Kondo systems. We propose a convolution model based on the q factor of the sample-Kondo (q{sub s}) and tip-Kondo (q{sub t}) to interpret the change of various tunneling channels and the evolution of the experimental spectra.

  8. Exact results for the Kondo screening cloud of two helical liquids.

    Science.gov (United States)

    Posske, Thore; Liu, Chao-Xing; Budich, Jan Carl; Trauzettel, Björn

    2013-01-04

    We analyze the screening of a magnetic quantum dot with spin 1/2 coupled to two helical liquids. Interestingly, we find two qualitatively different sets of Toulouse points, i.e., nontrivial parameters for which we can solve the two channel Kondo model exactly. This enables us to calculate the temperature and voltage dependent Kondo screening cloud, which develops oscillations for an applied spin voltage μ(s). Such a spin voltage can be conveniently applied by a charge bias in a four-terminal helical liquid setup.

  9. Characterization of a correlated topological Kondo insulator in one dimension

    Science.gov (United States)

    Hagymási, I.; Legeza, Ö.

    2016-04-01

    We investigate the ground state of a p -wave Kondo-Heisenberg model introduced by Alexandrov and Coleman with an Ising-type anisotropy in the Kondo interaction and correlated conduction electrons. Our aim is to understand how they affect the stability of the Haldane state obtained in the SU(2)-symmetric case without the Hubbard interaction. By applying the density-matrix renormalization group algorithm and calculating the entanglement entropy we show that in the anisotropic case a phase transition occurs and a Néel state emerges above a critical value of the Coulomb interaction. These findings are also corroborated by the examination of the entanglement spectrum and the spin profile of the system which clarify the structure of each phase.

  10. Consequences of Kondo exchange on quantum spins

    OpenAIRE

    Delgado Acosta, Fernando; Hirjibehedin, Cyrus F.; Fernández Rossier, Joaquín

    2014-01-01

    When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearby itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kondo effect — the formation of a correlated, many body singlet state — and a resulting renormalization of the density of states near the Fermi energy. However, even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other pheno...

  11. Magnetically induced QCD Kondo effect

    Science.gov (United States)

    Ozaki, Sho; Itakura, Kazunori; Kuramoto, Yoshio

    2016-10-01

    The "QCD Kondo effect" stems from the color exchange interaction in QCD with non-Abelian property, and can be realized in a high-density quark matter containing heavy-quark impurities. We propose a novel type of the QCD Kondo effect induced by a strong magnetic field. In addition to the fact that the magnetic field does not affect the color degrees of freedom, two properties caused by the Landau quantization in a strong magnetic field are essential for the "magnetically induced QCD Kondo effect"; (1) dimensional reduction to 1 +1 -dimensions, and (2) finiteness of the density of states for lowest energy quarks. We demonstrate that, in a strong magnetic field B , the scattering amplitude of a massless quark off a heavy quark impurity indeed shows a characteristic behavior of the Kondo effect. The resulting Kondo scale is estimated as ΛK≃√{eqB }αs1 /3exp {-4 π /Ncαslog (4 π /αs)} where αs and Nc are the fine structure constant of strong interaction and the number of colors in QCD, and eq is the electric charge of light quarks.

  12. A Maximally Supersymmetric Kondo Model

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Sarah; Kachru, Shamit; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC

    2012-02-17

    We study the maximally supersymmetric Kondo model obtained by adding a fermionic impurity to N = 4 supersymmetric Yang-Mills theory. While the original Kondo problem describes a defect interacting with a free Fermi liquid of itinerant electrons, here the ambient theory is an interacting CFT, and this introduces qualitatively new features into the system. The model arises in string theory by considering the intersection of a stack of M D5-branes with a stack of N D3-branes, at a point in the D3 worldvolume. We analyze the theory holographically, and propose a dictionary between the Kondo problem and antisymmetric Wilson loops in N = 4 SYM. We perform an explicit calculation of the D5 fluctuations in the D3 geometry and determine the spectrum of defect operators. This establishes the stability of the Kondo fixed point together with its basic thermodynamic properties. Known supergravity solutions for Wilson loops allow us to go beyond the probe approximation: the D5s disappear and are replaced by three-form flux piercing a new topologically non-trivial S3 in the corrected geometry. This describes the Kondo model in terms of a geometric transition. A dual matrix model reflects the basic properties of the corrected gravity solution in its eigenvalue distribution.

  13. Holographic Kondo and Fano Resonances

    CERN Document Server

    Erdmenger, Johanna; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M S

    2016-01-01

    We use holography to study a $(1+1)$-dimensional Conformal Field Theory (CFT) coupled to an impurity. The CFT is an $SU(N)$ gauge theory at large $N$, with strong gauge interactions. The impurity is an $SU(N)$ spin. We trigger an impurity Renormalization Group (RG) flow via a Kondo coupling. The Kondo effect occurs only below the critical temperature of a large-$N$ mean-field transition. We show that at all temperatures $T$, spectral functions of certain bosonic operators exhibit a Fano resonance, which in the low-$T$ phase is a large-$N$ manifestation of the Kondo resonance. Such Fano resonances are characteristic features of RG flows between $(0+1)$-dimensional fixed points, and are thus distinct from those observed for example in quantum dots.

  14. Thermoelectric power of Kondo insulators

    OpenAIRE

    佐宗, 哲郎

    2002-01-01

    Thermoelectric power (TEP) of the Kondo insulators is investigated theoretically within the framework of the dynamical mean field theory. It is found that the temperature dependence of the Seebeck coefficient changes from the ordinary behavior S(T) ∝ T−1 in semiconductors to S ∝ T at low temperatures due to the finite imaginary part of the electron self-energy in the Kondo insulators with strong correlation. Realistic models for YbB12 and FeSi based on the band calculations are also studied....

  15. Spatially dependent Kondo effect in Quantum Corrals

    Science.gov (United States)

    Rossi, Enrico; Morr, Dirk K.

    2007-03-01

    We study the Kondo screening of a single magnetic impurity placed inside a quantum corral consisting of non-magnetic impurities on the surface of a metallic host system. We show that the spatial structure of the corral's eigenmodes leads to a spatially dependent Kondo effect whose signatures are experimentally measurable spatial variations of the Kondo temperature, TK, and of the critical Kondo coupling, Jcr. Moreover we find that the screening of the magnetic impurity is accompanied by the formation of multiple Kondo resonances with characteristic spatial patterns that provide further experimental signatures of the spatially dependent Kondo effect. Our results demonstrate that quantum corrals provide new possibilities to manipulate and explore the Kondo effect.

  16. Two-channel X-ray reflectometer

    CERN Document Server

    Touryanski, A G; Pirshin, I V

    2000-01-01

    The two-channel X-ray reflectometer is proposed providing an increase in accuracy and sensitivity especially to nanoscale oxide layers. The reflectometer has two independent measuring channels controlled by a processor and the beam-splitting and spectral selection device based on a row of semitransparent plates of pyrolitic graphite. Results of reflection curve measurements in a relative mode are presented for an Ni film and GaAs monocrystal.

  17. Quantum dots with even number of electrons: kondo effect in a finite magnetic field

    Science.gov (United States)

    Pustilnik; Avishai; Kikoin

    2000-02-21

    We show that the Kondo effect can be induced by an external magnetic field in quantum dots with an even number of electrons. If the Zeeman energy B is close to the single-particle level spacing Delta in the dot, the scattering of the conduction electrons from the dot is dominated by an anisotropic exchange interaction. A Kondo resonance then occurs despite the fact that B exceeds by far the Kondo temperature T(K). As a result, at low temperatures T

  18. TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-05-30

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  19. Numerical renormalization group studies of the partially brogen SU(3) Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Fuh Chuo, Evaristus

    2013-04-15

    The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy {Delta}{sub 0}. When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T{sub K}>{Delta}{sub 0})=k{sub B} ln 3, and the 2CK ground state value, S(0)=k{sub B} ln {radical}(2). This indicates a downward renormalization of the doublet below the non-interacting ground state, thus realizing the 2CK fixed point, in agreement with earlier conjectures. We mapped out the phase diagram of the model in the J-{Delta}{sub 0} plane. The Kondo temperature T{sub K} shows non-monotonic J-dependence, characteristic for 2CK systems. Beside the two-channel Kondo effect of the model, we also study the single-channel version, which is realized by applying a strong magnetic fi eld to the conduction band electrons so that their degeneracy is lifted and consequently having only one kind of electrons scattering off the impurity. This single-channel case is easier to analyze since the Hilbert space is not as large as that of the 2CK. We equally find a downward renormalization of the excited state energy by the Kondo correlations in the SU(2) doublet

  20. Kondo route to spin inhomogeneities in the honeycomb Kitaev model

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. D.; Dhochak, K.; Tripathi, V.

    2016-07-01

    Paramagnetic impurities in a quantum spin liquid give rise to Kondo effects with highly unusual properties. We have studied the effect of locally coupling a paramagnetic impurity with the spin-1/2 honeycomb Kitaev model in its gapless spin-liquid phase. The ( impurity) scaling equations are found to be insensitive to the sign of the coupling. The weak and strong coupling fixed points are stable, with the latter corresponding to a noninteracting vacancy and an interacting, spin-1 defect for the antiferromagnetic and ferromagnetic cases, respectively. The ground state in the strong coupling limit in both cases has a nontrivial topology associated with a finite Z(2) flux at the impurity site. For the antiferromagnetic case, this result has been obtained straightforwardly owing to the integrability of the Kitaev model with a vacancy. The strong-coupling limit of the ferromagnetic case is, however, nonintegrable, and we address this problem through exact-diagonalization calculations with finite Kitaev fragments. Our exact diagonalization calculations indicate that the weak-to-strong coupling transition and the topological phase transition occur rather close to each other and are possibly coincident. We also find an intriguing similarity between the magnetic response of the defect and the impurity susceptibility in the two-channel Kondo problem.

  1. Competition between Quadrupole and Magnetic Kondo Effects in Non-Kramers Doublet Systems

    Science.gov (United States)

    Kusunose, Hiroaki; Onimaru, Takahiro

    2015-03-01

    We discuss possible competition between magnetic and quadrupole Kondo effects in non-Kramers doublet systems in cubic symmetry. The quadrupole Kondo effect leads to non-Fermi-liquid (NFL) ground state, while the magnetic one favors ordinary Fermi-liquid (FL) ground state. In terms of the j-j coupling scheme, we argue that the orbital fluctuation must develop in the vicinity of the NFL-FL boundary. A change of temperature dependence of the f-electron entropy in both the FL and NFL regimes is demonstrated by the Wilson's numerical renormalization-group (NRG) method on the basis of the extended two-channel Kondo exchange model. We present implications to PrT2X20 (T=Ti, V, Ir; X=Al, Zn) systems which exhibit both quadrupole ordering and peculiar superconductivity. We discuss how the magnetic field lifts the non-Kramers degeneracy. Our model also represents the alternative FL state accompanied by a free magnetic spin, as a consequence of stronger competition between the magnetic and the quadrupole Kondo effects.

  2. Single crystal study on a novel Kondo compound Ce{sub 6}Pt{sub 11}In{sub 14}

    Energy Technology Data Exchange (ETDEWEB)

    Pikul, A.P. E-mail: a.pikul@int.pan.wroc.pl; Bukowski, Z.; Stepien-Damm, J.; Kaczorowski, D

    2004-05-01

    Ce{sub 6}Pt{sub 11}In{sub 14} crystallizes with a monoclinic unit cell (space group C2/m; lattice parameters: a=22.729(5) A, b=4.3960(10) A, c=14.780(3) A, {beta}=118.35(3) deg.; Z=2). It is paramagnetic down to 1.9 K, and strongly anisotropic in the entire temperature range studied. The electrical resistivity along the b-axis shows Kondo features with a maximum located at 7 K. The transverse magnetoresistivity isotherms, measured in the incoherent region, follow a single-ion Kondo scaling with the characteristic temperature T*=4 K.

  3. Real-space renormalization group flow in quantum impurity systems: Local moment formation and the Kondo screening cloud

    Science.gov (United States)

    Mitchell, Andrew K.; Becker, Michael; Bulla, Ralf

    2011-09-01

    The existence of a length scale ξK˜1/TK (with TK the Kondo temperature) has long been predicted in quantum impurity systems. At low temperatures T≪TK, the standard interpretation is that a spin-(1)/(2) impurity is screened by a surrounding “Kondo cloud” of spatial extent ξK. We argue that renormalization group (RG) flow between any two fixed points (FPs) results in a characteristic length scale, observed in real space as a crossover between physical behavior typical of each FP. In the simplest example of the Anderson impurity model, three FPs arise, and we show that “free orbital,” “local moment,” and “strong coupling” regions of space can be identified at zero temperature. These regions are separated by two crossover length scales ξLM and ξK, with the latter diverging as the Kondo effect is destroyed on increasing temperature through TK. One implication is that moment formation occurs inside the “Kondo cloud”, while the screening process itself occurs on flowing to the strong coupling FP at distances ˜ξK. Generic aspects of the real-space physics are exemplified by the two-channel Kondo model, where ξK now separates local moment and overscreening clouds.

  4. Numerical study of Kondo impurity models with strong potential scattering: - reverse Kondo effect and antiresonance -

    OpenAIRE

    Kiss, Annamaria; Kuramoto, Yoshio; Hoshino, Shintaro

    2011-01-01

    Accurate numerical results are derived for transport properties of Kondo impurity systems with potential scattering and orbital degeneracy. Using the continuous-time quantum Monte Carlo (CT-QMC) method, static and dynamic physical quantities are derived in a wide temperature range across the Kondo temperature T_K. With strong potential scattering, the resistivity tends to decrease with decreasing temperature, in contrast to the ordinary Kondo effect. Correspondingly, the quasi-particle densit...

  5. Möbius Kondo insulators

    Science.gov (United States)

    Chang, Po-Yao; Erten, Onur; Coleman, Piers

    2017-08-01

    Heavy fermion materials have recently attracted attention for their potential to combine topological protection with strongly correlated electron physics. To date, the ideas of topological protection have been restricted to the heavy fermion or `Kondo' insulators with the simplest point-group symmetries. Here we argue that the presence of nonsymmorphic crystal symmetries in many heavy fermion materials opens up a new family of topologically protected heavy electron systems. Re-examination of archival resistivity measurements in the nonsymmorphic heavy fermion insulators Ce3Bi4Pt3 and CeNiSn reveals the presence of a low-temperature conductivity plateau, making them candidate members of the new class of material. We illustrate our ideas with a specific model for CeNiSn, showing how glide symmetries generate surface states with a novel Möbius braiding that can be detected by ARPES or non-local conductivity measurements. One of the interesting effects of strong correlation is the development of partially localization or `Kondo breakdown' on the surfaces, which transforms Möbius surface states into quasi-one-dimensional conductors, with the potential for novel electronic phase transitions.

  6. Kondo Destruction in RKKY-Coupled Kondo Lattice and Multi-Impurity Systems

    Science.gov (United States)

    Nejati, Ammar; Ballmann, Katinka; Kroha, Johann

    2017-03-01

    In a Kondo lattice, the spin exchange coupling between a local spin and the conduction electrons acquires nonlocal contributions due to conduction electron scattering from surrounding local spins and the subsequent RKKY interaction. It leads to a hitherto unrecognized interference of Kondo screening and the RKKY interaction beyond the Doniach scenario. We develop a renormalization group theory for the RKKY-modified Kondo vertex. The Kondo temperature TK(y ) is suppressed in a universal way, controlled by the dimensionless RKKY coupling parameter y . Complete spin screening ceases to exist beyond a critical RKKY strength yc even in the absence of magnetic ordering. At this breakdown point, TK(y ) remains nonzero and is not defined for larger RKKY couplings y >yc. The results are in quantitative agreement with STM spectroscopy experiments on tunable two-impurity Kondo systems. The possible implications for quantum critical scenarios in heavy-fermion systems are discussed.

  7. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Posske, Thore Hagen

    2016-02-26

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  8. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Pengbin, E-mail: 120233951@qq.com [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-01-15

    Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.

  9. Continuous Time Quantum Monte Carlo simulation of Kondo shuttling

    Science.gov (United States)

    Zhang, Peng; Assaad, Fakher; Jarrell, Mark

    2010-03-01

    The Kondo shuttling problem is investigated by using the Continuous Time Quantum Monte Carlo method in both the anti-adiabatic limit φTK and the intermediate regime φ˜TK, where φ is the phonon modulation frequency and TK is the Kondo temperature. We investigate the potential emergence of Kondo effect or Kondo breakdown as a function of the phonon modulation frequency and electron-phonon coupling. This research is supported by grant OISE-0952300.

  10. Kondo effect in low-carrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Hager, R.; Bulla, R. [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Univ. Augsburg (Germany)

    2007-07-01

    Recent experiments on dilute U impurities in semiconducting CaB{sub 6} show typical Kondo phenomena with a Kondo temperature T{sub K}{approx}2 K (G.A. Wigger e.t al., Europhys. Lett. 68, 685 (2004)). This observation is rather unusual for magnetic moments due to 5f electrons because of the large hybridization between impurities and the conduction electrons. We perform numerical renormalization group calculations for an Anderson impurity model with a, low concentration of conduction electrons, believed to be the relevant model for (U,Ca)B{sub 6}. We present results for thermodynamic and dynamic quantities for various carrier concentrations and investigate the crossover from mixed-valent to Kondo behaviour upon decreasing the filling of the conduction band. (orig.)

  11. Superconductivity in the Kondo lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Bodensiek, Oliver; Pruschke, Thomas [Institute for Theoretical Physics, University of Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Zitko, Rok [Institute for Theoretical Physics, University of Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2011-07-01

    We study the Kondo lattice model with an additional attractive interaction among the conduction-band electrons by means of dynamical mean-field theory in combination with the numerical renormalization group method. In the normal phase we observe a strong dependency of the low-energy scale on the attractive interaction. Thus, there exists a delicate interplay between the attractive interaction and the antiferromagnetic Kondo exchange, which results in a critical interaction, above of which the Fermi surface collapses because the spins become effectively decoupled from the conduction electrons. Additionally, we allow for a s-wave superconducting phase, which appears to be split at the point of the underlying Fermi surface collapse. We discuss the interplay between attractive interaction an Kondo exchange and its pertinence to phonons in heavy fermion physics.

  12. Kondo effect in quantum dots and molecular devices

    Institute of Scientific and Technical Information of China (English)

    JIANG Lang; LI Hongxiang; HU Wenping; ZHU Daoben

    2005-01-01

    Kondo effect is a very important many-body phenomenon in condensed matter physics,which explains why the resistance increases as the temperature is lowered (usually <10 K) in dilute magnetic alloy, and why the conductance increases as temperature is decreased in quantum dots. This paper simply introduces equilibrium and non- equilibrium Kondo effects in quantum dots together with the Kondo effect in quantum dots with even number of electrons (when the singlet and triplet states are degenerate). Furthermore, Kondo effect in single atom/molecular transistors is introduced, which indicates a new way to study Kondo effect.

  13. Kondo effect in molecules with strong correlations

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, Tetyana [Department of Physics, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel)]. E-mail: tetyana@bgumail.bgu.ac.il; Kikoin, Konstantin [Department of Physics, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel); Avishai, Yshai [Department of Physics, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2005-04-30

    A theory of Kondo tunneling through molecules adsorbed on metallic substrate is constructed and the underlying physics is exposed. It is shown that in the case of weak chemisorption the sandwich-type molecules manifest a novel type of Kondo effect that has not been observed in magnetically doped bulk metals. The exchange Hamiltonian of these molecules unveils unusual dynamical SO(n) symmetries instead of conventional SU(2) symmetry. These symmetries can be experimentally realized and the specific value of n can be controlled by gate voltage.

  14. Kondo lattice without Nozieres exhaustion effect.

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, K.; Kiselev, M. N.; Materials Science Division; Ben-Gurion Univ. of the Negev; Ludwig-Maximilians Univ.

    2006-01-01

    We discuss the properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in the z direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozieres exhaustion problem does not occur. The high-temperature perturbational description is matched to exact low-T Bethe-ansatz solution. The excitation spectrum of the model is gapless both in charge and spin sectors. The disordered phases and possible experimental realizations of the model are briefly discussed.

  15. Kondo tunneling through real and artificial molecules.

    Science.gov (United States)

    Kikoin, K; Avishai, Y

    2001-03-05

    When an asymmetric double dot is hybridized with itinerant electrons, its singlet ground state and lowly excited triplet state cross, leading to a competition between the Zhang-Rice mechanism of singlet-triplet splitting in a confined cluster and the Kondo effect (which accompanies the tunneling through quantum dot under a Coulomb blockade restriction). The rich physics of an underscreened S = 1 Kondo impurity in the presence of low-lying triplet-singlet excitations is exposed and estimates of the magnetic susceptibility and the electric conductance are presented, together with applications for molecule chemisorption on metallic substrates.

  16. Transport across two interacting quantum dots: bulk Kondo, Kondo box and molecular regimes

    Science.gov (United States)

    Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique

    2014-03-01

    We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N non-interacting sites connecting both of them. The inter-dot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of small number of sites, so that Kondo box effects are present. For odd N and small coupling between the inter-dot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dots spins by the spin in the finite chain. As the coupling to the inter-dot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule spin by the leads. For even N the two-Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism. We finally study how the transport properties are affected as N is increased. We used exact multi-configurational Lanczos calculations and finite U slave-boson mean-field theory. The results obtained with both methods describe qualitatively and also quantitatively the same physics.

  17. Transport properties of fully screened Kondo models

    NARCIS (Netherlands)

    Hörig, Christoph B M; Mora, Christophe; Schuricht, Dirk

    2014-01-01

    We study the nonequilibrium transport properties of fully (exactly) screened Kondo quantum dots subject to a finite bias voltage or a finite temperature. First, we calculate the Fermi-liquid coefficients of the conductance for models with arbitrary spin, i.e., its leading behavior for small bias vol

  18. The Kondo tip decorated by the Co atom

    Science.gov (United States)

    Feng, Wei; Liu, Qin; Lai, Xinchun; Zhao, Aidi

    2016-11-01

    The Kondo effect of single Co adatoms on Ru(0001) is detected with two different kinds of co-decorated tip (Kondo tip) by using low temperature scanning tunneling microscopy and scanning tunneling spectroscopy. We call the relatively separated two magnetic impurities in the tunneling region ‘two Kondo system’ to distinguish it from the ‘two-impurity Kondo system’. We find that the artificially constructed Kondo tips can be generally categorized into two types of Kondo resonances, which have distinct Fano line shapes with quantum interference factor |q| ≫ 1 and |q| ∼ 1, respectively. The tunneling spectra of six constructed two Kondo systems can be well fitted by summing the two Fano resonances of the two subsystems and a linear background. More interestingly, by extracting the amplitudes of the two Fano resonances in the spectra, we find that the electron transmission of such a two Kondo system in the tunneling region is dominated by the quantum interference of the Kondo tip, which is directly related to the geometric configuration of the adsorbed Kondo atom on the tip.

  19. Kondo force in shuttling devices: dynamical probe for a Kondo cloud.

    Science.gov (United States)

    Kiselev, M N; Kikoin, K A; Gorelik, L Y; Shekhter, R I

    2013-02-08

    We consider the electromechanical properties of a single-electronic device consisting of a movable quantum dot attached to a vibrating cantilever, forming a tunnel contact with a nonmovable source electrode. We show that the resonance Kondo tunneling of electrons amplifies exponentially the strength of nanoelectromechanical (NEM) coupling in such a device and make the latter insensitive to mesoscopic fluctuations of electronic levels in a nanodot. It is also shown that the study of a Kondo-NEM phenomenon provides additional (as compared with standard conductance measurements in a nonmechanical device) information on retardation effects in the formation of a many-particle cloud accompanying the Kondo tunneling. A possibility for superhigh tunability of mechanical dissipation as well as supersensitive detection of mechanical displacement is demonstrated.

  20. The Correlated Kondo-lattice Model

    OpenAIRE

    Kienert, J.; Santos, C.; Nolting, W.

    2003-01-01

    We investigate the ferromagnetic Kondo-lattice model (FKLM) with a correlated conduction band. A moment conserving approach is proposed to determine the electronic self-energy. Mapping the interaction onto an effective Heisenberg model we calculate the ordering of the localized spin system self-consistently. Quasiparticle densities of states (QDOS) and the Curie temperature are calculated. The band interaction leads to an upper Hubbard peak and modifies the magnetic stability of the FKLM.

  1. Kondo Effect at a Quantum Critical Point

    Science.gov (United States)

    Ramazashvili, Revaz; Coleman, Piers

    1998-03-01

    The Kondo effect in a metal on the verge of a zero-temperature magnetic instability provides a fascinating example of interference between local and long-range correlations. (A. I. Larkin and V. I. Mel'nikov, Sov. Phys. JETP 34, 656 (1972)) (P. Coleman and A. M. Tsvelik, cond-mat/9707003) (A. Sengupta, cond-mat/9707316) We discuss possible consequences of this interference, including the breakdown of the Fermi liquid state.

  2. First passage time statistics for two-channel diffusion

    CERN Document Server

    Godec, Aljaz

    2016-01-01

    We present rigorous results for the mean first passage time and first passage time statistics for two-channel Markov additive diffusion in a 3-dimensional spherical domain. Inspired by biophysical examples we assume that the particle can only recognise the target in one of the modes, which is shown to effect a non-trivial first passage behaviour. We also address the scenario of intermittent immobilisation. In both cases we prove that despite the perfectly non-recurrent motion of two-channel Markov additive diffusion in 3 dimensions the first passage statistics at long times do not display Poisson-like behaviour if none of the phases has a vanishing diffusion coefficient. This stands in stark contrast to the standard (one-channel) Markov diffusion counterpart. We also discuss the relevance of our results in the context of cellular signalling.

  3. Kondo behavior and conductance through 3d impurities in gold chains doped with oxygen

    Science.gov (United States)

    Barral, M. A.; Di Napoli, S.; Blesio, G.; Roura-Bas, P.; Camjayi, A.; Manuel, L. O.; Aligia, A. A.

    2017-03-01

    Combining ab initio calculations and effective models derived from them, we discuss the electronic structure of oxygen doped gold chains when one Au atom is replaced by any transition-metal atom of the 3d series. The effect of O doping is to bring extended Au 5dxz and 5dyz states to the Fermi level, which together with the Au states of zero angular momentum projection leads to three possible channels for the screening of the magnetism of the impurity. For most 3d impurities the expected physics is similar to that of the underscreened Kondo model, with singular Fermi liquid behavior. For Fe and Co under a tetragonal crystal field introduced by leads, the system might display a non-Fermi liquid behavior. Ni and Cu impurities are described by a S = 1 two channel Kondo model and an SU(4) impurity Anderson model in the intermediate valence regime, respectively. In both cases, the system is a Fermi liquid, but the conductance shows some observable differences with the ordinary SU(2) Anderson model.

  4. Kondo effects in triangular triple quantum dots

    Science.gov (United States)

    Oguri, Akira; Numata, Takahide; Nisikawa, Yunori; Hewson, A. C.

    2009-03-01

    We study the conductance through a triangular triple quantum dot, which is connected to two noninteracting leads, using the numerical renormalization group (NRG). It is found that the system shows a variety of Kondo effects depending on the filling of the triangle. The SU(4) Kondo effect occurs at half-filling, and a sharp conductance dip due to a phase lapse appears in the gate-voltage dependence. Furthermore, when four electrons occupy the three sites on average, a local S=1 moment, which is caused by the Nagaoka mechanism, is induced along the triangle. The temperature dependence of the entropy and spin susceptibility of the triangle shows that this moment is screened by the conduction electrons via two separate stages at different temperatures. The two-terminal and four-terminal conductances show a clear difference at the gate voltages, where the SU(4) or the S=1 Kondo effects occur[1]. We will also discuss effects of deformations of the triangular configuration, caused by the inhomogeneity in the inter-dot couplings and in the gate voltages. [4pt] [1] T.Numata, Y.Nisikawa, A.Oguri, and A.C.Hewson: arXiv:0808.3496.

  5. Single-crystal study of highly anisotropic CeNiGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pikul, A P; Kaczorowski, D; Bukowski, Z; Plackowski, T; Gofryk, K [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland)

    2004-09-01

    High quality single crystals of CeNiGe{sub 2} have been investigated by means of magnetic susceptibility, magnetization, electrical resistivity, magnetoresistivity and thermoelectric power measurements, carried out along all three principal crystallographic directions. The compound is an antiferromagnetic Kondo system that orders magnetically at T{sub N} = 3.9 K and undergoes a spin structure rearrangement at T{sub 1} = 3.2 K. The magnetic behaviour is strongly anisotropic with the easy magnetic direction parallel to the crystallographic a-axis. The Kondo temperature and the total crystal field splitting are of the order of 20 and 100 K, respectively.

  6. Kondo Effect in a Single Electron Transistor

    Science.gov (United States)

    Goldhaber-Gordon, David

    1998-03-01

    When a field-effect transistor is made very small, and electrons in the channel are separated from those in the leads by tunnel junctions, the transistor turns on and off every time an extra electron is added to the channel. The droplet of electrons confined in the channel of such a single-electron transistor (SET) interacts with electrons in the leads. This is in close analogy to an impurity atom interacting with the delocalized electrons in a metal, the traditional system for studying the Kondo effect.(Y. Meir, N.S. Wingreen, and P.A. Lee. PRL) 70, 2601 (1993) I will discuss measurements on a new generation of SETs that display all the aspects of the Kondo effect:(D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M.A. Kastner. To be published in Nature). a spin singlet forms between a localized electron in the channel and delocalized electrons in the leads, causing an enhancement of the zero-bias conductance, when the number of electrons on the artificial atom is odd but not when it is even. The system can be studied out of equilibrium by applying a voltage between the two leads, an impossible procedure in bulk Kondo systems. The spin singlet is altered by applying such a voltage or a magnetic field or by increasing the temperature, all in ways that agree with predictions. In addition, the tunability of an SET allows study of the system over a range of parameters not easily accessible to previous calculations or experiments.

  7. Transport through artificial single-molecule magnets:Spin-pair state sequential tunneling and Kondo effects

    Institute of Scientific and Technical Information of China (English)

    Niu Peng-Bin; Wang Qiang; Nie Yi-Hang

    2013-01-01

    The transport properties of an artificial single-molecule magnet based on a CdTe quantum dot doped with a single Mn+2 ion (S =5/2) are investigated by the non-equilibrium Green function method.We consider a minimal model where the Mn-hole exchange coupling is strongly anisotropic so that spin-flip is suppressed and the impurity spin S and a hole spin s entering the quantum dot are coupled into spin pair states with (2S+ 1) sublevels.In the sequential tunneling regime,the differential conductance exhibits (2S + 1) possible peaks,corresponding to resonance tunneling via (2S + 1) sublevels.At low temperature,Kondo physics dominates transport and (2S + 1) Kondo peaks occur in the local density of states and conductance.These peaks originate from the spin-singlet state formed by the holes in the leads and on the dot via higher-order processes and are related to the parallel and antiparallel spin pair states.

  8. Entanglement Entropy in a Holographic Kondo Model

    CERN Document Server

    Erdmenger, Johanna; Hoyos, Carlos; Newrzella, Max-Niklas; Wu, Jackson M S

    2015-01-01

    We calculate entanglement and impurity entropies in a recent holographic model of a magnetic impurity interacting with a strongly coupled system. There is an RG flow to an IR fixed point where the impurity is screened, leading to a decrease in impurity degrees of freedom. This information loss corresponds to a volume decrease in our dual gravity model, which consists of a codimension one hypersurface embedded in a BTZ black hole background in three dimensions. There are matter fields defined on this hypersurface which are dual to Kondo field theory operators. In the large N limit, the formation of the Kondo cloud corresponds to the condensation of a scalar field. The entropy is calculated according to the Ryu-Takayanagi prescription. This requires to determine the backreaction of the hypersurface on the BTZ geometry, which is achieved by solving the Israel junction conditions. We find that the larger the scalar condensate gets, the more the volume of constant time slices in the bulk is reduced, shortening the...

  9. Kondo effect and mesoscopic fluctuations

    Indian Academy of Sciences (India)

    Denis Ullmo; Sébastien Burdin; Dong E Liu; Harold U Baranger

    2011-11-01

    Two important themes in nanoscale physics in the last two decades are correlations between electrons and mesoscopic fluctuations. Here we review our recent work on the intersection of these two themes. The setting is the Kondo effect, a paradigmatic example of correlated electron physics, in a nanoscale system with mesoscopic fluctuations; in particular, we consider a small quantum dot coupled to a finite reservoir (which itself may be a large quantum dot). We discuss three aspects of this problem. First, in the high-temperature regime, we argue that a Kondo temperature K which takes into account the mesoscopic fluctuations is a relevant concept: for instance, physical properties are universal functions of /K. Secondly, when the temperature is much less than the mean level spacing due to confinement, we characterize a natural cross-over from weak to strong coupling. This strong coupling regime is itself characterized by well-defined single-particle levels, as one can see from a Nozières Fermi-liquid theory argument. Finally, using a mean-field technique, we connect the mesoscopic fluctuations of the quasiparticles in the weak coupling regime to those at strong coupling.

  10. Kondo effect in organometallic complexes with vibrating ligand shells

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.N. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 (Germany)]. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K. [Physics Department, Ben-Gurion University, Beer-Sheva 84105 (Israel); Wegewijs, M.R. [Institut fuer Theoretische Physik-Lehrstuhl A, RWTH Aachen, 52056 Aachen (Germany)

    2007-03-15

    We investigate transport through a mononuclear rare-earth metal-organic shell complex with strong tunnel coupling between the shell and two electrodes. The ground state of this molecule is a singlet while the first excited state is a triplet. We show that modulation of the tunnel barrier due to a molecular distortion which couples to the tunneling induces the Kondo effect, provided the discrete vibrational energy compensates the singlet/triplet gap. We discuss also the possibility of tuning the phonon-induced Kondo tunneling by external magnetic field and the finite bias Kondo anomaly.

  11. Two-Channel Satellite Retrievals of Aerosol Properties: An Overview

    Science.gov (United States)

    Mishchenko, Michael I.

    1999-01-01

    In order to reduce current uncertainties in the evaluation of the direct and indirect effects of tropospheric aerosols on climate on the global scale, it has been suggested to apply multi-channel retrieval algorithms to the full period of existing satellite data. This talk will outline the methodology of interpreting two-channel satellite radiance data over the ocean and describe a detailed analysis of the sensitivity of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. We will specifically address the calibration and cloud screening issues, consider the suitability of existing satellite data sets to detecting short- and long-term regional and global changes, compare preliminary results obtained by several research groups, and discuss the prospects of creating an advanced retroactive climatology of aerosol optical thickness and size over the oceans.

  12. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  13. Kondo Screening and Fermi Surface in the Antiferromagnetic Metal Phase

    Science.gov (United States)

    Yamamoto, Seiji; Si, Qimiao

    2006-03-01

    We address the Kondo effect deep inside the antiferromagnetic metal phase of a Kondo lattice Hamiltonian with SU(2) invariance. The local- moment component is described in terms of a non-linear sigma model. The Fermi surface of the conduction electron component is taken to be sufficiently small, so that it is not spanned by the antiferromagnetic wavevector. The effective low energy form of the Kondo coupling simplifies drastically, corresponding to the uniform component of the magnetization that forward-scatters the conduction electrons on their own Fermi surface. We use a combined bosonic and fermionic (Shankar) renormalization group procedure to analyze this effective theory and study the Kondo screening and Fermi surface in the antiferromagnetic phase. The implications for the global magnetic phase diagram, as well as quantum critical points, of heavy fermion metals are discussed.

  14. Nonequilibrium electron transport through quantum dots in the Kondo regime

    DEFF Research Database (Denmark)

    Wölfle, Peter; Paaske, Jens; Rosch, Achim

    2005-01-01

    Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin susceptibility and local spectral function are calculated. We show how the ...

  15. Quantum Entanglement in the Two Impurity Kondo Model

    CERN Document Server

    Cho, S Y; Cho, Sam Young; Kenzie, Ross H. Mc

    2005-01-01

    In order to quantify quantum entanglement in two impurity Kondo systems, we calculate the concurrence, negativity, and von Neumann entropy. The entanglement of the two Kondo impurities is shown to be determined by two competing many-body effects, the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, $I$. Due to the spin-rotational invariance of the ground state, the concurrence and negativity are uniquely determined by the spin-spin correlation between the impurities. It is found that there exists a critical minimum value of the antiferromagnetic correlation between the impurity spins which is necessary for entanglement of the two impurity spins. The critical value is discussed in relation with the unstable fixed point in the two impurity Kondo problem. Specifically, at the fixed point there is no entanglement between the impurity spins. Entanglement will only be created (and quantum information processing (QIP) be possible) if the RKKY interaction exchange energy, $I$, is at least severa...

  16. Schwinger boson approach to the fully screened Kondo model.

    Science.gov (United States)

    Rech, J; Coleman, P; Zarand, G; Parcollet, O

    2006-01-13

    We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from local moment behavior to a Fermi liquid with a nontrivial Wilson ratio. When applied to the two-impurity model, the mean-field theory describes the "Varma-Jones" quantum phase transition between a valence bond state and a heavy Fermi liquid.

  17. Evidence of Kondo effect in organic radical nanoassemblies

    Science.gov (United States)

    Rashidi, Mohammad; Mullegger, Stefan; Fattinger, Michael; Koch, Reinhold

    2012-02-01

    The outstanding spatial resolution of low temperature (LT) scanning tunneling microscopy (STM) and spectroscopy (STS) enables to probe the frontier orbital electronic structure of single magnetic molecules and clusters adsorbed on substrates. Here, we study self-aligned nanostructures of (spin-1/2) hydrocarbon radicals on a metal surface by means of LT-STM and STS. Pronounced involvement of surface state electrons is observed in the frontier molecular orbital (MO) resonances. An empty hybrid state closely above the substrate Fermi level exhibits the characteristic properties of surface Kondo effect reported for similar systems in the literature. By identifying three electronic states as hybrids of molecular orbitals and surface state electrons (two of them directly related to the Kondo effect), we are able to present a modified picture of the surface Kondo effect. It is based on a valence-bond model, where the bonding state represents Kondo's virtual bound state and the antibonding state is the so called 'Kondo resonance' reported in STM studies of the surface Kondo effect. Furthermore, double occupation of the originally singly unoccupied MO by tunneling electrons leads to the third state well above the Fermi level due to Coulomb repulsion as described by the Anderson model.

  18. MAGMA: analysis of two-channel microarrays made easy.

    Science.gov (United States)

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  19. Two-Channel Metal Detector Using Two Perpendicular Antennas

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2014-01-01

    Full Text Available Two-channel metal detector, having two sets of perpendicularly oriented sensor antennas, is proposed to expand detectable size, ranging from mm through cm scale, of metal sensor, while conventional metal sensor is dedicated for detection only in mm or cm scale. The characteristics of the two metal detection sensor channels were investigated, respectively, and the interference effect, while in simultaneous operation, between two sensor channels was discussed. Metal detection channel, having sensitivity in mm scale, showed detectable sensitivity to moving ferrous sphere, with diameter down to 0.7 mm, at 50 kHz exciting frequency and enhanced sensitivity distribution. And metal detection channel having sensitivity in cm scale showed more uniform sensitivity distribution with the flexibility for future modular construction. The effect of interference, while in simultaneous operation of two sensors, resulted in reduced output response, but still within usable detection range. Thus it was feasible to operate two sensors, having different sensitivity range, simultaneously and to extend detection range from mm to cm scale, within practically acceptable interference.

  20. How does a Kondo impurity respond to its local environment?

    Science.gov (United States)

    Heinrich, Andreas

    2008-03-01

    The interplay between localized electrons on a magnetic atom and the conducting electrons in a metal can lead to intriguing many-body ground states such as the Kondo effect. When a spin is Kondo screened by conduction electrons the entire spin system performs a complicated dance that results in the formation of a spin singlet at sufficiently low temperature. For simplicity, most theoretical considerations of Kondo screening focus on magnetic impurities with the lowest possible spin S = 1/2. Such systems can be studied experimentally in exquisite detail and with great control using quantum dots in semiconductor heterostructures or carbon nanotubes. However, in Kondo systems consisting of localized magnetic atoms, the spin is often larger, making the Kondo effect richer and more complex. Here we use the imaging and spectroscopy capabilities of a scanning tunnelling microscope to study how the Kondo screening of a known high-spin atom is determined by its local environment. Co and Ti atoms were deposited on a thin insulating layer (Cu2N) on a copper substrate. We study the influence of external magnetic fields, crystalline magnetic anisotropy, as well as spin-coupling to surrounding atomic spins on the Kondo effect that forms on the Co or Ti atoms. We find that the anisotropy of the crystalline field quenches the high-spin system of Co (S = 3/2) into an effective S = 1/2 Kramers doublet. Surprisingly, much of the impact of these environmental factors on the complex many-body ground state can be understood simply through their effects on the energy levels of the unscreened spin.

  1. Coexistence of Kondo and spin-glass behaviour in Ce{sub 4}Y{sub 3}Ni{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Trovarelli, O. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche (Argentina); Sereni, J.G. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche (Argentina); Schmerber, G. [Institut de Physique et Chimie des Materiaux de Strasbourg, Groupe d`Etude des Materiaux Metallique, 23 rue du Loess, 67037 Strasbourg (France); Kappler, J.P. [Institut de Physique et Chimie des Materiaux de Strasbourg, Groupe d`Etude des Materiaux Metallique, 23 rue du Loess, 67037 Strasbourg (France)

    1995-02-09

    Magnetic susceptibility {chi} and specific heat C{sub P} measurements on Ce{sub 4}Y{sub 3}Ni{sub 3} are presented. The temperature of the maximum of {chi}{sub ac}(T) and C{sub P}(T) shifts with frequency and applied field respectively, as expected for a spin glass (SG) system. The C{sub P} (T{yields}0) dependence corresponds to that of an anisotropic SG. According to the entropy gain two Ce atoms are involved in the SG contribution and two exhibit Kondo effect. ((orig.)).

  2. Two stages of Kondo effect and competition between RKKY and Kondo in Gd-based intermetallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Vaezzadeh, Mehdi [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)]. E-mail: mehdi@kntu.ac.ir; Yazdani, Ahmad [Tarbiat Modares University, P.O. Box 14155-4838, Tehran (Iran, Islamic Republic of); Vaezzadeh, Majid [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Daneshmand, Gissoo [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Kanzeghi, Ali [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2006-05-01

    The magnetic behavior of Gd-based intermetallic compound (Gd{sub 2}Al{sub (1-x)}Au{sub x}) in the form of the powder and needle, is investigated. All the samples are an orthorhombic crystal structure. Only the compound with x=0.4 shows the Kondo effect (other compounds have a normal behavior). Although, for the compound in the form of powder, with x=0.4, the susceptibility measurement {chi}(T) shows two different stages. Moreover for (T>T{sub K2}) a fall of the value of {chi}(T) is observable, which indicates a weak presence of ferromagnetic phase. About the two stages of Kondo effect, we observe at the first (T{sub K1}) an increase of {chi}(T) and in the second stage (T{sub K2}) a new remarkable decrease of {chi}(T) (T{sub K1}>T{sub K2}). For the sample in the form of needles, the first stage is observable only under high magnetic field. This first stage could be corresponds to a narrow resonance between Kondo cloud and itinerant electron. The second stage, which is remarkably visible for the sample in the form of the powder, can be attribute to a complete polarization of Kondo cloud. Observation of these two Kondo stages could be due to the weak presence of RKKY contribution.

  3. AC Conductance Through a Vibrating Molecular Dot in Kondo Regime

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the present paper, by applying the Lang-Firsov canonical transformation and the so-called non-crossing approximation technique, we investigate the joint effects of the electron-phonon interaction and an external alternating gate voltage on the transport of a quantum dot system in the Kondo regime. We find that, while the satellite Kondo resonant peaks appear in both the averaged local density of states and the differential conductance, the main Kondo peak at the Fermi energy is greatly suppressed. These results confirm the previous ones derived by other methods, such as the equation of motion solution. Furthermore, based on the picture of virtual transition between quasi-eigenstates in the system, we also give a slightly different explanation on these phenomena.

  4. Surface Kondo Impurities in the Slave-Boson Approach

    Science.gov (United States)

    Anda, Enrique; Vernek, Edson

    2005-03-01

    Transport properties of magnetic impurities on surfaces have captured a great deal of attention lately. Atom manipulation and topographic imaging techniques using scanning tunneling microscope have confirmed some theoretical predictions on Kondo physics and at the same time revealed other interesting behavior in these systems. For example, experiments have reported unexpectedly high Kondo temperatures for multi-impurity and molecular structures on metallic surfaces. Motivated by these experimental results we apply slave boson techniques for finite Coulomb interaction (finite U) to study the transport properties of magnetic impurities on a metallic surface in the Kondo regime. We report here on our studies of the role of fluctuations on the slave boson number for the case of one impurity on metallic surfaces. We compare our results to other theoretical approaches and to experimental results. Supported by CAPES-Brazil and NSF-IMC and NSF-NIRT.

  5. Hydrogen-induced Kondo effect for Co/Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Dubout, Quentin; Calleja Mitja, Fabian; Etzkorn, Markus; Lehnert, Anne; Claude, Laurent; Gambardella, Pietro; Brune, Harald [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)

    2011-07-01

    We present 0.4 K Scanning Tunneling Spectroscopy (STS) results on hydrogenated Co adatoms on Pt(111). Molecular H dosage creates two Co-H adsorption complexes with comparable abundance. Type I displays very large (40 %) inelastic conductance steps that originate from vibrations, as evidenced by their shift when substituting H by D. Type II displays smaller (5 %) conductance steps at higher energies, again due to H vibrations, together with a large conductance peak at the Fermi level. This feature is attributed to the Kondo effect. Its splitting in magnetic fields up to 8 Tesla identifies the Co-H complex as a S = 1/2 system, whereas clean Co/Pt(111) has a spin of 1 and shows no Kondo effect. H-adsorption has been reported to quench the Kondo effect, here we show that it can produce it.

  6. Spiral Magnetic Order in the One-Dimensional Kondo Lattice

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen-Rong; LI Zheng-Zhong; SHEN Rui

    2001-01-01

    The effects of c-f (conduction-f electrons) hybridization on the spiral spin magnetism in the one dimensional Kondo lattice are studied. By using the mean-field approximation, a close set of equations of the Green's functions with arbitrary wave vector Q for the spiral ordering of spins is deduced. The magnetic phase boundary between the spiral magnetism and ferromagnetism has been calculated approximately. From our qualitative results, one can find that the ferromagnetic region is enlarged due to the c f hybridization. Moreover, some new results reflecting the Kondo effect, such as the modified dispersion relation and the weakening of the localized magnetic moments are also obtained.

  7. Quadrupolar Kondo effect in uranium heavy-electron materials?

    Science.gov (United States)

    Cox, D. L.

    1987-01-01

    The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.

  8. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay

    Science.gov (United States)

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs. PMID:23833548

  9. Kondo cloud of single heavy quark in cold and dense matter

    CERN Document Server

    Yasui, Shigehiro

    2016-01-01

    The Kondo effect is a universal phenomena observed in a variety of fermion systems containing a heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely high density, I study the Kondo effect by color exchange in quark matter containing a single heavy (charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo effect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section for the light quark and the heavy quark, and discuss its effect to the finite size quark matter.

  10. Kondo cloud of single heavy quark in cold and dense matter

    Science.gov (United States)

    Yasui, Shigehiro

    2017-10-01

    The Kondo effect is a universal phenomena observed in a variety of fermion systems containing a heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely high density, I study the Kondo effect by color exchange in quark matter containing a single heavy (charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo effect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section for the light quark and the heavy quark, and discuss its effect to the finite size quark matter.

  11. Kondo effect of D\\xAFs and D\\xAFs* mesons in nuclear matter

    Science.gov (United States)

    Yasui, Shigehiro; Sudoh, Kazutaka

    2017-03-01

    We study the Kondo effect for D¯s and D¯s* mesons as impurity particles in nuclear matter. The spin-exchange interaction between the D¯s or D¯s* meson and the nucleon induces the enhancement of the effective coupling in the low-energy scattering in the infrared region, whose energy scale of singularity is given by the Kondo scale. We investigate the Kondo scale in the renormalization group equation at nucleon one-loop level. We furthermore study the ground state with the Kondo effect in the mean-field approach, and present that the Kondo scale is related to the mixing strength between the D¯s or D¯s* meson and the nucleon in nuclear matter. We show the spectral function of the impurity when the Kondo effect occurs.

  12. On perturbation of eigenvalues embedded at thresholds in a two channel model

    DEFF Research Database (Denmark)

    Jensen, Arne

    2002-01-01

    We present some results on the perturbation of eigenvalues embedded at thresholds in a two channel model Hamiltonian with a small off-diagonal perturbation. Examples are given of the various types of behavior of the eigenvalue under perturbation....

  13. On Perturbation of Eigenvalues Embedded at Thresholds in a Two Channel Model

    Indian Academy of Sciences (India)

    Arne Jensen

    2002-02-01

    We present some results on the perturbation of eigenvalues embedded at thresholds in a two channel model Hamiltonian with a small off-diagonal perturbation. Examples are given of the various types of behavior of the eigenvalue under perturbation.

  14. Implementation of a Two-Channel Maximally Decimated Filter Bank using Switched Capacitor Circuits

    OpenAIRE

    Nahlik, J.; Hospodka, J.; P. Sovka; B. Psenicka

    2013-01-01

    The aim of this paper is to describe the implementation of a two-channel filter bank (FB) using the switched capacitor (SC) technique considering real properties of operational amplifiers (OpAmps). The design procedure is presented and key recommendations for the implementation are given. The implementation procedure describes the design of two-channel filter bank using an IIR Cauer filter, conversion of IIR into the SC filters and the final implementation of the SC filters. The whole design ...

  15. Kondo screening of the spin and orbital magnetic moments of Fe impurities in Cu

    Science.gov (United States)

    Joly, L.; Kappler, J.-P.; Ohresser, P.; Sainctavit, Ph.; Henry, Y.; Gautier, F.; Schmerber, G.; Kim, D. J.; Goyhenex, C.; Bulou, H.; Bengone, O.; Kavich, J.; Gambardella, P.; Scheurer, F.

    2017-01-01

    We use x-ray magnetic circular dichroism to evidence the effect of correlations on the local impurity magnetic moment in an archetypal Kondo system, namely, a dilute Cu:Fe alloy. Applying the sum rules on the Fe L2 ,3 absorption edges, the evolution of the spin and orbital moments across the Kondo temperature are determined separately. The spin moment presents a crossover from a nearly temperature-independent regime below the Kondo temperature to a paramagneticlike regime above. Conversely, the weak orbital moment shows a temperature-independent behavior in the whole temperature range, suggesting different Kondo screening temperature scales for the spin and orbital moments.

  16. Kondo effect for electron transport through an artificial quantum dot

    Institute of Scientific and Technical Information of China (English)

    Sun Ke-Wei; Xiong Shi-Jie

    2006-01-01

    We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper.We obtain the conductance for the system of a quantum dot which is embedded in a one-dimensional chain in zero and finite temperature cases.The external magnetic field gives rise to a negative magnetoconductance in the zero temperature case.It increases as the external magnetic field increases.We obtain the relation between the coupling coefficient and conductance.If the interaction is big enough to prevent conduction electrons from tunnelling through the dot,the dispersion effect is dominant in this case.In the Kondo temperature regime,we obtain the conductivity of a quantum dot system with Kondo correlation.

  17. Kondo-effect of substitutional cobalt impurities at copper surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, P; Diekhoener, L; Schneider, M A; Kern, K [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany); Seitsonen, A P [IMPMC, CNRS and Universite Pierre et Marie Curie, 4 Place Jussieu, Case 115, F-75252 Paris (France)], E-mail: wahl@fkf.mpg.de

    2009-11-15

    The influence of the coordination on the Kondo temperature of a magnetic impurity at a noble metal surface and the line shape observed in low temperature scanning tunneling spectroscopy (STS) is investigated for single cobalt atoms adsorbed on and embedded in copper surfaces. Surprisingly, the Kondo temperature for substitutional cobalt atoms is almost the same as that of adatoms on the Cu(100) surface. This is in stark contrast to the behaviour observed at the Cu(111) surface. DFT calculations reveal that in the case of Cu(100) the coupling of the spin of the cobalt atom to the conduction band is not substantially increased by the incorporation of the cobalt atom. At the same time the observed line shape differs strongly from what is observed on adatom systems.

  18. The strong coupling Kondo lattice model as a Fermi gas

    CERN Document Server

    Östlund, S

    2007-01-01

    The strong coupling half-filled Kondo lattice model is an important example of a strongly interacting dense Fermi system for which conventional Fermi gas analysis has thus far failed. We remedy this by deriving an exact transformation that maps the model to a dilute gas of weakly interacting electron and hole quasiparticles that can then be analyzed by conventional dilute Fermi gas methods. The quasiparticle vacuum is a singlet Mott insulator for which the quasiparticle dynamics are simple. Since the transformation is exact, the electron spectral weight sum rules are obeyed exactly. Subtleties in understanding the behavior of electrons in the singlet Mott insulator can be reduced to a fairly complicated but precise relation between quasiparticles and bare electrons. The theory of free quasiparticles can be interpreted as an exactly solvable model for a singlet Mott insulator, providing an exact model in which to explore the strong coupling regime of a singlet Kondo insulator.

  19. The Spin Glass-Kondo Competition in Disordered Cerium Systems

    Science.gov (United States)

    Magalhaes, S. G.; Zimmer, F.; Coqblin, B.

    2013-10-01

    We discuss the competition between the Kondo effect, the spin glass state and a magnetic order observed in disordered Cerium systems. We present firstly the experimental situation of disordered alloys such as CeNi1 - xCux and then the different theoretical approaches based on the Kondo lattice model, with different descriptions of the intersite exchange interaction for the spin glass. After the gaussian approach of the Sherrington-Kirkpatrick model, we discuss the Mattis and the van Hemmen models. Then, we present simple cluster calculations in order to describe the percolative evolution of the clusters from the cluster spin glass to the inhomogeneous ferromagnetic order recently observed in CeNi1 - xCux disordered alloys and finally we discuss the effect of random and transverse magnetic field.

  20. Toward a new microscopic framework for Kondo lattice materials

    Science.gov (United States)

    Lonzarich, Gilbert; Pines, David; Yang, Yi-feng

    2017-02-01

    Understanding the emergence and subsequent behavior of heavy electrons in Kondo lattice materials is one of the grand challenges in condensed matter physics. From this perspective we review the progress that has been made during the past decade and suggest some directions for future research. Our focus will be on developing a new microscopic framework that incorporates the basic concepts that emerge from a phenomenological description of the key experimental findings.

  1. Tunable Kondo Effect of a Three-Terminal Transport Quantum Dot Embedded in an Aharonov-Bohm Ring

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiong-Wen; SHI Zhen-Gang; WU Shao-Quan; SONG Ke-Hui

    2006-01-01

    @@ We theoretically investigate the Kondo effect of a three-terminal transport quantum dot (QD) embedded in an Aharonov-Bohm ring in the Kondo regime by means of the one-impurity Anderson Hamiltonian.

  2. Conductance fingerprint of Majorana fermions in the topological Kondo effect

    Science.gov (United States)

    Galpin, Martin R.; Mitchell, Andrew K.; Temaismithi, Jesada; Logan, David E.; Béri, Benjamin; Cooper, Nigel R.

    2014-01-01

    We consider an interacting nanowire/superconductor heterostructure attached to metallic leads. The device is described by an unusual low-energy model involving spin-1 conduction electrons coupled to a nonlocal spin-1/2 Kondo impurity built from Majorana fermions. The topological origin of the resulting Kondo effect is manifest in distinctive non-Fermi-liquid (NFL) behavior, and the existence of Majorana fermions in the device is demonstrated unambiguously by distinctive conductance line shapes. We study the physics of the model in detail, using the numerical renormalization group, perturbative scaling, and Abelian bosonization. In particular, we calculate the full scaling curves for the differential conductance in ac and dc fields, onto which experimental data should collapse. Scattering t matrices and thermodynamic quantities are also calculated, recovering asymptotes from conformal field theory. We show that the NFL physics is robust to asymmetric Majorana-lead couplings, and here we uncover a duality between strong and weak coupling. The NFL behavior is understood physically in terms of competing Kondo effects. The resulting frustration is relieved by inter-Majorana coupling which generates a second crossover to a regular Fermi liquid.

  3. Thermopower of few-electron quantum dots with Kondo correlations

    Science.gov (United States)

    Ye, Lvzhou

    2015-03-01

    The thermopower of few-electron quantum dots is crucially influenced by on-dot electron-electron interactions, particularly in the presence of Kondo correlations. We present a comprehensive picture which elucidates the underlying relations between the thermopower and the spectral density function of two-level quantum dots. The effects of various electronic states, including the Kondo states originating from both spin and orbital degrees of freedom, are clearly unraveled. With these insights, we have exemplified an effective and viable way to control the sign of thermopower of Kondo-correlated quantum dots. This is realized by tuning the temperature and by selecting the appropriate level spacing and Coulomb repulsion strength. Such a physical picture is affirmed by accurate numerical data obtained with a hierarchical equations of motion approach. Our understandings and findings provide useful insights into controlling the direction of electric (heat) current through a quantum dot by applying a temperature (voltage) gradient across the two coupling leads. This may have important implications for novel thermoelectric applications of quantum dots. The support from the Natural Science Foundation of China (Grants No. 21033008, No. 21233007, No. 21303175, and No. 21322305) and the Strategic Priority Research Program (B) of the CAS (XDB01020000) is gratefully appreciated.

  4. Observation of the frozen charge of a Kondo resonance

    Science.gov (United States)

    Desjardins, M. M.; Viennot, J. J.; Dartiailh, M. C.; Bruhat, L. E.; Delbecq, M. R.; Lee, M.; Choi, M.-S.; Cottet, A.; Kontos, T.

    2017-04-01

    The ability to control electronic states at the nanoscale has contributed to our modern understanding of condensed matter. In particular, quantum dot circuits represent model systems for the study of strong electronic correlations, epitomized by the Kondo effect. We use circuit quantum electrodynamics architectures to study the internal degrees of freedom of this many-body phenomenon. Specifically, we couple a quantum dot to a high-quality-factor microwave cavity to measure with exceptional sensitivity the dot’s electronic compressibility, that is, its ability to accommodate charges. Because electronic compressibility corresponds solely to the charge response of the electronic system, it is not equivalent to the conductance, which generally involves other degrees of freedom such as spin. Here, by performing dual conductance and compressibility measurements in the Kondo regime, we uncover directly the charge dynamics of this peculiar mechanism of electron transfer. The Kondo resonance, visible in transport measurements, is found to be ‘transparent’ to microwave photons trapped in the high-quality cavity, thereby revealing that (in such a many-body resonance) finite conduction is achieved from a charge frozen by Coulomb interaction. This freezing of charge dynamics is in contrast to the physics of a free electron gas. We anticipate that the tools of cavity quantum electrodynamics could be used in other types of mesoscopic circuits with many-body correlations, providing a model system in which to perform quantum simulation of fermion-boson problems.

  5. Kondo hybridisation and the origin of metallic states at the (001) surface of SmB6

    NARCIS (Netherlands)

    E. Frantzeskakis; N. de Jong; B. Zwartsenberg; Y.K. Huang; Y. Pan; X. Zhang; F.X. Zhang; L.H. Bao; O. Tegus; A. Varykhalov; A. de Visser; M. Golden

    2013-01-01

    SmB6, a well-known Kondo insulator, has been proposed to be an ideal topological insulator with states of topological character located in a clean, bulk electronic gap, namely, the Kondo-hybridization gap. Since the Kondo gap arises from many-body electronic correlations, SmB6 would be placed at the

  6. Kondo hybridisation and the origin of metallic states at the (001) surface of SmB6

    NARCIS (Netherlands)

    Frantzeskakis, E.; de Jong, N.; Zwartsenberg, B.; Huang, Y.K.; Pan, Y.; Zhang, X.; Zhang, F.X.; Bao, L.H.; Tegus, O.; Varykhalov, A.; de Visser, A.; Golden, M.

    2013-01-01

    SmB6, a well-known Kondo insulator, has been proposed to be an ideal topological insulator with states of topological character located in a clean, bulk electronic gap, namely, the Kondo-hybridization gap. Since the Kondo gap arises from many-body electronic correlations, SmB6 would be placed at the

  7. Phonon-assisted and magnetic field induced Kondo tunneling in single molecular devices

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, K [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Kiselev, M N [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2007-12-15

    We consider the Kondo tunneling induced by multiphonon emission/absorption processes in magnetic molecular complexes with low-energy singlet-triplet spin gap and show that the number of assisting phonons may be changed by varying the Zeeman splitting of excited triplet state. As a result, the structure of multiphonon Kondo resonances may be scanned by means of magnetic field tuning.

  8. Fast Anisotropic Gauss Filtering

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.

    2002-01-01

    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction followed by a one dimensional filter in a non-orthogonal direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computin

  9. Fast Anisotropic Gauss Filters

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.

    2003-01-01

    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computing perspective. An implementation scheme for normal covolution and f

  10. A Two-Channel Training Algorithm for Hidden Markov Model and Its Application to Lip Reading

    Directory of Open Access Journals (Sweden)

    Yong Lian

    2005-06-01

    Full Text Available Hidden Markov model (HMM has been a popular mathematical approach for sequence classification such as speech recognition since 1980s. In this paper, a novel two-channel training strategy is proposed for discriminative training of HMM. For the proposed training strategy, a novel separable-distance function that measures the difference between a pair of training samples is adopted as the criterion function. The symbol emission matrix of an HMM is split into two channels: a static channel to maintain the validity of the HMM and a dynamic channel that is modified to maximize the separable distance. The parameters of the two-channel HMM are estimated by iterative application of expectation-maximization (EM operations. As an example of the application of the novel approach, a hierarchical speaker-dependent visual speech recognition system is trained using the two-channel HMMs. Results of experiments on identifying a group of confusable visemes indicate that the proposed approach is able to increase the recognition accuracy by an average of 20% compared with the conventional HMMs that are trained with the Baum-Welch estimation.

  11. An experimental evaluation of a loop versus a reference design for two-channel microarrays

    NARCIS (Netherlands)

    Vinciotti, V.; Khanin, R.; Alimonte, D. D’; Liu, X.; Cattini, N.; Hotchkiss, G.; Bucca, G.; Jesus, O. de; Rasaiyaah, J.; Kellam, P.; Wit, Ernst

    2005-01-01

    Motivation: Despite theoretical arguments that so-called ‘loop designs’ for two-channel DNA microarray experiments are more efficient, biologists continue to use ‘reference designs’. We describe two sets of microarray experiments with RNA from two different biological systems (TPA-stimulated mammali

  12. Assessment of a two-channel implantable peroneal nerve stimulator post-stroke

    NARCIS (Netherlands)

    Kottink, A.I.R.

    2010-01-01

    Thesis outline and aims: to progress towards evidence based application of PNS to improve lower extremity function, the aim of the present thesis is to evaluate an implantable two-channel peroneal nerve stimulator versus conventional splinting as a treatment option for chronic stroke patients with a

  13. Effect of two-channel gastric electrical stimulation with trains of pulses on gastric motility

    Institute of Scientific and Technical Information of China (English)

    Bin Yang; Xiao-Hua Hou; Geng-Qing Song; Jin-Song Liu; Jiande DZ Chen

    2009-01-01

    AIM: To investigate the effect of two-channel gastric electrical stimulation (GES) with trains of pulses on gastric emptying and slow waves. METHODS: Seven dogs implanted with four pairs of electrodes and equipped with a duodenal cannula were involved in this study. Two experiments were performed. The first experiment included a series of sessions in the fasting state with trains of short or long pulses, each lasted 10 min. A 5-min recording without pacing was made between two sessions. The second experiment was performed in three sessions (control, single-channel GES, and two-channel GES). The stimulus was applied via the 1st pair of electrodes for single-channel GES (GES via one pair of electrodes located at 14 cm above the pylorus), and simultaneously via the 1st and 3rd channels for two-channel GES (GES via two pairs of electrodes located at 6 and 14 cm above the pylorus). Gastric liquid emptying was collected every 15 min via the cannula for 90 min. RESULTS: GES with trains of pulses at a pulse width of 4 ms or higher was able to entrain gastric slow waves. Two-channel GES was about 50% more efficient than single-channel GES in entraining gastric slow waves. Two channel but not single-channel GES with trains of pulses was capable of accelerating gastric emptying in healthy dogs. Compared with the control session, two-channel GES significantly increased gastric emptying of liquids at 15 min (79.0% ± 6.4% vs 61.3% ± 6.1%, P < 0.01), 30 min (83.2% ± 6.3 % vs 68.2% ± 6.9%, P < 0.01),60 min (86.9% ± 5.5 % vs 74.1% ± 5.9%, P < 0.01),and 90 min (91.0% ± 3.4% vs 76.5% ± 5.9%, P < 0.01).CONCLUSION: Two-channel GES with trains of pulses accelerates gastric emptying in healthy dogs and may have a therapeutic potential for the treatment of gastric motility disorders.

  14. Critical quasiparticles in single-impurity and lattice Kondo models

    Science.gov (United States)

    Vojta, M.; Bulla, R.; Wölfle, P.

    2015-07-01

    Quantum criticality in systems of local moments interacting with itinerant electrons has become an important and diverse field of research. Here we review recent results which concern (a) quantum phase transitions in single-impurity Kondo and Anderson models and (b) quantum phase transitions in heavy-fermion lattice models which involve critical quasiparticles. For (a) the focus will be on impurity models with a pseudogapped host density of states and their applications, e.g., in graphene and other Dirac materials, while (b) is devoted to strong-coupling behavior near antiferromagnetic quantum phase transitions, with potential applications in a variety of heavy-fermion metals.

  15. Influence of local spin polarization to the Kondo effect

    Institute of Scientific and Technical Information of China (English)

    LI Huan; GUO Wei

    2007-01-01

    We use the spin non-degenerate single impurity Anderson model to investigate the influence of the local spin polarization to the Kondo effect. By using the Schrieffer-Wolff transformation, we obtain a generalized s-d exchange Hamiltonian, which describes the interaction between a polarized local spin and conduction electrons. In this case, the singlet is no longer an eigenstate as shown by variational calculations where the splitting of the local energy △= εd↑ - εd↓ can be arbitrarily small. The local spin polarization generates the instability of the singlet ground state of the S = 1/2 s-d exchange model.

  16. Non-equilibrium Kondo effect in double quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.N. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K.A.; Molenkamp, L.W

    2004-05-01

    We investigate theoretically a non-equilibrium transport through a double quantum dot (DQD) in a parallel geometry. It is shown that the resonance Kondo tunneling through a parallel DQD with even occupation and singlet ground state may arise at a strong bias, which compensates the energy of singlet/triplet excitation. Using the renormalization group technique we derive scaling equations and calculate the differential conductance as a function of an auxiliary DC-bias for parallel DQD being in a regime described by SO(4) symmetry.

  17. Photoexcited electron dynamics in Kondo insulators and heavy fermions

    OpenAIRE

    Demsar, Jure; Thorsmolle, Verner K.; Sarrao, John L.; Taylor, Antoinette J.

    2005-01-01

    We have studied the photoexcited carrier relaxation dynamics in the Kondo insulator SmB6 and the heavy fermion metal YbAgCu4 as a function of temperature and excitation level. The dynamic response is found to be both strongly temperature dependent and nonlinear. The data are analyzed with a Rothwarf-Taylor bottleneck model, where the dynamics are governed by the presence of a narrow gap in the density of states near the Fermi level. The remarkable agreement with the model suggests that carrie...

  18. Local Moment Formation and Kondo Effect in Defective Graphene

    OpenAIRE

    Cazalilla, M. A.; Iucci, A.; Guinea, F.; Neto, A. H. Castro

    2012-01-01

    We study the local moment formation and the Kondo effect at single-atom vacancies in Graphene. We develop a model accounting for the vacancy reconstruction as well as non-planarity effects induced by strain and/or temperature. Thus, we find that the dangling $\\sigma$ orbital localized at the vacancy is allowed to strongly hybridize with the $\\pi$-band since the scattering with the vacancy turns the hybridization into singular function of the energy ($\\sim [|\\epsilon| \\ln^2 \\epsilon/D]^{-1}$, ...

  19. The role of short-range magnetic correlations in the gap opening of topological Kondo insulators

    Science.gov (United States)

    Ramos, E.; Franco, R.; Silva-Valencia, J.; Foglio, M. E.; Figueira, M. S.

    2017-08-01

    In this article we investigate the effects of short-range anti-ferromagnetic correlations on the gap opening of topological Kondo insulators. We add a Heisenberg term to the periodic Anderson model at the limit of strong correlations in order to allow a small degree of hopping of the localized electrons between neighboring sites of the lattice. This new model is adequate for studying topological Kondo insulators, whose paradigmatic material is the compound SmB6 . The main finding of the article is that the short-range antiferromagnetic correlations, present in some Kondo insulators, contribute decisively to the opening of the Kondo gap in their density of states. These correlations are produced by the interaction between moments on the neighboring sites of the lattice. For simplicity, we solve the problem on a two dimensional square lattice. The starting point of the model is the 4f-Ce ions orbitals, with J=5/2 multiplet in the presence of spin-orbit coupling. We present results for the Kondo and for the antiferromagnetic correlation functions. We calculate the phase diagram of the model, and as we vary the Ef level position from the empty regime to the Kondo regime, the system develops metallic and topological Kondo insulator phases. The band structure calculated shows that the model describes a strong topological insulator.

  20. Competition between Kondo effect and RKKY physics in graphene magnetism

    Science.gov (United States)

    Allerdt, A.; Feiguin, A. E.; Das Sarma, S.

    2017-03-01

    The cooperative behavior of quantum impurities on two-dimensional (2D) materials, such as graphene and bilayer graphene, is characterized by a nontrivial competition between screening (Kondo effect) and Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetism. In addition, due to the small density of states at the Fermi level, impurities may not couple to the conduction electrons at all, behaving as free moments. Employing a recently developed exact numerical method to study multi-impurity lattice systems, we obtain nonperturbative results that dramatically depart from expectations based on the conventional RKKY theory. At half filling and for weak coupling, impurities remain in the local moment regime when they are on opposite sublattices, up to a critical value of the interactions when they start coupling antiferromagnetically with correlations that decay very slowly with interimpurity distance. At finite doping, away from half filling, ferromagnetism is completely absent and the physics is dominated by a competition between antiferromagnetism and Kondo effect. In bilayer graphene, impurities on opposite layers behave as free moments, unless the interaction is of the order of the hopping or larger.

  1. Phase diagram of the bosonic Kondo-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Foss-Feig, Michael; Rey, Ana Maria [JILA, National Institute of Standards and Technology, and University of Colorado, Boulder, Colorado 80309 (United States)

    2011-11-15

    We study a bosonic version of the Kondo lattice model with an onsite repulsion in the conduction band, implemented with alkali-metal atoms in two bands of an optical lattice. Using both weak- and strong-coupling perturbation theory, we find that at unit filling of the conduction bosons the superfluid-to-Mott-insulator transition should be accompanied by a magnetic transition from a ferromagnet (in the superfluid) to a paramagnet (in the Mott insulator). Furthermore, an analytic treatment of Gutzwiller mean-field theory reveals that quantum spin fluctuations induced by the Kondo exchange cause the otherwise continuous superfluid-to-Mott-insulator phase transition to be first order. We show that lattice separability imposes a serious constraint on proposals to exploit excited bands for quantum simulations, and discuss a way to overcome this constraint in the context of our model by using an experimentally realized nonseparable lattice. A method to probe the first-order nature of the transition based on collapses and revivals of the matter-wave field is also discussed.

  2. Holographic optical traps for atom-based topological Kondo devices

    Science.gov (United States)

    Buccheri, F.; Bruce, G. D.; Trombettoni, A.; Cassettari, D.; Babujian, H.; Korepin, V. E.; Sodano, P.

    2016-07-01

    The topological Kondo (TK) model has been proposed in solid-state quantum devices as a way to realize non-Fermi liquid behaviors in a controllable setting. Another motivation behind the TK model proposal is the demand to demonstrate the quantum dynamical properties of Majorana fermions, which are at the heart of their potential use in topological quantum computation. Here we consider a junction of crossed Tonks-Girardeau gases arranged in a star-geometry (forming a Y-junction), and we perform a theoretical analysis of this system showing that it provides a physical realization of the TK model in the realm of cold atom systems. Using computer-generated holography, we experimentally implement a Y-junction suitable for atom trapping, with controllable and independent parameters. The junction and the transverse size of the atom waveguides are of the order of 5 μm, leading to favorable estimates for the Kondo temperature and for the coupling across the junction. Since our results show that all the required theoretical and experimental ingredients are available, this provides the demonstration of an ultracold atom device that may in principle exhibit the TK effect.

  3. Spin-anisotropic magnetic impurity in a Fermi gas: Integration of poor man's scaling equations

    Science.gov (United States)

    Kogan, Eugene; Noda, Kazuto; Yunoki, Seiji

    2017-04-01

    We consider a single magnetic impurity described by the spin-anisotropic s -d (f ) exchange (Kondo) model and formulate a scaling equation for the spin-anisotropic model when the density of states (DOS) of electrons is a power-law function of energy (measured relative to the Fermi energy). We solve this equation containing terms up to the second order in coupling constants in terms of elliptic functions. From the obtained solution we find the phases corresponding to the infinite isotropic antiferromagnetic Heisenberg exchange, to the impurity spin decoupled from the electron environment (only for the pseudogap DOS), and to the infinite Ising exchange (only for the diverging DOS). We analyze the critical surfaces, corresponding to the finite isotropic antiferromagnetic Heisenberg exchange for the pseudogap DOS.

  4. Multiterminal Conductance and Decoherence Effect of a Three-Terminal Kondo Dot

    Institute of Scientific and Technical Information of China (English)

    FANG Tie-Feng; WANG Shun-Jin

    2006-01-01

    @@ A three-terminal Kondo dot modelled by the Anderson Hamiltonian is investigated. In the strong correlation limit, we calculate the multiterminal conductance and the voltage-induced characteristic splitting of the nonequilibrium Kondo resonance by using the equation of motion approach from viewpoint of the correlation dynamics.A qualitative and reasonable agreement with a recently reported experiment is obtained. We also simulate phenomenologically the decoherence of the Kondo-coherent state formed in the two-terminal setup in the framework of our three-terminal model.

  5. Anisotropic Contrast Optical Microscope

    CERN Document Server

    Peev, D; Kananizadeh, N; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-01-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. We demonstrate the anisotropic contrast optical microscope by mea...

  6. An experimental evaluation of a loop versus a reference design for two-channel microarrays

    OpenAIRE

    2005-01-01

    http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/4/492 Motivation: Despite theoretical arguments that socalled \\loop designs" of two-channel DNA microarray experiments are more e cient, biologists keep on using \\reference designs". We describe two sets of microarray experiments with RNA from two di erent biological systems (TPA-stimulated mammalian cells and Streptomyces coelicor). In each case, both a loop and a reference design were performed using the same RNA preparatio...

  7. Majorana bound states in two-channel time-reversal-symmetric nanowire systems

    DEFF Research Database (Denmark)

    Gaidamauskas, Erikas; Paaske, Jens; Flensberg, Karsten

    2014-01-01

    must be negative, 2) inversion symmetry must be broken, and 3) the two channels must have different spin-orbit couplings. For the case of collinear spin-orbit directions, we find a general expression for the topological invariant by block diagonalization into two blocks with chiral symmetry only....... By projection to the low-energy sector we solve for the zero modes explicitly and study the details of the gap closing, which in the general case happens at finite momenta....

  8. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  9. Gate-controlled Kondo screening in graphene: Quantum criticality and electron-hole asymmetry

    Science.gov (United States)

    Vojta, M.; Fritz, L.; Bulla, R.

    2010-04-01

    Magnetic impurities in neutral graphene provide a realization of the pseudogap Kondo model, which displays a quantum phase transition between phases with screened and unscreened impurity moment. Here, we present a detailed study of the pseudogap Kondo model with finite chemical potential μ. While carrier doping restores conventional Kondo screening at lowest energies, properties of the quantum critical fixed point turn out to influence the behavior over a large parameter range. Most importantly, the Kondo temperature TK shows an extreme asymmetry between electron and hole doping. At criticality, depending on the sign of μ, TK follows either the scaling prediction TK~|μ| with a universal prefactor, or TK~|μ|x with x≈2.6. This asymmetry between electron and hole doping extends well outside the quantum critical regime and also implies a qualitative difference in the shape of the tunneling spectra for both signs of μ.

  10. Observation of Kondo resonance in rare-earth hexaborides using high resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Kalobaran; Patil, Swapnil; Adhikary, Ganesh [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Balakrishnan, Geetha, E-mail: kbmaiti@tifr.res.in [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom)

    2011-01-01

    We studied the electronic structure of rare earth hexaborides, CeB{sub 6}, PrB{sub 6} and NdB{sub 6} using state-of-the-art high resolution photoemission spectroscopy. CeB{sub 6} is a dense Kondo system. PrB{sub 6} and NdB{sub 6} are antiferromagnetic (Neel temperature {approx}7 K), known to be stable moment systems and do not exhibit Kondo effect. Photoemission spectra exhibit distinct signature of surface and bulk electronic structures of these compounds. The energy position of the surface feature is not influenced by the 4f density of states. High resolution spectra of CeB{sub 6} reveal multiple Kondo resonance features in the bulk spectra due to various photoemission final states. Interestingly, high resolution photoemission spectra of antiferromagnetic PrB{sub 6} also exhibit a sharp feature at the Fermi level that shows temperature dependence similar to the Kondo resonance features.

  11. Validity of equation-of-motion approach to kondo problem in the large N limit

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jian-xin [Los Alamos National Laboratory; Ting, C S [UNIV OF HOUSTON; Qi, Yunong [UNIV OF HOUSTON

    2008-01-01

    The Anderson impurity model for Kondo problem is investigated for arbitrary orbit-spin degeneracy N of the magnetic impurity by the equation of motion method (EOM). By employing a new decoupling scheme, a self-consistent equation for the one-particle Green function is derived and numerically solved in the large-N approximation. For the particle-hole symmetric Anderson model with finite Coulomb interaction U, we show that the Kondo resonance at the impurity site exists for all N {>=} 2. The approach removes the pathology in the standard EOM for N = 2, and has the same level of applicability as non-crossing approximation. For N = 2, an exchange field splits the Kondo resonance into only two peaks, consist with the result from more rigorous numerical renormalization group (NRG) method. The temperature dependence of the Kondo resonance peak is also discussed.

  12. Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice.

    Science.gov (United States)

    Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Mou, Chung-Yu; Lee, Ting-Kuo

    2016-04-29

    The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature T_{D}. At T_{D}, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near T_{D}.

  13. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  14. Blocking transport resonances via Kondo many-body entanglement in quantum dots

    Science.gov (United States)

    Niklas, Michael; Smirnov, Sergey; Mantelli, Davide; Margańska, Magdalena; Nguyen, Ngoc-Viet; Wernsdorfer, Wolfgang; Cleuziou, Jean-Pierre; Grifoni, Milena

    2016-08-01

    Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) \\xotime SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.

  15. Kondo effect in triple quantum dots: interplay between continuous and discrete symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, K. [Department of Physics, Ben-Gurion University, Beer-Sheva, 84105 (Israel)]. E-mail: kikoin@bgumail.bgu.ac.il; Kuzmenko, T. [Department of Physics, Ben-Gurion University, Beer-Sheva, 84105 (Israel); Avishai, Y. [Department of Physics, Ben-Gurion University, Beer-Sheva, 84105 (Israel); Ilse Kats Center for Nano-Technology, Ben-Gurion University, Beer-Sheva, 84105 (Israel)

    2006-05-01

    The physics of Kondo effect and related phenomena in a triangular triple quantum dot (TTQD) is studied. A fascinating property of TTQD is the interplay between continuous SU(2) symmetry in spin space and discrete C{sub 3v} symmetry in real space. We show that this interplay is manifested in strong oscillations of conductance as a function of magnetic flux through TTQD due to interplay between Kondo and Aharonov-Bohm effect.

  16. Photoemission in YbCu sub 2 Si sub 2 : Problems with the Kondo impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.M. (California Univ., Irvine (United States)); Arko, A.J.; Joyce, J.J.; Canfield, P.C.; Fisk, Z.; Thompson, J.D. (Los Alamos National Lab., NM (United States))

    1991-01-01

    We report valence band photoemission results for YbCu{sub 2}Si{sub 2}. The 4f{sup 13}(J=7/2) final state peak, centered 60meV below the Fermi level {epsilon}{sub F}, lacks the temperature dependence and is broader than predicted for a Kondo resonance. Together with the recent photoemission results for cerium compounds, these results raise serious doubts about the Kondo impurity explanation of heavy fermion photoemission. 7 refs., 3 figs.

  17. Photoemission in YbCu sub 2 Si sub 2 : problem with the Kondo impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.M.; Arko, A.J.; Joyce, J.J.; Canfield, P.C.; Fisk, Z.; Thompson, J.D.; Bartlett, R.J. (Los Alamos National Lab., NM (United States))

    1992-02-01

    We report valence band photoemission results for YbCu{sub 2}Si{sub 2}. The 4f{sup 13}(J = 7/2) final state peak, centered 60 meV below the Fermi level element of{sub F}, lacks the temperature dependence and is broader than predicted for a Kondo resonance. Together with recent photoemission results for cerium compounds, these results raise serious doubts about the Kondo impurity explanation of heavy fermion photoemission. (orig.).

  18. Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration

    Science.gov (United States)

    Li, Huan; Song, Hai-Feng; Liu, Yu

    2016-11-01

    We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.

  19. Controlling orbital-selective Kondo effects in a single molecule through coordination chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Noriyuki; Kawai, Maki; Takagi, Noriaki, E-mail: n-takagi@k.u-tokyo.ac.jp [Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Minamitani, Emi; Kim, Yousoo [RIKEN, 2-1 Hirosawa, Saitama 351-0198 (Japan)

    2014-08-07

    Iron(II) phthalocyanine (FePc) molecule causes novel Kondo effects derived from the unique electronic structure of multi-spins and multi-orbitals when attached to Au(111). Two unpaired electrons in the d{sub z}{sup 2} and the degenerate dπ orbitals are screened stepwise, resulting in spin and spin+orbital Kondo effects, respectively. We investigated the impact on the Kondo effects of the coordination of CO and NO molecules to the Fe{sup 2+} ion as chemical stimuli by using scanning tunneling microscopy (STM) and density functional theory calculations. The impacts of the two diatomic molecules are different from each other as a result of the different electronic configurations. The coordination of CO converts the spin state from triplet to singlet, and then the Kondo effects completely disappear. In contrast, an unpaired electron survives in the molecular orbital composed of Fe d{sub z}{sup 2} and NO 5σ and 2π* orbitals for the coordination of NO, causing a sharp Kondo resonance. The isotropic magnetic response of the peak indicates the origin is the spin Kondo effect. The diatomic molecules attached to the Fe{sup 2+} ion were easily detached by applying a pulsed voltage at the STM junction. These results demonstrate that the single molecule chemistry enables us to switch and control the spin and the many-body quantum states reversibly.

  20. Enhanced Kondo Effect in an Electron System Dynamically Coupled with Local Optical Phonon

    Science.gov (United States)

    Hotta, Takashi

    2007-08-01

    We discuss Kondo behavior of a conduction electron system coupled with local optical phonon by analyzing the Anderson-Holstein model with the use of a numerical renormalization group (NRG) method. There appear three typical regions due to the balance between Coulomb interaction Uee and phonon-mediated attraction Uph. For Uee>Uph, we observe the standard Kondo effect concerning spin degree of freedom. Since the Coulomb interaction is effectively reduced as Uee-Uph, the Kondo temperature TK is increased when Uph is increased. On the other hand, for UeeUph, there occurs the Kondo effect concerning charge degree of freedom, since vacant and double occupied states play roles of pseudo-spins. Note that in this case, TK is decreased with the increase of Uph. Namely, TK should be maximized for Uee≈ Uph. Then, we analyze in detail the Kondo behavior at Uee=Uph, which is found to be explained by the polaron Anderson model with reduced hybridization of polaron and residual repulsive interaction among polarons. By comparing the NRG results of the polaron Anderson model with those of the original Anderson-Holstein model, we clarify the Kondo behavior in the competing region of Uee≈ Uph.

  1. Kondo effect and spin quenching in high-spin molecules on metal substrates

    Science.gov (United States)

    Jacob, D.; Soriano, M.; Palacios, J. J.

    2013-10-01

    Using a state-of-the art combination of density functional theory and impurity solver techniques, we present a complete and parameter-free picture of the Kondo effect in the high-spin (S=3/2) coordination complex known as manganese phthalocyanine adsorbed on the Pb(111) surface. We calculate the correlated electronic structure and corresponding tunnel spectrum and find an asymmetric Kondo resonance, as recently observed in experiments. Contrary to previous claims, the Kondo resonance stems from only one of three possible Kondo channels with origin in the Mn 3d orbitals, its peculiar asymmetric shape arising from the modulation of the hybridization due to a strong coupling to the organic ligand. The spectral signature of the second Kondo channel is strongly suppressed as the screening occurs via the formation of a many-body singlet with the organic part of the molecule. Finally, a spin-1/2 in the 3d shell remains completely unscreened due to the lack of hybridization of the corresponding orbital with the substrate, hence leading to a spin-3/2 underscreened Kondo effect.

  2. Statistical Anisotropy from Anisotropic Inflation

    CERN Document Server

    Soda, Jiro

    2012-01-01

    We review an inflationary scenario with the anisotropic expansion rate. An anisotropic inflationary universe can be realized by a vector field coupled with an inflaton, which can be regarded as a counter example to the cosmic no-hair conjecture. We show generality of anisotropic inflation and derive a universal property. We formulate cosmological perturbation theory in anisotropic inflation. Using the formalism, we show anisotropic inflation gives rise to the statistical anisotropy in primordial fluctuations. We also explain a method to test anisotropic inflation using the cosmic microwave background radiation (CMB).

  3. Kondo Breakdown and Quantum Oscillations in SmB_{6}.

    Science.gov (United States)

    Erten, Onur; Ghaemi, Pouyan; Coleman, Piers

    2016-01-29

    Recent quantum oscillation experiments on SmB_{6} pose a paradox, for while the angular dependence of the oscillation frequencies suggest a 3D bulk Fermi surface, SmB_{6} remains robustly insulating to very high magnetic fields. Moreover, a sudden low temperature upturn in the amplitude of the oscillations raises the possibility of quantum criticality. Here we discuss recently proposed mechanisms for this effect, contrasting bulk and surface scenarios. We argue that topological surface states permit us to reconcile the various data with bulk transport and spectroscopy measurements, interpreting the low temperature upturn in the quantum oscillation amplitudes as a result of surface Kondo breakdown and the high frequency oscillations as large topologically protected orbits around the X point. We discuss various predictions that can be used to test this theory.

  4. Superconductivity of heavy fermions in the Kondo lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Steffen [IFW Dresden (Germany); Becker, Klaus W. [Institut fuer Theoretische Physik, Technische Universitaet Dresden (Germany)

    2015-07-01

    Understanding of the origin of superconductivity in strongly correlated electron systems is one of the basic unresolved problems in physics. Examples for such systems are the cuprates and also the heavy-fermion metals, which are compounds with 4f and 5f electrons. In all these materials the superconducting pairing interaction is often believed to be predominantly mediated by spin fluctuations and not by phonons as in normal metals. For the Kondo-lattice model we present results, which are derived within the Projective Renormalization Method (PRM). Based on a recent study of the one-particle spectral function for the normal state we first derive an effective Hamiltonian which describes heavy fermion quasiparticle bands close to the Fermi surface. An extension to the superconducting phase leads to d-wave solutions for the superconducting order parameter in agreement with recent STM measurements.

  5. Fractionalized Fermi liquid in a Kondo-Heisenberg model

    Science.gov (United States)

    Tsvelik, A. M.

    2016-10-01

    The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. In agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003), 10.1103/PhysRevLett.90.216403], the resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations. The system undergoes a phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.

  6. SU(4) Kondo entanglement in double quantum dot devices

    Science.gov (United States)

    Bonazzola, Rodrigo; Andrade, J. A.; Facio, Jorge I.; García, D. J.; Cornaglia, Pablo S.

    2017-08-01

    We analyze, from a quantum information theory perspective, the possibility of realizing an SU(4) entangled Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground-state properties and consider the general experimental situation where the coupling parameters of the two quantum dots differ. We model each quantum dot with an Anderson-type Hamiltonian including an interdot Coulomb repulsion and tunnel couplings for each quantum dot to independent fermionic baths. We find that the spin and pseudospin entanglements can be made equal, and the SU(4) symmetry recovered, if the gate voltages are chosen in such a way that the average charge occupancies of the two quantum dots are equal, and the double occupancy on the double quantum dot is suppressed. We present density matrix renormalization group numerical results for the spin and pseudospin entanglement entropies, and analytical results for a simplified model that captures the main physics of the problem.

  7. Mott-Kondo insulator behavior in the iron oxychalcogenides

    Science.gov (United States)

    Freelon, B.; Liu, Yu Hao; Chen, Jeng-Lung; Craco, L.; Laad, M. S.; Leoni, S.; Chen, Jiaqi; Tao, Li; Wang, Hangdong; Flauca, R.; Yamani, Z.; Fang, Minghu; Chang, Chinglin; Guo, J.-H.; Hussain, Z.

    2015-10-01

    We perform a combined experimental-theoretical study of the Fe-oxychalcogenides (FeO C h ) series La2O2Fe2O M2 (M =S , Se), which are among the latest Fe-based materials with the potential to show unconventional high-Tc superconductivity (HTSC). A combination of incoherent Hubbard features in x-ray absorption and resonant inelastic x-ray scattering spectra, as well as resistivity data, reveal that the parent FeO C h are correlation-driven insulators. To uncover microscopics underlying these findings, we perform local density approximation-plus-dynamical mean field theory (LDA+DMFT) calculations that reveal a novel Mott-Kondo insulating state. Based upon good agreement between theory and a range of data, we propose that FeO C h may constitute an ideal testing ground to explore HTSC arising from a strange metal proximate to a novel selective-Mott quantum criticality.

  8. Quasiparticle anisotropic hydrodynamics

    CERN Document Server

    Alqahtani, Mubarak

    2016-01-01

    We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.

  9. Anisotropic hydrodynamics -- basic concepts

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2013-01-01

    Due to the rapid longitudinal expansion of the quark-gluon plasma created in relativistic heavy ion collisions, potentially large local rest frame momentum-space anisotropies are generated. The magnitude of these momentum-space anisotropies can be so large as to violate the central assumption of canonical viscous hydrodynamical treatments which linearize around an isotropic background. In order to better describe the early-time dynamics of the quark gluon plasma, one can consider instead expanding around a locally anisotropic background which results in a dynamical framework called anisotropic hydrodynamics. In this proceedings contribution we review the basic concepts of the anisotropic hydrodynamics framework presenting viewpoints from both the phenomenological and microscopic points of view.

  10. Frequency Domain Errors in Variables Approach for Two Channel SIMO System Identification

    Science.gov (United States)

    2009-06-24

    Signal et Image, ENSEIRB/UMR CNRS 5218 IMS Dpt. LAPS, Université Bordeaux 1, France william.bobillet@etu.u-bordeaux1.fr Dipartimento di Fisica e...without loss of generality . - - - ? h1(k) y1(k) b1(k), (σ21 ) x1(k) - - - ? h2(k) y2(k) b2(k), (σ22 ) x2(k) s(k) Figure 1: two-channel...developed in the fields of statistics and identification, assume that the available data are disturbed by additive error terms. Given a generic process

  11. Switching of transmission resonances in a two-channels coupler: A Boundary Wall Method scattering study

    Science.gov (United States)

    Nunes, A.; Zanetti, F. M.; Lyra, M. L.

    2016-10-01

    In this work, we study the transmission characteristics of a two-channels coupler model system using the Boundary Wall Method (BWM) to determine the solution of the corresponding scattering problem of an incident plane wave. We show that the BWM provides detailed information regarding the transmission resonances. In particular, we focus on the case of single channel input aiming to explore the energy switching performance of the coupler. We show that the coupler geometry can be tailored to allow for the first transmission resonances to be predominantly transmitted on specific output channels, an important characteristic for the realization of logical operations.

  12. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  13. Molecular anisotropic magnetoresistance

    Science.gov (United States)

    Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy

    2015-12-01

    Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by 3 d transition-metal wires. We show that a gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symmetry filtering properties of the molecules. We further discuss how this molecular anisotropic magnetoresistance (MAMR) can be tuned by the proper choice of materials and their electronic properties.

  14. Mixture of Anisotropic Fluids

    Science.gov (United States)

    Florkowski, W.; Maj, R.

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  15. Mixture of anisotropic fluids

    CERN Document Server

    Florkowski, Wojciech

    2013-01-01

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  16. Anisotropic contrast optical microscope

    Science.gov (United States)

    Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  17. Anisotropic Weyl invariance

    CERN Document Server

    Pérez-Nadal, Guillem

    2016-01-01

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.

  18. Anisotropic models for compact stars

    CERN Document Server

    Maurya, S K; Ray, Saibal; Dayanandan, Baiju

    2015-01-01

    In the present paper we obtain an anisotropic analogue of Durgapal-Fuloria (1985) perfect fluid solution. The methodology consists of contraction of anisotropic factor $\\Delta$ by the help of both metric potentials $e^{\

  19. Majorana bound states in two-channel time-reversal-symmetric nanowire systems.

    Science.gov (United States)

    Gaidamauskas, Erikas; Paaske, Jens; Flensberg, Karsten

    2014-03-28

    We consider time-reversal-symmetric two-channel semiconducting quantum wires proximity coupled to a conventional s-wave superconductor. We analyze the requirements for a nontrivial topological phase and find that the necessary conditions are (1) the determinant of the pairing matrix in channel space must be negative, (2) inversion symmetry must be broken, and (3) the two channels must have different spin-orbit couplings. The first condition can be implemented in semiconducting nanowire systems where interactions suppress intra-channel pairing, while the inversion symmetry can be broken by tuning the chemical potentials of the channels. For the case of collinear spin-orbit directions, we find a general expression for the topological invariant by block diagonalization into two blocks with chiral symmetry only. By projection to the low-energy sector, we solve for the zero modes explicitly and study the details of the gap closing, which in the general case happens at finite momenta.

  20. Implementation of a Two-Channel Maximally Decimated Filter Bank using Switched Capacitor Circuits

    Directory of Open Access Journals (Sweden)

    J. Nahlik

    2013-04-01

    Full Text Available The aim of this paper is to describe the implementation of a two-channel filter bank (FB using the switched capacitor (SC technique considering real properties of operational amplifiers (OpAmps. The design procedure is presented and key recommendations for the implementation are given. The implementation procedure describes the design of two-channel filter bank using an IIR Cauer filter, conversion of IIR into the SC filters and the final implementation of the SC filters. The whole design and an SC circuit implementation is performed by a PraCAn package in Maple. To verify the whole filter bank, resulting real property circuit structures are completely simulated by WinSpice and ELDO simulators. The results confirm that perfect reconstruction conditions can be almost accepted for the filter bank implemented by the SC circuits. The phase response of the SC filter bank is not strictly linear due to the IIR filters. However, the final ripple of a magnitude frequency response in the passband is almost constant, app. 0.5 dB for a real circuit analysis.

  1. On the Newtonian anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Fazel, M.R.; Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Sciences, Tehran (Iran, Islamic Republic of)

    2015-06-15

    In this paper we are concerned with the effects of an anisotropic pressure on the boundary conditions of the anisotropic Lane-Emden equation and the homology theorem. Some new exact solutions of this equation are derived. Then some of the theorems governing the Newtonian perfect fluid star are extended, taking the anisotropic pressure into account. (orig.)

  2. Anisotropic Grid Generation

    Science.gov (United States)

    2016-03-24

    tensor . The...release. Figure 2. Examples of previous anisotropic surfaces include the original holographic tensor impedance surface created by the author (left... tensor that can be extracted from the properties of each unit cell. This impedance tensor can be mapped back onto the surface, and simulations of

  3. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    B B Bhowmik; A Rajput

    2004-06-01

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  4. Alternating-Current Conductivity for a Two-Channel Interacting Quantum Wire

    Institute of Scientific and Technical Information of China (English)

    PENG De-Jun; CHENG Fang; ZHOU Guang-Hui

    2007-01-01

    We investigate theoretically the ac conductivity of a clean two-channel spinless quantum wire in the presence of both short-ranged intra- and inter-channel electron-electron interactions. In the Luttinger-liquid regime, we formulize the action functional of the system with an external time-varying electric field. The obtained expression of ac conductivity for the system within linear response theory is generally an oscillation function of the interaction strength, the driving frequency as well as the measured position in the wire. The numerical examples demonstrate that the amplitude of ac conductivity is renormalized by the both interactions, and the dc conductivity of the system with inter-channel interaction is smaller than that without inter-channel interaction.

  5. Study of ultra-wideband radar signals-generated technology using two-channel signal generator

    Institute of Scientific and Technical Information of China (English)

    Wan Yonglun; Lu Youxin; Si Qiang; Wang Xuegang; Cao Guangping

    2007-01-01

    Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new method of UWB radar signals generation with two-channel signal generator is presented. The realization structure is given; the principle and errors of signal synthesis are analyzed. At the same time, an automatic adjustment measure of signal phase is proposed because of phase discontinuity of waveform in this method. The simulation experiment and analysis results indicate that radar signals with large instantaneous bandwidth can be generated by means of this method on the condition that the high-speed digital devices are limited.

  6. Polyphase Structure Based Eigen Design of Two-Channel Quadrature Mirror Filter Bank

    Directory of Open Access Journals (Sweden)

    S. K. Agrawal

    2014-09-01

    Full Text Available This paper presents a method for the design of two-channel quadrature mirror filter (QMF banks with linear phase in frequency domain. Low-pass prototype filter of the QMF bank is implemented using polyphase decomposition. Prototype filter coefficients are optimized to minimize an objective function using eigenvalue-eigenvector approach without matrix inversion. The objective function is formulated as a weighted sum of four terms, pass-band error and stop-band residual energy of low-pass analysis filter, the square error of the overall transfer function at the quadrature frequency and amplitude distortion of the filter bank. The simulation results clearly show that the proposed method requires less computational efforts in comparison to the other state-of-art existing design methods.

  7. CGC/saturation approach for soft interactions at high energy: a two channel model

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Departemento de Fisica, Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2015-05-15

    In this paper we continue the development of a model for strong interactions at high energy, based on two ingredients: the CGC/saturation approach and the BFKL Pomeron. In our approach, the unknown mechanism of confinement of quarks and gluons is characterized by several numerical parameters, which are extracted from the experimental data. We demonstrate that the two channel model successfully describes the experimental data, including both the value of the elastic slope and the energy behavior of the single diffraction cross section. We show that the disagreement with the experimental data of our previous single channel eikonal model (Gotsman et al., Eur Phys J C 75:1-18, 2015) stems from the simplified approach used for the hadron structure and is not related to our principal theoretical input, based on the CGC/saturation approach. (orig.)

  8. Collective dynamics of an inhomogeneous two-channel exclusion process: Theory and Monte Carlo simulations

    CERN Document Server

    Dhiman, Isha

    2015-01-01

    This work is devoted to the development of a novel theoretical approach, named hybrid approach, to handle a localized bottleneck in a symmetrically coupled two-channel totally asymmetric simple exclusion process with Langmuir kinetics. The hybrid approach is combined with singular perturbation technique to get steady-state phase diagrams and density profiles. We have thoroughly examined the role played by the strength of bottleneck, binding constant and lane-changing rate in the system dynamics. The appearances of bottleneck-induced shock, a bottleneck phase and Meissner phase are explained. Further, the critical values of bottleneck rate are identified, which signify the changes in the topology of phase diagram. It is also found that increase in lane-changing rate as well as unequal attachment, detachment rates weaken the bottleneck effect. Our theoretical arguments are in good agreement with extensively performed Monte Carlo simulations.

  9. CGC/saturation approach for soft interactions at high energy: a two channel model

    CERN Document Server

    Gotsman, E; Maor, U

    2015-01-01

    In this paper we continue the development of a model for strong interactions at high energy, based on two ingredients: CGC/saturation approach and the BFKL Pomeron. In our approach, the unknown mechanism of confinement of quarks and gluons, is characterized by several numerical parameters, which are extracted from the experimental data. We demonstrate that the two channel model, successfully describes the experimental data, including both the value of the elastic slope and the energy behavior of the single diffraction cross section. We show that the disagreement with experimental data of our previous single channel eikonal model [6] stems from the simplified approach used for the hadron structure, and is not related to our principal theoretical input, based on the CGC/saturation approach.

  10. Charge Kondo effect in negative-U quantum dots with superconducting electrodes

    Science.gov (United States)

    Fang, Tie-Feng; Guo, Ai-Min; Lu, Han-Tao; Luo, Hong-Gang; Sun, Qing-Feng

    2017-08-01

    Recent experimental realization of superconducting quantum dot devices with intradot attraction U [Nature (London) 521, 196 (2015), 10.1038/nature14398; Phys. Rev. X 6, 041042 (2016), 10.1103/PhysRevX.6.041042] offers unique opportunities to study the charge Kondo effect in a superconducting environment. In such devices pseudospin flips are caused by two tunneling processes. One is the cotunneling of normal electrons which generates near-gap Kondo resonances in the single-electron spectral density. This negative-U charge Kondo effect is more robust than the conventional spin Kondo effect against the suppression by the superconductivity. The other tunneling is the mean-field Cooper-pair tunneling which produces a zero-energy bound state in the pair spectral density. Interesting crossover physics from the strongly-correlated Kondo screening to the mean-field polarization of local pseudospin is demonstrated. Due to the interplay of these two tunnelings, the supercurrent is suppressed for intermediate couplings, but it can increase to the unitary limits both in the strong and weak coupling regimes. We obtain the magnetic field-dependent supercurrent which is consistent with the key experimental findings.

  11. Ferromagnetism in the Kondo-lattice compound CePd2P2.

    Science.gov (United States)

    Tran, Vinh Hung; Bukowski, Zbigniew

    2014-06-25

    We report physical properties of CePd2P2 crystallizing in the tetragonal ThCr2Si2-type structure (space group I4/mmm). Dc-magnetic susceptibility, magnetization, specific heat, electrical resistivity and magnetoresistance measurements establish a ferromagnetic ordering below the Curie temperature TC = 28.4 ± 0.2 K. Critical analysis of isothermal and isofield magnetization yields critical exponents of β = 0.405 ± 0.005, γ = 1.11 ± 0.05 and δ = 3.74 ± 0.04. The ordered state is characterized by saturation moment Ms ∼ 0.98μB and magnon energy gap Δ/kB ∼25–35 K. The studied properties reflect a competing influence of the Kondo and crystalline electric field (CEF) interactions. The strength of the Kondo effect is assigned by a low-temperature Kondo scale TK ∼19 ± 10 K and a high-temperature Kondo scale TK ~ H 117 } 10 K. A model of the inelastic scattering of the conduction electrons with an exchanged CEF energy ΔCEF was applied to the magnetic resistivity. An average value ΔCEF = 260 ± 30 K is consistent in the relationships with TK and TK H. We argue that the CePd2P2 compound appears to be a new ferromagnetic Kondo-lattice among the Ce-based intermetallics.

  12. Effect of Spin-Orbit Coupling on Kondo Phenomena in f7-Electron Systems

    Science.gov (United States)

    Hotta, Takashi

    2015-11-01

    In order to promote our basic understanding of the Kondo behavior recently observed in europium compounds, we analyze an impurity Anderson model with seven f electrons at an impurity site by employing a numerical renormalization group method. The local part of the model consists of Coulomb interactions among f electrons, spin-orbit coupling λ, and crystalline electric field (CEF) potentials, while we consider the hybridization V between local f electrons and single-band conduction electrons with au symmetry. For λ = 0, we observe underscreening Kondo behavior for appropriate values of V, characterized by an entropy change from ln 8 to ln 7, in which one of the seven f electrons is screened by conduction electrons. When λ is increased, we obtain two types of behavior depending on the value of V. For large V, we find an entropy release of ln 7 at low temperatures, determined by the level splitting energy due to the hybridization. For small V, we also observe an entropy change from ln 8 to ln 2 by the level splitting due to the hybridization, but at low temperatures, ln 2 entropy is found to be released, leading to the Kondo effect. We emphasize that the Kondo behavior for small V is observed for realistic values of λ on the order of 0.1 eV. We also discuss the effect of CEF potentials and the multipole properties in the Kondo behavior reported in this paper.

  13. Transport signatures of Kondo physics and quantum criticality in graphene with magnetic impurities

    Science.gov (United States)

    Ruiz-Tijerina, David A.; Dias da Silva, Luis G. G. V.

    2017-03-01

    Localized magnetic moments have been predicted to develop in graphene samples with vacancies or adsorbates. The interplay between such magnetic impurities and graphene's Dirac quasiparticles leads to remarkable many-body phenomena, which have, so far, proved elusive to experimental efforts. In this article we study the thermodynamic, spectral, and transport signatures of quantum criticality and Kondo physics of a dilute ensemble of atomic impurities in graphene. We consider vacancies and adatoms that either break or preserve graphene's C3 v and inversion symmetries. In a neutral graphene sample, all cases display symmetry-dependent quantum criticality, leading to enhanced impurity scattering for asymmetric impurities, in a manner analogous to bound-state formation by nonmagnetic resonant scatterers. Kondo correlations emerge only in the presence of a back gate, with estimated Kondo temperatures well within the experimentally accessible domain for all impurity types. For symmetry-breaking impurities at charge neutrality, quantum criticality is signaled by T-2 resistivity scaling, leading to full insulating behavior at low temperatures, while low-temperature resistivity plateaus appear both in the noncritical and Kondo regimes. By contrast, the resistivity contribution from symmetric vacancies and hollow-site adsorbates vanishes at charge neutrality and for arbitrary back-gate voltages, respectively. This implies that local probing methods are required for the detection of both Kondo and quantum critical signatures in these symmetry-preserving cases.

  14. Conductance of closed and open long Aharonov-Bohm-Kondo rings

    Science.gov (United States)

    Shi, Zheng; Komijani, Yashar

    2017-02-01

    We calculate the finite temperature linear dc conductance of a generic single-impurity Anderson model containing an arbitrary number of Fermi liquid leads, and apply the formalism to closed and open long Aharonov-Bohm-Kondo (ABK) rings. We show that, as with the short ABK ring, there is a contribution to the conductance from the connected four-point Green's function of the conduction electrons. At sufficiently low temperatures this contribution can be eliminated, and the conductance can be expressed as a linear function of the T matrix of the screening channel. For closed rings we show that at temperatures high compared to the Kondo temperature, the conductance behaves differently for temperatures above and below vF/L , where vF is the Fermi velocity and L is the circumference of the ring. For open rings, when the ring arms have both a small transmission and a small reflection, we show from the microscopic model that the ring behaves like a two-path interferometer, and that the Kondo temperature is unaffected by details of the ring. Our findings confirm that ABK rings are potentially useful in the detection of the size of the Kondo screening cloud, the π /2 scattering phase shift from the Kondo singlet, and the suppression of Aharonov-Bohm oscillations due to inelastic scattering.

  15. Theory of Fano-Kondo effect in quantum dot systems: Temperature dependence of the Fano line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, I. [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany)]. E-mail: maru@th.physik.uni-bonn.de; Shibata, N. [Department of Basic Science, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Ueda, K. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan)

    2006-05-01

    The Fano-Kondo effect in zero-bias conductance is studied based on a theoretical model for the T-shaped quantum dot by the finite temperature density matrix renormalization group method. The modification of the two Fano line shapes at much higher temperatures than the Kondo temperature is also investigated by the effective Fano parameter estimated as a fitting parameter.

  16. Quantum interference and Kondo effects in an Aharonov-Bohm-Casher interferometer containing a laterally coupled double quantum dot

    Science.gov (United States)

    Kubo, T.; Tokura, Y.; Tarucha, S.

    2010-01-01

    We theoretically investigate spin-dependent electron transport through an Aharonov-Bohm-Casher interferometer containing a laterally coupled double quantum dot. In particular, we numerically calculate the Aharonov-Bohm and Aharonov-Casher oscillations of the linear conductance in the Kondo regime. We show that the AC oscillation in the Kondo regime deviates from the sinusoidal form.

  17. Fractures in anisotropic media

    Science.gov (United States)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  18. Finite-size effect and Kondo screening effect in an A-B ring with a quantum dot

    Institute of Scientific and Technical Information of China (English)

    Wu Shao-Quan; Wang Shun-Jin; Sun Wei-Li; Yu Wan-Lun

    2004-01-01

    The properties of the ground state of a closed dot-ring system with a magnetic flux in the Kondo regime are studied theoretically by means of a one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that at T=0, a suppressed Kondo effect exists in this system even when the mean level spacing of electrons in the ring is larger than the bulk Kondo temperature. The physical quantities depend sensitively on both the parity of the system and the size of the ring; the rich physical behaviour can be attributed to the coexistence of both the finite-size effect and the Kondo screening effect. It is also possible to detect the Kondo screening cloud by measuring the persistent current or the zero field impurity susceptibility Ximp directly in future experiments.

  19. The possibility of nanostructure character in approaching Kondo effect

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, N; Yazdani, A; Shahsavari, L [Tarbiat Modares University, Jalal al Ahmad, P. O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2007-12-15

    Based on instability of magnetic structure, a new class of heavy fermions is constructed with a stable local magnetic ion 'Gd'. The lattice constants, D.C magnetic susceptibility and the electrical resistivity measurements in the magnetic unstable intermetallic compounds show; (1) the Instability of crystal structure, as well as high transition temperature 'T{sub c}', strongly depends on the conduction electrons concentration. The reduced size effect and the reduction in correlation length, is expected to be the cause of this behaviour as it could be due to the nanostructure character as well as the competition of inter and intra-cluster also (2) the coexistence of Kondo lattice behaviour and magnetic ordering 'reentrant antiferromagnet' for the temperature range of 30 < T{sub k} < 90K with T{sub N} = T{sub max} = 30K and finally (3) the metal-insulator-like behaviour with complete quench of magnetic ordering occur antiferromagnetically named 'super paramagnet' at a certain conduction electron concentration.

  20. Spin dynamics of the Kondo insulator CeNiSn approaching the metallic phase

    DEFF Research Database (Denmark)

    Schröder, A.; Aeppli, G.; Mason, T.E.

    1997-01-01

    The spin dynamics of Kondo insulators has been studied by high-resolution magnetic neutron spectroscopy at a triple-axes spectrometer on CeNi1-xCuxSn single crystals using a vertical 9 T magnet. While upon doping (x = 0.13) the spin gap of the Kondo insulator CeNiSn collapses at the transition...... to an antiferromagnetic ordered metallic Kondo compound, no such instability is observed in CeNiSn in magnetic fields up to 9 T. Both the sharp magnetic excitations (at 2 and 4 meV) appear significantly broader for energy and momentum transfer at high fields, while the ground-state correlations (probed by chi'(0)) remain...

  1. Quantum phase transitions and thermodynamics of the power-law Kondo model

    Science.gov (United States)

    Mitchell, Andrew K.; Vojta, Matthias; Bulla, Ralf; Fritz, Lars

    2013-11-01

    We revisit the physics of a Kondo impurity coupled to a fermionic host with a diverging power-law density of states near the Fermi level, ρ(ω)˜|ω|r, with exponent -1Kondo coupling leads to strong screening with a negative zero-temperature impurity entropy, while ferromagnetic Kondo coupling can induce a stable fractional spin moment. We formulate the quantum field theories for all critical fixed points of the problem, which are fermionic in nature and allow for a perturbative renormalization-group treatment.

  2. Kondo decoherence : finding the right spin model for iron impurities in gold and silver.

    Energy Technology Data Exchange (ETDEWEB)

    Costi, T. A.; Bergqvist, L.; Weichselbaum, A.; von Delft, J.; Micklitz, T.; Rosch, A.; Mavropoulos, P.; Dederichs, P. H.; Mallet, F.; Saminadayar, L.; Bauerle, C. (Materials Science Division); (Forschungszentrum Julich); (Ludwig-Maximilians-Univ. Munchen); (Univ. of Cologne); (CNRS); (Univ. Joseph Fourier); (Inst. Univ. de France)

    2009-02-01

    We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a long-standing question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin, and orbital degrees of freedom? Previous studies suggest a fully screened spin S Kondo model, but the value of S remained ambiguous. We perform density functional theory calculations that suggest S=3/2. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi-one-dimensional wires to numerical renormalization group predictions for S=1/2, 1, and 3/2, finding excellent agreement for S=3/2.

  3. Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers

    Science.gov (United States)

    Rostami, Habib; Moghaddam, Ali G.; Asgari, Reza

    2016-12-01

    We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenide monolayers. We show that momentum and spin relaxation times, due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin-split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature T K on the doping is not strongly affected by the spin-orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and the poor man’s scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to T K, which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials.

  4. Kondo effects in a triangular triple quantum dot II: ground-state properties for deformed configurations

    Science.gov (United States)

    Oguri, Akira; Amaha, Shinichi; Nisikawa, Yunori; Hewson, A. C.; Tarucha, Seigo; Numata, Takahide

    2010-03-01

    We study transport through a triangular triple quantum dot (TTQD) connected to two noninteracting leads, using the numerical renormalization group. The system has been theoretically revealed to show a variety of Kondo effects depending on the electron filling of the triangle [1]. For instance, the SU(4) Kondo effect takes place at three-electron filling, and a two-stage Kondo screening of a high-spin S=1 Nagaoka state takes place at four-electron filling. Because of the enhanced freedom in the configurations, however, the large parameter space of the TTQD still has not been fully explored, especially for large deformations. We report the effects of the inhomogeneity in the inter-dot couplings and the level positions in a wide region of the filling. [1] T. Numata, Y. Nisikawa, A. Oguri, and A. C. Hewson: PRB 80, 155330 (2009).

  5. Prediction of femtosecond oscillations in the transient current of a quantum dot in the Kondo regime

    KAUST Repository

    Goker, A.

    2010-10-11

    We invoke the time-dependent noncrossing approximation in order to study the effects of the density of states of gold contacts on the instantaneous conductance of a single electron transistor which is abruptly moved into the Kondo regime by means of a gate voltage. For an asymmetrically coupled system, we observe that the instantaneous conductance in the Kondo time scale exhibits beating with distinct frequencies, which are proportional to the separation between the Fermi level and the sharp features in the density of states of gold. Increasing the ambient temperature or bias quenches the amplitude of the oscillations. We attribute the oscillations to interference between the emerging Kondo resonance and van-Hove singularities in the density of state. In addition, we propose an experimental realization of this model.

  6. Zero-temperature magnetic transition in an easy-axis Kondo lattice model.

    Science.gov (United States)

    Zhu, Jian-Xin; Kirchner, Stefan; Bulla, Ralf; Si, Qimiao

    2007-11-30

    We address the quantum transition of a spin-1/2 antiferromagnetic Kondo lattice model with an easy-axis anisotropy using the extended dynamical mean field theory. We derive results in real frequency by using the bosonic numerical renormalization group (BNRG) method and compare them with quantum Monte Carlo results in Matsubara frequency. The BNRG results show a logarithmic divergence in the critical local spin susceptibility, signaling a destruction of Kondo screening. The T=0 transition is consistent with being second order. The BNRG results also display some subtle features; we identify their origin and suggest means for further microscopic studies.

  7. Nonequilibrium Transport through a Kondo-dot in a Magnetic Field

    DEFF Research Database (Denmark)

    Wölfle, Peter; Rosch, Achim; Paaske, Jens

    2002-01-01

    Electron transport through a quantum-dot in the Coulomb blockade regime is modeled by a Kondo-type hamiltonian describing spin-dependent tunneling and exchange interaction with the local spin. We consider the regime of large transport voltage V and magnetic field B with max(V, B) » Tk, the Kondo ...... to be generalized to allow for frequency dependent coupling functions. We simplify the full RG equations in the spirit of poor man’s scaling and calculate M and G in leading order of 1/ln[(V, B)/T k]....

  8. Zero-Temperature Magnetic Transition in an Easy-Axis Kondo Lattice Model

    Science.gov (United States)

    Zhu, Jian-Xin; Kirchner, Stefan; Bulla, Ralf; Si, Qimiao

    2007-11-01

    We address the quantum transition of a spin-1/2 antiferromagnetic Kondo lattice model with an easy-axis anisotropy using the extended dynamical mean field theory. We derive results in real frequency by using the bosonic numerical renormalization group (BNRG) method and compare them with quantum Monte Carlo results in Matsubara frequency. The BNRG results show a logarithmic divergence in the critical local spin susceptibility, signaling a destruction of Kondo screening. The T=0 transition is consistent with being second order. The BNRG results also display some subtle features; we identify their origin and suggest means for further microscopic studies.

  9. Temperature-invariant photoelectron spectra in cerium heavy-fermion compounds: Inconsistencies with the Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.J.; Arko, A.J.; Lawrence, J.; Canfield, P.C.; Fisk, Z.; Bartlett, R.J.; Thompson, J.D. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1992-01-13

    4{ital f} levels in Ce heavy-fermion compounds are examined using resonant photoemission. We find the following inconsistencies with the predictions of the Kondo model: (a) All temperature dependence can be accounted for simply by phonon broadening and the Fermi function; (b) the spectral weights of the features near {ital E}{sub {ital F}} do not scale with {ital T}{sub {ital K}}; and (c) the line shape of the feature previously identified as the Kondo resonance is Lorentzian and about an order of magnitude broader than predictions. Instrument resolution is not a limiting factor.

  10. Nonequilibrium Transport through a Kondo-dot in a Magnetic Field

    DEFF Research Database (Denmark)

    Wölfle, Peter; Rosch, Achim; Paaske, Jens;

    2002-01-01

    Electron transport through a quantum-dot in the Coulomb blockade regime is modeled by a Kondo-type hamiltonian describing spin-dependent tunneling and exchange interaction with the local spin. We consider the regime of large transport voltage V and magnetic field B with max(V, B) » Tk, the Kondo...... temperature, and show that a renormalized perturbation theory can be formulated describing the local magnetization M and the differential conductance G quantitatively. Based on the structure of leading logarithmic corrections in bare perturbation theory we argue that the perturbative renormalization group has...

  11. Kondo effect in transport through Aharonov-Bohm and Aharonov-Casher interferometers

    Science.gov (United States)

    Lobos, A. M.; Aligia, A. A.

    2009-10-01

    We derive the extension of the Hubbard model to include Rashba spin-orbit coupling that correctly describes Aharonov-Bohm and Aharonov-Casher phases in a ring under applied magnetic and electric fields. When the ring is connected to conducting leads, we develop a formalism that is able to describe both, Kondo and interference effects. We find that in the Kondo regime, the spin-orbit coupling reduces strongly the conductance from the unitary limit. This effect in combination with the magnetic flux, can be used to produce spin polarized carriers.

  12. Kondo effect in transport through Aharonov-Bohm and Aharonov-Casher interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Lobos, A.M. [DPMC-MaNEP, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4 (Switzerland); Aligia, A.A., E-mail: aligia@cab.cnea.gov.a [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, 8400 Bariloche (Argentina)

    2009-10-15

    We derive the extension of the Hubbard model to include Rashba spin-orbit coupling that correctly describes Aharonov-Bohm and Aharonov-Casher phases in a ring under applied magnetic and electric fields. When the ring is connected to conducting leads, we develop a formalism that is able to describe both, Kondo and interference effects. We find that in the Kondo regime, the spin-orbit coupling reduces strongly the conductance from the unitary limit. This effect in combination with the magnetic flux, can be used to produce spin polarized carriers.

  13. A Theoretic Approach to SU(4) Kondo Effect in Carbon Nanotube Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    ZHU Rui

    2006-01-01

    We propose a mean Geld approach to the transport properties of carbon nanotube quantum dots. Quantum interaction between spin and orbital pseudo-spin degrees of freedom results in an SU(4) Kondo effect at low temperatures. By calculating the chemical potentials and the tunnelling strengths, and hence the spectral functions for different coupling constants and applied magnetic fields, we find that this exotic Kondo effect manifests as a four-peak splitting in the non-linear conductance when an axial magnetic field is applied.

  14. Mapping spin distributions in electron acceptor molecules adsorbed on nanostructured graphene by the Kondo effect

    Science.gov (United States)

    Garnica, Manuela; Calleja, Fabián; Vázquez de Parga, Amadeo L.; Miranda, Rodolfo

    2014-12-01

    Electron acceptor molecules adsorbed on nanostructured graphene grown on Ru(0001) were investigated by low temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS). Our experiments reveal a considerable charge transfer from the substrate to the single molecules leading to the partial occupation of the LUMO of the neutral molecules. The nanostructured graphene modulates the hybridization between the transferred unpaired electron and the ruthenium conduction electrons leading to the appearance of a Kondo effect. Spatially resolved LT-STS allows the high resolution mapping of the spin distribution of the charge transferred and a characteristic inelastic Kondo features associated to specific vibrational modes.

  15. On the relativistic anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)

    2016-06-15

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)

  16. Multi-spectral image fusion method based on two channels non-separable wavelets

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; PENG JiaXiong

    2008-01-01

    A construction method of two channels non-separable wavelets filter bank which dilation matrix is [1, 1; 1, -1] and its application in the fusion of multi-spectral image are presented. Many 4x4 filter banks are designed. The multi-spectral image fusion algorithm based on this kind of wavelet is proposed. Using this filter bank, multi-resolution wavelet decomposition of the intensity of multi-spectral image and panchromatic image is performed, and the two low-frequency components of the intensity and the panchromatic image are merged by using a tradeoff parameter. The experiment results show that this method is good in the preservation of spectral quality and high spatial resolution information. Its performance in preserving spectral quality and high spatial information is better than the fusion method based on DWFT and IHS. When the parameter t is closed to 1, the fused image can obtain rich spectral information from the original MS image. The amount of computation reduced to only half of the fusion method based on four channels wavelet transform.

  17. Applying two channels to vector space secret sharing based multi-signature scheme

    Institute of Scientific and Technical Information of China (English)

    XIAO Qing-hua; PING Ling-di; CHEN Xiao-ping; PAN Xue-zeng

    2005-01-01

    Secret sharing and digital signature is an important research area in information security and has wide applications in such fields as safeguarding and legal use of confidential information, secure multiparty computation and electronic commerce. But up to now, study of signature based on general vector space secret sharing is very weak. Aiming at this drawback, the authors did some research on vector space secret sharing against cheaters, and proposed an efficient but secure vector space secret sharing based multi-signature scheme, which is implemented in two channels. In this scheme, the group signature can be easily produced if an authorized subset of participants pool their secret shadows and it is impossible for them to generate a group signature if an unauthorized subset of participants pool their secret shadows. The validity of the group signature can be verified by means of verification equations. A group signature of authorized subset of participants cannot be impersonated by any other set of participants. Moreover, the suspected forgery can be traced, and the malicious participants can be detected in the scheme. None of several possible attacks can successfully break this scheme.

  18. A high-throughput two channel discrete wavelet transform architecture for the JPEG2000 standard

    Science.gov (United States)

    Badakhshannoory, Hossein; Hashemi, Mahmoud R.; Aminlou, Alireza; Fatemi, Omid

    2005-07-01

    The Discrete Wavelet Transform (DWT) is increasingly recognized in image and video compression standards, as indicated by its use in JPEG2000. The lifting scheme algorithm is an alternative DWT implementation that has a lower computational complexity and reduced resource requirement. In the JPEG2000 standard two lifting scheme based filter banks are introduced: the 5/3 and 9/7. In this paper a high throughput, two channel DWT architecture for both of the JPEG2000 DWT filters is presented. The proposed pipelined architecture has two separate input channels that process the incoming samples simultaneously with minimum memory requirement for each channel. The architecture had been implemented in VHDL and synthesized on a Xilinx Virtex2 XCV1000. The proposed architecture applies DWT on a 2K by 1K image at 33 fps with a 75 MHZ clock frequency. This performance is achieved with 70% less resources than two independent single channel modules. The high throughput and reduced resource requirement has made this architecture the proper choice for real time applications such as Digital Cinema.

  19. Detection of Ground Moving Targets for Two-Channel Spaceborne SAR-ATI

    Directory of Open Access Journals (Sweden)

    Diannong Liang

    2010-01-01

    Full Text Available Many present spaceborne synthetic aperture radar (SAR systems are constrained to only two channels for ground moving target indication (GMTI. Along-track interferometry (ATI technique is currently exploited to detect slowly moving targets and measure their radial velocity and azimuth real position. In this paper, based on the joint probability density function (PDF of interferogram's phase and amplitude and the two hypotheses “clutter” and “clutter plus signal”, several constant false alarm rate (CFAR detection criteria are analyzed for their capabilities and limitations under low signal-to-clutter ratio (SCR and low clutter-to-noise ratio (CNR conditions. The CFAR detectors include one-step CFAR detector with interferometric phase, two-step CFAR detectors, and two-dimensional (2D CFAR detector. The likelihood ratio test (LRT based on the Neyman-Pearson (NP criterion is exploited as an upper bound for the performance of the other CFAR detectors. Performance analyses demonstrate the superiority of the 2D CFAR techniques to detect dim slowly moving targets for spaceborne system.

  20. Machinery Fault Diagnosis Using Two-Channel Analysis Method Based on Fictitious System Frequency Response Function

    Directory of Open Access Journals (Sweden)

    Kihong Shin

    2015-01-01

    Full Text Available Most existing techniques for machinery health monitoring that utilize measured vibration signals usually require measurement points to be as close as possible to the expected fault components of interest. This is particularly important for implementing condition-based maintenance since the incipient fault signal power may be too small to be detected if a sensor is located further away from the fault source. However, a measurement sensor is often not attached to the ideal point due to geometric or environmental restrictions. In such a case, many of the conventional diagnostic techniques may not be successfully applicable. In this paper, a two-channel analysis method is proposed to overcome such difficulty. It uses two vibration signals simultaneously measured at arbitrary points in a machine. The proposed method is described theoretically by introducing a fictitious system frequency response function. It is then verified experimentally for bearing fault detection. The results show that the suggested method may be a good alternative when ideal points for measurement sensors are not readily available.

  1. Hall effect anomaly and low-temperature metamagnetism in the Kondo compound CeAgBi2

    Science.gov (United States)

    Thomas, S. M.; Rosa, P. F. S.; Lee, S. B.; Parameswaran, S. A.; Fisk, Z.; Xia, J.

    2016-02-01

    Heavy fermion (HF) materials exhibit a rich array of phenomena due to the strong Kondo coupling between their localized moments and itinerant electrons. A central question in their study is to understand the interplay between magnetic order and charge transport, and its role in stabilizing new quantum phases of matter. Particularly promising in this regard is a family of tetragonal intermetallic compounds Ce T X2 (where T denotes transition metal and X denotes pnictogen), which includes a variety of HF compounds showing T -linear electronic specific heat Ce˜γ T , with γ ˜20 -500 mJ mol-1K-2 , reflecting an effective-mass enhancement ranging from small to modest. Here, we study the low-temperature field-tuned phase diagram of high-quality CeAgBi2 using magnetometry and transport measurements. We find an antiferromagnetic transition at TN=6.4 K with weak magnetic anisotropy and the easy axis along the c axis, similar to previous reports (TN=6.1 K ). This scenario, along with the presence of two anisotropic Ruderman-Kittel-Kasuya-Yosida interactions, leads to a rich field-tuned magnetic phase diagram, consisting of five metamagnetic transitions of both first and second order. In addition, we unveil an anomalous Hall contribution for fields H <54 kOe , which is drastically altered when H is tuned through a trio of transitions at 57, 78, and 84 kOe, suggesting that the Fermi surface is reconstructed in a subset of the metamagnetic transitions.

  2. Inhomogeneous anisotropic cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  3. Anisotropic Thermal Diffusion

    Science.gov (United States)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  4. Inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kleban, Matthew; Senatore, Leonardo

    2016-10-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  5. Anisotropic Power-law Inflation

    CERN Document Server

    Kanno, Sugumi; Watanabe, Masa-aki

    2010-01-01

    We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.

  6. A theoretical study of the spin glass-Kondo-magnetic disordered alloys in the presence of a random field

    Science.gov (United States)

    Magalhaes, S. G.; Zimmer, F. M.; Coqblin, B.

    2012-12-01

    We study here the influence of a random applied magnetic field on the competition between the Kondo effect, the spin glass phase and a ferromagnetic order in disordered cerium systems such as CeNi1-xCux. The model used here takes an intrasite Kondo coupling and an intersite random coupling; both the intersite random coupling and the random magnetic field are described within the Sherrington-Kirkpatrick model and the one-step replica symmetry breaking procedure is also used here. We present phase diagrams giving Temperature versus the Kondo exchange parameter and the random magnetic field makes decrease particularly the importance of the spin glass and ferromagnetic phases.

  7. Spin-orbit interaction and asymmetry effects on Kondo ridges at finite magnetic field

    DEFF Research Database (Denmark)

    Grap, Stephan; Andergassen, Sabine; Paaske, Jens

    2011-01-01

    ridges, which are robust against SOI as time-reversal symmetry is preserved. As a result of the crossing of a spin-up and a spin-down level at vanishing SOI, two additional Kondo plateaus appear at finite B. They are not protected by symmetry and rapidly vanish if the SOI is turned on. Left...

  8. Environment-modulated Kondo phenomena in FePc/Au(111) adsorption systems

    Science.gov (United States)

    Wang, Yu; Zheng, Xiao; Yang, Jinlong

    2016-03-01

    Recent scanning tunneling microscopy experiments on electron transport through iron(II) phthalocyanine (FePc) molecules adsorbed on the Au(111) surface have revealed that the measured Kondo conductance signature depends strongly on the specific adsorption site. To understand the physical origin of experimental observations, particularly the variation of Kondo features with the molecular adsorption site, we employ a combined density functional theory (DFT) and hierarchical equations of motion (HEOM) approach to investigate the electronic structure and Kondo correlation in FePc/Au(111) composite systems. The calculation results indicate that, for the on-top adsorption configuration, the two degenerate spin-unpaired dπ orbitals on the Fe center are coupled indirectly through substrate band states, leading to the Fano-like antiresonance line shape in the d I /d V spectra, while for the bridge adsorption configuration, the environment-induced couplings are largely suppressed because of the two different spin-unpaired d orbitals. Therefore, our work suggests that the environment-induced coupling as an essential physical factor could greatly influence the Fano-Kondo features in magnetic molecule/metal composites, and the crucial role of local orbital degeneracy and symmetry is discovered. These findings provide important insights into the electron correlation effects in complex solid-state systems. The usefulness and practicality of the combined DFT+HEOM method is also highlighted.

  9. Spin relaxation through Kondo scattering in Cu/Py lateral spin valves

    Science.gov (United States)

    Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.

    Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.

  10. Strong spin Seebeck effect in Kondo T-shaped double quantum dots

    Science.gov (United States)

    Wójcik, K. P.; Weymann, I.

    2017-02-01

    We investigate, taking a theoretical approach, the thermoelectric and spin thermoelectric properties of a T-shaped double quantum dot strongly coupled to two ferromagnetic leads, focusing on the transport regime in which the system exhibits the two-stage Kondo effect. We study the dependence of the (spin) Seebeck coefficient, the corresponding power factor and the figure of merit on temperature, leads’ spin polarization and dot level position. We show that the thermal conductance fulfills a modified Wiedemann-Franz law, also in the regime of suppression of subsequent stages of the Kondo effect by the exchange field resulting from the presence of ferromagnets. Moreover, we demonstrate that the spin thermopower is enhanced at temperatures corresponding to the second stage of Kondo screening. Very interestingly, the spin-thermoelectric response of the system is found to be highly sensitive to the spin polarization of the leads. In some cases spin polarization of the order of 1% is sufficient for a strong spin Seebeck effect to occur. This is explained as a consequence of the interplay between the two-stage Kondo effect and the exchange field induced in the double quantum dot. Due to the possibility of tuning the exchange field by the choice of gate voltage, the spin thermopower may also be tuned to be maximal for desired spin polarization of the leads. All calculations are performed with the aid of the numerical renormalization group technique.

  11. Spin-flux phase in the Kondo lattice model with classical localized spins

    NARCIS (Netherlands)

    Agterberg, DF; Yunoki, S

    2000-01-01

    We provide numerical evidence that a spin-flux phase exists as a ground state of the Kondo lattice model with classical local spins on a square lattice. This state manifests itself as a double-e magnetic order in the classical spins with spin density at both (0, pi) and (pi ,0) and further exhibits

  12. Kondo quantum dot coupled to ferromagnetic leads: Numerical renormalization group study

    Science.gov (United States)

    Sindel, M.; Borda, L.; Martinek, J.; Bulla, R.; König, J.; Schön, G.; Maekawa, S.; von Delft, J.

    2007-07-01

    We systematically study the influence of ferromagnetic leads on the Kondo resonance in a quantum dot tuned to the local moment regime. We employ Wilson’s numerical renormalization group method, extended to handle leads with a spin asymmetric density of states, to identify the effects of (i) a finite spin polarization in the leads (at the Fermi surface), (ii) a Stoner splitting in the bands (governed by the band edges), and (iii) an arbitrary shape of the lead density of states. For a generic lead density of states, the quantum dot favors being occupied by a particular spin species due to exchange interaction with ferromagnetic leads, leading to suppression and splitting of the Kondo resonance. The application of a magnetic field can compensate this asymmetry, restoring the Kondo effect. We study both the gate voltage dependence (for a fixed band structure in the leads) and the spin polarization dependence (for fixed gate voltage) of this compensation field for various types of bands. Interestingly, we find that the full recovery of the Kondo resonance of a quantum dot in the presence of leads with an energy-dependent density of states is possible not only by an appropriately tuned external magnetic field but also via an appropriately tuned gate voltage. For flat bands, simple formulas for the splitting of the local level as a function of the spin polarization and gate voltage are given.

  13. Kondo effect and impurity band conduction in Co:TiO2 magnetic semiconductor

    NARCIS (Netherlands)

    Ramaneti, R.; Lodder, J.C.; Jansen, R.

    2007-01-01

    The nature of charge carriers and their interaction with local magnetic moments in an oxide magnetic semiconductor is established. For cobalt-doped anatase TiO2 films, we demonstrate conduction in a metallic donor-impurity band. Moreover, we observe a clear signature of the Kondo effect in electrica

  14. Additional value of two-channel amplitude integrated EEG recording in full-term infants with unilateral brain injury

    NARCIS (Netherlands)

    van Rooij, Linda G. M.; de Vries, Linda S.; van Huffelen, Alexander C.; Toet, Mona C.

    2010-01-01

    Background Amplitude integrated electroencephalography (aEEG) is a valuable tool for evaluating neonatal encephalopathy and identifying electrographic seizures. Objective To compare seizure activity and background pattern (BGP) between one-channel and two-channel aEEG recordings in full-term neonate

  15. Validation of two-channel sequencing-by-synthesis for noninvasive prenatal testing of fetal whole and partial chromosome aberrations

    NARCIS (Netherlands)

    Neveling, K.; Thung, G.W.D.T.; Beulen, L.; Rens-Buijsman, W. van; Gomes, I.; Heuvel, S. van den; Mieloo, H.; Derks-Prinsen, I.; Kater-Baats, E.; Faas, B.H.W.

    2016-01-01

    OBJECTIVE: To validate Illumina's two-channel NextSeq 500 sequencing system for noninvasive prenatal testing (NIPT) of fetal whole chromosome and partial aberrations. METHODS: A total of 162 plasma samples, previously sequenced for NIPT on a SOLiD 5500xl platform, were sequenced on the NextSeq 500 u

  16. Additional value of two-channel amplitude integrated EEG recording in full-term infants with unilateral brain injury

    NARCIS (Netherlands)

    van Rooij, Linda G. M.; de Vries, Linda S.; van Huffelen, Alexander C.; Toet, Mona C.

    2010-01-01

    Background Amplitude integrated electroencephalography (aEEG) is a valuable tool for evaluating neonatal encephalopathy and identifying electrographic seizures. Objective To compare seizure activity and background pattern (BGP) between one-channel and two-channel aEEG recordings in full-term neonate

  17. Research on Two-channel Interleaved Two-stage Paralleled Buck DC-DC Converter for Plasma Cutting Power Supply

    DEFF Research Database (Denmark)

    Yang, Xi-jun; Qu, Hao; Yao, Chen

    2014-01-01

    As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply...

  18. Thermodynamics of anisotropic branes

    Energy Technology Data Exchange (ETDEWEB)

    Ávila, Daniel [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Fernández, Daniel [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)

    2016-11-22

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a ‘Minkowski embedding’, in which they lie outside of the horizon, and a ‘black hole embedding’, in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  19. Anisotropic Rabi model

    Directory of Open Access Journals (Sweden)

    Qiong-Tao Xie

    2014-06-01

    Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  20. Anisotropic Model Colloids

    Science.gov (United States)

    van Kats, C. M.

    2008-10-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with

  1. Comparative dynamics of the two channels of the reaction of D + MuH.

    Science.gov (United States)

    Aoiz, F J; Aldegunde, J; Herrero, V J; Sáez-Rábanos, V

    2014-06-07

    thermal cumulative reaction probabilities of the two channels indicates that at the lowest energies/temperatures the reaction into the DH + Mu channel takes place via'leakage' from collisions proceeding along the DMu + H reaction path.

  2. Design of two-channel oscilloscope and basic circuit simulations in LabView

    Science.gov (United States)

    Balzhiev, Plamen; Makal, Jaroslaw

    2008-01-01

    The project is realized as a diploma thesis in Bialystok Technical University, Poland). The main aim is to develop a useful educational tool which presents the time and frequency characteristics in basic electrical circuits. It is designed as a helpful instrument for lectures and laboratory classes. The predominant audience will be students of electrical engineering from first semester of the higher education. Therefore the level of knowledge at this stage of education is not high enough and different techniques are necessary to increase the students' interest and the efficiency of teaching process. This educational instrument provides the needed knowledge concerning the basic circuits and its parameters. Graphics and animations of the general processes in the electrical circuits make the problems more interesting, comprehensive and easier to understand. For designing such an instrument the National Instruments' programming environment LabView is used. It is preferred to the other simulation software because of its simplicity flexibility and also availability (the free demo version is sufficient to make a simple virtual instrument). LabView uses graphical programming language and has powerful mathematical functions for analysis and simulations. The useful visualization tools for presenting different diagrams are worth recommending, too. It is also specialized in measurement and control and it supports a wide variety of hardware. Therefore this software is suitable for laboratory classes to present the dependencies between the simulated characteristics in basic electrical circuits and the real one measured with the hardware device. For this purpose a two-channel oscilloscope is designed as part of the described project. The main purpose of this instrument as part of the educational process is to present the desired characteristics of the electrical circuits and to become familiar with the general functions of the oscilloscope. This project combines several important

  3. Genome sequence of Frateuria aurantia type strain (Kondo 67(T)), a xanthomonade isolated from Lilium auratium Lindl.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Lang, Elke [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2013-01-01

    rateuria aurantia (ex Kondo and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondo 67(T) was initially (1958) identified as a member of 'Acetobacter aurantius', a name that was not considered for the approved list. Kondo 67(T) was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondo 67(T) is the first member of the genus Frateura whose genome sequence has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Anisotropic Inflation with General Potentials

    CERN Document Server

    Shi, Jiaming; Qiu, Taotao

    2015-01-01

    Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.

  5. Theoretical study of Kondo effect and related transport properties in topological insulator systems

    Science.gov (United States)

    Xin, Xianhao

    This thesis presents theoretical studies of the Kondo effect and related transport properties in topological insulator systems. The thesis mainly covers two topics: the Kondo effect on the surface of a bulk topological insulator material and the Kondo effect in a topological insulator quantum dot. Other relevant background knowledge and theoretical techniques for the transport calculations are also discussed in the thesis. For the first topic, we investigate the role of magnetic impurities in the transport properties of a three-dimensional topological insulator's surface states. First, we combine the second-order perturbation theory and the Boltzmann transport equation to calculate the magnetically induced resistivity in a topological insulator. Our result shows a non-perturbative behavior when conduction electrons and magnetic impurities' spins are antiferromagnetically coupled. The surface resistivity is found to display an oscillatory rather than isotropic behavior compared to the conventional Kondo effect. Both the variational method and renormalization group (RG) analysis are employed to compute the Kondo temperature, through which the non-perturbative behavior is confirmed. We further study the RG flows and demonstrate that the RG trajectories eventually flow into a strong coupling regime if the coupling is antiferromagnetic. This work is motivated by the recent transport experiments, in which surface currents were detected in topological insulators. The calculation is shown to be qualitatively consistent with the low temperature dip observed in the experimental R - T curve, and it might be one of the possible origins of the dip. For the second main topic, we investigate theoretically the nonequilibrium transport properties of a topological insulator quantum dot (TIQD) in the Coulomb blockade and Kondo regime. An Anderson impurity model is applied to a TIQD system coupled to two external leads, and we show that the model realizes the spin-orbital Kondo effect

  6. Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2-δAs2.

    Science.gov (United States)

    Luo, Yongkang; Ronning, F; Wakeham, N; Lu, Xin; Park, Tuson; Xu, Z-A; Thompson, J D

    2015-11-03

    The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2-δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 E-/formular unit in CeNi2-δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. The small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.

  7. Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2−δAs2

    Science.gov (United States)

    Luo, Yongkang; Ronning, F.; Wakeham, N.; Lu, Xin; Park, Tuson; Xu, Z.-A.; Thompson, J. D.

    2015-01-01

    The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2−δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ∼0.032 e−/formular unit in CeNi2−δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. The small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening. PMID:26483465

  8. Gradient expansion for anisotropic hydrodynamics

    Science.gov (United States)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał

    2016-12-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.

  9. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  10. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Deepak Kumar

    2002-08-01

    Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  11. Anisotropic assembly and pattern formation

    Science.gov (United States)

    von Brecht, James H.; Uminsky, David T.

    2017-01-01

    We investigate the role of anisotropy in two classes of individual-based models for self-organization, collective behavior and self-assembly. We accomplish this via first-order dynamical systems of pairwise interacting particles that incorporate anisotropic interactions. At a continuum level, these models represent the natural anisotropic variants of the well-known aggregation equation. We leverage this framework to analyze the impact of anisotropic effects upon the self-assembly of co-dimension one equilibrium structures, such as micelles and vesicles. Our analytical results reveal the regularizing effect of anisotropy, and isolate the contexts in which anisotropic effects are necessary to achieve dynamical stability of co-dimension one structures. Our results therefore place theoretical limits on when anisotropic effects can be safely neglected. We also explore whether anisotropic effects suffice to induce pattern formation in such particle systems. We conclude with brief numerical studies that highlight various aspects of the models we introduce, elucidate their phase structure and partially validate the analysis we provide.

  12. Magnetic ordering and non-Fermi-liquid behavior in the multichannel Kondo-lattice model

    Science.gov (United States)

    Irkhin, Valentin Yu.

    2016-05-01

    Scaling equations for the Kondo lattice in the paramagnetic and magnetically ordered phases are derived to next-leading order with account of spin dynamics. The results are applied to describe various mechanisms of the non-Fermi-liquid (NFL) behavior in the multichannel Kondo-lattice model where a fixed point occurs in the weak-coupling region. The corresponding temperature dependences of electronic and magnetic properties are discussed. The model describes naturally formation of a magnetic state with soft boson mode and small moment value. An important role of Van Hove singularities in the magnon spectral function is demonstrated. The results are rather sensitive to the type of magnetic ordering and space dimensionality, the conditions for NFL behavior being more favorable in the antiferromagnetic and 2D cases.

  13. Magnetic Quantum Phase Transitions of a Kondo Lattice Model with Ising Anisotropy

    Science.gov (United States)

    Zhu, Jian-Xin; Kirchner, Stefan; Si, Qimiao; Grempel, Daniel R.; Bulla, Ralf

    2006-03-01

    We study the Kondo Lattice model with Ising anisotropy, within an extended dynamical mean field theory (EDMFT) in the presence or absence of antiferromagnetic ordering. The EDMFT equations are studied using both the Quantum Monte Carlo (QMC) and Numerical Renormalization Group (NRG) methods. We discuss the overall magnetic phase diagram by studying the evolution, as a function of the ratio of the RKKY interaction and bare Kondo scale, of the local spin susceptibility, magnetic order parameter, and the effective Curie constant of a nominally paramagnetic solution with a finite moment. We show that, within the numerical accuracy, the quantum magnetic transition is second order. The local quantum critical aspect of the transition is also discussed.

  14. Excitons in topological Kondo insulators: Theory of thermodynamic and transport anomalies in SmB_{6}.

    Science.gov (United States)

    Knolle, Johannes; Cooper, Nigel R

    2017-03-03

    Kondo insulating materials lie outside the usual dichotomy of weakly versus correlated-band versus Mott-insulators. They are metallic at high temperatures but resemble band insulators at low temperatures because of the opening of an interaction-induced band gap. The first discovered Kondo insulator (KI) SmB_{6} has been predicted to form a topological KI (TKI). However, since its discovery thermodynamic and transport anomalies have been observed that have defied a theoretical explanation. Enigmatic signatures of collective modes inside the charge gap are seen in specific heat, thermal transport, and quantum oscillation experiments in strong magnetic fields. Here, we show that TKIs are susceptible to the formation of excitons and magnetoexcitons. These charge neutral composite particles can account for long-standing anomalies in SmB_{6}.

  15. Magnetic field effects on the DOS of a Kondo quantum dot coupled to LL leads

    Science.gov (United States)

    Yang, Kai-Hua; Qin, Chang-Dong; Wang, Huai-Yu; Wang, Xu

    2017-01-01

    We investigate the joint effects of a magnetic field and electron-electron interaction on the tunneling density of states (DOS) of a quantum dot coupled to the Luttinger liquid leads in the Kondo regime. We find that for intralead electron interaction, the DOS develops two peaks deviated from the origin by the Zeeman energy. With the increase of the intralead interaction, a phase transition occurs. For moderately strong interaction, the Zeeman splitting peaks develop into two dips. The splitting of the Kondo peak and dip is not symmetric with respect to up and down spins. In the limit of strong interaction the Zeeman splitting behavior disappears and there appears a power-law scaling behavior.

  16. Jahn-Teller / Kondo Interplay in a Three-Terminal Quantum Dot

    Science.gov (United States)

    Toonen, R. C.; Qin, H.; Huettel, A. K.; Goswami, S.; van der Weide, D. W.; Eberl, K.; Blick, R. H.

    2006-03-01

    The Jahn-Teller effect is the spontaneous geometric distortion of a nonlinear molecular entity. The Kondo effect, an expression of asymptotic freedom, arises from the hybridization between localized states of a magnetic impurity and the itinerant states of its environment. The interplay of these two phenomena has attracted the attention of theorists studying the growth and interactions of heavy-fermion systems. Because of the technical difficulties associated with probing isolated impurities in bulk materials, this composite effect has remained experimentally unexplored. We have investigated co-tunneling transport phenomena in a three-terminal quantum dot with triangular symmetry. Our measurements of anomalous spectral signatures reveal interplay between the Jahn-Teller and Kondo effects. This discovery suggests a means of controlling the correlation of spatially separated pairs of entangled electrons (EPR pairs)---a necessary condition for the physical realization of a quantum computer (DiVincenzo's 7th requirement).

  17. Temperature dependence of the Kondo resonance and its satellites in CeCu2Si2.

    Science.gov (United States)

    Reinert, F; Ehm, D; Schmidt, S; Nicolay, G; Hüfner, S; Kroha, J; Trovarelli, O; Geibel, C

    2001-09-03

    We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly correlated Ce system CeCu2Si2. By exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level E(F). We also present theoretical predictions based on the single-impurity Anderson model using an extended noncrossing approximation, including all spin-orbit and crystal field splittings of the 4f states. The excellent agreement between theory and experiment provides strong evidence that the spectral properties of CeCu2Si2 can be described by single-impurity Kondo physics down to T approximately 5 K.

  18. Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain

    Science.gov (United States)

    Tiegel, A. C.; Dargel, P. E.; Hallberg, K. A.; Frahm, H.; Pruschke, T.

    2013-02-01

    In order to study the interplay between Kondo and Ruderman-Kittel-Kasuya-Yosida interaction, we calculate the spin-spin correlation functions between two Kondo impurities coupled to different sites of a half-filled open Hubbard chain. Using the density-matrix renormalization group (DMRG), we reexamine the exponents for the power-law decay of the correlation function between the two impurity spins as a function of the antiferromagnetic coupling J, the Hubbard interaction U, and the distance R between the impurities. The exponents for finite systems obtained in this work deviate from previously published DMRG calculations. We furthermore show that the long-distance behavior of the exponents is the same for impurities coupled to the bulk or to both ends of the chain. We note that a universal exponent for the asymptotic behavior can not be extracted from these finite-size systems with open boundary conditions.

  19. 4f heavy femion photoelectron spectra do not exhibit the Kondo scale

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Andrews, A.B.; Blyth, I.R.; Barlett, R.J.; Fisk, Z. [Los Alamos National Laboratory, NM (United States); Canfield, P.C.; Olson, C.G.; Benning, P.J. [Iowa Sate Univ., Ames, IA (United States); Poirier, D.M.; Weaver, J.H. [Univ. of Minnesota, Minneapolis, MN (United States); Riseborough, P.S. [Polytechnic Univ., Brookyln, NY (United States)

    1994-12-31

    It has been the authors contention for some time that the Single Impurity Anderson Model (SIAM), as extended by Gunnarsson and Schonhammer (GS), or the non-crossing approximation (NCA), does not correctly describe the 4f photoelectron spectra of heavy fermions. Recently they have concentrated on Yb heavy fermions since in these materials the Kondo resonance (KR) is fully occupied and thus accessible via photoemission. In particular, they have repeatedly pointed out that the width, position, spectral weight, lineshape, and temperature dependence of the features assumed to be the KR and its sidebands, are nearly independent of the Kondo temperature, T{sub K}, while at the same time bearing a striking resemblance to the simple 4f core level spectra of pure Yb metal, or of Lu isostructural Lu compounds. It is important to resolve these issues in view of the fundamental nature of the problem.

  20. Spiral magnetic phases on the Kondo Lattice Model: A Hartree-Fock approach

    Science.gov (United States)

    Costa, N. C.; Lima, J. P.; dos Santos, Raimundo R.

    2017-02-01

    We study the Kondo Lattice Model (KLM) on a square lattice through a Hartree-Fock approximation in which the local spins are treated semi-classically, in the sense that their average values are modulated by a magnetic wavevector Q while they couple with the conduction electrons through fermion operators. In this way, we obtain a ground state phase diagram in which spiral magnetic phases (in which the wavevector depends on the coupling constants and on the density) interpolate between the low-density ferromagnetic phase and the antiferromagnetic phase at half filling; within small regions of the phase diagram commensurate magnetic phases can coexist with Kondo screening. We have also obtained 'Doniach-like' diagrams, showing the effect of temperature on the ground state phases, and established that for some ranges of the model parameters (the exchange coupling and conduction electron density) the magnetic wavevector changes with temperature, either continuously or abruptly (e.g., from spiral to ferromagnetic).

  1. Interplay between the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida interaction.

    Science.gov (United States)

    Prüser, Henning; Dargel, Piet E; Bouhassoune, Mohammed; Ulbrich, Rainer G; Pruschke, Thomas; Lounis, Samir; Wenderoth, Martin

    2014-11-11

    The interplay between the Ruderman-Kittel-Kasuya-Yosida interaction and the Kondo effect is expected to provide the driving force for the emergence of many phenomena in strongly correlated electron materials. Two magnetic impurities in a metal are the smallest possible system containing all these ingredients and define a bottom-up approach towards a long-term understanding of concentrated/dense systems. Here we report on the experimental and theoretical investigation of iron dimers buried below a Cu(100) surface by means of low-temperature scanning tunnelling spectroscopy combined with density functional theory and numerical renormalization group calculations. The Kondo effect, in particular the width of the Abrikosov-Suhl resonance, is strongly altered or even suppressed due to magnetic coupling between the impurities. It oscillates as a function of dimer separation revealing that it is related to indirect exchange interactions mediated by the conduction electrons.

  2. Kondo-like zero-bias conductance anomaly in a three-dimensional topological insulator nanowire

    Science.gov (United States)

    Cho, Sungjae; Zhong, Ruidan; Schneeloch, John A.; Gu, Genda; Mason, Nadya

    2016-02-01

    Zero-bias anomalies in topological nanowires have recently captured significant attention, as they are possible signatures of Majorana modes. Yet there are many other possible origins of zero-bias peaks in nanowires—for example, weak localization, Andreev bound states, or the Kondo effect. Here, we discuss observations of differential-conductance peaks at zero-bias voltage in non-superconducting electronic transport through a 3D topological insulator (Bi1.33Sb0.67)Se3 nanowire. The zero-bias conductance peaks show logarithmic temperature dependence and often linear splitting with magnetic fields, both of which are signatures of the Kondo effect in quantum dots. We characterize the zero-bias peaks and discuss their origin.

  3. Unusual phonon softening in the Kondo lattice CeCu 2

    Science.gov (United States)

    Loewenhaupt, Michael; Witte, Ulrike; Kramp, Sirko; Braden, Markus; Svoboda, Pavel

    2002-03-01

    CeCu2 is a Kondo lattice with antiferromagnetic order below 3.5 K and a Kondo temperature of about 6 K. Earlier neutron scattering experiments lead to the assumption of a coupling between a crystal field transition and some phonons with energies around 14 meV. With the results from our newly performed inelastic neutron measurements on a single crystal we found these assumptions confirmed. We observed an unusual softening of certain phonons with increasing temperature. This softening of up to 15% is much stronger than the normal thermal behavior of phonons. Additionally, the line width of these phonons is increasing. At the same time the magnetic response is strongly broadened by the coupling to the phonons. The findings for CeCu2 are discussed in relation with similar observation of a coupling between electronic and lattice degrees of freedom in CeAl2 and YbPO4.

  4. Ionic Hamiltonians for transition metal atoms: effective exchange coupling and Kondo temperature

    Science.gov (United States)

    Flores, F.; Goldberg, E. C.

    2017-02-01

    An ionic Hamiltonian for describing the interaction between a metal and a d-shell transition metal atom having an orbital singlet state is introduced and its properties analyzed using the Schrieffer-Wolf transformation (exchange coupling) and the poor man’s scaling method (Kondo temperature). We find that the effective exchange coupling between the metal and the atom has an antiferromagnetic or a ferromagnetic interaction depending on the kind of atomic fluctuations, either S\\to S-1/2 or S\\to S+1/2 , associated with the metal-atom coupling. We present a general scheme for all those processes and calculate, for the antiferromagnetic interaction, the corresponding Kondo-temperature.

  5. Two Types of Pressure Dependence of Residual Resistivity in Doped Kondo Insulators

    Institute of Scientific and Technical Information of China (English)

    YUAN Yi-Zhe; LI Zheng-Zhong; XIAO Ming-Wen; XU Wang; XU Xiao-Hua

    2004-01-01

    The pressure dependence of the residual resistivity of the doped electron-type and hole-type Kondo insulators (KIs) are calculated within the framework of the slave-boson mean-field theory and the coherent potential approximation. It is shown that as the pressure increases, the resistivity increases and decreases for the dilute doping electron-type and hole-type KIs, respectively. These results are qualitatively in agreement with the experiments.

  6. Ground-state phase diagram of the Kondo lattice model on triangular-to-kagome lattices

    OpenAIRE

    Akagi, Yutaka; Motome, Yukitoshi

    2012-01-01

    We investigate the ground-state phase diagram of the Kondo lattice model with classical localized spins on triangular-to-kagome lattices by using a variational calculation. We identify the parameter regions where a four-sublattice noncoplanar order is stable with a finite spin scalar chirality while changing the lattice structure from triangular to kagome continuously. Although the noncoplanar spin states appear in a wide range of parameters, the spin configurations on the kagome network beco...

  7. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Xiao, E-mail: xz58@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, Guizhou 550018 (China); Yan, YiJing [Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong (China)

    2016-01-21

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It is confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.

  8. Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy fermion materials

    Science.gov (United States)

    Morr, Dirk K.

    2017-01-01

    Kondo systems ranging from the single Kondo impurity to heavy fermion materials present us with a plethora of unconventional properties whose theoretical understanding is still one of the major open problems in condensed matter physics. Over the last few years, groundbreaking scanning tunneling spectroscopy (STS) experiments have provided unprecedented new insight into the electronic structure of Kondo systems. Interpreting the results of these experiments—the differential conductance and the quasi-particle interference spectrum—however, has been complicated by the fact that electrons tunneling from the STS tip into the system can tunnel either into the heavy magnetic moment or the light conduction band states. In this article, we briefly review the theoretical progress made in understanding how quantum interference between these two tunneling paths affects the experimental STS results. We show how this theoretical insight has allowed us to interpret the results of STS experiments on a series of heavy fermion materials providing detailed knowledge of their complex electronic structure. It is this knowledge that is a conditio sine qua non for developing a deeper understanding of the fascinating properties exhibited by heavy fermion materials, ranging from unconventional superconductivity to non-Fermi-liquid behavior in the vicinity of quantum critical points.

  9. Kondo physics of the Anderson impurity model by distributional exact diagonalization

    Science.gov (United States)

    Motahari, S.; Requist, R.; Jacob, D.

    2016-12-01

    The distributional exact diagonalization (DED) scheme is applied to the description of Kondo physics in the Anderson impurity model. DED maps Anderson's problem of an interacting impurity level coupled to an infinite bath onto an ensemble of finite Anderson models, each of which can be solved by exact diagonalization. An approximation to the self-energy of the original infinite model is then obtained from the ensemble-averaged self-energy. Using Friedel's sum rule, we show that the particle number constraint, a central ingredient of the DED scheme, ultimately imposes Fermi liquid behavior on the ensemble-averaged self-energy, and thus is essential for the description of Kondo physics within DED. Using the numerical renormalization group (NRG) method as a benchmark, we show that DED yields excellent spectra, both inside and outside the Kondo regime for a moderate number of bath sites. Only for very strong correlations (U /Γ ≫10 ) does the number of bath sites needed to achieve good quantitative agreement become too large to be computationally feasible.

  10. Magnetic-field-induced mixed-level Kondo effect in two-level systems

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Arturo; Ngo, Anh T.; Ulloa, Sergio E.

    2016-10-17

    We consider a two-orbital impurity system with intra-and interlevel Coulomb repulsion that is coupled to a single conduction channel. This situation can generically occur in multilevel quantum dots or in systems of coupled quantum dots. For finite energy spacing between spin-degenerate orbitals, an in-plane magnetic field drives the system from a local-singlet ground state to a "mixed-level" Kondo regime, where the Zeeman-split levels are degenerate for opposite-spin states. We use the numerical renormalization group approach to fully characterize this mixed-level Kondo state and discuss its properties in terms of the applied Zeeman field, temperature, and system parameters. Under suitable conditions, the total spectral function is shown to develop a Fermi-level resonance, so that the linear conductance of the system peaks at a finite Zeeman field while it decreases as a function of temperature. These features, as well as the local moment and entropy contribution of the impurity system, are commensurate with Kondo physics, which can be studied in suitably tuned quantum dot systems.

  11. Photoemission and the electronic properties of heavy fermions -- limitations of the Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.J.; Arko, A.J.; Andrews, A.B. [and others

    1993-09-01

    The electronic properties of Yb-based heavy fermions have been investigated by means of high resolution synchrotron radiation photoemission and compared with predictions of the Kondo model. The Yb heavy fermion photoemission spectra show massive disagreement with the Kondo model predictions (as calculated within the Gunnarsson-Schonhammer computational method). Moreover, the Yb heavy fermion photoemission spectra give very strong indications of core-like characteristics and compare favorable to purely divalent Yb metal and core-like Lu 4f levels. The heavy fermions YbCu{sub 2}Si{sub 2}, YbAgCu{sub 4} and YbAl{sub 3} were measured and shown to have lineshapes much broader and deeper in binding energy than predicted by the Kondo model. The lineshape of the bulk component of the 4f emission for these three heavy fermion materials was compared with that from Yb metal and the Lu 4f levels in LuAl{sub 3}, the heavy fermion materials show no substantive spectroscopic differences from simple 4f levels observed in Yb metal and LuAl{sub 3}. Also, the variation with temperature of the 4f fineshape was measured for Yb metal and clearly demonstrates that phonon broadening plays a major role in 4f level lineshape analysis and must be accounted for before considerations of correlated electron resonance effects are presumed to be at work.

  12. Photoemission and the electronic properties of heavy fermions - limitations of the Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.J. [Los Alamos Nat. Lab., NM (United States); Arko, A.J. [Los Alamos Nat. Lab., NM (United States); Andrews, A.B. [Los Alamos Nat. Lab., NM (United States); Blyth, R.I.R. [Los Alamos Nat. Lab., NM (United States); Bartlett, R.J. [Los Alamos Nat. Lab., NM (United States); Thompson, J.D. [Los Alamos Nat. Lab., NM (United States); Fisk, Z. [Los Alamos Nat. Lab., NM (United States); Riseborough, P.S. [Polytechnic Institute of New York, Department of Physics, Brooklyn, NY 11201 (United States); Canfield, P.C. [Ames Laboratory USDOE, Ames, IA 50011 (United States); Olson, C.G. [Ames Laboratory USDOE, Ames, IA 50011 (United States); Benning, P.J. [Ames Laboratory USDOE, Ames, IA 50011 (United States)

    1995-03-01

    The electronic properties of Yb-based heavy fermions have been investigated by means of high resolution synchrotron radiation photoemission and compared with predictions of the Kondo model. The Yb heavy fermion photoemission spectra show significant disagreement with the Kondo model predictions (as calculated within the Gunnarsson-Schonhammer computational method). Moreover, the Yb heavy fermion photoemission spectra give strong indications of core-like characteristics and compare favorably to purely divalent Yb metal and core-like Lu 4f levels. The heavy fermions YbCu{sub 2}Si{sub 2}, YbAgCu{sub 4} and YbAl{sub 3} were measured and shown to have lineshapes much broader and deeper in binding energy than predicted by the Kondo model. The lineshape of the bulk component of the 4f emission for these three heavy fermion materials was compared with that from Yb metal and the Lu 4f levels in LuAl{sub 3}. The heavy fermion materials show no substantive spectroscopic differences from 4f levels observed in Yb metal and LuAl{sub 3}. Also, the variation with temperature of the 4f lineshape was measured for Yb metal and clearly demonstrates that phonon broadening plays a major role in 4f level lineshape analysis and must be accounted for before considerations of correlated electron resonance effects are presumed to be at work. ((orig.)).

  13. Kondo screening in two-dimensional p -type transition-metal dichalcogenides

    Science.gov (United States)

    Phillips, Michael; Aji, Vivek

    2017-02-01

    Systems with strong spin-orbit coupling support a number of new phases of matter and novel phenomena. This work focuses on the interplay of spin-orbit coupling and interactions in yielding correlated phenomena in two-dimensional transition-metal dichalcogenides. In particular we explore the physics of Kondo screening resulting from the lack of centrosymmetry, large spin splitting, and spin valley locking in hole-doped systems. The key ingredients are (i) valley-dependent spin-momentum locking perpendicular to the two-dimensional crystal, (ii) a single nondegenerate Fermi surface per valley, and (iii) nontrivial Berry curvature associated with the low-energy bands. The resulting Kondo resonance has a finite-triplet component and nontrivial momentum space structure which facilitates new approaches to both probing and manipulating the correlated state. Using a variational wave function and the numerical renormalization group approaches we study the nature of the Kondo resonance both in the absence and presence of circularly polarized light. The latter induces an imbalance in the population of the two valleys leading to novel magnetic phenomena in the correlated state.

  14. Overscreened Kondo effect, (color) superconductivity and Shiba states in Dirac metals and quark matter

    CERN Document Server

    Kanazawa, Takuya

    2016-01-01

    We study the interplay between the Kondo effect and (color) superconductivity in doped Dirac metals with magnetic impurities and in quark matter with colorful impurities. We first point out that the overscreened Kondo effect arises in the normal state of these systems. Next the (color) superconducting gap is incorporated as a mean field and the phase diagram for a varying gap and temperature is constructed nonperturbatively. A rich phase structure emerges from a competition of effects unique to a multichannel system. The Kondo-screened phase is shown to disappear for a sufficiently large gap. Peculiarity of quark matter due to the confining property of non-Abelian gauge fields is noted. We also investigate the spectrum of sub-gap excited states, called Shiba states. Based on a model calculation and physical reasoning we predict that, as the coupling of the impurity to the bulk is increased, there will be more than one quantum phase transition due to level crossing among overscreened states.

  15. Superconducting Pairing Correlations near a Kondo-destruction Quantum Critical Point in Cluster Impurity Models

    Science.gov (United States)

    Cai, Ang; Pixley, Jedediah; Si, Qimiao

    Heavy fermion metals represent a canonical system to study superconductivity driven by quantum criticality. We are particularly motivated by the properties of CeRhIn5, which shows the characteristic features of a Kondo destruction quantum critical point (QCP) in its normal state, and has one of the highest Tc's among the heavy fermion superconductors. As a first step to study this problem within a cluster-EDMFT approach, we analyze a four-site Anderson impurity model with the antiferromagnetic spin component of the cluster coupled to a sub-Ohmic bosonic bath. We find a QCP that belongs to the same universality class as the single-site Bose-Fermi Anderson model. Together with previous work on a two-site model, our result suggests that the Kondo destruction QCP is robust as cluster size increases. More importantly, we are able to calculate the d-wave pairing susceptibility, which we find to be enhanced near the QCP. Using this model as the effective cluster model of the periodic Anderson model, we are also able to study the superconducting pairing near the Kondo-destruction QCP of the lattice model; preliminary results will be presented.

  16. Light propagation through anisotropic turbulence.

    Science.gov (United States)

    Toselli, Italo; Agrawal, Brij; Restaino, Sergio

    2011-03-01

    A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).

  17. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  18. Hyperspherical theory of anisotropic exciton

    CERN Document Server

    Muljarov, E A; Tikhodeev, S G; Bulatov, A E; Birman, Joseph L; 10.1063/1.1286772

    2012-01-01

    A new approach to the theory of anisotropic exciton based on Fock transformation, i.e., on a stereographic projection of the momentum to the unit 4-dimensional (4D) sphere, is developed. Hyperspherical functions are used as a basis of the perturbation theory. The binding energies, wave functions and oscillator strengths of elongated as well as flattened excitons are obtained numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are markedly redistributed between optically active and formerly inactive states, making the latter optically active. An approximate analytical solution of the anisotropic exciton problem taking into account the angular momentum conserving terms is obtained. This solution gives the binding energies of moderately anisotropic exciton with a good accuracy and provides a useful qualitative description of the energy level evolution.

  19. Anisotropic inflation in Finsler spacetime

    CERN Document Server

    Li, Xin; Chang, Zhe

    2015-01-01

    We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for quantum fluctuation of the inflation field. It depends not only on the magnitude of wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in angular correlation coefficients if $l'=l+1$. The numerical results of the angular correlation coefficients are given to describe the anisotropic effect.

  20. Anisotropically structured magnetic aerogel monoliths

    Science.gov (United States)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  1. Site dependence of the Kondo scale in CePd{sub 1-x}Rh{sub x} evidenced by thermopower

    Energy Technology Data Exchange (ETDEWEB)

    Stockert, Ulrike; Hartmann, Stefanie; Deppe, Micha; Caroca-Canales, Nubia; Geibel, Christoph; Steglich, Frank [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Sereni, Julian [Division Bajas Temperaturas, Centro Atomico Bariloche (Argentina)

    2015-07-01

    CePd{sub 1-x}Rh{sub x} undergoes a continuous evolution from ferromagnetic order in CePd to an intermediate-valence (IV) ground state for CeRh. Close to the disappearance of magnetic order at x{sub cr} ∼ 0.87 unusual behavior of the ac susceptibility and the specific heat was observed. It was explained with a broad distribution of local Kondo temperatures T{sub K} from below 2 K to above 50 K due to the disorder introduced by Pd-Rh exchange. The thermopower S is very sensitive to Kondo scattering even for diluted 4f systems. In Ce compounds a large positive maximum in S(T) is usually observed around T{sub K}. We studied S(T) in CePd{sub 1-x}Rh{sub x} in order to evaluate the presence of Kondo scattering and the involved energy scales. Pure CeRh shows typical IV behavior with a large maximum at 220 K and small values at low T. Already 5 % Pd substitution leads to a strong enhancement of the low-T thermopower. Even larger values are found around x{sub cr}, while the high-T maximum shifts only moderately. Our results are in line with the existence of low (local) Kondo scales in the presence of IV behavior at high Rh content x > x{sub cr}. For lower Rh content a decreasing (average) Kondo scale is found.

  2. On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off.

    Science.gov (United States)

    Xiang, S; Xiao, S; Fuji, K; Shibuya, K; Endo, T; Yumoto, N; Morimoto, T; Aoki, N; Bird, J P; Ochiai, Y

    2014-03-26

    We investigate the linear and non-linear conductance of quantum point contacts (QPCs), in the region near pinch-off where Kondo physics has previously been connected to the appearance of the 0.7 feature. In studies of seven different QPCs, fabricated in the same high-mobility GaAs/AlGaAs heterojunction, the linear conductance is widely found to show the presence of the 0.7 feature. The differential conductance, on the other hand, does not generally exhibit the zero-bias anomaly (ZBA) that has been proposed to indicate the Kondo effect. Indeed, even in the small subset of QPCs found to exhibit such an anomaly, the linear conductance does not always follow the universal temperature-dependent scaling behavior expected for the Kondo effect. Taken collectively, our observations demonstrate that, unlike the 0.7 feature, the ZBA is not a generic feature of low-temperature QPC conduction. We furthermore conclude that the mere observation of the ZBA alone is insufficient evidence for concluding that Kondo physics is active. While we do not rule out the possibility that the Kondo effect may occur in QPCs, our results appear to indicate that its observation requires a very strict set of conditions to be satisfied. This should be contrasted with the case of the 0.7 feature, which has been apparent since the earliest experimental investigations of QPC transport.

  3. Developing Kondo lattice coherence and quantum criticality in YbRh{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Steffen; Seiro, Silvia; Geibel, Christoph; Steglich, Frank [MPI for Chemical Physics of Solids, Dresden (Germany); Kirchner, Stefan [MPI for Physics of Complex Systems, Dresden (Germany); Krellner, Cornelius [Goethe University Frankfurt (Germany); Si, Qimiao [Rice University, Houston, Texas (United States)

    2015-07-01

    Hybridization is a fundamental concept in strongly correlated electron physics. In heavy fermion metals, it may result in the generation of low-energy scales that can give rise to quantum criticality and unconventional superconductivity. An important techniques that helped shaping our understanding of nonlocal correlations - magnetic and superconducting - has been tunneling spectroscopy (STS) with its unique ability to give local, microscopic information that directly relates to the one-particle Green's function. We investigated YbRh{sub 2}Si{sub 2}, an archetypal heavy fermion metal. Quantum criticality is discussed in terms of an antiferromagnetic instability and a Kondo break-down of the heavy quasiparticles. STS studies identified a hybridization-induced gap-like feature of the tunneling conductance. Here we focus on the evolution of the Kondo lattice. While the Kondo lattice starts forming already at the single-ion Kondo temperature, lattice Kondo effects dominate only at much lower temperatures. This establishes a hierarchy of energy scales. Finite-temperature signatures of the QCP are observed in field-dependent STS. Our findings are augmented by band structure calculations and transport measurements.

  4. Unexpected observation of spatially separated Kondo scattering and ferromagnetism in Ta alloyed anatase TiO2 thin films.

    Science.gov (United States)

    Sarkar, T P; Gopinadhan, K; Motapothula, M; Saha, S; Huang, Z; Dhar, S; Patra, A; Lu, W M; Telesio, F; Pallecchi, I; Ariando; Marré, D; Venkatesan, T

    2015-08-12

    We report the observation of spatially separated Kondo scattering and ferromagnetism in anatase Ta0.06Ti0.94O2 thin films as a function of thickness (10-200 nm). The Kondo behavior observed in thicker films is suppressed on decreasing thickness and vanishes below ~25 nm. In 200 nm film, transport data could be fitted to a renormalization group theory for Kondo scattering though the carrier density in this system is lower by two orders of magnitude, the magnetic entity concentration is larger by a similar magnitude and there is strong electronic correlation compared to a conventional system such as Cu with magnetic impurities. However, ferromagnetism is observed at all thicknesses with magnetic moment per unit thickness decreasing beyond 10 nm film thickness. The simultaneous presence of Kondo and ferromagnetism is explained by the spatial variation of defects from the interface to surface which results in a dominantly ferromagnetic region closer to substrate-film interface while the Kondo scattering is dominant near the surface and decreasing towards the interface. This material system enables us to study the effect of neighboring presence of two competing magnetic phenomena and the possibility for tuning them.

  5. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  6. Probing of high-frequency coherent fluctuations by using a two-channel microwave reflectometer with antenna switching

    Science.gov (United States)

    Ikezoe, R.; Ichimura, M.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2016-10-01

    A two-channel microwave reflectometer with capability of fast switching of microwave antennas in array was developed and applied to a hot linear plasma produced in GAMMA 10 to study the behavior of Alfvén waves in a collisionless bounded plasma. High-frequency fluctuations associated with Alfvén-ion-cyclotron (AIC) waves were successfully measured at multi points using this system. It is found that coherent phase fluctuations are obtainable at wide radial and axial region for the AIC waves. In addition, measured phase-difference profile clearly shows standing wave structures. Signature of movement of these nodes is also obtained. These results demonstrate applicability of the developed two-channel reflectometer for assessment of spatial structure of high-frequency waves and also verifies globally expanded coherent structure of the AIC waves in GAMMA 10. Two-point correlation analysis in conjunction with multi-point measurements using antenna switching turns out to be a powerful tool for investigating spatial structure of waves in a hot plasma where traditional solid probes are inadequate. This work was in part supported by Grant-in-Aid for Young Scientists (B) (15K17797) and Scientific Research (C) (25400531), and by Bidirectional Collaborative Research Program of NIFS (NIFS15KUGM101).

  7. Finding differentially expressed genes in two-channel DNA microarray datasets: how to increase reliability of data preprocessing.

    Science.gov (United States)

    Rotter, Ana; Hren, Matjaz; Baebler, Spela; Blejec, Andrej; Gruden, Kristina

    2008-09-01

    Due to the great variety of preprocessing tools in two-channel expression microarray data analysis it is difficult to choose the most appropriate one for a given experimental setup. In our study, two independent two-channel inhouse microarray experiments as well as a publicly available dataset were used to investigate the influence of the selection of preprocessing methods (background correction, normalization, and duplicate spots correlation calculation) on the discovery of differentially expressed genes. Here we are showing that both the list of differentially expressed genes and the expression values of selected genes depend significantly on the preprocessing approach applied. The choice of normalization method to be used had the highest impact on the results. We propose a simple but efficient approach to increase the reliability of obtained results, where two normalization methods which are theoretically distinct from one another are used on the same dataset. Then the intersection of results, that is, the lists of differentially expressed genes, is used in order to get a more accurate estimation of the genes that were de facto differentially expressed.

  8. Kondo Impurities in the Kitaev Spin Liquid: Numerical Renormalization Group Solution and Gauge-Flux-Driven Screening.

    Science.gov (United States)

    Vojta, Matthias; Mitchell, Andrew K; Zschocke, Fabian

    2016-07-15

    Kitaev's honeycomb-lattice compass model describes a spin liquid with emergent fractionalized excitations. Here, we study the physics of isolated magnetic impurities coupled to the Kitaev spin-liquid host. We reformulate this Kondo-type problem in terms of a many-state quantum impurity coupled to a multichannel bath of Majorana fermions and present the numerically exact solution using Wilson's numerical renormalization group technique. Quantum phase transitions occur as a function of Kondo coupling and locally applied field. At zero field, the impurity moment is partially screened only when it binds an emergent gauge flux, while otherwise it becomes free at low temperatures. We show how Majorana degrees of freedom determine the fixed-point properties, make contact with Kondo screening in pseudogap Fermi systems, and discuss effects away from the dilute limit.

  9. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  10. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...

  11. Anisotropic Poisson Processes of Cylinders

    CERN Document Server

    Spiess, Malte

    2010-01-01

    Main characteristics of stationary anisotropic Poisson processes of cylinders (dilated k-dimensional flats) in d-dimensional Euclidean space are studied. Explicit formulae for the capacity functional, the covariance function, the contact distribution function, the volume fraction, and the intensity of the surface area measure are given which can be used directly in applications.

  12. Anisotropic magnetoresistance effect field sensors

    CERN Document Server

    Hauser, H; Stangl, G; Chabicovsky, R; Janiba, M; Riedling, K

    2000-01-01

    The parameters of the sensor layout and sensitivity considerations are discussed. The anisotropic magnetoresistive effect of DC-sputtered Ni 81%-Fe 19% films has been increased up to DELTA rho/rho=3.93% at 50 nm thickness and a sensitivity of 500 mu V/mu T can be achieved by an elliptically shaped sensor layout.

  13. Kondo Hybridization and the Origin of Metallic States at the (001 Surface of SmB_{6}

    Directory of Open Access Journals (Sweden)

    E. Frantzeskakis

    2013-12-01

    Full Text Available SmB_{6}, a well-known Kondo insulator, has been proposed to be an ideal topological insulator with states of topological character located in a clean, bulk electronic gap, namely, the Kondo-hybridization gap. Since the Kondo gap arises from many-body electronic correlations, SmB_{6} would be placed at the head of a new material class: topological Kondo insulators. Here, for the first time, we show that the k-space characteristics of the Kondo-hybridization process is the key to unraveling the origin of the two types of metallic states experimentally observed by angle-resolved photoelectron spectroscopy (ARPES in the electronic band structure of SmB_{6}(001. One group of these states is essentially of bulk origin and cuts the Fermi level due to the position of the chemical potential 20 meV above the lowest-lying 5d-4f hybridization zone. The other metallic state is more enigmatic, being weak in intensity, but represents a good candidate for a topological surface state. However, before this claim can be substantiated by an unequivocal measurement of its massless dispersion relation, our data raise the bar in terms of the ARPES resolution required, as we show there to be a strong renormalization of the hybridization gaps by a factor 2–3 compared to theory, following from the knowledge of the true position of the chemical potential and a careful comparison with the predictions from recent local-density-approximation (LDA+Gutzwiller calculations. All in all, these key pieces of evidence act as triangulation markers, providing a detailed description of the electronic landscape in SmB_{6} and pointing the way for future, ultrahigh-resolution ARPES experiments to achieve a direct measurement of the Dirac cones in the first topological Kondo insulator.

  14. Modulated Spin Liquid and Magnetic Order from a Kondo-Heisenberg model applied to $URu_{2}Si_{2}$

    OpenAIRE

    Montiel, Xavier; Burdin, Sébastien; Pépin, Catherine; Ferraz, Alvaro

    2013-01-01

    International audience; Using the Kondo-Heisenberg model framework, we analyze the effect of charge fluctuations in the modulated spin liquid (MSL) and in the antiferromagnetic (AF) ordering which were introduced by Pépin et al. [Phys. Rev. Lett. 106, 106601 (2011)] and Thomas et al. [Phys. Rev. B 87, 014422 (2013)]. Coupling the spin liquid to the charge sector enables us to discuss the formation of the Kondo effect in this system. As a result, we are able to observe the emergence of two pha...

  15. Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects

    OpenAIRE

    Eckle, H. -P.; Johannesson, H.; Stafford, C. A.

    2000-01-01

    We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo re...

  16. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer

    National Research Council Canada - National Science Library

    Zhou, Qian; Tang, Cheng; Zhao, Ke-Wei; Xiong, Yan-Li; Chen, Shu; Xu, Wen-Jing; Lei, Xin

    2016-01-01

    The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer...

  17. Fano versus Kondo Resonances in a Closed Aharonov-Bohm Interferometer Coupled to Ferromagnetic Electrodes

    Institute of Scientific and Technical Information of China (English)

    WU Shao-Quan; SUN Wei-Li

    2007-01-01

    Using the Keldysh Nonequilibrium Green function and equation-of-motion technique,we investigate Fano versus Kondo resonances in closed Aharonov-Bohm interferometer coupled to ferromagnetic leads and study their effects on the conductance of this system.The conductance with both parallel and antiparallel lead-polarization alignments is analysed for various values of the magnetic flux.Our results show that this system can provide an excellent spin filtering property,and a large tunnelling magnetoresistance can arise by adjusting the system parameters,which indicates that this system is a possible candidate for spin valve transistors and has important applications in spintronics.

  18. Pressure-Resistant Intermediate Valence in the Kondo Insulator SmB_{6}.

    Science.gov (United States)

    Butch, Nicholas P; Paglione, Johnpierre; Chow, Paul; Xiao, Yuming; Marianetti, Chris A; Booth, Corwin H; Jeffries, Jason R

    2016-04-15

    Resonant x-ray emission spectroscopy was used to determine the pressure dependence of the f-electron occupancy in the Kondo insulator SmB_{6}. Applied pressure reduces the f occupancy, but surprisingly, the material maintains a significant divalent character up to a pressure of at least 35 GPa. Thus, the closure of the resistive activation energy gap and onset of magnetic order are not driven by stabilization of an integer valent state. Over the entire pressure range, the material maintains a remarkably stable intermediate valence that can in principle support a nontrivial band structure.

  19. Temperature dependence of the Kondo resonance and its satellites in CeCu_2Si_2

    OpenAIRE

    Reinert, F.; Ehm, D.; Schmidt, S; Nicolay, G.; H"ufner, S.; Kroha, J.; Trovarelli, O.; Geibel, C.

    2001-01-01

    We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly-correlated Ce system CeCu$_2$Si$_2$. Exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level $E_F$. We also present theoretical predictions based on the single-impurity Anderson model using an extended non-crossing approximation (NCA), including all...

  20. Spontaneous Polarization of Kondo problem associated with Higher-spin analog of the 6-vertex model

    CERN Document Server

    Fukushima, N

    1999-01-01

    We study Kondo-type model associated with an integrable Higher-spin analog of the 6-vertex mode, which is constructed by inserting a spin 1/2 to spin 1 lines: $... C^3 \\otimes C^3 \\otimes C^2 \\otimes C^3 \\otimes C^3 ... .$ We formulate the problem in terms of representation theory of quantum affine algebra $U_q(\\hat{sl_2})$. We derive an exact formula of the spontaneous staggered polarization for our model, which corresponds to Baxter's formula for the 6-vertex model.

  1. Scanning Gate Microscopy of Kondo Dots: Fabry-P\\'erot Interferences and Thermally Induced Rings

    OpenAIRE

    Kleshchonok, Andrii; Fleury, Geneviève; Pichard, Jean-Louis

    2013-01-01

    We study the conductance of an electron interferometer formed in a two dimensional electron gas between a nanostructured quantum contact and the charged tip of a scanning gate microscope. Measuring the conductance as a function of the tip position, thermally induced rings may be observed in addition to Fabry-P\\'erot interference fringes spaced by half the Fermi wavelength. If the contact is made of a quantum dot opened in the middle of a Kondo valley, we show how the location of the rings all...

  2. Scanning Gate Microscopy of Kondo Dots: Fabry-Pérot Interferences and Thermally Induced Rings

    OpenAIRE

    Kleshchonok, Andrii; Fleury, Geneviève; Pichard, Jean-Louis

    2013-01-01

    5 pages, 4 figures; We study the conductance of an electron interferometer formed in a two dimensional electron gas between a nanostructured quantum contact and the charged tip of a scanning gate microscope. Measuring the conductance as a function of the tip position, thermally induced rings may be observed in addition to Fabry-Pérot interference fringes spaced by half the Fermi wavelength. If the contact is made of a quantum dot opened in the middle of a Kondo valley, we show how the locatio...

  3. Fermi/non-Fermi mixing in SU($N$) Kondo effect

    CERN Document Server

    Kimura, Taro

    2016-01-01

    We apply conformal field theory analysis to the $k$-channel SU($N$) Kondo system, and find a peculiar behavior in the cases $N > k > 1$, which we call Fermi/non-Fermi mixing: The low temperature scaling is described as the Fermi liquid, while the zero temperature IR fixed point exhibits the non-Fermi liquid signature. We also show that the Wilson ratio is no longer universal for the cases $N > k > 1$. The deviation from the universal value of the Wilson ratio could be used as an experimental signal of the Fermi/non-Fermi mixing.

  4. Magnetically tunable Kondo-Aharonov-Bohm effect in a triangular quantum dot.

    Science.gov (United States)

    Kuzmenko, T; Kikoin, K; Avishai, Y

    2006-02-03

    The role of discrete orbital symmetry in mesoscopic physics is manifested in a system consisting of three identical quantum dots forming an equilateral triangle. Under a perpendicular magnetic field, this system demonstrates a unique combination of Kondo and Aharonov-Bohm features due to an interplay between continuous [spin-rotation SU(2)] and discrete (permutation C3v) symmetries, as well as U(1) gauge invariance. The conductance as a function of magnetic flux displays sharp enhancement or complete suppression depending on contact setups.

  5. Vibration-induced Kondo tunneling through metal-organic complexes with even electron occupation number.

    Science.gov (United States)

    Kikoin, K; Kiselev, M N; Wegewijs, M R

    2006-05-05

    We investigate transport through a mononuclear transition-metal complex with strong tunnel coupling to two electrodes. The ground state of this molecule is a singlet, while the first excited state is a triplet. We show that a modulation of the tunnel-barrier due to a molecular distortion which couples to the tunneling induces a Kondo-effect, provided the discrete vibrational energy compensates the singlet-triplet gap. We discuss the single-phonon and two-phonon-assisted cotunneling and possible experimental realization of the theory.

  6. A low-temperature derivation of spin-spin exchange in Kondo lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Feng Szeshiang [Physics Department, Florida A and M University, Tallahassee, FL 32307 (United States)]. E-mail: shixiang.feng@famu.edu; Mochena, Mogus [Physics Department, Florida A and M University, Tallahassee, FL 32307 (United States)

    2005-11-01

    Using Hubbard-Stratonovich transformation and drone-fermion representations for spin-12 and for spin-32, which is presented for the first time, we make a path-integral formulation of the Kondo lattice model. In the case of weak coupling and low temperature, the functional integral over conduction fermions can be approximated to the quadratic order and this gives the well-known RKKY interaction. In the case of strong coupling, the same quadratic approximation leads to an effective local spin-spin interaction linear in hopping energy t.

  7. Quantum size effects in Pb layers with absorbed Kondo adatoms: Determination of the exchange coupling constant

    KAUST Repository

    Schwingenschlögl, Udo

    2009-07-01

    We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.

  8. Influence of nonmagnetic disorder on specific heat and electrical resistivity in Kondo lattice system CePd{sub 1−x}Ge{sub x}In

    Energy Technology Data Exchange (ETDEWEB)

    Gnida, D., E-mail: d.gnida@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław (Poland); Dominyuk, N.; Zaremba, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mephodiya Str. 6, 79005 Lviv (Ukraine); Kaczorowski, D. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław (Poland)

    2015-02-15

    Highlights: • Interplay of Kondo and RKKY interactions in the presence of nonmagnetic disorder. • Suppression of the coherent Kondo state by nonmagnetic impurities. • Observation of quantum interference phenomena in Ce-based Kondo system. • Coexistence of incoherent Kondo effect and Altshuler-Aronov quantum correction. - Abstract: The alloy system CePd{sub 1−x}Ge{sub x}In with 0.1⩽x⩽0.4 was investigated by means of heat capacity and electrical resistivity measurements. Its low-temperature behavior has been found to be governed by the interplay of Kondo effect and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions in the presence of atomic disorder in nonmagnetic atoms sublattice. The coherent Kondo state, observed for CePdIn, gradually vanishes with increasing the Ge-content. The incoherent Kondo state, which characterizes Ge-rich alloys, appears very sensitive to applied magnetic field. The observed systematic changes in the temperature- and field-dependent electrical transport in CePd{sub 1−x}Ge{sub x}In manifest the important role of quantum correction due to electron-electron interactions in weakly localized regime.

  9. Stealths on Anisotropic Holographic Backgrounds

    CERN Document Server

    Ayón-Beato, Eloy; Juárez-Aubry, María Montserrat

    2015-01-01

    In this paper, we are interested in exploring the existence of stealth configurations on anisotropic backgrounds playing a prominent role in the non-relativistic version of the gauge/gravity correspondence. By stealth configuration, we mean a nontrivial scalar field nonminimally coupled to gravity whose energy-momentum tensor evaluated on the anisotropic background vanishes identically. In the case of a Lifshitz spacetime with a nontrivial dynamical exponent z, we spotlight the role played by the anisotropy to establish the holographic character of the stealth configurations, i.e. the scalar field is shown to only depend on the radial holographic direction. This configuration which turns out to be massless and without integration constants is possible for a unique value of the nonminimal coupling parameter. Then, using a simple conformal argument, we map this configuration into a stealth solution defined on the so-called hyperscaling violation metric which is conformally related to the Lifshitz spacetime. Thi...

  10. Recent progress in anisotropic hydrodynamics

    CERN Document Server

    Strickland, Michael

    2016-01-01

    The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, . In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.

  11. Conductivities in an anisotropic medium

    Science.gov (United States)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong

    2016-10-01

    In order to imitate the anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in the low frequency limit shows a Drude peak and that, in the intermediate frequency regime, it reveals the power law behavior. Specifically, when the anisotropy increases, the exponent of the power law becomes smaller. In addition, we find that a critical value for the anisotropy exists at which the dc conductivity reaches to its maximum value.

  12. Anisotropic Inflation and Cosmological Observations

    CERN Document Server

    Emami, Razieh

    2015-01-01

    Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...

  13. Conductivities in an anisotropic medium

    CERN Document Server

    Khimphun, Sunly; Park, Chanyong

    2016-01-01

    In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.

  14. Slotted Antenna with Anisotropic Covering

    Science.gov (United States)

    2015-08-06

    08-2015 Publication Slotted Antenna with Anisotropic Covering David A. Tonn et al Naval Under Warfare Center Division, Newport 1176 Howell St...NUWC 300055 Distribution A An antenna includes a tubular, conductive radiator having a longitudinal slot formed therein from a first end of the...conductive radiator to a second end of the conductive radiator. An antenna feed can be joined to the conductive radiator adjacent to and across the slot

  15. Propagation in Diagonal Anisotropic Chirowaveguides

    Directory of Open Access Journals (Sweden)

    S. Aib

    2017-01-01

    Full Text Available A theoretical study of electromagnetic wave propagation in parallel plate chirowaveguide is presented. The waveguide is filled with a chiral material having diagonal anisotropic constitutive parameters. The propagation characterization in this medium is based on algebraic formulation of Maxwell’s equations combined with the constitutive relations. Three propagation regions are identified: the fast-fast-wave region, the fast-slow-wave region, and the slow-slow-wave region. This paper focuses completely on the propagation in the first region, where the dispersion modal equations are obtained and solved. The cut-off frequencies calculation leads to three cases of the plane wave propagation in anisotropic chiral medium. The particularity of these results is the possibility of controlling the appropriate cut-off frequencies by choosing the adequate physical parameters values. The specificity of this study lies in the bifurcation modes confirmation and the possible contribution to the design of optical devices such as high-pass filters, as well as positive and negative propagation constants. This negative constant is an important feature of metamaterials which shows the phenomena of backward waves. Original results of the biaxial anisotropic chiral metamaterial are obtained and discussed.

  16. Anisotropic characterization of magnetorheological materials

    Science.gov (United States)

    Dohmen, E.; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) [1-3] or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) [4]. The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle.

  17. Thermoelectric response of a correlated impurity in the nonequilibrium Kondo regime

    Science.gov (United States)

    Dorda, Antonius; Ganahl, Martin; Andergassen, Sabine; von der Linden, Wolfgang; Arrigoni, Enrico

    2016-12-01

    We study nonequilibrium thermoelectric transport properties of a correlated impurity connected to two leads for temperatures below the Kondo scale. At finite bias, for which a current flows across the leads, we investigate the differential response of the current to a temperature gradient. In particular, we compare the influence of a bias voltage and of a finite temperature on this thermoelectric response. This is of interest from a fundamental point of view to better understand the two different decoherence mechanisms produced by a bias voltage and by temperature. Our results show that in this respect the thermoelectric response behaves differently from the electric conductance. In particular, while the latter displays a similar qualitative behavior as a function of voltage and temperature, both in theoretical and experimental investigations, qualitative differences occur in the case of the thermoelectric response. In order to understand this effect, we analyze the different contributions in connection to the behavior of the impurity spectral function versus temperature. Especially in the regime of strong interactions and large enough bias voltages, we obtain a simple picture based on the asymmetric suppression or enhancement of the split Kondo peaks as a function of the temperature gradient. Besides the academic interest, these studies could additionally provide valuable information to assess the applicability of quantum dot devices as responsive nanoscale temperature sensors.

  18. Zero-Temperature Magnetic Transition in an Easy-Axis Kondo Lattice Model --- An NRG Study

    Science.gov (United States)

    Zhu, Jian-Xin; Kirchner, Stefan; Bulla, Ralf; Si, Qimiao

    2007-03-01

    Antiferromagnetic heavy fermion metals close to their quantum critical points display a richness in their physical properties unanticipated by the traditional approach to quantum criticality. Here we address the quantum transition of a spin-12 antiferromagnetic Kondo lattice model with an easy-axis anisotropy within the extended dynamical mean field theory. We derive results [1] in real frequency using the bosonic numerical renormalization group (bNRG) method and compare them with Quantum Monte Carlo results in Matsubara frequency. The bNRG results show a logarithmic divergence in the critical local spin susceptibility, signaling a destruction of Kondo screening. The T=0 transition is nearly second order, with any jump in the magnetic order parameter not exceeding a few percents of the full moment. The bNRG results also display some subtle features; we discuss their possible origins and suggest means for further microscopic studies. [1] J.-X. Zhu, S. Kirchner, R. Bulla, and Q. Si, cond-mat/0607567.

  19. Possible undercompensation effect in the Kondo insulator (Yb,Tm)B12

    Science.gov (United States)

    Alekseev, P. A.; Nemkovski, K. S.; Mignot, J.-M.; Clementyev, E. S.; Ivanov, A. S.; Rols, S.; Bewley, R. I.; Filipov, V. B.; Shitsevalova, N. Yu.

    2014-03-01

    The effects of Tm substitution on the dynamical magnetic response of Yb1-xTmxB12 (x=0, 0.08, 0.15, and 0.75) and Lu0.92Tm0.08B12 compounds have been studied using time-of-flight inelastic neutron scattering. Major changes were observed in the spectral structure and temperature evolution of the Yb contribution to the inelastic response for a rather low content of magnetic Tm ions. A sizable influence of the RB12 host (YbB12, as compared to LuB12 or pure TmB12) on the crystal-field splitting of the Tm3+ ion is also reported. The results point to a specific effect of impurities carrying a magnetic moment (Tm, as compared to Lu or Zr) in a Kondo insulator, which is thought to reflect the "undercompensation" of Yb magnetic moments, originally Kondo screened in pure YbB12. A parallel is made with the strong effect of Tm substitution on the temperature dependence of the Seebeck coefficient in Yb1-xTmxB12, which was reported previously.

  20. Keldysh effective action theory for universal physics in spin-(1)/(2) Kondo dots

    Science.gov (United States)

    Smirnov, Sergey; Grifoni, Milena

    2013-03-01

    We present a theory for the Kondo spin-(1)/(2) effect in strongly correlated quantum dots. The theory is applicable at any temperature and voltage. It is based on a quadratic Keldysh effective action parametrized by a universal function. We provide a general analytical form for the tunneling density of states through this universal function for which we propose a simple microscopic model. We apply our theory to the highly asymmetric Anderson model with U=∞ and describe its strong-coupling limit, weak-coupling limit, and crossover region within a single analytical expression. We compare our results with a numerical renormalization group in equilibrium and with a real-time renormalization group out of equilibrium and show that the universal shapes of the linear and differential conductance obtained in our theory and in these theories are very close to each other in a wide range of temperatures and voltages. In particular, as in the real-time renormalization group, we predict that at the Kondo voltage the differential conductance is equal to 2/3 of its maximum.

  1. Long-range ferrimagnetic order in a two-dimensional supramolecular Kondo lattice

    Science.gov (United States)

    Girovsky, Jan; Nowakowski, Jan; Ali, Md. Ehesan; Baljozovic, Milos; Rossmann, Harald R.; Nijs, Thomas; Aeby, Elise A.; Nowakowska, Sylwia; Siewert, Dorota; Srivastava, Gitika; Wäckerlin, Christian; Dreiser, Jan; Decurtins, Silvio; Liu, Shi-Xia; Oppeneer, Peter M.; Jung, Thomas A.; Ballav, Nirmalya

    2017-05-01

    Realization of long-range magnetic order in surface-supported two-dimensional systems has been challenging, mainly due to the competition between fundamental magnetic interactions as the short-range Kondo effect and spin-stabilizing magnetic exchange interactions. Spin-bearing molecules on conducting substrates represent a rich platform to investigate the interplay of these fundamental magnetic interactions. Here we demonstrate the direct observation of long-range ferrimagnetic order emerging in a two-dimensional supramolecular Kondo lattice. The lattice consists of paramagnetic hexadeca-fluorinated iron phthalocyanine (FeFPc) and manganese phthalocyanine (MnPc) molecules co-assembled into a checkerboard pattern on single-crystalline Au(111) substrates. Remarkably, the remanent magnetic moments are oriented in the out-of-plane direction with significant contribution from orbital moments. First-principles calculations reveal that the FeFPc-MnPc antiferromagnetic nearest-neighbour coupling is mediated by the Ruderman-Kittel-Kasuya-Yosida exchange interaction via the Au substrate electronic states. Our findings suggest the use of molecular frameworks to engineer novel low-dimensional magnetically ordered materials and their application in molecular quantum devices.

  2. Long-range ferrimagnetic order in a two-dimensional supramolecular Kondo lattice.

    Science.gov (United States)

    Girovsky, Jan; Nowakowski, Jan; Ali, Md Ehesan; Baljozovic, Milos; Rossmann, Harald R; Nijs, Thomas; Aeby, Elise A; Nowakowska, Sylwia; Siewert, Dorota; Srivastava, Gitika; Wäckerlin, Christian; Dreiser, Jan; Decurtins, Silvio; Liu, Shi-Xia; Oppeneer, Peter M; Jung, Thomas A; Ballav, Nirmalya

    2017-05-22

    Realization of long-range magnetic order in surface-supported two-dimensional systems has been challenging, mainly due to the competition between fundamental magnetic interactions as the short-range Kondo effect and spin-stabilizing magnetic exchange interactions. Spin-bearing molecules on conducting substrates represent a rich platform to investigate the interplay of these fundamental magnetic interactions. Here we demonstrate the direct observation of long-range ferrimagnetic order emerging in a two-dimensional supramolecular Kondo lattice. The lattice consists of paramagnetic hexadeca-fluorinated iron phthalocyanine (FeFPc) and manganese phthalocyanine (MnPc) molecules co-assembled into a checkerboard pattern on single-crystalline Au(111) substrates. Remarkably, the remanent magnetic moments are oriented in the out-of-plane direction with significant contribution from orbital moments. First-principles calculations reveal that the FeFPc-MnPc antiferromagnetic nearest-neighbour coupling is mediated by the Ruderman-Kittel-Kasuya-Yosida exchange interaction via the Au substrate electronic states. Our findings suggest the use of molecular frameworks to engineer novel low-dimensional magnetically ordered materials and their application in molecular quantum devices.

  3. 4 f excitations in Ce Kondo lattices studied by resonant inelastic x-ray scattering

    Science.gov (United States)

    Amorese, A.; Dellea, G.; Fanciulli, M.; Seiro, S.; Geibel, C.; Krellner, C.; Makarova, I. P.; Braicovich, L.; Ghiringhelli, G.; Vyalikh, D. V.; Brookes, N. B.; Kummer, K.

    2016-04-01

    The potential of resonant inelastic soft x-ray scattering to measure 4 f crystal electric-field excitation spectra in Ce Kondo lattices has been examined. Spectra have been obtained for several Ce systems and show a well-defined structure determined by crystal-field, spin-orbit, and charge-transfer excitations only. The spectral shapes of the excitation spectra can be well understood in the framework of atomic multiplet calculations. For CeCu2Si2 we found notable disagreement between the inelastic x-ray-scattering spectra and theoretical calculations when using the crystal-field scheme proposed from inelastic neutron scattering. Modified sets of crystal-field parameters yield better agreement. Our results also show that, with the very recent improvements of soft x-ray spectrometers in resolution to below 30 meV at the Ce M4 ,5 edges, resonant inelastic x-ray scattering could be an ideal tool to determine the crystal-field scheme in Ce Kondo lattices and other rare-earth compounds.

  4. Importance of conduction electron correlation in a Kondo lattice, Ce{sub 2}CoSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran, E-mail: kbmaiti@tifr.res.i [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005 (India)

    2010-06-30

    Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce{sub 2}CoSi{sub 3}, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.

  5. Antiferroquadrupolar Ordering in Quadrupolar Kondo Lattice of Non-Kramers System PrTa2Al20

    Science.gov (United States)

    Higashinaka, Ryuji; Nakama, Akihiro; Miyazaki, Ryoichi; Yamaura, Jun-ichi; Sato, Hideyuki; Aoki, Yuji

    2017-10-01

    Single crystals of PrTa2Al20 have been investigated by means of single-crystal structural analysis and measurements of magnetization, specific heat, and electrical resistivity. The crystalline-electric-field level scheme of the Pr ions has a nonmagnetic Γ3 doublet ground state and a Γ5 magnetic excited state with an energy separation of 53 K. The 4f-electron contribution to the electrical resistivity shows -log T magnetic Kondo scattering above 50 K and a downward curvature characteristic of a quadrupolar Kondo lattice formation below 20 K. A phase transition appears at 0.65 K in zero field and shifts to higher temperatures in applied fields, indicating that this transition is antiferroquadrupolar (AFQ) in nature. The largely enhanced Sommerfeld coefficient ˜1.5 J/(mol K2) in the AFQ state may indicate the formation of heavy quasiparticles. The hierarchically arranged sequence of the magnetic Kondo regime, quadrupolar Kondo lattice regime, and AFQ ordered state in the wide temperature range 0.2-300 K demonstrates that PrTa2Al20 is a good playground to investigate quadrupole physics with strong electron correlations.

  6. Kondo Effect in CeXc (Xc = S, Se, Te) Studied by Electrical Resistivity Measurements under High Pressure

    Science.gov (United States)

    Hayashi, Yuya; Takai, Shun; Matsumura, Takeshi; Tanida, Hiroshi; Sera, Masafumi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Ochiai, Akira

    2016-03-01

    We have measured the electrical resistivity of cerium monochalcogenides, CeS, CeSe, and CeTe, under high pressures of up to 8 GPa. The pressure dependences of the antiferromagnetic ordering temperature TN, crystal field splitting, and the ln T anomaly of the Kondo effect have been studied to cover the entire region from the magnetic ordering regime at low pressure to the Fermi liquid regime at high pressure. TN initially increases with increasing pressure, and starts to decrease at high pressure as expected from Doniach’s diagram. Simultaneously, the ln T behavior in the resistivity is enhanced, indicating the enhancement of the Kondo effect by pressure. It is also characteristic of CeXc that the crystal field splitting rapidly decreases at a common rate of -12.2 K/GPa. This leads to the increase in the degeneracy of the f state and the further enhancement of the Kondo effect. It is shown that the pressure-dependent degeneracy of the f state is a key factor for understanding the pressure dependence of TN, the Kondo effect, magnetoresistance, and the peak structure in the temperature dependence of resistivity.

  7. Screened spin-1 and -1/2 Kondo effect in a triangular quantum dot system with interdot Coulomb repulsion

    Science.gov (United States)

    Xiong, Yong-Chen; Wang, Wei-Zhong; Luo, Shi-Jun; Yang, Jun-Tao; Huang, Hai-Ming

    2017-03-01

    By means of the numerical renormalization group (NRG) technique, we study the low temperature transport property and the phase transition for a triangular triple quantum dot system, including two centered dots (dot 1 and 2) and one side dot (dot 3). We focus on the effect of interdot repulsion V between two centered dots in a wide range of the interdot hopping tij (i,j = 1,2,3). When the hoppings between the centered dot and the side dot are symmetric, i.e., t13 = t23, and that between two centered dots t12 is small, two centered dots form a spin triplet when V is absent, and a totally screened spin-1 Kondo effect is observed. In this case, one has a spin 1 that is partially screened by the leads as in the usual spin-1 Kondo model, and the remaining spin 1/2 degree of freedom forms a singlet with the side dot. As V is large enough, one of the centered dots is singly occupied, while the other one is empty. The spin-1/2 Kondo effect is found when t13 is small. For large t12, two centered dots form a spin singlet when V = 0, leading to zero conductance. As V is large enough, the spin-1/2 Kondo effect is recovered in the case of small t13. For asymmetric t13≠t23 and small t12, a crossover is found as V increases in comparison with a first order quantum phase transition for the symmetric case. In the regime of large V, the spin-1/2 Kondo effect could also be found when both t13 and t23 are small. We demonstrate the present model is similar to the side-coupled double dot system in some appropriate regimes, and it appears as a possible realization of side-controllable molecular electronics and spintronics devices.

  8. Anisotropic Homogeneous Turbulence: Hierarchy and Intermittency of Scaling Exponents in the Anisotropic Sectors

    NARCIS (Netherlands)

    Biferale, Luca; Toschi, Federico

    2001-01-01

    We present the first measurements of anisotropic statistical fluctuations in perfectly homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors and hierarchical ordering of anisotropies on a direct numerical simulation of a three dimensional random Kolmogorov flo

  9. Optical Propagation in Anisotropic Metamaterials (Postprint)

    Science.gov (United States)

    2017-02-22

    AFRL-RX-WP-JA-2017-0309 OPTICAL PROPAGATION IN ANISOTROPIC METAMATERIALS (POSTPRINT) Rudra Gnawali, Partha P. Banerjee, and...October 2013 – 26 December 2016 4. TITLE AND SUBTITLE OPTICAL PROPAGATION IN ANISOTROPIC METAMATERIALS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-13-D...ABSTRACT (Maximum 200 words) Anisotropic metamaterials are widely used in the field of optics because of their unique electromagnetic properties. These

  10. PHENOMENOLOGICAL DAMAGE MODELS OF ANISOTROPIC STRUCTURAL MATERIALS

    OpenAIRE

    Bobyr, M.; Khalimon, O.; Bondarets, O.

    2015-01-01

    Damage in metals is mainly the process of the initiation and growth of voids. A formulation for anisotropic damage is established in the framework of the principle of strain equivalence, principle of increment complementary energy equivalence and principle of elastic energy equivalence. This paper presents the development of an anisotropic damage theory. This work is focused on the development of evolution anisotropic damage models which is based on a Young’s modulus/Poisson’s ratio change of...

  11. Comments on inhomogeneous anisotropic cosmology

    CERN Document Server

    Kaya, Ali

    2016-01-01

    Recently a new no-global-recollapse argument is given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this note we point out a few important issues about the proposed deformations and in particular indicate that in the presence of large spatial variations the mean curvature flow may deform an initially spacelike surface to a surface with null or timelike portions. The time evolution of the spatial scalar curvature that prevents recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis also indicates a possible caveat in numerical solutions that give rise to inflation.

  12. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  13. Spin precession in anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A.Yu. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); INFN, Bologna (Italy); Teryaev, O.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Lomonosov Moscow State University, Moscow (Russian Federation)

    2016-05-15

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter. (orig.)

  14. Remarks on inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kaya, Ali

    2016-08-01

    Recently a new no-global-recollapse argument was given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this paper we discuss important properties of the mean curvature flow of spacelike surfaces in Lorentzian manifolds. We show that singularities may form during cosmic evolution, and the theorems forbidding the global recollapse lose their validity. The time evolution of the spatial scalar curvature that may kinematically prevent the recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis indicates a caveat in numerical solutions that give rise to inflation.

  15. Simultaneous observation of collagen and elastin based on the combined nonlinear optical imaging technique coupled with two-channel synchronized detection method

    Science.gov (United States)

    Chen, Jianxin; Zhuo, Shuangmu; Luo, Tianshu; Liu, Dingzhong; Zhao, Jingjun

    2008-08-01

    Collagen and elastin are the most important proteins of the connective tissues in higher vertebrates. In this paper, we present a combined nonlinear optical imaging technique of second-harmonic generation and two-photon excited fluorescence to simultaneously observe the collagen and elastic fiber of dermis in a freshly excised human skin and rabbit aorta using a two-channel synchronized detection method. The obtained two-channel overlay image in the backward direction can clearly distinguish the morphological structure and distribution of collagen and elastic fibers. Tissue spectrum further confirms the obtained structural information. These results suggest that the combined nonlinear optical imaging technique coupled with two-channel synchronized detection method can be an effective tool for detecting collage and elastic fibers without any invasive tissue procedure of slicing, embedding, fixation and staining when two structural proteins are simultaneously present in the biological tissue.

  16. Recent progress in anisotropic hydrodynamics

    Directory of Open Access Journals (Sweden)

    Strickland Michael

    2017-01-01

    Full Text Available The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, 〈 pL2〉 ≪ 〈 pT2〉. In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.

  17. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  18. Interfacial phase competition induced Kondo-like effect in manganite-insulator composites

    Science.gov (United States)

    Lin, Ling-Fang; Wu, Ling-Zhi; Dong, Shuai

    2016-12-01

    A Kondo-like effect, namely, the upturn of resistivity at low temperatures, is observed in perovskite manganite when nonmagnetic insulators are doped as secondary phase. In this paper, the low-temperature resistivity upturn effect has been argued to originate from interfacial magnetic phase reconstruction. Heisenberg spin lattices have been simulated using the Monte Carlo method to reveal phase competition around secondary phase boundary, namely, manganite-insulator boundary that behaves with a weak antiferromagnetic tendency. Moreover, the resistor network model based on double-exchange conductive mechanism reproduces the low-temperature resistivity upturn effect. Our work provides a reasonable physical mechanism to understand the novel transport behaviors in microstructures of correlated electron systems.

  19. Gate-controlled spin splitting in quantum dots with ferromagnetic leads in the Kondo regime

    Science.gov (United States)

    Martinek, J.; Sindel, M.; Borda, L.; Barnaś, J.; Bulla, R.; König, J.; Schön, G.; Maekawa, S.; von Delft, J.

    2005-09-01

    The effect of a gate voltage ( Vg ) on the spin splitting of an electronic level in a quantum dot (QD) attached to ferromagnetic leads is studied in the Kondo regime using a generalized numerical renormalization group technique. We find that the Vg dependence of the QD level spin splitting strongly depends on the shape of the density of states (DOS). For one class of DOS shapes there is nearly no Vg dependence; for another, Vg can be used to control the magnitude and sign of the spin splitting, which can be interpreted as a local exchange magnetic field. We find that the spin splitting acquires a new type of logarithmic divergence. We give an analytical explanation for our numerical results and explain how they arise due to spin-dependent charge fluctuations.

  20. Two-dimensional Fermi surfaces in Kondo insulator SmB₆.

    Science.gov (United States)

    Li, G; Xiang, Z; Yu, F; Asaba, T; Lawson, B; Cai, P; Tinsman, C; Berkley, A; Wolgast, S; Eo, Y S; Kim, Dae-Jeong; Kurdak, C; Allen, J W; Sun, K; Chen, X H; Wang, Y Y; Fisk, Z; Li, Lu

    2014-12-05

    In the Kondo insulator samarium hexaboride (SmB6), strong correlation and band hybridization lead to an insulating gap and a diverging resistance at low temperature. The resistance divergence ends at about 3 kelvin, a behavior that may arise from surface conductance. We used torque magnetometry to resolve the Fermi surface topology in this material. The observed oscillation patterns reveal two Fermi surfaces on the (100) surface plane and one Fermi surface on the (101) surface plane. The measured Fermi surface cross sections scale as the inverse cosine function of the magnetic field tilt angles, which demonstrates the two-dimensional nature of the conducting electronic states of SmB6. Copyright © 2014, American Association for the Advancement of Science.

  1. Kondo effect from a Lorentz-violating domain wall description of superconductivity

    CERN Document Server

    Bazeia, D; Mota-Silva, J C

    2016-01-01

    We extend recent results on domain wall description of superconductivity in an Abelian Higgs model by introducing a particular Lorentz-violating term. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath. We show that this term can be associated with the {\\sl Kondo effect}, that is, the Lorentz-violating parameter is closely related to the concentration of magnetic impurities living on a superconducting domain wall. We also found that the critical temperature decreasing with the impurity concentration as a non-single valued function, for the case $T_K

  2. Low-temperature transport in ac-driven quantum dots in the Kondo regime

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Rosa; Aguado, Ramon; Platero, Gloria; Tejedor, Carlos

    2001-08-15

    We present a fully nonequilibrium calculation of the low-temperature transport properties of a quantum dot in the Kondo regime when an ac potential is applied to the gate. We solve a time-dependent Anderson model with finite on-site Coulomb interaction. The interaction self-energy is calculated up to second order in perturbation theory in the on-site interaction, in the context of the Keldysh nonequilibrium technique, and the effect of the ac voltage is taken into account exactly for all ranges of ac frequencies and ac intensities. The obtained linear conductance and time-averaged density of states of the quantum dot evolve in a nontrivial way as a function of the ac frequency and ac intensity of the harmonic modulation.

  3. Proposed Rabi-Kondo correlated state in a laser-driven semiconductor quantum dot.

    Science.gov (United States)

    Sbierski, B; Hanl, M; Weichselbaum, A; Türeci, H E; Goldstein, M; Glazman, L I; von Delft, J; Imamoğlu, A

    2013-10-11

    Spin exchange between a single-electron charged quantum dot and itinerant electrons leads to an emergence of Kondo correlations. When the quantum dot is driven resonantly by weak laser light, the resulting emission spectrum allows for a direct probe of these correlations. In the opposite limit of vanishing exchange interaction and strong laser drive, the quantum dot exhibits coherent oscillations between the single-spin and optically excited states. Here, we show that the interplay between strong exchange and nonperturbative laser coupling leads to the formation of a new nonequilibrium quantum-correlated state, characterized by the emergence of a laser-induced secondary spin screening cloud, and examine the implications for the emission spectrum.

  4. Proximity effect induced by Kondo interaction in a network composed of YBCO and spin density wave

    Science.gov (United States)

    Maity, S.; Ghosh, Ajay Kumar

    2015-10-01

    The possibility of the proximity effect mediated by Kondo interaction in YBCO embedded in system of diluted magnetic spin ordering has been studied. An YBCO sample is selected in which both metal to insulator transition and superconducting state exist in the different ranges of temperature. The intergranular network of the bulk Y-123 has been modified by the inclusion of YMnO3 which has a well defined magnetic structure depending on temperature. The current-voltage measurements have been carried out in pure Y-123 at several temperatures. At the same set of temperatures the current-voltage curves in presence of YMnO3 have been studied. The role of the diluted spin magnetic ordering in tuning proximity effect and conduction property in binary systems is associated with reduced coherence length in the normal region.

  5. Photoemission study of the ferromagnetic Kondo system CeRh3B2

    Science.gov (United States)

    Fujimori, A.; Takahashi, T.; Okabe, A.; Kasaya, M.; Kasuya, T.

    1990-04-01

    We have studied the electronic structure of CeRh3B2, which has an anomalously high ferromagnetic ordering temperature, by photoemission and Auger-electron spectroscopy. The Ce 4f occupancy nf~=0.85 evaluated from the Ce 3d core-level photoemission spectrum indicates a moderately strong valence fluctuation in the Kondo regime. Rh d-derived valence-band photoemission spectra are found to be in good agreement with the results of band-structure calculations when a strong energy dependence of the hole lifetime is taken into account. This observation and the deviation of the Rh M4,5VV Auger spectrum from the self-convolution of the Rh d partial density of states provide evidence for electron correlation within the Rh d band of order of U=1-2 eV. We discuss a possible effect of the latter electron correlation on the ferromagnetic instability of this compound.

  6. From tunneling to contact in a magnetic atom: The non-equilibrium Kondo effect

    Science.gov (United States)

    Choi, Deung-Jang; Abufager, Paula; Limot, Laurent; Lorente, Nicolás

    2017-03-01

    A low-temperature scanning tunneling microscope was employed to study the differential conductance in an atomic junction formed by an adsorbed Co atom on a Cu(100) surface and a copper-covered tip. A zero-bias anomaly (ZBA) reveals spin scattering off the Co atom, which is assigned to a Kondo effect. The ZBA exhibits a characteristic asymmetric lineshape when electrons tunnel between tip and sample, while upon the tip-Co contact it symmetrizes and broadens. Through density functional theory calculations and the non-equilibrium non-crossing approximation, we show that the lineshape broadening is mainly a consequence of the additional coupling to the tip, while non-equilibrium effects only modify the large-bias tails of the ZBA.

  7. Low energy properties of the Kondo chain in the RKKY regime

    Science.gov (United States)

    Schimmel, D. H.; Tsvelik, A. M.; Yevtushenko, O. M.

    2016-05-01

    We study the Kondo chain in the regime of high spin concentration where the low energy physics is dominated by the Ruderman-Kittel-Kasuya-Yosida interaction. As has been recently shown (Tsvelik and Yevtushenko 2015 Phys. Rev. Lett. 115 216402), this model has two phases with drastically different transport properties depending on the anisotropy of the exchange interaction. In particular, the helical symmetry of the fermions is spontaneously broken when the anisotropy is of the easy plane type. This leads to a parametrical suppression of the localization effects. In the present paper we substantially extend the previous theory, in particular, by analyzing a competition of forward- and backward- scattering, including into the theory short range electron interactions and calculating spin correlation functions. We discuss applicability of our theory and possible experiments which could support the theoretical findings.

  8. Effects of van Hove Singularities on Transport of Quantum Dot Systems in Kondo Regime

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In the present paper, we study the effect of van Hove singularities of conduction electron on the transport of a single quantum dot system in the Kondo regime. By using both the equation-of-motion and the noncrossing approximation techniques, we show that the corrections caused by these singularities are actually minor. It can be explained by observing that the singularities in the equations, which determine the electronic DOS on the dot, are integrable. Furthermore, we find that, although each line width function is divergent at van Hove singular points, the total divergence is canceled out in the final formula to calculate the current through the system. Therefore, as far as the qualitative properties of the system is concerned, these singularities can be ignored and the wide-band approximation can be safely used in calculation.

  9. Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets

    Science.gov (United States)

    Ray, Rajyavardhan; Kumar, Sanjeev

    2017-01-01

    We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications. PMID:28176869

  10. Crystal field-phonon coupling in the Kondo lattice CeCu2

    Science.gov (United States)

    Witte, U.; Kramp, S.; Braden, M.; Svoboda, P.; Loewenhaupt, M.

    CeCu2 is a Kondo lattice and shows antiferromagnetic order below 3.5K. In earlier neutron-scattering experiments on a polycrystalline sample an anomaly in the inelastic neutron spectra at about 14 meV and at temperatures between 100 and 150K was observed. This has led to the assumption of a coupling between a crystal field transition between two excited levels and phonons. Inelastic neutron measurements on a single crystal confirm this assumption. We find an unusual strong energy shift (up to 15%) of certain phonons with increasing temperature, depending on their symmetry. At the same time the magnetic response is strongly broadened due to the coupling to the phonons.

  11. Crystal field-phonon coupling in the Kondo lattice CeCu{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Witte, U. [TU Dresden, Institut fuer Angewandte Physik (IAPD), 01062 Dresden (Germany); HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Kramp, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Braden, M. [LLB Saclay, 91191 Gif-Sur-Yvette Cedex (France); Svoboda, P. [Charles University, 12116 Praha (Czech Republic); Loewenhaupt, M. [TU Dresden, Institut fuer Angewandte Physik (IAPD), 01062 Dresden (Germany)

    2002-07-01

    CeCu{sub 2} is a Kondo lattice and shows antiferromagnetic order below 3.5 K. In earlier neutron-scattering experiments on a polycrystalline sample an anomaly in the inelastic neutron spectra at about 14 meV and at temperatures between 100 and 150 K was observed. This has led to the assumption of a coupling between a crystal field transition between two excited levels and phonons. Inelastic neutron measurements on a single crystal confirm this assumption. We find an unusual strong energy shift (up to 15%) of certain phonons with increasing temperature, depending on their symmetry. At the same time the magnetic response is strongly broadened due to the coupling to the phonons. (orig.)

  12. Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets

    Science.gov (United States)

    Ray, Rajyavardhan; Kumar, Sanjeev

    2017-02-01

    We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications.

  13. Modelling of CMUTs with Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt

    2012-01-01

    Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...

  14. Reflection of light from an anisotropic medium

    CERN Document Server

    Ignatovich, Filipp V

    2010-01-01

    We present here a general approach to treat reflection and refraction of light of arbitrary polarization from single axis anisotropic plates. We show that reflection from interface inside the anisotropic medium is accompanied by beam splitting and can create surface waves.

  15. ANISOTROPIC BIQUADRATIC ELEMENT WITH SUPERCLOSE RESULT

    Institute of Scientific and Technical Information of China (English)

    Dongyang SHI; Shipeng MAO; Hui LIANG

    2006-01-01

    The main aim of this paper is to study the convergence of biquadratic finite element for the second order problem on anisotropic meshes. By using some novel approaches and techniques, the optimal error estimates are obtained. At the same time, the anisotropic superclose results are also achieved. Furthermore, the numerical results are given to demonstrate our theoretical analysis.

  16. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics

    Science.gov (United States)

    Steglich, Frank; Wirth, Steffen

    2016-08-01

    This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a ‘conventional’, itinerant QCP can be well understood within Landau’s paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an ‘unconventional’, local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.

  17. 4f heavy fermion photoelectron spectra do not exhibit the Kondo scale

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Andrews, A.B.; Blyth, R.I.R.; Bartlett, R.J.; Fisk, Z. [Los Alamos National Lab., NM (United States); Canfield, P.C.; Olson, C.G.; Benning, P.J. [Iowa State Univ., Ames, IA (United States); Poirier, D.M.; Weaver, J.H. [Univ. of Minnesota, Minneapolis, MN (United States); Riseborough, P.S. [Polytechnic Univ., Brooklyn, NY (United States)

    1994-02-01

    It has been the authors contention for some time that the Single Impurity Anderson Model (SIAM), as extended by Gunnarsson and Schonhammer (GS), or the non-crossing approximation (NCA), does not correctly describe the 4f photoelectron spectra of heavy fermions. Recently, they have concentrated on Yb heavy fermions since in these materials the Kondo resonance (KR) is fully occupied and thus accessible via photoemission. In particular, they have repeatedly pointed out that the width, position, spectral weight, lineshape, and temperature dependence of the features assumed to be the KR and its sidebands, are nearly independent of the Kondo temperature, T{sub K}, while at the same time bearing a striking resemblance to the simple 4f core level spectra of pure Yb metal, or of Lu in isostructural Lu compounds. It is important to resolve these issues in view of the fundamental nature of the problem. Here, the authors chose to test the bulk vs. surface hypothesis by performing measurements on YbCu{sub 2}Si{sub 2} and YbAl{sub 3} single crystals at hv {approx} 120 eV (UPS) and hv {approx} 1,500 eV(XPS) to see if the n{sub f}, hole occupancy, values increase markedly at XPS energies as the electron escape depth increases by about a factor of 3--5. Measurements were performed at both 300K and 20K using single crystals cleaved in-situ, with photoelectrons collected in normal emission for maximum bulk sensitivity. UPS measurements were performed at NSLS and the University of Wisconsin SRC, while XPS measurements were done at the University of Minnesota. The UPS, ultraviolet photoelectron spectra, and the L{sub III} edge x-ray absorption and photoemission measurements are in fundamental disagreement.

  18. STEM in Kondo Lattices: a new window on correlated electron materials

    Science.gov (United States)

    Coleman, Piers

    2012-02-01

    The tremendous developments in scanning tunneling electron spectroscopy over the past decade, applied with tremendous success to the cuprate superconductors, are now beginning to be applied to other strongly correlated electron systems. One area where they offer tremendous potential, is in the context of heavy fermion materials. In the last few years, it has become possible to start probing the physics of the Kondo lattice using STEM methods. In this talk I will review this field, discussing the physics of tunneling into the Kondo lattice, showing how tunneling involves a co-operative process of electron transfer and spin-flip, called ``cotunnelling'' [1,2]. I will provide an overview of latest results in this field, especially URu2Si2 [3,4], YbRh2Si2 [5] and CeCoIn5 [6], discussing how STEM can be used to probe various new theoretical proposals [7,8] for the exotic order and critical behavior. [4pt] [1] M. Maltseva, M. Dzero, and P. Coleman, Phys. Rev. Lett. 103, 206402 (2009).[0pt] [2] J. Figgins and D. Morr, Phys. Rev. Lett. 104, 187202 (2010).[0pt] [3] A. R. Schmidt et al, Nature 465, 570-576 (2010).[0pt] [4] P. Aynajian et al., Proc. Natl. Acad. Sci. U.S.A. 107, 10383 (2010).[0pt] [5] S. Ernst et al, Nature (2011).[0pt] [6] S. Ernst et al, Physica Status Solidi 247, 624 (2010).[0pt] [7] Y. Dubi and A.V. Balatsky, Phys. Rev. Lett. 106, 196407 (2011).[0pt] [8] P. Chandra, P. Coleman and R. Flint, to be published (2012).

  19. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.

    Science.gov (United States)

    Steglich, Frank; Wirth, Steffen

    2016-08-01

    This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a 'conventional', itinerant QCP can be well understood within Landau's paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an 'unconventional', local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.

  20. Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang

    2015-09-01

    The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.

  1. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  2. Designing Anisotropic Inflation with Form Fields

    CERN Document Server

    Ito, Asuka

    2015-01-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  3. Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

  4. Missing channels in two-colour microarray experiments: Combining single-channel and two-channel data

    Directory of Open Access Journals (Sweden)

    Burtt Glyn J

    2007-01-01

    Full Text Available Abstract Background There are mechanisms, notably ozone degradation, that can damage a single channel of two-channel microarray experiments. Resulting analyses therefore often choose between the unacceptable inclusion of poor quality data or the unpalatable exclusion of some (possibly a lot of good quality data along with the bad. Two such approaches would be a single channel analysis using some of the data from all of the arrays, and an analysis of all of the data, but only from unaffected arrays. In this paper we examine a 'combined' approach to the analysis of such affected experiments that uses all of the unaffected data. Results A simulation experiment shows that while a single channel analysis performs relatively well when the majority of arrays are affected, and excluding affected arrays performs relatively well when few arrays are affected (as would be expected in both cases, the combined approach out-performs both. There are benefits to actively estimating the key-parameter of the approach, but whether these compensate for the increased computational cost and complexity over just setting that parameter to take a fixed value is not clear. Inclusion of ozone-affected data results in poor performance, with a clear spatial effect in the damage being apparent. Conclusion There is no need to exclude unaffected data in order to remove those which are damaged. The combined approach discussed here is shown to out-perform more usual approaches, although it seems that if the damage is limited to very few arrays, or extends to very nearly all, then the benefits will be limited. In other circumstances though, large improvements in performance can be achieved by adopting such an approach.

  5. Improved ramped bunch train to increase the transformer ratio of a two-channel multimode dielectric wakefield accelerator

    Directory of Open Access Journals (Sweden)

    G. V. Sotnikov

    2011-03-01

    Full Text Available Here we show a possibility of applying the ramped drive bunch train (RBT technique to a two-channel coaxial dielectric wakefield accelerator (CDWA. For numerical research we study a 28 GHz structure with two nested alumina cylindrical shells having these diameters: outer shell, OD=28.1  mm, ID=27  mm; inner shell, OD=6.35  mm, ID=4.0  mm. The structure is to be excited by a train of four annular bunches having energy 14 MeV and axial rms length 1 mm; the total charge of bunches is 200 nC. In the case of equally charged drive bunches, spaced apart by the principal wakefield wavelength 10.67 mm, we obtained transformer ratio T=3.4. If the bunch charge is increasing as the ratio 1∶3∶5∶7 and the bunches are spaced by one and one-half wavelengths, we obtained T=3.8. We found that if the charge ratios are 1.0∶2.4∶3.5∶5.0 and the spaces between the bunches are 2.5, 2.5, and 4.5 wakefield periods, then T increases strongly, T∼20. The RBT also can be used successfully in a high gradient THz CDWA structure. A particle-in-cell simulation shows that the four drive bunches can move without appreciable distortion.

  6. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer

    Directory of Open Access Journals (Sweden)

    Qian Zhou

    2016-01-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. METHODS: Thirty-one patients with stage I-III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. RESULTS: The five-year local control rate was 80.6% (25/31, the overall survival rate was 51.6% (16/31, and the disease-free survival rate was 54.8% (17/31. The incidence of serious late complications was 12.9% (4/31. CONCLUSIONS: 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range.

  7. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer.

    Science.gov (United States)

    Zhou, Qian; Tang, Cheng; Zhao, Ke-Wei; Xiong, Yan-Li; Chen, Shu; Xu, Wen-Jing; Lei, Xin

    2016-01-01

    The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. Thirty-one patients with stage I-III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. The five-year local control rate was 80.6% (25/31), the overall survival rate was 51.6% (16/31), and the disease-free survival rate was 54.8% (17/31). The incidence of serious late complications was 12.9% (4/31). 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range.

  8. Gravitational baryogenesis after anisotropic inflation

    Science.gov (United States)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  9. Anisotropic inflation from extra dimensions

    CERN Document Server

    Litterio, M; Amendola, L; Dyrek, A; Litterio, Marco; Amendola, Luca; Dyrek, Andrzej

    1995-01-01

    Vacuum multidimensional cosmological models with internal spaces being compact n-dimensional Lie group manifolds are considered. Products of 3-spheres and SU(3) manifold (a novelty in cosmology) are studied. It turns out that the dynamical evolution of the internal space drives an accelerated expansion of the external world (power law inflation). This generic solution (attractor in a phase space) is determined by the Lie group space without any fine tuning or arbitrary inflaton potentials. Matter in the four dimensions appears in the form of a number of scalar fields representing anisotropic scale factors for the internal space. Along the attractor solution the volume of the internal space grows logarithmically in time. This simple and natural model should be completed by mechanisms terminating the inflationary evolution and transforming the geometric scalar fields into ordinary particles.

  10. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  11. Spatially anisotropic Heisenberg kagome antiferromagnet

    Science.gov (United States)

    Apel, W.; Yavors'kii, T.; Everts, H.-U.

    2007-04-01

    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.

  12. Warm Anisotropic Inflationary Universe Model

    CERN Document Server

    Sharif, M

    2014-01-01

    This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.

  13. Gravitational Baryogenesis after Anisotropic Inflation

    CERN Document Server

    Fukushima, Mitsuhiro; Maeda, Kei-ichi

    2016-01-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  14. I-Love-Q Anisotropically

    CERN Document Server

    Yagi, Kent

    2015-01-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum and quadrupole moment) are interrelated in a way that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis for future radio, X-ray and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to phase transitions. We here investigate whether pressure anisotropy affects the approximate universal relations and whether it prevents their use in future observations. We achieve this by numerically constructing slowly-rotating and tidally-deformed, anisotropic, compact stars in General Relativity to third order in spin. We find that anisotropy affects the universal relations only weakly; the relations become less universal by a factor of 1.5-3 relative to the isotropic case, but rem...

  15. Mechanics of anisotropic spring networks

    Science.gov (United States)

    Zhang, T.; Schwarz, J. M.; Das, Moumita

    2014-12-01

    We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, px and py, for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of px and py. We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.

  16. Anisotropic grid adaptation in LES

    Science.gov (United States)

    Toosi, Siavash; Larsson, Johan

    2016-11-01

    The modeling errors depend directly on the grid (or filter) spacing in turbulence-resolving simulations (LES, DNS, DES, etc), and are typically at least as significant as the numerical errors. This makes adaptive grid-refinement complicated, since it prevents the estimation of the local error sources through numerical analysis. The present work attempts to address this difficulty with a physics-based error-source indicator that accounts for the anisotropy in the smallest resolved scales, which can thus be used to drive an anisotropic grid-adaptation process. The proposed error indicator is assessed on a sequence of problems, including turbulent channel flow and flows in more complex geometries. The formulation is geometrically general and applicable to complex geometries.

  17. Temperature Dependence of the Kondo Resonance and Its Satellites in CeCu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reinert, F.; Ehm, D.; Schmidt, S.; Nicolay, G.; Huefner, S.; Kroha, J.; Trovarelli, O.; Geibel, C.

    2001-09-03

    We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly correlated Ce system CeCu{sub 2}Si {sub 2} . By exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level E{sub F} . We also present theoretical predictions based on the single-impurity Anderson model using an extended noncrossing approximation, including all spin-orbit and crystal field splittings of the 4f states. The excellent agreement between theory and experiment provides strong evidence that the spectral properties of CeCu{sub 2}Si {sub 2} can be described by single-impurity Kondo physics down to T{approx}5 K .

  18. Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm-Casher Effects

    Energy Technology Data Exchange (ETDEWEB)

    Eckle, H.-P.; Johannesson, H.; Stafford, C. A.

    2001-07-02

    We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.

  19. Kondo resonance in a mesoscopic ring coupled to a quantum dot: exact results for the Aharonov-Bohm-Casher effects.

    Science.gov (United States)

    Eckle, H P; Johannesson, H; Stafford, C A

    2001-07-02

    We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.

  20. GW approach to electron-electron interactions within the Anderson impurity model: Kondo correlated quantum transport through two coupled molecules

    Science.gov (United States)

    Aksu, H.; Goker, A.

    2017-03-01

    We invoke the nonequilibrium self-consistent GW method within the Anderson impurity model to investigate the dynamical effects occurring in a nanojunction comprised of two coupled molecules. Contrary to the previous single impurity model calculations based on the GW approximation, we observe that the density of states manages to capture both the Kondo resonance and the Breit-Wigner resonances associated with the HOMO and LUMO levels of the molecule. Moreover, the prominence of the Kondo resonance grows dramatically upon switching from the intermediate to the weak coupling regime involving large U / Γ values. The conductance is calculated as a function of the HOMO level and the applied bias across the molecular nanojunction. Calculated conductance curves deviate from the monotonic decay behaviour as a function of the bias when the half-filling condition is not met. The importance of the effect of the molecule-molecule coupling for the electron transport phenomena is also investigated.

  1. Giant Kondo Resonance of Parallel-Coupled Double Quantum Dots Embedded in an A-B Ring

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiong-Wen; HE Da-Jiang; SONG Ke-Hui; WU Shao-Quan

    2006-01-01

    We theoretically study the properties of the ground state of the parallel-coupled double quantum dots embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We find that in this system, the persistent current depends sensitively on both the parity of this system and the size of the ring. In the strong coupling regime, the giant sharp current peak appears, at the same time, the parity dependence of the persistent current disappears. These imply that in the strong coupling regime, there exists giant Kondo resonance and the two dots can be coupled coherently. Thus this system might be a candidate for future device applications.

  2. Anisotropic microstructure near the sun

    Science.gov (United States)

    Coles, W. A.; Grall, R. R.; Spangler, S. R.; Sakurai, T.; Harmon, J. K.

    1996-07-01

    Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 Rsolar [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ``background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 Rsolar which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a ``Maltese Cross'' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 Rsolar, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 Rsolar

  3. Spin-Orbit-Coupled Correlated Metal Phase in Kondo Lattices: An Implementation with Alkaline-Earth Atoms

    Science.gov (United States)

    Isaev, L.; Schachenmayer, J.; Rey, A. M.

    2016-09-01

    We show that an interplay between quantum effects, strong on-site ferromagnetic exchange interaction, and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit coupled metallic state in regimes where classical treatments predict a trivial insulating behavior. This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.

  4. Spin-Orbit-Coupled Correlated Metal Phase in Kondo Lattices: An Implementation with Alkaline-Earth Atoms.

    Science.gov (United States)

    Isaev, L; Schachenmayer, J; Rey, A M

    2016-09-23

    We show that an interplay between quantum effects, strong on-site ferromagnetic exchange interaction, and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit coupled metallic state in regimes where classical treatments predict a trivial insulating behavior. This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.

  5. Anomalous electrical resistivity of the Kondo system Ce(Rh1-xCox)3B2

    Science.gov (United States)

    Ku, H. C.; Yu, H.

    1986-08-01

    Electrical resistivity measurements have been carried out on the high-Curie-temperature ferromagnetic compound CeRh3B2 (TC=110-115 K). The temperature dependence of the electrical resistivity ρ(T) during the initial cooldown above TC gives the first solid indication of the Kondo-like behavior in this system. However, the resisitivity is irreversible above TC when warming up from low temperature and ρ(T) approaches the previous reported form. This irreversibility is closely related to microscopic cracks created by the strong internal magnetic field of the ferromagnetic state and was not observed in the nonmagnetic compound CeCo3B2 with the same hexagonal structure. Further proof of this Kondo state can be obtained in the study of the pseudoternary system Ce(Rh1-xCox)3B2 where the resistivity increases with decreasing temperature during the initial cooldown and a local minimum Kondo anomaly was observed. The magnetic state is rapidly broken up with the replacement of Rh by Co and the resistivity anomaly disappears after the disappearance of ferromagnetic order.

  6. Kondo Resonance versus Fano Interference in Double Quantum Dots Coupled to a Two-Lead One-Ring System

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiong-Wen; SHI Zhen-Gang; CHEN Bao-Ju; SONG Ke-Hui

    2007-01-01

    We analyse the transport properties of a coupled double quantum dot (DQD) device with one of the dots (QD1) coupled to metallic leads and the other (QD2) embedded in an Aharonov-Bhom (A-B) ring by means of the slave-boson mean-Geld theory. It is found that in this system, the Kondo resonance and the Fano interference exist simultaneously, the enhancing Kondo effect and the increasing hopping of the QD2-Ring destroy the localized electron state in the QD2 for the QD1-leads, and accordingly, the Fano interference between the DQD-leads and the QD1-leads are suppressed. Under some conditions, the Fano interference can be quenched fully and the single Kondo resonance of the QD1-leads comes into being. Moreover, when the magnetic flux of the A-B ring is zero, the influence of the parity of the A-B ring on the transport properties is very weak, but this inSuence becomes more obvious with non-zero magnetic flux. Thus this model may be a candidate for future device applications.

  7. Anisotropic inflation in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lahiri, Sayantani [ZARM, University of Bremen,Am Falltrum, 28359 Bremen (Germany)

    2016-09-19

    We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.

  8. A new algorithm for anisotropic solutions

    Indian Academy of Sciences (India)

    M Chaisi; S D Maharaj

    2006-02-01

    We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.

  9. Shaped beam scattering by an anisotropic particle

    Science.gov (United States)

    Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang

    2017-03-01

    An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.

  10. Imprints of Anisotropic Inflation on the CMB

    CERN Document Server

    Watanabe, Masa-aki; Soda, Jiro

    2010-01-01

    We study the imprints of anisotropic inflation on the CMB temperature fluctuations and polarizations. The statistical anisotropy stems not only from the direction dependence of curvature and tensor perturbations, but also from the cross correlation between curvature and tensor perturbations, and the linear polarization of tensor perturbations. We show that off-diagonal $TB$ and $EB$ spectrum as well as on- and off-diagonal $TT, EE, BB, TE$ spectrum are induced from anisotropic inflation. We emphasize that the off-diagonal spectrum induced by the cross correlation could be a characteristic signature of anisotropic inflation.

  11. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  12. Research on anisotropic parameters by synthetic seismogram

    Institute of Scientific and Technical Information of China (English)

    FAN Xiao-ping; LI Qing-he; YANG Cong-jie

    2005-01-01

    ased on the extensive-dilatancy anisotropy theory, the method of synthetic seismogram is used to estimate the anisotropic parameters. The advantages of the method lie in that it avoids the singularity resolution and saves calculation time of computer by using the eigenvalue and eigenvector analytical expressions of Christoffel equation, at the same time, the result is tested by coherence function. The test result reveals there exists a fine linear relation between original records and synthetic records, indicating the anisotropic parameters estimated by synthetic seismogram can reflect and describe the anisotropic characteristics of the given region medium.

  13. The Effect of Anisotropic Scatter on Atmospheric Neutron Transport

    Science.gov (United States)

    2015-03-26

    slab geometry, two studies were conducted exploring the relative effect of anisotropic scatter as compared to isotropic scatter in the center of mass... anisotropic scatter. In order to address this question, first anisotropic scatter was implemented, then verified, and finally, the measurement of the... measured value. The relative error between neutron counts in isotropic and anisotropic time- integrated energy bins, isotropic anisotropicrel

  14. Spatial interpolation approach based on IDW with anisotropic spatial structures

    Science.gov (United States)

    Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang

    2015-12-01

    In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.

  15. New Isotropic and Anisotropic Sudden Singularities

    CERN Document Server

    Barrow, J D; Barrow, John D.; Tsagas, Christos G.

    2004-01-01

    We show the existence of an infinite family of finite-time singularities in isotropically expanding universes which obey the weak, strong, and dominant energy conditions. We show what new type of energy condition is needed to exclude them ab initio. We also determine the conditions under which finite-time future singularities can arise in a wide class of anisotropic cosmological models. New types of finite-time singularity are possible which are characterised by divergences in the time-rate of change of the anisotropic-pressure tensor. We investigate the conditions for the formation of finite-time singularities in a Bianchi type $VII_{0}$ universe with anisotropic pressures and construct specific examples of anisotropic sudden singularities in these universes.

  16. Kondo Physics at Interfaces in Metallic Non-Local Spin Transport Devices

    Science.gov (United States)

    Leighton, Chris

    2015-03-01

    Despite the maturity of metallic spintronics there remain large gaps in our understanding of spin transport in metals, particularly with injection of spins across ferromagnetic/non-magnetic (FM/NM) interfaces, and their subsequent diffusion and relaxation. Unresolved issues include the limits of applicability of Elliott-Yafet spin relaxation, quantification of the influence of defects, surfaces, and interfaces on spin relaxation at nanoscopic dimensions, and the importance of magnetic and spin-orbit scattering. The non-local spin-valve is an enabling device in this context as, in addition to offering potentially disruptive applications, it allows for the separation of charge and spin currents. One particularly perplexing issue in metallic non-local spin valves is the widely observed non-monotonicity in the T-dependent spin accumulation, where the spin signal actually decreases at low T, in contrast to simple expectations. In this work, by studying an expanded range of FM/NM combinations (encompassing Ni80Fe20, Ni, Fe, Co, Cu, and Al), we demonstrate that this effect is not a property of a given FM or NM, but rather of the FM/NM pair. The non-monotonicity is in fact strongly correlated with the ability of the FM to form a dilute local magnetic moment in the NM. We show that local moments, resulting in this case from the ppm-level tail of the FM/NM interdiffusion profile, suppress the injected spin polarization and diffusion length via a novel manifestation of the Kondo effect, explaining all observations associated with the low T downturn in spin accumulation. We further show: (a) that this effect can be promoted by thermal annealing, at which point the conventional charge transport Kondo effect is simultaneously detected in the NM, and (b) that this suppression in spin accumulation can be quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer. Important implications for room temperature

  17. Overview of anisotropic flow measurements from ALICE

    Directory of Open Access Journals (Sweden)

    Zhou You

    2016-01-01

    Full Text Available Anisotropic flow is an important observable to study the properties of the hot and dense matter, the Quark Gluon Plasma (QGP, created in heavy-ion collisions. Measurements of anisotropic flow for inclusive and identified charged hadrons are reported in Pb–Pb, p–Pb and pp collisions with the ALICE detector. The comparison of experimental measurements to various theoretical calculations are also presented in these proceedings.

  18. Slotted Antenna with Anisotropic Magnetic Loading

    Science.gov (United States)

    2016-07-26

    magnetic material having a uniaxial permeability tensor is positioned in the slot between the two fins. This material is oriented such that it has a...volume of slot 14 between fins 24 and 26 is filled with an anisotropic magnetic material 28 with a uniaxial permeability tensor . This means that the...uniaxial dielectric tensor . Thus, properties are different through the radial depth of the anisotropic magnetic material. The coordinate axis used is

  19. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  20. Inflation in anisotropic scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, L.O.; Stein-Schabes, J.

    1989-01-05

    The existence of an inflationary phase in anisotropic scalar-tensor theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a non-trivial potential. We then use the explicit form of the potential and the no hair theorem to conclude that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  1. Inflation in anisotropic scalar-tensor theories

    Science.gov (United States)

    Pimentel, Luis O.; Stein-Schabes, Jaime

    1988-01-01

    The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  2. Radar velocity tomography in anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Ho; Cho, Seong Jun; Yi Myeong Jong; Chung, Seung Hwan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Radar tomography inversion method was developed in the elliptic anisotropic environment with the parametrization of maximum, minimum velocity, and the direction of symmetry axis. Nonlinear least-square method with smoothness constraint was adopted as inversion scheme. Newly developed algorithm was successfully tested with the 2-D numerical cross-borehole data in isotropic environment. Seismic data from physical modelling in partially anisotropic environment was also inverted and compared with the reconstruction technique assuming isotropic media. We could confirm the effectiveness of our algorithm, even though the tested data were generated from isotropic or partially anisotropic media. Cross-hole radar field data in limestone area in Korea was analyzed that the limestone bedrock is systematically anisotropic in the sense of radar application. The data set was inverted with the new anisotropy algorithm. The anisotropic effect in the data was corrected and also inverted for the comparison through the algorithm with isotropic assumption. Applying two different algorithm and comparing the various images, the tomographic image of maximum velocity from anisotropic inversion could give the most excellent way to visualize underground. An addition to the high resolution image, we could grasp some information on the material type from the feature of maximum velocity distribution the degree of anisotropy which can be inferred from the ratio of maximum and minimum velocity. The newly developed algorithm will be expected to provide a good way to image underground, especially in sedimentary or metamorphosed bedrock. (author). 9 refs., 21 figs.

  3. Spin precession in anisotropic media

    Science.gov (United States)

    Raes, B.; Cummings, A. W.; Bonell, F.; Costache, M. V.; Sierra, J. F.; Roche, S.; Valenzuela, S. O.

    2017-02-01

    We generalize the diffusive model for spin injection and detection in nonlocal spin structures to account for spin precession under an applied magnetic field in an anisotropic medium, for which the spin lifetime is not unique and depends on the spin orientation. We demonstrate that the spin precession (Hanle) line shape is strongly dependent on the degree of anisotropy and on the orientation of the magnetic field. In particular, we show that the anisotropy of the spin lifetime can be extracted from the measured spin signal, after dephasing in an oblique magnetic field, by using an analytical formula with a single fitting parameter. Alternatively, after identifying the fingerprints associated with the anisotropy, we propose a simple scaling of the Hanle line shapes at specific magnetic field orientations that results in a universal curve only in the isotropic case. The deviation from the universal curve can be used as a complementary means of quantifying the anisotropy by direct comparison with the solution of our generalized model. Finally, we applied our model to graphene devices and find that the spin relaxation for graphene on silicon oxide is isotropic within our experimental resolution.

  4. Progress in Anisotropic Plasma Physics

    CERN Document Server

    Romatschke, P; Romatschke, Paul; Strickland, Michael

    2004-01-01

    In 1959 Weibel demonstrated that when a QED plasma has a temperature anisotropy there exist unstable transverse magnetic excitations which grow exponentially fast. In this paper we will review how to determine the growth rates for these unstable modes in the weak-coupling and ultrarelativistic limits in which the collective behavior is describable in terms are so-called "hard-loops". We will show that in this limit QCD is subject to instabilities which are analogous to the Weibel instability in QED. The presence of such instabilities dominates the early time evolution of a highly anisotropic plasma; however, at longer times it is expected that these instabilities will saturate (condense). I will discuss how the presence of non-linear interactions between the gluons complicates the determination of the saturated state. In order to discuss this I present the generalization of the Braaten-Pisarski isotropic hard-thermal-loop effective action to a system with a temperature anisotropy in the parton distribution fu...

  5. Reconstructing the Poynting vector skew angle and wave-front of optical vortex beams via two-channel moir\\'e deflectometery

    CERN Document Server

    Yeganeh, Mohammad; Dashti, Mohsen; Slussarenko, Sergei; Santamato, Enrico; Karimi, Ebrahim

    2013-01-01

    A novel approach based on the two-channel moir\\'e deflectometry has been used to measure both wave-front and transverse component of the Poynting vector of an optical vortex beam. Generated vortex beam by the q-plate, an inhomogeneous liquid crystal cell, has been analyzed with such technique. The measured topological charge of generated beams are in an excellent agreement with theoretical prediction.

  6. Tuning bulk and surface conduction in the proposed topological Kondo insulator SmB(6).

    Science.gov (United States)

    Syers, Paul; Kim, Dohun; Fuhrer, Michael S; Paglione, Johnpierre

    2015-03-06

    Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo-insulator compound SmB_{6} are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liquid gating with electrodes patterned in a Corbino disk geometry on a single (100) surface. By separately tuning bulk and surface conduction channels, we show conclusive evidence for a model with an insulating bulk and metallic surface states, with a crossover temperature that depends solely on the relative contributions of each conduction channel. The surface conductance, on the order of 100  e^{2}/h, exhibits a field-effect mobility of 133  cm^{2}/Vs and a large carrier density of ∼2×10^{14}  cm^{-2}, in good agreement with recent photoemission results. With the ability to gate modulate surface conduction by more than 25%, this approach provides promise for both fundamental and applied studies of gate-tuned devices structured on bulk crystal samples.

  7. Finite-size effects in a metallic multichannel ring with Kondo impurity: Persistent currents and magnetoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Zvyagin, A.A. [B. I. Verkin Institute for Low Temperature Physics and Engineering of the National Ukrainian Academy of Sciences, 47, Lenin Avenue, 310164, Kharkov (Ukraine); Schlottmann, P. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States)

    1996-12-01

    We consider a spin-1/2 impurity interacting with conduction electrons in two different orbital channels via an isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the symmetry between the orbital channels. This corresponds to a splitting of the conduction electron {Gamma}{sub 8} into two doublets in the quadrupolar Kondo effect, or to the electron-assisted tunneling of an atom in a double-well potential in an external magnetic field. Another possible realization could be a quantum dot coupled to two equal rings of the same length subject to an electrostatic potential difference. We consider the Bethe ansatz equations for this model and derive the tower structure of the finite-size corrections to the ground-state energy. These results are used to discuss the Aharonov-Bohm-Casher interference pattern in the persistent charge and spin currents, and the magnetoresistivity due to the scattering of electrons off the impurity. {copyright} {ital 1996 The American Physical Society.}

  8. Kondo effect and quantum critical point in Mn(1-x)CoxSi

    Science.gov (United States)

    Teyssier, J.; Viennois, R.; Guritanu, V.; Giannini, E.; van der Marel, D.

    2010-01-01

    We report magnetic, transport and neutron diffraction studies of the solid solution Mn1-xCoxSi. For the Mn rich compounds, a sharp decrease of the Curie temperature is observed upon cobalt doping and neutron elastic scattering shows that the helimagnetic order of MnSi persists up to x = 0.06 with a shortening of the helix period. For higher Co concentrations (0.06 Weiss temperature changes sign and the system enters an antiferromagnetic state upon cooling (TN=9K for x = 0.50). In this doping range, the antiferromagnetic coupling leads to a Kondo effect marked by a minimum in the resistivity. This scenario is supported by the scaling of the magnetoresistance with a TK approx 6.5 K, close to the change in curvature of the resistivity and in agreement with the Weiss temperature from magnetic susceptibility. The sign change of the Weiss temperature and the transition from a helimagnetic to an antiferromagnetic ground state, with increasing the Co doping, point toward the existence of a quantum critical point at the composition Mn0.94Co0.06Si.

  9. Nonequilibrium spatiotemporal formation of the Kondo screening cloud on a lattice

    Science.gov (United States)

    Nuss, Martin; Ganahl, Martin; Arrigoni, Enrico; von der Linden, Wolfgang; Evertz, Hans Gerd

    2015-02-01

    We study the nonequilibrium formation of a spin screening cloud that accompanies the quenching of a local magnetic moment immersed in a Fermi sea at zero temperature. Based on high-precision density matrix renormalization-group results for the interacting single-impurity Anderson model, we discuss the real-time evolution after a quantum quench in the impurity-reservoir hybridization using time-evolving block decimation. We report emergent length and time scales in the spatiotemporal structure of nonlocal correlation functions in the spin and the charge density channel. At equilibrium, our data for the correlation functions and the extracted length scales show good agreement with existing results, as do local time-dependent observables at the impurity. In the time-dependent data, we identify a major signal which defines a "light cone" moving at the Fermi velocity and a ferromagnetic component in its wake. Inside the light cone we find that the structure of the nonequilibrium correlation functions emerges on two time scales. Initially, the qualitative structure of the correlation functions develops rapidly at the lattice Fermi velocity. Subsequently the spin correlations converge to the equilibrium results on a much larger time scale. This process sets a dynamic energy scale, which we identify to be proportional to the Kondo temperature. Outside the light cone we observe two different power-law decays of the correlation functions in space, with time- and interaction-strength-independent exponents.

  10. Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Cha, Judy J.

    2010-03-10

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.

  11. Transport properties of the topological Kondo insulator SmB6 under the irradiation of light

    Science.gov (United States)

    Zhu, Guo-Bao; Yang, Hui-Min

    2016-10-01

    In this paper, we study transport properties of the X point in the Brillouin zone of the topological Kondo insulator SmB6 under the application of a circularly polarized light. The transport properties at high-frequency regime and low-frequency regime as a function of the ratio (κ) of the Dresselhaus-like and Rashba-like spin-orbit parameter are studied based on the Floquet theory and Boltzmann equation respectively. The sign of Hall conductivity at high-frequency regime can be reversed by the ratio κ and the amplitude of the light. The amplitude of the current can be enhanced by the ratio κ. Our findings provide a way to control the transport properties of the Dirac materials at low-frequency regime. Project supported by the National Natural Science Foundation of China (Grant Nos. 11504095 and 11447145), the Foundation of Heze University (Grant Nos. XY14B002 and XYPY01), and the Project funded by the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J15LJ55).

  12. Fano resonance and hybridization gap in the Kondo lattice URu2Si2^*

    Science.gov (United States)

    Park, Wan Kyu; Tobash, P. H.; Ronning, F.; Bauer, E. D.; Sarrao, J. L.; Thompson, J. D.; Greene, L. H.

    2012-02-01

    The nature of the `hidden' order transition in URu2Si2 remains puzzling despite intensive research over the past two and half decades. A key question under debate is whether a hybridization gap between the renormalized bands can be identified as the long-sought hidden order parameter. We report on the measurement of a hybridization gap in URu2Si2 employing a spectroscopic technique based on quasiparticle scattering across a ballistic metallic junction [1]. The differential conductance data exhibit an asymmetric double-peak structure, a signature for a Fano resonance in a Kondo lattice [2]. The extracted hybridization gap opens well above the hidden order transition temperature, indicating that it is not the order parameter for the hidden order phase. Our results place constraints on the origin of the hidden order transition in URu2Si2.[4pt] [1] W. K. Park et al., arXiv:1110.5541.[0pt] [2] M. Maltseva, M. Dzero, P. Coleman, PRL 103, 206402 (2009).

  13. Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study

    Science.gov (United States)

    Cheng, Mengxing; Chowdhury, Tathagata; Mohammed, Aaron; Ingersent, Kevin

    2017-07-01

    We use the poor man's scaling approach to study the phase boundaries of a pair of quantum impurity models featuring a power-law density of states ρ (ɛ ) ∝|ɛ| r , either vanishing (for r >0 ) or diverging (for r 0 ), we find the phase boundary for (a) 0 1 , where the phases are separated by first-order quantum phase transitions that are accessible only for broken p-h symmetry. For the p-h-symmetric Kondo model with easy-axis or easy-plane anisotropy of the impurity-band spin exchange, the phase boundary and scaling trajectories are obtained for both r >0 and r <0 . Throughout the regime of weak-to-moderate impurity-band coupling in which poor man's scaling is expected to be valid, the approach predicts phase boundaries in excellent qualitative and good quantitative agreement with the nonperturbative numerical renormalization group, while also establishing the functional relations between model parameters along these boundaries.

  14. Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE)

    CERN Document Server

    Placidi, Luca; Seddik, Hakime; Faria, Sergio H

    2009-01-01

    A complete theoretical presentation of the CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large ice masses in which the induced anisotropy can not be neglected. The anisotropic response of the material is considered via a simple anisotropic generalization of Glen's flow law based on a scalar anisotropic enhancement factor. Such an enhancement factor depends upon the orientation mass density, that corresponds to the distribution of lattice orientations or simply to the orientation distribution function. The evolution of anisotropy is assumed to be modeled by the evolution of the orientation mass density, that is governed by the balance of mass of the present mixture with continuous diversity and explicitly depends upon four distinct effects interpreted, respectively, with grain rotation, local rigid body rotation, grain boundary migration (...

  15. Anisotropic thermal conductivity of magnetic fluids

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng Fang; Yimin Xuan; Qiang Li

    2009-01-01

    Considering the forces acting on the particles and the motion of the particles, this study uses a numerical simulation to investigate the three-dimensional microstructure of the magnetic fluids in the presence of an external magnetic field. A method is proposed for predicting the anisotropic thermal conductivity of magnetic fluids. By introducing an anisotropic structure parameter which characterizes the non-uniform distribution of particles suspended in the magnetic fluids, the traditional Maxwell formula is modified and extended to calculate anisotropic thermal conductivity of the magnetic fluids. The results show that in the presence of an external magnetic field the magnetic nanoparticles form chainlike clusters along the direction of the external magnetic field, which leads to the fact that the thermal conduc-tivity of the magnetic fluid along the chain direction is bigger than that along other directions. The thermal conductivity of the magnetic fluids presents an anisotropic feature. With the increase of the magnetic field strength the chainlike clusters in the magnetic fluid appear to be more obvious, so that the anisotropic feature of heat conduction in the fluids becomes more evident.

  16. Anisotropic matching principle for the hydrodynamic expansion

    Science.gov (United States)

    Tinti, Leonardo

    2016-10-01

    Following the recent success of anisotropic hydrodynamics, I propose here a new, general prescription for the hydrodynamic expansion around an anisotropic background. The anisotropic distribution fixes exactly the complete energy-momentum tensor, just like the effective temperature fixes the proper energy density in the ordinary expansion around local equilibrium. This means that momentum anisotropies are already included at the leading order, allowing for large pressure anisotropies without the need of a next-to-leading-order treatment. The first moment of the Boltzmann equation (local four-momentum conservation) provides the time evolution of the proper energy density and the four-velocity. Differently from previous prescriptions, the dynamic equations for the pressure corrections are not derived from the zeroth or second moment of the Boltzmann equation, but they are taken directly from the exact evolution given by the Boltzmann equation. As known in the literature, the exact evolution of the pressure corrections involves higher moments of the Boltzmann distribution, which cannot be fixed by the anisotropic distribution alone. Neglecting the next-to-leading-order contributions corresponds to an approximation, which depends on the chosen form of the anisotropic distribution. I check the the effectiveness of the leading-order expansion around the generalized Romatschke-Stricklad distribution, comparing with the exact solution of the Boltzmann equation in the Bjorken limit with the collisional kernel treated in the relaxation-time approximation, finding an unprecedented agreement.

  17. Anisotropic nanomaterials: structure, growth, assembly, and functions.

    Science.gov (United States)

    Sajanlal, Panikkanvalappil R; Sreeprasad, Theruvakkattil S; Samal, Akshaya K; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.

  18. Anisotropic nanomaterials: structure, growth, assembly, and functions

    Directory of Open Access Journals (Sweden)

    Panikkanvalappil R. Sajanlal

    2011-02-01

    Full Text Available Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D, two-dimensional (2D, and three-dimensional (3D arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.

  19. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  20. Universal out-of-equilibrium transport in Kondo-correlated quantum dots: renormalized dual fermions on the Keldysh contour.

    Science.gov (United States)

    Muñoz, Enrique; Bolech, C J; Kirchner, Stefan

    2013-01-04

    The nonlinear conductance of semiconductor heterostructures and single molecule devices exhibiting Kondo physics has recently attracted attention. We address the observed sample dependence of the measured steady state transport coefficients by considering additional electronic contributions in the effective low-energy model underlying these experiments that are absent in particle-hole symmetric setups. A novel version of the superperturbation theory of Hafermann et al. in terms of dual fermions is developed, which correctly captures the low-temperature behavior. We compare our results with the measured transport coefficients.

  1. Defects in higher-dimensional quantum field theory. Relations to AdS/CFT-correspondence and Kondo lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.

    2007-03-15

    The present work is addressed to defects and boundaries in quantum field theory considering the application to AdS/CFT correspondence. We examine interactions of fermions with spins localised on these boundaries. Therefore, an algebra method is emphasised adding reflection and transmission terms to the canonical quantisation prescription. This method has already been applied to bosons in two space-time dimensions before. We show the possibilities of such reflection-transmission algebras in two, three, and four dimensions. We compare with models of solid state physics as well as with the conformal field theory approach to the Kondo effect. Furthermore, we discuss ansatzes of extensions to lattice structures. (orig.)

  2. Kondo effect at low electron density and high particle-hole asymmetry in 1D, 2D, and 3D

    Science.gov (United States)

    Žitko, Rok; Horvat, Alen

    2016-09-01

    Using the perturbative scaling equations and the numerical renormalization group, we study the characteristic energy scales in the Kondo impurity problem as a function of the exchange coupling constant J and the conduction-band electron density. We discuss the relation between the energy gain (impurity binding energy) Δ E and the Kondo temperature TK. We find that the two are proportional only for large values of J , whereas in the weak-coupling limit the energy gain is quadratic in J , while the Kondo temperature is exponentially small. The exact relation between the two quantities depends on the detailed form of the density of states of the band. In the limit of low electron density the Kondo screening is affected by the strong particle-hole asymmetry due to the presence of the band-edge van Hove singularities. We consider the cases of one- (1D), two- (2D), and three-dimensional (3D) tight-binding lattices (linear chain, square lattice, cubic lattice) with inverse-square-root, step-function, and square-root onsets of the density of states that are characteristic of the respective dimensionalities. We always find two different regimes depending on whether TK is higher or lower than μ , the chemical potential measured from the bottom of the band. For 2D and 3D, we find a sigmoidal crossover between the large-J and small-J asymptotics in Δ E and a clear separation between Δ E and TK for TKband edge. Furthermore, we find that in 1D the particle-hole asymmetry leads to a large decrease of TK compared to the standard result obtained by approximating the density of states to be constant (flat-band approximation), while in 3D the opposite is the case; this is due to the nontrivial interplay of the exchange and potential scattering renormalization in the presence of particle-hole asymmetry. The 2D square-lattice density of states behaves to a very good approximation as a band with constant density of states.

  3. The Kondo lattice state in the presence of Van Hove singularities: Next-to-leading order scaling

    Science.gov (United States)

    Irkhin, V. Yu.

    2017-07-01

    Renormalization group analysis of the Kondo model with a logarithmic Van Hove singularity in the electron density of states has been carried out in the next-to-leading scaling approximation in different magnetic phases. The effective coupling constant remains small, while the renormalized magnetic moment and the frequency of spin fluctuations decrease by several orders of magnitude. In this way, broad regions of non-Fermi-liquid behavior are found from scaling trajectories in a large interval of the bare coupling constant. Applications to the physics of itinerant magnetism are considered.

  4. Anisotropic Hanle line shape via magnetothermoelectric phenomena

    Science.gov (United States)

    Das, K. S.; Dejene, F. K.; van Wees, B. J.; Vera-Marun, I. J.

    2016-11-01

    We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times for in-plane and out-of-plane spin orientations as for the case of two-dimensional materials like graphene, but it is unexpected in a polycrystalline metallic channel. Systematic measurements as a function of temperature and channel length, combined with both analytical and numerical thermoelectric transport models, demonstrate that the anisotropy in the Hanle line shape is magnetothermal in origin, caused by the anisotropic modulation of the Peltier and Seebeck coefficients of the ferromagnetic electrodes. Our results call for the consideration of such magnetothermoelectric effects in the study of anisotropic spin relaxation.

  5. Modelling anisotropic fluid spheres in general relativity

    CERN Document Server

    Boonserm, Petarpa; Visser, Matt

    2015-01-01

    We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

  6. Anisotropic selection in cellular genetic algorithms

    CERN Document Server

    Simoncini, David; Collard, Philippe; Clergue, Manuel

    2008-01-01

    In this paper we introduce a new selection scheme in cellular genetic algorithms (cGAs). Anisotropic Selection (AS) promotes diversity and allows accurate control of the selective pressure. First we compare this new scheme with the classical rectangular grid shapes solution according to the selective pressure: we can obtain the same takeover time with the two techniques although the spreading of the best individual is different. We then give experimental results that show to what extent AS promotes the emergence of niches that support low coupling and high cohesion. Finally, using a cGA with anisotropic selection on a Quadratic Assignment Problem we show the existence of an anisotropic optimal value for which the best average performance is observed. Further work will focus on the selective pressure self-adjustment ability provided by this new selection scheme.

  7. Theory of Compton scattering by anisotropic electrons

    CERN Document Server

    Poutanen, Juri

    2010-01-01

    Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed soft photons. We develop here an analytical theory of Compton scattering by anisotropic distribution of electrons that can simplify significantly the calculations. Assuming that the electron angular distribution can be represented by a second order polynomial over cosine of some angle (dipole and quadrupole anisotropy), we integrate the exact Klein-Nishina cross-section over the angles. Exact analytical and approximate formulae valid for any photon and electron energies are derived for the redistribution functions describin...

  8. Quasiparticle anisotropic hydrodynamics for central collisions

    CERN Document Server

    Alqahtani, Mubarak; Strickland, Michael

    2016-01-01

    We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...

  9. Leith diffusion model for homogeneous anisotropic turbulence

    Science.gov (United States)

    Rubinstein, Robert; Clark, Timothy; Kurien, Susan

    2016-11-01

    A new spectral closure model for homogeneous anisotropic turbulence is proposed. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Numerical simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.

  10. Convective dissolution in anisotropic porous media

    Science.gov (United States)

    de Paoli, Marco; Zonta, Francesco; Soldati, Alfredo

    2016-11-01

    Solute convection in porous media at high Rayleigh-Darcy numbers has important fundamental features and may also bear implications for geological CO2 sequestration processes. With the aid of direct numerical simulations, we examine the role of anisotropic permeability γ (the vertical-to-horizontal permeability ratio) on the distribution of solutal concentration in fluid saturated porous medium. Interestingly, we find that the finite-time (short-term) amount of solute that can be dissolved in anisotropic sedimentary rocks (γ < 1 , i.e. vertical permeability smaller than horizontal permeability) is much larger than in isotropic rocks. We link this seemingly counterintuitive effect with the occurring modifications to the flow topology in the anisotropic conditions. CINECA Supercomputing Centre and ISCRA Computing Initiative are gratefully acknowledged for generous allowance of computer resources. Support from Regione Autonoma Friuli Venezia Giulia under Grant PAR FSC 2007/2013 is also gratefully acknowledged.

  11. Micromechanics and dislocation theory in anisotropic elasticity

    CERN Document Server

    Lazar, Markus

    2016-01-01

    In this work, dislocation master-equations valid for anisotropic materials are derived in terms of kernel functions using the framework of micromechanics. The second derivative of the anisotropic Green tensor is calculated in the sense of generalized functions and decomposed into a sum of a $1/R^3$-term plus a Dirac $\\delta$-term. The first term is the so-called "Barnett-term" and the latter is important for the definition of the Green tensor as fundamental solution of the Navier equation. In addition, all dislocation master-equations are specified for Somigliana dislocations with application to 3D crack modeling. Also the interior Eshelby tensor for a spherical inclusion in an anisotropic material is derived as line integral over the unit circle.

  12. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  13. Gravitational stresses in anisotropic rock masses

    Science.gov (United States)

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  14. Anisotropic non-gaussianity with noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Akhilesh

    2014-01-20

    We study single field inflation in noncommutative spacetime and compute two-point and three-point correlation functions for the curvature perturbation. We find that both power spectrum and bispectrum for comoving curvature perturbation are statistically anisotropic and the bispectrum is also modified by a phase factor depending upon the noncommutative parameters. The non-linearity parameter f{sub NL} is small for small statistical anisotropic corrections to the bispectrum coming from the noncommutative geometry and is consistent with the recent PLANCK bounds. There is a scale dependence of f{sub NL} due to the noncommutative spacetime which is different from the standard single field inflation models and statistically anisotropic vector field inflation models. Deviations from statistical isotropy of CMB, observed by PLANCK can tightly constraint the effects due to noncommutative geometry on power spectrum and bispectrum.

  15. Anisotropic inflation in the Finsler spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin [Chongqing University, Department of Physics, Chongqing (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Wang, Sai [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Chang, Zhe [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China)

    2015-06-15

    We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for the quantum fluctuation of the inflation field. It depends not only on the magnitude of the wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and we obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in the angular correlation coefficients if l' = l + 1. The numerical results of the angular correlation coefficients are given describing the anisotropic effect. (orig.)

  16. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  17. Silicon as an anisotropic mechanical material

    DEFF Research Database (Denmark)

    Thomsen, Erik Vilain; Reck, Kasper; Skands, Gustav Erik

    2014-01-01

    While silicon is an anisotropic material it is often in literature treated as an isotropic material when it comes to plate calculations. This leads to considerable errors in the calculated deflection. To overcome this problem, we present an in-depth analysis of the bending behavior of thin...... crystalline plates. An analysis of the compliance tensor for the 32 different crystal classes shows, that for thin plates, only 5 different types of plates exist. An anisotropic plate equation valid for crystalline thin plates is derived and solved for circular, elliptic, rectangular and square plates using...... are presented. These expressions are in excellent agreement with anisotropic finite element calculations. The calculated deflection differs less than 0.1%, for both circular and rectangular plates, compared to finite element calculations. The results are presented as ready-to-use facilitating accurate...

  18. Constraining the Anisotropic Expansion of Universe

    CERN Document Server

    Cai, Rong-Gen; Tang, Bo; Tuo, Zhong-Liang

    2013-01-01

    We study the possibly existing anisotropy in the accelerating expansion Universe with the Union2 Type Ia supernovae data and Gamma-ray burst data. We construct a direction-dependent dark energy model and constrain the anisotropy direction and strength of modulation. We find that the maximum anisotropic deviation direction is $(l,\\,b)=(126^{\\circ},\\,13^{\\circ})$ (or equivalently $(l,\\,b)=(306^{\\circ},\\,-13^{\\circ})$), and the anisotropy level is $g_0=0.030_{+0.010}^{-0.030}$ (obtained using Union2 data, at $1\\sigma$ confidence level). Our results do not show strong evidence for the anisotropic dark energy model. We also discuss potential methods that may distinguish the peculiar velocity field from the anisotropic dark energy model.

  19. Numerical simulations of heavy fermion systems. From He-3 bilayers to topological Kondo insulators

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Jan

    2015-03-27

    In this thesis the results of model calculations based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion. By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential μ and inverse temperature β=1/T. The method is a cluster extension to the Dynamical Mean-Field Theory (DMFT), and allows to systematically include non-local correlations beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green's function and other observables of interest. As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. The heavy fermion state appears at a characteristic coherence scale T{sub coh}. While the density is rather high for small filling, for larger filling T{sub coh} is increasingly suppressed. This involves a decreasing quasiparticle residue Z∝T{sub coh} and an enhanced mass renormalization m{sup *}/m∝T{sub coh}{sup -1}. Extrapolation leads to a critical filling, where the coherence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers. Cellular DMFT simulations are conducted for small clusters of size N{sub c}=2 and 3. Furthermore a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single

  20. Anisotropic strange star with de Sitter spacetime

    Science.gov (United States)

    Kalam, Mehedi; Rahaman, Farook; Ray, Saibal; Hossein, Sk. Monowar; Karar, Indrani; Naskar, Jayanta

    2012-12-01

    Stars can be treated as self-gravitating fluid. Krori and Barua (J. Phys. A., Math. Gen. 8:508, 1975) gave an analytical solution to that kind of fluids. In this connection, we propose a de Sitter model for an anisotropic strange star with the Krori-Barua spacetime. We incorporate the existence of the cosmological constant on a small scale to study the structure of anisotropic strange stars and come to the conclusion that this doping is very well compatible with the well-known physical features of strange stars.

  1. One-Dimensional Anisotropic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.

  2. Relativistic Solutions of Anisotropic Compact Objects

    CERN Document Server

    Paul, Bikash Chandra

    2016-01-01

    We present a class of new relativistic solutions with anisotropic fluid for compact stars in hydrostatic equilibrium. The interior space-time geometry considered here for compact objects are described by parameters namely, $\\lambda$, $k$, $A$, $R$ and $n$. The values of the geometrical parameters are determined here for obtaining a class of physically viable stellar models. The energy-density, radial pressure and tangential pressure are finite and positive inside the anisotropic stars. Considering some stars of known mass we present stellar models which describe compact astrophysical objects with nuclear density.

  3. Anisotropic Heisenberg model in thin film geometry

    Energy Technology Data Exchange (ETDEWEB)

    Akıncı, Ümit

    2014-01-01

    The effect of the anisotropy in the exchange interaction on the phase diagrams and magnetization behavior of the Heisenberg thin film has been investigated with effective field formulation in a two spin cluster using the decoupling approximation. Phase diagrams and magnetization behaviors have been obtained for several different cases, by grouping the systems in accordance with, whether the surfaces/interior of the film has anisotropic exchange interaction or not. - Highlights: • Phase diagrams of the anisotropic Heisenberg model on the thin film obtained • Dependence of the critical properties on the film thickness obtained • Effect of the anisotropy on the magnetic properties obtained.

  4. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  5. Enhanced-transmission metamaterials as anisotropic plates

    Science.gov (United States)

    Baida, F. I.; Boutria, M.; Oussaid, R.; van Labeke, D.

    2011-07-01

    We present an original design of anisotropic metamaterial plates exhibiting extraordinary transmission through perfectly conductor metallic screens perforated by a subwavelength double-pattern rectangular aperture array. The polarization properties of the fundamental guided mode inside the apertures are at the origin of the anisotropy. The metal thickness is a key parameter that is adjusted in order to get the desired value of the phase difference between the two transversal electromagnetic field components. As an example, we treat the case of a half-wave plate having 92% transmission coefficient. Such a study can be easily extended to design anisotropic plates operating in terahertz or microwave domains.

  6. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    Science.gov (United States)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  7. Raman Tensor Formalism for Optically Anisotropic Crystals.

    Science.gov (United States)

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-03-25

    We present a formalism for calculating the Raman scattering intensity dependent on the polarization configuration for optically anisotropic crystals. It can be applied to crystals of arbitrary orientation and crystal symmetry measured in normal incidence backscattering geometry. The classical Raman tensor formalism cannot be used for optically anisotropic materials due to birefringence causing the polarization within the crystal to be depth dependent. We show that in the limit of averaging over a sufficiently large scattering depth, the observed Raman intensities converge and can be described by an effective Raman tensor given here. Full agreement with experimental results for uniaxial and biaxial crystals is demonstrated.

  8. Ultrafast terahertz spectroscopy study of Kondo insulating thin film SmB6: evidence for an emergent surface state

    Science.gov (United States)

    Zhang, Jingdi; Yong, Jie; Takeuchi, Ichiro; Greene, Richard; Averitt, Richard

    We utilize terahertz time domain spectroscopy to investigate thin films of the heavy fermion compound SmB6, a prototype Kondo insulator. Temperature dependent terahertz (THz) conductivity measurements reveal a rapid decrease in the Drude weight and carrier scattering rate at ~T* =20 K, well below the hybridization gap onset temperature (100 K). Moreover, a low-temperature conductivity plateau (below 20K) indicates the emergence of a surface state with an effective electron mass of 0.1me. Conductivity dynamics following optical excitation are also measured and interpreted using Rothwarf-Taylor (R-T) phenomenology, yielding a hybridization gap energy of 17 meV. However, R-T modeling of the conductivity dynamics reveals a deviation from the expected thermally excited quasiparticle density at temperatures below 20K, indicative of another channel opening up in the low energy electrodynamics. Taken together, these results suggest the onset of a surface state well below the crossover temperature (100K) after long-range coherence of the f-electron Kondo lattice is established. JZ and RDA acknowledge support from DOE - Basic Energy Sciences under Grant No. DE-FG02-09ER46643, under which the THz measurements and data analysis were performed. JY, IT and RLG acknowledge support from ONR N00014-13-1-0635 and NSF DMR 1410665.

  9. Light induced suppression of Kondo effect at amorphous LaAlO3/SrTiO3 interface

    Science.gov (United States)

    Liu, G. Z.; Qiu, J.; Jiang, Y. C.; Zhao, R.; Yao, J. L.; Zhao, M.; Feng, Y.; Gao, J.

    2016-07-01

    We report photoelectric properties of two-dimensional electron gas (2DEG) at an amorphous LaAlO3/SrTiO3 interface. Under visible light illumination (650 nm), an enhancement of electric conductivity is observed over the temperature range from 2 to 300 K. Particularly, a resistance upturn appearing below 25 K, which is further proved to from the Kondo effect, is suppressed by the 650 nm visible light. From the results of light-assisted Hall measurements, light irradiation increases the carrier mobility rather than carrier density in the Kondo regime. It is suggested that light induces the decoherence effect of localized spin states, hence the electron scattering is weakened and the carrier mobility is improved accordingly. Moreover, the enhancement of electrical conductivity by visible light verifies that in-gap states located in the SrTiO3 side of the interface play an important role in the electrical transport of the amorphous SrTiO3-based oxide 2DEG system. Our results provide deeper insight into the photoinduced effects in the 2DEG system, paving the way for the design of optoelectronic devices based on oxides.

  10. Competition between Kondo and indirect exchange at the edges and bulk of graphene, and 2D materials

    Science.gov (United States)

    Allerdt, Andrew; Martins, George; Feiguin, Adrian

    We study the problem of two magnetic impurities at the surface of graphene, BN, MoS2, phosphorene, silicene and germanene using exact numerical methods. We map the band structure of these materials onto one dimensional tight-binding chains in the same spirit as Wilson's numerical renormalization group. We use the density matrix renormalization group to solve the problem exactly, keeping all the information about the underlying lattice. Competition between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions is non-trivial, due to strong non-perturbative effects. Depending on the presence of a pseudogap, or gap, we identify an important directionality and position dependence of the correlations. We present scenarios and regimes where impurities prefer to form their own Kondo clouds instead of an RKKY singlet state, or remain as uncoupled local moments. In the particular case of graphene, ferromagnetism is only stable at half-filling. In addition, we study the effects of spin-orbit coupling, and the presence of edge states.

  11. The effect of Ce dilution on the ferromagnetic ordering and Kondo behavior of CeRuPO

    Science.gov (United States)

    Noorafshan, M.; Nourbakhsh, Z.

    2017-03-01

    The structural, electronic and magnetic properties and Kondo behavior of Ce1-xLax RuPO (x=0, 0.25, 0.5, 0.75 and 1) alloys are investigated using density functional theory by utilizing Wien2k package. The exchange-correlation potential is treated with the generalized gradient approximation (GGA). Moreover, the GGA+U approach (where U is the Hubbard correlation term) is employed to treat the f-electrons properly. We also present a comparative study between the electronic structure and magnetic properties of these alloys within GGA and GGA+U approaches. The calculated lattice parameters and bulk moduli of these alloys as a function of x are in the best agreement with Vegard's linear rule. The total and partial electron density of states and linear coefficient of electronic specific heat of these alloy within GGA and GGA+U are investigated and compared. The effect of La substitution on the Kondo behavior of CeRuPO compound is investigated.

  12. Possible Kondo-Lattice-Enhanced Magnetic Ordering at Anomalously High Temperature in Nd Metal under Extreme Compression

    Science.gov (United States)

    Schilling, James S.; Song, Jing; Soni, Vikas; Lim, Jinhyuk

    Most elemental lanthanides order magnetically at temperatures To well below ambient, the highest being 292 K for Gd. Sufficiently high pressure is expected to destabilize the well localized magnetic 4 f state of the heavy lanthanides, leading to increasing influence of Kondo physics on the RKKY interaction. For pressures above 80 GPa, To for Dy and Tb begins to increase dramatically, extrapolating for Dy to a record-high value near 400 K at 160 GPa. This anomalous increase may be an heretofore unrecognized feature of the Kondo lattice state; if so, one would expect To to pass through a maximum and fall rapidly at even higher pressures. A parallel is suggested to the ferromagnet CeRh3B2 where To = 115 K at ambient pressure, a temperature more than 100-times higher than anticipated from simple de Gennes scaling. Here we discuss recent experiments on Nd where anomalous behavior in To (P) is found to occur at lower pressures, perhaps reflecting the fact that Nd's 4 f wave function is less localized. Work at Washington University is supported by NSF Grant DMR-1104742 and CDAC through NNSA/DOE Grant DE-FC52-08NA28554.

  13. Enhanced superconductivity, Kondo behavior, and negative-curvature resistivity of oxygen-irradiated thin films of aluminium

    Science.gov (United States)

    Sinnecker, E. H. C. P.; Sant'Anna, M. M.; ElMassalami, M.

    2017-02-01

    We followed the evolution of the normal and superconducting properties of Al thin films after each session of various successive oxygen irradiations at ambient temperature. Such irradiated films, similar to the granular ones, exhibit enhanced superconductivity, Kondo behavior, and negative-curvature resistivity. Two distinct roles of oxygen are identified: as a damage-causing projectile and as an implanted oxidizing agent. The former gives rise to the processes involved in the conventional recovery stages. The latter, considered within the context of the Cabrera-Mott model, gives rise to a multistep process which involves charges transfer and creation of stabilized vacancies and charged defects. Based on the outcome of this multistep process, we consider (i) the negative-curvature resistivity as a manifestation of a thermally assisted liberation of trapped electric charges, (ii) the Kondo contribution as a spin-flip scattering from paramagnetic, color-center-type defects, and (iii) the enhancement of Tc as being due to a lattice softening facilitated by the stabilized defects and vacancies. The similarity in the phase diagrams of granular and irradiated films as well as the aging effects are discussed along the same line of reasoning.

  14. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    Science.gov (United States)

    Buot, Felix A.; Otadoy, Roland E. S.; Rivero, Karla B.

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  15. Orphan-Free Anisotropic Voronoi Diagrams

    CERN Document Server

    Canas, Guillermo D

    2011-01-01

    We describe conditions under which an appropriately-defined anisotropic Voronoi diagram of a set of sites in Euclidean space is guaranteed to be composed of connected cells in any number of dimensions. These conditions are natural for problems in optimization and approximation, and algorithms already exist to produce sets of sites that satisfy them.

  16. The Kepler Problem with Anisotropic Perturbations

    CERN Document Server

    Diacu, Florin; Santoprete, Manuele

    2009-01-01

    We study a 2-body problem given by the sum of the Newtonian potential and an anisotropic perturbation that is a homogeneous function of degree $-\\beta$, $\\beta\\ge 2$. For $\\beta>2$, the sets of initial conditions leading to collisions/ejections and the one leading to escapes/captures have positive measure. For $\\beta>2$ and $\\beta\

  17. Observational signatures of anisotropic inflationary models

    CERN Document Server

    Ohashi, Junko; Tsujikawa, Shinji

    2013-01-01

    We study observational signatures of two classes of anisotropic inflationary models in which an inflaton field couples to (i) a vector kinetic term F_{mu nu}F^{mu nu} and (ii) a two-form kinetic term H_{mu nu lambda}H^{mu nu lambda}. We compute the corrections from the anisotropic sources to the power spectrum of gravitational waves as well as the two-point cross correlation between scalar and tensor perturbations. The signs of the anisotropic parameter g_* are different depending on the vector and the two-form models, but the statistical anisotropies generally lead to a suppressed tensor-to-scalar ratio r and a smaller scalar spectral index n_s in both models. In the light of the recent Planck bounds of n_s and r, we place observational constraints on several different inflaton potentials such as those in chaotic and natural inflation in the presence of anisotropic interactions. In the two-form model we also find that there is no cross correlation between scalar and tensor perturbations, while in the vector ...

  18. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments a...

  19. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tension...

  20. Frontiers in Anisotropic Shock-Wave Modeling

    Science.gov (United States)

    2012-02-01

    contact info: Tel.: +44 07840355383, Fax: +44 (0) 1234 758217. Studies of anisotropic materials and the discovery of various novel and unexpected phenomena...19 Figure 4. The Kevlar ...Epoxy IFPT simulated and experimental back surface velocities for 572, 788, and 1015 m/s. The experimental data Kevlar /Epoxy materials recovered after

  1. Anisotropic Interactions between Cold Rydberg Atoms

    Science.gov (United States)

    2015-09-28

    AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...problem with the report +551633739806 Organization / Institution name Instituto de Fisica de Sao Carlos Grant/Contract Title The full title of the

  2. ANISOTROPIC PARABOLIC EQUATIONS WITH MEASURE DATA

    Institute of Scientific and Technical Information of China (English)

    Li Fengquan; Zhao Huixiu

    2001-01-01

    In this paper, we prove the existence of solutions to anisotropic parabolic equations with right hand side term in the bounded Radon measure M(Q) and the initial condition in M(Ω) or in Lm space (with m "small").

  3. A discrete anisotropic model for Scheibe aggregates

    Directory of Open Access Journals (Sweden)

    O. Bang

    1991-05-01

    Full Text Available A discrete anisotropic nonlinear model for the dynamics of Scheibe aggregates is investigated. The collapse of the collective excitations found by Möbius and Kuhn is described as a shrinking ring wave, which is eventually absorbed by an acceptor molecule. An optimal acceptor loss is found.

  4. Casimir interactions for anisotropic magnetodielectric metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Da Rosa, Felipe S [Los Alamos National Laboratory; Dalvit, Diego A [Los Alamos National Laboratory; Milonni, Peter W [Los Alamos National Laboratory

    2008-01-01

    We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.

  5. Tuning the Kondo effect in YbRh{sub 2}Si{sub 2}: Electron spin resonance under pressure and doping

    Energy Technology Data Exchange (ETDEWEB)

    Wykhoff, Jan; Sichelschmidt, J.; Krellner, C.; Geibel, C.; Steglich, F. [MPl for Chemical Physics of Solids, Dresden (Germany); Zakharov, D.V.; Krug von Nidda, H.A.; Loidl, A. [EP V, EKM, University of Augsburg (Germany); Fazlizhanov, I. [E.K. Zavoisky Physical Technical Institute, Kazan (Russian Federation)

    2009-07-01

    The observation of a well defined Electron Spin Resonance (ESR) signal below the Kondo temperature T{sub K} in the heavy-fermion compound YbRh{sub 2}Si{sub 2} refutes a common believe that concentrated rare earth ions in Kondo-lattice intermetallic compounds would be ESR silent in the Kondo regime. The signal shows distinct properties of the Yb{sup 3+} 4f spin and, hence, should contain valuable microscopic information on the dynamical Kondo coupling to the conduction electrons. We investigated the effect of tuning the 4f - conduction electron hybridization strength by Co-doping and hydrostatic pressure up to 3 GPa. Both stabilize antiferromagnetic order, lead to a reduction of T{sub K}, and yield pronounced changes in the ESR parameters. By comparing the quantitatively different effect of pressure and Co doping on the ESR parameters we found a relation of the zero temperature residual ESR linewidth to the residual resistivity and the linear in temperature slope of the linewidth as was similarly reported for the La-doping case.

  6. Views on the Anisotropic Nature of Ilva Valley Region

    Directory of Open Access Journals (Sweden)

    GABRIELA-ALINA MUREŞAN

    2012-01-01

    Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.

  7. 09 September 2013 - Japanese Members of Internal Affairs and Communications Committee House of Representatives visiting the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton. T. Kondo and K. Yoshida present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    09 September 2013 - Japanese Members of Internal Affairs and Communications Committee House of Representatives visiting the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton. T. Kondo and K. Yoshida present.

  8. Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) representative H. Ikukawa visiting ATLAS experiment with Collaboration Spokesperson P. Jenni, KEK representative T. Kondo and Advisor to CERN DG J. Ellis on 15 May 2007.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) representative H. Ikukawa visiting ATLAS experiment with Collaboration Spokesperson P. Jenni, KEK representative T. Kondo and Advisor to CERN DG J. Ellis on 15 May 2007.

  9. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors.

    Science.gov (United States)

    Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2010-10-01

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  10. Network-Based Robust H₂/H∞ Control for Linear Systems With Two-Channel Random Packet Dropouts and Time Delays.

    Science.gov (United States)

    Qiu, Li; Shi, Yang; Yao, Fengqi; Xu, Gang; Xu, Bugong

    2015-08-01

    This paper focuses on the robust output feedback H₂/H∞ control issue for a class of discrete-time networked control systems with uncertain parameters and external disturbance. Sensor-to-controller and controller-to-actuator packet dropouts and time delays are considered simultaneously. According to the stochastic characteristic of the packet dropouts and time delays, a model based on a Markov jump system framework is proposed to randomly compensate for the adverse effect of the two-channel packet dropouts and time delays. To analyze the robust stability of the resulting closed-loop system, a Lyapunov function is proposed, based on which sufficient conditions for the existence of the H₂/H∞ controller are derived in terms of linear matrix inequalities, ensuring robust stochastic stability as well as the prescribed H₂ and H∞ performance. Finally, an angular positioning system is exploited to demonstrate the effectiveness and applicability of the proposed design strategy.

  11. Anisotropic Spin Splitting in Step Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Fei; CHEN Yong-Hai; HAO Guo-Dong; WANG Zhan-Guo

    2009-01-01

    By the method of finite difference,the anisotropic spin splitting of the Alx Ga1-x As/GaAs/Aly Ga1-y As/Alx Ga1-x As step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field.We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field.The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin.The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.

  12. Observation of an Anisotropic Wigner Crystal

    Science.gov (United States)

    Liu, Yang; Hasdemir, S.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-09-01

    We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1 /3 ≲ν ≲2 /3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B∥) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B∥. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B∥ about 10 times smaller than the resistance perpendicular to B∥. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal.

  13. Designing novel anisotropic lenses with transformation optics

    Science.gov (United States)

    Jiang, Wei Xiang; Bao, Di; Cui, Tie Jun

    2016-04-01

    Transformation optics (TO), based on the formally invariant property of Maxwell’s equations, has provided a powerful strategy to design anisotropic or nearly-isotropic devices, in both time-varied and static fields. In this paper, we present and investigate the negative refraction or reflection phenomena by positive-index anisotropic materials based on transformation-optics design. First, we propose and design an inhomogeneous transformed planar lens, in which we will show the negative-refraction-like properties of transformation media. Secondly, we present a homogeneous transformed lens based on linear spatial transformation, in which we will reveal the negative-reflection properties of positive transformation media. Both transformed lenses have unusual properties which are different from those in natural materials.

  14. Anisotropic silica mesostructures for DNA encapsulation

    Indian Academy of Sciences (India)

    Aparna Ganguly; Ashok K Ganguli

    2013-04-01

    The encapsulation of biomolecules in inert meso or nanostructures is an important step towards controlling drug delivery agents. Mesoporous silica nanoparticles (MSN) are of immense importance owing to their high surface area, large pore size, uniform particle size and chemical inertness. Reverse micellar method with CTAB as the surfactant has been used to synthesize anisotropic mesoporous silica materials. We have used the anisotropic silica nanostructures for DNA encapsulation studies and observed a loading capacity of ∼8 g mg-1 of the sample. On functionalizing the pores of silica with amine group, the amount of DNA loaded on the rods decreases which is due to a reduction in the pore size upon grafting of amine groups.

  15. Anisotropic dark energy and CMB anomalies

    CERN Document Server

    Battye, Richard

    2009-01-01

    We investigate the breaking of global statistical isotropy caused by a dark energy component with an energy-momentum tensor which has point symmetry, that could represent a cubic or hexagonal crystalline lattice. In such models Gaussian, adiabatic initial conditions created during inflation can lead to anisotropies in the cosmic microwave background whose spherical harmonic coefficients are correlated, contrary to the standard assumption. We develop an adaptation of the line of sight integration method that can be applied to models where the background energy-momentum tensor is isotropic, but whose linearized perturbations are anisotropic. We then show how this can be applied to the cases of cubic and hexagonal symmetry. We compute quantities which show that such models are indistinguishable from isotropic models even in the most extreme parameter choices, in stark contrast to models with anisotropic initial conditions based on inflation. The reason for this is that the dark energy based models contribute to ...

  16. Rainbow metric from quantum gravity: anisotropic cosmology

    CERN Document Server

    Assanioussi, Mehdi

    2016-01-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter $\\beta$ in the modified dispersion relation of the modes. Hence inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [arXiv:1412.6000], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.

  17. Rainbow metric from quantum gravity: Anisotropic cosmology

    Science.gov (United States)

    Assanioussi, Mehdi; Dapor, Andrea

    2017-03-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter β in the modified dispersion relation of the modes, hence, inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015), 10.1016/j.physletb.2015.10.043], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.

  18. Anisotropic properties of tracheal smooth muscle tissue.

    Science.gov (United States)

    Sarma, P A; Pidaparti, R M; Meiss, R A

    2003-04-01

    The anisotropic (directional-dependent) properties of contracting tracheal smooth muscle tissue are estimated from a computational model based on the experimental data of length-dependent stiffness. The area changes are obtained at different muscle lengths from experiments in which stimulated muscle undergoes unrestricted shortening. Then, through an interative process, the anisotropic properties are estimated by matching the area changes obtained from the finite element analysis to those derived from the experiments. The results obtained indicate that the anisotropy ratio (longitudinal stiffness to transverse stiffness) is about 4 when the smooth muscle undergoes 70% strain shortening, indicating that the transverse stiffness reduces as the longitudinal stiffness increases. It was found through a sensitivity analysis from the simulation model that the longitudinal stiffness and the in-plane shear modulus are not very sensitive as compared to major Poisson's ratio to the area changes of the muscle tissue. Copyright 2003 Wiley Periodicals, Inc.

  19. On Cracking of Charged Anisotropic Polytropes

    CERN Document Server

    Azam, M

    2016-01-01

    Recently in \\cite{34}, the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways $(i)$ by perturbing polytropic constant, anisotropy and charge parameter $(ii)$ by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to \\cite{33} in the absence of charge.

  20. Anisotropic stellar models admitting conformal motion

    Science.gov (United States)

    Banerjee, Ayan; Banerjee, Sumita; Hansraj, Sudan; Ovgun, Ali

    2017-04-01

    We address the problem of finding static and spherically symmetric anisotropic compact stars in general relativity that admit conformal motions. The study is framed in the language of f( R) gravity theory in order to expose opportunity for further study in the more general theory. Exact solutions of compact stars are found under the assumption that spherically symmetric spacetimes admit conformal motion with anisotropic matter distribution in nature. In this work, two cases have been studied for the existence of such solutions: first, we consider the model given by f(R)=R and then f(R)=aR+b . Finally, specific characteristics and physical properties have been explored analytically along with graphical representations for conformally symmetric compact stars in f( R) gravity.

  1. Bond diluted anisotropic quantum Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Akıncı, Ümit, E-mail: umit.akinci@deu.edu.tr

    2013-10-15

    Effects of the bond dilution on the critical temperatures, phase diagrams and the magnetization behaviors of the isotropic and anisotropic quantum Heisenberg model have been investigated in detail. For the isotropic case, bond percolation threshold values have been determined for several numbers of two (2D) and three (3D) dimensional lattices. In order to investigate the effect of the anisotropy in the exchange interaction on the results obtained for the isotropic model, a detailed investigation has been made on a honeycomb lattice. Some interesting results, such as second order reentrant phenomena in the phase diagrams have been found. - Highlights: • Anisotropic quantum Heisenberg model with bond dilution investigated. • Bond percolation threshold values given for 2D and 3D lattices in isotropic case. • Phase diagrams and ground state magnetizations investigated in detail. • Variation of the bond percolation threshold values with anisotropy determined.

  2. Optical sharper focusing in an anisotropic crystal.

    Science.gov (United States)

    Wang, Sicong; Xie, Xiangsheng; Gu, Min; Zhou, Jianying

    2015-06-01

    Optical super-resolution technique through tight focusing is a widely used technique to image material samples with anisotropic optical properties. The knowledge of the field distribution of a tightly focused beam in anisotropic media is both scientifically interesting and technologically important. In this paper, the optical properties of a uniaxial crystal with the optic axis perpendicular to the interface under a tight focusing configuration are studied with rigorous theoretical and numerical analysis. The significant effect of the Poynting vector on the focal position introduces an obvious displacement of the focal spot formed by the extraordinary waves (e-ray). Moreover, a sharper focus with a lateral size of 0.22λ is obtained as a result of the effective separation of the ordinary waves (o-ray) and the e-ray. It provides a new tool to fabricate optical structures with higher resolutions than that in an isotropic medium through the far-field method.

  3. Formation of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  4. Comparing anisotropic displacement parameters in protein structures.

    Science.gov (United States)

    Merritt, E A

    1999-12-01

    The increasingly widespread use of synchrotron-radiation sources and cryo-preparation of samples in macromolecular crystallography has led to a dramatic increase in the number of macromolecular structures determined at atomic or near-atomic resolution. This permits expansion of the structural model to include anisotropic displacement parameters U(ij) for individual atoms. In order to explore the physical significance of these parameters in protein structures, it is useful to be able to compare quantitatively the electron-density distribution described by the refined U(ij) values associated with corresponding crystallographically independent atoms. This paper presents the derivation of an easily calculated correlation coefficient in real space between two atoms modeled with anisotropic displacement parameters. This measure is used to investigate the degree of similarity between chemically equivalent but crystallographically independent atoms in the set of protein structural models currently available from the Protein Data Bank.

  5. Anisotropic permeability in deterministic lateral displacement arrays

    CERN Document Server

    Vernekar, Rohan; Loutherback, Kevin; Morton, Keith; Inglis, David

    2016-01-01

    We investigate anisotropic permeability of microfluidic deterministic lateral displacement (DLD) arrays. A DLD array can achieve high-resolution bimodal size-based separation of micro-particles, including bioparticles such as cells. Correct operation requires that the fluid flow remains at a fixed angle with respect to the periodic obstacle array. We show via experiments and lattice-Boltzmann simulations that subtle array design features cause anisotropic permeability. The anisotropy, which indicates the array's intrinsic tendency to induce an undesired lateral pressure gradient, can lead to off-axis flows and therefore local changes in the critical separation size. Thus, particle trajectories can become unpredictable and the device useless for the desired separation duty. We show that for circular posts the rotated-square layout, unlike the parallelogram layout, does not suffer from anisotropy and is the preferred geometry. Furthermore, anisotropy becomes severe for arrays with unequal axial and lateral gaps...

  6. Anomalous anisotropic magnetoresistance effects in graphene

    Directory of Open Access Journals (Sweden)

    Yiwei Liu

    2014-09-01

    Full Text Available We investigate the effect of external stimulus (temperature, magnetic field, and gases adsorptions on anisotropic magnetoresistance (AMR in multilayer graphene. The graphene sample shows superlinear magnetoresistance when magnetic field is perpendicular to the plane of graphene. A non-saturated AMR with a value of −33% is found at 10 K under a magnetic field of 7 T. It is surprisingly to observe that a two-fold symmetric AMR at high temperature is changed into a one-fold one at low temperature for a sample with an irregular shape. The anomalous AMR behaviors may be understood by considering the anisotropic scattering of carriers from two asymmetric edges and the boundaries of V+(V- electrodes which serve as active adsorption sites for gas molecules at low temperature. Our results indicate that AMR in graphene can be optimized by tuning the adsorptions, sample shape and electrode distribution in the future application.

  7. Dynamics of anisotropic f(R) cosmology

    CERN Document Server

    Leon, Genly

    2010-01-01

    We construct general anisotropic cosmological scenarios governed by an f(R) gravitational sector. Focusing then on Kantowski-Sachs geometries in the case of $R^n$-gravity we perform a detailed phase-space analysis. We find that at late times the universe can result to a state of accelerating expansion, and additionally, for a particular n-range (2anisotropic geometries in modified gravitational frameworks present radically different cosmological behaviors comparing to the simple isotropic scenarios.

  8. Multi-point measurement using two-channel reflectometer with antenna switching for study of high-frequency fluctuations in GAMMA 10

    Science.gov (United States)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2017-03-01

    A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.

  9. Electromagnetic field representation in inhomogeneous anisotropic media

    Science.gov (United States)

    Mohsen, A.

    1973-01-01

    Some of the basic developments in the theory of electromagnetic field representation in terms of Hertz vectors are reviewed. A solution for the field in an inhomogeneous anisotropic medium is given in terms of the two Hertz vectors. Conditions for presentation of the field in terms of uncoupled transverse electric and transverse magnetic modes, in a general orthogonal coordinate system, are derived when the permeability and permittivity tensors have only diagonal components. These conditions are compared with some known special cases.

  10. Anisotropic magnetocapacitance in ferromagnetic-plate capacitors

    Science.gov (United States)

    Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.

    2015-04-01

    The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.

  11. Electromagnetic Effects on Cracking of Anisotropic Polytropes

    CERN Document Server

    Sharif, M

    2016-01-01

    In this paper, we study the electromagnetic effects on stability of spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman Oppenheimer Volkoff equations. We apply perturbations on matter variables via polytropic constant as well as polytropic index and formulate the force distribution function. It is found that the compact object is stable for feasible choice of perturbed polytropic index in the presence of charge.

  12. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    Science.gov (United States)

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction.

  13. Symmetry analysis for anisotropic field theories

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Lorena; Vergara, J. David [Instituto de Ciencias Nucleares, UNAM, Circuito Exterior s/n, Ciudad Universitaria. Delg. Coyoacan. C.P. 04510 Mexico DF (Mexico)

    2012-08-24

    The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.

  14. Effect of inflation on anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, L.G.; Stein-Schabes, J.A.

    1986-03-01

    The effects of anisotropic cosmologies on inflation are studied. By properly formulating the field equations it is possible to show that any model that undergoes sufficient inflation will become isotropic on scales greater than the horizon today. Furthermore, we shall show that it takes a very long time for anisotropies to become visible in the observable part of the Universe. It is interesting to note that the time scale will be independent of the Bianchi Model and of the initial anisotropy. 6 refs.

  15. Electromagnetic effects on cracking of anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Muhammad; Sadiq, Sobia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-10-15

    In this paper, we study the electromagnetic effects on the stability of a spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman-Oppenheimer-Volkoff equations. We apply perturbations on matter variables via the polytropic constant as well as the polytropic index and formulate the force distribution function. It is found that the compact object is stable for a feasible choice of perturbed polytropic index in the presence of charge. (orig.)

  16. On anisotropic black branes with Lifshitz scaling

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2016-08-01

    Full Text Available In this paper, based on the method of scalar perturbations, we construct the anisotropic charged Lifshitz background perturbatively up to leading order in the anisotropy. We perform our analysis both in the extremal as well as in the non-extremal limit. Finally, we probe the so called superfluid phase of the boundary theory and explore the effects of anisotropy on the superconducting condensate.

  17. Highly-anisotropic hydrodynamics for central collisions

    CERN Document Server

    Ryblewski, Radoslaw

    2016-01-01

    The framework of leading-order anisotropic hydrodynamics is supplemented with realistic equation of state and self-consistent freeze-out prescription. The model is applied to central proton-nucleus collisions. The results are compared to those obtained within standard Israel-Stewart second-order viscous hydrodynamics. It is shown that the resulting hadron spectra are highly-sensitive to the hydrodynamic approach that has been used.

  18. Crossing Statistics of Anisotropic Stochastic Surface

    CERN Document Server

    Nezhadhaghighi, M Ghasemi; Yasseri, T; Allaei, S M Vaez

    2015-01-01

    We use crossing statistics and its generalization to determine the anisotropic direction imposed on a stochastic fields in $(2+1)$Dimension. This approach enables us to examine not only the rotational invariance of morphology but also we can determine the Gaussianity of underlying stochastic field in various dimensions. Theoretical prediction of up-crossing statistics (crossing with positive slope at a given threshold $\\alpha$ of height fluctuation), $\

  19. On Radiative Fluids in Anisotropic Spacetimes

    OpenAIRE

    Shogin, Dmitry; Amundsen, Per Amund

    2016-01-01

    We apply the second-order Israel-Stewart theory of relativistic fluid- and thermodynamics to a physically realistic model of a radiative fluid in a simple anisotropic cosmological background. We investigate the asymptotic future of the resulting cosmological model and review the role of the dissipative phenomena in the early Universe. We demonstrate that the transport properties of the fluid alone, if described appropriately, do not explain the presently observed accelerated expansion of the ...

  20. Anisotropic nanomaterials: structure, growth, assembly, and functions

    OpenAIRE

    Panikkanvalappil R. Sajanlal; Theruvakkattil S. Sreeprasad; Samal, Akshaya K.; Thalappil Pradeep

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates...

  1. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  2. Anisotropic cosmological solutions in massive vector theories

    Science.gov (United States)

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    2016-11-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/H decreases with the decrease of v. As long as the conditions |Σ| ll H and v2 ll phi2 are satisfied around the onset of late-time cosmic acceleration, where phi is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state wDE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value wDE(iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.

  3. Effect of inflation on anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, L.G.; Stein-Schabes, J.A.

    1986-08-15

    We study the effects of anisotropic cosmologies on inflation. By properly formulating the field equations it is possible to show that any model that undergoes sufficient inflation will become isotropic on scales greater than the horizon today. Furthermore, we shall show that it takes a very long time for anisotropies to become visible in the observable part of the Universe. It is interesting to note that the time scale will be independent of the Bianchi model and of the initial anisotropy.

  4. Active Damping Using Distributed Anisotropic Actuators

    Science.gov (United States)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  5. Anisotropic power-law k-inflation

    CERN Document Server

    Ohashi, Junko; Tsujikawa, Shinji

    2013-01-01

    It is known that power-law k-inflation can be realized for the Lagrangian $P=Xg(Y)$, where $X=-(\\partial \\phi)^2/2$ is the kinetic energy of a scalar field $\\phi$ and $g$ is an arbitrary function in terms of $Y=Xe^{\\lambda \\phi/M_{pl}}$ ($\\lambda$ is a constant and $M_{pl}$ is the reduced Planck mass). In the presence of a vector field coupled to the inflaton with an exponential coupling $f(\\phi) \\propto e^{\\mu \\phi/M_{pl}}$, we show that the models with the Lagrangian $P=Xg(Y)$ generally give rise to anisotropic inflationary solutions with $\\Sigma/H=constant$, where $\\Sigma$ is an anisotropic shear and $H$ is an isotropic expansion rate. Provided these anisotropic solutions exist in the regime where the ratio $\\Sigma/H$ is much smaller than 1, they are stable attractors irrespective of the forms of $g(Y)$. We apply our results to concrete models of k-inflation such as the generalized dilatonic ghost condensate/the DBI model and we numerically show that the solutions with different initial conditions converge...

  6. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari

    2016-01-01

    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  7. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  8. Anisotropic hydrodynamics for conformal Gubser flow

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)

    2016-12-15

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  9. ARTc: Anisotropic reflectivity and transmissivity calculator

    Science.gov (United States)

    Malehmir, Reza; Schmitt, Douglas R.

    2016-08-01

    While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.

  10. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  11. Longitudinal fluctuations and decorrelation of anisotropic flow

    Science.gov (United States)

    Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian

    2016-12-01

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  12. Anisotropic properties of TaS2

    Institute of Scientific and Technical Information of China (English)

    Qiao Yan-Bin; Li Yan-Ling; Zhong Guo-Hua; Zeng Zhi; Qin Xiao-Ying

    2007-01-01

    The anisotropic properties of 1T- and 2H-TaS2 are investigated by the density functional theory within the framework of full-potential linearized augmented plane wave method. The band structures of 1T- and 2H-TaS2 exhibit anisotropic properties and the calculated electronic specific-heat coefficient γ of 2H-TaS2 accords well with the existing experimental value. The anisotropic frequency-dependent dielectric functions including the effect of the Drude term are analysed, where the εxx(ω) spectra corresponding to the electric field E perpendicular to the z axis show excellent agreement with the measured results except for the ε1xx(ω) of 1T-TaS2 below the energy level of 2.6 eV which is due to the lack of the enough CDW information for reference in our calculation. Furthermore, based on the values of optical effective mass ratio P of 1T and 2H phases it is found that the anisotropy in 2H-TaS2 is stronger than that in 1T-TaS2.

  13. Anisotropic cosmological solutions in massive vector theories

    CERN Document Server

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate $\\Sigma$ and the isotropic expansion rate $H$ remains nearly constant in the radiation-dominated epoch. In the regime where $\\Sigma/H$ is constant, the spatial vector component $v$ works as a dark radiation with the equation of state close to $1/3$. During the matter era, the ratio $\\Sigma/H$ decreases with the decrease of $v$. As long as the conditions $|\\Sigma| \\ll H$ and $v^2 \\ll \\phi^2$ are satisfied around the onset of late-time cosmic acceleration, where $\\phi$ is the temporal vector ...

  14. Phase diagram of the Shastry-Sutherland Kondo lattice model with classical localized spins: a variational calculation study

    Science.gov (United States)

    Shahzad, Munir; Sengupta, Pinaki

    2017-08-01

    We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.

  15. Spin-glass, antiferromagnetism and Kondo behavior in Ce2Au1-CoSi3 alloys

    Indian Academy of Sciences (India)

    Subham Majumdar; E V Sampathkumaran; St Berger; M Della Mea; H Michor; E Bauer; M Brando; J Hemberger; A Loidl

    2002-05-01

    Recently, the solid solution Ce2Au1-CoSi3 has been shown to exhibit many magnetic anomalies associated with the competition between magnetic ordering and the Kondo effect. Here we report high pressure electrical resistivity of Ce2AuSi3, ac susceptibility () and magnetoresistance of various alloys of this solid solution in order to gain better knowledge of the magnetism of these alloys. High pressure resistivity behavior is consistent with the proposal that Ce2AuSi3 lies at the left-hand side of the maximum in Doniach’s magnetic phase diagram. The ac data reveal that there are in fact two magnetic transitions, one at 2 K and the other at 3 K for this compound, both of which are spin-glass-like. However, as the Co concentration is increased, antiferromagnetism is stabilized for intermediate compositions before attaining non-magnetism for the Co end member.

  16. Single-crystalline study of the ferromagnetic kondo compound UCu{sub 0.9}Sb{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bukowski, Z. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Troc, R. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Stepien-Damm, J. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); SuIkowski, C. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Tran, V.H. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland)]. E-mail: V.H.Tran@int.pan.wroc.pl

    2005-11-10

    Single crystals of UCu{sub 0.9}Sb{sub 2} have been grown using the self-flux method and studied by means of X-ray diffraction, magnetic and electrical transport measurements. This compound crystallizes in a tetragonal structure of the HfCuSi{sub 2}-type (space group P4/nmm) and orders ferromagnetically below T {sub C} = 113 K with the easy-magnetization direction along the c-axis exhibiting a large magnetocrystalline anisotropy in both the ordered and paramagnetic states. The electrical resistivity, magnetoresistivity and thermoelectric power data are also given. A Kondo-like behaviour of the resistivity in the paramagnetic state is reported.

  17. High pressure studies on the ferromagnetic dense Kondo systems CeRh3B2 and UCu2Ge2

    Science.gov (United States)

    Cornelius, A. L.; Schilling, J. S.; Endstra, T.; Mydosh, J. A.

    1994-07-01

    The dependence of the Curie temperature of the anomalous ferromagnets UCu2Ge2 and CeRh3B2 on hydrostatic pressure to 11 GPa is determined using a diamond-anvil cell loaded with dense helium as pressure medium. A sensitive primary/secondary coil system allows the detection of the ferromagnetic transition in the ac susceptibility for tiny samples with less than 1 μ mass. The Curie temperatures of the above two compounds, Tc≊110 K and 118 K, both increase initially under pressure but pass through maxima at 8 GPa and 2 GPa, respectively, before falling rapidly at higher pressures. We take this as evidence that both compounds behave as dense Kondo system, where Tc depends on the exchange coupling J according to a magnetic phase diagram originally proposed by Doniach.

  18. An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems

    CERN Document Server

    Li, Xianping

    2010-01-01

    Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral ...

  19. Modelling of a compact anisotropic star as an anisotropic fluid sphere in $f(T)$ gravity

    CERN Document Server

    Momeni, D; Qaisar, S; Zaz, Zaid; Myrzakulov, R

    2016-01-01

    In this paper, we have studied the new exact model of anisotropic star in $f(T)$ theory of gravity. The dynamical equations in $f(T)$ theory with the anisotropic fluid have been solved by using Krori-Barua solution. We have determined that all the obtained solutions are free from central singularity and potentially stable. The observed values of mass and radius of the different strange stars RX J 1856-37, Her X-1, and Vela X-12 have been used to calculate the values of unknown constants in Krori and Barua metric. The physical parameters like anisotropy, stability and redshift of the stars have been investigated in detail.

  20. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    CERN Document Server

    Takezawa, Akihiro

    2014-01-01

    The effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, they can be efficiently designed by handling the physical properties of anisotropic materials directly. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 10% compared with existing multilayer cloaking by isotropic materials in eight-layer cylindrical cloaking materials. The same performance with eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using anisotropic materials. Cloaking with a about 50% reduct...