WorldWideScience

Sample records for two-center atomic orbital

  1. Unified treatment of complex and real rotation-angular functions for two-center overlap integrals over arbitrary atomic orbitals

    CERN Document Server

    Guseinov, I I

    2010-01-01

    The new combined formulas have been established for the complex and real rotation-angular functions arising in the evaluation of two-center overlap integrals over arbitrary atomic orbitals in molecular coordinate system. These formulas can be useful in the study of different quantum mechanical problems in both the theory and practice of calculations dealing with atoms, molecules, nuclei and solids when the integer and noninteger n complex and real atomic orbitals basis sets are emploed. This work presented the development of our previous paper (I.I. Guseinov, Phys. Rev. A, 32 (1985) 1864).

  2. Two-Centered Magical Charge Orbits

    CERN Document Server

    Andrianopoli, Laura; Ferrara, Sergio; Marrani, Alessio; Trigiante, Mario

    2011-01-01

    We determine the two-centered generic charge orbits of magical N = 2 and maximal N = 8 supergravity theories in four dimensions. These orbits are classified by seven U-duality invariant polynomials, which group together into four invariants under the horizontal symmetry group SL(2,R). These latter are expected to disentangle different physical properties of the two-centered black-hole system. The invariant with the lowest degree in charges is the symplectic product (Q1,Q2), known to control the mutual non-locality of the two centers.

  3. On the Classification of Two Center Orbits for Magical Black Holes

    CERN Document Server

    Andrianopoli, Laura; Ferrara, Sergio

    2013-01-01

    We report on recent work [4] concerning the determination of the two-centered generic charge orbits of magical $\\mathcal{N} = 2$ and maximal $\\mathcal{N} = 8$ supergravity theories in four dimensions.

  4. Calculation of Two-center Nuclear Attraction Integrals over Slater Type Orbitals in Molecular Coordinate System

    Institute of Scientific and Technical Information of China (English)

    MAMEDOV,B.A.

    2004-01-01

    A closed analytical relation is derived for the two-center nuclear attraction integrals over Slater type orbitals (STOs) in terms of binomial coefficients. This formula can be used in highly accurate calculations of the nuclear attraction integrals. The relationships obtained are valid for arbitrary values of quantum numbers and screening constants of STOs and location of nuclei.

  5. Numerical evaluation of two-center integrals over Slater type orbitals

    Science.gov (United States)

    Kurt, S. A.; Yükçü, N.

    2016-03-01

    Slater Type Orbitals (STOs) which one of the types of exponential type orbitals (ETOs) are used usually as basis functions in the multicenter molecular integrals to better understand physical and chemical properties of matter. In this work, we develop algorithms for two-center overlap and two-center two-electron hybrid and Coulomb integrals which are calculated with help of translation method for STOs and some auxiliary functions by V. Magnasco's group. We use Mathematica programming language to produce algorithms for these calculations. Numerical results for some quantum numbers are presented in the tables. Consequently, we compare our obtained numerical results with the other known literature results and other details of evaluation method are discussed.

  6. The Atomic orbitals of the topological atom

    OpenAIRE

    Ramos-Cordoba, Eloy; Salvador Sedano, Pedro

    2013-01-01

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These c...

  7. The atomic orbitals of the topological atom.

    Science.gov (United States)

    Ramos-Cordoba, Eloy; Salvador, Pedro; Mayer, István

    2013-06-07

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

  8. Real and Hybrid Atomic Orbitals.

    Science.gov (United States)

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  9. Evaluation of Two-center One- and Two-electron Integrals over Slater Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    YAKAR Yusuf; (O)ZMEN Ayhan; ATAV (U)lfet

    2006-01-01

    A formulation previously presented by the authors for coulomb integrals was generalized to other two-center integrals, except exchange integral. Within this frame, molecular integrals were expressed in terms of some new functions closely related to the well-known incomplete gamma functions and these functions recursively evaluated.Special issues arising in the case of hybrid integrals were addressed, and the results were compared with the ones found in the literature.

  10. Excitation, two-center interference and the orbital geometry in laser-induced nonsequential double ionization of diatomic molecules

    CERN Document Server

    Shaaran, T; Faria, C Figueira de Morisson

    2011-01-01

    We address the influence of the molecular orbital geometry and of the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules for different molecular species, namely $\\mathrm{N}_2$ and $\\mathrm{Li}_2$. We focus on the recollision excitation with subsequent tunneling ionization (RESI) mechanism, in which the first electron, upon return, promotes the second electron to an excited state, from where it subsequently tunnels. We show that the electron-momentum distributions exhibit interference maxima and minima due to the electron emission at spatially separated centers. We provide generalized analytical expressions for such maxima or minima, which take into account $s$ $p$ mixing and the orbital geometry. The patterns caused by the two-center interference are sharpest for vanishing alignment angle and get washed out as this parameter increases. Apart from that, there exist features due to the geometry of the lowest occupied molecular ...

  11. Electronic structure interpolation via atomic orbitals.

    Science.gov (United States)

    Chen, Mohan; Guo, G-C; He, Lixin

    2011-08-17

    We present an efficient scheme for accurate electronic structure interpolation based on systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse k-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals algorithms. We find that usually 16-25 orbitals per atom can give an accuracy of about 10 meV compared to the full ab initio calculations, and the accuracy can be systematically improved by using more atomic orbitals. The scheme is easy to implement and robust, and works equally well for metallic systems and systems with complicated band structures. Furthermore, the atomic orbitals have much better transferability than Shirley's basis and Wannier functions, which is very useful for perturbation calculations.

  12. Atomic Orbitals for the New Millennium

    CERN Document Server

    Williams, J M

    1999-01-01

    This very short article introduces a set of nested atomic orbitals, called MCAS, to replace the current s, p, d, and f orbitals. The simplest orbital is a tetrahedrally directed, four lobed, mono-orbital instead of the spherical s orbital. All the other orbitals, no matter what their energy (shell) level is, are nested with this one. All the electrons have the same spin and only one electron is allotted to each orbital. Electron spin pairing is accomplished through opposing orbitals instead of actual electron spin reversal. Orbital energy level is maintained by nuclear propulsion through perigee kick. Orbitals hybridize as Aufbau proceeds, in contrast to the inflexible, current building model. The inert gases have completely uniform electronic shells that contain only one orbital type per shell. Since outer completed shells have only one type of orbital, all eight outer electrons are identical rather than being of two types as occurs in the current model; hence, Lewis' electron-dot octet. Hydrogen should resi...

  13. Comment on Unified treatment for two-center one-electron molecular integrals over Slater-type orbitals with integer and noninteger principal quantum numbers

    OpenAIRE

    Guseinov, I. I.

    2005-01-01

    In a recent paper Ozdogan (Z. Naturforsch, 59a(2004)743) published formulas for evaluating the two-center overlap and nuclear attraction integrals over integer and noninteger Slater type orbitals. The purpose of this article is to point out that the same formulas have previously been established by Guseinov et al. (J.Mol.Model.,8(2002)272) by using the same method. As we demonstrated in our Comment (Int.J.Quantum Chem., 91(2003)62), the expansion formula for the product of two normalized asso...

  14. Software for Hydrogenic Atoms and Orbitals Visualization

    Directory of Open Access Journals (Sweden)

    Kowit KITTIWUTTHISAKDI

    2005-06-01

    Full Text Available A program was developed in java for hydrogenic atoms and orbitals visualization. The first 18 atoms in the periodic table were approximated with a hydrogenic wave-function. This simple hydrogenic wave-function allowed quick calculation for real-time interactive visualization. Electron cloud based models were employed and displayed by a ray-tracing technique. One or more orbitals that defined an atom could be selected and displayed. A user could zoom in, zoom out, and rotate the displayed cloud in real time. The approximation method for probability integrals was summation. The intensity of color at each point on the screen directly related to the integrated probability in finding the electron across the viewer%s eye path.

  15. Atomic orbital self-energy and electronegativity

    CERN Document Server

    Ribeiro, Mauro

    2016-01-01

    In this work, atomic calculations were performed within the local-density and generalized-gradient approximations of exchange and correlation density functionals within density-functional theory to provide accurate periodic trends of first ionization energies and electron affinities of the atomic series from hydrogen to xenon. Electronegativities were determined directly from Mulliken's formula and were shown to be equivalently calculated rather by using Slater-Janak's transition state or by calculating the electrostatic self-energies of the orbitals involved in the transition to ions. Finally, comparisons were made with other theoretical and experimental results, including Mulliken-Jaff\\'e's electronegativity scale.

  16. On the Evaluation of Two-Center Overlap Integrals over Integer and Noninteger -Center Overlap Integrals over Integer and Noninteger n-Slater-Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    T. Ozdogan, M. Orbay; S. Gümüs

    2002-01-01

    In this study, two-center overlap integrals over Slater-type orbitals (STOs) with integer and noninteger principal quantum numbers in unaligned coordinate systems have been calculated using formulas for overlap integrals in aligned coordinate systems obtained by the author's previous work (T. Ozdogan and M. Orbay, Int. J. Quant. Chem. 87(2002) 15). The obtained results for integer case have been found to be in excellent agreement with the prior literature.On the other hand, to the best of authors knowledge, because of the scarcity of the literatures on the use of noninteger n-STOs in unaligned coordinate systems, the results for noninteger case have been tested with the limit of integer case,and good agreement has been obtained too.

  17. Spin-sensitive atom mirror via spin-orbit interaction

    Science.gov (United States)

    Zhou, Lu; Zheng, Ren-Fei; Zhang, Weiping

    2016-11-01

    Based on the spin-orbit coupling recently implemented in a neutral cold-atom gas, we propose a scheme to realize spin-dependent scattering of cold atoms. In particular we consider a matter wave packet of cold-atom gas impinging upon a step potential created by the optical light field, inside of which the atoms are subject to spin-orbit interaction. We show that the proposed system can act as a spin polarizer or spin-selective atom mirror for the incident atomic beam. The principle and the operating parameter regime of the system are carefully discussed.

  18. Periodic Orbit Theory for Rydberg Atoms in External Fields

    Science.gov (United States)

    Dando, P. A.; Monteiro, T. S.; Owen, S. M.

    1998-03-01

    Although hydrogen in external fields is a paradigm for the application of periodic orbits and the Gutzwiller trace formula to a real system, the trace formula has never been applied successfully to other Rydberg atoms. We show that spectral fluctuations of general Rydberg atoms are given with remarkable precision by the addition of diffractive terms. Previously unknown features in atomic spectra are exposed: there are new modulations that are neither periodic orbits nor combinations of periodic orbits; ``core shadowing'' generally decreases primitive periodic orbit amplitudes but can also lead to increases.

  19. Periodic Orbit Theory for Rydberg Atoms in External Fields

    CERN Document Server

    Dando, P A; Owen, S M

    1998-01-01

    Although hydrogen in external fields is a paradigm for the application of periodic orbits and the Gutzwiller trace formula to a real system, the trace formula has never been applied successfully to other Rydberg atoms. We show that spectral fluctuations of general Rydberg atoms are given with remarkable precision by the addition of diffractive terms. Previously unknown features in atomic spectra are exposed: there are new modulations that are neither periodic orbits nor combinations of periodic orbits; `core-shadowing' generally decreases primitive periodic orbit amplitudes but can also lead to increases.

  20. Atoms in parallel fields: Analysis with diffractive periodic orbits

    Science.gov (United States)

    Owen, S. M.; Monteiro, T. S.; Dando, P. A.

    2000-11-01

    We show that fluctuations in the density of states of nonhydrogenic atoms in parallel fields are strongly influenced by diffractive periodic orbits. Unlike typical systems with a diffractive point scatterer, the atomic core of small atoms like lithium and helium is best understood as a combined geometric and diffractive scatterer. Each Gutzwiller (geometric) periodic orbit is paired with a diffractive orbit of the same action. We investigate, particularly, amplitudes for contributions from repetitions, and multiple scattering orbits. We find that periodic orbit repetitions are described by ``hybrid'' orbits, combining both diffractive and geometric core scatters, and that by including all possible permutations we can obtain excellent agreement between the semiclassical model and accurate fully quantal calculations. For high repetitions, we find even one-scatter diffractive contributions become of the same order as those of the geometric periodic orbit for repetition numbers n~ħ-1/2. Although the contribution of individual diffractive orbits is suppressed by O(ħ1/2) relative to the geometric periodic orbits, the proliferation of diffractive orbits with increasing period means that the diffractive effect for the atom can persist in the ħ-->0 limit.

  1. Vortex line in spin-orbit coupled atomic Fermi gases

    OpenAIRE

    2012-01-01

    PHYSICAL REVIEW A 85, 013622 (2012) Vortex line in spin-orbit coupled atomic Fermi gases M. Iskin Department of Physics, Koc¸ University, Rumelifeneri Yolu, TR-34450 Sariyer, Istanbul, Turkey (Received 1 December 2011; published 17 January 2012) It has recently been shown that the spin-orbit coupling gives rise to topologically nontrivial and thermodynamically stable gapless superfluid phases when the pseudospin populations of an atomic Fermi gas are imbalanced, with the ...

  2. Orbital Feshbach Resonance in Alkali-Earth Atoms.

    Science.gov (United States)

    Zhang, Ren; Cheng, Yanting; Zhai, Hui; Zhang, Peng

    2015-09-25

    For a mixture of alkali-earth atomic gas in the long-lived excited state ^{3}P_{0} and the ground state ^{1}S_{0}, in addition to nuclear spin, another "orbital" index is introduced to distinguish these two internal states. In this Letter we propose a mechanism to induce Feshbach resonance between two atoms with different orbital and nuclear spin quantum numbers. Two essential ingredients are the interorbital spin-exchange process and orbital dependence of the Landé g factors. Here the orbital degrees of freedom plays a similar role as the electron spin degree of freedom in magnetic Feshbach resonance in alkali-metal atoms. This resonance is particularly accessible for the ^{173}Yb system. The BCS-BEC crossover in this system requires two fermion pairing order parameters, and displays a significant difference compared to that in an alkali-metal system.

  3. Role of core-scattered closed orbits in nonhydrogenic atoms

    Science.gov (United States)

    Dando, P. A.; Monteiro, T. S.; Delande, D.; Taylor, K. T.

    1996-07-01

    While both diamagnetic and Stark spectra of hydrogen can be analyzed accurately in terms of classical orbits, in nonhydrogenic atoms the multielectron core induces additional spectral modulations that cannot be analyzed reliably in terms of standard periodic orbit-type theories. However, by extending closed-orbit theory to include core-scattered waves consistently, both diamagnetic and Stark photoabsorption spectra of nonhydrogenic Rydberg atoms at constant scaled energy can be analyzed semiclassically using only the closed orbits of the corresponding hydrogenic systems. Frequencies and amplitudes of the core-scattered modulations, as well as corrected amplitudes for contributions from repetitions of primitive hydrogenic orbits, are found to be in excellent agreement with quantum results. We consider whether these nonhydrogenic systems correspond to quantum chaos.

  4. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  5. Manipulating atomic states via optical orbital angular-momentum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Optical orbital angular-momentum(OAM)has more complex mechanics than the spin degree of photons,and may have a broad range of application.Manipulating atomic states via OAM has become an interesting topic.In this paper,we first review the general theory of generating adiabatic gauge field in ultracold atomic systems by coupling atoms to external optical fields with OAM,and point out the applications of the generated adiabatic gauge field.Then,we review our work in this field,including the generation of macroscopic superposition of vortex-antivortex states and spin Hall effect(SHE)in cold atoms.

  6. Beyond periodic orbits: An example in nonhydrogenic atoms

    Energy Technology Data Exchange (ETDEWEB)

    Dando, P.A.; Monteiro, T.S.; Delande, D.; Taylor, K.T. (Department of Mathematics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX (United Kingdom) Laboratoire Kastler-Brossel, Universite Pierre et Marie Curie, 4 place Jussieu, F-75005 Paris (France) Department of Applied Mathematics and Theoretical Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom))

    1995-02-13

    The spectrum of hydrogen in a magnetic field is a paradigm of quantum chaos and may be analyzed accurately by periodic-orbit-type theories. In nonhydrogenic atoms, the core induces pure quantum effects, especially additional spectral modulations, which cannot be analyzed reliably in terms of classical orbits and their stability parameters. Provided core-scattered waves are included consistently, core-scattered modulations as well as corrected amplitudes for primitive orbits are in excellent agreement with quantum results. We consider whether these systems correspond to quantum chaos.

  7. Beyond Periodic Orbits: An Example in Nonhydrogenic Atoms

    Science.gov (United States)

    Dando, P. A.; Monteiro, T. S.; Delande, D.; Taylor, K. T.

    1995-02-01

    The spectrum of hydrogen in a magnetic field is a paradigm of quantum chaos and may be analyzed accurately by periodic-orbit-type theories. In nonhydrogenic atoms, the core induces pure quantum effects, especially additional spectral modulations, which cannot be analyzed reliably in terms of classical orbits and their stability parameters. Provided core-scattered waves are included consistently, core-scattered modulations as well as corrected amplitudes for primitive orbits are in excellent agreement with quantum results. We consider whether these systems correspond to quantum chaos.

  8. Translation and integration of numerical atomic orbitals in linear molecules

    Energy Technology Data Exchange (ETDEWEB)

    Heinäsmäki, Sami, E-mail: sami.heinasmaki@gmail.com [Department of Physics, University of Oulu, FIN-90014, Oulu (Finland)

    2014-02-14

    We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively.

  9. Deformed two center shell model

    CERN Document Server

    Gherghescu, R A

    2003-01-01

    A highly specialized two-center shell model has been developed accounting for the splitting of a deformed parent nucleus into two ellipsoidaly deformed fragments. The potential is based on deformed oscillator wells in direct correspondance with the shape change of the nuclear system. For the first time a potential responsible for the necking part between the fragments is introduced on potential theory basis. As a direct consequence, spin-orbit {\\bf ls} and {\\bf l$^2$} operators are calculated as shape dependent. Level scheme evolution along the fission path for pairs of ellipsoidaly deformed fragments is calculated. The Strutinsky method yields the shell corrections for different mass asymmetries from the superheavy nucleus $^{306}$122 and $^{252}$Cf all along the splitting process.

  10. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

  11. Natural atomic orbital based energy density analysis: Implementation and applications

    Science.gov (United States)

    Baba, Takeshi; Takeuchi, Mari; Nakai, Hiromi

    2006-06-01

    We present an improvement of energy density analysis (EDA), which partitions the total energy obtained by Hartree-Fock and/or density functional theory calculations, with the use of the natural atomic orbital (NAO) [A.E. Reed et al., J. Chem. Phys. 83 (1985) 735] and Löwdin's symmetric-orthogonal orbital (LSO). The present NAO- and LSO-EDA schemes are applied to analyses of CO 2 and Li9+ with various basis sets. Numerical results confirm that NAO-EDA exhibits less basis-set dependence, while the conventional results are very sensitive to the adopted basis sets.

  12. Transferring orbital and spin angular momenta of light to atoms

    Energy Technology Data Exchange (ETDEWEB)

    Picon, A; Benseny, A; Mompart, J [Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Vazquez de Aldana, J R; Plaja, L [Servicio Laser, Universidad de Salamanca, E-37008 Salamanca (Spain); Calvo, G F [Mathematics Department and IMACI-Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, E-13071 Ciudad Real (Spain); Roso, L, E-mail: antonio.picon@uab.ca [Centro de Laseres Pulsados, CLPU, Patio de Escuelas 1, E-37008 Salamanca (Spain)

    2010-08-15

    Light beams carrying orbital angular momentum (OAM), such as Laguerre-Gaussian (LG) beams, give rise to the violation of the standard dipolar selection rules during interaction with matter, yielding, in general, an exchange of angular momentum larger than {h_bar} per absorbed photon. By means of ab initio three-dimensional (3D) numerical simulations, we investigate in detail the interaction of a hydrogen atom with intense Gaussian and LG light pulses. We analyze the dependence of the angular momentum exchange with the polarization, the OAM and the carrier-envelope phase of light, as well as with the relative position between the atom and the light vortex. In addition, a quantum-trajectory approach based on the de Broglie-Bohm formulation of quantum mechanics is used to gain physical insight into the absorption of angular momentum by the hydrogen atom.

  13. Atomic oxygen effects on POSS polyimides in low earth orbit.

    Science.gov (United States)

    Minton, Timothy K; Wright, Michael E; Tomczak, Sandra J; Marquez, Sara A; Shen, Linhan; Brunsvold, Amy L; Cooper, Russell; Zhang, Jianming; Vij, Vandana; Guenthner, Andrew J; Petteys, Brian J

    2012-02-01

    Kapton polyimde is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen in low Earth orbit (LEO), Kapton is severely eroded. An effective approach to prevent this erosion is to incorporate polyhedral oligomeric silsesquioxane (POSS) into the polyimide matrix by copolymerizing POSS monomers with the polyimide precursor. The copolymerization of POSS provides Si and O in the polymer matrix on the nano level. During exposure of POSS polyimide to atomic oxygen, organic material is degraded, and a silica passivation layer is formed. This silica layer protects the underlying polymer from further degradation. Laboratory and space-flight experiments have shown that POSS polyimides are highly resistant to atomic-oxygen attack, with erosion yields that may be as little as 1% those of Kapton. The results of all the studies indicate that POSS polyimide would be a space-survivable replacement for Kapton on spacecraft that operate in the LEO environment.

  14. The Chocolate Shop and Atomic Orbitals: A New Atomic Model Created by High School Students to Teach Elementary Students

    Science.gov (United States)

    Liguori, Lucia

    2014-01-01

    Atomic orbital theory is a difficult subject for many high school and beginning undergraduate students, as it includes mathematical concepts not yet covered in the school curriculum. Moreover, it requires certain ability for abstraction and imagination. A new atomic orbital model "the chocolate shop" created "by" students…

  15. The Chocolate Shop and Atomic Orbitals: A New Atomic Model Created by High School Students to Teach Elementary Students

    Science.gov (United States)

    Liguori, Lucia

    2014-01-01

    Atomic orbital theory is a difficult subject for many high school and beginning undergraduate students, as it includes mathematical concepts not yet covered in the school curriculum. Moreover, it requires certain ability for abstraction and imagination. A new atomic orbital model "the chocolate shop" created "by" students…

  16. Using Atomic Orbitals and Kinesthetic Learning to Authentically Derive Molecular Stretching Vibrations

    Science.gov (United States)

    Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A.

    2013-01-01

    The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…

  17. Using Atomic Orbitals and Kinesthetic Learning to Authentically Derive Molecular Stretching Vibrations

    Science.gov (United States)

    Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A.

    2013-01-01

    The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…

  18. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals

    DEFF Research Database (Denmark)

    Ruud, Kenneth; Helgaker, Trygve; Kobayashi, Rika

    1994-01-01

    Nuclear shielding calculations are presented for multiconfigurational self-consistent field wave functions using London atomic orbitals (gauge invariant atomic orbitals). Calculations of nuclear shieldings for eight molecules (H2O, H2S, CH4, N2, CO, HF, F2, and SO2) are presented and compared...

  19. MISCONCEPTION REMEDIATION OF ATOMIC ORBITAL, MOLECULAR ORBITAL, AND HIBRIDIZIATION CONCEPTS BY COMPUTER ASISSTED INSTRUCTION WITH ANIMATION AND SIMULATION MODEL

    Directory of Open Access Journals (Sweden)

    Sri Mursiti

    2010-06-01

    Full Text Available The research of Computer Asissted Instruction with animation and simulation was used to misconception remediation of atomic orbital, molecular orbital, and hibridiziation concepts. The applicated instruction model was focused on concept approach with macromedia flash player and power point programme. The subject of this research were the 2nd semestre students of Chemistry Department. The data were collected by using of true-false pre-test and post- test followed by the reason of its. The analysis reveals that the Computer Asissted Instruction with animation and simulation model increased the understanding of atomic orbital, molecular orbital, and hibridiziation concepts or remediation of concepts missconception, shown by the significant score gained between before and after the implementation of Computer Asissted Instruction with animation and simulation model. The instruction model developed the students's generic skills too.   Keywords: animation simulation,misconception remediation, orbital, hibridization

  20. Distributed orbital state quantum cloning with atomic ensembles via quantum Zeno dynamics

    CERN Document Server

    Shen, Li-Tuo; Yang, Zhen-Biao

    2011-01-01

    We propose a scheme for distributed orbital state quantum cloning with atomic ensembles based on the quantum Zeno dynamics. These atomic ensembles which consist of identical three-level atoms are trapped in distant cavities connected by a single-mode integrated optical star coupler. These qubits can be manipulated through appropriate modulation of the coupling constants between atomic ensemble and classical field, and the cavity decay can be largely suppressed as the number of atoms in the ensemble qubits increases. The present scheme provides a new way to construct the quantum communication network.

  1. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model.

    Science.gov (United States)

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong

    2012-10-17

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  2. The closed-orbit and the photoabsorption spectra of lithium atom in varyingmagnetic fields

    Institute of Scientific and Technical Information of China (English)

    Wang De-Hua; Ding Shi-Liang

    2004-01-01

    @@ Using a simple analytic formula from closed orbit theory, we have calculated the photoabsorption spectra of Li atom in different magnetic fields. Closed orbits in the corresponding classical system have also been obtained for B=5.96T. We demonstrate schematically that the closed orbits disappear gradually with the decrease of the magnitude of the magnetic field. This gives us a good method to control the closed orbits in the corresponding system by changing the magnetic field, and thus changing the peaks in the photoabaorption spectra. By comparing the photoabsorption spectra of Li atom with those of hydrogen case, we find the core-scattered effects play an important role in multi-electron Rydberg atoms.

  3. Mapping trapped atomic gas with spin-orbit coupling to quantum Rabi-like model

    OpenAIRE

    Hu, Haiping; Chen, Shu

    2013-01-01

    We construct a connection of the ultracold atomic system in a harmonic trap with Raman-induced spin-orbit coupling to the quantum Rabi-like model. By mapping the trapped atomic system to a Rabi-like model, we can get the exact solution of the Rabi-like model following the methods to solve the quantum Rabi model. The existence of such a mapping implies that we can study the basic model in quantum optics by using trapped atomic gases with spin-orbit coupling.

  4. QSPR modeling mineral crystal lattice energy by optimal descriptors of the graph of atomic orbitals

    Science.gov (United States)

    Toropova, A. P.; Toropov, A. A.; Maksudov, S. Kh.

    2006-09-01

    Models of the crystal lattice of minerals of general formula of A mC n: m, n = 1,2: A = Li, K, Na, Mg, Ca, Mn, Cu, Zn, Sr, Cd, Ba, Hg, Pb, Cs, and Rb ; C = Be, O, F, S, Cl, Br, and I; as a mathematical function of their structure have been constructed. Two elucidations of molecular structure have been used: molecular graph (vertexes are atoms, i.e., Li, Na, K, etc.) and graph of atomic orbitals, GAO (vertexes are atomic orbitals, i.e., 1s 2, 2p 5, 3d 10, etc). Statistical characteristics of the GAO-based models are better.

  5. Orbital Battleship: A Guessing Game to Reinforce Atomic Structure

    Science.gov (United States)

    Kurushkin, Mikhail; Mikhaylenko, Maria

    2016-01-01

    A competitive educational guessing game "Orbital Battleship" which reinforces Madelung's and Hund's rules, values of quantum numbers, and understanding of periodicity was designed. The game develops strategic thinking, is not time-consuming, requires minimal preparation and supervision, and is an efficient and fun alternative to more…

  6. Evaluation of Orbital-and Ground State Energies of Some Open-and Closed-Shell Atoms over Integer and Noninteger Slater Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    YAKAR,Yusuf

    2007-01-01

    Ab initio calculations of the orbital and the ground state energies of some open- and closed-shell atoms over Slater type orbitals with quantum numbers integer and Slater type orbitals with quantum numbers noninteger have been performed. In order to increase the efficiency of these calculations the atomic two-electron integrals were expressed in terms of incomplete beta function. Results were observed to be in good agreement with the literature.

  7. Strong spin-orbit interaction of light on the surface of atomically thin crystals

    Science.gov (United States)

    Liu, Mengxia; Cai, Liang; Chen, Shizhen; Liu, Yachao; Luo, Hailu; Wen, Shuangchun

    2017-06-01

    The photonic spin Hall effect (SHE) can be regarded as a direct optical analogy of the SHE in electronic systems where a refractive index gradient plays the role of an electric potential. However, it has been demonstrated that the effective refractive index fails to adequately explain the light-matter interaction in atomically thin crystals. In this paper, we examine the spin-orbit interaction on the surface of the freestanding atomically thin crystals. We find that it is not necessary to involve the effective refractive index to describe the spin-orbit interaction and the photonic SHE in the atomically thin crystals. The strong spin-orbit interaction and giant photonic SHE are predicted, which can be explained as the large polarization rotation of plane-wave components in order to satisfy the transversality of photon polarization.

  8. Engineering an atom-interferometer with modulated light-induced $3 \\pi$ spin-orbit coupling

    CERN Document Server

    Olson, Abraham J; Blasing, David B; Niffenegger, Robert J; Chen, Yong P

    2015-01-01

    We have developed an experimental method to modify the single-particle dispersion using periodic modulation of Raman beams which couple two spin-states of an ultracold atomic gas. The modulation introduces a new coupling between Raman-induced spin-orbit-coupled dressed bands, creating a second generation of dressed-state eigenlevels that feature both a novel 3{\\pi} spin-orbit coupling and a pair of avoided crossings, which is used to realize an atomic interferometer. The spin polarization and energies of these eigenlevels are characterized by studying the transport of a Bose-Einstein condensate in this system, including observing a Stueckelberg interference.

  9. Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

    OpenAIRE

    Lin, Lin

    2012-01-01

    We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham...

  10. Quantum Spectra of Hydrogen Atoms in Various Magnetic Fields with the Closed Orbit Theory

    Institute of Scientific and Technical Information of China (English)

    彭良友; 张现周; 饶建国

    2002-01-01

    The quantum spectra of hydrogen atoms in various magnetic fields have been calculated with the closed orbit theory. The magnitude of the magnetic field decreases from 5.96 T to 0.56 T with a step of 0. 6 T. We demonstrate schematically that the closed orbits disappear with the decrease of the magnitude of the magnetic field when the corresponding finite resolution of experiment is fixed. This may give us a good way to control the shape and the number of the closed orbits in the system, and thus to control where a peak should exist in the Fourier transformation of the quantum spectra.

  11. Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms

    Science.gov (United States)

    Song, Bo; He, Chengdong; Zhang, Shanchao; Hajiyev, Elnur; Huang, Wei; Liu, Xiong-Jun; Jo, Gyu-Boong

    2016-12-01

    We demonstrate all-optical implementation of spin-orbit coupling (SOC) in a two-electron Fermi gas of 173Yb atoms by coupling two hyperfine ground states with a narrow optical transition. Due to the SU (N ) symmetry of the S10 ground-state manifold which is insensitive to external magnetic fields, an optical ac Stark effect is applied to split the ground spin states, which exhibits a high stability compared with experiments on alkali-metal and lanthanide atoms, and separate out an effective spin-1/2 subspace from other hyperfine levels for the realization of SOC. The dephasing spin dynamics when a momentum-dependent spin-orbit gap is suddenly opened and the asymmetric momentum distribution of the spin-orbit-coupled Fermi gas are observed as a hallmark of SOC. The realization of all-optical SOC for ytterbium fermions should offer a route to a long-lived spin-orbit-coupled Fermi gas and greatly expand our capability of studying spin-orbit physics with alkaline-earth-metal-like atoms.

  12. The Bohr Correspondence Principle: Kepler Orbits of the Electron in a Hydrogen Atom

    Indian Academy of Sciences (India)

    2016-06-01

    We consider the quantum-mechanical non-relativistichydrogen atom. We show that for boundstates with size much larger than the Bohr radius,one can construct a wave packet that is localizedin space corresponding to a classical particlemoving in a circular orbit.

  13. THEORETICAL CALCULATIONS OF THE MAGNETIZABILITY OF SOME SMALL FLUORINE-CONTAINING MOLECULES USING LONDON ATOMIC ORBITALS

    DEFF Research Database (Denmark)

    Ruud, K.; Helgaker, T.; Jørgensen, Poul

    1994-01-01

    We report a systematic investigation of the magnetizability of a series of small molecules. The use of London atomic orbitals ensures gauge invariance and a fast basis set convergence. Good agreement is obtained with experimental magnetizabilities, both isotropic and anisotropic. The calculations...

  14. Perturbative calculation of the Sternheimer anti-shielding factor with Hartree-Fock atomic orbitals

    OpenAIRE

    2012-01-01

    We report a calculation of the Sternheimer anti-shielding factor, \\gamma, by means of first order perturbation theory. In quality of basis functions, we use Hartree-Fock electronic orbitals, expanded on hydrogenic atomic states. The computed \\gamma(r) for Fe^{3+} and Cu^{1+} inner electronic cores are reported and compared with literature values, obtained from alternative methodologies.

  15. Effect of screening by external charges on the atomic orbitals and photoinduced processes within the Hartree-Fock-Slater atom

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Robert; Son, Sang-Kil [Center for Free-Electron Laser Science, DESY, 22607 Hamburg (Germany); Ziaja, Beata [Center for Free-Electron Laser Science, DESY, 22607 Hamburg (Germany); Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland); Santra, Robin [Center for Free-Electron Laser Science, DESY, 22607 Hamburg (Germany); Department of Physics, University of Hamburg, 20355 Hamburg (Germany)

    2013-07-01

    X-ray free-electron lasers (XFELs) are a promising tool for the structural determination of macro- and biomolecules, using coherent diffractive imaging. During imaging, the intense XFEL pulses also efficiently ionize the molecules, so it is important to estimate how the charged environment within the molecule modifies atomic properties, in comparison to the case of an isolated atom. Here, we apply the XATOM toolkit to obtain predictions on the modified ionization thresholds and rates of some photoinduced processes in carbon. The Hartree-Fock-Slater model is extended to include the electron screening and ion correlation effects, induced by external charges. With this extended model, we obtain predictions on modifications of orbital energies, photoabsorption cross sections, Auger decay rates, fluorescence emission rates, and atomic scattering factors as a function of the density and temperature of the surrounding charges. Our results have implications for the studies of dynamics within XFEL irradiated samples, in particular for those dedicated to coherent diffraction imaging.

  16. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO.

    Science.gov (United States)

    Baumann, S; Donati, F; Stepanow, S; Rusponi, S; Paul, W; Gangopadhyay, S; Rau, I G; Pacchioni, G E; Gragnaniello, L; Pivetta, M; Dreiser, J; Piamonteze, C; Lutz, C P; Macfarlane, R M; Jones, B A; Gambardella, P; Heinrich, A J; Brune, H

    2015-12-04

    We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3  meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.

  17. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO

    Science.gov (United States)

    Baumann, S.; Donati, F.; Stepanow, S.; Rusponi, S.; Paul, W.; Gangopadhyay, S.; Rau, I. G.; Pacchioni, G. E.; Gragnaniello, L.; Pivetta, M.; Dreiser, J.; Piamonteze, C.; Lutz, C. P.; Macfarlane, R. M.; Jones, B. A.; Gambardella, P.; Heinrich, A. J.; Brune, H.

    2015-12-01

    We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0 ±0.3 meV /atom . This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.

  18. The splitting of atomic orbitals with a common principal quantum number revisited: np vs. ns.

    Science.gov (United States)

    Katriel, Jacob

    2012-04-14

    Atomic orbitals with a common principal quantum number are degenerate, as in the hydrogen atom, in the absence of interelectronic repulsion. Due to the virial theorem, electrons in such orbitals experience equal nuclear attractions. Comparing states of several-electron atoms that differ by the occupation of orbitals with a common principal quantum number, such as 1s(2) 2s vs. 1s(2) 2p, we find that although the difference in energies, ΔE, is due to the interelectronic repulsion term in the Hamiltonian, the difference between the interelectronic repulsions, ΔC, makes a smaller contribution to ΔE than the corresponding difference between the nuclear attractions, ΔL. Analysis of spectroscopic data for atomic isoelectronic sequences allows an extensive investigation of these issues. In the low nuclear charge range of pertinent isoelectronic sequences, i.e., for neutral atoms and mildly positively charged ions, it is found that ΔC actually reverses its sign. About 96% of the nuclear attraction difference between the 6p (2)P and the 6s (2)S states of the Cs atom is cancelled by the corresponding interelectronic repulsion difference. From the monotonic increase of ΔE with Z it follows (via the Hellmann-Feynman theorem) that ΔL > 0. Upon increasing the nuclear charge along an atomic isoelectronic sequence with a single electron outside a closed shell from Z(c), the critical charge below which the outmost electron is not bound, to infinity, the ratio ΔC/ΔL increases monotonically from lim(Z→Z(c)(+))ΔC/ΔL=-1 to lim(Z→∞)ΔC/ΔL=1. These results should allow for a more nuanced discussion than is usually encountered of the crude electronic structure of many-electron atoms and the structure of the periodic table.

  19. Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective

    Science.gov (United States)

    Zhao, Xin; Geskin, Victor; Stadler, Robert

    2017-03-01

    Destructive quantum interference (DQI) in single molecule electronics is a purely quantum mechanical effect and is entirely defined by the inherent properties of the molecule in the junction such as its structure and symmetry. This definition of DQI by molecular properties alone suggests its relation to other more general concepts in chemistry as well as the possibility of deriving simple models for its understanding and molecular device design. Recently, two such models have gained a wide spread attention, where one was a graphical scheme based on visually inspecting the connectivity of the carbon sites in conjugated π systems in an atomic orbital (AO) basis and the other one puts the emphasis on the amplitudes and signs of the frontier molecular orbitals (MOs). There have been discussions on the range of applicability for these schemes, but ultimately conclusions from topological molecular Hamiltonians should not depend on whether they are drawn from an AO or a MO representation, as long as all the orbitals are taken into account. In this article, we clarify the relation between both models in terms of the zeroth order Green's function and compare their predictions for a variety of systems. From this comparison, we conclude that for a correct description of DQI from a MO perspective, it is necessary to include the contributions from all MOs rather than just those from the frontier orbitals. The cases where DQI effects can be successfully predicted within a frontier orbital approximation we show them to be limited to alternant even-membered hydrocarbons, as a direct consequence of the Coulson-Rushbrooke pairing theorem in quantum chemistry.

  20. Mapping Atomic Orbitals with the Transmission Electron Microscope: Images of Defective Graphene Predicted from First-Principles Theory.

    Science.gov (United States)

    Pardini, Lorenzo; Löffler, Stefan; Biddau, Giulio; Hambach, Ralf; Kaiser, Ute; Draxl, Claudia; Schattschneider, Peter

    2016-07-15

    Transmission electron microscopy has been a promising candidate for mapping atomic orbitals for a long time. Here, we explore its capabilities by a first-principles approach. For the example of defected graphene, exhibiting either an isolated vacancy or a substitutional nitrogen atom, we show that three different kinds of images are to be expected, depending on the orbital character. To judge the feasibility of visualizing orbitals in a real microscope, the effect of the optics' aberrations is simulated. We demonstrate that, by making use of energy filtering, it should indeed be possible to map atomic orbitals in a state-of-the-art transmission electron microscope.

  1. Efimov physics and universal trimers in spin-orbit-coupled ultracold atomic mixtures

    Science.gov (United States)

    Shi, Zhe-Yu; Zhai, Hui; Cui, Xiaoling

    2015-02-01

    We study the two-body and three-body bound states in ultracold atomic mixtures with one of the atoms subjected to an isotropic spin-orbit (SO) coupling. We consider a system of two identical fermions interacting with one SO-coupled atom. It is found that there can exist two types of three-body bound states, Efimov trimers and universal trimers. The Efimov trimers are energetically less favored by the SO coupling, which will finally merge into the atom-dimer threshold as increasing the SO-coupling strength. Nevertheless, these trimers exhibit a discrete scaling law incorporating the SO-coupling effect. On the other hand, the universal trimers are more favored by the SO coupling. They can be induced at negative s -wave scattering lengths and with smaller mass ratios than those without SO coupling. These results are obtained by both the Born-Oppenheimer approximation and exact solutions from three-body equations.

  2. Goos-H\\"anchen shifts in spin-orbit-coupled cold atoms

    OpenAIRE

    Zhou, Lu; Qin, Jie-Li; Lan, Zhihao; Dong, Guangjiong; Zhang, Weiping

    2014-01-01

    We consider a matter wave packet of cold atom gas impinging upon a step potential created by the optical light field. In the presence of spin-orbit (SO) coupling, the atomic eigenstates contain two types of evanescent states, one of which is the ordinary evanescent state with pure imaginary wave vector while the other possesses complex wave vector and is recognized as oscillating evanescent state. We show that the presence and interplay of these two types of evanescent states can give rise to...

  3. Electron dynamics in the carbon atom induced by spin-orbit interaction

    CERN Document Server

    Rey, H F

    2014-01-01

    We use R-Matrix theory with Time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number $M_L$=0 and $M_L$=1 at a laser wavelength of 390 nm and peak intensity of 10$^{14}$ W cm$^{-2}$. Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for $M_L$. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with $M_L=0$, the dynamics with respect to time delay of an ionizing probe pulse modelled using RMT theory is found to be in good agreement with available experimental data.

  4. Probing spin-orbit-interaction-induced electron dynamics in the carbon atom by multiphoton ionization

    Science.gov (United States)

    Rey, H. F.; van der Hart, H. W.

    2014-09-01

    We use R-matrix theory with time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number ML=0 and ML=1 at a laser wavelength of 390 nm and peak intensity of 1014W/cm2. Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for ML. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with ML=0, the dynamics with respect to time delay of an ionizing probe pulse modeled by using RMT theory is found to be in good agreement with available experimental data.

  5. Construction of Different Kinds of Atomic and Molecular Orbitals Using Complete Orthonormal Sets of -ETO in Single Exponent Approximation

    Institute of Scientific and Technical Information of China (English)

    Guseinov I. Israfil; Erturk Murat

    2008-01-01

    Using complete orthonormal sets of Ψα -exponential type orbitals in single exponent approximation the new approach has been suggested for construction of different kinds of functions which can be useful in the theory of linear combination of atomic orbitals. These functions can be chosen properly according to the nature of the problems under consideration. This is rather important because the choice of the basis set may be play a crucial role in applications to atomic and molecular problems. As an example of application, different atomic orbitals for the ground states of the neutral and the first ten cationic members of the isoelectronic series of He atom are constructed by the solution of Hartree-Fock Roothaan equations using Ψ1, Ψ0 and Ψ-1 basis sets. The calculated results are close to the numerical Hartree-Fock values. The total energy, expansion coefficients, orbital exponents and virial ratio for each atom are presented.

  6. Dynamics of atomic spin-orbit-state wave packets produced by short-pulse laser photodetachment

    CERN Document Server

    Law, S M K

    2016-01-01

    We analyse the experiment by Hultgren et al. [Phys. Rev. A {\\bf 87}, 031404 (2013)] on orbital alignment and quantum beats in coherently excited atomic fine-structure manifolds produced by short-pulse laser photodetachment of C$^-$, Si$^-$ and Ge$^-$ negative ions, and derive a formula that describes the beats. Analysis of the experimental data enables us to extract the non-coherent background contribution for each species, and indicates the need for a full density matrix treatment of the problem.

  7. Search for Efimov trimers in ultracold atomic mixtures in the presence of spin-orbit coupling

    Science.gov (United States)

    Wang, Su-Ju; Han, Huili; Perez-Rios, Jesus; Greene, Chris

    2015-05-01

    Realization of synthetic gauge fields in ultracold atomic systems has attracted much attention in both few-body and many-body physics. Especially, there are extensive works on the two-body aspects of spin-orbit coupled quantum gases, which have already shown intriguing new features due to the change in the energy dispersion relation. However, there are few studies on the three-body physics in the presence of spin-orbit coupling. In this work, we apply the hyperspherical coordinate approach in the adiabatic approximation to solve the three-body system in zero total angular momentum subspace, where two of them are spin-orbit coupled, and the third one of a different species is not. Examination of the computed hyperspherical potential curves should provide the information needed to explore the possible existence of universal three-body bound states.

  8. Analytical calculations of frequency-dependent hypermagnetizabilities and Cotton-Mouton constants using London atomic orbitals

    Science.gov (United States)

    Thorvaldsen, Andreas J.; Ruud, Kenneth; Rizzo, Antonio; Coriani, Sonia

    2008-10-01

    We present the first gauge-origin-independent, frequency-dependent calculations of the hypermagnetizability anisotropy, which determines the temperature-independent contribution to magnetic-field-induced linear birefringence, the so-called Cotton-Mouton effect. A density-matrix-based scheme for analytical calculations of frequency-dependent molecular properties for self-consistent field models has recently been developed, which is also valid with frequency- and field-dependent basis sets. Applying this scheme to Hartree-Fock wave functions and using London atomic orbitals in order to obtain gauge-origin-independent results, we have calculated the hypermagnetizability anisotropy. Our results show that the use of London orbitals leads to somewhat better basis-set convergence for the hypermagnetizability compared to conventional basis sets and that London orbitals are mandatory in order to obtain reliable magnetizability anisotropies.

  9. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.

    Science.gov (United States)

    Cheng, Lan; Xiao, Yunlong; Liu, Wenjian

    2009-12-28

    It is recognized only recently that the incorporation of the magnetic balance condition is absolutely essential for four-component relativistic theories of magnetic properties. Another important issue to be handled is the so-called gauge problem in calculations of, e.g., molecular magnetic shielding tensors with finite bases. It is shown here that the magnetic balance can be adapted to distributed gauge origins, leading to, e.g., magnetically balanced gauge-including atomic orbitals (MB-GIAOs) in which each magnetically balanced atomic orbital has its own local gauge origin placed on its center. Such a MB-GIAO scheme can be combined with any level of theory for electron correlation. The first implementation is done here at the coupled-perturbed Dirac-Kohn-Sham level. The calculated molecular magnetic shielding tensors are not only independent of the choice of gauge origin but also converge rapidly to the basis set limit. Close inspections reveal that (zeroth order) negative energy states are only important for the expansion of first order electronic core orbitals. Their contributions to the paramagnetism are therefore transferable from atoms to molecule and are essentially canceled out for chemical shifts. This allows for simplifications of the coupled-perturbed equations.

  10. Spin-orbit coupled two-electron Fermi gases of ytterbium atoms

    CERN Document Server

    Song, Bo; Zhang, Shanchao; Zou, Yueyang; Haciyev, Elnur; Huang, Wei; Liu, Xiong-Jun; Jo, Gyu-Boong

    2016-01-01

    We demonstrate the spin-orbit coupling (SOC) in a two-electron Fermi gas of $^{173}$Yb atoms by coupling two hyperfine ground states via the two-photon Raman transition. Due to the SU($N$) symmetry of the $^1$S$_0$ ground-state manifold which is insensitive to external magnetic field, an optical AC Stark effect is applied to split the ground spin states and separate an effective spin-1/2 subspace out from other hyperfine levels for the realization of SOC. With a momentum-dependent spin-orbit gap being suddenly opened by switching on the Raman transition, the dephasing of spin dynamics is observed, as a consequence of the momentum-dependent Rabi oscillations. Moreover, the momentum asymmetry of the spin-orbit coupled Fermi gas is also examined after projection onto the bare spin state and the corresponding momentum distribution is measured for different two-photon detuning. The realization of SOC for Yb fermions may open a new avenue to the study of novel spin-orbit physics with alkaline-earth-like atoms.

  11. Explicitly correlated atomic orbital basis second order Møller-Plesset theory.

    Science.gov (United States)

    Hollman, David S; Wilke, Jeremiah J; Schaefer, Henry F

    2013-02-14

    The scope of problems treatable by ab initio wavefunction methods has expanded greatly through the application of local approximations. In particular, atomic orbital (AO) based wavefunction methods have emerged as powerful techniques for exploiting sparsity and have been applied to biomolecules as large as 1707 atoms [S. A. Maurer, D. S. Lambrecht, D. Flaig, and C. Ochsenfeld, J. Chem. Phys. 136, 144107 (2012)]. Correlated wavefunction methods, however, converge notoriously slowly to the basis set limit and, excepting the use of large basis sets, will suffer from a severe basis set incompleteness error (BSIE). The use of larger basis sets is prohibitively expensive for AO basis methods since, for example, second-order Møller-Plesset perturbation theory (MP2) scales linearly with the number of atoms, but still scales as O(N(5)) in the number of functions per atom. Explicitly correlated F12 methods have been shown to drastically reduce BSIE for even modestly sized basis sets. In this work, we therefore explore an atomic orbital based formulation of explicitly correlated MP2-F12 theory. We present working equations for the new method, which produce results identical to the widely used molecular orbital (MO) version of MP2-F12 without resorting to a delocalized MO basis. We conclude with a discussion of several possible approaches to a priori screening of contraction terms in our method and the prospects for a linear scaling implementation of AO-MP2-F12. The discussion includes concrete examples involving noble gas dimers and linear alkane chains.

  12. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    Science.gov (United States)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  13. Goos-Hänchen shifts in spin-orbit-coupled cold atoms

    Science.gov (United States)

    Zhou, Lu; Qin, Jie-Li; Lan, Zhihao; Dong, Guangjiong; Zhang, Weiping

    2015-03-01

    We consider a matter wave packet of cold atom gas impinging upon a step potential created by an optical light field. In the presence of spin-orbit coupling, the atomic eigenstates contain two types of evanescent states, one of which is an ordinary evanescent state with a pure imaginary wave vector while the other possesses a complex wave vector and is recognized as an oscillating evanescent state. We show that the presence and interplay of these two types of evanescent states can give rise to two different mechanisms for total internal reflection, and thus lead to an unusual Goos-Hänchen (GH) effect. As a result, not only large positive but also large negative GH shifts can be observed in the reflected atomic beam. The dependence of the GH shift on the incident angle, energy, and height of the step potential is studied numerically.

  14. Extracting Closed Classical Orbits from Quantum Recurrence Spectra of a Non-Hydrogenic Atom in Parallel Electric and Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; LIN Sheng-Lu

    2004-01-01

    @@ We show how to extract the closed orbits from the quantum spectra data. According to the closed orbit theory,each closed orbit produces a sharp peak in the recurrence spectra of a non-hydrogenic atom in parallel electric and magnetic fields. For a given initial state, closed-orbit theory gives the dependence of this recurrence amplitude on the initial angle of an orbit. By comparing the recurrence amplitude for different initial states, we can determine the initial angles of the closed classical orbits from the quantum recurrence spectra. Therefore, by integrating the Hamiltonian motion equations, we can obtain the closed orbits directly. This method can also be used to extract the closed orbits from the experimental data.

  15. Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lin; Chen, Mohan; Yang, Chao; He, Lixin

    2012-02-10

    We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEpSI is that it has a much lower computational complexity than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEpSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEpSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEpSI is modest. This makes it even possible to perform Kohn-Sham DFT calculations for 10,000-atom nanotubes on a single processor. We also show that the use of PEpSI does not lead to loss of accuracy required in a practical DFT calculation.

  16. Atomic Oxygen Interactions With Silicone Contamination on Spacecraft in Low Earth Orbit Studied

    Science.gov (United States)

    Banks, Bruce A.

    2001-01-01

    Silicones have been widely used on spacecraft as potting compounds, adhesives, seals, gaskets, hydrophobic surfaces, and atomic oxygen protective coatings. Contamination of optical and thermal control surfaces on spacecraft in low Earth orbit (LEO) has been an ever-present problem as a result of the interaction of atomic oxygen with volatile species from silicones and hydrocarbons onboard spacecraft. These interactions can deposit a contaminant that is a risk to spacecraft performance because it can form an optically absorbing film on the surfaces of Sun sensors, star trackers, or optical components or can increase the solar absorptance of thermal control surfaces. The transmittance, absorptance, and reflectance of such contaminant films seem to vary widely from very transparent SiOx films to much more absorbing SiOx-based films that contain hydrocarbons. At the NASA Glenn Research Center, silicone contamination that was oxidized by atomic oxygen has been examined from LEO spacecraft (including the Long Duration Exposure Facility and the Mir space station solar arrays) and from ground laboratory LEO simulations. The findings resulted in the development of predictive models that may help explain the underlying issues and effects. Atomic oxygen interactions with silicone volatiles and mixtures of silicone and hydrocarbon volatiles produce glassy SiOx-based contaminant coatings. The addition of hydrocarbon volatiles in the presence of silicone volatiles appears to cause much more absorbing (and consequently less transmitting) contaminant films than when no hydrocarbon volatiles are present. On the basis of the LDEF and Mir results, conditions of high atomic oxygen flux relative to low contaminant flux appear to result in more transparent contaminant films than do conditions of low atomic oxygen flux with high contaminant flux. Modeling predictions indicate that the deposition of contaminant films early in a LEO flight should depend much more on atomic oxygen flux than

  17. Resonances in the two centers Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Marcello

    2012-09-14

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  18. Contribution of forbidden orbits in the photoabsorption spectra of atoms and molecules in a magnetic field

    Science.gov (United States)

    Matzkin, A.; Dando, P. A.; Monteiro, T. S.

    2003-02-01

    In a previous work [Phys. Rev. A 66, 013410 (2002)], we noted a partial disagreement between quantum R matrix and semiclassical calculations of photoabsorption spectra of molecules in a magnetic field. We show that this disagreement is due to a nonvanishing contribution of processes, which are forbidden according to the usual semiclassical formalism. Formulas to include these processes are obtained by using a refined stationary phase approximation. The resulting higher order in ħ contributions also account for previously unexplained “recurrences without closed orbits.” Quantum and semiclassical photoabsorption spectra for Rydberg atoms and molecules in a magnetic field are calculated and compared to assess the validity of the first-order forbidden orbit contributions.

  19. Contribution of forbidden orbits in the photoabsorption spectra of atoms and molecules in a magnetic field

    CERN Document Server

    Matzkin, A; Monteiro, T S

    2003-01-01

    In a previous work [Phys. Rev. A \\textbf{66}, 0134XX (2002)] we noted a partial disagreement between quantum R-matrix and semiclassical calculations of photoabsorption spectra of molecules in a magnetic field. We show this disagreement is due to a non-vanishing contribution of processes which are forbidden according to the usual semiclassical formalism. Formulas to include these processes are obtained by using a refined stationary phase approximation. The resulting higher order in $\\hbar$ contributions also account for previously unexplained ``recurrences without closed-orbits''. Quantum and semiclassical photoabsorption spectra for Rydberg atoms and molecules in a magnetic field are calculated and compared to assess the validity of the first-order forbidden orbit contributions.

  20. Zitterbewegung with spin-orbit coupled ultracold atoms in a fluctuating optical lattice

    Science.gov (United States)

    Argonov, V. Yu; Makarov, D. V.

    2016-09-01

    The dynamics of non-interacting ultracold atoms with artificial spin-orbit coupling is considered. Spin-orbit coupling is created using two moving optical lattices with orthogonal polarizations. Our main goal is to study influence of lattice noise on Rabi oscillations. Special attention is paid to the phenomenon of the Zitterbewegung being trembling motion caused by Rabi transitions between states with different velocities. Phase and amplitude fluctuations of lattices are modelled by means of the two-dimensional stochastic Ornstein-Uhlenbeck process, also known as harmonic noise. In the the noiseless case the problem is solved analytically in terms of the momentum representation. It is shown that lattice noise significantly extends duration of the Zitterbewegung as compared to the noiseless case. This effect originates from noise-induced decoherence of Rabi oscillations.

  1. Linear scaling coupled cluster and perturbation theories in the atomic orbital basis

    Science.gov (United States)

    Scuseria, Gustavo E.; Ayala, Philippe Y.

    1999-11-01

    We present a reformulation of the coupled cluster equations in the atomic orbital (AO) basis that leads to a linear scaling algorithm for large molecules. Neglecting excitation amplitudes in a screening process designed to achieve a target energy accuracy, we obtain an AO coupled cluster method which is competitive in terms of number of amplitudes with the traditional molecular orbital (MO) solution, even for small molecules. For large molecules, the decay properties of integrals and excitation amplitudes becomes evident and our AO method yields a linear scaling algorithm with respect to molecular size. We present benchmark calculations to demonstrate that our AO reformulation of the many-body electron correlation problem defeats the "exponential scaling wall" that has characterized high-level MO quantum chemistry calculations for many years.

  2. Atomic Gaussian type orbitals and their Fourier transforms via the Rayleigh expansion

    Science.gov (United States)

    Yükçü, Niyazi

    2016-03-01

    Gaussian type orbitals (GTOs), which are one of the types of exponential type orbitals (ETOs), are used usually as basis functions in the multi-center atomic and molecular integrals to better understand physical and chemical properties of matter. In the Fourier transform method (FTM), basis functions have not simplicity to make mathematical operations, but their Fourier transforms are easier to use. In this work, with the help of FTM, Rayleigh expansion and some properties of unnormalized GTOs, we present new mathematical results for the Fourier transform of GTOs in terms of Laguerre polynomials, hypergeometric and Whittaker functions. Physical and analytical properties of GTOs are discussed and some numerical results have been given in a table. Finally, we compare our mathematical results with the other known literature results by using a computer program and details of evaluation are presented.

  3. Time-dependent density functional theory using atomic orbitals and the self-consistent Sternheimer equation

    Science.gov (United States)

    Hübener, Hannes; Giustino, Feliciano

    2014-02-01

    We present the implementation of linear-response time-dependent density functional theory based on the self-consistent Sternheimer equation and employing a basis set of numerical pseudo-atomic orbitals. We demonstrate this method by presenting test calculations on systems of increasing size ranging from benzene to chlorophyll a, and by comparing our results with those obtained within Casida's formalism and with previous calculations. We provide a detailed assessment of the accuracy of this method, both in relation to the use of local orbitals for describing electronic excitations and to the handling of the frequency response using Padé approximants. We establish a simple criterion for estimating a priori the accuracy of the basis set in the calculation of optical spectra. We show that the computational cost of this method scales quadratically with the system size.

  4. Graph of atomic orbitals and the molecular structure-descriptors based on it

    Directory of Open Access Journals (Sweden)

    ANDREY A. TOROPOV

    2005-04-01

    Full Text Available The graph of atomic orbitals (GAO is a novel type of molecular graph, recently proposed by one of the authors. Various molecular structure-descriptors computed for GAO are compared with their analogs computed for ordinary molecular graphs. The quality of these structure-descriptors was tested for correlation with the normal boiling points of alkanes and cycloalkanes. In all the studied cases, the results based on GAO are similar to, and usually slightly better than, those obtained by means of ordinary molecular graps.

  5. Spin-orbit interactions and quantum spin dynamics in cold ion-atom collisions

    CERN Document Server

    Tscherbul, Timur V; Buchachenko, Alexei A

    2015-01-01

    We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb$^+$-Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-oder spin-orbit (SO) interaction as the dominant source of hyperfine relaxation and decoherence in cold Yb$^+$-Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb$^+$ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than predicted by the Langevin capture theory and display a weak $T^{-0.3}$ temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb$^+$-Li should be used to minimize hyperfine relaxation and dec...

  6. Off-axis retrieval of orbital angular momentum of light stored in cold atoms

    CERN Document Server

    de Oliveira, R A; Barbosa, P S; Martins, W S; Barreiro, S; Felinto, D; Bloch, D; Tabosa, J W R

    2014-01-01

    We report on the storage of orbital angu- lar momentum (OAM) of light of a Laguerre-Gaussian mode in an ensemble of cold cesium atoms and its re- trieval along an axis different from the incident light beam. We employed a time-delayed four-wave mixing configuration to demonstrate that at small angle (2o), after storage, the retrieved beam carries the same OAM as the one encoded in the input beam. A calculation based on mode decomposition of the retrieved beam over the Laguerre-Gaussian basis is in agreement with the experimental observations done at small angle values. However, the calculation shows that the OAM retrieving would get lost at larger angles, reducing the fidelity of such storing-retrieving process. In addition, we have also observed that by applying an external magnetic field to the atomic ensemble the retrieved OAM presents Larmor oscillations, demonstrating the possibility of its manipulation and off-axis retrieval.

  7. Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

    CERN Document Server

    Lin, Lin; Yang, Chao; He, Lixin

    2012-01-01

    We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEpSI is that it has a much lower computational complexity than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEpSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEpSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundr...

  8. Split window resonances for the photoionization of spin-orbit coupled subshell states in alkali atoms

    Energy Technology Data Exchange (ETDEWEB)

    Koide, M. [Department of Science and Technology, Meisei University, Tokyo 191-8656 (Japan)]. E-mail: mkoide@galaxy.ocn.ne.jp; Koike, F. [School of Medicine, Kitasato University, Kanagawa 228-8555 (Japan); Azuma, Y. [PhotonFactory, IMSS, KEK, Ibaraki 305-0801 (Japan); Nagata, T. [Department of Science and Technology, Meisei University, Tokyo 191-8656 (Japan)

    2005-06-15

    We study the origin of dual window-type 3s->4p photoexcitation resonances of potassium atoms that have been observed previously [M. Koide et al., J. Phys. Soc. Jpn. 71 (2002) 1676] by means of photoion spectroscopy. We also consider the sub-valence shell photoexcitations of other alkali metal atoms. In potassium 3p photoionizations, the photoion energy levels may be labeled by their total angular momenta, and they are well separated due to the spin-orbit couplings in 3p subshells. The system of a photoion and a photoelectron is therefore a superposition of different total spin states if expressed in terms of the LS-coupling scheme. The ionization continuum may couple with several intermediate discrete states with different total spin quantum numbers, giving a possibility to observe split resonance structures in the spectra of 3s->np photoexcitations and in other alkali-atom photoexcitations. We discuss the dual window-type resonances in potassium, rubidium, and cesium atoms.

  9. Correspondence Between Oscillations and Emitted Photon Closed-Orbits in Spontaneous Emission Rate of an Atom Near a Dielectric Slab

    Institute of Scientific and Technical Information of China (English)

    YUN Su-Jun; WANG Fu-He; ZHOU Yun-Song; DU Meng-Li

    2007-01-01

    We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic oscillations.Four frequencies of the oscillations are extracted by Fourier transforms. They agree with actions of photon closed-orbits going away and returning to the atom. These oscillations are explained as manifestations of quantum interference effects between the emitted photon wave near the atom and the returning photon waves travelling along various closed-orbits.

  10. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  11. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  12. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap

    2013-04-01

    We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.

  13. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    We consider new versions of the two-center problem where the input consists of a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. We give exact and approximation algorithms for these versions. © 2011 Springer-Verlag.

  14. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  15. Survival probability and energy modification of hydrogen Energetic Neutral Atoms on their way from the termination shock to Earth orbit

    CERN Document Server

    Bzowski, M

    2008-01-01

    Contect: With the forthcoming launch of a NASA SMEX mission IBEX devoted to imaging of heliospheric interface by in-situ detection of Energetic Neutral Atoms (ENA) an important issue becomes recognizing of transport of these atoms from the termination shock of the solar wind to Earth orbit. Aims: Investigate modifications of energy and of survival probability of the H ENA detectable by IBEX (0.01 -- 6 keV) between the termination shock and Earth orbit taking into account the influence of the variable and anisotropic solar wind and solar EUV radiation. Methods: Energy change of the atoms is calculated by numerical simulations of orbits of the H ENA atoms from ~100 AU from the Sun down to Earth orbit, taking into account solar gravity and Lyman-$\\alpha$ radiation pressure, which is variable in time and depends on radial velocity of the atom. To calculate survival probabilities of the atoms against onization, a detailed 3D and time-dependent model of H ENA ionization based on observations of the solar wind and E...

  16. QSPR Calculation of Normal Boiling Points of Organic Molecules Based on the Use of Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2004-12-01

    Full Text Available We report the results of a calculation of the normal boiling points of a representative set of 200 organic molecules through the application of QSPR theory. For this purpose we have used a particular set of flexible molecular descriptors, the so called Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals. Although in general the results show suitable behavior to predict this physical chemistry property, the existence of some deviant behaviors points to a need to complement this index with some other sort of molecular descriptors. Some possible extensions of this study are discussed.

  17. The closed-orbit and the photoabsorption spectra of the Rydberg hydrogen atom between two parallel metallic surfaces

    Institute of Scientific and Technical Information of China (English)

    Wang De-Hua

    2007-01-01

    Using the closed orbit theory,we study the classical motion and calculate the photoabsorption spectra of Rydberg hydrogen atom between two parallel metallic surfaces.The results show that the metallic surfaces have a significant effect on the photoabsorption process.When the distances between the hydrogen atom and the two metallic surfaces are close to a critical value dc,the number of the closed orbits is the greatest.When the distance larger or smaller than dc,the number of the closed orbits decreases and the absorption spectra are shown to exhibit a damping oscillation.This work is an interesting new application of closed-orbit theory and is of potential experimental interest.

  18. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts.

    Science.gov (United States)

    Knizia, Gerald

    2013-11-12

    Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example, to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency with electronegativities (χ), C 1s core-level shifts, resonance substituent parameters (σR), Lewis structures, and oxidation states of transition-metal complexes.

  19. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework.

    Science.gov (United States)

    Berger, Daniel; Logsdail, Andrew J; Oberhofer, Harald; Farrow, Matthew R; Catlow, C Richard A; Sherwood, Paul; Sokol, Alexey A; Blum, Volker; Reuter, Karsten

    2014-07-14

    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).

  20. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework

    Science.gov (United States)

    Berger, Daniel; Logsdail, Andrew J.; Oberhofer, Harald; Farrow, Matthew R.; Catlow, C. Richard A.; Sherwood, Paul; Sokol, Alexey A.; Blum, Volker; Reuter, Karsten

    2014-07-01

    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).

  1. Angular momentum sensitive two-center interference.

    Science.gov (United States)

    Ilchen, M; Glaser, L; Scholz, F; Walter, P; Deinert, S; Rothkirch, A; Seltmann, J; Viefhaus, J; Decleva, P; Langer, B; Knie, A; Ehresmann, A; Al-Dossary, O M; Braune, M; Hartmann, G; Meissner, A; Tribedi, L C; AlKhaldi, M; Becker, U

    2014-01-17

    In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.

  2. Angular Momentum Sensitive Two-Center Interference

    Science.gov (United States)

    Ilchen, M.; Glaser, L.; Scholz, F.; Walter, P.; Deinert, S.; Rothkirch, A.; Seltmann, J.; Viefhaus, J.; Decleva, P.; Langer, B.; Knie, A.; Ehresmann, A.; Al-Dossary, O. M.; Braune, M.; Hartmann, G.; Meissner, A.; Tribedi, L. C.; AlKhaldi, M.; Becker, U.

    2014-01-01

    In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.

  3. Survival probability and energy modification of hydrogen Energetic Neutral Atoms on their way from the termination shock to Earth orbit

    OpenAIRE

    Bzowski, M.

    2008-01-01

    Context: With the forthcoming launch of a NASA SMEX mission IBEX devoted to imaging of heliospheric interface by in-situ detection of Energetic Neutral Atoms (ENA) an important issue becomes recognizing of transport of these atoms from the termination shock of the solar wind to Earth orbit. Aims: Investigate modifications of energy and of survival probability of the H ENA detectable by IBEX (0.01 -- 6 keV) between the termination shock and Earth orbit taking into account the influence of the ...

  4. Weyl spin-orbit-coupling-induced interactions in uniform and trapped atomic quantum fluids

    Science.gov (United States)

    Gupta, Reena; Singh, G. S.; Bosse, Jürgen

    2013-11-01

    We establish through analytical and numerical studies of thermodynamic quantities for noninteracting atomic gases that the isotropic three-dimensional spin-orbit coupling, the Weyl coupling, induces interaction which counters “effective” attraction (repulsion) of the exchange symmetry present in zero-coupling Bose (Fermi) gas. The exact analytical expressions for the grand potential and hence for several thermodynamic quantities have been obtained for this purpose in both uniform and trapped cases. It is enunciated that many interesting features of spin-orbit-coupled systems revealed theoretically can be understood in terms of coupling-induced modifications in statistical interparticle potential. The temperature dependence of the chemical potential, specific heat, and isothermal compressibility for a uniform Bose gas is found to have signature of the incipient Bose-Einstein condensation in the very weak coupling regime although the system does not really go in the Bose-condensed phase. The transition temperature in the harmonically trapped case decreases with an increase of coupling strength consistent with the weakening of the statistical attractive interaction. Anomalous behavior of some thermodynamic quantities, partly akin to that in dimensions less than two, appears for uniform fermions as soon as the Fermi level goes down the Dirac point on increasing the coupling strength. It is suggested that the fluctuation-dissipation theorem can be utilized to verify anomalous behaviors from studies of long-wavelength fluctuations in bunching and antibunching effects.

  5. The orbital minimization method for electronic structure calculations with finite-range atomic basis sets

    CERN Document Server

    Corsetti, Fabiano

    2014-01-01

    The implementation of the orbital minimization method (OMM) for solving the self-consistent Kohn-Sham (KS) problem for electronic structure calculations in a basis of non-orthogonal numerical atomic orbitals of finite-range is reported. We explore the possibilities for using the OMM as an exact cubic-scaling solver for the KS problem, and compare its performance with that of explicit diagonalization in realistic systems. We analyze the efficiency of the method depending on the choice of line search algorithm and on two free parameters, the scale of the kinetic energy preconditioning and the eigenspectrum shift. The results of several timing tests are then discussed, showing that the OMM can achieve a noticeable speedup with respect to diagonalization even for minimal basis sets for which the number of occupied eigenstates represents a significant fraction of the total basis size (>15%). We investigate the hard and soft parallel scaling of the method on multiple cores, finding a performance equal to or better ...

  6. Consistent structures and interactions by density functional theory with small atomic orbital basis sets

    Science.gov (United States)

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-01

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods

  7. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.

    Science.gov (United States)

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-07

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods

  8. Consistent structures and interactions by density functional theory with small atomic orbital basis sets

    Energy Technology Data Exchange (ETDEWEB)

    Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas [Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn (Germany)

    2015-08-07

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT

  9. Visualization of a Large Set of Hydrogen Atomic Orbital Contours Using New and Expanded Sets of Parametric Equations

    Science.gov (United States)

    Rhile, Ian J.

    2014-01-01

    Atomic orbitals are a theme throughout the undergraduate chemistry curriculum, and visualizing them has been a theme in this journal. Contour plots as isosurfaces or contour lines in a plane are the most familiar representations of the hydrogen wave functions. In these representations, a surface of a fixed value of the wave function ? is plotted…

  10. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit.

    Science.gov (United States)

    Huang, Yongxian; Tian, Xiubo; Yang, Shiqin; Chu, Paul K

    2007-10-01

    A radio frequency (rf) inductively coupled plasma apparatus has been developed to simulate the atomic oxygen environment encountered in low Earth orbit (LEO). Basing on the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective atomic oxygen flux can be regulated. The equivalent effective atomic oxygen flux may reach (2.289-2.984) x 10(16) at.cm(2) s at an oxygen pressure of 1.5 Pa and rf power of 400 W. The equivalent atomic oxygen flux is about 100 times than that in the LEO environment. The mass loss measured from the polyimide sample changes linearly with the exposure time, while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by atomic oxygen is complex and involves initial reactions at the gas-surface interface as well as steady-state material removal.

  11. External Heavy-Atom Effect via Orbital Interactions Revealed by Single-Crystal X-ray Diffraction.

    Science.gov (United States)

    Sun, Xingxing; Zhang, Baicheng; Li, Xinyang; Trindle, Carl O; Zhang, Guoqing

    2016-07-28

    Enhanced spin-orbit coupling through external heavy-atom effect (EHE) has been routinely used to induce room-temperature phosphorescence (RTP) for purely organic molecular materials. Therefore, understanding the nature of EHE, i.e., the specific orbital interactions between the external heavy atom and the luminophore, is of essential importance in molecular design. For organic systems, halogens (e.g., Cl, Br, and I) are the most commonly seen heavy atoms serving to realize the EHE-related RTP. In this report, we conduct an investigation on how heavy-atom perturbers and aromatic luminophores interact on the basis of data obtained from crystallography. We synthesized two classes of molecular systems including N-haloalkyl-substituted carbazoles and quinolinium halides, where the luminescent molecules are considered as "base" or "acid" relative to the heavy-atom perturbers, respectively. We propose that electron donation from a π molecular orbital (MO) of the carbazole to the σ* MO of the C-X bond (π/σ*) and n electron donation to a π* MO of the quinolinium moiety (n/π*) are responsible for the EHE (RTP) in the solid state, respectively.

  12. Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J.

    2016-05-01

    We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N2.6 for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 are less than 0.5 kcal/mol for all systems tested (up to 162 atoms).

  13. Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets

    CERN Document Server

    Miceli, Giacomo; Pasquarello, Alfredo

    2016-01-01

    We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.

  14. Corrigendum: "Extracting Closed Classical Orbits from Quantum Recurrence Spectra of a Non-Hydrogenic Atom in Parallel Electric and Magnetic Fields"

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua

    2010-01-01

    @@ In a paper published by us,[1] we studied how to extract the closed orbit of the non-hydrogenic atom in parallel electric and magnetic fields. However, there was another paper published in 1996 by Courtney,[2] which studied the initial conditions of closed classical orbits from quantum spectra of hydrogen atom in magnetic field.

  15. Electron momentum spectroscopy and linear combination of atomic orbitals calculation of bulk Na sub 2 O

    CERN Document Server

    Mikajlo, E A; Ford, M J

    2003-01-01

    This paper presents an experimental measurement of the electronic structure of Na sub 2 O in the solid phase using electron momentum spectroscopy and compares the results with ab initio calculations performed within the linear combination of atomic orbitals (LCAO) approximation. While Hartree-Fock (HF) can reproduce elastic properties we find it overestimates splitting of the oxygen valence bands by around 30% and the width of the O 2p band by a factor of 2. Our experimental values are 15.85 +- 0.2 and 0.6 +- 0.2 eV for these two quantities, respectively. Density functional methods are significantly better, with the hybrid functional PBE0 predicting the oxygen bandgap to within the experimental error. PBE0 also gives the best estimate of the Na core level energies. In contrast, HF performs best for the splitting between the oxygen and sodium bands. Our experimental values of 32.85 +- 0.2 and 27.45 +- 0.2 eV for the Na 2p-Na 2s and O 2p-Na 2p splittings agree well with previous measurements. Distribution of el...

  16. Multiple Majorana zero modes in atomic Fermi double wires with spin-orbit coupling

    Science.gov (United States)

    Wang, Liang-Liang; Gong, Ming; Liu, W.-M.

    2017-08-01

    Majorana zero modes, quasiparticles with non-Abelian statistics, have gained increasing interest for their fundamental role as building blocks in topological quantum computation. Previous studies have mainly focused on two well-separated Majorana zero modes, which could form two degenerate states serving as one nonlocal qubit for fault-tolerant quantum memory. However, creating and manipulating multiple Majorana zero modes, which could encode more qubits, remain an ongoing research topic. Here we report that multiple Majorana zero modes can exist in atomic Fermi double wires with spin-orbit coupling and perpendicular Zeeman field. This system belongs to the topological BDI class, thus all the topological superfluids are classified by integer numbers. Especially, diverse topological superfluids can be formed in a trap, where the zero energy modes can be found at the interfaces between different topological superfluids. The structure of these zero energy modes in the trap can be engineered by the trapping potential as well as other system parameters. This system would be a significant step towards utilization of Majorana zero modes in quantum computation.

  17. Calculation of two-center one-electron molecular integrals with STOs. [BICEN

    Energy Technology Data Exchange (ETDEWEB)

    Rico, J.F.; Lopez, R.; Paniagua, M.; Ramirez, G. (Universidad Autonoma de Madrid (Spain). Dept. de Quimica Fisica y Quimica Cuantica)

    1991-05-01

    A program for the calculation of two-center one-electron integrals (overlap, nuclear attraction and kinetic energy) between real Slater-type orbitals (STOs) is reported. The integrals are obtained by recursion over simple auxiliary matrices, whose elements are calculated in terms of further auxiliary functions evaluated in a quick and accurate way. (orig.).

  18. Application of atomic-orbital projections to the study of the electronic properties of metal-organic frameworks

    Science.gov (United States)

    Agapito, Luis; Calzolari, Arrigo; Ferretti, Andrea; Nardelli, Marco

    2013-03-01

    Metal-organic frameworks (MOF) are a new class of artificial crystalline materials. Because of their flexibility for synthesis and instrinsic ultrahigh surface area and porosity, MOFs show superior performance in gas storage, catalysis, and sensing applications. We use an efficient projection of plane-wave wavefunctions onto atomic orbitals for studying the electronic properties of these intriguing materials. The present scheme harnesses the robust periodic algorithms and systematic convergence of the plane-wave method for an atomistic electronic (Landauer conductance) and chemical (charge transfer, bond and atomic charge) analysis that provides guidelines for the design of MOF electronic materials.

  19. HYBRID ORBITALS OF CARBON ATOMS IN THE D6hC36 MOLECULE UNDER THE ROTATING ELLIPSOID MODEL

    Institute of Scientific and Technical Information of China (English)

    Tong Guo-ping

    2000-01-01

    The hybrid orbitals of carbon atoms in the D6h C36 molecule arestudied using two rotating ellipsoid models. The model 1 is 1.66R for theshort semi-axis and 2.34R for the long semi-axis, and the model 2 is 1.78R and 2.26R respectively, where R is the C-C bond length. By comparison,we think the model 2 to be more proper in revealing the electronic properties of the D6h C36 molecule. The component of s orbitals in the states hybridized for each of the atoms is much larger than C60, in which the sorbit component is 0.0380 and the porbit is 0.9620. The most component is 0.2098and the least is 0.0482 for model 1; the most is 0.1764 and the least is0.0656 for model 2.

  20. Projector Augmented Wave Method Incorporated into Gauss-Type Atomic Orbital Based Density Functional Theory.

    Science.gov (United States)

    Xiong, Xiao-Gen; Yanai, Takeshi

    2017-07-11

    The Projector Augmented Wave (PAW) method developed by Blöchl is well recognized as an efficient, accurate pseudopotential approach in solid-state density functional theory (DFT) calculations with the plane-wave basis. Here we present an approach to incorporate the PAW method into the Gauss-type function (GTF) based DFT implementation, which is widely used for molecular quantum chemistry calculations. The nodal and high-exponent GTF components of valence molecular orbitals (MOs) are removed or pseudized by the ultrasoft PAW treatment, while there is elaborate transparency to construct an accurate and well-controlled pseudopotential from all-electron atomic description and to reconstruct an all-electron form of valence MOs from the pseudo MOs. The smoothness of the pseudo MOs should benefit the efficiency of GTF-based DFT calculations in terms of elimination of high-exponent primitive GTFs and reduction of grid points in the numerical quadrature. The processes of the PAW method are divided into basis-independent and -dependent parts. The former is carried out using the previously developed PAW libraries libpaw and atompaw. The present scheme is implemented by incorporating libpaw into the conventional GTF-based DFT solver. The details of the formulations and implementations of GTF-related PAW procedures are presented. The test calculations are shown for illustrating the performance. With the near-complete GTF basis at the cc-pVQZ level, the total energies obtained using our PAW method with suited frozen core treatments converge to those with the conventional all-electron GTF-based method with a rather small absolute error.

  1. Spin-Orbit-Coupled Correlated Metal Phase in Kondo Lattices: An Implementation with Alkaline-Earth Atoms

    Science.gov (United States)

    Isaev, L.; Schachenmayer, J.; Rey, A. M.

    2016-09-01

    We show that an interplay between quantum effects, strong on-site ferromagnetic exchange interaction, and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit coupled metallic state in regimes where classical treatments predict a trivial insulating behavior. This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.

  2. Spin-Orbit-Coupled Correlated Metal Phase in Kondo Lattices: An Implementation with Alkaline-Earth Atoms.

    Science.gov (United States)

    Isaev, L; Schachenmayer, J; Rey, A M

    2016-09-23

    We show that an interplay between quantum effects, strong on-site ferromagnetic exchange interaction, and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit coupled metallic state in regimes where classical treatments predict a trivial insulating behavior. This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.

  3. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Spin-orbit and rotational couplings in radiative association of C(3P) and N(4S) atoms.

    Science.gov (United States)

    Antipov, Sergey V; Gustafsson, Magnus; Nyman, Gunnar

    2011-11-14

    The role of spin-orbit and rotational couplings in radiative association of C((3)P) and N((4)S) atoms is investigated. Couplings among doublet electronic states of the CN radical are considered, giving rise to a 6-state model of the process. The solution of the dynamical problem is based on the L(2) method, where a complex absorbing potential is added to the Hamiltonian operator in order to treat continuum and bound levels in the same manner. Comparison of the energy-dependent rate coefficients calculated with and without spin-orbit and rotational couplings shows that the couplings have a strong effect on the resonance structure and low-energy baseline of the rate coefficient.

  5. Experimental verification of orbital engineering at the atomic scale: Charge transfer and symmetry breaking in nickelate heterostructures

    Science.gov (United States)

    Phillips, Patrick J.; Rui, Xue; Georgescu, Alexandru B.; Disa, Ankit S.; Longo, Paolo; Okunishi, Eiji; Walker, Fred; Ahn, Charles H.; Ismail-Beigi, Sohrab; Klie, Robert F.

    2017-05-01

    Epitaxial strain, layer confinement, and inversion symmetry breaking have emerged as powerful new approaches to control the electronic and atomic-scale structural properties of complex metal oxides. Trivalent rare-earth (RE) nickelate R E NiO3 heterostructures have been shown to be exemplars since the orbital occupancy, degeneracy, and, consequently, electronic/magnetic properties can be altered as a function of epitaxial strain, layer thickness, and superlattice structure. One recent example is the tricomponent LaTiO3-LaNiO3-LaAlO3 superlattice which exhibits charge transfer and orbital polarization as the result of its interfacial dipole electric field. A crucial step towards control of these parameters for future electronic and magnetic device applications is to develop an understanding of both the magnitude and range of the octahedral network's response towards interfacial strain and electric fields. An approach that provides atomic-scale resolution and sensitivity towards the local octahedral distortions and orbital occupancy is therefore required. Here, we employ atomic-resolution imaging coupled with electron spectroscopies and first-principles theory to examine the role of interfacial charge transfer and symmetry breaking in a tricomponent nickelate superlattice system. We find that nearly complete charge transfer occurs between the LaTiO3 and LaNiO3 layers, resulting in a mixed Ni2 +/Ni3 + valence state. We further demonstrate that this charge transfer is highly localized with a range of about 1 unit cell within the LaNiO3 layers. We also show how Wannier-function-based electron counting provides a simple physical picture of the electron distribution that connects directly with formal valence charges. The results presented here provide important feedback to synthesis efforts aimed at stabilizing new electronic phases that are not accessible by conventional bulk or epitaxial film approaches.

  6. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    Science.gov (United States)

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  7. Photon-Induced Spin-Orbit Coupling in Ultracold Atoms inside Optical Cavity

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2015-05-01

    Full Text Available We consider an atom inside a ring cavity, where a plane-wave cavity field together with an external coherent laser beam induces a two-photon Raman transition between two hyperfine ground states of the atom. This cavity-assisted Raman transition induces effective coupling between atom’s internal degrees of freedom and its center-of-mass motion. In the meantime, atomic dynamics exerts a back-action to cavity photons. We investigate the properties of this system by adopting a mean-field and a full quantum approach, and show that the interplay between the atomic dynamics and the cavity field gives rise to intriguing nonlinear phenomena.

  8. Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates

    Science.gov (United States)

    Liu, Chao-Fei; Juzeliūnas, Gediminas; Liu, W. M.

    2017-02-01

    Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. In this study, we find a way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin-dependent photoassociation and Raman coupling, which can control the formation and distribution of a different type of topological excitation—carbon-dioxide-like skyrmion. This skyrmion is formed by two half-skyrmions of molecular BECs coupling with one skyrmion of atomic BECs, where the two half-skyrmions locate at both sides of one skyrmion. Carbon-dioxide-like skyrmion can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments. Furthermore, we find that SOC can effectively change the occurrence of the Chern number in k space, which causes the creation of topological spin textures from some separated carbon-dioxide-like monomers each with topological charge -2 to a polymer chain of the skyrmions. This work helps in creating dual SOC atomic-molecular BECs and opens avenues to manipulate topological excitations.

  9. Two-Center Gaussian Potential Well for Studying Light Nucleus in Cluster Structure

    Directory of Open Access Journals (Sweden)

    Nafiseh Roshanbakht

    2017-01-01

    Full Text Available The clustering phenomena are very important to determine structure of light nuclei and deformation of spherical shape is inevitable. Hence, we calculated the energy levels of two-center Gaussian potential well including spin-orbit coupling by solving the Schrödinger equation in the cylindrical coordinates. This model can predict the spin and parity of the light nuclei that have two identical cluster structures.

  10. Atomic orbital-based cubic response theory for one-, two-, and four-component relativistic self-consistent field models

    Science.gov (United States)

    Bast, Radovan; Thorvaldsen, Andreas J.; Ringholm, Magnus; Ruud, Kenneth

    2009-02-01

    We present the first analytic calculations of the second hyperpolarizability in a relativistic framework. The calculations are made possible by our recent developments of a response theory built on a quasienergy formalism, in which the basis set may be both time and perturbation dependent. The approach is formulated for an arbitrary self-consistent field state in the atomic orbital basis. The implementation consists of a stand-alone code that only requires the unperturbed density in the atomic orbital basis as input, as well as a linear response solver by which we can determine the perturbed density matrices to different orders, at each new order solving equations that have the same structure as the linear response equation. Using these features of our formalism, we extend in this paper our approach to the relativistic domain, utilizing both two- and four-component relativistic wave functions. We apply the formalism to the calculation of the electronic and pure vibrational contributions to the second hyperpolarizability tensor for the hydrogen halides. Our results demonstrate that relativistic effects can be substantial for frequency-dependent second hyperpolarizabilities. Due to changes in the pole structure when going to the relativistic domain, the relativistic corrections to the hyperpolarizabilities are not transferable between different optical processes, except for very low frequencies.

  11. Atomic orbital-based cubic response theory for one-, two-, and four-component relativistic self-consistent field models

    Energy Technology Data Exchange (ETDEWEB)

    Bast, Radovan; Thorvaldsen, Andreas J.; Ringholm, Magnus [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromso, N-9037 Tromso (Norway); Ruud, Kenneth [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromso, N-9037 Tromso (Norway)], E-mail: kenneth.ruud@chem.uit.no

    2009-02-17

    We present the first analytic calculations of the second hyperpolarizability in a relativistic framework. The calculations are made possible by our recent developments of a response theory built on a quasienergy formalism, in which the basis set may be both time and perturbation dependent. The approach is formulated for an arbitrary self-consistent field state in the atomic orbital basis. The implementation consists of a stand-alone code that only requires the unperturbed density in the atomic orbital basis as input, as well as a linear response solver by which we can determine the perturbed density matrices to different orders, at each new order solving equations that have the same structure as the linear response equation. Using these features of our formalism, we extend in this paper our approach to the relativistic domain, utilizing both two- and four-component relativistic wave functions. We apply the formalism to the calculation of the electronic and pure vibrational contributions to the second hyperpolarizability tensor for the hydrogen halides. Our results demonstrate that relativistic effects can be substantial for frequency-dependent second hyperpolarizabilities. Due to changes in the pole structure when going to the relativistic domain, the relativistic corrections to the hyperpolarizabilities are not transferable between different optical processes, except for very low frequencies.

  12. The Calculation of NMR Chemical Shifts in Periodic Systems Based on Gauge Including Atomic Orbitals and Density Functional Theory.

    Science.gov (United States)

    Skachkov, Dmitry; Krykunov, Mykhaylo; Kadantsev, Eugene; Ziegler, Tom

    2010-05-11

    We present here a method that can calculate NMR shielding tensors from first principles for systems with translational invariance. Our approach is based on Kohn-Sham density functional theory and gauge-including atomic orbitals. Our scheme determines the shielding tensor as the second derivative of the total electronic energy with respect to an external magnetic field and a nuclear magnetic moment. The induced current density due to a periodic perturbation from nuclear magnetic moments is obtained through numerical differentiation, whereas the influence of the responding perturbation in terms of the external magnetic field is evaluated analytically. The method is implemented into the periodic program BAND. It employs a Bloch basis set made up of Slater-type or numeric atomic orbitals and represents the Kohn-Sham potential fully without the use of effective core potentials. Results from calculations of NMR shielding constants based on the present approach are presented for isolated molecules as well as systems with one-, two- and three-dimensional periodicity. The reported values are compared to experiment and results from calculations on cluster models.

  13. Laplace-transformed atomic orbital-based Møller-Plesset perturbation theory for relativistic two-component Hamiltonians.

    Science.gov (United States)

    Helmich-Paris, Benjamin; Repisky, Michal; Visscher, Lucas

    2016-07-07

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.

  14. Laplace-transformed atomic orbital-based M{\\o}ller-Plesset perturbation theory for relativistic two-component Hamiltonians

    CERN Document Server

    Helmich-Paris, Benjamin; Visscher, Lucas

    2016-01-01

    We present a formulation of Laplace-transformed atomic orbital-based second-order M{\\o}ller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy con- tributions, which show the same long-range decay with the inter-electronic / atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the pro...

  15. Comments on the Hartree-Fock description of Hooke's atom and suggestion for an accurate closed-form orbital

    Science.gov (United States)

    Ragot, Sébastien

    2008-04-01

    The ground-state Hartree-Fock (HF) wavefunction of Hooke's atom is not known in closed form, contrary to the exact solution. The single HF orbital involved has thus far been studied using expansion techniques only, leading to slightly disparate energies. Therefore, the present letter aims at proposing alternative definitions of the HF wavefunction. First, the HF limit is ascertained using a simple expansion, which makes it possible to formulate explicit expressions of HF properties. The resulting energy, 2.038 438 871 8 Eh, is found stable at the tenth digit. Second and more instructive, an analysis of the Hartree equation makes it possible to infer a remarkably simple and accurate HF orbital, i.e., φHF(r)=nHFe-αr2√r2+β2, leading to an energy exceeding by 5.76×10-7 Eh only the above HF limit. This orbital makes it possible to obtain (near) Hartree-Fock properties in closed form, which in turn enables handy comparisons with exact quantities.

  16. Photoionization of neutral atoms by X waves carrying orbital angular momentum

    Science.gov (United States)

    Müller, Robert A.; Seipt, Daniel; Beerwerth, Randolf; Ornigotti, Marco; Szameit, Alexander; Fritzsche, Stephan; Surzhykov, Andrey

    2016-10-01

    In contrast to plane waves, twisted or vortex beams have a complex spatial structure. Both their intensity and energy flow vary within the wave front. Beyond that, polychromatic vortex beams, such as X waves, have a spatially dependent energy distribution. We propose a method to measure this (local) energy spectrum. The method is based on the measurement of the energy distribution of photoelectrons from alkali-metal atoms. On the basis of our fully relativistic calculations, we argue that even ensembles of atoms can be used to probe the local energy spectrum of short twisted pulses.

  17. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  18. Analytic variationally optimized internally orthogonalized modified Laguerre orbitals in accurate atomic configuration interaction calculation

    Institute of Scientific and Technical Information of China (English)

    Xiong Zhuang; Bacalis N C

    2006-01-01

    An analytic configuration interaction method based on variationally optimized internally orthogonalized modified Laguerre orbitals is presented. We have developed the corresponding computer code. For application, we study the ls2s 1S isoelectronic sequence from helium to neon, and compare with other methods. By taking into account the Eckart upper-bound theorem, we obtained more accurate and more intuitively understandable results than Hartree-Fock and multi-configuration Hartree-Fock reported results.

  19. Atomic Densities, Polarizabilities, and Natural Orbitals Derived from Generalized Sturmian Calculations

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil; Aquilanti, Vincenzo;

    2004-01-01

    The generalized Sturmian method for atomic and molecular electronic structure calculations is a direct configuration interaction method in which the configurations are chosen to be isoenergetic solutions of an approximate N-electron Schrödinger equation with a weighted potential, $\\beta_\

  20. Hybrid Orbital and Numerical Grid Representationfor Electronic Continuum Processes: Double Photoionization of Atomic Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Frank L; McCurdy, C. William; Rescigno, Thomas N

    2010-04-19

    A general approach for ab initio calculations of electronic continuum processes is described in which the many-electron wave function is expanded using a combination of orbitals at short range and the finite-element discrete variable representation(FEM-DVR) at larger distances. The orbital portion of the basis allows the efficient construction of many-electron configurations in which some of the electrons are bound, but because the orbitals are constructed from an underlying FEM-DVR grid, the calculation of two-electron integrals retains the efficiency of the primitive FEM-DVR approach. As an example, double photoionization of beryllium is treated in a calculation in which the 1s{sup 2} core is frozen. This approach extends the use of exterior complex scaling (ECS) successfully applied to helium and H{sub 2} to calculations with two active electrons on more complicated targets. Integrated, energy-differential and triply-differential cross sections are exhibited, and the results agree well with other theoretical investigations.

  1. Two-Center Black Holes, Qubits and Elliptic Curves

    CERN Document Server

    Lévay, Péter

    2011-01-01

    We relate the U-duality invariants characterizing two-center extremal black hole solutions in the stu, st^2 and t^3 models of N=2, d=4 supergravity to the basic invariants used to characterize entanglement classes of four-qubit systems. For the elementary example of a D0D4-D2D6 composite in the t^3 model we illustrate how these entanglement invariants are related to some of the physical properties of the two-center solution. Next we show that it is possible to associate elliptic curves to charge configurations of two-center composites. The hyperdeterminant of the hypercube, a four-qubit polynomial invariant of order 24 with 2894276 terms, is featuring the j invariant of the elliptic curve. We present some evidence that this quantity and its straightforward generalization should play an important role in the physics of two-center solutions.

  2. The Role of Super-Atom Molecular Orbitals in Doped Fullerenes in a Femtosecond Intense Laser Field.

    Science.gov (United States)

    Xiong, Hui; Mignolet, Benoit; Fang, Li; Osipov, Timur; Wolf, Thomas J A; Sistrunk, Emily; Gühr, Markus; Remacle, Francoise; Berrah, Nora

    2017-12-01

    The interaction of gas phase endohedral fullerene Ho3N@C80 with intense (0.1-5 × 10(14) W/cm(2)), short (30 fs), 800 nm laser pulses was investigated. The power law dependence of Ho3N@C80(q+), q = 1-2, was found to be different from that of C60. Time-dependent density functional theory computations revealed different light-induced ionization mechanisms. Unlike in C60, in doped fullerenes, the breaking of the cage spherical symmetry makes super atomic molecular orbital (SAMO) states optically active. Theoretical calculations suggest that the fast ionization of the SAMO states in Ho3N@C80 is responsible for the n = 3 power law for singly charged parent molecules at intensities lower than 1.2 × 10(14) W/cm(2).

  3. Effect of Complex-Valued Optimal Orbitals on Atomization Energies with the Perdew-Zunger Self-Interaction Correction to Density Functional Theory.

    Science.gov (United States)

    Lehtola, Susi; Jónsson, Elvar Ö; Jónsson, Hannes

    2016-09-13

    The spurious interaction of an electron with itself-self-interaction error-is one of the biggest problems in modern density-functional theory. Some of its most glaring effects, such as qualitatively incorrect charge separation upon dissociation, can be removed by an approximate self-interaction correction due to Perdew and Zunger (PZ) (Perdew, J.; Zunger, A. Phys. Rev. B 1981, 23, 5048). However, the correction introduces an explicit dependence on the occupied orbital densities, which makes proper minimization of the functional difficult. Previous work (Vydrov et al., J. Chem. Phys. 2006, 124, 094108) has suggested that the application of the PZ correction results in worse atomization energies than those obtained with the uncorrected parent functional. But, it has only recently been found that the correct minimization of the PZ energy functional requires complex-valued orbitals, which have not been used in previous work on atomization energies. Here, we study the effect of the proper use of complex-valued orbitals on the atomization energies of molecules in the W4-11 data set (Karton, A.; Daon, S.; Martin, J. M. Chem. Phys. Lett. 2001, 510, 165). We find that the correction has a tendency to weaken the binding of molecules. The correction using complex-valued orbitals is invariably found to yield better atomization energies than the correction with real-valued orbitals. The correction applied to the PBEsol exchange-correlation functional results in a functional that is more accurate than the (uncorrected) PBE functional.

  4. Influence of dielectric microcavity on the spontaneous emission rate of atom: a perspective on the closed-orbit theory of photons

    Institute of Scientific and Technical Information of China (English)

    Shubao Wang; Xueyou Xu; Hongyun Li; Zhengmao Jia; Shenglu Lin

    2008-01-01

    The formulas of the quantum electrodynamics have been applied to calculate the spontaneous emission rate of excited atom in dielectric microcavity.The results exhibit damping oscillating Patterns which depend sensitively on the scaling parameter and geometrical structure.Compared with the case that the emitting atom is immersed in dielectric,the spontaneous emission rate is depressed obviously and the center or the mean value of the oscillations is intimately related to the real refractive index of the local position where the atom is.In order to explain this phenomenon,we utilize the closed-orbit theory to deal with the classical trajectories of the emitted photon.and extract the corresponding frequencies of the oscillations by Fourier transform.It is found that the oscillations can be represented in terms of the closed-orbits of the photon motion constrained in dielectric microcavity,thus providing another perspective on the spontaneous emission of atom sandwiched by dielectric slabs.

  5. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.

    Science.gov (United States)

    Kaupp, Martin

    2007-01-15

    The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding. Copyright (c) 2006 Wiley Periodicals, Inc.

  6. Even-odd spatial nonequivalence for atomic quantum gases with isotropic spin-orbit couplings

    Science.gov (United States)

    Singh, G. S.; Gupta, Reena

    2014-05-01

    A general expression for the density of states (DOS) of power-law trapped d-dimensional ideal quantum gases with isotropic spin-orbit couplings (SOCs) is derived and is found to bifurcate into even- dand odd- d classes. The expressions for the grand potential and hence for several thermodynamic quantities are then shown to be amenable to exact analytical forms provided d is an odd integer. Also, a condition γ transition temperature and the condensate fraction in a 3D Bose gas under combined presence of the harmonic trapping and the Weyl coupling shows that the condensation is favored by the former but disfavored by the latter. This countering behavior is discussed to be in conformity with the exchange-symmetry-induced statistical interactions resulting from these two entities as enunciated recently [Phys. Rev. A 88, 053607 (2013)].

  7. Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen-Halide Bond Strength and Acidity Trends in Organic Chemistry?

    Science.gov (United States)

    Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2015-01-01

    Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…

  8. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra.

    Science.gov (United States)

    Goings, Joshua J; Li, Xiaosong

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  9. Theoretical study on β-aminoacroleine; Density functional theory, atoms in molecules theory and natural bond orbitals studies

    Indian Academy of Sciences (India)

    Heidar Raissi; Mehdi Yoosefian; Effat Moshfeghi; Farzaneh Farzad

    2012-05-01

    The characteristics of the intramolecular hydrogen bonding for a series of 19 different derivatives of -aminoacroleine have been systematically analysed at the B3LYP/6-31G∗∗ level of theory. The topological properties of the electron density distributions for N-H$\\cdots$O intramolecular bridges have been analysed by the Bader theory of atoms in molecules. The electron density () and Laplacian (∇2 ρ) properties at critical points of the relevant bonds, estimated by AIM calculations, showed that N-H$\\cdots$O have low and positive character (∇2 ρ > 0), consistent with electrostatic character of the hydrogen bond. The vibrational study of the hydrogen bonded systems showed negative (red) shifts for the (N−H) stretching mode. The -electron delocalization parameter () as a geometrical indicator of a local aromaticity and the geometry-based HOMA have also been calculated. Furthermore, the analysis of hydrogen bond in this molecule and its derivatives by natural bond orbital (NBO) methods support the DFT results. The results of AIM and NBO analysis as well as (N−H) were further used for estimation of the hydrogen bonding interactions and the forces driving their formation. The various correlations were found between geometrical, energetic and topological parameters. The substituent effect was also analysed and it was found that the strongest hydrogen bonds exist for N+(CH3)3 and Cl substituents while the weakest ones for COOCH3.

  10. Erosion effects of atomic oxygen on polyhedral oligomeric silsesquioxane-polyimide hybrid films in low earth orbit space environment.

    Science.gov (United States)

    Duo, Shuwang; Song, Mimi; Liu, Tingzhi; Hu, Changyuan; Li, Meishuan

    2013-02-01

    A novel polyimide (PI) hybrid nanocomposite containing polyhedral oligomeric silsesquioxane (POSS) had been prepared by copolymerization of trisilanolphenyl-POSS, 4,4'-oxydianiline (ODA), and pyromellitic dianhydride (PMDA). The AO resistance of these PI/POSS hybrid films was tested in the ground-based AO simulation facility. Exposed and unexposed surfaces were characterized by SEM and X-ray photoelectron spectroscopy. SEM images showed that the surface of the 20 wt% PI/POSS became much less rough than that of the pristine polyimide. Mass measurements of the samples showed that the erosion yield of the PI/POSS (20 wt.%) hybrid film was 1.2 x 10(-25) cm3/atom, and reduced to 4% of the polyimide film. The XPS data indicated that the carbon content of the near-surface region was decreased from 60.1 to 13.2 at% after AO exposure. The oxygen and silicon concentrations in the near-surface region increased to 1.96 after AO exposure. The nanometer-sized structure of POSS, with its large surface area, had led AO-irradiated samples to form a SiO2 passivation layer, which protected the underlying polymer from further AO attack. The incorporation of POSS into the polyimide could dramatically improve the AO resistance of polyimide films in low earth orbit environment.

  11. Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory.

    Science.gov (United States)

    Maschio, Lorenzo; Kirtman, Bernard; Rérat, Michel; Orlando, Roberto; Dovesi, Roberto

    2013-10-28

    We present a fully analytical formulation for calculating Raman intensities of crystalline periodic systems using a local basis set. Numerical differentiation with respect to atomic coordinates and with respect to wavevectors is entirely avoided as is the determination of crystal orbital coefficient derivatives with respect to nuclear displacements. Instead, our method utilizes the orbital energy-weighted density matrix and is based on the self-consistent solution of first- and second-order Coupled Perturbed Hartree-Fock/Kohn-Sham equations for the electronic response to external electric fields at the equilibrium geometry. This method has also been implemented in the Crystal program, which uses a Gaussian type basis set.

  12. Gauge-Origin Independent Formulation and Implementation of Magneto-Optical Activity within Atomic-Orbital-Density Based Hartree-Fock and Kohn-Sham Response Theories

    DEFF Research Database (Denmark)

    Kjærgaard, Thomas; Jørgensen, Poul; Thorvaldsen, Andreas;

    2009-01-01

    -orbital density-matrix based formulation of response theory and use London atomic orbitals to parametrize the magnetic field dependence. It yields a computational procedure which is both gauge-origin independent and suitable for linear-scaling at the level of time-dependent Hartree-Fock and density functional......A Lagrangian approach has been used to derive gauge-origin independent expressions for two properties that rationalize magneto-optical activity, namely the Verdet constant V(ω) of the Faraday effect and the B term of magnetic circular dichroism. The approach is expressed in terms of an atomic...... theory. The formulation includes a modified preconditioned conjugated gradient algorithm, which projects out the excited state component from the solution to the linear response equation. This is required when solving one of the response equations for the determination of the B term and divergence...

  13. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    Science.gov (United States)

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions.

  14. Self-management of oral anticoagulant therapy in two centers

    DEFF Research Database (Denmark)

    Nilsson, Hanna; Grove, E; Larsen, Torben Bjerregaard

    Self-management of oral anticoagulant therapy in two centers: 11.000 patient-years of follow-up H Nilsson1,2,3, EL Grove2, TB Larsen3, M Maegaard1, TD Christensen1 1Department of Cardiothoracic and Vascular Surgery & Institute of Clinical Medicine, Aarhus University Hospital, Aarhus; 2Department...... of Cardiology, Aarhus University Hospital, Aarhus; 3Department of Cardiology, Aalborg Hospital & Department of Health Science and Technology, Aalborg University, Aalborg, Denmark haana_86@hotmail.com Objectives: Patient-self-management (PSM) of oral anticoagulant therapy with vitamin K antagonists have...... clinical practice. Materials and methods: A case-series study including all patients who had passed an exam in PSM in the period 1995-2012 at Aarhus University Hospital or Aalborg University Hospital, including 2200 patients and 11000 patient-years in total. The effectiveness was measured using...

  15. 自旋-轨道耦合下冷原子的双反射∗%Double reflection of spin-orbit-coupled cold atoms

    Institute of Scientific and Technical Information of China (English)

    黄珍; 曾文; 古艺; 刘利; 周鲁; 张卫平

    2016-01-01

    随着中性冷原子气体的人造自旋-轨道耦合的实验实现,近年来人们开始关注与之相关的可能应用,其中包括自旋-轨道耦合下原子反射镜的研究。本文在前人研究的基础上,考虑一束自旋-轨道耦合的冷原子气体入射到有限高势垒的情形,通过将部分反射和全反射情况进行对比,发现了与之前研究不同的性质。我们发现,在全反射条件下,反射原子的极化率随入射角变化较大,而随自旋-轨道耦合强度和原子入射能量的变化较小。但在发生部分反射的情况下,反射原子的极化率不仅随入射角变化较大,随自旋-轨道耦合强度和原子的入射能量变化也十分明显。我们仔细研究了自旋-轨道耦合原子气体的反射性质并讨论了其可能的应用。%Artificial spin-orbit coupling in neutral cold atom have been experimentally implemented in alkali-metal atoms. Nowadays people begin to explore its possible applications. One of the most interesting applications is the atomic mirror, which is a key element in atom optics. And spin-orbit coupling provides the atomic beam with the possibility that the atomic spin can flip during its propagation, thus can be used to prepare the quantum-state-selective atomic mirror. In 2008, Juzeliūnas, et al. [Juzeliūnas G, et al. 2008 Phys. Rev. Lett. 100 200405] studied a spin-orbit-coupled matter wave packet of cold atom gas impinging on an infinite step potential created by the optical light field. Results showed that there is not only ordinary specular reflection, but also non-specular one. The reflected atoms split into two beams and double reflection takes place. Based on the previous study, here we consider a matter wave packet of spin-orbit-coupled cold atom gas impinging on a finite step potential created by the optical light field. Due to the effect of the spin-orbit coupling, in addition to the propagating state, the eigenstates of cold atoms

  16. NMR shielding tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge including atomic orbitals.

    Science.gov (United States)

    Loibl, Stefan; Schütz, Martin

    2012-08-28

    An efficient method for the calculation of nuclear magnetic resonance (NMR) shielding tensors is presented, which treats electron correlation at the level of second-order Mo̸ller-Plesset perturbation theory. It uses spatially localized functions to span occupied and virtual molecular orbital spaces, respectively, which are expanded in a basis of gauge including atomic orbitals (GIAOs or London atomic orbitals). Doubly excited determinants are restricted to local subsets of the virtual space and pair energies with an interorbital distance beyond a certain threshold are omitted. Furthermore, density fitting is employed to factorize the electron repulsion integrals. Ordinary Gaussians are employed as fitting functions. It is shown that the errors in the resulting NMR shielding constant, introduced (i) by the local approximation and (ii) by density fitting, are very small or even negligible. The capabilities of the new program are demonstrated by calculations on some extended molecular systems, such as the cyclobutane pyrimidine dimer photolesion with adjacent nucleobases in the native intrahelical DNA double strand (ATTA sequence). Systems of that size were not accessible to correlated ab initio calculations of NMR spectra before. The presented method thus opens the door to new and interesting applications in this area.

  17. Molecular Orbital Theory of the gaseous Bose-Einstein condensate: Natural Orbital analysis of strongly correlated ground and excited states of an atomic condensate in a double well

    OpenAIRE

    Reinhardt, William P.; Perry, Heidi

    2003-01-01

    The possibility, envisaged in 1925 by Einstein following the suggestion of Bose, of a dilute gas of atoms being condensed into a single quantum state was experimentally achieved in 1995 following decades of research. An avalanche of experiment and theory has followed, leading to the awarding of the 2001 Nobel Prizes in Physics to three of the pioneering experimentalists. Theory, mostly couched in the language and formalism of condensed matter physics, has developed apace. What we point out he...

  18. 元素轨道电负性与原子轨道能级%The Element Orbital Electronegativity and Atomic Orbital Energy Levels

    Institute of Scientific and Technical Information of China (English)

    李国英

    2001-01-01

      A new orbital electronegativity scale has been offered. The new scale with clear physical meaning is more reasonable than other scale. Its method of calculation is much simpler.%  根据价轨道的能量,建立了一种新的元素轨道电负性标度,新标度的物理意义明确,方法简单,数值合理,数据完整。并且给出了一些分子(或基团)的轨道电负性值。

  19. Laser cooling of CaBr molecules and production of ultracold Br atoms: A theoretical study including spin-orbit coupling.

    Science.gov (United States)

    Fu, Mingkai; Ma, Haitao; Cao, Jianwei; Bian, Wensheng

    2017-04-07

    Owing to the exciting potential applications of ultracold atoms and molecules in many fields, developing new cooling schemes has attracted great interests in recent years. Here, we investigate laser cooling of CaBr molecules and design a photonic scheme for the production of ultracold Br atoms using the highly accurate ab initio and dynamical methods. We find that the AΠ1/22(ν(')=0)→X(2)Σ1/2(+)(ν=0) transition for CaBr features a large vibrational branching ratio, a significant photon-scattering rate, and no intermediate electronic-state interference, indicating that the ultracold CaBr could be produced through a three-laser cooling scheme. Moreover, an efficient four-pulse excitation scheme from the ground rovibrational level of the cooled CaBr molecules is proposed to yield ultracold Br atoms, in which a few spin-orbit excited states are utilized as the intermediate states. The importance of the spin-orbit coupling is underscored in this work.

  20. Mars Express/ASPERA-3/NPI and IMAGE/LENA observations of energetic neutral atoms in Earth and Mars orbit

    CERN Document Server

    Holmstrom, M; Barabash, S; Brinkfeldt, K; Moore, T E; Simpson, D

    2007-01-01

    The low energy neutral atom imagers on Mars Express and IMAGE have revealed that the neutral atom populations in interplanetary space come from a variety of sources and challenge our current understanding of heliospheric physics. For example, both in cruise phase and at Mars, the neutral particle instrument NPD on Mars Express observed "unexplained neutral beams" unrelated to Mars which appear to be either of heliospheric or solar wind origin. Likewise, the NPI instrument on Mars Express has revealed streams of neutral atoms with different properties than those observed by NPD. Independently, IMAGE/LENA has reported neutral atom observations that may be interpreted as a "secondary stream" having different characteristics and flowing from a higher ecliptic longitude than the nominal upstream direction. Both sets of observations do not appear to fit in easily with the neutral atom environment from 1.0-1.57 AU as it is currently understood. In this paper we examine some highly suggestive similarities in the IMAG...

  1. Time-efficient computation of the electronic structure of the C60 super-atom molecular orbital (SAMO) states in TDDFT

    Science.gov (United States)

    Mignolet, B.; Remacle, F.

    2016-12-01

    Fullerenes have a dense manifold of excited states composed of valence excited states and Rydberg states. Among Rydberg states, one distinguishes Super Atom Molecular Orbitals (SAMO), excited states in which an electron is promoted to a diffuse nanometer size molecular orbital with a hydrogenic-like character. Unlike typical Rydberg states, the electronic density of the SAMO states is mainly localized inside and in the close vicinity of the fullerene cage. In this proceeding, we propose a time-saving way to compute the electronic structure of the SAMO and Rydberg states of fullerenes at the TDDFT level by limiting the number of excitations allowed to build the excited states. We investigate the effect of limiting the number of excitations in C60 and compare it to the experimental binding energies. We also investigate the effect of the functional and basis set on the binding energies of the SAMO states.

  2. Calculation of the relativistic Bethe logarithm in the two-center problem

    CERN Document Server

    Korobov, Vladimir I; Karr, Jean-Philippe

    2013-01-01

    We present a variational approach to evaluate relativistic corrections of order \\alpha^2 to the Bethe logarithm for the ground electronic state of the Coulomb two center problem. That allows to estimate the radiative contribution at m\\alpha^7 order in molecular-like three-body systems such as hydrogen molecular ions H_2^+ and HD^+, or antiprotonic helium atoms. While we get 10 significant digits for the nonrelativistic Bethe logarithm, calculation of the relativistic corrections is much more involved especially for small values of bond length R. We were able to achieve a level of 3-4 significant digits starting from R=0.2 bohr, that will allow to reach 10^{-10} relative uncertainty on transition frequencies.

  3. Calculation of the relativistic Bethe logarithm in the two-center problem

    Science.gov (United States)

    Korobov, Vladimir I.; Hilico, L.; Karr, J.-Ph.

    2013-06-01

    We present a variational approach to evaluate relativistic corrections of order α2 to the Bethe logarithm for the ground electronic state of the Coulomb two-center problem. That allows us to estimate the radiative contribution at mα7 order in molecular-like three-body systems such as hydrogen molecular ions H2+ and HD+ or antiprotonic helium atoms. While we get ten significant digits for the nonrelativistic Bethe logarithm, calculation of the relativistic corrections is much more involved, especially for small values of bond length R. We were able to achieve a level of three to four significant digits starting from R=0.2 bohr, which will allow us to reach 10-10 relative uncertainty on transition frequencies.

  4. Towards an exact orbital-free single-particle kinetic energy density for the inhomogeneous electron liquid in the Be atom

    CERN Document Server

    Krishtal, Alisa; Van Alsenoy, Christian

    2010-01-01

    Holas and March (Phys. Rev. A51, 2040 (1995)) wrote the gradient of the one-body potential V(r) in terms of low-order derivatives of the idempotent Dirac density matrix built from a single Slater determinant of Kohn-Sham orbitals. Here, this is first combined with the study of Dawson and March (J. Chem. Phys. 81, 5850 (1984)) to express the single-particle kinetic energy density of the Be atom ground-state in terms of both the electron density n(r) and potential V(r). While this is the more compact formulation, we then, by removing V(r), demonstrate that the ratio t(r)/n(r) depends, though non-locally, only on the single variable n'(r)/n(r), no high-order gradients entering for the spherical Be atom.

  5. Evaluation of two-center Coulomb and hybrid integrals over complete orthonormal sets of Ψα-ETO using auxiliary functions.

    Science.gov (United States)

    Guseinov, Israfil I; Sahin, Ercan

    2011-04-01

    By the use of ellipsoidal coordinates, the two-center Coulomb and hybrid integrals over complete orthonormal sets of Ψα-ETO exponential type orbitals arising in ab initio calculations of molecules are evaluated, where α = 1,0, -1, -2, ...,. These integrals are expressed through the auxiliary functions Q(ns)(q) and G(-ns)(q). The comparison is made with some values of integrals for Slater type orbitals the computation results of which are in good agreement with those obtained in the literature. The relationships obtained are valid for the arbitrary quantum numbers, screening constants and location of orbitals. Closed form expressions for two-center Coulomb and hybrid integrals for 1s and 2s orbitals with α = 1 are also presented. As an example of application, the Hartree-Fock-Roothaan calculations for the ground state of H(2) molecule are carried out with α = 1 and α = 0.

  6. Toroidal configuration of the orbit of the electron of the hydrogen atom under strong external magnetic fields

    OpenAIRE

    Aringazin, A. K.

    2002-01-01

    In this paper we overview some results on the hydrogen atom in external static uniform magnetic fields. We focus on the case of very strong magnetic field, B>>B_0=2.3x10^9 Gauss, use various approximate models and, particularly, in the adiabatic approximation have calculated exactly the integral defining the effective potential. This potential appears to be finite at z=0. Our consideration of the problem of highly magnetized atoms and molecules is motivated by the recently developed MagneGas ...

  7. A reaction-diffusion model for atomic oxygen interacting with spacecraft surface protective materials in low earth orbit environment

    Institute of Scientific and Technical Information of China (English)

    CHEN LaiWen; WANG JingHua; LEE Chun-Hian

    2009-01-01

    When hyperthermal atomic oxygen collides with a silicon surface, an ultrathin oxidation regime characterized by fractional atomic-oxygen anions having low diffusive and reactive barriers, along with their enhanced diffusion due to both the electric field and image potential, will form on the surface. In accordance with these properties, an attempt was made in the present study to modify the AlmeidaGoncalves-Baumvol (AGB) model by setting the diffusivity and reaction rate constant to be diffusion-length dependence. According to the modified model, numerical parametric studies for oxidation thin growth were performed. The dependencies of the diffusion coefficient, the reaction rate constant,the attenuation length, and the adjustable parameter upon the translational kinetic energy, flux, temperature, and tangential flux of atomic oxygen were analyzed briefly via the fitting of the experimental data given by Tagawa et al. The numerical results confirmed the rationality of the modified diffusion-reaction model. The model together with the computer code developed in this study would be a useful tool for thickness evaluation of the protective film against the oxidation of atomic oxygen toward spacecraft surface materials in LEO environment.

  8. A reaction-diffusion model for atomic oxygen interacting with spacecraft surface protective materials in low earth orbit environment

    Institute of Scientific and Technical Information of China (English)

    LEE; Chun-Hian

    2009-01-01

    When hyperthermal atomic oxygen collides with a silicon surface, an ultrathin oxidation regime characterized by fractional atomic-oxygen anions having low diffusive and reactive barriers, along with their enhanced diffusion due to both the electric field and image potential, will form on the surface. In ac- cordance with these properties, an attempt was made in the present study to modify the Almeida- Goncalves-Baumvol (AGB) model by setting the diffusivity and reaction rate constant to be diffu- sion-length dependence. According to the modified model, numerical parametric studies for oxidation thin growth were performed. The dependencies of the diffusion coefficient, the reaction rate constant, the attenuation length, and the adjustable parameter upon the translational kinetic energy, flux, tem- perature, and tangential flux of atomic oxygen were analyzed briefly via the fitting of the experimental data given by Tagawa et al. The numerical results confirmed the rationality of the modified diffu- sion-reaction model. The model together with the computer code developed in this study would be a useful tool for thickness evaluation of the protective film against the oxidation of atomic oxygen toward spacecraft surface materials in LEO environment.

  9. Quaternary ammonium room-temperature ionic liquid including an oxygen atom in side chain/lithium salt binary electrolytes: ab initio molecular orbital calculations of interactions between ions.

    Science.gov (United States)

    Tsuzuki, Seiji; Hayamizu, Kikuko; Seki, Shiro; Ohno, Yasutaka; Kobayashi, Yo; Miyashiro, Hajime

    2008-08-14

    Interactions of the lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) complex with N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium (DEME), 1-ethyl-3-methylimidazolium (EMIM) cations, neutral diethylether (DEE), and the DEMETFSA complex were studied by ab initio molecular orbital calculations. An interaction energy potential calculated for the DEME cation with the LiTFSA complex has a minimum when the Li atom has contact with the oxygen atom of DEME cation, while potentials for the EMIM cation with the LiTFSA complex are always repulsive. The MP2/6-311G**//HF/6-311G** level interaction energy calculated for the DEME cation with the LiTFSA complex was -18.4 kcal/mol. The interaction energy for the neutral DEE with the LiTFSA complex was larger (-21.1 kcal/mol). The interaction energy for the DEMETFSA complex with LiTFSA complex is greater (-23.2 kcal/mol). The electrostatic and induction interactions are the major source of the attraction in the two systems. The substantial attraction between the DEME cation and the LiTFSA complex suggests that the interaction between the Li cation and the oxygen atom of DEME cation plays important roles in determining the mobility of the Li cation in DEME-based room temperature ionic liquids.

  10. Density functional theory, natural bond orbital and quantum theory of atoms in molecule analyses on the hydrogen bonding interactions in tryptophan-water complexes

    Indian Academy of Sciences (India)

    Xiqian Niu; Zhengguo Huang; Lingling Ma; Tingting Shen; Lingfei Guo

    2013-07-01

    The tryptophan-water (Trp-H2O) complexes formed by hydrogen bonding interactions were investigated at the B97XD/6-311++G(d,p) level. Five Trp-H2O complexes possessing various types of hydrogen bonds (H-bonds) were characterized by geometries, energies, vibrational frequencies. The nature of the H-bonds were characterized by the natural bond orbital (NBO) and the quantum theory of atoms in molecule (QTAIM) analyses as well. The intramolecular H-bond formed between the amino and carboxyl oxygen atom of tryptophan was retained in most of the complexes, and the cooperativity between the intra and intermolecular H-bonds exist in some complexes. The intramolecular H-bond and some intermolecular H-bonds are strong and have partial covalent character. The H-bonds formed between carboxyl and oxygen/nitrogen atoms are stronger than other H-bonds. The H-bonds involving methylene of tryptophan as H-donor are weak H-bonds. For all complexes,ele and ex makes major contributions to the total interaction energy (MP2), while disp is the smallest component of the interaction energy. Both hydrogen bonding interaction and structural deformation play important roles in the relative stabilities of the complexes. Regardless of strong H-bonds, the stabilities of some complexes are weakened by the serious structural deformations.

  11. Total and self-energies beyond LDA and GGA: exact-exchange, GW and MP2 united by numeric atom-centered orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Andrea; Ren, Xinguo; Tkatchenko, Alexandre; Blum, Volker; Reuter, Karsten; Scheffler, Matthias [Fritz-Haber-Institut, Berlin (Germany); Rinke, Patrick [Fritz-Haber-Institut, Berlin (Germany); University of California, Santa Barbara, CA (United States)

    2008-07-01

    Well known deficiencies of present-day exchange-correlation functionals in density-functional theory (DFT) comprise the spurious self-interaction, the absence of non-local correlation (van der Waals, image interactions), and the absence of the derivative discontinuity with respect to changes in the electron number. We present a unified framework to overcome these deficiencies by many-body perturbation theory in the bare (Hartree-Fock,MP2) and the screened Coulomb interaction (Hedin's GW approximation). Using numeric atomic-centered orbitals as basis sets, the efficiency of our formulation relies on the representation of intermediate quantities like the polarizability, and bare and screened Coulomb potentials by a second, auxiliary set of atom-centered basis functions. For an extended set of finite systems spanning individual atoms, small molecules (water dimer, methane, silane, benzene), metal clusters (Na{sub n}), and biomolecules (alanine) we demonstrate that our implementation in the new DFT code FHI-aims is significantly more efficient than existing formulations based on traditional plane wave or Gaussian basis sets.

  12. Revisiting magnetism of capped Au and ZnO nanoparticles: Surface band structure and atomic orbital with giant magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)

    2011-10-15

    In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Orbital origin of the electrical conduction in ferromagnetic atomic-size contacts: Insights from shot noise measurements and theoretical simulations

    Science.gov (United States)

    Vardimon, R.; Matt, M.; Nielaba, P.; Cuevas, J. C.; Tal, O.

    2016-02-01

    With the goal of elucidating the nature of spin-dependent electronic transport in ferromagnetic atomic contacts, we present here a combined experimental and theoretical study of the conductance and shot noise of metallic atomic contacts made of the 3 d ferromagnetic materials Fe, Co, and Ni. For comparison, we also present the corresponding results for the noble metal Cu. Conductance and shot noise measurements, performed using a low-temperature break-junction setup, show that in these ferromagnetic nanowires, (i) there is no conductance quantization of any kind, (ii) transport is dominated by several partially open conduction channels, even in the case of single-atom contacts, and (iii) the Fano factor of large contacts saturates to values that clearly differ from those of monovalent (nonmagnetic) metals. We rationalize these observations with the help of a theoretical approach that combines molecular dynamics simulations to describe the junction formation with nonequilibrium Green's function techniques to compute the transport properties within the Landauer-Büttiker framework. Our theoretical approach successfully reproduces all the basic experimental results and it shows that all the observations can be traced back to the fact that the d bands of the minority-spin electrons play a fundamental role in the transport through ferromagnetic atomic-size contacts. These d bands give rise to partially open conduction channels for any contact size, which in turn lead naturally to the different observations described above. Thus, the transport picture for these nanoscale ferromagnetic wires that emerges from the ensemble of our results is clearly at variance with the well established conduction mechanism that governs the transport in macroscopic ferromagnetic wires, where the d bands are responsible for the magnetism but do not take part in the charge flow. These insights provide a fundamental framework for ferromagnetic-based spintronics at the nanoscale.

  14. Suppression of angular momentum transfer in cold collisions of transition metal atoms in ground States with nonzero orbital angular momentum.

    Science.gov (United States)

    Hancox, Cindy I; Doret, S Charles; Hummon, Matthew T; Krems, Roman V; Doyle, John M

    2005-01-14

    The Zeeman relaxation rate in cold collisions of Ti(3d(2)4s(2) 3F2) with He is measured. We find that collisional transfer of angular momentum is dramatically suppressed due to the presence of the filled 4s(2) shell. The degree of electronic interaction anisotropy, which is responsible for Zeeman relaxation, is estimated to be about 200 times smaller in the Ti-He complex than in He complexes with typical non-S-state atoms.

  15. A linear- and sublinear-scaling method for calculating NMR shieldings in atomic orbital-based second-order Møller-Plesset perturbation theory.

    Science.gov (United States)

    Maurer, Marina; Ochsenfeld, Christian

    2013-05-07

    An atomic-orbital (AO) based formulation for calculating nuclear magnetic resonance chemical shieldings at the second-order Møller-Plesset perturbation theory level is introduced, which provides a basis for reducing the scaling of the computational effort with the molecular size from the fifth power to linear and for a specific nucleus to sublinear. The latter sublinear scaling in the rate-determining steps becomes possible by avoiding global perturbations with respect to the magnetic field and by solving for quantities that involve the local nuclear magnetic spin perturbation instead. For avoiding the calculation of the second-order perturbed density matrix, we extend our AO-based reformulation of the Z-vector method within a density matrix-based scheme. Our pilot implementation illustrates the fast convergence with respect to the required number of Laplace points and the asymptotic scaling behavior in the rate-determining steps.

  16. Nuclei-selected atomic-orbital response-theory formulation for the calculation of NMR shielding tensors using density-fitting.

    Science.gov (United States)

    Kumar, Chandan; Kjærgaard, Thomas; Helgaker, Trygve; Fliegl, Heike

    2016-12-21

    An atomic orbital density matrix based response formulation of the nuclei-selected approach of Beer, Kussmann, and Ochsenfeld [J. Chem. Phys. 134, 074102 (2011)] to calculate nuclear magnetic resonance (NMR) shielding tensors has been developed and implemented into LSDalton allowing for a simultaneous solution of the response equations, which significantly improves the performance. The response formulation to calculate nuclei-selected NMR shielding tensors can be used together with the density-fitting approximation that allows efficient calculation of Coulomb integrals. It is shown that using density-fitting does not lead to a significant loss in accuracy for both the nuclei-selected and the conventional ways to calculate NMR shielding constants and should thus be used for applications with LSDalton.

  17. Small Atomic Orbital Basis Set First-Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources.

    Science.gov (United States)

    Sure, Rebecca; Brandenburg, Jan Gerit; Grimme, Stefan

    2016-04-01

    In quantum chemical computations the combination of Hartree-Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double-zeta quality is still widely used, for example, in the popular B3LYP/6-31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean-field methods.

  18. Spin-orbit coupling in the dissociative excitation of alkali atoms at the surface of rare gas clusters: A theoretical study.

    Science.gov (United States)

    Gervais, B; Zanuttini, D; Douady, J

    2016-05-21

    We analyze the role of the spin-orbit (SO) coupling in the dissociative dynamics of excited alkali atoms at the surface of small rare gas clusters. The electronic structure of the whole system is deduced from a one-electron model based on core polarization pseudo-potentials. It allows us to obtain in the same footing the energy, forces, and non-adiabatic couplings used to simulate the dynamics by means of a surface hopping method. The fine structure state population is analyzed by considering the relative magnitude of the SO coupling ξ, with respect to the spin-free potential energy. We identify three regimes of ξ-values leading to different evolution of adiabatic state population after excitation of the system in the uppermost state of the lowest np (2)P shell. For sufficiently small ξ, the final population of the J=12 atomic states, P12, grows up linearly from P12=13 at ξ = 0 after a diabatic dynamics. For large values of ξ, we observe a rather adiabatic dynamics with P12 decreasing as ξ increases. For intermediate values of ξ, the coupling is extremely efficient and a complete transfer of population is observed for the set of parameters associated to NaAr3 and NaAr4 clusters.

  19. Inflight resistance measurement on high-T(sub c) superconducting thin films exposed to orbital atomic oxygen on CONCAP-2 (STS-46)

    Science.gov (United States)

    Gregory, J. C.; Raiker, G. N.; Bijvoet, J. A.; Nerren, P. D.; Sutherland, W. T.; Mogro-Camperso, A.; Turner, L. G.; Kwok, Hoi; Raistrick, I. D.; Cross, J. B.

    1995-01-01

    In 1992, UAH (University of Alabama in Huntsville) conducted a unique experiment on STS-46 in which YBa2Cu3O7 (commonly known as '1-2-3' superconductor) high-T(c) superconducting thin film samples prepared at three different laboratories were exposed to 5 eV atomic oxygen in low Earth orbit on the ambient and 320 C hot plate during the first flight of the CONCAP-2 (Complex Autonomous Payload) experiment carrier. The resistance of the thin films was measured in flight during the atomic oxygen exposure and heating cycle. Superconducting properties were measured in the laboratory before and after the flight by the individual experimenters. Films with good superconducting properties, and which were exposed to the oxygen flux, survived the flight including those heated to 320 C (600 K) with properties essentially unchanged, while other samples which were heated but not exposed to oxygen were degraded. The properties of other flight controls held at ambient temperature appear unchanged and indistinguishable from those of ground controls, whether exposed to oxygen or not.

  20. Stability Analysis of the In-Orbit Satellite Atomic Clocks%GPS在轨卫星原子钟的稳定性分析

    Institute of Scientific and Technical Information of China (English)

    李长会; 闫国锋

    2012-01-01

    导航卫星星载原子钟的相位或频率数据,作为导航系统应用研究的基础,将直接影响导航系统时间尺度建立以及定位的精度和准确性.本文针对由IGS官网提供的四种GPS卫星钟的钟差数据,采用修正阿伦方差进行了稳定性分析,得到了一些有益的结论.%As the application research basis of navigation system, the phase or frequency data of in - orbit satellite atomic clocks directly affect the precision and accuracy of navigation system. This paper analyzes the stability of four types of data of GPS satellite a-tomic clocks which is provided by the official website of IGS using Allan variance method and reaches some beneficial conclusions.

  1. Internal heavy atom effects in phenothiazinium dyes: enhancement of intersystem crossing via vibronic spin-orbit coupling.

    Science.gov (United States)

    Rodriguez-Serrano, Angela; Rai-Constapel, Vidisha; Daza, Martha C; Doerr, Markus; Marian, Christel M

    2015-05-07

    The effect of substituting the intra-cyclic sulphur of thionine by oxygen (oxonine) and selenium (selenine) on the intersystem crossing (ISC) efficiency has been studied using high level quantum mechanical methods. The ISC rate constants are considerably increased when going from O towards Se while the fluorescence rate constants remain unchanged. For the three dyes, all accessible ISC channels are driven by vibronic spin-orbit coupling (SOC) between ππ* states. The interplay between the ground and low-lying excited states has been investigated in order to determine the dominant relaxation pathways. In oxonine the relaxation to the ground state after photoexcitation in water proceeds essentially via fluorescence from the S1(πHπL*) bright state (kF = 2.10 × 10(8) s(-1)), in agreement with the high experimental fluorescence quantum yield. In aqueous solution of thionine, the ISC rate constant (kISC ∼ 1 × 10(9) s(-1)) is one order of magnitude higher than fluorescence (kF = 1.66 × 10(8) s(-1)) which is consistent with its high triplet quantum yield observed in water (ϕT = 0.53). Due to a stronger vibronic SOC in selenine, the ISC rate is very high (kISC ∼ 10(10) s(-1)) and much faster than fluorescence (kF = 1.59 × 10(8) s(-1)). This suggests selenine-based dyes as very efficient triplet photosensitizers.

  2. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria.

    Science.gov (United States)

    Doser, Bernd; Lambrecht, Daniel S; Kussmann, Jörg; Ochsenfeld, Christian

    2009-02-14

    A Laplace-transformed second-order Moller-Plesset perturbation theory (MP2) method is presented, which allows to achieve linear scaling of the computational effort with molecular size for electronically local structures. Also for systems with a delocalized electronic structure, a cubic or even quadratic scaling behavior is achieved. Numerically significant contributions to the atomic orbital (AO)-MP2 energy are preselected using the so-called multipole-based integral estimates (MBIE) introduced earlier by us [J. Chem. Phys. 123, 184102 (2005)]. Since MBIE provides rigorous upper bounds, numerical accuracy is fully controlled and the exact MP2 result is attained. While the choice of thresholds for a specific accuracy is only weakly dependent upon the molecular system, our AO-MP2 scheme offers the possibility for incremental thresholding: for only little additional computational expense, the numerical accuracy can be systematically converged. We illustrate this dependence upon numerical thresholds for the calculation of intermolecular interaction energies for the S22 test set. The efficiency and accuracy of our AO-MP2 method is demonstrated for linear alkanes, stacked DNA base pairs, and carbon nanotubes: e.g., for DNA systems the crossover toward conventional MP2 schemes occurs between one and two base pairs. In this way, it is for the first time possible to compute wave function-based correlation energies for systems containing more than 1000 atoms with 10 000 basis functions as illustrated for a 16 base pair DNA system on a single-core computer, where no empirical restrictions are introduced and numerical accuracy is fully preserved.

  3. Surface enhanced Raman scattering, natural bond orbitals and Mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium (II) complex, [Cd(DDTC)2

    Science.gov (United States)

    Téllez Soto, C. A.; Costa, A. C.; Versiane, O.; Lemma, T.; Machado, N. C. F.; Mondragón, M. A.; Martin, A. A.

    2015-07-01

    Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained.

  4. 离化态原子基态电子结构特征与轨道竞争规律∗%Characteristics of ground state electronic structures of ionized atoms and rules of their orbital comp etitions

    Institute of Scientific and Technical Information of China (English)

    金锐; 高翔; 曾德灵; 顾春; 岳现房; 李家明

    2016-01-01

    Ionized atoms widely exist in plasmas, and studies of properties of ionized atoms are the foundations of frontier science researches such as astrophysics and controlled nuclear fusions. For example, the information about the ground configurations of atoms is required for accurately calculating the physical quantities such as energy levels and dynamical processes. The configurations for different ionized atoms can be obtained with the photo-electron energy spectrum exper-iment, however it is very time-consuming to obtain so many data of all ions. Therefore the more economical theoretical study will be of great importance. As is well known, the configurations of neutral atoms can be determined according to Mendeleev order while those of highly ionized atoms are hydrogen-like due to the strong Coulombic potential of their nuclei. Then with the variations of ionization degree and atomic number along the periodic table, there would appear the interesting competitions between electronic orbitals. Although some theoretical results exist for ions 3 6 Z 6 118, 3 6 N e 6 105 (where Z is the atomic number and N e is the electron number), there are many errors in the results for highly ionized atoms. Therefore, the ground configurations of ionized atoms and their orbital competitions still deserve to be systematically studied. Based on the independent electron approximation, we calculate the energy levels of all possible competition con-figurations of all the neutral and ionized atoms in the extended periodic tables (2 6 Z 6 119) by Dirac-Slater method. Then the ground configurations are determined by calculating the chosen lowest total energy. The advantages of Dirac-Slater method are as follows. 1) It has been shown that the Dirac-Slater calculation is accurate enough for studying the ground properties of atoms, such as the 1st threshold, and that higher accuracy will be obtained for highly ionized atoms, because the electron correlation becomes less important. 2

  5. Solution of multi-center molecular integrals of Slater-type orbitals

    Science.gov (United States)

    Tai, H.

    1989-01-01

    The troublesome multi-center molecular integrals of Slater-type orbitals (STO) in molecular physics calculations can be evaluated by using the Fourier transform and proper coupling of the two center exchange integrals. A numerical integration procedure is then readily rendered to the final expression in which the integrand consists of well known special functions of arguments containing the geometrical arrangement of the nuclear centers and the exponents of the atomic orbitals. A practical procedure was devised for the calculation of a general multi-center molecular integrals coupling arbitrary Slater-type orbitals. Symmetry relations and asymptotic conditions are discussed. Explicit expressions of three-center one-electron nuclear-attraction integrals and four-center two-electron repulsion integrals for STO of principal quantum number n=2 are listed. A few numerical results are given for the purpose of comparison.

  6. Electron density characteristics and charge transfer effect of hydrogen bond O-H···Pt(II): atoms in molecules study and natural bond orbital analysis

    Science.gov (United States)

    Zhang, Guiqiu; Li, Xiwen; Li, Yan; Chen, Dezhan

    2013-11-01

    In this report, we extended the works of Rizzato et al. [Angew. Chem. Int. Ed. 49, 7440 (2010)] on the nature of O-H...Pt hydrogen bond in trans-[PtCl2(NH3)(N-glycine)].H2O(1.H2O) complex, by computational study of O-H...Pt interaction in [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)], with emphasis on charge transfer effect in this interaction of platinum(II) and hydrogen atom. According to the crystallographic geometry reported by José María Casas et al., [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)] possesses one O-H...Pt hydrogen bridging interaction, similar to the case in trans-[PtCl2(NH3)(N-glycine)].H2O(1.H2O) complex. On the basis of topological criteria of electron density, we characterised this O-H...Pt interaction. Charge transferred between platinum(II) and σ*O-H orbital in this complex was calculated by using NBO method. The stabilised energy associated to charge transfer was estimated using a direct proportionality, that is 2-3 eV per electron transferred. Charge transfer effects in O-H...Pt hydrogen bonds were studied for these two complexes. Our results indicate that the interaction of O-H...Pt is closed-shell in nature with significant charge transfer, and that charge transfer effect is not negligible in the interaction of O-H...Pt. The second conclusion is different from the result of Rizzato et al.

  7. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method.

    Science.gov (United States)

    Ching, Wai-Yim; Rulis, Paul

    2009-03-11

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B(12)) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  8. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method

    Energy Technology Data Exchange (ETDEWEB)

    Ching, W.-Y.; Rulis, Paul [Department of Physics, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)

    2009-03-11

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a {sigma}31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B{sub 12}) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  9. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method

    Science.gov (United States)

    Ching, Wai-Yim; Rulis, Paul

    2009-03-01

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  10. How specific exponential type orbitals recently became a viable basis set choice in NMR shielding tensor calculation

    CERN Document Server

    Hoggan, Philip E

    2010-01-01

    This paper advocates use of the atomic orbitals which have direct physical interpretation, i.e. Coulomb Sturmians and hydrogen-like orbitals. They are exponential type orbitals (ETOs). Their radial nodes are shown to be essential in obtaining accurate nuclear shielding tensors for NMR work. The present work builds on a 2003 French PhD and many numerical results were published by 2007. The improvements in this paper are noteworthy, the key being the actual basis function choice. Until 2008, their products on different atoms were difficult to manipulate for the evaluation of two-electron integrals. Coulomb resolutions provide an excellent approximation that reduces these integrals to a sum of one-electron overlap-like integral products that each involve orbitals on at most two centers. Such two-center integrals are separable in prolate spheroidal co-ordinates. They are thus readily evaluated. Only these integrals need to be re-evaluated to change basis functions. In this paper, a review of the translation proce...

  11. Orbital Plots Using Gnuplot

    Science.gov (United States)

    Moore, Brian G.

    2000-06-01

    The plotting program Gnuplot is freely available, general purpose, easy to use, and available on a variety of platforms. Complex three-dimensional surfaces, including the familiar angular parts of the hydrogen atom orbitals, are easily represented using Gnuplot. Contour plots allow viewing the radial and angular variation of the probability density in an orbital. Examples are given of how Gnuplot is used in an undergraduate physical chemistry class to view familiar atomic orbitals in new ways or to generate views of orbital functions that the student may have not seen before. Gnuplot may also be easily integrated into the environment of a Web page; an example of this is discussed (and is available at http://onsager.bd.psu.edu/~moore/orbitals_gnuplot). The plotting commands are entered with a form and a CGI script is used to run Gnuplot and display the result back to the browser.

  12. Linear algebra of integrals in the quantum-mechanical two-center problem

    Energy Technology Data Exchange (ETDEWEB)

    Truskova, N.F.

    1978-09-01

    By means of commutation relations a number of formulas and recurrence relations are derived which interconnect the integrals necessary for calculating matrix elements in the quantum-mechanical two-center problem. This allows us to reduce the calculation of all possible integrals of this kind to that of only a finite number of them. Relations of the type of general orthogonality relations are derived for the two-center functions; these relations are satisfied separately in each of the ranges of variation of the coordinates xi and eta.

  13. Two-center clinical trial of implant-retained mandibular overdentures versus complete dentures - Chewing ability

    NARCIS (Netherlands)

    Geertman, ME; Boerrigter, EM; VantHof, MA; VanWaas, MAJ; vanOort, RP; Boering, G; Kalk, W

    This study is a two-center clinical trial with the aim to assess the treatment effects of implant-retained mandibular overdentures versus conventional complete dentures. Treatment had been assigned according to a balanced allocation method. The following criteria were used to enhance the

  14. 梯状光晶格中自旋轨道耦合的排斥费米气体%Spin-orbit coupled Fermi atoms loaded in an optical ladder lattice

    Institute of Scientific and Technical Information of China (English)

    郭飞翔; 周晓凡; 赵华

    2015-01-01

    采用密度矩阵重整化群 ( density-matrix-renormalization-group, DMRG) 方法, 研究梯状光晶格中排斥相互作用费米气体的基态属性. 研究表明, Zeeman场能够激发系统的相分离 (完全极化相和部分极化相), 而自旋轨道耦合效应能抑制相分离, 使整个晶格处于部分极化相, 在不同的强弱排斥相互作用系统中, 极化率会随自旋轨道耦合改变表现出不同的变化规律.%The density-matrix-renormalization-group ( DMRG ) method is used to numerically calculate the ground state of repulsively interacting Fermi atoms loaded in optical ladder lattices. It is found that the system exhibits the spatial separation of a fully spin-polarized phase from the partially polarized phase for the suitable intensity of Zeeman field without the effect of spin-orbit coupled atoms. The spin-orbit coupling drives the fully spin-polarized phase to the partially spin-polarized phase in the whole system. The spin polarizations of weak and strong repulsively interac-ting systems vary differently with spin-orbit interaction strength.

  15. Interplay between the spin-selection rule and frontier orbital theory in O2 activation and CO oxidation by single-atom-sized catalysts on TiO2(110).

    Science.gov (United States)

    Li, Shunfang; Zhao, Xingju; Shi, Jinlei; Jia, Yu; Guo, Zhengxiao; Cho, Jun-Hyung; Gao, Yanfei; Zhang, Zhenyu

    2016-09-28

    Exploration of the catalytic activity of low-dimensional transition metal (TM) or noble metal catalysts is a vital subject of modern materials science because of their instrumental role in numerous industrial applications. Recent experimental advances have demonstrated the utilization of single atoms on different substrates as effective catalysts, which exhibit amazing catalytic properties such as more efficient catalytic performance and higher selectivity in chemical reactions as compared to their nanostructured counterparts; however, the underlying microscopic mechanisms operative in these single atom catalysts still remain elusive. Based on first-principles calculations, herein, we present a comparative study of the key kinetic rate processes involved in CO oxidation using a monomer or dimer of two representative TMs (Pd and Ni) on defective TiO2(110) substrates (TMn@TiO2(110), n = 1, 2) to elucidate the underlying mechanism of single-atom catalysis. We reveal that the O2 activation rates of the single atom TM catalysts deposited on TiO2(110) are governed cooperatively by the classic spin-selection rule and the well-known frontier orbital theory (or generalized d-band picture) that emphasizes the energy gap between the frontier orbitals of the TM catalysts and O2 molecule. We further illuminate that the subsequent CO oxidation reactions proceed via the Langmuir-Hinshelwood mechanism with contrasting reaction barriers for the Pd monomer and dimer catalysts. These findings not only provide an explanation for existing observations of distinctly different catalytic activities of Pd@TiO2(110) and Pd2@TiO2(110) [Kaden et al., Science, 2009, 326, 826-829] but also shed new insights into future utilization and optimization of single-atom catalysis.

  16. Development of a high flow source of energetic oxygen atoms for material degradation studies. [of Space Shuttles in low earth orbit environments

    Science.gov (United States)

    Caledonia, G. E.; Krech, R. H.

    1985-01-01

    A technique for the generation, in the laboratory, of thermally 'cold', high flux of energetic oxygen atoms is presented. The flux of nearly mono-energetic oxygen atoms is obtained after a laser-induced breakdown of oxygen molecules followed by a rapid expansion of the recombining plasma. The experimental apparatus, the optical and spectral measurements, the O-atom source characterization, and the material degradation studies are discussed. Average oxygen atom velocities of about 5 to 13 km/s are measured with an estimated flux of 10 to the 18th per pulse, over pulse durations of several microseconds. The flow of the O2 gas for about 200 microseconds before applying the laser pulse is found to give best results. It is also found that the energetic O-atom irradiation of sample targets such as Al, Fe, and polyethylene, induces mass removal. In addition, spectral scans of the radiation reveals the existence of two main spectral subsets.

  17. Atomic-scale control of magnetic anisotropy via novel spin-orbit coupling effect in La2/3Sr1/3MnO3/SrIrO3 superlattices.

    Science.gov (United States)

    Yi, Di; Liu, Jian; Hsu, Shang-Lin; Zhang, Lipeng; Choi, Yongseong; Kim, Jong-Woo; Chen, Zuhuang; Clarkson, James D; Serrao, Claudy R; Arenholz, Elke; Ryan, Philip J; Xu, Haixuan; Birgeneau, Robert J; Ramesh, Ramamoorthy

    2016-06-07

    Magnetic anisotropy (MA) is one of the most important material properties for modern spintronic devices. Conventional manipulation of the intrinsic MA, i.e., magnetocrystalline anisotropy (MCA), typically depends upon crystal symmetry. Extrinsic control over the MA is usually achieved by introducing shape anisotropy or exchange bias from another magnetically ordered material. Here we demonstrate a pathway to manipulate MA of 3d transition-metal oxides (TMOs) by digitally inserting nonmagnetic 5d TMOs with pronounced spin-orbit coupling (SOC). High-quality superlattices comprising ferromagnetic La2/3Sr1/3MnO3 (LSMO) and paramagnetic SrIrO3 (SIO) are synthesized with the precise control of thickness at the atomic scale. Magnetic easy-axis reorientation is observed by controlling the dimensionality of SIO, mediated through the emergence of a novel spin-orbit state within the nominally paramagnetic SIO.

  18. Intro duction to first-principles simulation package ABACUS based on systematically improvable atomic orbitals%基于数值原子轨道基组的第一性原理计算软件ABACUS

    Institute of Scientific and Technical Information of China (English)

    刘晓辉; 陈默涵; 李鹏飞; 沈瑜; 任新国; 郭光灿; 何力新

    2015-01-01

    随着超级计算机硬件和数值算法迅速发展,使得目前利用密度泛函理论研究上千个原子体系的电子能带和结构等性质变得可行. 数值原子轨道基组由于其基组较小和局域等特性, 可以很好地与电子结构计算中的线性标度算法等的新算法结合, 用来研究较大尺寸的物理体系. 本文详细介绍了一款中国科学技术大学量子信息重点实验室自主开发的基于数值原子轨道基组的第一性原理计算软件 Atomic-orbital Based Ab-initio Computation at UStc. 大量的测试结果表明: 该软件具有很好的准确性和较高的并行效率, 可以用于包含1000个原子左右的系统的电子结构和原子结构的研究以及分子动力学模拟计算.%With the rapid development of supercomputers and the advances of numerical algorithms, nowadays it is possible to study the electronic, structural and dynamical properties of complicated physical systems containing thousands of atoms using density functional theory (DFT). The numerical atomic orbitals are ideal basis sets for large-scale DFT calculations in terms of their small base size and localized characteristic, and can be mostly easily combined with linear scaling methods. Here we introduce a first-principles simulation package "Atomic-orbital Based Ab-initio Computation at UStc (ABACUS)", developed at the Key Laboratory of Quantum Information, University of Science and Technology of China. This package provides a useful tool to study the electronic, structural and molecular dynamic properties of systems containing up to 1000 atoms. In this paper, we introduce briefly the main algorithms used in the package, including construction of the atomic orbital bases, construction of the Kohn-Sham Hamiltonian in the atomic basis sets, and some details of solving Kohn-Sham equations, including charge mixing, charge extrapolation, smearing etc. We then give some examples calculated using ABACUS: 1) the energy orders

  19. Non-Collision Singularities in the Planar Two-Center-Two-Body Problem

    Science.gov (United States)

    Xue, Jinxin; Dolgopyat, Dmitry

    2016-08-01

    In this paper, we study a restricted four-body problem called the planar two-center-two-body problem. In the plane, we have two fixed centers Q 1 and Q 2 of masses 1, and two moving bodies Q 3 and Q 4 of masses {μ≪ 1}. They interact via Newtonian potential. Q 3 is captured by Q 2, and Q 4 travels back and forth between two centers. Based on a model of Gerver, we prove that there is a Cantor set of initial conditions that lead to solutions of the Hamiltonian system whose velocities are accelerated to infinity within finite time avoiding all earlier collisions. This problem is a simplified model for the planar four-body problem case of the Painlevé conjecture.

  20. Orbital cellulitis

    Science.gov (United States)

    ... hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and ... in the space around the eye. An orbital cellulitis infection can get worse very quickly. A person with ...

  1. Two center shell model with Woods-Saxon potentials: adiabatic and diabatic states in fusion

    CERN Document Server

    Díaz-Torres, A; Diaz-Torres, Alexis; Scheid, Werner

    2005-01-01

    A realistic two-center shell model for fusion is proposed, which is based on two spherical Woods-Saxon potentials and the potential separable expansion method. This model describes the single-particle motion in a fusing system. A technique for calculating stationary diabatic states is suggested which makes use of the formal definition of those states, i.e., they minimize the radial nonadiabatic coupling between the adiabatic states. As an example the system $^{16}$O + $^{40}$Ca $\\to$ $^{56}$Ni is discussed.

  2. Integrability and separation of variables in Calogero-Coulomb-Stark and two-center Calogero-Coulomb systems

    CERN Document Server

    Hakobyan, Tigran

    2015-01-01

    We define the integrable N-dimensional Calogero-Coulomb-Stark and two-center Calogero-Coulomb systems and construct their constants of motion via the Dunkl operators. Their Schroedinger equations decouple in parabolic and elliptic coordinates, respectively, into the set of three differential equations like for the Coulomb-Stark and two-center Coulomb problems.

  3. Band-edge electronic structure of β-In2S3: the role of s or p orbitals of atoms at different lattice positions.

    Science.gov (United States)

    Zhao, Zongyan; Cao, Yuechan; Yi, Juan; He, Xijia; Ma, Chenshuo; Qiu, Jianbei

    2012-04-23

    As a promising solar-energy material, the electronic structure and optical properties of Beta phase indium sulfide (β-In(2)S(3)) are still not thoroughly understood. This paper devotes to solve these issues using density functional theory calculations. β-In(2)S(3) is found to be an indirect band gap semiconductor. The roles of its atoms at different lattice positions are not exactly identical because of the unique crystal structure. Additonally, a significant phenomenon of optical anisotropy was observed near the absorption edge. Owing to the low coordination numbers of the In3 and S2 atoms, the corresponding In3-5s states and S2-3p states are crucial for the composition of the band-edge electronic structure, leading to special optical properties and excellent optoelectronic performances.

  4. Atomic structure under external confinement: effect of plasma on the spin orbit splitting, relativistic mass correction and Darwin term for hydrogen-like ions

    Science.gov (United States)

    Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Fricke, Burkhard

    2017-03-01

    The effect of Debye and quantum plasma environment on the structural properties such as spin orbit splitting, relativistic mass correction and Darwin term for a few iso-electronic members of hydrogen viz. C5 +, O7 +, Ne9 +, Mg11 +, Si13 +, S15 +, Ar17 +, Ca19 + and Ti21 + has been analysed systematically for the first time for a range of coupling strengths of the plasma. The Debye plasma environment has been treated under a standard screened Coulomb potential (SCP) while the quantum plasma has been treated under an exponential cosine screened Coulomb potential (ECSCP). Estimation of the spin orbit splitting under SCP and ECSCP plasma is restricted to the lowest two dipole allowed states while for the other two properties, the ground state as well as the first two excited states have been chosen. Calculations have been extended to nuclear charges for which appreciable relativistic corrections are noted. In all cases calculations have been extended up to such screening parameters for which the respective excitation energies tend towards their stability limit determined by the ionisation potential at that screening parameter. Interesting behavior of the respective properties with respect to the plasma coupling strength has been noted.

  5. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.

  6. Quantitative and qualitative assessment of structural magnetic resonance imaging data in a two-center study

    Directory of Open Access Journals (Sweden)

    Chalavi Sima

    2012-08-01

    Full Text Available Abstract Background Multi-center magnetic resonance imaging (MRI studies present an opportunity to advance research by pooling data. However, brain measurements derived from MR-images are susceptible to differences in MR-sequence parameters. It is therefore necessary to determine whether there is an interaction between the sequence parameters and the effect of interest, and to minimise any such interaction by careful choice of acquisition parameters. As an exemplar of the issues involved in multi-center studies, we present data from a study in which we aimed to optimize a set of volumetric MRI-protocols to define a protocol giving data that are consistent and reproducible across two centers and over time. Methods Optimization was achieved based on data quality and quantitative measures, in our case using FreeSurfer and Voxel Based Morphometry approaches. Our approach consisted of a series of five comparisons. Firstly, a single-center dataset was collected, using a range of candidate pulse-sequences and parameters chosen on the basis of previous literature. Based on initial results, a number of minor changes were implemented to optimize the pulse-sequences, and a second single-center dataset was collected. FreeSurfer data quality measures were compared between datasets in order to determine the best performing sequence(s, which were taken forward to the next stage of testing. We subsequently acquired short-term and long-term two-center reproducibility data, and quantitative measures were again assessed to determine the protocol with the highest reproducibility across centers. Effects of a scanner software and hardware upgrade on the reproducibility of the protocols at one of the centers were also evaluated. Results Assessing the quality measures from the first two datasets allowed us to define artefact-free protocols, all with high image quality as assessed by FreeSurfer. Comparing the quantitative test and retest measures, we found high within

  7. Magnetizability and rotational g tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals.

    Science.gov (United States)

    Loibl, Stefan; Schütz, Martin

    2014-07-14

    In this paper, we present theory and implementation of an efficient program for calculating magnetizabilities and rotational g tensors of closed-shell molecules at the level of local second-order Møller-Plesset perturbation theory (MP2) using London orbitals. Density fitting is employed to factorize the electron repulsion integrals with ordinary Gaussians as fitting functions. The presented program for the calculation of magnetizabilities and rotational g tensors is based on a previous implementation of NMR shielding tensors reported by S. Loibl and M. Schütz [J. Chem. Phys. 137, 084107 (2012)]. Extensive test calculations show (i) that the errors introduced by density fitting are negligible, and (ii) that the errors of the local approximation are still rather small, although larger than for nuclear magnetic resonance (NMR) shielding tensors. Electron correlation effects for magnetizabilities are tiny for most of the molecules considered here. MP2 appears to overestimate the correlation contribution of magnetizabilities such that it does not constitute an improvement over Hartree-Fock (when comparing to higher-order methods like CCSD(T)). For rotational g tensors the situation is different and MP2 provides a significant improvement in accuracy over Hartree-Fock. The computational performance of the new program was tested for two extended systems, the larger comprising about 2200 basis functions. It turns out that a magnetizability (or rotational g tensor) calculation takes about 1.5 times longer than a corresponding NMR shielding tensor calculation.

  8. Differential cross sections for the one electron two center symmetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Maidagan, J.M.; Piacentini, R.D. (Universidad Nacional de Rosario (Argentina). Dept. de Fisica); Rivarola, R.D. (Bordeaux-1 Univ., 33 - Talence (France). Lab. d' Astrophysique; Universidad Autonoma de Madrid (Spain). Dept. de Quimica Fisica y Quimica Cuantica)

    1982-03-01

    We use the two-state atomic expansion with variable nuclear charge to study charge-exchange differential cross sections for symmetrical one-electron systems at intermediate energy. The nonclassical small angle diffraction scattering is discussed. Our results are compared with data for H/sup +/-H collisions.

  9. The clinical manifestations and survival of systemic lupus erythematosus patients in Turkey: report from two centers.

    Science.gov (United States)

    Pamuk, O N; Akbay, F G; Dönmez, S; Yilmaz, N; Calayir, G B; Yavuz, S

    2013-11-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with a variety of clinical features. Survival has become longer as a result of better treatment modalities and better supportive care. There is no information on survival of SLE patients in Turkey. We evaluated clinical features and survival in SLE patients in two rheumatology departments. All SLE patients being followed up by the Department of Rheumatology, Trakya University Medical Faculty, and the Department of Rheumatology, Marmara University Medical Faculty, over the 1996-2012 period were included. Patients were diagnosed with SLE if they fulfilled at least four American College of Rheumatology (ACR) criteria. The clinical and laboratory features, mortality data were obtained from medical charts. We had 428 SLE patients, and women (399 patients, 93.2%) far outnumbered men (29 patients, 6.8%). The mean age at the time of SLE diagnosis was 40.3 ± 12.4 years. The most frequent clinical manifestations were arthritis (76.9%) and photosensitivity (70.1%). Renal disease was present in 32.9% of patients and neurological involvement in 12.9% of patients. After a median follow-up of 60 months, 19 patients died. The most frequent causes of death were ischemic heart disease, chronic renal failure and sepsis. The rate of five-year survival was 96%; 10-year survival, 92%; and 15-year survival, 88.8%. Multivariate Cox analysis showed that serositis at the time of diagnosis, SLE disease activity index (SLEDAI) score 6, and autoimmune hemolytic anemia were independent prognostic factors. Data from two centers in Northwestern Turkey show that the mortality rate for SLE is similar to the rate in Western countries.

  10. Allograft arthrodesis treatment of bone tumors: a two-center study.

    Science.gov (United States)

    Donati, D; Giacomini, S; Gozzi, E; Salphale, Y; Mercuri, M; Mankin, Henry J; Springfield, Dempsy S; Gebhardt, Mark C

    2002-07-01

    The current study consists of an outcome review of a consecutive series of 92 patients with knee arthrodesis using an allograft, done for malignant or aggressive tumors in two centers on different continents during a period of 18 years (mean followup, 5 +/- 4 years). The data were compiled by creating a computerized file using the information provided by both centers. Seventy-five of the patients (81%) had high-grade nonmetastatic tumors (Stage II), mostly osteosarcoma. In addition seven (8%) had metastases at outset (Stage III) and the remaining 10 (11%) had benign disease, mostly giant cell tumor or revision procedures for failed allograft or total joint replacement. Seventy-two patients (78%) had distal femoral lesions (78%) whereas the proximal tibia was the site of the tumor in 20 patients (22%). The average age of the patients was 23 +/- 16 years; 51 were males and 41 were females. Tumor complications were a major problem for patients in the series. Thirty-four percent of the patients died, 47% had metastases develop, and 9% had a local recurrence. Allograft complications included an infection rate of 20%, a fracture rate of 25%, and a nonunion rate of 44%. Repeat surgery was required for more than 50% of the patients with 26 requiring one additional operation, 11 requiring two, and 10 requiring three or more operations. Nineteen of the patients required an amputation (20%), only four of which were for recurrent tumor. When these data were compared with data for a control series of 880 patients with allografts other than allograft arthrodeses, the complications were greater and the outcome less successful, suggesting that other approaches should be considered unless there are special indications for this procedure.

  11. 具有自旋轨道耦合的冷原子费米气中的拓扑超流和FFLO超流❋%Topological superfluids and FFLO superfluids in spin-orbit coupled atomic Fermi gases

    Institute of Scientific and Technical Information of China (English)

    王俊; 高先龙

    2015-01-01

    It was investigated the properties of spin-orbit coupled atomic fermi gases under a Zeeman field. By solving the Bogoliubove-de Gennes equation self-consistently, it was found that the system supported the topol-ogical superfluid state and the Fulde-Ferrell-Larkin-Ovchinnikov superfluid state respectively when the system under the different strength of Zeeman field and filling factors. When the system turned into topological super-fluid state, a pair of zero-energy Majorana fermions were found.%研究了具有自旋轨道耦合的冷原子费米气在外磁场作用下的物理性质。通过自洽求解Bogoliubove-de Gennes方程,发现了在不同磁场强度和粒子填充数下,体系分别存在拓扑超流态和 Fulde-Ferrell-Larkin-Ovchinnikov超流态。当体系处于拓扑超流态时,存在零能Majorana费米子。

  12. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model

    Science.gov (United States)

    Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.

    2008-12-01

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  13. Hydrogenoid orbitals revisited: From Slater orbitals to Coulomb Sturmians

    Indian Academy of Sciences (India)

    Danilo Calderini; Simonetta Cavalli; Cecilia Coletti; Gaia Grossi; Vincenzo Qquilanti

    2012-01-01

    The simple connection between the Slater orbitals, venerable in quantum chemistry, and the Coulomb Sturmian orbitals, more recently employed in atomic and molecular physics, is pointed out explicitly in view of the renewed interest in both as basis sets in applied quantum mechanics. Research in Slater orbitals mainly concerns multicentre, many-body integrals, whereas that on Sturmians exploits their orthonormality and completeness with no need of continuum states. An account of recent progress is outlined, also with reference to relationships between the two basis sets, and with the momentum space and hyperspherical harmonics representations.

  14. Orbital pseudotumor

    Science.gov (United States)

    ... Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman ... 423. Review Date 8/20/2016 Updated by: Franklin W. Lusby, MD, ophthalmologist, Lusby Vision Institute, La ...

  15. Foreign body orbital cyst

    DEFF Research Database (Denmark)

    Yazdanfard, Younes; Heegard, Steffen; Fledelius, Hans C.

    2001-01-01

    Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology......Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology...

  16. A Quantum Model of Atoms (the Energy Levels of Atoms).

    Science.gov (United States)

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  17. Hard sphere model of atom

    CERN Document Server

    Tsekov, R

    2014-01-01

    The finite size effect of electron and nucleus is accounted for in the model of atom. Due to their hard sphere repulsion the energy of the 1s orbital decreases and the corrections amount up to 8 % in Uranium. Several models for boundary conditions on the atomic nucleus surface are discussed as well.

  18. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  19. Diffractive molecular-orbital tomography

    Science.gov (United States)

    Zhai, Chunyang; Zhu, Xiaosong; Lan, Pengfei; Wang, Feng; He, Lixin; Shi, Wenjing; Li, Yang; Li, Min; Zhang, Qingbin; Lu, Peixiang

    2017-03-01

    High-order-harmonic generation in the interaction of femtosecond lasers with atoms and molecules opens the path to molecular-orbital tomography and to probe the electronic dynamics with attosecond-Ångström resolutions. Molecular-orbital tomography requires both the amplitude and phase of the high-order harmonics. Yet the measurement of phases requires sophisticated techniques and represents formidable challenges at present. Here we report a scheme, called diffractive molecular-orbital tomography, to retrieve the molecular orbital solely from the amplitude of high-order harmonics without measuring any phase information. We have applied this method to image the molecular orbitals of N2, CO2, and C2H2 . The retrieved orbital is further improved by taking account the correction of Coulomb potential. The diffractive molecular-orbital tomography scheme, removing the roadblock of phase measurement, significantly simplifies the molecular-orbital tomography procedure and paves an efficient and robust way to the imaging of more complex molecules.

  20. Addition theorems for Slater-type orbitals and their application to multicenter multielectron integrals of central and noncentral interaction potentials.

    Science.gov (United States)

    Guseinov, Israfil

    2003-06-01

    By the use of complete orthonormal sets of psi(alpha)-ETOs (alpha=1, 0, m1, m2,...) introduced by the author, new addition theorems are derived for STOs and arbitrary central and noncentral interaction potentials (CIPs and NCIPs). The expansion coefficients in these addition theorems are expressed through the Gaunt and Gegenbauer coefficients. Using the addition theorems obtained for STOs and potentials, general formulae in terms of three-center overlap integrals are established for the multicenter t-electron integrals of CIPs and NCIPs that arise in the solution of the N-electron atomic and molecular problem (2hthN) when a Hylleraas approximation in Hartree-Fock-Roothaan theory is employed. With the help of expansion formulae for translation of STOs, the three-center overlap integrals are expressed through the two-center overlap integrals. The formulae obtained are valid for arbitrary quantum numbers, screening constants and location of orbitals.

  1. Closed Orbits in Phase Space

    Science.gov (United States)

    Murphy, Andrew; Haestad, Jace; Morgan, Thomas

    2015-09-01

    We report characteristics of closed classical orbits in an electric field in phase space produced in photoabsorption. Rydberg states of atomic and molecular hydrogen and helium are considered. The core potential used for the hydrogen molecule is an effective one electron one center core potential evaluated at the internuclear equilibrium distance. Poincare surfaces of section in phase space are generated by integrating the equations of motion in semiparabolic coordinates u = (r + z) 1 / 2 and v = (r - z) 1 / 2, and plotting the location in phase space (pv versus v) whenever u = 0, with the electric field in the z direction. Combination orbits produced by Rydberg electron core scattering are studied and the evolution in phase space of these combination orbits due to scattering from one closed orbit into another is investigated. Connections are made to measured laser photoabsorption experiments that excite Rydberg states (20 recurrence spectra. The phase space structures responsible for the spectra are identified.

  2. Recolliding orbits in an intense laser field

    CERN Document Server

    Kamor, Adam; Chandre, Cristel; UZer, Turgay

    2013-01-01

    We show that a family of key periodic orbits drive the recollision process in a strong circulary polarized laser field. These orbits, coined recolliding periodic orbits, exist for a wide range of parameters and their relative influence changes as the laser and atomic parameters are varied. We find the necessary conditions for recollision-driven nonsequential double ionization to occur. The outlined mechanism is universal in that it applies equally well beyond atoms: The internal structure of the target species plays a minor role in the recollision process.

  3. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    梁科; 侯自新

    2001-01-01

    Vogan conjectured that the parabolic induction of orbit data is independent of the choice of the parabolic subgroup. In this paper we first give the parabolic induction of orbit covers, whose relationship with geometric orbit datum is also induced. Hence we show a geometric interpretation of orbit data and finally prove the conjugation for geometric orbit datum using geometric method.

  4. Bond-order conservation approach to chemisorption of polyatomic molecules: Effective partitioning of two-center bond energies

    Science.gov (United States)

    Shustorovich, Evgeny

    1988-10-01

    Within the bond-order conservation Morse-potential (BOC-MP) model of chemisorption, the analytic interrelations for diatomic admolecules (at low coverages) are rigorous. Here we extend these interrelations to treat polyatomic adsorbates partitioned into two effective fragments. We discuss a partitioning scheme involving the averaging of chemical structures representing reasonable limits (upper and lower) of two-center bond energies. It is shown that, by using this scheme, one can efficiently determine the preferred coordination modes of polyatomic adsorbates (monoversus dicoordination) and the preferred pathways of complex surface reactions (e.g. hydrogenation of CO and transformations of C 2 hydrocarbons). Relations to other theoretical approaches are briefly discussed.

  5. Molecular integrals for exponential-type orbitals using hyperspherical harmonics

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2015-01-01

    Exponential-type orbitals are better suited to calculations of molecular electronic structure than are Gaussians, since ETO's can accurately represent the behavior of molecular orbitals near to atomic nuclei, as well as their long-distance exponential decay. Orbitals based on Gaussians fail in bo...

  6. Physical nature of interactions in Zn(II) complexes with 2,2'-bipyridyl: quantum theory of atoms in molecules (QTAIM), interacting quantum atoms (IQA), noncovalent interactions (NCI), and extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV) comparative studies.

    Science.gov (United States)

    Cukrowski, Ignacy; de Lange, Jurgens H; Mitoraj, Mariusz

    2014-01-23

    In the present account factors determining the stability of ZnL, ZnL2, and ZnL3 complexes (L = bpy, 2,2′-bipyridyl) were characterized on the basis of various techniques: the quantum theory of atoms in molecules (QTAIM), energy decomposition schemes based on interacting quantum atoms (IQA), and extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV). Finally, the noncovalent interactions (NCI) index was also applied. All methods consistently indicated that the strength of the coordination bonds, Zn–O and Zn–N, decreases from ZnL to ZnL3. Importantly, it has been identified that the strength of secondary intramolecular heteropolar hydrogen bonding interactions, CH···O and CH···N, increases when going from ZnL to ZnL3. A similar trend appeared to be valid for the π-bonding as well as electrostatic stabilization. In addition to the above leading bonding contributions, all techniques suggested the existence of very subtle, but non-negligible additional stabilization from the CH···HC electronic exchange channel; these interactions are the weakest among all considered here. From IQA it was found that the local diatomic interaction energy, Eint(H,H), amounts at HF to −2.5, −2.7, and −2.9 kcal mol(–1) for ZnL, ZnL2, and ZnL3, respectively (−2.1 kcal mol(–1) for ZnL at MP2). NOCV-based deformation density channels showed that formation of CH--HC contacts in Zn complexes causes significant polarization of σ(C–H) bonds, which accordingly leads to charge accumulation in the CH···HC bay region. Charge depletion from σ(C–H) bonds was also reflected in the calculated spin–spin (1)J(C–H) coupling constants, which decrease from 177.06 Hz (ZnL) to 173.87 Hz (ZnL3). This last result supports our findings of an increase in the local electronic CH···HC stabilization from ZnL to ZnL3 found from QTAIM, IQA, and ETS-NOCV. Finally, this work unites for the first time the results from four methods that are widely

  7. Orbit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  8. Inflammation of the Orbit

    Science.gov (United States)

    ... Eye Exams, Study Finds Additional Content Medical News Inflammation of the Orbit (Inflammatory Orbital Pseudotumor) By James ... Introduction to Eye Socket Disorders Cavernous Sinus Thrombosis Inflammation of the Orbit Orbital Cellulitis Preseptal Cellulitis Tumors ...

  9. Imaging of Orbital Infections

    OpenAIRE

    Seyed Hassan Mostafavi

    2010-01-01

    Preseptal and orbital cellulitis occur more commonly in children than adults. The history and physical examination are crucial in distinguishing between preseptal and orbital cellulitis. The orbital septum delineates the anterior eyelid soft tissues from the orbital soft tissue. Infections anterior to the orbital septum are classified as preseptal cellulitis and those posterior to the orbital septum are termed orbital cellulitis. "nRecognition of orbital involvement is important not only...

  10. Young-type interferences using single-electron sources and an atomic-size two-center interferometer: Dependence with interferometer parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fremont, F. [Unite mixte Universite de Caen, CNRS, CEA, Ensicaen, CIMAP, 6 bd du Mal Juin, 14050 Caen Cedex (France)], E-mail: francois.fremont@ensicaen.fr; Suarez, S. [Centro Atomico Bariloche and Instituto Balseiro (Comision Nacional de Energia Atomica and Universidad Nacional de Cuyo), 8400 S.C. de Bariloche, Rio Negro (Argentina); Barrachina, R.O. [Laboratoire de Chimie Physique-Matiere et Rayonnement, Universite Pierre et Marie Curie, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Hajaji, A. [Unite mixte Universite de Caen, CNRS, CEA, Ensicaen, CIMAP, 6 bd du Mal Juin, 14050 Caen Cedex (France); Sisourat, N.; Dubois, A. [Laboratoire de Chimie Physique-Matiere et Rayonnement, Universite Pierre et Marie Curie, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Chesnel, J.-Y. [Unite mixte Universite de Caen, CNRS, CEA, Ensicaen, CIMAP, 6 bd du Mal Juin, 14050 Caen Cedex (France)

    2009-01-15

    We present the realization of a Young-type double-slit experiment, in which single electrons, scattering on two protons, produce interference pattern. The electrons are produced by a Auger effect, following double capture process in low He{sup 2+} + H{sub 2} collisions. Well-defined oscillations are visible in the angular distribution of the electrons emitted towards the receding protons. The presence of these oscillations is a clear demonstration that an electron interferes with itself. We also discuss the dependence of the interference pattern with interference parameters, such as the electron wavelength as well as the distance between the protons when the electron is ejected.

  11. Einstein's Hydrogen Atom

    CERN Document Server

    Kim, Y S

    2011-01-01

    In 1905, Einstein formulated his special relativity for point particles. For those particles, his Lorentz covariance and energy-momentum relation are by now firmly established. How about the hydrogen atom? It is possible to perform Lorentz boosts on the proton assuming that it is a point particle. Then what happens to the electron orbit? The orbit could go through an elliptic deformation, but it is not possible to understand this problem without quantum mechanics, where the orbit is a standing wave leading to a localized probability distribution. Is this concept consistent with Einstein's Lorentz covariance? Dirac, Wigner, and Feynman contributed important building blocks for understanding this problem. The remaining problem is to assemble those blocks to construct a Lorentz-covariant picture of quantum bound states based on standing waves. It is shown possible to assemble those building blocks using harmonic oscillators.

  12. Zitterbewegung in Cold Atoms

    Science.gov (United States)

    Penteado, Poliana; Egues, J. Carlos

    2013-03-01

    In condensed matter systems, the coupling between spatial and spin degrees of freedom through the spin-orbit (SO) interaction offers the possibility of manipulating the electron spin via its orbital motion. The proposal by Datta and Das of a `spin transistor' for example, highlights the use of the SO interaction to control the electron spin via electrical means. Recently, arrangements of crossed lasers and magnetic fields have been used to trap and cool atoms in optical lattices and also to create light-induced gauge potentials, which mimic the SO interactions in real solids. In this work, we investigate the Zitterbewegung in cold atoms by starting from the effective SO Hamiltonian derived in Ref.. Cross-dressed atoms as effective spins can provide a proper setting in which to observe this effect, as the relevant parameter range of SO strengths may be more easily attainable in this context. We find a variety of peculiar Zitterbewegung orbits in real and pseudo-spin spaces, e.g., cycloids and ellipses - all of which obtained with realistic parameters. This work is supported by FAPESP, CAPES and CNPq.

  13. Orbital liposarcoma.

    Science.gov (United States)

    Borbolla-Pertierra, A M; Morales-Baños, D R; Martínez-Nava, L R; Garrido-Sánchez, G A; López-Hernández, C M; Velasco-Ramos, P

    2017-02-01

    The case is presented of a 46-year-old male with right eye proptosis and conjunctival hyperaemia, of 18 months onset. A well-defined intraconal mass was found in the computed tomography. In magnetic resonance this was hypo-intense on T1, enhanced with gadolinium and hyperintense on T2. Excisional biopsy was performed, which was reported as a well-differentiated liposarcoma in the histopathology study. Liposarcoma is a malignant adipose tissue tumour. It is very rare in the orbit, with 5 histological types, the most common being myxoid. The treatment of choice is wide surgical excision and may be accompanied with radiotherapy. As it is an infiltrative tumour, It has a high rate of recurrence. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Spin-Orbit Coupled Bose-Einstein Condensates

    Science.gov (United States)

    2016-11-03

    Spin -Orbit Coupled Bose-Einstein Condensates This ARO research proposal entitled " SPIN -ORBIT COUPLED BOSE-EINSTEIN CONDENSATES" (SOBECs) explored...realized with cold atoms. A unique feature of the SOBECs is a topologically protected spin -orbital degeneracy of the ground state that results in a...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 superfluids, spin -orbit coupling, optical lattices, topological states REPORT

  15. Geology orbiter comparison study

    Science.gov (United States)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  16. Galactic Habitable Orbits

    Science.gov (United States)

    Rahimi, A.; Mao, S.; Kawata, D.

    2014-03-01

    The fossil record shows that the Earth has experienced several mass extinctions over the past 500 million years1, and it has been suggested that there is a periodicity in extinction events on timescales of tens1 and/or hundreds of millions of years. Various hypotheses have been proposed to explain the cause of the mass extinctions, including the suggestion that the Earth's ozone layer may have been destroyed by intense radiation from a nearby supernovae2- 3, exposing the Earth's surface to damaging UV radiation. Recent observations of cores taken from the ocean floor revealed atoms of a very rare isotope of iron (60Fe) believed to have arrived on Earth around 2 million years ago as fallout from a nearby supernovae4. Astronomical evidence for that past supernovae was recently found in the debris of a young cluster of massive stars5, by tracing its past orbit, putting it at the right place at the right time to explain the mild extinction event. Here we report new high-resolution (both in space and time) N-body chemodynamical simulations (carried out with our novel code GCD+6) of the evolution of a model Milky Way Galaxy, tracing the orbit of èsun-like' stars over a 500 million year period, checking the proximity to supernovae throughout the history of the orbit and comparing the times when this occurs with past mass extinctions on Earth. We additionally explain the important effects of the spiral arm pattern, radial migration of stars and Galactic chemistry on habitability.

  17. Small Orbits

    CERN Document Server

    Borsten, L; Ferrara, S; Marrani, A; Rubens, W

    2012-01-01

    We study both the "large" and "small" U-duality charge orbits of extremal black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated "moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2 and N = 4 theories coupled to an arbitrary number of vector multiplets, as well as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered as part of the general N = 2 sequence, albeit with an additional triality symmetry, the ST^2 and T^3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit non-zero elements of rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter coupled N = 3, and "pure" N = 5 theories.

  18. Atomic energy

    CERN Multimedia

    1996-01-01

    Interviews following the 1991 co-operation Agreement between the Department of Atomic Energy (DAE) of the Government of India and the European Organization for Nuclear Research (CERN) concerning the participation in the Large Hadron Collider Project (LHC) . With Chidambaram, R, Chairman, Atomic Energy Commission and Secretary, Department of Atomic Energy, Department of Atomic Energy (DAE) of the Government of India and Professor Llewellyn-Smith, Christopher H, Director-General, CERN.

  19. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  20. Updates in Orbital Tumors

    Institute of Scientific and Technical Information of China (English)

    Nila; F.Moeloek

    1993-01-01

    Orbital anatomy, the clinical features of orbital tumors, the recent development of the diagnosis and management of orbital tumors were described. The incidence of orbital tumors in Dr. Cipto Mangunkusumo Hospital in the past years were introduced. The principle of management of orbital tumors and their prognosis were discussed.

  1. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  2. Imaging of Orbital Infections

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Mostafavi

    2010-05-01

    Full Text Available Preseptal and orbital cellulitis occur more commonly in children than adults. The history and physical examination are crucial in distinguishing between preseptal and orbital cellulitis. The orbital septum delineates the anterior eyelid soft tissues from the orbital soft tissue. Infections anterior to the orbital septum are classified as preseptal cellulitis and those posterior to the orbital septum are termed orbital cellulitis. "nRecognition of orbital involvement is important not only because of the threatened vision loss associated with orbital cellulitis but also because of the potential for central nervous system complications including cavernous sinus thrombosis, meningitis, and death. "nOrbital imaging should be obtained in all patients suspected of having orbital cellulitis. CT is preferred to MR imaging, as the orbital tissues have high con-trast and the bone can be well visualized. Orbital CT scanning allows localization of the disease process to the preseptal area, the extraconal or intraconal fat, or the subperiosteal space. Axial CT views allow evaluation of the medial orbit and ethmoid sinuses, whereas coronal scans image the orbital roof and floor and the frontal and maxillary sinuses. If direct coronal imaging is not possible, reconstruction of thin axial cuts may help the assessment of the orbital roof and floor. Potential sources of orbital cellulitis such as sinusitis, dental infection, and facial cellulitis are often detectable on CT imaging. "nIn this presentation, the imaging considerations of the orbital infections; including imaging differentiation criteria of all types of orbital infections are reviewed.

  3. Preseptal Cellulitis, Orbital Cellulitis, Orbital Abscess

    OpenAIRE

    Rana Altan Yaycıoğlu

    2012-01-01

    Patients with orbital infections present to our clinic usually with unilateral pain, hyperemia, and edema of the eyelids. The differentiation between preseptal and orbital cellulitis is utmost important in that the second requires hospitalization. Since in orbital cellulitis, the tissues posterior to the orbital septum are involved, signs such as conjunctival chemosis, limited eye movement, decreased vision, as well as afferent pupil defect secondary to optic nerve involvement may al...

  4. Bilateral orbital cavernous haemangiomas.

    OpenAIRE

    Fries, P D; Char, D. H.

    1988-01-01

    Simultaneous bilateral orbital lesions are rare. The differential diagnosis includes orbital pseudotumour, metastasis, leukaemia, lymphoma, Wegener's granulomatosis, and neurofibromatosis. We report what we believe to be the first case of bilateral orbital cavernous haemangiomas.

  5. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  6. A Simple Relativistic Bohr Atom

    Science.gov (United States)

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  7. A Simple Relativistic Bohr Atom

    Science.gov (United States)

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  8. Ab Initio Calculations of X-ray Spectra : Atomic Multiplet and Molecular Orbital Effects in a Multiconfigurational SCF Approach to the L-Edge Spectra of Transition Metal Complexes

    NARCIS (Netherlands)

    Josefsson, Ida; Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander; de Groot, Frank; Wernet, Philippe; Odelius, Michael

    2012-01-01

    A new ab initio approach to the calculation of X-ray spectra is demonstrated. It combines a high-level quantum chemical description of the chemical interactions and local atomic multiplet effects. We show here calculated L-edge X-ray absorption (XA) and resonant inelastic X-ray scattering spectra fo

  9. Spontaneous emission of two interacting atoms near an interface

    Institute of Scientific and Technical Information of China (English)

    Dehua Wang

    2009-01-01

    The spontaneous emission rate of two interacting excited atoms near a dielectric interface is studied using the photon closed-orbit theory and the dipole image method.The total emission rate of one atom during the emission process is calculated as a function of the distance between the atom and the interface.The results suggest that the spontaneous emission rate depends not only on the atomic-interface distances,but also on the orientation of the two atomic dipoles and the initial distance between the two atoms.The oscillation in the spontaneous emission rate is caused by the interference between the outgoing electromagnetic wave emitted from one atom and other waves arriving at this atom after traveling along various classical orbits.Each peak in the Fourier transformed spontaneous emission rate corresponds with one action of photon classical orbit.

  10. Subgingival topical doxycycline versus mechanical debridement for supportive periodontal therapy: a single blind randomized controlled two-center study.

    Science.gov (United States)

    Eickholz, Peter; Kim, Ti-Sun; Schacher, Beate; Reitmeir, Peter; Bürklin, Thomas; Ratka-Krüger, Petra

    2005-12-01

    To evaluate the clinical effects of topical subgingival application of a doxycycline gel compared to conventional mechanical debridement in supportive periodontal therapy. 37 patients with residual or recurring periodontitis after systematic periodontal treatment at two centers (Heidelberg, Frankfurt) participated in this study. They had to exhibit at least one single-rooted tooth with either a probing depth (PPD) = 5 mm and bleeding-on-probing (BOP) or with PPD > or = 6 mm. The patients were randomly assigned to one of the two different treatment regimes: DOXY (exclusively subgingival application of a 14% doxycycline gel) or SRP (scaling and root planing with a sonic scaler). Clinical examinations (plaque index [P1I], PPD, vertical relative attachment level [RAL-V], gingival index [GI]) were performed before, 3, and 6 months after therapy. In 37 patients (19 female), aged 30-76 years with a total of 168 teeth were treated (DOXY: 79; SRP: 89). Six months after therapy, both groups exhibited statistically significant (PDOXY: -1.43 +/- 0.22 mm; SRP: -1.14 +/- 0.18 mm) and gains of RAL-V (DOXY: 0.79 +/- 0.22 mm; SRP: 0.72 +/- 0.19 mm). Multilevel regression analyses, considering the therapy of different numbers of teeth in different patients, failed to show statistically significant differences concerning PPD reduction and RAL-V gain between both therapies (DOXY/SRP). For both therapies, PPD reduction was significantly better in deeper pockets (PPD > or = 7 mm) than in shallow pockets (PPD: 5-6 mm).

  11. Variational electrodynamics of Atoms

    CERN Document Server

    De Luca, Jayme

    2013-01-01

    We study extrema with velocity discontinuities for the variational electromagnetic two-body problem. Along $C^2$ segments, these broken extrema satisfy the Euler-Lagrange equations of the variational principle, which are neutral differential delay equations with state-dependent deviating arguments. At points where accelerations are not defined and velocities are discontinuous, broken extrema satisfy Weierstrass-Erdmann corner conditions that energies and momenta are continuous. Here we construct periodic broken extrema near the $C^{\\infty}$ two-body circular orbits, using piecewise-defined $C^2$ solutions of the neutral differential delay equations along regular segments and a variational approximation for the boundary-layer segments. Broken periodic extrema with an integer number of corner points bifurcate from a discrete set of circular orbits, with scales defined by the Weierstrass-Erdmann corner conditions. We consider the three cases of hydrogen, muonium and positronium atoms. In each case the broken ext...

  12. Orbital dystopia due to orbital roof defect.

    Science.gov (United States)

    Rha, Eun Young; Joo, Hong Sil; Byeon, Jun Hee

    2013-01-01

    We performed a retrospective review of patients who presented with delayed dystopia as a consequence of an orbital roof defect due to fractures and nontraumatic causes to search for a correlation between orbital roof defect size and surgical indications for the treatment thereof. Retrospective analyses were performed in 7 patients, all of whom presented with delayed dystopia due to orbital roof defects, between January 2001 and June 2011. The causes of orbital roof defects were displaced orbital roof fractures (5 cases), tumor (1 case), and congenital sphenoid dysplasia (1 case). All 7 patients had initially been treated conservatively and later presented with significant dystopia. The sizes of the defects were calculated on computed tomographic scans. Among the 7 patients, aspiration of cerebrospinal fluid, which caused ocular symptoms, in 1 patient with minimal displaced orbital roof and reconstruction with calvarial bone, titanium micromesh, or Medpor in 6 other patients were performed. The minimal size of the orbital roof in patients who underwent orbital roof reconstruction was 1.2 cm (defect height) x 1.0 cm (defect length), 0.94 cm(2). For all patients with orbital dystopia, displacement of the globe was corrected without any complications, regardless of whether the patient was evaluated grossly or by radiology. In this retrospective study, continuous monitoring of clinical signs and active surgical management should be considered for cases in which an orbital roof defect is detected, even if no definite symptoms are noted, to prevent delayed sequelae.

  13. Similarity of atoms in molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cioslowski, J.; Nanayakkara, A. (Florida State Univ., Tallahassee, FL (United States))

    1993-12-01

    Similarity of atoms in molecules is quantitatively assessed with a measure that employs electron densities within respective atomic basins. This atomic similarity measure does not rely on arbitrary assumptions concerning basis functions or 'atomic orbitals', is relatively inexpensive to compute, and has straightforward interpretation. Inspection of similarities between pairs of carbon, hydrogen, and fluorine atoms in the CH[sub 4], CH[sub 3]F, CH[sub 2]F[sub 2], CHF[sub 3], CF[sub 4], C[sub 2]H[sub 2], C[sub 2]H[sub 4], and C[sub 2]H[sub 6] molecules, calculated at the MP2/6-311G[sup **] level of theory, reveals that the atomic similarity is greatly reduced by a change in the number or the character of ligands (i.e. the atoms with nuclei linked through bond paths to the nucleus of the atom in question). On the other hand, atoms with formally identical (i.e. having the same nuclei and numbers of ligands) ligands resemble each other to a large degree, with the similarity indices greater than 0.95 for hydrogens and 0.99 for non-hydrogens. 19 refs., 6 tabs.

  14. Operation of the computer model for direct atomic oxygen exposure of Earth satellites

    Science.gov (United States)

    Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.

    1995-01-01

    One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.

  15. Quantitative evaluation of orbital hybridization in carbon nanotubes under radial deformation using π-orbital axis vector

    Directory of Open Access Journals (Sweden)

    Masato Ohnishi

    2015-04-01

    Full Text Available When a radial strain is applied to a carbon nanotube (CNT, the increase in local curvature induces orbital hybridization. The effect of the curvature-induced orbital hybridization on the electronic properties of CNTs, however, has not been evaluated quantitatively. In this study, the strength of orbital hybridization in CNTs under homogeneous radial strain was evaluated quantitatively. Our analyses revealed the detailed procedure of the change in electronic structure of CNTs. In addition, the dihedral angle, the angle between π-orbital axis vectors of adjacent atoms, was found to effectively predict the strength of local orbital hybridization in deformed CNTs.

  16. Orbital Magnetism of Bloch Electrons: III. Application to Graphene

    Science.gov (United States)

    Ogata, Masao

    2016-10-01

    The orbital susceptibility for graphene is calculated exactly up to the first order with respect to the overlap integrals between neighboring atomic orbitals. The general and rigorous theory of orbital susceptibility developed in the preceding paper is applied to a model for graphene as a typical two-band model. It is found that there are contributions from interband, Fermi surface, and occupied states in addition to the Landau-Peierls orbital susceptibility. The relative phase between the atomic orbitals on the two sublattices related to the chirality of Dirac cones plays an important role. It is shown that there are some additional contributions to the orbital susceptibility that are not included in the previous calculations using the Peierls phase in the tight-binding model for graphene. The physical origin of this difference is clarified in terms of the corrections to the Peierls phase.

  17. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  18. Atomic Calligraphy

    Science.gov (United States)

    Imboden, Matthias; Pardo, Flavio; Bolle, Cristian; Han, Han; Tareen, Ammar; Chang, Jackson; Christopher, Jason; Corman, Benjamin; Bishop, David

    2013-03-01

    Here we present a MEMS based method to fabricate devices with a small number of atoms. In standard semiconductor fabrication, a large amount of material is deposited, after which etching removes what is not wanted. This technique breaks down for structures that approach the single atom limit, as it is inconceivable to etch away all but one atom. What is needed is a bottom up method with single or near single atom precision. We demonstrate a MEMS device that enables nanometer position controlled deposition of gold atoms. A digitally driven plate is swept as a flux of gold atoms passes through an aperture. Appling voltages on four comb capacitors connected to the central plate by tethers enable nanometer lateral precision in the xy plane over 15x15 sq. microns. Typical MEMS structures have manufacturing resolutions on the order of a micron. Using a FIB it is possible to mill apertures as small as 10 nm in diameter. Assuming a low incident atomic flux, as well as an integrated MEMS based shutter with microsecond response time, it becomes possible to deposit single atoms. Due to their small size and low power consumption, such nano-printers can be mounted directly in a cryogenic system at ultrahigh vacuum to deposit clean quench condensed metallic structures.

  19. Controlling the Orbital Sequence in Individual Cu-Phthalocyanine Molecules

    NARCIS (Netherlands)

    Uhlmann, C.; Swart, I.; Repp, J.

    2013-01-01

    We report on the controlled change of the energetic ordering of molecular orbitals. Negatively charged copper(II)phthalocyanine on NaCl/Cu(100) undergoes a Jahn–Teller distortion that lifts the degeneracy of two frontier orbitals. The energetic order of the levels can be controlled by Au and Ag atom

  20. Orbital-Free Density Functional Theory for Molecular Structure Calculations

    Institute of Scientific and Technical Information of China (English)

    Huajie Chen; Aihui Zhou

    2008-01-01

    We give here an overview of the orbital-free density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials. We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations.

  1. Scattering of electrons from neon atoms

    Science.gov (United States)

    Dasgupta, A.; Bhatia, A. K.

    1984-01-01

    Scattering of electrons from neon atoms is investigated by the polarized-orbital method. The perturbed orbitals calculated with use of the Sternheimer approximation lead to the polarizability 2.803 a(0)-cube in fairly good agreement with the experimental value 2.66 a(0)-cube. Phase shifts for various partial waves are calculated in the exchange, exchange-adiabatic, and polarized-orbital approximations. They are compared with the previous results. The calculated elastic differential, total, and momentum-transfer cross sections are compared with the experimental results. The polarized-orbital approximation yields results which show general improvement over the exchange-adiabatic approximation.

  2. Physics of higher orbital bands in optical lattices: a review

    OpenAIRE

    Li, Xiaopeng; Liu, W. Vincent

    2015-01-01

    Orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensation and topological semimetals emerge. A brief introduction of orbital degree of freedom in optical lattices is given ...

  3. Evaluation of Multicenter Nuclear Attraction Integrals by the Use of Translation Formula for Slater Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    Sedat Gumus; Telhat Ozdogan

    2003-01-01

    By the use of translation formula for Slater type orbitals (STOs), three-center nuclear attraction integralsare represented in terms of two-center overlap and nuclear attraction integrals. The computing results for the formulapresented here has been tested under wide changes in molecular parameters and good convergence has been obtainedwith the prior literature.

  4. 用原子轨道强耦合方法研究H(1 s)+ H(2 s)碰撞的反应截面%The reaction cross sections of H(1s) + H(2s) collisions investigated by atomic orbital close-coupling method

    Institute of Scientific and Technical Information of China (English)

    陈兰芳

    2016-01-01

    The single-electron, two-centre atomic orbital close-coupling method is adopted to calculate elec-tron-loss cross sections of H(2s) in H(1s) + H(2s) collisions. The theoretical results are compared with experimental data. Our studies have shown that the electron-loss cross sections of H(2s) in H(1s) + H(2s) collisions calculated by the single-electron, two-centre atomic orbital close-coupling method are in reasona-ble agreement with experimental data. The ionization and de-excitation cross sections of H(2s), and the cap-ture cross sections of H(1s) in H(1s) + H(2s) collisions are also presented.%采用单电子的双中心原子轨道强耦合方法,计算了H(1s)+H(2s)碰撞体系H(2s)失去电子过程的总截面,并与前人的实验结果进行了比较。研究表明,采用双中心原子轨道强耦合方法得到的H(1s)+H(2s)体系H(2s)失去电子过程的截面与实验比较符合。同时,还给出了H(1s)+H(2s)碰撞体系H (2s)电离过程、H(1s)俘获电子过程和H(2s)退激发到H(1s)过程的理论截面。

  5. Role of Berry phase theory for describing orbital magnetism: From magnetic heterostructures to topological orbital ferromagnets

    Science.gov (United States)

    Hanke, J.-P.; Freimuth, F.; Nandy, A. K.; Zhang, H.; Blügel, S.; Mokrousov, Y.

    2016-09-01

    We address the importance of the modern theory of orbital magnetization for spintronics. Based on an all-electron first-principles approach, we demonstrate that the predictive power of the routinely employed "atom-centered" approximation is limited to materials like elemental bulk ferromagnets, while the application of the modern theory of orbital magnetization is crucial in chemically or structurally inhomogeneous systems such as magnetic thin films, and materials exhibiting nontrivial topology in reciprocal and real space, e.g., Chern insulators or noncollinear systems. We find that the modern theory is particularly crucial for describing magnetism in a class of materials that we suggest here—topological orbital ferromagnets.

  6. Preseptal Cellulitis, Orbital Cellulitis, Orbital Abscess

    Directory of Open Access Journals (Sweden)

    Rana Altan Yaycıoğlu

    2012-12-01

    Full Text Available Patients with orbital infections present to our clinic usually with unilateral pain, hyperemia, and edema of the eyelids. The differentiation between preseptal and orbital cellulitis is utmost important in that the second requires hospitalization. Since in orbital cellulitis, the tissues posterior to the orbital septum are involved, signs such as conjunctival chemosis, limited eye movement, decreased vision, as well as afferent pupil defect secondary to optic nerve involvement may also be observed. Prompt intravenous antibiotic treatment should be started, and surgical drainage may be performed if patient shows failure to improve in 48 hours despite optimal management. Without treatment, the clinical course may progress to subperiosteal or orbital abscess, and even to cavernous sinus thrombosis. (Turk J Ophthalmol 2012; 42: Supplement 52-6

  7. Imaging the Temporal Evolution of Molecular Orbitals during Ultrafast Dissociation

    Science.gov (United States)

    Sann, H.; Havermeier, T.; Müller, C.; Kim, H.-K.; Trinter, F.; Waitz, M.; Voigtsberger, J.; Sturm, F.; Bauer, T.; Wallauer, R.; Schneider, D.; Weller, M.; Goihl, C.; Tross, J.; Cole, K.; Wu, J.; Schöffler, M. S.; Schmidt-Böcking, H.; Jahnke, T.; Simon, M.; Dörner, R.

    2016-12-01

    We investigate the temporal evolution of molecular frame angular distributions of Auger electrons emitted during ultrafast dissociation of HCl following a resonant single-photon excitation. The electron emission pattern changes its shape from that of a molecular σ orbital to that of an atomic p state as the system evolves from a molecule into two separated atoms.

  8. Kinetic Atom.

    Science.gov (United States)

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  9. Spin-Orbit Coupling and Spin Textures in Optical Superlattices

    CERN Document Server

    Li, Junru; Shteynas, Boris; Burchesky, Sean; Top, Furkan Cagri; Su, Edward; Lee, Jeongwon; Jamison, Alan O; Ketterle, Wolfgang

    2016-01-01

    We proposed and demonstrated a new approach for realizing spin orbit coupling with ultracold atoms. We use orbital levels in a double well potential as pseudospin states. Two-photon Raman transitions between left and right wells induce spin-orbit coupling. This scheme does not require near resonant light, features adjustable interactions by shaping the double well potential, and does not depend on special properties of the atoms. A pseudospinor Bose-Einstein condensate spontaneously acquires an antiferromagnetic pseudospin texture which breaks the lattice symmetry similar to a supersolid.

  10. Lunar Orbiter Photo Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...

  11. ASC Champ Orbit Model

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif

    1999-01-01

    This documents describes a test of the implementation of the ASC orbit model for the Champ satellite.......This documents describes a test of the implementation of the ASC orbit model for the Champ satellite....

  12. Polygons in billiard orbits

    CERN Document Server

    Don, Henk

    2011-01-01

    We study the geometry of billiard orbits on rectangular billiards. A truncated billiard orbit induces a partition of the rectangle into polygons. We prove that thirteen is a sharp upper bound for the number of different areas of these polygons.

  13. Traumatic transconjunctival orbital emphysema.

    OpenAIRE

    Stroh, E M; Finger, P T

    1990-01-01

    Orbital emphysema can be produced by trans-conjunctival migration of air from a high pressure airgun. In an industrial accident an 8 mm conjunctival laceration was produced in the superior fornix which acted as a portal of entry for air into the subconjunctival, subcutaneous, and retrobulbar spaces. Computed tomography revealed no evidence of orbital fracture and showed that traumatic orbital emphysema occurred without a broken orbital bone.

  14. The many faces of the Bohr atom

    CERN Document Server

    Kragh, Helge

    2013-01-01

    The atomic model that Niels Bohr suggested in 1913 celebrated its greatest victories in connection with one-electron atoms. Among them were the isotopic spectral effect and what became known as Rydberg atoms, insights that were fully recognized only many years later. He considered the original ring model a first step towards an understanding of atomic structure, and during the following years he developed it into more ambitious models that, he hoped, would also describe many-electron atoms. His theory of the periodic system marked the culmination of the orbital atom within the framework of the old quantum theory. However, the theory would soon be replaced by more symbolic models that heralded the coming of the quantum-mechanical atom.

  15. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  16. Atoms in static fields Chaos or Diffraction?

    CERN Document Server

    Dando, P A

    1998-01-01

    A brief review of the manifestations of classical chaos observed in atomic systems is presented. Particular attention is paid to the analysis of atomic spectra by periodic orbit-type theories. For diamagnetic non-hydrogenic Rydberg atoms, the dynamical explanation for observed spectral features has been disputed. By building on our previous work on the photoabsorption spectrum, we show how, by the addition of diffractive terms, the spectral fluctuations in the energy level spectrum of general Rydberg atoms can be obtained with remarkable precision from the Gutzwiller trace formula. This provides further evidence that non-hydrogenic systems are most naturally described in terms of diffraction rather than classical chaos.

  17. "Textbook" adsorption at "nontextbook" adsorption sites: Halogen atoms on alkali halide surfaces

    OpenAIRE

    Li, B.; Michaelides, A.; Scheffler, M.

    2006-01-01

    Density-functional theory (DFT) and second order Møller-Plesset perturbation theory calculations indicate that halogen atoms bond preferentially to halide substrate atoms on a series of alkali halide surfaces, rather than to the alkali atoms as might be anticipated. An analysis of the electronic structures in each system reveals that this novel adsorption mode is stabilized by the formation of textbook two-center three-electron covalent bonds. The implications of these findings to, for exampl...

  18. Is the magnetic anisotropy proportional to the orbital moment?

    Energy Technology Data Exchange (ETDEWEB)

    Skomski, R; Kashyap, A; Enders, A

    2011-04-01

    The relation between orbital moment and magnetic anisotropy is investigated by model calculations, which show that only a part of the spin-orbit coupling contributes to the anisotropy. A large part of the anisotropy energy, about 50% for iron series elements and nearly 100% for rare-earths, is stored in the nonrelativistic part of the Hamiltonian. A feature important for x-ray magnetic circular dichroism is that the orbital moment of heavy atoms rotates with the spin moment, whereas in light atoms, the orbital moment is recreated in each different direction. In the discussion, we consider three examples of current interest in different areas of magnetism, namely, spin-orbit coupling in Gd3+ and Eu2+, surface anisotropy of Nd2Fe14B, and multiferroic magnetization switching using rare-earths. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562445

  19. Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals

    Science.gov (United States)

    Robertson, Michael J.; Jorgensen, William L.

    2015-01-01

    Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…

  20. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.; Geerlings, P. [ALGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Fowler, P. W. [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom)

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  1. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    Science.gov (United States)

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  2. Physics of higher orbital bands in optical lattices: a review

    Science.gov (United States)

    Li, Xiaopeng; Liu, W. Vincent

    2016-11-01

    The orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensates and topological semimetals emerge. A brief introduction of orbital degrees of freedom in optical lattices is given and a summary of exotic orbital models and resulting many-body phases is provided. Experimental consequences of the novel phases are also discussed.

  3. Painless orbital myositis

    Directory of Open Access Journals (Sweden)

    Rahul T Chakor

    2012-01-01

    Full Text Available Idiopathic orbital inflammation is the third most common orbital disease, following Graves orbitopathy and lymphoproliferative diseases. We present a 11 year old girl with 15 days history of painless diplopia. There was no history of fluctuation of symptoms, drooping of eye lids or diminished vision. She had near total restricted extra-ocular movements and mild proptosis of the right eye. There was no conjunctival injection, chemosis, or bulb pain. There was no eyelid retraction or lid lag. Rest of the neurological examination was unremarkable.Erythrocyte sedimentation rate was raised with eosinophilia. Antinuclear antibodies were positive. Liver, renal and thyroid functions were normal. Antithyroid, double stranded deoxyribonucleic acid and acetylcholine receptor antibodies were negative. Repetitive nerve stimulation was negative. Magnetic resonance imaging (MRI of the orbit was typical of orbital myositis. The patient responded to oral steroids. Orbital myositis can present as painless diplopia. MRI of orbit is diagnostic in orbital myositis.

  4. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  5. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii

    Directory of Open Access Journals (Sweden)

    Raka Biswas

    2002-02-01

    Full Text Available Abstract. A set of theoretical atomic radii corresponding to the principal maximum in the radial distribution function, 4πr2R2 for the outermost orbital has been calculated for the ground state of 103 elements of the periodic table using Slater orbitals. The set of theoretical radii are found to reproduce the periodic law and the Lother Meyer’s atomic volume curve and reproduce the expected vertical and horizontal trend of variation in atomic size in the periodic table. The d-block and f-block contractions are distinct in the calculated sizes. The computed sizes qualitatively correlate with the absolute size dependent properties like ionization potentials and electronegativity of elements. The radii are used to calculate a number of size dependent periodic physical properties of isolated atoms viz., the diamagnetic part of the atomic susceptibility, atomic polarizability and the chemical hardness. The calculated global hardness and atomic polarizability of a number of atoms are found to be close to the available experimental values and the profiles of the physical properties computed in terms of the theoretical atomic radii exhibit their inherent periodicity. A simple method of computing the absolute size of atoms has been explored and a large body of known material has been brought together to reveal how many different properties correlate with atomic size.

  6. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  7. Comments to a series of works by V.K. Mukhomorov on the theory of a continuum polaron and two-center bipolaron (axially symmetrical quasimolecular dimer)

    OpenAIRE

    2013-01-01

    Some critical remarks are made regarding a series of works by V.K. Mukhomorov dealing with polarons and oscillatory and rotational spectrum of a large-radius bipolaron near a subsidiary minimum corresponding to its two-center configuration. It is shown that V.K. Mukhomorov's conclusion that by varying the bipolaron functional one should look for a constrained rather than absolute minimum is erroneous. Consideration of interelectronic correlations corresponding to a direct dependence of the wa...

  8. Adiabatic geometric phases in hydrogenlike atoms

    OpenAIRE

    Sjöqvist, Erik; Yi, X. X.; Åberg, J.

    2005-01-01

    We examine the effect of spin-orbit coupling on geometric phases in hydrogenlike atoms exposed to a slowly varying magnetic field. The marginal geometric phases associated with the orbital angular momentum and the intrinsic spin fulfill a sum rule that explicitly relates them to the corresponding geometric phase of the whole system. The marginal geometric phases in the Zeeman and Paschen-Back limit are analyzed. We point out the existence of nodal points in the marginal phases that may be det...

  9. The Exoplanet Orbit Database

    CERN Document Server

    Wright, Jason T; Marcy, Geoffrey W; Han, Eunkyu; Feng, Ying; Johnson, John Asher; Howard, Andrew W; Valenti, Jeff A; Anderson, Jay; Piskunov, Nikolai

    2010-01-01

    We present a database of well determined orbital parameters of exoplanets. This database comprises spectroscopic orbital elements measured for 421 planets orbiting 357 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form on the Web at http://exoplanets.org through the Exoplanets Data Explorer Table, and the data can be plotted and explored through the Exoplanets Data Explorer Plotter. We use the Data Explorer to generate publication-ready plots giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the selection different biase...

  10. Optical nanofibres and neutral atoms

    Science.gov (United States)

    Nieddu, Thomas; Gokhroo, Vandna; Chormaic, Síle Nic

    2016-05-01

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed and, recently, several schemes to implement optical memories have been proposed. We also discuss some possible directions where this research field may head, in particular, in relation to the use of optical nanofibres that can support higher-order modes with an associated orbital angular momentum.

  11. Preseptal and orbital cellulitis

    OpenAIRE

    Emine Akçay; Gamze Dereli Can; Nurullah Çağıl

    2014-01-01

    Preseptal cellulitis (PC) is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC) is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites) or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneumoniae, S. epid...

  12. Orbital inflammation: Corticosteroids first.

    Science.gov (United States)

    Dagi Glass, Lora R; Freitag, Suzanne K

    2016-01-01

    Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.

  13. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    LIANG; Ke(

    2001-01-01

    [1]Vogan, D. , Dixmier algebras, sheets and representation theory (in Actes du colloque en I' honneur de Jacques Dixmier),Progress in Math. 92, Boston: Birkhauser Verlag, 1990, 333-397.[2]McGovern, W., Dixmier Algebras and Orbit Method, Operator Algebras, Unitary Representations and Invariant Theory,Boston: Birkhauser, 1990, 397-416.[3]Liang, K. , Parabolic inductions of nilpotent geometric orbit datum, Chinese Science Bulletin (in Chinese) , 1996, 41 (23):2116-2118.[4]Vogan, D., Representations of Real Reductive Lie Groups, Boston-Basel-Stuttgart: Birkhauser, 1981.[5]Lustig, G., Spaltenstein, N., Induced unipotent class, J. London Math. Soc., 1997, 19. 41-52.[6]Collingwood, D. H. , McGovern, W. M. , Nilpotent Orbits in Semisimple Lie Algebras, New York: Van Nostremt Reinhold,1993.

  14. Doughnut shape atom traps with arbitrary inclination

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez y Masegosa, R.; Moya C, H.; Chavez C, S. [INAOE, A.P. 51 y 216, 72000 Puebla (Mexico)

    2006-07-01

    Since the invention of magneto-optical trap (MOT), there have been several experimental and theoretical studies of the density distribution in these devices. To the best of our knowledge, only horizontal orbital traps have been observed, perpendicular to the coil axis. In this work we report the observation of distributions of trapped atoms in pure circular orbits without a nucleus whose orbital plane is tilted up to 90diam. with respect to the horizontal plane. We have used a stabilized time phase optical array in our experiments and conventional equipment used for MOT. (Author)

  15. Interplay of Coulomb interaction and spin-orbit coupling

    Science.gov (United States)

    Bünemann, Jörg; Linneweber, Thorben; Löw, Ute; Anders, Frithjof B.; Gebhard, Florian

    2016-07-01

    We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures of Hund's atomic rules for spin, orbital, and total angular momentum. For a finite local Hund's rule exchange interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from the easy axis (1 ,1 ,1 ) .

  16. Family of Orbiters

    Science.gov (United States)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time. All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet. Phoenix will land just south of Mars's north polar ice cap.

  17. Atomic rivals

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  18. Orbital excitation blockade and algorithmic cooling in quantum gases.

    Science.gov (United States)

    Bakr, Waseem S; Preiss, Philipp M; Tai, M Eric; Ma, Ruichao; Simon, Jonathan; Greiner, Markus

    2011-12-21

    Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons, spins, atoms or photons. Applications include single-electron transistors based on electronic Coulomb blockade and quantum logic gates in Rydberg atoms. Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates in a quantum computing architecture with natural scalability.

  19. Atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.E.; Kukla, K.; Cheng, S. [Univ. of Toledo, OH (United States)] [and others

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  20. Congenital orbital encephalocele, orbital dystopia, and exophthalmos.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon

    2012-07-01

    We present here an exceedingly rare variant of a nonmidline basal encephalocele of the spheno-orbital type, and this was accompanied with orbital dystopia in a 56-year-old man. On examination, his left eye was located more inferolaterally than his right eye, and the patient said this had been this way since his birth. The protrusion of his left eye was aggravated when he is tired. His naked visual acuity was 0.7/0.3, and the ocular pressure was 14/12 mm Hg. The exophthalmometry was 10/14 to 16 mm. His eyeball motion was not restricted, yet diplopia was present in all directions. The distance from the midline to the medial canthus was 20/15 mm. The distance from the midline to the midpupillary line was 35/22 mm. The vertical dimension of the palpebral fissure was 12/9 mm. The height difference of the upper eyelid margin was 11 mm, and the height difference of the lower eyelid margin was 8 mm. Facial computed tomography and magnetic resonance imaging showed left sphenoid wing hypoplasia and herniation of the left anterior temporal pole and dura mater into the orbit, and this resulted into left exophthalmos and encephalomalacia in the left anterior temporal pole. To the best of our knowledge, our case is the second case of basal encephalocele and orbital dystopia.

  1. Patterns of orbital disorders

    Directory of Open Access Journals (Sweden)

    Balasubramanian Thiagarajan

    2014-08-01

    Full Text Available This article discusses various patterns of presentations of orbital lesions. Since this article has been authored by an otolaryngologist, the entire concept has been viewed from otolaryngologist's angle. With the advent of nasal endoscope trans nasal access to orbit is becoming the order of the day. Major advantage being that external skin incision is avoided.

  2. LUNISOLAR INVARIANT RELATIVE ORBITS

    OpenAIRE

    Walid Ali Rahoma

    2013-01-01

    The present study deal with constructing an analytical model within Hamiltonian formulation to design invariant relative orbits due to the perturbation of J2 and the lunisolar attraction. To fade the secular drift separation over the time between two neighboring orbits, two second order conditions that guarantee that drift are derived and enforced to be equal.

  3. Reticulohistiocytoma of the Orbit

    Science.gov (United States)

    Weissman, Heather M.; Hayek, Brent R.; Grossniklaus, Hans E.

    2015-01-01

    Reticulohistiocytoma is a rare, benign histiocytic proliferation of the skin or soft tissue. While ocular involvement has been documented in the past, there have been no previously reported cases of reticulohistiocytoma of the orbit. In this report, the authors describe a reticulohistiocytoma of the orbit in a middle-aged woman. PMID:24807799

  4. Quantum-Classical Connection for Hydrogen Atom-Like Systems

    Science.gov (United States)

    Syam, Debapriyo; Roy, Arup

    2011-01-01

    The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…

  5. Atomic Oxygen Cleaning of Unpainted Plaster Sculptures

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K.

    2017-01-01

    Atomic oxygen erosion of polymers has been found to be a threat to spacecraft in low Earth orbit. As a result ground facilities have been developed to identify coatings to protect polymers such as used for solar array blankets. As a result of extensive laboratory testing, it was discovered that soot and other organic contamination on paintings could be readily removed by atomic oxygen interactions with minimal damage to the artwork. No method, other than dusting, has been found to be effective in the cleaning of unpainted plaster sculptures This presentation discusses the atomic oxygen interaction processes and how effective they are for cleaning soot damaged unpainted plaster sculptures.

  6. Photoelectron spectroscopy of heavy atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target.

  7. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  8. Orbit Stabilization of Nanosat

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  9. Emergency thoracotomies: Two center study

    Directory of Open Access Journals (Sweden)

    Sameh Ibrahim Sersar

    2013-01-01

    Full Text Available Introduction and Aim: Emergency thoracotomy is performed either immediately at the scene of injury, in the emergency department or in the operating room. It aims to evacuate the pericardial tamponade, control the haemorrhage, to ease the open cardiac massage and to cross-clamp the descending thoracic aorta to redistribute blood flow and maybe to limit sub-diaphragmatic haemorrhage, bleeding and iatrogenic injury are the common risk factors. We aimed to review our experience in the field of emergency thoracotomies, identify the predictors of death, analyze the early results, detect the risk factors and asses the mortalities and their risk factors. Patients and Methods: Our hospital records of 197 patients who underwent emergency thoracotomy were reviewed. We retrospectively analyzed a piece of the extensive experience of the Mansoura University Hospitals and Mansoura Emergency Hospital; Egypt and Saudi German Hospitals; Jeddah in the last 12 years in the management of trauma cases for whom emergency thoracotomy. The aim was to analyse the early results of such cases and to detect the risk factors of dismal prognosis. Results: Our series included 197 cases of emergency thoractomies in Mansoura; Egypt and SGH; Jeddah; KSA in the last 12 years. The mean age of the victims was 28 years and ranged between 5 and 62 years. Of the 197 patients with emergency thoracotomy, the indications were both penetrating and blunt chest trauma, iatrogenic and postoperative hemodynamito a surgical cause. The commonest indication was stab heart followed by traumatic diaphragmatic ruptures. Conclusion: The results of emergency thoracotomy in our series were cooping with the results of other reports, mainly due to our aggressive measures to achieve rapid stabilization of the hemodynamic condition. We emphasize the importance of emergency medicine education programs on rapid diagnosis of traumatic injuries with early intervention, and adequate hemodynamic and respiratory support. Emergency thoracotomy has an important role in emergency big volume hospitals and can save a lot of lives. Outcome can be improved by increasing the learning curve and the integrated cooperation of the emergency and surgical teams.

  10. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  11. Prototyping LHC Orbit Control

    CERN Document Server

    Wijnands, Thijs; Srinivasan, B

    2002-01-01

    Orbit correction consists in adjusting the strengths of the corrector magnets to make the measured beam position match a predefined reference. In the LHC, this involves around 2000 sensors and more than 1000 actuators that are distributed along both rings. The orbit correction scheme should be able to compensate for very slow orbit drifts in the range of a 10-2 Hz but also for fast motions (vibrations) up to 1 Hz. In this paper we investigate correction schemes that could be used in either case. The choice of design formalisms is based on the experience we gained with the SPS and the LEP.

  12. Teaching of Social and Philosophical Background to Atomic Theory.

    Science.gov (United States)

    Luhl, Jutta

    1992-01-01

    The history of atomic theory is outlined from earliest times up to the orbital model and describes a corresponding teaching method. The historical part of the paper emphasizes social and philosophical aspects in the development of atomic theory. The second part of the paper describes a method for teaching this material at the secondary level.…

  13. A Variational Monte Carlo Approach to Atomic Structure

    Science.gov (United States)

    Davis, Stephen L.

    2007-01-01

    The practicality and usefulness of variational Monte Carlo calculations to atomic structure are demonstrated. It is found to succeed in quantitatively illustrating electron shielding, effective nuclear charge, l-dependence of the orbital energies, and singlet-tripetenergy splitting and ionization energy trends in atomic structure theory.

  14. Atomic magnetometer

    Science.gov (United States)

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  15. Congenital orbital teratoma

    Directory of Open Access Journals (Sweden)

    Shereen Aiyub

    2013-01-01

    Full Text Available We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The patient underwent a lid-sparing exenteration with frozen section control of the apical margin. A dermis fat graft from the groin was placed beneath the lid skin to provide volume. Histopathology revealed mature tissues from each of the three germ cell layers which confirmed the diagnosis of mature teratoma. We describe the successful use of demis fat graft in socket reconstruction following lid-sparing exenteration for congenital orbital teratoma.

  16. Envelopes of Cometary Orbits

    Directory of Open Access Journals (Sweden)

    Mijajlović, Ž.

    2008-12-01

    Full Text Available We discuss cometary orbits from the standpoint of Nonstandard (Leibnitz analysis, a relatively new branch of mathematics. In particular, we consider parabolic cometary paths. It appears that, in a sense, every parabola is an ellipse.

  17. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  18. Detecting Neutral Atoms on an Atom Chip

    OpenAIRE

    Wilzbach, M.; Haase, A.; Schwarz, M; Heine, D.; Wicker, K.; Liu, X; Brenner, K. -H.; Groth, S.; Fernholz, Th.; Hessmo, B.; Schmiedmayer, J.

    2006-01-01

    Detecting single atoms (qubits) is a key requirement for implementing quantum information processing on an atom chip. The detector should ideally be integrated on the chip. Here we present and compare different methods capable of detecting neutral atoms on an atom chip. After a short introduction to fluorescence and absorption detection we discuss cavity enhanced detection of single atoms. In particular we concentrate on optical fiber based detectors such as fiber cavities and tapered fiber d...

  19. VIBRATIONAL RAMAN OPTICAL-ACTIVITY CALCULATIONS USING LONDON ATOMIC ORBITALS

    DEFF Research Database (Denmark)

    Helgaker, T.; Ruud, K.; Bak, Keld L.

    1994-01-01

    Ab initio calculations of Raman differential intensities are presented at the self-consistent field (SCF) level of theory. The electric dipole-electric dipole, electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability tensors are calculated at the frequency of the inc...

  20. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan

    2013-01-01

    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  1. Orbital engineering in symmetry-breaking polar heterostructures.

    Science.gov (United States)

    Disa, Ankit S; Kumah, Divine P; Malashevich, Andrei; Chen, Hanghui; Arena, Dario A; Specht, Eliot D; Ismail-Beigi, Sohrab; Walker, F J; Ahn, Charles H

    2015-01-16

    We experimentally demonstrate a novel approach to substantially modify orbital occupations and symmetries in electronically correlated oxides. In contrast to methods using strain or confinement, this orbital tuning is achieved by exploiting charge transfer and inversion symmetry breaking using atomically layered heterostructures. We illustrate the technique in the LaTiO_{3}-LaNiO_{3}-LaAlO_{3} system; a combination of x-ray absorption spectroscopy and ab initio theory reveals electron transfer and concomitant polar fields, resulting in a ∼50% change in the occupation of Ni d orbitals. This change is sufficiently large to remove the orbital degeneracy of bulk LaNiO_{3} and creates an electronic configuration approaching a single-band Fermi surface. Furthermore, we theoretically show that such three-component heterostructuring is robust and tunable by choice of insulator in the heterostructure, providing a general method for engineering orbital configurations and designing novel electronic systems.

  2. Atom and Bond Fukui Functions and Matrices: A Hirshfeld-I Atoms-in-Molecule Approach.

    Science.gov (United States)

    Oña, Ofelia B; De Clercq, Olivier; Alcoba, Diego R; Torre, Alicia; Lain, Luis; Van Neck, Dimitri; Bultinck, Patrick

    2016-09-19

    The Fukui function is often used in its atom-condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms-in-molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld-I atoms-in-molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld-I approach to obtain atom- and bond-condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms-in-molecule approach shows low correlation between the two partitioning schemes.

  3. Antisymmetric Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2007-02-01

    Full Text Available In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform. Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  4. [Orbital complications of sinusitis].

    Science.gov (United States)

    Šuchaň, M; Horňák, M; Kaliarik, L; Krempaská, S; Koštialová, T; Kovaľ, J

    2014-12-01

    Orbital complications categorised by Chandler are emergency. They need early diagnosis and agresive treatment. Stage and origin of orbital complications are identified by rhinoendoscopy, ophtalmologic examination and CT of orbite and paranasal sinuses. Periorbital cellulitis and early stage of orbital cellulitis can be treated conservatively with i. v. antibiotics. Monitoring of laboratory parameters and ophtalmologic symptoms is mandatory. Lack of improvement or worsening of symptoms within 24-48 hours and advanced stages of orbital complications are indicated for surgery. The purpose of the study is to evaluate epidemiology, clinical features and management of sinogenic orbital complications. Retrospective data of 8 patients with suspicion of orbital complication admited to hospital from 2008 to 2013 were evaluated. Patients were analyzed in terms of gender, age, CT findings, microbiology, clinical features, stage and treatment. Male and female were afected in rate 1,66:1. Most of patients were young adult in 3rd. and 4th. decade of life (62,5 %). Acute and chronic sinusitis were cause of orbital complication in the same rate. The most common origin of orbital complication was ethmoiditis (62,5 %), than maxillary (25 %) and frontal (12,5 %) sinusitis. Polysinusitis with affection of ethmoidal, maxillary and frontal sinuses (75 %) was usual CT finding. Staphylococcus epidermidis and Staphylococcus aureus were etiological agens in half of cases. Periorbital oedema (100 %), proptosis, chemosis (50 %), diplopia and glaucoma (12,5 %) were observed. Based on examinations, diagnosis of periorbital oedema/preseptal cellulitis was made in 3 (37,5 %), orbital cellulitis in 3 (37,5 %) and subperiosteal abscess in 2 cases (25 %). All patients underwent combined therapy - i. v. antibiotics and surgery within 24 hours. Eradication of disease from ostiomeatal complex (OMC), drainage of affected sinuses and drainage of subperiosteal abscess were done via fuctional endonasal

  5. Real-space multiple-scattering theory of XMCD including spin-orbit interaction in scattering process

    Science.gov (United States)

    Koide, Akihiro; Niki, Kaori; Sakai, Seiji; Fujikawa, Takashi

    2016-05-01

    The effects of the spin-orbit interaction on surrounding atoms for XMCD spectra are studied by a real-space multiple-scattering theory. The present numerical calculation for Fe K-edge XMCD spectra from BCC iron demonstrates the importance of the spin-orbit interaction on scattering atoms, which has been disregarded in previous works. These effects will be inevitable for K-edge XMCD analyses of light elements surrounded by heavy magnetic atoms.

  6. Orbit Propagation and Determination of Low Earth Orbit Satellites

    OpenAIRE

    Ho-Nien Shou

    2014-01-01

    This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan t...

  7. Orbits for sixteen binaries

    Directory of Open Access Journals (Sweden)

    Cvetković Z.

    2006-01-01

    Full Text Available In this paper orbits for 13 binaries are recalculated and presented. The reason is that recent observations show higher residuals than the corresponding ephemerides calculated by using the orbital elements given in the Sixth Catalog of Orbits of Visual Binary Stars. The binaries studied were: WDS 00182+7257 = A 803, WDS 00335+4006 = HO 3, WDS 00583+2124 = BU 302, WDS 01011+6022 = A 926, WDS 01014+1155 = BU 867, WDS 01112+4113 = A 655, WDS 01361−2954 + HJ 3447, WDS 02333+5219 = STT 42 AB,WDS 04362+0814 = A 1840 AB,WDS 08017−0836 = A 1580, WDS 08277−0425 = A 550, WDS 17471+1742 = STF 2215 and WDS 18025+4414 = BU 1127 Aa-B. In addition, for three binaries - WDS 01532+1526 = BU 260, WDS 02563+7253 = STF 312 AB and WDS 05003+3924 = STT 92 AB - the orbital elements are calculated for the first time. In this paper the authors present not only the orbital elements, but the masses dynamical parallaxes, absolute magnitudes and ephemerides for the next five years, as well.

  8. Helioseismology with Solar Orbiter

    CERN Document Server

    Löptien, Björn; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Rodríguez, Julián Blanco; Cally, Paul S; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H; Solanki, Sami K

    2014-01-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21 deg (up to 34 deg by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3 x 10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. The full range of Earth-Sun-spacecraft angles provi...

  9. Orbital Fluid Resupply Assessment

    Science.gov (United States)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  10. Extended duration orbiter (EDO) insignia

    Science.gov (United States)

    1990-01-01

    Extended duration orbiter (EDO) insignia incorporates a space shuttle orbiter with payload bay doors (PLBDs) open and a spacelab module inside. Trailing the orbiter are the initials EDO. The EDO-modified Columbia, Orbiter Vehicle (OV) 102, will be flown for the first EDO mission, STS-50.

  11. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  12. Origin of the Spin-Orbit Interaction

    CERN Document Server

    Spavieri, Gianfranco

    2015-01-01

    We consider a semi-classical model to describe the origin of the spin-orbit interaction in a simple system such as the hydrogen atom. The interaction energy U is calculated in the rest-frame of the nucleus, around which an electron, having linear velocity v and magnetic dipole-moment mu, travels in a circular orbit. The interaction energy U is due to the coupling of the induced electric dipole p=(v/c)x mu with the electric field En of the nucleus. Assuming the radius of the electron's orbit remains constant during a spin-flip transition, our model predicts that the energy of the system changes by Delta_E = U/2, the factor 1/2 emerging naturally as a consequence of equilibrium and the change of the kinetic energy of the electron. The correct 1/2 factor for the spin-orbit coupling energy is thus derived without the need to invoke the well-known Thomas precession in the rest-frame of the electron.

  13. Adiabatic momentum space treatment of a spin-orbit coupled BEC

    Science.gov (United States)

    Wang, Su-Ju; Greene, Chris

    2013-05-01

    By dressing the atomic spin states with Raman laser fields, experimentalists can create spin-orbit coupled Bose-Einstein condensates (BECs) by tuning controllable parameters in an ultracold atomic system. In the presence of spin-orbit coupling, we study the spin dynamics of a harmonically-trapped spinor BEC that can be driven by non-adiabatic Landau-Zener transitions occurring at avoided crossings between the bands.

  14. Absorption and Recurrence Spectra of Nonhydrogenic Rydberg Atom Near a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; WANG De-Hua; XUE Chun-Hua; QI Yi-Hong; LOU Sen-Yue

    2008-01-01

    Multielectron atoms near a metal surface are essentially more complicated than hydrogen atom with regard to theoretical treatments. By using the semicalssical closed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the dosed-orbit theory and is of potential experimental interest.

  15. XYZ Quantum Heisenberg Models with p-Orbital Bosons

    DEFF Research Database (Denmark)

    Pinheiro, Fernanda; Bruun, Georg; Martikainen, Jani-Petri

    2013-01-01

    We demonstrate how the spin-1/2 XYZ quantum Heisenberg model can be realized with bosonic atoms loaded in the p band of an optical lattice in the Mott regime. The combination of Bose statistics and the symmetry of the p-orbital wave functions leads to a nonintegrable Heisenberg model...

  16. Vertical orbital dystopia.

    Science.gov (United States)

    Tan, S T; Ashworth, G; Czypionka, S; Poole, M D; Briggs, M

    1996-06-01

    Many pathologic processes may lead to vertical orbital dystopia. We reviewed 47 consecutive cases seen over a 13-year period. Twenty-nine patients underwent eye leveling procedures to improve cosmesis, 2 of these by camouflage procedures and 27 by orbital translocation. Ten patients had 16 secondary operations. There was one death, serious complications occurred in 3 patients, and nuisance complications occurred in 20 others. Seven patients developed diplopia postoperatively, and in 6 patients it was troublesome. In these, it resolved fully in 2 patients, improved to be of no consequence in 2, and in the remaining 2 troublesome symptoms persisted requiring inferior oblique muscle recession in 1. Binocular vision was never restored when not present preoperatively, and in 3 patients temporary loss occurred. There was an overall modest but significant improvement in appearance after surgery. It is concluded that vertical orbital translocation is rewarding and worthwhile.

  17. Deceleration Orbit Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  18. [Secondary orbital lymphoma].

    Science.gov (United States)

    Basanta, I; Sevillano, C; Álvarez, M D

    2015-09-01

    A case is presented of an 85 year-old Caucasian female with lymphoma that recurred in the orbit (secondary ocular adnexal lymphoma). The orbital tumour was a diffuse large B-cell lymphoma according to the REAL classification (Revised European-American Lymphoma Classification). Orbital lymphomas are predominantly B-cell proliferations of a variety of histological types, and most are low-grade tumours. Patients are usually middle-aged or elderly, and it is slightly more common in women. A palpable mass, proptosis and blepharoptosis are the most common signs of presentation. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Valence Virtual Orbitals: An Unambiguous ab Initio Quantification of the LUMO Concept.

    Science.gov (United States)

    Schmidt, Michael W; Hull, Emily A; Windus, Theresa L

    2015-10-15

    Many chemical concepts hinge on the notion of an orbital called the lowest unoccupied molecular orbital, or LUMO. This hypothetical orbital and the much more concrete highest occupied molecular orbital (HOMO) constitute the two "frontier orbitals", which rationalize a great deal of chemistry. A viable LUMO candidate should have a sensible energy value, a realistic shape with amplitude on those atoms where electron attachment or reduction or excitation processes occur, and often an antibonding correspondence to one of the highest occupied MOs. Unfortunately, today's quantum chemistry calculations do not yield useful empty orbitals. Instead, the empty canonical orbitals form a large sea of orbitals, where the interesting valence antibonds are scrambled with the basis set's polarization and diffuse augmentations. The LUMO is thus lost within a continuum associated with a detached electron, as well as many Rydberg excited states. A suitable alternative to the canonical orbitals is proposed, namely, the valence virtual orbitals. VVOs are found by a simple algorithm based on singular value decomposition, which allows for the extraction of all valence-like orbitals from the large empty canonical orbital space. VVOs are found to be nearly independent of the working basis set. The utility of VVOs is demonstrated for construction of qualitative MO diagrams, for prediction of valence excited states, and as starting orbitals for more sophisticated calculations. This suggests that VVOs are a suitable realization of the LUMO, LUMO + 1, ... VVO generation requires no expert knowledge, as the number of VVOs sought is found by counting s-block atoms as having only a valence s orbital, transition metals as having valence s and d, and main group atoms as being valence s and p elements. Closed shell, open shell, or multireference wave functions and elements up to xenon may be used in the present program.

  20. Optical orbital angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-01-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069775

  1. Optical orbital angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-02-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue 'Optical orbital angular momentum'.

  2. Computational chemistry and aeroassisted orbital transfer vehicles

    Science.gov (United States)

    Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.

    1985-01-01

    An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.

  3. Coupling of spin and orbital motion of electrons in carbon nanotubes

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Ilani, S; Ralph, D C

    2008-01-01

    Electrons in atoms possess both spin and orbital degrees of freedom. In non-relativistic quantum mechanics, these are independent, resulting in large degeneracies in atomic spectra. However, relativistic effects couple the spin and orbital motion, leading to the well-known fine structure in their......Electrons in atoms possess both spin and orbital degrees of freedom. In non-relativistic quantum mechanics, these are independent, resulting in large degeneracies in atomic spectra. However, relativistic effects couple the spin and orbital motion, leading to the well-known fine structure...... in their spectra. The electronic states in defect-free carbon nanotubes are widely believed to be four-fold degenerate, owing to independent spin and orbital symmetries, and also to possess electron–hole symmetry. Here we report measurements demonstrating that in clean nanotubes the spin and orbital motion...... of electrons are coupled, thereby breaking all of these symmetries. This spin–orbit coupling is directly observed as a splitting of the four-fold degeneracy of a single electron in ultra-clean quantum dots. The coupling favours parallel alignment of the orbital and spin magnetic moments for electrons...

  4. Adiabatic geometric phases in hydrogenlike atoms

    Science.gov (United States)

    Sjöqvist, Erik; Yi, X. X.; Åberg, Johan

    2005-11-01

    We examine the effect of spin-orbit coupling on geometric phases in hydrogenlike atoms exposed to a slowly varying magnetic field. The marginal geometric phases associated with the orbital angular momentum and the intrinsic spin fulfill a sum rule that explicitly relates them to the corresponding geometric phase of the whole system. The marginal geometric phases in the Zeeman and Paschen-Back limits are analyzed. We point out the existence of nodal points in the marginal phases that may be detected by topological means.

  5. Adiabatic geometric phases in hydrogenlike atoms

    CERN Document Server

    Sjöqvist, E; Sj\\"{o}qvist, Erik

    2005-01-01

    We examine the effect of spin-orbit coupling on geometric phases in hydrogenlike atoms exposed to a slowly varying magnetic field. The marginal geometric phases associated with the orbital angular momentum and the intrinsic spin fulfill a sum rule that explicitly relates them to the corresponding geometric phase of the whole system. The marginal geometric phases in the Zeeman and Paschen-Back limit are analyzed. We point out the existence of nodal points in the marginal phases that may be detected by topological means.

  6. Local orbitals by minimizing powers of the orbital variance

    DEFF Research Database (Denmark)

    Jansik, Branislav; Høst, Stinne; Kristensen, Kasper;

    2011-01-01

    It is demonstrated that a set of local orthonormal Hartree–Fock (HF) molecular orbitals can be obtained for both the occupied and virtual orbital spaces by minimizing powers of the orbital variance using the trust-region algorithm. For a power exponent equal to one, the Boys localization function...... is obtained. For increasing power exponents, the penalty for delocalized orbitals is increased and smaller maximum orbital spreads are encountered. Calculations on superbenzene, C60, and a fragment of the titin protein show that for a power exponent equal to one, delocalized outlier orbitals may...

  7. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  8. Numerical simulation of atomic oxygen flux and fluence distribution on spacecraft surface in low earth orbit space environment%低地球轨道空间环境下航天器表面原子氧通量密度和积分通量分布的数值模拟

    Institute of Scientific and Technical Information of China (English)

    刘阳; 姜利祥; 李涛

    2008-01-01

    基于蒙特卡罗方法和区域分解法,建立低地球轨道空间环境航天器表面原子氧通量密度和积分通量的数学模型.模型考虑了航天器表面几何构型、原子氧数密度和分析热运动、地球自转对航天器速度的影响以及轨道运行参数.通量密度分布的求解是通过其微分方程的对于独立变量分子运动速度和与表面速度矢量合成的积分得到,积分通量是通过沿轨道时间积分来实现.与此同时,得到了沿入射攻角变化原子氧分布的最大值和最小值.计算结果表明:通量分布伴随入射攻角增大而急剧下降,在迎风面达到最大值,背风面最小值.入射攻角是影响分布计算结果的重要因素.计算误差与NASA-LDEF飞行试验实验结果吻合较好.%A mathematical model ofatomic oxygen flux and fluence distribution is built for spacecraft surface in low earth orbit space environment(LEO),basedOllMome Carlo raytracing and domain decomositio|Imeods(MCRT-DD).spaecraft geometry,number density and molecular thermal motion of atomic oxygen,spacecraft velocity affected by aunosphere co-rotation and orbit propagation parameters are consideredinthemodel.The differential equation for flux is integrated with respect to molecular speed and direction ofthemolecular velocity vector relative to the suffrage.Fluence along the propagation path is allintegrated flux with respect to time.Meanwhile,those of maximum and minimum values and variations with different incidence angles are calculated.Results show that the distribution takes a decreasing tendency markedly with the increasing incidence angle;at the same time,the flux density reaches the maxim value in a positive incidence angle and the minimum value in a leeward incidence angle and the incidence angle is an important factor to affect the distribution and the calculation error,as agrees well with the Long Duratin Exposure Facility of National Aeronaucs and Space Administration

  9. Solar Orbiter Status Report

    Science.gov (United States)

    Gilbert, Holly; St. Cyr, Orville Chris; Mueller, Daniel; Zouganelis, Yannis; Velli, Marco

    2017-08-01

    With the delivery of the instruments to the spacecraft builder, the Solar Orbiter mission is in the midst of Integration & Testing phase at Airbus in Stevenage, U.K. This mission to “Explore the Sun-Heliosphere Connection” is the first medium-class mission of ESA’s Cosmic Vision 2015-2025 program and is being jointly implemented with NASA. The dedicated payload of 10 remote-sensing and in-situ instruments will orbit the Sun as close as 0.3 A.U. and will provide measurments from the photosphere into the solar wind. The three-axis stabilized spacecraft will use Venus gravity assists to increase the orbital inclination out of the ecliptic to solar latitudes as high as 34 degrees in the extended mission. The science team of Solar Orbiter has been working closely with the Solar Probe Plus scientists to coordinate observations between these two highly-complementary missions. This will be a status report on the mission development; the interested reader is referred to the recent summary by Müller et al., Solar Physics 285 (2013).

  10. Sedna Orbit Animation

    Science.gov (United States)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  11. Myxoma of the orbit.

    Directory of Open Access Journals (Sweden)

    Rambhatla Saptagirish

    2003-01-01

    Full Text Available Myxomas are rare, benign neoplasms of mesenchymal origin that usually develop in soft tissues. As the clinical manifestations are non-specific, it is difficult to diagnose the tumour without biopsy and histopathological examination. We report a case of orbital myxoma with histopathological correlation.

  12. Sedna Orbit Animation

    Science.gov (United States)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  13. Cold Matter Assembled Atom-by-Atom

    CERN Document Server

    Endres, Manuel; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D

    2016-01-01

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a novel platform for the deterministic preparation of regular arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of over 50 atoms in less than 400 ms. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach enables controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

  14. Using Atomic Clocks to Detect Gravitational Waves

    CERN Document Server

    Loeb, Abraham

    2015-01-01

    Atomic clocks have recently reached a fractional timing precision of $<10^{-18}$. We point out that an array of atomic clocks, distributed along the Earth's orbit around the Sun, will have the sensitivity needed to detect the time dilation effect of mHz gravitational waves (GWs), such as those emitted by supermassive black hole binaries at cosmological distances. Simultaneous measurement of clock-rates at different phases of a passing GW provides an attractive alternative to the interferometric detection of temporal variations in distance between test masses separated by less than a GW wavelength, currently envisioned for the eLISA mission.

  15. Atomic Reference Data for Electronic Structure Calculations

    CERN Document Server

    Kotochigova, S; Shirley, E L

    We have generated data for atomic electronic structure calculations, to provide a standard reference for results of specified accuracy under commonly used approximations. Results are presented here for total energies and orbital energy eigenvalues for all atoms from H to U, at microHartree accuracy in the total energy, as computed in the local-density approximation (LDA) the local-spin-density approximation (LSD); the relativistic local-density approximation (RLDA); and scalar-relativistic local-density approximation (ScRLDA).

  16. Valley-contrasting orbital angular momentum in photonic valley crystals

    CERN Document Server

    Chen, Xiaodong; Dong, Jianwen

    2016-01-01

    Valley, as a degree of freedom, has been exploited to realize valley-selective Hall transport and circular dichroism in two-dimensional layered materials. On the other hand, orbital angular momentum of light with helical phase distribution has attracted great attention for its unprecedented opportunity to optical communicagtions, atom trapping, and even nontrivial topology engineering. Here, we reveal valley-contrasting orbital angular momentum in all-dielectric photonic valley crystals. Selective excitation of valley chiral bulk states is realized by sources carrying orbital angular momentum with proper chirality. Valley dependent edge states, predictable by nonzero valley Chern number, enable to suppress the inter-valley scattering along zigzag boundary, leading to broadband robust transmission in Z-shape bend without corner morphological optimization. Our work may open up a new door towards the discovery of novel quantum states and the manipulation of spin-orbit interaction of light in nanophotonics.

  17. Orbital order of spinless fermions near an optical Feshbach resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hauke, Philipp [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Castelldefels (Spain); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Zhao, Erhai [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030 (United States); Goyal, Krittika; Deutsch, Ivan H. [Center for Quantum Information and Control (CQuIC), and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Liu, W. Vincent [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Lewenstein, Maciej [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Castelldefels (Spain); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Lluis Companys 23, E-08010 Barcelona (Spain)

    2011-11-15

    We study the quantum phases of a three-color Hubbard model that arises in the dynamics of the p-band orbitals of spinless fermions in an optical lattice. Strong, color-dependent interactions are induced by an optical Feshbach resonance. Starting from the microscopic scattering properties of ultracold atoms, we derive the orbital exchange constants at 1/3 filling on the cubic optical lattice. Using this, we compute the phase diagram in a Gutzwiller ansatz. We find phases with ''axial orbital order'' in which p{sub z} and p{sub x}+ip{sub y} (or p{sub x}-ip{sub y}) orbitals alternate.

  18. Unusual Sclerosing Orbital Pseudotumor Infiltrating Orbits and Maxillofacial Regions

    Directory of Open Access Journals (Sweden)

    Huseyin Toprak

    2014-01-01

    Full Text Available Idiopathic orbital pseudotumor (IOP is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI features that help to exclude other entities during differential diagnoses.

  19. Orbit correction algorithm for SSRF fast orbit feedback system

    Institute of Scientific and Technical Information of China (English)

    LIU Ming; YIN Chongxian; LIU Dekang

    2009-01-01

    A fast orbit feedback system is designed at SSRF to suppress beam orbit disturbance within sub-micron in the bandwidth up to 100 Hz.The SVD (Singular value decomposition) algorithm is applied to calculate the inverse response matrix in global orbit correction.The number of singular eigenvalues will influence orbit noise suppression and corrector strengths.The method to choose singular eigenvalue rejection threshold is studied in this paper,and the simulation and experiment results are also presented.

  20. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    Science.gov (United States)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  1. Generalized Kolbenstvedt model for electron impact ionization of K-, L- and M-shell atoms

    Energy Technology Data Exchange (ETDEWEB)

    Haque, A.K.F.; Uddin, M.A.; Patoary, M.A.R.; Basak, A.K. [Rajshahi Univ., Dept. of Physics (Bangladesh); Talukder, M.R. [Rajshahi Univ., Dept. of Applied Physics and Electronic Engineering (Bangladesh); Saha, B.C. [Florida A and M Univ., Dept. of Physics (United States); Karim, K.R. [Illinois State Univ., Dept. of Physics, IL (United States); Malik, F.B. [Southern Illinois Univ., Dept. of Physics, IL (United States); Washington Univ., St. Louis, Dept. of Physics, MO (United States)

    2007-05-15

    The recently modified Kolbenstvedt (MKLV) model, developed for electron impact ionization of the K-shell atomic targets, has been extended to generalize its two parameters in terms of the electronic orbitals nl. The generalized MKLV (GKLV) with two sets of the species independent parameters for the same nl, one set for the ionization of inner orbits and another for the outermost orbit, is found profoundly successful in accounting for the electron impact ionization cross section data of the K, L and M-shell neutral atoms with atomic numbers Z = 1-92 for the incident energies up to 1000 MeV in a consistent manner. (authors)

  2. Linear scaling calculation of maximally localized Wannier functions with atomic basis set.

    Science.gov (United States)

    Xiang, H J; Li, Zhenyu; Liang, W Z; Yang, Jinlong; Hou, J G; Zhu, Qingshi

    2006-06-21

    We have developed a linear scaling algorithm for calculating maximally localized Wannier functions (MLWFs) using atomic orbital basis. An O(N) ground state calculation is carried out to get the density matrix (DM). Through a projection of the DM onto atomic orbitals and a subsequent O(N) orthogonalization, we obtain initial orthogonal localized orbitals. These orbitals can be maximally localized in linear scaling by simple Jacobi sweeps. Our O(N) method is validated by applying it to water molecule and wurtzite ZnO. The linear scaling behavior of the new method is demonstrated by computing the MLWFs of boron nitride nanotubes.

  3. "Textbook" adsorption at "nontextbook" adsorption sites: halogen atoms on alkali halide surfaces.

    Science.gov (United States)

    Li, Bo; Michaelides, Angelos; Scheffler, Matthias

    2006-07-28

    Density-functional theory and second order Møller-Plesset perturbation theory calculations indicate that halogen atoms bond preferentially to halide substrate atoms on a series of alkali halide surfaces, rather than to the alkali atoms as might be anticipated. An analysis of the electronic structures in each system reveals that this novel adsorption mode is stabilized by the formation of textbook two-center three-electron covalent bonds. The implications of these findings to, for example, nanostructure crystal growth, are briefly discussed.

  4. Diplopia secondary to orbital surgery.

    Science.gov (United States)

    Silbert, David I; Matta, Noelle S; Singman, Eric L

    2012-01-01

    Diplopia may occur following any type of ocular or pericocular surgery. The surgeries most frequently associated with postoperative diplopia include: repair of orbital fracture, endoscopic sinus surgery (from inadvertent orbital penetration), and orbital decompression for thyroid-related immune orbitopathy (TRIO). Postoperative diplopia after orbital tumor resection has been reported--e.g., after excision of fibrous dysplasia and osteoma. However, a recent case series suggests diplopia after orbital tumor resection is uncommon and transient. Surgical intervention for orbital trauma carries the highest risk of postoperative diplopia and will be the focus of this review. We will also present a case report of worsening diplopia following repair of orbital floor fracture to highlight potential motility issues that can arise when implants are employed to treat orbital floor fractures.

  5. Topics in orbit equivalence

    CERN Document Server

    Kechris, Alexander S

    2004-01-01

    This volume provides a self-contained introduction to some topics in orbit equivalence theory, a branch of ergodic theory. The first two chapters focus on hyperfiniteness and amenability. Included here are proofs of Dye's theorem that probability measure-preserving, ergodic actions of the integers are orbit equivalent and of the theorem of Connes-Feldman-Weiss identifying amenability and hyperfiniteness for non-singular equivalence relations. The presentation here is often influenced by descriptive set theory, and Borel and generic analogs of various results are discussed. The final chapter is a detailed account of Gaboriau's recent results on the theory of costs for equivalence relations and groups and its applications to proving rigidity theorems for actions of free groups.

  6. Small Mercury Relativity Orbiter

    Science.gov (United States)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  7. Large spin-orbit coupling in carbon nanotubes.

    Science.gov (United States)

    Steele, G A; Pei, F; Laird, E A; Jol, J M; Meerwaldt, H B; Kouwenhoven, L P

    2013-01-01

    It has recently been recognised that the strong spin-orbit interaction present in solids can lead to new phenomena, such as materials with non-trivial topological order. Although the atomic spin-orbit coupling in carbon is weak, the spin-orbit coupling in carbon nanotubes can be significant due to their curved surface. Previous works have reported spin-orbit couplings in reasonable agreement with theory, and this coupling strength has formed the basis of a large number of theoretical proposals. Here we report a spin-orbit coupling in three carbon nanotube devices that is an order of magnitude larger than previously measured. We find a zero-field spin splitting of up to 3.4 meV, corresponding to a built-in effective magnetic field of 29 T aligned along the nanotube axis. Although the origin of the large spin-orbit coupling is not explained by existing theories, its strength is promising for applications of the spin-orbit interaction in carbon nanotubes devices.

  8. Large spin-orbit coupling in carbon nanotubes

    Science.gov (United States)

    Steele, G. A.; Pei, F.; Laird, E. A.; Jol, J. M.; Meerwaldt, H. B.; Kouwenhoven, L. P.

    2013-03-01

    It has recently been recognised that the strong spin-orbit interaction present in solids can lead to new phenomena, such as materials with non-trivial topological order. Although the atomic spin-orbit coupling in carbon is weak, the spin-orbit coupling in carbon nanotubes can be significant due to their curved surface. Previous works have reported spin-orbit couplings in reasonable agreement with theory, and this coupling strength has formed the basis of a large number of theoretical proposals. Here we report a spin-orbit coupling in three carbon nanotube devices that is an order of magnitude larger than previously measured. We find a zero-field spin splitting of up to 3.4 meV, corresponding to a built-in effective magnetic field of 29 T aligned along the nanotube axis. Although the origin of the large spin-orbit coupling is not explained by existing theories, its strength is promising for applications of the spin-orbit interaction in carbon nanotubes devices.

  9. Neutral atom traps.

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  10. Preseptal and orbital cellulitis

    Directory of Open Access Journals (Sweden)

    Emine Akçay

    2014-09-01

    Full Text Available Preseptal cellulitis (PC is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneumoniae, S. epidermidis, Haempphilus influenzae, Moraxella catarrhalis and S. pyogenes. The method for the diagnosis of OS and PS is computed tomography. Using effective antibiotics is a mainstay for the treatment of PC and OC. There is an agreement that surgical drainage should be performed in cases of complete ophthalmoplegia or significant visual impairment or large abscesses formation. This infections are also at a greater risk of acute visual loss, cavernous sinus thrombosis, meningitis, cerebritis, endophthalmitis, and brain abscess in children. Early diagnosis and appropriate treatment are crucial to control the infection. Diagnosis, treatment, management and complications of PC and OC are summarized in this manuscript. J MicrobiolInfect Dis 2014; 4(3: 123-127

  11. Chaos Behaviour of Molecular Orbit

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-Tang; SUN Fu-Yan; SHEN Shu-Lan

    2007-01-01

    Based on H(u)ckel's molecular orbit theory,the chaos and;bifurcation behaviour of a molecular orbit modelled by a nonlinear dynamic system is studied.The relationship between molecular orbit and its energy level in the nonlinear dynamic system is obtained.

  12. Orbiter OMS and RCS technology

    Science.gov (United States)

    Boudreaux, R. A.

    1982-01-01

    Orbiter Orbital Maneuver Subsystem (OMS) and Reaction Control Subsystem (RCS) tankage has proved to be highly successful in shuttle flights on-orbit propellant transfer tests were done. Tank qualification tests along with flight demonstrations were carried out future uses of storable propellants are cited.

  13. Atom Lithography with a Chromium Atomic Beam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; LI Tong-Bao

    2006-01-01

    @@ Direct write atom lithography is a new technique in which resonant light is used to pattern an atomic beam and the nanostructures are formed when the atoms deposit on the substrate. We design an experiment setup to fabricate chromium nanolines by depositing an atomic beam of 52 Cr through an off-resonant laser standing wave with the wavelength of 425.55 nm onto a silicon substrate. The resulting nanolines exhibit a period of 215 ± 3 nm with height of 1 nm.

  14. Periodic orbits and TDHF phase space structure

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Yukio; Iwasawa, Kazuo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics; Tsukuma, Hidehiko; Sakata, Fumihiko

    1998-03-01

    The collective motion of atomic nuclei is closely coupled with the motion of nucleons, therefore, it is nonlinear, and the contents of the motion change largely with the increase of its amplitude. As the framework which describes the collective motion accompanied by the change of internal structure, time-dependent Hurtley Fock (TDHF) method is suitable. At present, the authors try to make the method for studying the large region structure in quantum system by utilizing the features of the TDHF phase space. The studies made so far are briefed. In this report, the correspondence of the large region patterns appearing in the band structure chart of three-level model with the periodic orbit group in the TDHF phase space is described. The Husimi function is made, and it possesses the information on the form of respective corresponding intrinsic state. The method of making the band structure chart is explained. There are three kinds of the tendency in the intrinsic state group. The E-T charts are made for the band structure charts to quantitatively express the large region tendency. The E-T chart and the T{sub r}-T chart are drawn for a selected characteristic orbit group. It became to be known that the large region properties of the quantum intrinsic state group of three-level model can be forecast by examining the properties of the periodic orbit group in the TDHF phase space. (K.I.)

  15. Periodic orbits and TDHF phase space structure

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Yukio; Iwasawa, Kazuo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics; Tsukuma, Hidehiko; Sakata, Fumihiko

    1998-03-01

    The collective motion of atomic nuclei is closely coupled with the motion of nucleons, therefore, it is nonlinear, and the contents of the motion change largely with the increase of its amplitude. As the framework which describes the collective motion accompanied by the change of internal structure, time-dependent Hurtley Fock (TDHF) method is suitable. At present, the authors try to make the method for studying the large region structure in quantum system by utilizing the features of the TDHF phase space. The studies made so far are briefed. In this report, the correspondence of the large region patterns appearing in the band structure chart of three-level model with the periodic orbit group in the TDHF phase space is described. The Husimi function is made, and it possesses the information on the form of respective corresponding intrinsic state. The method of making the band structure chart is explained. There are three kinds of the tendency in the intrinsic state group. The E-T charts are made for the band structure charts to quantitatively express the large region tendency. The E-T chart and the T{sub r}-T chart are drawn for a selected characteristic orbit group. It became to be known that the large region properties of the quantum intrinsic state group of three-level model can be forecast by examining the properties of the periodic orbit group in the TDHF phase space. (K.I.)

  16. Coupling of spin and orbital motion of electrons in carbon nanotubes

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Ilani, S; Ralph, D C;

    2008-01-01

    Electrons in atoms possess both spin and orbital degrees of freedom. In non-relativistic quantum mechanics, these are independent, resulting in large degeneracies in atomic spectra. However, relativistic effects couple the spin and orbital motion, leading to the well-known fine structure...... in their spectra. The electronic states in defect-free carbon nanotubes are widely believed to be four-fold degenerate, owing to independent spin and orbital symmetries, and also to possess electron–hole symmetry. Here we report measurements demonstrating that in clean nanotubes the spin and orbital motion...... and antiparallel alignment for holes. Our measurements are consistent with recent theories that predict the existence of spin–orbit coupling in curved graphene and describe it as a spin dependent topological phase in nanotubes. Our findings have important implications for spin-based applications in carbon- based...

  17. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  18. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  19. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu

    2017-09-01

    A nano - scale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon - atom interactions . A neutral - atom platf orm based on this microfabrication technology will be pre - aligned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano - waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  20. Random phase approximation with second-order screened exchange for current-carrying atomic states

    Science.gov (United States)

    Zhu, Wuming; Zhang, Liang; Trickey, S. B.

    2016-12-01

    The direct random phase approximation (RPA) and RPA with second-order screened exchange (SOSEX) have been implemented with complex orbitals as a basis for treating open-shell atoms. Both RPA and RPA+SOSEX are natural implicit current density functionals because the paramagnetic current density implicitly is included through the use of complex orbitals. We confirm that inclusion of the SOSEX correction improves the total energy accuracy substantially compared to RPA, especially for smaller-Z atoms. Computational complexity makes post self-consistent-field (post-SCF) evaluation of RPA-type expressions commonplace, so orbital basis origins and properties become important. Sizable differences are found in correlation energies, total atomic energies, and ionization energies for RPA-type functionals evaluated in the post-SCF fashion with orbital sets obtained from different schemes. Reference orbitals from Kohn-Sham calculations with semi-local functionals are more suitable for RPA+SOSEX to generate accurate total energies, but reference orbitals from exact exchange (non-local) yield essentially energetically degenerate open-shell atom ground states. RPA+SOSEX correlation combined with exact exchange calculated from a hybrid reference orbital set (half the exchange calculated from exact-exchange orbitals, the other half of the exchange from orbitals optimized for the Perdew-Burke-Ernzerhof (PBE) exchange functional) gives the best overall performance. Numerical results show that the RPA-like functional with SOSEX correction can be used as a practical implicit current density functional when current effects should be included.

  1. The generalized sturmian method for calculating spectra of atoms and ions

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2003-01-01

    The properties of generalized Sturmian basis sets are reviewed, and functions of this type are used to perform direct configuration interaction calculations on the spectra of atoms and ions. Singlet excited states calculated in this way show good agreement with experimentally measured spectra. When...... the generalized Sturmian method is applied to atoms, the configurations are constructed from hydrogenlike atomic orbitals with an effective charge which is characteristic of the configuration. Thus, orthonormality between the orbitals of different configurations cannot be assumed, and the generalized Slater...... is primarily outside the atom or ion, with only a small amplitude inside....

  2. Spin-orbit decomposition of ab initio wavefunctions

    OpenAIRE

    Johnson, Calvin W.

    2014-01-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulti...

  3. Atomic Particle Detection, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  4. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  5. Orbital optical lattices with bosons

    Science.gov (United States)

    Kock, T.; Hippler, C.; Ewerbeck, A.; Hemmerich, A.

    2016-02-01

    This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase, and the possibility of cross-dimensional tunneling dynamics, necessary to establish coherence along all lattice axes. A variety of bands can be selectively populated and a subsequent thermalization process leads to the formation of a condensate in the lowest energy state of the chosen band. As examples the 2nd, 4th and 7th bands in a bipartite square lattice are discussed. The geometry of the 2nd and 7th bands can be tuned such that two inequivalent energetically degenerate energy minima arise at the X ±-points at the edge of the 1st Brillouin zone. In this case even a small interaction energy is sufficient to lock the phase between the two condensation points such that a complex-valued chiral superfluid order parameter can emerge, which breaks time reversal symmetry. In the 4th band a condensate can be formed at the Γ-point in the center of the 1st Brillouin zone, which can be used to explore topologically protected band touching points. The new techniques to access orbital degrees of freedom in higher bands greatly extend the class of many-body scenarios that can be explored with bosons in optical lattices.

  6. Review of orbital imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goh, P.S. [Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074 (Singapore)], E-mail: dnrgohps@nus.edu.sg; Gi, M.T. [Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074 (Singapore); Charlton, A. [Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074 (Singapore); Tan, C.; Gangadhara Sundar, J.K.; Amrith, S. [Department of Ophthalmology, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074 (Singapore)

    2008-06-15

    CT and MRI are commonly used in the evaluation of patients with suspected orbital disease. Many different diseases may present within this small anatomical space. The purpose of this article is to present a diagnostic strategy based on a compartment model. Localizing pathology to sinus, bone, extraconal space, muscle cone, intraconal space, optic nerve, globe or lacrimal fossa allows significant reduction in the number of differential diagnoses as these compartments contain different tissues which disease may involve or arise from. Certain diseases may also present in multiple compartments. Common diseases which might present in one or multiple compartments will be discussed.

  7. Lunar Exploration Orbiter (LEO)

    Science.gov (United States)

    Jaumann, R.; Spohn, T.; Hiesinger, H.; Jessberger, E. K.; Neukum, G.; Oberst, J.; Helbert, J.; Christensen, U.; Keller, H. U.; Mall, U.; Böhnhardt, H.; Hartogh, P.; Glassmeier, K.-H.; Auster, H.-U.; Moreira, A.; Werner, M.; Pätzold, M.; Palme, H.; Wimmer-Schweingruber, R.; Mandea, M.; Lesur, V.; Häusler, B.; Hördt, A.; Eichentopf, K.; Hauber, E.; Hoffmann, H.; Köhler, U.; Kührt, E.; Michaelis, H.; Pauer, M.; Sohl, F.; Denk, T.; van Gasselt, S.

    2007-08-01

    The Moon is an integral part of the Earth-Moon system, it is a witness to more than 4.5 b. y. of solar system history, and it is the only planetary body except Earth for which we have samples from known locations. The Moon is our closest companion and can easily be reached from Earth at any time, even with a relatively modest financial budget. Consequently, the Moon was the first logical step in the exploration of our solar system before we pursued more distant targets such as Mars and beyond. The vast amount of knowledge gained from the Apollo and other lunar missions of the late 1960's and early 1970's demonstrates how valuable the Moon is for the understanding of our planetary system. Even today, the Moon remains an extremely interesting target scientifically and technologically, as ever since, new data have helped to address some of our questions about the Earth-Moon system, many questions remained. Therefore, returning to the Moon is the critical stepping-stone to further exploring our immediate planetary neighborhood. In this concept study, we present scientific and technological arguments for a national German lunar mission, the Lunar Explorations Orbiter (LEO). Numerous space-faring nations have realized and identified the unique opportunities related to lunar exploration and have planned missions to the Moon within the next few years. Among these missions, LEO will be unique, because it will globally explore the Moon in unprecedented spatial and spectral resolution. LEO will significantly improve our understanding of the lunar surface composition, surface ages, mineralogy, physical properties, interior, thermal history, gravity field, regolith structure, and magnetic field. The Lunar Explorations Orbiter will carry an entire suite of innovative, complementary technologies, including high-resolution camera systems, several spectrometers that cover previously unexplored parts of the electromagnetic spectrum over a broad range of wavelengths, microwave and

  8. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    Science.gov (United States)

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  9. Controlling interactions between highly-magnetic atoms with Feshbach resonances

    CERN Document Server

    Kotochigova, Svetlana

    2014-01-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic $^7$S$_3$ chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on Dysprosium and Erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  10. Confirmation of Kramers-Henneberger Atoms

    CERN Document Server

    Wei, Qi; Kais, Sabre; Herschbach, Dudley

    2016-01-01

    In a remarkable experiment, Eichmann et al. attained unprecedented acceleration of neutral atoms by strong short-pulse IR laser fields. The driving mechanism was identified as the ponderomotive force on excited electrons bound in Rydberg orbits that survive long enough to enable the atoms to reach the detector. However, the observed velocities lie somewhat above the theoretical prediction. The systematic discrepancy was attributed to "absolute laser intensity uncertainties or a slightly non-Gaussian intensity distribution". Here, we examine the process by transforming to the Kramers-Henneberger (KH) reference frame. We find that in addition to the ponderomotive potential there exists a smaller but significant term that comes from the binding energy of the KH atom. Including this KH term brings the calculated maximum velocities to a close match with experimental results over the full range of laser pulse durations.

  11. Long-range interactions between Rydberg atoms

    Science.gov (United States)

    Deiglmayr, Johannes

    2016-10-01

    We present an overview over theoretical models to describe adiabatic potential-energy curves, experimental excitation spectra, and electronic and nuclear dynamics in interacting Rydberg-atom pairs at large internuclear separations. The potential-energy curves and molecular wavefunctions are determined from the multipole expansion of the static Coulomb interaction which is evaluated numerically in a product basis of atomic orbitals. The convergence of this approach both in the truncation of the multipole expansion as well as in the size of the product basis is discussed, and the comparison of simulated excitation spectra is established as a useful criterium to test the convergence of the calculation. We finally discuss the dynamics of electronic and nuclear motions of pairs of Rydberg atoms, focusing on the stability of ultralong range Rydberg molecules with respect to autoionization.

  12. Semiclassical Calculation of Recurrence Spectra of Rydberg Hydrogen Atom Near a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua

    2009-01-01

    Using closed orbit theory, we give a clear physical picture description of the Rydberg hydrogen atom near a metal surface and calculate the Fourier transformed recurrence spectra of this system at different scaled energies below ionization threshold.The results show that with the increase of the scaled energy, the number of the closed orbit increases greatly.Some of the orbits are created by the bifurcation of the perpendicular orbit.This case is quite similar to the Rydberg atom in an electric field.When the scaled energy increases furthermore, chaotic orbits appear.This study provides a different perspective on the dynamical behavior of the Rydberg atom near a metal surface.

  13. Semiclassical calculation of the recurrence spectra of He Rydberg atom in perpendicular electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Wang De-Hua; Lin Sheng-Lu

    2004-01-01

    Closed orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. By developing the closed orbit theory from two degrees of freedom to three non-separable degrees of freedom, we calculated the recurrence spectra of He Rydberg atom in perpendicular electric and magnetic fields. The closed orbits in the corresponding classical system have also been obtained. Fourier transformed spectra of He atoms have allowed direct comparison between the resonance peaks and the scaled action values of closed orbits, whereas the nonhydrogenic resonance can be explained in terms of the new orbits created by the core scattering. The semiclassical result is in good agreement with the quantum spectra, which suggests that our method is correct.

  14. Calculation of multicenter electric field gradient integrals over Slater-type orbitals using unsymmetrical one-range addition theorems.

    Science.gov (United States)

    Guseinov, Israfil I; Görgün, Nurşen Seçkin

    2011-06-01

    The electric field induced within a molecule by its electrons determines a whole series of important physical properties of the molecule. In particular, the values of the gradient of this field at the nuclei determine the interaction of their quadrupole moments with the electrons. Using unsymmetrical one-range addition theorems introduced by one of the authors, the sets of series expansion relations for multicenter electric field gradient integrals over Slater-type orbitals in terms of multicenter charge density expansion coefficients and two-center basic integrals are presented. The convergence of the series is tested by calculating concrete cases for different values of quantum numbers, parameters and locations of orbitals.

  15. Periodic orbits for three and four co-orbital bodies

    Science.gov (United States)

    Verrier, P. E.; McInnes, C. R.

    2014-08-01

    We investigate the natural families of periodic orbits associated with the equilibrium configurations of the planar-restricted 1 + n-body problem for the case 2 ≤ n ≤ 4 equal-mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the Solar system. For n = 2, there are two families of periodic orbits associated with the equilibria of the system: the well-known horseshoe and tadpole orbits. For n = 3, there are three families that emanate from the equilibrium configurations of the satellites, while for n = 4, there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.

  16. Periodic orbits for 3 and 4 co-orbital bodies

    CERN Document Server

    Verrier, Patricia

    2014-01-01

    We investigate the natural families of periodic orbits associated with the equilibrium configurations of the the planar restricted $1+n$ body problem for the case $2\\leq n \\leq 4$ equal mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the solar system. For $n=2$ there are two families of periodic orbits associated with the equilibria of the system: the well known horseshoe and tadpole orbits. For $n=3$ there are three families that emanate from the equilibrium configurations of the satellites, while for $n=4$ there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.

  17. Orbital debris issues

    Science.gov (United States)

    Kessler, D. J.

    Orbital debris issues fall into three major topics: Environment Definition, Spacecraft Hazard, and Space Object Management. The major issue under Environment Definition is defining the debris flux for sizes smaller (10 cm in diameter) than those tracked by the North American Aerospace Defense Command (NORAD). Sources for this size debris are fragmentation of larger objects, either by explosion or collision, and solid rocket motor products. Modeling of these sources can predict fluxes in low Earth orbit which are greater than the meteoroid environment. Techniques to measure the environment in the size interval between 1 mm and 10 cm are being developed, including the use of telescopes and radar both on the ground and in space. Some impact sensors designed to detect meteoroids may have detected solid rocket motor products. Once the environment is defined, it can be combined with hypervelocity impact data and damage criteria to evaluate the Spacecraft Hazard. Shielding may be required to obtain an acceptable damage level. Space Object Management includes techniques to control the environment and the desired policy to effectively minimize the hazard to spacecraft. One control technique - reducing the likelihood of future explosions in space - has already been implemented by NASA. The effectiveness of other techniques has yet to be evaluated.

  18. Presenting the Bohr Atom.

    Science.gov (United States)

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  19. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  20. Raman-induced Spin-Orbit Coupling in Optical Superlattices

    Science.gov (United States)

    Li, Junru; Huang, Wujie; Shteynas, Boris; Burchesky, Sean; Top, Furkan; Jamison, Alan; Ketterle, Wolfgang

    2016-05-01

    We demonstrate a new scheme for spin-orbit coupling (SOC) of ultracold atoms. Instead of internal (hyperfine) states, two lowest bands in an optical superlattice were used as pseudospins. A Raman process was implemented to provide coupling between pseudospin and momentum. With single internal state and far-detuned beams used, our new scheme will allow convenient generalisation to a wide range of atoms. Pseudospin interaction is tuneable by controlling the superlattice, allowing us to study many-body phenomena in SOC systems such as the stripe phase.

  1. [Endoscopic approaches to the orbit].

    Science.gov (United States)

    Cebula, H; Lahlou, A; De Battista, J C; Debry, C; Froelich, S

    2010-01-01

    During the last decade, the use of endoscopic endonasal approaches to the pituitary has increased considerably. The endoscopic endonasal and transantral approaches offer a minimally invasive alternative to the classic transcranial or transconjunctival approaches to the medial aspect of the orbit. The medial wall of the orbit, the orbital apex, and the optic canal can be exposed through a middle meatal antrostomy, an anterior and posterior ethmoidectomy, and a sphenoidotomy. The inferomedial wall of the orbit can be also perfectly visualized through a sublabial antrostomy or an inferior meatal antrostomy. Several reports have described the use of an endoscopic approach for the resection or the biopsy of lesions located on the medial extraconal aspect of the orbit and orbital apex. However, the resection of intraconal lesions is still limited by inadequate instrumentation. Other indications for the endoscopic approach to the orbit are the decompression of the orbit for Graves' ophthalmopathy and traumatic optic neuropathy. However, the optimal management of traumatic optic neuropathy remains very controversial. Endoscopic endonasal decompression of the optic nerve in case of tumor compression could be a more valid indication in combination with radiation therapy. Finally, the endoscopic transantral treatment of blowout fracture of the floor of the orbit is an interesting option that avoids the eyelid or conjunctive incision of traditional approaches. The collaboration between the neurosurgeon and the ENT surgeon is mandatory and reduces the morbidity of the approach. Progress in instrumentation and optical devices will certainly make this approach promising for intraconal tumor of the orbit.

  2. Single Atom Plasmonic Switch

    OpenAIRE

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2015-01-01

    The atom sets an ultimate scaling limit to Moores law in the electronics industry. And while electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling-similar to electronics-is only limited by the atom. More precisely, we introduce an electrically controlled single atom plasmonic switch. The switch allows for fast and reproducible switching by means of the relocation of an individ...

  3. Atomic Scale Plasmonic Switch

    OpenAIRE

    Emboras, A.; Niegemann, J.; Ma, P.; Haffner, C; Pedersen, A.; Luisier, M.; Hafner, C.; Schimmel, T.; Leuthold, J.

    2016-01-01

    The atom sets an ultimate scaling limit to Moore’s law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocat...

  4. Atoms Talking to SQUIDs

    CERN Document Server

    Hoffman, J E; Kim, Z; Wood, A K; Anderson, J R; Dragt, A J; Hafezi, M; Lobb, C J; Orozco, L A; Rolston, S L; Taylor, J M; Vlahacos, C P; Wellstood, F C

    2011-01-01

    We present a scheme to couple trapped $^{87}$Rb atoms to a superconducting flux qubit through a magnetic dipole transition. We plan to trap atoms on the evanescent wave outside an ultrathin fiber to bring the atoms to less than 10 $\\mu$m above the surface of the superconductor. This hybrid setup lends itself to probing sources of decoherence in superconducting qubits. Our current plan has the intermediate goal of coupling the atoms to a superconducting LC resonator.

  5. Atomic Storage States

    Institute of Scientific and Technical Information of China (English)

    汪凯戈; 朱诗尧

    2002-01-01

    We present a complete description of atomic storage states which may appear in the electromagnetically induced transparency (EIT). The result shows that the spatial coherence has been included in the atomic collective operators and the atomic storage states. In some limits, a set of multimode atomic storage states has been established in correspondence with the multimode Fock states of the electromagnetic field. This gives a better understanding of the fact that, in BIT, the optical coherent information can be preserved and recovered.

  6. Some reflections on the role of semi-classical atomic models in the teaching and learning of introductory quantum mechanics

    Science.gov (United States)

    O'Sullivan, Colm

    2016-03-01

    The role of "semi-classical" (Bohr-Sommerfeld) and "semi-quantum-mechanical" (atomic orbital) models in the context of the teaching of atomic theory is considered. It is suggested that an appropriate treatment of such models can serve as a useful adjunct to quantum mechanical study of atomic systems.

  7. A Typical Presentation of Orbital Pseudotumor Mimicking Orbital Cellulitis

    Directory of Open Access Journals (Sweden)

    J. Ayatollahi

    2013-10-01

    Full Text Available Introduction: Orbital pseudotumor, also known as idiopathic orbital inflammatory syndrome (IOIS, is a benign, non- infective inflammatory condition of the orbit without identifiable local or systemic causes. The disease may mimics a variety of pathologic conditions. We pre-sent a case of pseudotumor observed in a patient admitted under the name of orbital celluli-ties. Case Report: A 26-year-old woman reffered to our hospital with the history of left ocular pain and headache 2 days before her visit.. Ophthalmological examination of the patient was normal except for the redness and lid edema, mild chemosis and conjunctival injection. Gen-eral assessment was normal but a low grade fever was observed. She was hospitalized as an orbital cellulitis patient. She was treated with intravenous antibiotics. On the third day , sud-denly diplopia, proptosis in her left eye and ocular pain in her right side appeared. MRI re-vealed bilateral enlargement of extraocular muscles. Diagnosis of orbital pseudotumor was made and the patient was treated with oral steroid.She responded promptly to the treatment. Antibiotics were discontinued and steroid was tapered in one month period under close fol-low up. Conclusion: The clinical features of orbital pseudotumor vary widely . Orbital pseudotumor and orbital cellulitis can occasionally demonstrate overlapping features.. Despite complete physical examination and appropriate imaging, sometimes correct diagnosis of the disease would be difficult (Sci J Hamadan Univ Med Sci 2013; 20 (3:256-259

  8. Effects of Spin-Orbit Coupling on Jaynes-Cummings and Tavis-Cummings Models

    CERN Document Server

    Zhu, Chuanzhou; Pu, Han

    2016-01-01

    We consider ultracold atoms inside a ring optical cavity that supports a single plane-wave mode. The cavity field, together with an external coherent laser field, drives a two-photon Raman transition between two internal pseudo-spin states of the atom. This gives rise to an effective coupling between atom's pseudo-spin and external center-of-mass (COM) motion. For the case of a single atom inside the cavity, We show how the spin-orbit coupling modifies the static and dynamic properties of the Jaynes-Cummings (JC) model. In the case of many atoms in thermodynamic limit, we show that the spin-orbit coupling modifies the Dicke superradiance phase transition boundary and the non-superradiant normal phase may become reentrant in some regimes.

  9. The Nature of Atoms.

    Science.gov (United States)

    Holden, Alan

    This monograph was written for the purpose of presenting physics to college students who are not preparing for careers in physics. It deals with the nature of atoms, and treats the following topics: (1) the atomic hypothesis, (2) the chemical elements, (3) models of an atom, (4) a particle in a one-dimensional well, (5) a particle in a central…

  10. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  11. Local Molecular Orbitals from a Projection onto Localized Centers.

    Science.gov (United States)

    Heßelmann, Andreas

    2016-06-14

    A localization method for molecular orbitals is presented which exploits the locality of the eigenfunctions associated with the largest eigenvalues of the matrix representation of spatially localized functions. Local molecular orbitals are obtained by a projection of the canonical orbitals onto the set of the eigenvectors which correspond to the largest eigenvalues of these matrices. Two different types of spatially localized functions were chosen in this work, a two-parameter smooth-step-type function and the weight functions determined by a Hirshfeld partitioning of the molecular volume. It is shown that the method can provide fairly local occupied molecular orbitals if the positions of the set of local functions are set to the molecular bond centers. The method can also yield reasonably well-localized virtual molecular orbitals, but here, a sensible choice of the positions of the functions are the atomic sites and the locality then depends more strongly on the shape of the set of local functions. The method is tested for a range of polypeptide molecules in two different conformations, namely, a helical and a β-sheet conformation. Futhermore, it is shown that an adequate locality of the occupied and virtual orbitals can also be obtained for highly delocalized systems.

  12. Polarized Molecular Orbital Model Chemistry. II. The PMO Method.

    Science.gov (United States)

    Zhang, Peng; Fiedler, Luke; Leverentz, Hannah R; Truhlar, Donald G; Gao, Jiali

    2011-04-12

    We present a new semiempirical molecular orbital method based on neglect of diatomic differential overlap. This method differs from previous NDDO-based methods in that we include p orbitals on hydrogen atoms to provide a more realistic modeling of polarizability. As in AM1-D and PM3-D, we also include damped dispersion. The formalism is based on the original MNDO one, but in the process of parameterization we make some specific changes to some of the functional forms. The present article is a demonstration of the capability of the new approach, and it presents a successful parametrization for compounds composed only of hydrogen and oxygen atoms, including the important case of water clusters.

  13. Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Morgan, T.; Chin, G.

    2007-08-01

    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only

  14. Orbital State Uncertainty Realism

    Science.gov (United States)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten

  15. Precise Orbit Determination for ALOS

    Science.gov (United States)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  16. Tutorial on Atomic Oxygen Effects and Contamination

    Science.gov (United States)

    Miller, Sharon K.

    2017-01-01

    Atomic oxygen is the most predominant specie in low Earth orbit (LEO) and is contained in the upper atmosphere of many other planetary bodies. Formed by photo-dissociation of molecular oxygen, it is highly reactive and energetic enough to break chemical bonds on the surface of many materials and react with them to form either stable or volatile oxides. The extent of the damage for spacecraft depends a lot on how much atomic oxygen arrives at the surface, the energy of the atoms, and the reactivity of the material that is exposed to it. Oxide formation can result in shrinkage, cracking, or erosion which can also result in changes in optical, thermal, or mechanical properties of the materials exposed. The extent of the reaction can be affected by mechanical loading, temperature, and other environmental components such as ultraviolet radiation or charged particles. Atomic oxygen generally causes a surface reaction, but it can scatter under coatings and into crevices causing oxidation much farther into a spacecraft surface or structure than would be expected. Contamination can also affect system performance. Contamination is generally caused by arrival of volatile species that condense on spacecraft surfaces. The volatiles are typically a result of outgassing of materials that are on the spacecraft. Once the volatiles are condensed on a surface, they can then be fixed on the surface by ultraviolet radiation andor atomic oxygen reaction to form stable surface contaminants that can change optical and thermal properties of materials in power systems, thermal systems, and sensors. This tutorial discusses atomic oxygen erosion and contaminate formation, and the effect they have on typical spacecraft materials. Scattering of atomic oxygen, some effects of combined environments and examples of effects of atomic oxygen and contamination on spacecraft systems and components will also be presented.

  17. Direct evaluation of overlap integrals between Slater-type-orbitals

    CERN Document Server

    Caola, Michael J

    2016-01-01

    We derive direct single-stage numerical evaluation of the electronic overlap integral between arbitrary atomic orbitals (including STOs). Integration is over cartesian co-ordinates, and replaces previous sums over 'special' functions. The results, in Mathematica 10 and Maple 18, agree with the literature to 8 digits. We briefly discuss possible use in quantum chemistry, including accuracy, algorithmic suitability and operating-system machine-implementation as an intrinsic function.

  18. Scheme for adding electron-nucleus cusps to Gaussian orbitals

    OpenAIRE

    Ma, A.; Towler, M. D.; Drummond, N. D.; Needs, R. J.

    2008-01-01

    A simple scheme is described for introducing the correct cusps at nuclei into orbitals obtained from Gaussian basis set electronic structure calculations. The scheme is tested with all-electron variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods for the Ne atom, the H2 molecule, and 55 molecules from a standard benchmark set. It greatly reduces the variance of the local energy in all cases and slightly improves the variational energy. This scheme yields a gen...

  19. Orbital Eccrine Hidrocystoma

    Directory of Open Access Journals (Sweden)

    Deniz Marangoz

    2016-10-01

    Full Text Available A 29-year-old female patient presented with a painless mass on her upper eyelid medially. She noticed the mass 4 years earlier and it had increased in size over time. She had no diplopia, eyelid swelling, skin lesion overlying the mass, or visual disturbances. On ocular examination, eye movements and funduscopy were normal. The mass was movable and painless with palpation. Magnetic resonance imaging with contrast showed a 12x8x7 mm well-circumscribed cystic lesion with no contrast dye appearance. Surgical removal was performed delicately and no capsular rupture occured. Pathological examination revealed an eccrine hidrocystoma. Our aim is to underline that eccrine hidrocystoma should be included in differential diagnosis of orbital masses.

  20. Exploratory orbit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, L.

    1989-03-01

    Unlike the other documents in these proceedings, this paper is neither a scientific nor a technical report. It is, rather, a short personal essay which attempts to describe an Exploratory Orbit Analysis (EOA) environment. Analyzing the behavior of a four or six dimensional nonlinear dynamical system is at least as difficult as analyzing events in high-energy collisions; the consequences of doing it badly, or slowly, would be at least as devastating; and yet the level of effort and expenditure invested in the latter, the very attention paid to it by physicists at large, must be two orders of magnitude greater than that given to the former. It is difficult to choose the model which best explains the behavior of a physical device if one does not first understand the behavior of the available models. The time is ripe for the development of a functioning EOA environment, which I will try to describe in this paper to help us achieve this goal.

  1. Orbital angular momentum microlaser

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  2. Orbital science's 'Bermuda Triangle'

    Science.gov (United States)

    Sherrill, Thomas J.

    1991-02-01

    The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.

  3. Orbit Determination Toolbox

    Science.gov (United States)

    Carpenter, James R.; Berry, Kevin; Gregpru. Late; Speckman, Keith; Hur-Diaz, Sun; Surka, Derek; Gaylor, Dave

    2010-01-01

    The Orbit Determination Toolbox is an orbit determination (OD) analysis tool based on MATLAB and Java that provides a flexible way to do early mission analysis. The toolbox is primarily intended for advanced mission analysis such as might be performed in concept exploration, proposal, early design phase, or rapid design center environments. The emphasis is on flexibility, but it has enough fidelity to produce credible results. Insight into all flight dynamics source code is provided. MATLAB is the primary user interface and is used for piecing together measurement and dynamic models. The Java Astrodynamics Toolbox is used as an engine for things that might be slow or inefficient in MATLAB, such as high-fidelity trajectory propagation, lunar and planetary ephemeris look-ups, precession, nutation, polar motion calculations, ephemeris file parsing, and the like. The primary analysis functions are sequential filter/smoother and batch least-squares commands that incorporate Monte-Carlo data simulation, linear covariance analysis, measurement processing, and plotting capabilities at the generic level. These functions have a user interface that is based on that of the MATLAB ODE suite. To perform a specific analysis, users write MATLAB functions that implement truth and design system models. The user provides his or her models as inputs to the filter commands. The software provides a capability to publish and subscribe to a software bus that is compliant with the NASA Goddard Mission Services Evolution Center (GMSEC) standards, to exchange data with other flight dynamics tools to simplify the flight dynamics design cycle. Using the publish and subscribe approach allows for analysts in a rapid design center environment to seamlessly incorporate changes in spacecraft and mission design into navigation analysis and vice versa.

  4. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  5. Homogeneous orbit closures and applications

    CERN Document Server

    Lindenstrauss, Elon

    2011-01-01

    We give new classes of examples of orbits of the diagonal group in the space of unit volume lattices in R^d for d > 2 with nice (homogeneous) orbit closures, as well as examples of orbits with explicitly computable but irregular orbit closures. We give Diophantine applications to the former, for instance we show that if x is the cubic root of 2 then for any y,z in R liminf |n|=0 (as |n| goes to infinity), where denotes the distance of a real number c to the integers.

  6. Orbit Alignment in Triple Stars

    Science.gov (United States)

    Tokovinin, Andrei

    2017-08-01

    The statistics of the angle Φ between orbital angular momenta in hierarchical triple systems with known inner visual or astrometric orbits are studied. A correlation between apparent revolution directions proves the partial orbit alignment known from earlier works. The alignment is strong in triples with outer projected separation less than ∼50 au, where the average Φ is about 20^\\circ . In contrast, outer orbits wider than 1000 au are not aligned with the inner orbits. It is established that the orbit alignment decreases with the increasing mass of the primary component. The average eccentricity of inner orbits in well-aligned triples is smaller than in randomly aligned ones. These findings highlight the role of dissipative interactions with gas in defining the orbital architecture of low-mass triple systems. On the other hand, chaotic dynamics apparently played a role in shaping more massive hierarchies. The analysis of projected configurations and triples with known inner and outer orbits indicates that the distribution of Φ is likely bimodal, where 80% of triples have {{Φ }}< 70^\\circ and the remaining ones are randomly aligned.

  7. Galerkin method for unsplit 3-D Dirac equation using atomically$/$kinetically balanced B-spline basis

    CERN Document Server

    Fillion-Gourdeau, F; Bandrauk, A D

    2015-01-01

    A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron-molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.

  8. Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis

    Energy Technology Data Exchange (ETDEWEB)

    Fillion-Gourdeau, F., E-mail: filliong@CRM.UMontreal.ca [Université du Québec, INRS – Énergie, Matériaux et Télécommunications, Varennes, J3X 1S2 (Canada); Centre de Recherches Mathématiques, Université de Montréal, Montréal, H3T 1J4 (Canada); Lorin, E., E-mail: elorin@math.carleton.ca [School of Mathematics and Statistics, Carleton University, Ottawa, K1S 5B6 (Canada); Centre de Recherches Mathématiques, Université de Montréal, Montréal, H3T 1J4 (Canada); Bandrauk, A.D., E-mail: andre.bandrauk@usherbrooke.ca [Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1 (Canada); Centre de Recherches Mathématiques, Université de Montréal, Montréal, H3T 1J4 (Canada)

    2016-02-15

    A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.

  9. Highly Accurate Measurement of the Electron Orbital Magnetic Moment

    CERN Document Server

    Awobode, A M

    2015-01-01

    We propose to accurately determine the orbital magnetic moment of the electron by measuring, in a Magneto-Optical or Ion trap, the ratio of the Lande g-factors in two atomic states. From the measurement of (gJ1/gJ2), the quantity A, which depends on the corrections to the electron g-factors can be extracted, if the states are LS coupled. Given that highly accurate values of the correction to the spin g-factor are currently available, accurate values of the correction to the orbital g-factor may also be determined. At present, (-1.8 +/- 0.4) x 10-4 has been determined as a correction to the electron orbital g-factor, by using earlier measurements of the ratio gJ1/gJ2, made on the Indium 2P1/2 and 2P3/2 states.

  10. Designing high-performance layered thermoelectric materials through orbital engineering

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-03-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  11. Designing high-performance layered thermoelectric materials through orbital engineering.

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K H; Fischer, Karl F F; Zhang, Wenqing; Shi, Xun; Iversen, Bo B

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  12. Single Atom Plasmonic Switch

    CERN Document Server

    Emboras, Alexandros; Ma, Ping; Haffner, Christian; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2015-01-01

    The atom sets an ultimate scaling limit to Moores law in the electronics industry. And while electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling-similar to electronics-is only limited by the atom. More precisely, we introduce an electrically controlled single atom plasmonic switch. The switch allows for fast and reproducible switching by means of the relocation of an individual or at most - a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ration of 10 dB and operation at room temperature with femtojoule (fJ) power consumption for a single switch operation. This demonstration of a CMOS compatible, integrated quantum device allowing to control photons at the single-atom level opens intriguing perspectives for a fully i...

  13. New orbit correction method uniting global and local orbit corrections

    Science.gov (United States)

    Nakamura, N.; Takaki, H.; Sakai, H.; Satoh, M.; Harada, K.; Kamiya, Y.

    2006-01-01

    A new orbit correction method, called the eigenvector method with constraints (EVC), is proposed and formulated to unite global and local orbit corrections for ring accelerators, especially synchrotron radiation(SR) sources. The EVC can exactly correct the beam positions at arbitrarily selected ring positions such as light source points, simultaneously reducing closed orbit distortion (COD) around the whole ring. Computer simulations clearly demonstrate these features of the EVC for both cases of the Super-SOR light source and the Advanced Light Source (ALS) that have typical structures of high-brilliance SR sources. In addition, the effects of errors in beam position monitor (BPM) reading and steering magnet setting on the orbit correction are analytically expressed and also compared with the computer simulations. Simulation results show that the EVC is very effective and useful for orbit correction and beam position stabilization in SR sources.

  14. PyORBIT: A Python Shell For ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.

  15. Orbital Chondroma: A rare mesenchymal tumor of orbit

    Directory of Open Access Journals (Sweden)

    Ruchi S Kabra

    2015-01-01

    Full Text Available While relatively common in the skeletal system, cartilaginous tumors are rarely seen originating from the orbit. Here, we report a rare case of an orbital chondroma. A 27-year-old male patient presented with a painless hard mass in the superonasal quadrant (SNQ of left orbit since 3 months. On examination, best-corrected visual acuity of both eyes was 20/20, with normal anterior and posterior segment with full movements of eyeballs and normal intraocular pressure. Computerized tomography scan revealed well defined soft tissue density lesion in SNQ of left orbit. Patient was operated for anteromedial orbitotomy under general anesthesia. Mass was excised intact and sent for histopathological examination (HPE. HPE report showed lobular aggregates of benign cartilaginous cells with mild atypia suggesting of benign cartilaginous tumor - chondroma. Very few cases of orbital chondroma have been reported in literature so far.

  16. Testing Lorentz symmetry with planetary orbital dynamics

    CERN Document Server

    Hees, Aurélien; Poncin-Lafitte, Christophe Le; Bourgoin, Adrien; Rivoldini, Attilio; Lamine, Brahim; Meynadier, Frédéric; Guerlin, Christine; Wolf, Peter

    2015-01-01

    Planetary ephemerides are a very powerful tool to constrain deviations from the theory of General Relativity using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.

  17. Spin-orbital quantum liquid on the honeycomb lattice

    Science.gov (United States)

    Corboz, Philippe

    2013-03-01

    The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.

  18. Atoms and Molecules Interacting with Light

    Science.gov (United States)

    van der Straten, Peter; Metcalf, Harold

    2016-02-01

    ; 15. The periodic system of the elements; Appendix 15. A paramagnetism; Appendix 15.B. The color of gold; 16. Molecules; Appendix 16.A. Morse potential; 17. Binding in the hydrogen molecule; Appendix 17.A. Confocal elliptical coordinates; Appendix 17.B. One-electron two-center integrals; Appendix 17.C. Electron-electron interaction in molecular hydrogen; 18. Ultra-cold chemistry; Part III. Applications: 19. Optical forces and laser cooling; 20. Confinement of neutral atoms; 21. Bose-Einstein condensation; Appendix 21.A. Distribution functions; Appendix 21.B. Density of states; 22. Cold molecules; 23. Three level systems; Appendix 23.A. General Case for _1 , _2; 24. Fundamental physics; Part IV. Appendices: Appendix A. Notation and definitions; Appendix B. Units and notation; Appendix C. Angular momentum in quantum mechanics; Appendix D. Transition strengths; References; Index.

  19. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  20. Multicenter molecular integrals for Slater orbitals of higher principal quantum numbers

    Science.gov (United States)

    Tai, H.

    1989-01-01

    As was shown earlier by Tai (1979), by using the Fourier-transform technique and properly coupling a pair of two-center exchange integrals, the multicenter molecular integrals can be cast into a simple expression upon which numerical procedures can be directly applied. In this paper, the procedure of Tai is extended to integrals involving orbitals with arbitrarily higher principal quantum number. The derivation is outlined, and the explicit expressions are presented for a three-center nuclear attraction integral and a four-center two-electron Coulomb repulsion integral of arbitrary higher states.

  1. Stability of the hydrogen atom of classical electrodynamics

    CERN Document Server

    De Luca, J

    2004-01-01

    We study the stability of the circular orbits of the electromagnetic two-body problem of classical electrodynamics. We introduce the concept of resonant dissipation, i.e. a motion that radiates the center-of-mass energy while the interparticle distance performs bounded oscillations about a metastable orbit. The stability mechanism is established by the existence of a quartic resonant constant generated by the stiff eigenvalues of the linear stability problem. This constant bounds the particles together during the radiative recoil. The condition of resonant dissipation predicts angular momenta for the metastable orbits in reasonable agreement with the Bohr atom. The principal result is that the emission lines agree with the predictions of quantum electrodynamics (QED) with 1 percent average error even up to the $40^{th}$ line. Our angular momenta depend logarithmically on the mass of the heavy body, such that the deuterium and the muonium atoms have essentially the same angular momenta, in agreement with QED. ...

  2. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and su

  3. [Enophthalmos in an orbital tumor].

    Science.gov (United States)

    Szabo, Bianca; Szabo, I; Nicula, Cristina; Popescu, Livia Adriana

    2013-01-01

    Enophtalmus is an unusual sign of the orbital tumors often represented by proptosis. One patient with enophtalmus and intraorbital tumor and aplasy is presented. The treatment of choice of orbital tumor is complete surgical excision and careful follow-up. Considering the more aggressive course followed by recurrent tumor, correct diagnosis and management is essential.

  4. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...

  5. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  6. Low Earth Orbiter: Terminal

    Science.gov (United States)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper

  7. Resonant x-ray scattering in perovskite manganite superlattice. Observation of 'orbital superlattice'

    CERN Document Server

    Kiyama, T; Ohsumi, H; Murakami, Y; Wakabayashi, Y; Izumi, M; Kawasaki, M; Tokura, Y

    2003-01-01

    We report the results of resonant X-ray scattering (RXS) measurement of superlattices which consist of La sub 0 sub . sub 4 sub 5 Sr sub 0 sub . sub 5 sub 5 MnO sub 3 and La sub 0 sub . sub 6 sub 0 Sr sub 0 sub . sub 4 sub 0 MnO sub 3 multilayers. An interference technique made it possible to observe RXS reflections from ferro-type orbital ordering in the superlattices. RXS can reveal the local circumstances around specific atoms in materials regulated atomically. In this experiment, we observed that the superlattice is actually composed of two kinds of layers with different lattice distortion states, presenting 'orbital superlattices', in which layers with different orbital states are stacked alternately in an atomic scale. (author)

  8. Manipulating Spin-Orbit Interaction in Semiconductors

    Science.gov (United States)

    Kohda, Makoto; Bergsten, Tobias; Nitta, Junsaku

    2008-03-01

    Spin-orbit interaction (SOI), where the orbital motion of electrons is coupled with the orientation of electron spins, originates from a relativistic effect. Generally, in nonrelativistic momentum, p = \\hbar k≪ m0c, the SOI is negligible. However, in a semiconductor heterostructure, the small energy-band gap (Eg ≪ m0c2) and the electron wave modulated by the atomic core potential markedly enhance the SOI. Since the SOI acts as an effective magnetic field, it may offer novel functionalities for controlling the spin degree of freedom such as the electrical spin generation and the electrical control of the spin precession in a semiconductor heterojunction. Here, we review recent experimental studies on the manipulation of the SOI in a semiconductor two-dimensional electron gas. We first present a theoretical overview of the Rashba SOI, which lifts the spin degeneracy due to structural inversion asymmetry. We then present experimental results on the quantum well (QW) thickness dependences of the Rashba SOI in InP/InGaAs/InAlAs asymmetric QWs by analyzing the weak antilocalization. Finally, we show quantum interference effects due to the spin precession in a small array of mesoscopic InGaAs rings, which is an experimental demonstration of the time-reversal Aharonov-Casher effect and the electromagnetic dual to the Al’tshuler-Aronov-Spivak effect.

  9. Video Orbits of the Geminids

    Science.gov (United States)

    Hajdukova, M.

    2014-07-01

    Geminid meteoroids, observed by the video technique, were analysed with the aim of determining the actual dispersion of their reciprocal semimajor axes 1/a within the stream. Orbits were selected from the European Video Meteor Network Database, EDMOND, (Kornos et al., 2013), from the SonotaCo Shower Catalogue (SonotaCo, 2009), and from the Czech Catalogue of Video Meteor Orbits (Koten et al., 2003). The observed orbital dispersion, including the measurement errors, was compared with that obtained from the precisely-reduced photographic orbits of Geminids from the IAU Meteor Data Center (Lindblad et al., 2003). In this paper, we concentrate on the influence of errors on the orbital dispersion. The size and distribution of observational errors determined from the long-period meteoroid streams (Hajdukova 2013), were applied to determine the real dispersion within this short-period meteoroid stream. The observed dispersions, described by the median absolute deviation in terms of 1/a, range from 0.041 to 0.050 1/au. The deviation of the median reciprocal semimajor axis from the parent (3200) Phaethon, obtained from Japanese video orbits, is 0.009 1/au, and that from the EDMOND data 0.01 1/au. This deviation obtained from the photographic orbits of the IAU Meteor Data Center was significantly greater (Hajdukova 2009). Similar results were obtained from the Czech Video Orbits Catalogue, where the value is 0.05 1/au. The investigation showed that semimajor axes of meteor orbits in both the SonotaCo and EDMOND datasets are systematically biased as a consequence of the method used for the video orbit determination, probably because corrections for atmospheric deceleration were either incorrectly made or were not done at all. Thus, the determined heliocentric velocities are underestimated, and the semimajor axes medians shifted towards smaller values. The observed distributions in 1/a from these video data become biased towards higher values of 1/a. The orbits of the Geminid

  10. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)

    2006-04-24

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.

  11. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom

    Science.gov (United States)

    Baseden, Kyle A.; Tye, Jesse W.

    2014-01-01

    Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…

  12. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom

    Science.gov (United States)

    Baseden, Kyle A.; Tye, Jesse W.

    2014-01-01

    Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…

  13. Measuring Scars of Periodic Orbits

    CERN Document Server

    Kaplan, L

    1999-01-01

    The phenomenon of periodic orbit scarring of eigenstates of classically chaotic systems is attracting increasing attention. Scarring is one of the most important ``corrections'' to the ideal random eigenstates suggested by random matrix theory. This paper discusses measures of scars and in so doing also tries to clarify the concepts and effects of eigenfunction scarring. We propose a new, universal scar measure which takes into account an entire periodic orbit and the linearized dynamics in its vicinity. This measure is tuned to pick out those structures which are induced in quantum eigenstates by unstable periodic orbits and their manifolds. It gives enhanced scarring strength as measured by eigenstate overlaps and inverse participation ratios, especially for longer orbits. We also discuss off-resonance scars which appear naturally on either side of an unstable periodic orbit.

  14. The 2009 Mars Telecommunications Orbiter

    Science.gov (United States)

    Wilson, G. R.; Depaula, R.; Diehl, R. E.; Edwards, C. D.; Fitzgerald, R. J.; Franklin, S. F.; Gibbs, R. G.; Kerridge, S. A.; Komarek, T. A.; Noreen, G. K.

    The first spacecraft with a primary function of providing communication links while orbiting a foreign planet has begun development for a launch in 2009. NASA's Mars Telecommunications Orbiter would use three radio bands to magnify the benefits of other future Mars missions and enable some types of missions otherwise impractical. It would serve as the Mars hub for a growing interplanetary Internet. And it would pioneer the use of planet-to-planet laser communications to demonstrate the possibility for even great networking capabilities in the future. During its nearly 10-year mission in orbit, Mars Telecommunications Orbiter would aid navigation of arriving spacecraft to their martian landing sites and monitor critical events during landings and orbit insertions. In addition, it would enable data-transmission volumes great enough to bring a virtual Mars presence to the public through a range of Internet and video features.

  15. Polarized Molecular Orbital Model Chemistry 3. The PMO Method Extended to Organic Chemistry.

    Science.gov (United States)

    Isegawa, Miho; Fiedler, Luke; Leverentz, Hannah R; Wang, Yingjie; Nachimuthu, Santhanamoorthi; Gao, Jiali; Truhlar, Donald G

    2013-01-08

    The polarized molecular orbital (PMO) method, a neglect-of-diatomic-differential-overlap (NDDO) semiempirical molecular orbital method previously parameterized for systems composed of O and H, is here extended to carbon. We modified the formalism and optimized all the parameters in the PMO Hamiltonian by using a genetic algorithm and a database containing both electrostatic and energetic properties; the new parameter set is called PMO2. The quality of the resulting predictions is compared to results obtained by previous NDDO semiempirical molecular orbital methods, both including and excluding dispersion terms. We also compare the PMO2 properties to SCC-DFTB calculations. Within the class of semiempirical molecular orbital methods, the PMO2 method is found to be especially accurate for polarizabilities, atomization energies, proton transfer energies, noncovalent complexation energies, and chemical reaction barrier heights and to have good across-the-board accuracy for a range of other properties, including dipole moments, partial atomic charges, and molecular geometries.

  16. Polarized Molecular Orbital Model Chemistry 3. The PMO Method Extended to Organic Chemistry

    Science.gov (United States)

    Isegawa, Miho; Fiedler, Luke; Leverentz, Hannah R.; Wang, Yingjie; Nachimuthu, Santhanamoorthi; Gao, Jiali; Truhlar, Donald G.

    2013-01-01

    The polarized molecular orbital (PMO) method, a neglect-of-diatomic-differential-overlap (NDDO) semiempirical molecular orbital method previously parameterized for systems composed of O and H, is here extended to carbon. We modified the formalism and optimized all the parameters in the PMO Hamiltonian by using a genetic algorithm and a database containing both electrostatic and energetic properties; the new parameter set is called PMO2. The quality of the resulting predictions is compared to results obtained by previous NDDO semiempirical molecular orbital methods, both including and excluding dispersion terms. We also compare the PMO2 properties to SCC-DFTB calculations. Within the class of semiempirical molecular orbital methods, the PMO2 method is found to be especially accurate for polarizabilities, atomization energies, proton transfer energies, noncovalent complexation energies, and chemical reaction barrier heights and to have good across-the-board accuracy for a range of other properties, including dipole moments, partial atomic charges, and molecular geometries. PMID:23704835

  17. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  18. Halo orbit to science orbit captures at planetary moons

    Science.gov (United States)

    Bokelmann, Kevin A.; Russell, Ryan P.

    2017-05-01

    Ballisticly connecting halo orbits to science orbits in the circular-restricted three-body problem is investigated. Two classes of terminal science orbits are considered: low-altitude, tight orbits that are deep in the gravity well of the secondary body, and high-altitude, loose orbits that are strongly perturbed by the gravity of the primary body. General analytic expressions are developed to provide a minimum bound on impulse cost in both the circular restricted and the Hill's approximations. The equations are applied to a broad range of planetary moons, providing a mission design reference. Systematic grid search methods are developed to numerically find feasible transfers from halo orbits at Europa, confirming the analytical lower bound formulas. The two-impulse capture options in the case of Europa reveal a diverse set of potential solutions. Tight captures result in maneuver costs of 425-550 m/s while loose captures are found with costs as low as 30 m/s. The terminal orbits are verified to avoid escape or impact for at least 45 days.

  19. VSOP-2 Orbit Determination

    Science.gov (United States)

    Takeuchi, H.; VSOP-2 Orbit Determination Sub-Working Group

    2009-08-01

    Precise orbit determination (POD) is a key factor to enable phase referencing observations with Astro-G. A POD accuracy of 30 cm is required for efficient X-band phase referencing observations, accuracy of 6 cm for K-band observations, and accuracy of 3 cm for Q-band observations. For the POD, Astro-G will be equipped with a GPS/Galileo receiver and a SLR (Satellite Laser Ranging) retroreflector array. Four POD antennas will be equipped on four sides of the satellite body, to cover all directions. The SLR will be used as a complement to the GPS at middle-to-high altitude. Because the refroreflector array should always face to the Earth direction, it will be set up on the Ka-link antenna gimbal. The most significant perturbing force for the Astro-G is solar radiation pressure (SRP). The reflectivity of each surface component should be preliminary measured in detail to model the SRP. The estimated achievable POD accuracy at apogee is 10 ˜ 30 cm in nominal case. Phase referencing observations in K- or Q-band can be performed if the enough amount of SLR tracking data can be obtained at high altitudes.

  20. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  1. Unconventional Bose-Einstein Condensations from Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiang-Fa; WU Cong-Jun; Ian Mondragon-Shem

    2011-01-01

    According to the "no-node" theorem, the many-body ground state wavefunctions of conventional Bose-Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case ofisotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree-Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the "order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.%@@ According to the"no-node"theorem,the many-body ground state wavefunctions of conventional Bose-Einstein condensations(BEC)are positive-definite,thus time-reversal symmetry cannot be spontaneously broken.We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm.We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction.In the limit of the weak confining potential,the condensate wavefunctions are frustrated at the Hartree-Fork level due to the degeneracy of the Rashba ring.Quantum zero-point energy selects the spin-spiral type condensate through the"order-from-disorder"mechanism.In a strong harmonic confining trap,the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture.In both cases,time-reversal symmetry is spontaneously broken

  2. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock

    Science.gov (United States)

    Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria

    2016-01-01

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s -wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p - and s -wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.

  3. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    Science.gov (United States)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  4. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  5. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1995-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is promarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  6. The Software Atom

    CERN Document Server

    Javanainen, Juha

    2016-01-01

    By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

  7. The Software Atom

    Science.gov (United States)

    Javanainen, Juha

    2017-03-01

    By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

  8. Atomicity in Electronic Commerce,

    Science.gov (United States)

    1996-01-01

    tremendous demand for the ability to electronically buy and sell goods over networks. Electronic commerce has inspired a large variety of work... commerce . It then briefly surveys some major types of electronic commerce pointing out flaws in atomicity. We pay special attention to the atomicity...problems of proposals for digital cash. The paper presents two examples of highly atomic electronic commerce systems: NetBill and Cryptographic Postage Indicia.

  9. Atomic homodyne detection of weak atomic transitions.

    Science.gov (United States)

    Gunawardena, Mevan; Elliott, D S

    2007-01-26

    We have developed a two-color, two-pathway coherent control technique to detect and measure weak optical transitions in atoms by coherently beating the transition amplitude for the weak transition with that of a much stronger transition. We demonstrate the technique in atomic cesium, exciting the 6s(2)S(1/2) --> 8s(2)S(1/2) transition via a strong two-photon transition and a weak controllable Stark-induced transition. We discuss the enhancement in the signal-to-noise ratio for this measurement technique over that of direct detection of the weak transition rate, and project future refinements that may further improve its sensitivity and application to the measurement of other weak atomic interactions.

  10. Atom probe crystallography

    National Research Council Canada - National Science Library

    Gault, Baptiste; Moody, Michael P; Cairney, Julie M; Ringer, Simon P

    2012-01-01

    This review addresses new developments in the emerging area of "atom probe crystallography", a materials characterization tool with the unique capacity to reveal both composition and crystallographic...

  11. Dephasing in an atom

    OpenAIRE

    2011-01-01

    When an atom in vacuum is near a surface of a dielectric the energy of a fluctuating electromagnetic field depends on a distance between them resulting, as known, in the force called van der Waals one. Besides this fluctuation phenomenon there is one associated with formation of a mean electric field which is equivalent to an order parameter. In this case atomic electrons are localized within atomic distances close to the atom and the total ground state energy is larger, compared to the bare ...

  12. Synthetic dimensions and spin-orbit coupling with an optical clock transition

    CERN Document Server

    Livi, L F; Diem, M; Franchi, L; Clivati, C; Frittelli, M; Levi, F; Calonico, D; Catani, J; Inguscio, M; Fallani, L

    2016-01-01

    We demonstrate a novel way of synthesizing spin-orbit interactions in ultracold quantum gases, based on a single-photon optical clock transition coupling two long-lived electronic states of two-electron $^{173}$Yb atoms. By mapping the electronic states onto effective sites along a synthetic "electronic" dimension, we have engineered synthetic fermionic ladders with tunable magnetic fluxes. We have detected the spin-orbit coupling with fiber-link-enhanced clock spectroscopy and directly measured the emergence of chiral edge currents, probing them as a function of the magnetic field flux. These results open new directions for the investigation of topological states of matter with ultracold atomic gases.

  13. Semiclassical Calculation of Recurrence Spectra of He Rydberg Atom in Strong External Fields

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; DING Shi-Liang; LIN Sheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory and region-splitting iterative method, we calculated the scaled recurrence spectra of helium atom in parallel electric and magnetic fields. Closed orbits in the corresponding classical system have also been obtained. When we search the closed orbits, in order to remove the Coulomb singularity of the classical Hamiltonian motion equations, we implement the Kustaanheimo-Stiefel transformation, which transforms the system from a three-dimensional to a four-dimensional one. The Fourier transformed spectrum of helium atom has allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The results are compared with those of the hydrogen case, which shows that the core-scattered effects play an important role in the recurrence spectra of the multi-electron Rydberg atom.

  14. The Stark effect in atomic Rydberg states through a quantum defect approach

    Science.gov (United States)

    Menéndez, J. M.; Martín, I.; Velasco, A. M.

    A basis set of quantum defect orbitals (QDOs) has been adopted for the diagonalization of the Hamiltonian matrix of nonhydrogenic atoms in the presence of an external electric field, so that the Stark structure of the Rydberg states has been possible to determine. The presently obtained Stark maps are in excellent agreement with those resulting from theory and experiment, as reported in the literature for a few representative atoms. The adequacy of the Stark quantum defect orbital (SQDO) procedure for accurately dealing with properties related to the Stark effect in atoms is suggested.

  15. SPHERES Mars Orbiting Sample Return External Orbiting Capture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Mars Sample Return (MSR) mission scenario utilizes a small Orbiting Sample (OS) satellite, launched from the surface of Mars, which will rendezvous with an...

  16. Orbital Infarction due to Sickle Cell Disease without Orbital Pain

    Directory of Open Access Journals (Sweden)

    Cameron L. McBride

    2016-01-01

    Full Text Available Sickle cell disease is a hemoglobinopathy that results in paroxysmal arteriolar occlusion and tissue infarction that can manifest in a plurality of tissues. Rarely, these infarcted crises manifest in the bony orbit. Orbital infarction usually presents with acute onset of periorbital tenderness, swelling, erythema, and pain. Soft tissue swelling can result in proptosis and attenuation of extraocular movements. Expedient diagnosis of sickle cell orbital infarction is crucial because this is a potentially sight-threatening entity. Diagnosis can be delayed since the presentation has physical and radiographic findings mimicking various infectious and traumatic processes. We describe a patient who presented with sickle cell orbital crisis without pain. This case highlights the importance of maintaining a high index of suspicion in patients with known sickle cell disease or of African descent born outside the United States in a region where screening for hemoglobinopathy is not routine, even when the presentation is not classic.

  17. [Orbital tumor emergencies in childhood].

    Science.gov (United States)

    Morax, S; Desjardins, L

    2009-05-01

    Emergencies in childhood orbital tumorals are rare. The absolute emergency involves malignant primary orbital tumors, such as rhabdomyosarcoma or secondary malignant tumors (metastatic neuroblastoma, leukemia), involving a vital prognosis requiring prompt diagnosis. Delayed emergencies are usually vascular lesions. Among these lesions, immature orbital hemangioma, with a good prognosis, must be distinguished from orbital adnexal lymphangiomas, which are less frequent but can lead to dramatic cosmetic and functional disorders. In rare cases, they can be responsible for sudden, painful proptosis, due to orbital hemorrhage, with a risk of optic nerve compression, requiring emergency surgical treatment. Neurogenous lesions, either isolated, such as in gliomas, or associated with a systemic disease, such as Recklinghausen neurofibromatosis, threaten the functional prognosis. Diagnosis of pediatric orbital tumors is based on a good clinical examination, precise imaging investigations, and evaluation of the locoregional extension of the tumor. Biopsy is required in emergency situations, when rhabdomyosarcoma is suspected, in order to start the chemotherapy. However, the biopsy can be superfluous, and even useless or dangerous, when clinical and imaging investigations are sufficient to provide a diagnosis of capillary hemangioma, lymphangioma, or metastatic tumor from an abdominal malignancy. Treatment is closely related to the etiopathogenesis of the tumor. The outcomes are vital, functional and cosmetic. They may require orbital surgery (biopsy, tumoral resection, orbital decompression in case of a compressive hemorrhage), systemic corticotherapy (as in immature adnexal hemangioma), radiation, and chemotherapy (rhabdomyosarcoma, secondary malignant tumor). These diseases require a pediatric ophthalmological medical center specializing in orbital surgery, with close collaboration of multiple specialists such as onco-pediatricians and neurosurgeons.

  18. Evanescent Wave Atomic Mirror

    Science.gov (United States)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  19. Ocular complications of orbital venography.

    Science.gov (United States)

    Safer, J N; Guibor, P

    1975-03-01

    Three ocular complications directly related to orbital venography are described, one resulting in permanent loss of vision,. The patient had lymphangioma of the orbit which evidently had bled secondary to increased venous pressure and injection of contrast bolus. Both of the 2 patients with transient visual disturbances had diabetic retinopathy. The common factor is felt to be an imparied vascular bed which cannot meet the stress of increased venous pressure and contrast medium injection. Conditions which predispose to ocular-orbital stasis and/or hemorrhage are discussed.

  20. CODIMENSION 3 BIFURCATIONS OF HOMOCLINIC ORBITS WITH ORBIT FLIPS AND INCLINATION FLIPS

    Institute of Scientific and Technical Information of China (English)

    SHUI SHULIANG; ZHU DEMING

    2004-01-01

    The homoclinic bifurcations in four dimensional vector fields are investigated by setting up a local coordinates near the homoclinic orbit. This homoclinic orbit is nonprincipal in the meanings that its positive semi-orbit takes orbit flip and its unstable foliation takes inclination flip. The existence, nonexistence, uniqueness and coexistence of the 1-homoclinic orbit and the 1-periodic orbit are studied. The existence of the twofold periodic orbit and three-fold periodic orbit are also obtained.

  1. Analytic Evaluation of some 2-, 3- and 4- Electron Atomic Integrals Containing Exponentially Correlated Functions of $r_{ij}$

    CERN Document Server

    Padhy, Bholanath

    2016-01-01

    A simple method is outlined for analytic evaluation of the basic 2-electron atomic integral with integrand containing products of atomic s-type Slater orbitals and exponentially correlated function of the form $r_{ij} exp(-\\lambda_{ij}r_{ij})$, by employing the Fourier representation of $exp(-\\lambda_{ij}r_{ij})/r_{ij}$ without the use of either the spherical harmonic addition theorem or the Feynman technique. This method is applied to obtain closed-form expressions, in a simple manner, for certain other 2-,3- and 4-electron atomic integrals with integrands which are products of exponentially correlated functions and atomic s-type Slater orbitals.

  2. Electron collisions with coherently prepared atomic targets

    Energy Technology Data Exchange (ETDEWEB)

    Trajmar, S.; Kanik, I.; LeClair, L.R.; Khakoo, M.S. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.; Bray, I.; Fursa, D. [Flinders Univ. of South Australia, Adelaide (Australia). Electronics Structure of Materials Centre; Csanak, G. [Los Alamos National Lab., NM (United States)

    1998-02-01

    The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can be expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.

  3. Atomic Scale Plasmonic Switch.

    Science.gov (United States)

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

  4. Greek Atomic Theory.

    Science.gov (United States)

    Roller, Duane H. D.

    1981-01-01

    Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)

  5. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  6. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  7. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  8. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; LIN Sheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic field below ionization threshold. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  9. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; LINSheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic fied below ionization threshoM. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  10. Hard and soft acids and bases: atoms and atomic ions.

    Science.gov (United States)

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  11. The periodic magnetized cyinder tube for atom guidance:quantized motion analysis

    Institute of Scientific and Technical Information of China (English)

    李代军; 周博; 胡正峰; 李师群

    2003-01-01

    We have analysed the transport efficiency of an atomic waveguide constructed from a periodic axially magnetized hollow tube. We took into consideration the quantized motion of the atom inside the magnetic hollow cylinder tube,which is significant for the transportation of cold atoms. We deduced the quantized motion modes of the atomic waves in the tube by the approximation of infinite potential, which is valid for cold atoms and strong magnetization. For the atomic waveguide with weak magnetization, we have calculated the tunnelling effect of the atomic wave. The adiabatic condition for the motion of cold atoms is discussed. A time orbit potential method for solving the "zero magnetic field problem" is proposed.

  12. Coaxial airblast atomizers

    Science.gov (United States)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  13. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  14. Maximally Atomic Languages

    Directory of Open Access Journals (Sweden)

    Janusz Brzozowski

    2014-05-01

    Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

  15. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  16. Light assisted collisions in ultra cold Tm atom

    Science.gov (United States)

    Akimov, Alexey; Cojocaru, Ivan; Pyatchenkov, Sergey; Snigirev, Stepan; Luchnokov, Ilia; Sukachev, Denis; Kalganova, Elena; Sorokin, Vadim

    2016-05-01

    Recently laser cooled rare earth elements attracted considerable attention due to the high orbital and magnetic moments. Such a systems allow low-field Feshabach resonances enabling tunable in wide range interactions. In particular, thulium atom has one hole in 4f shell therefore having orbital moment of 3 in the ground state, magnetic moment of 4 Bohr magnetons in ground state. While magnetic moment of the thulium atom is less than that of Erbium or Dysprosium simpler level structure, possibility to capture thulium atoms and the dipole trap at 532 nm make thulium atom an extremely attractive subject for quantum simulations. Nevertheless collisional properties of thulium atom are not yet explored in details, in particular light assisted collision of thulium atom were not yet investigated. In this contribution, we performed studies of light assisted collisions near in Magneto optical trap operating on narrow 530.7 nm transition. We found, that light assisted inelastic binary collisions losses rate is around β ~10-9cm3cm3s s . Possible mechanism of losses from the trap are discussed

  17. Intelsat solar array coupon atomic oxygen flight experiment

    Science.gov (United States)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1994-05-01

    A Hughes communications satellite (INTELSAT series) belonging to the INTELSAT Organization was marooned in low-Earth orbit (LEO) on March 14, 1990, following failure of the Titan launch vehicle third stage to separate properly. The satellite, INTELSAT 6, was designed for service in geosynchronous orbit and contains several materials that are potentially susceptible to attack by atomic oxygen. Analysis showed that direct exposure of the silver interconnects in the satellite photovoltaic array to atomic oxygen in LEO was the key materials issue. Available data on atomic oxygen degradation of silver are limited and show high variance, so solar array configurations of the INTELSAT 6 type and individual interconnects were tested in ground-based facilities and during STS-41 (Space Shuttle Discovery, October 1990) as part of the ISAC flight experiment. Several materials for which little or no flight data exist were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, and polymeric and inorganic materials were exposed to an oxygen atom fluence of 1.1 x 10(exp 20) atoms cm(exp 2). Many of the samples were selected to support Space Station Freedom design and decision making. This paper provides an overview of the ISAC flight experiment and a brief summary of results. In addition to new data on materials not before flown, ISAC provided data supporting the decision to rescue INTELSAT 6, which was successfully undertaken in May 1992.

  18. [Orbital metastasis in malignant melanoma].

    Science.gov (United States)

    Pedroli, G L; Hamedani, M; Barraco, P; Oubaaz, A; Morax, S

    2001-03-01

    We report the case of a 60-year-old man presenting bilateral progressive proptosis with diplopia, weight loss, tachycardia, nervosity, and stomach pain. These signs seemed at first to favor a diagnosis of Graves'ophthalmopathy. Thyroid tests were negative and the initial orbital CT scan was considered normal. A new radiological investigation 4 months later in our hospital revealed typical hypertrophy of the extraocular muscles compatible with orbital metastasis. The systemic investigations demonstrated a pulmonary tumor, multiple hepatic lesions, and several pigmented nodules of gastric mucosa. The pathology of pulmonary and gastric specimens confirmed the diagnosis of malignant melanoma. The primary lesion remains unknown. The authors discuss the differential diagnoses of orbital metastasis and the radiological characteristics of orbital metastasis in malignant melanoma.

  19. NASA Orbital Debris Baseline Populations

    Science.gov (United States)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  20. Quark spin-orbit correlations

    CERN Document Server

    Lorcé, Cédric

    2014-01-01

    The proton spin puzzle issue focused the attention on the parton spin and orbital angular momentum contributions to the proton spin. However, a complete characterization of the proton spin structure requires also the knowledge of the parton spin-orbit correlation. We showed that this quantity can be expressed in terms of moments of measurable parton distributions. Using the available phenomenological information about the valence quarks, we concluded that this correlation is negative, meaning that the valence quark spin and kinetic orbital angular momentum are, in average, opposite. The quark spin-orbit correlation can also be expressed more intuitively in terms of relativistic phase-space distributions, which can be seen as the mother distributions of the standard generalized and transverse-momentum dependent parton distributions. We present here for the first time some examples of the general multipole decomposition of these phase-space distributions.