WorldWideScience

Sample records for two-center atomic orbital

  1. Numerical evaluation of two-center integrals over Slater type orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, S. A., E-mail: slaykurt@gmail.com [Department of Physics, Natural Sciences Institute, Ondokuz Mayıs University, 55139, Samsun (Turkey); Yükçü, N., E-mail: nyukcu@gmail.com [Department of Energy Systems Engineering, Faculty of Technology, Adıyaman University, 02040, Adıyaman (Turkey)

    2016-03-25

    Slater Type Orbitals (STOs) which one of the types of exponential type orbitals (ETOs) are used usually as basis functions in the multicenter molecular integrals to better understand physical and chemical properties of matter. In this work, we develop algorithms for two-center overlap and two-center two-electron hybrid and Coulomb integrals which are calculated with help of translation method for STOs and some auxiliary functions by V. Magnasco’s group. We use Mathematica programming language to produce algorithms for these calculations. Numerical results for some quantum numbers are presented in the tables. Consequently, we compare our obtained numerical results with the other known literature results and other details of evaluation method are discussed.

  2. Numerical evaluation of two-center integrals over Slater type orbitals

    International Nuclear Information System (INIS)

    Kurt, S. A.; Yükçü, N.

    2016-01-01

    Slater Type Orbitals (STOs) which one of the types of exponential type orbitals (ETOs) are used usually as basis functions in the multicenter molecular integrals to better understand physical and chemical properties of matter. In this work, we develop algorithms for two-center overlap and two-center two-electron hybrid and Coulomb integrals which are calculated with help of translation method for STOs and some auxiliary functions by V. Magnasco’s group. We use Mathematica programming language to produce algorithms for these calculations. Numerical results for some quantum numbers are presented in the tables. Consequently, we compare our obtained numerical results with the other known literature results and other details of evaluation method are discussed.

  3. Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms

    International Nuclear Information System (INIS)

    Juzeliunas, Gediminas; Ruseckas, Julius; Dalibard, Jean

    2010-01-01

    We study the possibility for generating a new type of spin-orbit coupling for the center-of-mass motion of cold atoms, using laser beams that resonantly couple N atomic internal ground states to an extra state. After a general analysis of the scheme, we concentrate on the tetrapod setup (N=4) where the atomic state can be described by a three-component spinor, evolving under the action of a Rashba-Dresselhaus-type spin-orbit coupling for a spin 1 particle. We illustrate a consequence of this coupling by studying the negative refraction of atoms at a potential step and show that the amplitude of the refracted beam is significantly increased in comparison to the known case of spin 1/2 Rashba-Dresselhaus coupling. Finally, we explore a possible implementation of this tetrapod setup, using stimulated Raman couplings between Zeeman sublevels of the ground state of alkali-metal atoms.

  4. Real and Hybrid Atomic Orbitals.

    Science.gov (United States)

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  5. The Closed-Orbit Theory for General Rydberg Atoms in External Fields

    International Nuclear Information System (INIS)

    Carboni, R.

    1997-01-01

    The photoabsorption spectra of hydrogen Rydberg atoms, as well of model Rydberg atoms in pure magnetic or electric fields have been successfully calculated using the semiclassical closed-orbit theory. The theory relates the resonances of the spectra to closed classical orbits of the excited electron. The dynamics of multielectron atoms is more complicated than the hydrogenic one; additionally, when the atoms are in the presence of perpendicular magnetic and electric fields becomes more complex than when they are in pure fields, due to the fact that the Hamiltonian is non-separable in three degrees of freedom, instead of two non-separable degrees of freedom. In this work, I present an extension of the closed-orbit theory to three degrees of freedom, considering arbitrary quantum defects, i.e., general atoms. (Author) [es

  6. Anderson Transition of Cold Atoms with Synthetic Spin-Orbit Coupling in Two-Dimensional Speckle Potentials

    Science.gov (United States)

    Orso, Giuliano

    2017-03-01

    We investigate the metal-insulator transition occurring in two-dimensional (2D) systems of noninteracting atoms in the presence of artificial spin-orbit interactions and a spatially correlated disorder generated by laser speckles. Based on a high order discretization scheme, we calculate the precise position of the mobility edge and verify that the transition belongs to the symplectic universality class. We show that the mobility edge depends strongly on the mixing angle between Rashba and Dresselhaus spin-orbit couplings. For equal couplings a non-power-law divergence is found, signaling the crossing to the orthogonal class, where such a 2D transition is forbidden.

  7. Manipulating localized molecular orbitals by single-atom contacts.

    Science.gov (United States)

    Wang, Weihua; Shi, Xingqiang; Lin, Chensheng; Zhang, Rui Qin; Minot, Christian; Van Hove, Michel A; Hong, Yuning; Tang, Ben Zhong; Lin, Nian

    2010-09-17

    We have fabricated atom-molecule contacts by attachment of single Cu atoms to terpyridine side groups of bis-terpyridine tetra-phenyl ethylene molecules on a Cu(111) surface. By means of scanning tunneling microscopy, spectroscopy, and density functional calculations, we have found that, due to the localization characteristics of molecular orbitals, the Cu-atom contact modifies the state localized at the terpyridine side group which is in contact with the Cu atom but does not affect the states localized at other parts of the molecule. These results illustrate the contact effects at individual orbitals and offer possibilities to manipulate orbital alignments within molecules.

  8. Laplace-transformed atomic orbital-based Møller–Plesset perturbation theory for relativistic two-component Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl [Section of Theoretical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Repisky, Michal, E-mail: michal.repisky@uit.no [CTCC, Department of Chemistry, UIT The Arctic University of Norway, N-9037 Tromø (Norway)

    2016-07-07

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller–Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.

  9. Laplace-transformed atomic orbital-based Møller–Plesset perturbation theory for relativistic two-component Hamiltonians

    International Nuclear Information System (INIS)

    Helmich-Paris, Benjamin; Visscher, Lucas; Repisky, Michal

    2016-01-01

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller–Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.

  10. Tunable spin-orbit coupling for ultracold atoms in two-dimensional optical lattices

    Science.gov (United States)

    Grusdt, Fabian; Li, Tracy; Bloch, Immanuel; Demler, Eugene

    2017-06-01

    Spin-orbit coupling (SOC) is at the heart of many exotic band structures and can give rise to many-body states with topological order. Here we present a general scheme based on a combination of microwave driving and lattice shaking for the realization of two-dimensional SOC with ultracold atoms in systems with inversion symmetry. We show that the strengths of Rashba and Dresselhaus SOC can be independently tuned in a spin-dependent square lattice. More generally, our method can be used to open gaps between different spin states without breaking time-reversal symmetry. We demonstrate that this allows for the realization of topological insulators with nontrivial spin textures closely related to the Kane-Mele model.

  11. Atomic-orbital expansion model for describing ion-atom collisions at intermediate and low energies

    International Nuclear Information System (INIS)

    Lin, C.D.; Fritsch, W.

    1983-01-01

    In the description of inelastic processes in ion-atom collisions at moderate energies, the semiclassical close-coupling method is well established as the standard method. Ever since the pioneering work on H + + H in the early 60's, the standard procedure is to expand the electronic wavefunction in terms of molecular orbitals (MO) or atomic orbitals (AO) for describing collisions at, respectively, low or intermediate velocities. It has been recognized since early days that traveling orbitals are needed in the expansions in order to represent the asymptotic states in the collisions correctly. While the adoption of such traveling orbitals presents no conceptual difficulties for expansions using atomic orbitals, the situation for molecular orbitals is less clear. In recent years, various forms of traveling MO's have been proposed, but conflicting results for several well-studied systems have been reported

  12. QED effects on individual atomic orbital energies

    Science.gov (United States)

    Kozioł, Karol; Aucar, Gustavo A.

    2018-04-01

    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.

  13. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    Science.gov (United States)

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  14. The search For Closed Orbits Of General Rydberg Atoms in External Fields And Their Classification

    International Nuclear Information System (INIS)

    Carboni, R.

    1997-01-01

    A program of high precision that find closed orbits for the classical motion of the electron of general Rydberg atoms in crossed magnetic and electric fields is explained. Investigations of the influence of the ionic core on the electronic trajectories using a phenomenological model potential were done. Additional closed orbits that are not present in hydrogen atoms and that seem to be composed of hydrogenic orbits were found. The stability and formation of orbits are explained. Using the generalized closed-orbit theory, the scaled recurrence spectra for rubidium Rydberg atoms were calculated. The results are in good agreement with reported experiments. Two important features of the expectra can be explained by classical core scattering: The additional non-hydrogenic resonances associated to composite orbits and the vanishing of hydrogenic resonances related to closed or whose trajectories approach the core. (Author) [es

  15. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  16. Efficient evaluation of the Fourier transform over products of Slater-type orbitals on different centers

    International Nuclear Information System (INIS)

    Niehaus, T A; Lopez, R; Rico, J F

    2008-01-01

    Using the shift-operator technique, a compact formula for the Fourier transform of a product of two Slater-type orbitals located on different atomic centers is derived. The result is valid for arbitrary quantum numbers and was found to be numerically stable for a wide range of geometrical parameters and momenta. Details of the implementation are presented together with benchmark data for representative integrals. We also discuss the assets and drawbacks of alternative algorithms available and analyze the numerical efficiency of the new scheme

  17. A first-principles study of structure, orbital interactions and atomic oxygen and OH adsorption on Mo-, Sc- and Y-doped nickel bimetallic clusters

    International Nuclear Information System (INIS)

    Das, Nishith Kumar; Shoji, Tetsuo

    2013-01-01

    Highlights: •Mo-doped nickel clusters are energetically more stable than the Sc and Y-doped clusters (n ⩾ 10). •Mo atom exhibits center at the cluster rather than edge, while Sc and Y atom sit at the edge. •The metallic s, d orbitals are mainly dominated on the stability of nanoclusters. •The oxygen and OH adsorption energy of Mo-doped cluster are higher than those of other nanoclusters. •2p Orbitals are strongly bonds with Mo 4d, and a weakly interacts with Ni 3d, 4s and Mo 5s orbitals. -- Abstract: Density functional theory (DFT) has been used to study the stability, orbitals interactions and oxygen and hydroxyl chemisorption properties of Ni n M (1 ⩽ n ⩽ 12) clusters. A single atom doped-nickel clusters increase the stability, and icosahedral Ni 12 Mo cluster is the most stable structure. Molybdenum atom prefers to exhibit center at the cluster (n ⩾ 10) rather than edge, while Sc and Y atom remain at the edge. The Ni–Mo bond lengths are smaller than the Ni–Sc and Ni–Y. The pDOS results show that the d–d orbitals interactions are mainly dominating on the stability of clusters, while p orbitals have a small effect on the stability. The Mo-doped nanoclusters have the highest oxygen and OH chemisorption energy, and the most favorable adsorption site is on the top Mo site. The larger cluster distortion is found for the Sc- and Y-doped structures compared to other clusters. The oxygen 2p orbitals are strongly hybridizing with the Mo 4d orbitals (n < 9) and a little interaction between oxygen 2p and Ni 3d, 4s and Mo 5s orbitals. The Mo-doped clusters are significantly increased the chemisorption energies that might improve the passive film adherence of nanoalloys

  18. Two-center interference effects in (e, 2e) ionization of H2 and CO2 at large momentum transfer

    Science.gov (United States)

    Yamazaki, Masakazu; Nakajima, Isao; Satoh, Hironori; Watanabe, Noboru; Jones, Darryl; Takahashi, Masahiko

    2015-09-01

    In recent years, there has been considerable interest in understanding quantum mechanical interference effects in molecular ionization. Since this interference appears as a consequence of coherent electron emission from the different molecular centers, it should depend strongly on the nature of the ionized molecular orbital. Such molecular orbital patterns can be investigated by means of binary (e, 2e) spectroscopy, which is a kinematically-complete electron-impact ionization experiment performed under the high-energy Bethe ridge conditions. In this study, two-center interference effects in the (e, 2e) cross sections of H2 and CO2 at large momentum transfer are demonstrated with a high-statistics experiment, in order to elucidate the relationship between molecular orbital patterns and the interference structure. It is shown that the two-center interference is highly sensitive to the phase, spatial pattern, symmetry of constituent atomic orbital, and chemical bonding nature of the molecular orbital. This work was partially supported by Grant-in-Aids for Scientific Research (S) (No. 20225001) and for Young Scientists (B) (No. 21750005) from the Ministry of Education, Culture, Sports, Science and Technology.

  19. Structure of compensating centers in neutron irradiated n-type germanium

    International Nuclear Information System (INIS)

    Erchak, D.P.; Kosobutskij, V.S.; Stel'makh, V.F.

    1989-01-01

    Structural model of one of the main compensating defects of Ge-M1, Ge-M5, Ge-M6 in neutron irradiated (10 18 -10 20 cm -2 ) germanium, strongly alloyed (2x10 18 -3x10 19 cm -3 ) with antimony, phosphorus and arsenic respectively, is suggested. The above mentioned compensating centers are paramagnetic in a positive charge state and represent a vacancy, two nearby germanium atoms of which are replaced with two atoms of corresponding fine donor impurity. It is mainly contributed (63%- for Ge-M5 centers, 56% - for Ge-M6 centers) by orbitals of two germanium atoms neighbouring the vacancy. The angle of the bonds of each of two mentioned germanium atoms with its three neighbours and orientation of maximum electron density of hybride orbital, binding both germanium atoms, is approximately by 5 deg greater the tetrahedral one

  20. Orbital State Manipulation of a Diamond Nitrogen-Vacancy Center Using a Mechanical Resonator

    Science.gov (United States)

    Chen, H. Y.; MacQuarrie, E. R.; Fuchs, G. D.

    2018-04-01

    We study the resonant optical transitions of a single nitrogen-vacancy (NV) center that is coherently dressed by a strong mechanical drive. Using a gigahertz-frequency diamond mechanical resonator that is strain coupled to a NV center's orbital states, we demonstrate coherent Raman sidebands out to the ninth order and orbital-phonon interactions that mix the two excited-state orbital branches. These interactions are spectroscopically revealed through a multiphonon Rabi splitting of the orbital branches which scales as a function of resonator driving amplitude and is successfully reproduced in a quantum model. Finally, we discuss the application of mechanical driving to engineering NV-center orbital states.

  1. Excitation two-center interference and the orbital geometry in laser-induced nonsequential double ionization of diatomic molecules

    International Nuclear Information System (INIS)

    Shaaran, T.; Augstein, B. B.; Figueira de Morisson Faria, C.

    2011-01-01

    We address the influence of the molecular orbital geometry and of the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules for different molecular species, namely N 2 and Li 2 . We focus on the recollision excitation with subsequent tunneling ionization (RESI) mechanism, in which the first electron, upon return, promotes the second electron to an excited state, from where it subsequently tunnels. We assume that both electrons are initially in the highest occupied molecular orbital (HOMO) and that the second electron is excited to the lowest unoccupied molecular orbital (LUMO). We show that the electron-momentum distributions exhibit interference maxima and minima due to the electron emission at spatially separated centers. We provide generalized analytical expressions for such maxima or minima, which take into account s-p mixing and the orbital geometry. The patterns caused by the two-center interference are sharpest for vanishing alignment angle and get washed out as this parameter increases. Apart from that, there exist features due to the geometry of the LUMO, which may be observed for a wide range of alignment angles. Such features manifest themselves as the suppression of probability density in specific momentum regions due to the shape of the LUMO wave function, or as an overall decrease in the RESI yield due to the presence of nodal planes.

  2. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals

    DEFF Research Database (Denmark)

    Ruud, Kenneth; Helgaker, Trygve; Kobayashi, Rika

    1994-01-01

    to corresponding individual gauges for localized orbitals (IGLO) results. The London results show better basis set convergence than IGLO, especially for heavier atoms. It is shown that the choice of active space is crucial for determination of accurate nuclear shielding constants.......Nuclear shielding calculations are presented for multiconfigurational self-consistent field wave functions using London atomic orbitals (gauge invariant atomic orbitals). Calculations of nuclear shieldings for eight molecules (H2O, H2S, CH4, N2, CO, HF, F2, and SO2) are presented and compared...

  3. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    Science.gov (United States)

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  4. A projection-free method for representing plane-wave DFT results in an atom-centered basis

    International Nuclear Information System (INIS)

    Dunnington, Benjamin D.; Schmidt, J. R.

    2015-01-01

    Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strict orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches

  5. Self-consistent coupling of atomic orbitals to a moving charge

    International Nuclear Information System (INIS)

    Da Costa, H.F.M.; Micha, D.A.

    1994-01-01

    The authors describe the time evolution of hydrogenic orbitals perturbed by a moving charge. Starting with the equation for an atom interacting with a charge, the authors use an eikonal representation of the total wave-function, followed by an eikonal approximation, to derive coupled differential equations for the temporal change of the orbitals and the charge's trajectory. The orbitals are represented by functions with complex exponents changing with time, describing electronic density and flux changes. For each orbital, they solve a set of six coupled differential equations; two of them are derived with a time-dependent variational procedure for the real and imaginary parts of the exponents, and the other four are the Hamilton equations of the positions and momenta of the moving charge. The molecular potentials are derived from the exact expressions for the electronic energies. Results of calculations for 1s and 2s orbitals show large variation of the real exponent parts over time, with respect to asymptotic values, and that imaginary parts remain small

  6. Investigation of the intermediate LK molecular orbital radiation in heavy ion-atom collisions

    International Nuclear Information System (INIS)

    Frank, W.; Kaun, K.-H.; Manfrass, P.

    1981-01-01

    The continuum consisting of an intensive low-energy and a high-energy components in heavy-ion atom collision systems with atomic numbers Z 1 , Z 2 > 28 is studied. The aim of the study is to prove that the C1 continuum cannot be caused by ridiative electron capture (REC) being molecular orbital (MO) radiation to the 2ptau level. It is shown that the comparison of the C1 yields obtained in Kr+Nb asymmetric collisions in gas and solid targets is associated with the formation of vacancies in the lower-Z collision partner and can be interpreted as quasimolecular radiation to the 2ptau orbital level. The strong suppression of the C2 component in the gas target experimets indicates that the MO radiation to the 1stau orbit is emitted preferentially in the two-collision process in symmetric and near-symmetric systems with Z 1 , Z 2 [ru

  7. The Chocolate Shop and Atomic Orbitals: A New Atomic Model Created by High School Students to Teach Elementary Students

    Science.gov (United States)

    Liguori, Lucia

    2014-01-01

    Atomic orbital theory is a difficult subject for many high school and beginning undergraduate students, as it includes mathematical concepts not yet covered in the school curriculum. Moreover, it requires certain ability for abstraction and imagination. A new atomic orbital model "the chocolate shop" created "by" students…

  8. A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions

    International Nuclear Information System (INIS)

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; Ruedenberg, Klaus

    2013-01-01

    Through a basis-set-independent web of localizing orbital-transformations, the electronic wave function of a molecule is expressed in terms of a set of orbitals that reveal the atomic structure and the bonding pattern of a molecule. The analysis is based on resolving the valence orbital space in terms of an internal space, which has minimal basis set dimensions, and an external space. In the internal space, oriented quasi-atomic orbitals and split-localized molecular orbitals are determined by new, fast localization methods. The density matrix between the oriented quasi-atomic orbitals as well as the locations of the split-localized orbitals exhibit atomic populations and inter-atomic bonding patterns. A correlation-adapted quasi-atomic basis is determined in the external orbital space. The general formulations are specified in detail for Hartree-Fock wave functions. Applications to specific molecules exemplify the general scheme

  9. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  10. Hydrogen atom in a magnetic field: Ghost orbits, catastrophes, and uniform semiclassical approximations

    International Nuclear Information System (INIS)

    Main, J.; Wunner, G.

    1997-01-01

    Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. copyright 1997 The American Physical Society

  11. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model

    International Nuclear Information System (INIS)

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Wang, Wan-Tsang; Hsu, Yu-Chi; Wu, Chieh-Lung; Gau, Ming-Hong; Chen, Chun-Nan; Ren, Chung-Yuan; Lee, Meng-En

    2012-01-01

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion over k-vector at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  12. Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms

    International Nuclear Information System (INIS)

    Campbell, D. L.; Spielman, I. B.; Juzeliunas, G.

    2011-01-01

    We describe a new class of atom-laser coupling schemes which lead to spin-orbit-coupled Hamiltonians for ultracold neutral atoms. By properly setting the optical phases, a pair of degenerate pseudospin (a linear combination of internal atomic) states emerge as the lowest-energy eigenstates in the spectrum and are thus immune to collisionally induced decay. These schemes use N cyclically coupled ground or metastable internal states. We focus on two situations: a three-level case and a four-level case, where the latter adds a controllable Dresselhaus contribution. We describe an implementation of the four-level scheme for 87 Rb and analyze its sensitivity to typical laboratory noise sources. Last, we argue that the Rashba Hamiltonian applies only in the large intensity limit since any laser coupling scheme will produce terms nonlinear in momentum that decline with intensity.

  13. Photon-Induced Spin-Orbit Coupling in Ultracold Atoms inside Optical Cavity

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2015-05-01

    Full Text Available We consider an atom inside a ring cavity, where a plane-wave cavity field together with an external coherent laser beam induces a two-photon Raman transition between two hyperfine ground states of the atom. This cavity-assisted Raman transition induces effective coupling between atom’s internal degrees of freedom and its center-of-mass motion. In the meantime, atomic dynamics exerts a back-action to cavity photons. We investigate the properties of this system by adopting a mean-field and a full quantum approach, and show that the interplay between the atomic dynamics and the cavity field gives rise to intriguing nonlinear phenomena.

  14. Systematic determination of extended atomic orbital basis sets and application to molecular SCF and MCSCF calculations

    Energy Technology Data Exchange (ETDEWEB)

    Feller, D.F.

    1979-01-01

    The behavior of the two exponential parameters in an even-tempered gaussian basis set is investigated as the set optimally approaches an integral transform representation of the radial portion of atomic and molecular orbitals. This approach permits a highly accurate assessment of the Hartree-Fock limit for atoms and molecules.

  15. Emulating Molecular Orbitals and Electronic Dynamics with Ultracold Atoms

    Directory of Open Access Journals (Sweden)

    Dirk-Sören Lühmann

    2015-08-01

    Full Text Available In recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly correlated phases and complex phenomena in solid-state systems. Here, we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated π electron system with special regard to localization and spin order. The dynamical time scales of ultracold atom simulators are on the order of milliseconds, which allows for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated π system of the artificial benzene molecule.

  16. Laplace-transformed multi-reference second-order perturbation theories in the atomic and active molecular orbital basis

    NARCIS (Netherlands)

    Helmich-Paris, B.; Knecht, Stefan

    2017-01-01

    In the present article, we show how to formulate the partially contracted n-electron valence second-order perturbation theory (NEVPT2) energies in the atomic and active molecular orbital basis by employing the Laplace transformation of orbital-energy denominators (OEDs). As atomic-orbital (AO) basis

  17. Golden mean energy equals highest atomic electron orbital energy

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Leonard J. [Interdisciplinary Research Club, P.O. Box 371, Monroeville, PA 15146 (United States)], E-mail: LJMalinowski@gmail.com

    2009-12-15

    The golden mean numerical value {phi} = 0.5({radical}5 - 1) has been given a physical manifestation through E infinity theory. This short paper relates the golden mean energy 0.618034 MeV to atomic electron orbitals.

  18. Golden mean energy equals highest atomic electron orbital energy

    International Nuclear Information System (INIS)

    Malinowski, Leonard J.

    2009-01-01

    The golden mean numerical value φ = 0.5(√5 - 1) has been given a physical manifestation through E infinity theory. This short paper relates the golden mean energy 0.618034 MeV to atomic electron orbitals.

  19. Effective convergence to complete orbital bases and to the atomic Hartree--Fock limit through systematic sequences of Gaussian primitives

    International Nuclear Information System (INIS)

    Schmidt, M.W.; Ruedenberg, K.

    1979-01-01

    Optimal starting points for expanding molecular orbitals in terms of atomic orbitals are the self-consistent-field orbitals of the free atoms and accurate information about the latter is essential for the construction of effective AO bases for molecular calculations. For expansions of atomic SCF orbitals in terms of Gaussian primitives, which are of particular interest for applications in polyatomic quantum chemistry, previous information has been limited in accuracy. In the present investigation a simple procedure is given for finding expansions of atomic self-consistent-field orbitals in terms of Gaussian primitives to arbitrarily high accuracy. The method furthermore opens the first avenue so far for approaching complete basis sets through systematic sequences of atomic orbitals

  20. Convergence of configuration-interaction single-center calculations of positron-atom interactions

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M. W. J.

    2006-01-01

    The configuration interaction (CI) method using orbitals centered on the nucleus has recently been applied to calculate the interactions of positrons interacting with atoms. Computational investigations of the convergence properties of binding energy, phase shift, and annihilation rate with respect to the maximum angular momentum of the orbital basis for the e + Cu and PsH bound states, and the e + -H scattering system were completed. The annihilation rates converge very slowly with angular momentum, and moreover the convergence with radial basis dimension appears to be slower for high angular momentum. A number of methods of completing the partial wave sum are compared; an approach based on a ΔX J =a(J+(1/2)) -n +b(J+(1/2)) -(n+1) form [with n=4 for phase shift (or energy) and n=2 for the annihilation rate] seems to be preferred on considerations of utility and underlying physical justification

  1. Polarized atomic orbitals for linear scaling methods

    Science.gov (United States)

    Berghold, Gerd; Parrinello, Michele; Hutter, Jürg

    2002-02-01

    We present a modified version of the polarized atomic orbital (PAO) method [M. S. Lee and M. Head-Gordon, J. Chem. Phys. 107, 9085 (1997)] to construct minimal basis sets optimized in the molecular environment. The minimal basis set derives its flexibility from the fact that it is formed as a linear combination of a larger set of atomic orbitals. This approach significantly reduces the number of independent variables to be determined during a calculation, while retaining most of the essential chemistry resulting from the admixture of higher angular momentum functions. Furthermore, we combine the PAO method with linear scaling algorithms. We use the Chebyshev polynomial expansion method, the conjugate gradient density matrix search, and the canonical purification of the density matrix. The combined scheme overcomes one of the major drawbacks of standard approaches for large nonorthogonal basis sets, namely numerical instabilities resulting from ill-conditioned overlap matrices. We find that the condition number of the PAO overlap matrix is independent from the condition number of the underlying extended basis set, and consequently no numerical instabilities are encountered. Various applications are shown to confirm this conclusion and to compare the performance of the PAO method with extended basis-set calculations.

  2. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    Science.gov (United States)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  3. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    Science.gov (United States)

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

  4. Low-Thrust Orbital Transfers in the Two-Body Problem

    Directory of Open Access Journals (Sweden)

    A. A. Sukhanov

    2012-01-01

    Full Text Available Low-thrust transfers between given orbits within the two-body problem are considered; the thrust is assumed power limited. A simple method for obtaining the transfer trajectories based on the linearization of the motion near reference orbits is suggested. Required calculation accuracy can be reached by means of use of a proper number of the reference orbits. The method may be used in the case of a large number of the orbits around the attracting center; no averaging is necessary in this case. The suggested method also is applicable to the cases of partly given final orbit and if there are constraints on the thrust direction. The method gives an optimal solution to the linearized problem which is not optimal for the original nonlinear problem; the difference between the optimal solutions to the original and linearized problems is estimated using a numerical example. Also examples illustrating the method capacities are given.

  5. DC slice ion imaging study of atomic orbital orientation and alignment in photodissociation

    Science.gov (United States)

    Lee, Suk Kyoung

    A complete study of atomic photofragment polarization has been achieved by using DC slice imaging, a recently developed approach directly providing the central slice of the full 3D product distribution without any mathematical transformation. In this dissertation, the quantum mechanical treatment adapted for the sliced images has been derived to extract the angular momentum polarization anisotropy parameters for any recoil speeds. The important photodissociation dynamics of small polyatomic molecules has been presented based on the thorough interpretation of the observed orientation and alignment. The first demonstration of DC slice imaging of orbital polarization was a study of the 193 nm photodissociation of ethylene sulfide, followed by detailed investigation in ozone and OCS. In ozone, the speed-dependent orientation was measured for O(1D2) atom produced from photodissociation in the 248--285 nm region. The results show negligible orbital orientation following dissociation by circularly polarized light but strong recoil speed-dependent orientation following photolysis by linearly polarized light at all wavelengths studied. The origin of this polarization is ascribed to nonadiabatic transitions at avoided crossings and at long range. The atomic orbital alignment and orientation, including the higher order moments (K = 3, 4), has been carried out for the photodissociation of OCS at 193 nm. The observed speed-dependent beta and polarization parameters of S(1D2) atom support the interpretation that there are two main dissociation processes: a simultaneous two-surface excitation and the initial single-surface excitation followed by the nonadiabatic crossing to the ground state. The angle- and speed-dependent density matrix can be constructed containing the higher order contributions for circularly-polarized dissociation light. It was shown in one case that the higher order contributions should not be overlooked for an accurate picture of the dissociation dynamics in

  6. Calculation of the electric potential around two identical atoms or ions

    International Nuclear Information System (INIS)

    Salzmann, D.

    1994-01-01

    Problems of diatomic molecules and atom-atom collisions, in which two identical atoms take part, or nearest-neighbor interactions in hot plasmas require the computations of the electric potential and the electron charge distribution around such a two-centered object. The electric potential around two such identical atoms or ions fulfills special symmetry conditions. These symmetries include a cylindrical symmetry around the line connecting the centers of the two atoms and a reflection symmetry around the plane perpendicular to this line halfway between the two atoms. When the two atoms are far apart, the asymptotic behavior of the charge-state distribution and the potential are those of two separated isolated atoms each of which can be expanded into multipole components around its nucleus. We define a set of new functions T mk (y,y n ) Eq. (2.25), which connect the various multipole components of the electric potential to those of the electron charge distribution in such a two-identical-atom problem, and which take into account all the above symmetry conditions. The great advantage of these transformation functions is the fact that by accounting for the above symmetry conditions, the three-dimensional integration required for the computation of the local electric microfield directly from the Poisson equation is practically reduced to a one-dimensional one. It is shown that the use of these functions greatly reduces the complexity and computation times of problems in which two identical atoms are involved, particularly for high-Z atoms. Explicit exact formulas are given for the computation of the T mk functions. An example is given which illustrates the use of these functions in first-order perturbation theory. For this special class of problems the procedure presented here results in a closed recursive equation, in which the interatomic distance is the only free parameter

  7. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)

    Science.gov (United States)

    Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva

    2011-07-01

    We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.

  8. One- and two-center ETF-integrals of first order in relativistic calculation of NMR parameters

    Science.gov (United States)

    Slevinsky, R. M.; Temga, T.; Mouattamid, M.; Safouhi, H.

    2010-06-01

    The present work focuses on the analytical and numerical developments of first-order integrals involved in the relativistic calculation of the shielding tensor using exponential-type functions as a basis set of atomic orbitals. For the analytical development, we use the Fourier integral transformation and practical properties of spherical harmonics and the Rayleigh expansion of the plane wavefunctions. The Fourier transforms of the operators were derived in previous work and they are used for analytical development. In both the one- and two-center integrals, Cauchy's residue theorem is used in the final developments of the analytical expressions, which are shown to be accurate to machine precision.

  9. One- and two-center ETF-integrals of first order in relativistic calculation of NMR parameters

    Energy Technology Data Exchange (ETDEWEB)

    Slevinsky, R M; Temga, T; Mouattamid, M; Safouhi, H, E-mail: hassan.safouhi@ualberta.c [Mathematical Section, Campus Saint-Jean, University of Alberta, 8406, 91 Street, Edmonton, Alberta T6C 4G9 (Canada)

    2010-06-04

    The present work focuses on the analytical and numerical developments of first-order integrals involved in the relativistic calculation of the shielding tensor using exponential-type functions as a basis set of atomic orbitals. For the analytical development, we use the Fourier integral transformation and practical properties of spherical harmonics and the Rayleigh expansion of the plane wavefunctions. The Fourier transforms of the operators were derived in previous work and they are used for analytical development. In both the one- and two-center integrals, Cauchy's residue theorem is used in the final developments of the analytical expressions, which are shown to be accurate to machine precision.

  10. Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective

    Science.gov (United States)

    Zhao, Xin; Geskin, Victor; Stadler, Robert

    2017-03-01

    Destructive quantum interference (DQI) in single molecule electronics is a purely quantum mechanical effect and is entirely defined by the inherent properties of the molecule in the junction such as its structure and symmetry. This definition of DQI by molecular properties alone suggests its relation to other more general concepts in chemistry as well as the possibility of deriving simple models for its understanding and molecular device design. Recently, two such models have gained a wide spread attention, where one was a graphical scheme based on visually inspecting the connectivity of the carbon sites in conjugated π systems in an atomic orbital (AO) basis and the other one puts the emphasis on the amplitudes and signs of the frontier molecular orbitals (MOs). There have been discussions on the range of applicability for these schemes, but ultimately conclusions from topological molecular Hamiltonians should not depend on whether they are drawn from an AO or a MO representation, as long as all the orbitals are taken into account. In this article, we clarify the relation between both models in terms of the zeroth order Green's function and compare their predictions for a variety of systems. From this comparison, we conclude that for a correct description of DQI from a MO perspective, it is necessary to include the contributions from all MOs rather than just those from the frontier orbitals. The cases where DQI effects can be successfully predicted within a frontier orbital approximation we show them to be limited to alternant even-membered hydrocarbons, as a direct consequence of the Coulson-Rushbrooke pairing theorem in quantum chemistry.

  11. Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber

    Science.gov (United States)

    Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2017-10-01

    Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.

  12. The ORNL Controlled Fusion Atomic Data Center

    International Nuclear Information System (INIS)

    Schultz, D.R.; Krstic, P.S.; Ownby, F.M.; Meyer, F.W.; Havener, C.C.; Bannister, M.E.; Liu, W.; Jeffery, D.J.; Stancil, P.C.

    1997-01-01

    The principal mission of the Controlled Fusion Atomic Data Center is the collection evaluation, and dissemination of atomic collision data relevant to fusion energy development. With the advent of the widespread use of the World Wide Web, the data center's resources are being placed on-line to facilitate their use by end-users (cf. http://www-cfadc.phy.ornl.gov/). As this development continues, initially disparate, individually compiled resources will be transformed into integrated tools for retrieving recommended data, or displaying and manipulating the information available. The data center's present capabilities, recent data production/evaluation efforts, and goals for future development are highlighted here

  13. Single-stage-to-orbit versus two-stage-two-orbit: A cost perspective

    Science.gov (United States)

    Hamaker, Joseph W.

    1996-03-01

    This paper considers the possible life-cycle costs of single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) reusable launch vehicles (RLV's). The analysis parametrically addresses the issue such that the preferred economic choice comes down to the relative complexity of the TSTO compared to the SSTO. The analysis defines the boundary complexity conditions at which the two configurations have equal life-cycle costs, and finally, makes a case for the economic preference of SSTO over TSTO.

  14. QSPR Calculation of Normal Boiling Points of Organic Molecules Based on the Use of Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2004-12-01

    Full Text Available We report the results of a calculation of the normal boiling points of a representative set of 200 organic molecules through the application of QSPR theory. For this purpose we have used a particular set of flexible molecular descriptors, the so called Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals. Although in general the results show suitable behavior to predict this physical chemistry property, the existence of some deviant behaviors points to a need to complement this index with some other sort of molecular descriptors. Some possible extensions of this study are discussed.

  15. Spin-orbit coupling in ultracold Fermi gases of 173Yb atoms

    Science.gov (United States)

    Song, Bo; He, Chengdong; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Cai, Geyue; Amanov, Dovran; Zhang, Shanchao; Jo, Gyu-Boong

    2017-04-01

    Synthetic spin-orbit coupling (SOC) in cold atoms opens an intriguing new way to probe nontrivial topological orders beyond natural conditions. Here, we report the realization of the SOC physics both in a bulk system and in an optical lattice. First, we demonstrate two hallmarks induced from SOC in a bulk system, spin dephasing in the Rabi oscillation and asymmetric atomic distribution in the momentum space respectively. Then we describe the observation of non-trivial spin textures and the determination of the topological phase transition in a spin-dependent optical lattice dressed by the periodic Raman field. Furthermore, we discuss the quench dynamics between topological and trivial states by suddenly changing the band topology. Our work paves a new way to study non-equilibrium topological states in a controlled manner. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants).

  16. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.

    Science.gov (United States)

    Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal

    2018-05-10

    The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1 H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d 2 -5d 8 and 6p 4 HA hydrides and deshielded in 4f 0 , 5d 0 , 6s 0 , and 6p 0 HA hydrides. This general and intuitive concept explains periodic trends in the 1 H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide

  17. Improved orbits of two periodic comets: Tsuchinshan 1 and Tsuchinshan 2

    International Nuclear Information System (INIS)

    Szutowicz, S.

    1986-01-01

    The observations made during four apparitions of two comets were collected and the orbits of the comets were improved; 86 observations of Comet Tsuchinshan 1 and 50 observations of Comet Tsuchinshan 2 made in the period 1965-1985 were used. The orbit of Comet Tsuchinshan 1 was improved taking into account nongravitational effects in its motion as well as a displacement of the photometric center from the center of mass. The following values of nongravitational parameters and of observational parameter D were obtained: A 1 = 0.75953 x 10 -8 , A 2 0.00375 x 10 -8 , D = 0.34698 x 10 -3 . To link all observations of Comet Tsuchinshan 2 by one system of elements it was sufficient to add observational effects as a displacement of the photometric center from the center of mass. The following value of parameter D was obtained: D = 1.00200 x 10 -3 . The equations of motion of both comets were integrated backwards and forwards till 1992. Ephemerides for their next returns were computed. 6 refs., 5 tabs. (author)

  18. Orbital alignment effects in near-resonant Rydberg atoms-rare gas collisions

    International Nuclear Information System (INIS)

    Isaacs, W.A.; Morrison, M.A.

    1993-01-01

    Recent experimental and theoretical studies of near-resonant energy transfer collisions involving rare-gas atoms and alkali or alkaline earth atoms which have been initially excited to an aligned state via one or more linearly polarized rasters have yielded a wealth of insight into orbital alignment and related effects. We have extended this inquiry to initially aligned Rydberg states, examining state-to-state and alignment-selected cross sections using quantum collision theory augmented by approximations appropriate to the special characteristics of the Rydberg state (e.g., the quasi-free-electron model and the impulse approximation)

  19. Structural Analysis Peer Review for the Static Display of the Orbiter Atlantis at the Kennedy Space Center Visitors Center

    Science.gov (United States)

    Minute, Stephen A.

    2013-01-01

    Mr. Christopher Miller with the Kennedy Space Center (KSC) NASA Safety & Mission Assurance (S&MA) office requested the NASA Engineering and Safety Center's (NESC) technical support on March 15, 2012, to review and make recommendations on the structural analysis being performed for the Orbiter Atlantis static display at the KSC Visitor Center. The principal focus of the assessment was to review the engineering firm's structural analysis for lifting and aligning the orbiter and its static display configuration

  20. LETTER TO THE EDITOR: Quantum manifestations of closed orbits in the photoexcitation scaled spectrum of the hydrogen atom in crossed fields

    Science.gov (United States)

    Rao, Jianguo; Delande, D.; Taylor, K. T.

    2001-06-01

    The scaled photoexcitation spectrum of the hydrogen atom in crossed electric and magnetic fields has been obtained by means of accurate quantum mechanical calculation using a new algorithm. Closed orbits in the corresponding classical system have also been obtained, using a new, efficient and practical searching procedure. Two new classes of closed orbit have been identified. Fourier transforming each photoexcitation quantum spectrum to yield a plot against scaled action has allowed direct comparison between peaks in such plots and the scaled action values of closed orbits. Excellent agreement has been found with all peaks assigned.

  1. Photoionization cross-section for atomic orbitals with random and fixed spatial orientation

    International Nuclear Information System (INIS)

    Goldberg, S.M.; Fadley, C.S.; Kono, S.

    1981-01-01

    Atomic photoionization subshell cross-sections and asymmetry parameters necessary for determining the differential cross-sections of randomly-oriented atoms have been calculated within the one-electron, central-potential model and the dipole approximation for all subshells of C, O, Al, Si, S, Ni, Cu, Ga, Ge, As, Se, In, Sb, Cs, Ba, Ce, Ta, W, Pt, Au, and Pb for a photon energy range from 20 to 1500 eV, and the relevant Cooper minima located to within 10 eV. These values are tabulated for general use, together with the associated radial matrix elements and phase shifts. Differential photoionization cross-sections for fixed-orientation s-, p- and d-orbitals have also been derived within the same model for a completely general experimental geometry, and closed-form expressions depending on radial matrix elements and phase shifts are given. For the special geometry of a polarized excitation source with polarization parallel to the electron emission direction, it is further shown that such oriented-atom cross-sections are exactly proportional to the probability distribution of the initial orbital, a result equivalent to that derived by using a plane-wave final-state approximation. However, detailed numerical calculations of cross-sections for oriented Cu 3d and O 2p orbitals in various general geometries and at various energies exhibit significant differences in comparison to plane-wave cross-sections. By contrast, certain prior angular-resolved X-ray photoemission studies of single-crystal valence bands are found to have been carried out in an experimental geometry that fortuitously gave cross-sections close to the plane-wave predictions. (orig.)

  2. Atomic physics center in 1972. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, D

    1973-12-31

    The activities of the Toulouse Atomic Physics Center in 1972 are presented. Each research group of the atomic physics section is dealt with separately: atomic collisions, afterglow in gases, dc discharges in medium and high pressure gases, electric arcs, the physics of dielectrics, transport of radiation in matter, stimulated electronic emission, and pn semiconductor junctions. Because of its size, the aerosol and atmospheric exchanges section was not divided into different research groups; the work carried out by this section is presented as a single overall account. (auth)

  3. A model for the interaction between F centers and H atoms in ionic crystals

    International Nuclear Information System (INIS)

    Dumke, V.R.; Souza, M. de

    1975-01-01

    The interaction between an F center and neutral hydrogen atoms, the most simple paramagnetic defects in ionic crystals, is described in terms of a perturbation theory of two square potential wells. The good agreement with experimental data indicates that lattice distortion due to the presence of the hydrogen atoms is negligible [pt

  4. Quantification of entanglement entropies for doubly excited resonance states in two-electron atomic systems

    International Nuclear Information System (INIS)

    Ho, Yew Kam; Lin, Chien-Hao

    2015-01-01

    In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)

  5. Cu 4s → 4p atomic like excitations in the Ne matrix.

    Science.gov (United States)

    Hatano, Yasuyo; Tatewaki, Hiroshi; Yamamoto, Shigeyoshi

    2013-06-07

    The lowest three or four excited states (the triplet or quartet states) of the Cu atom in a neon (Ne) matrix have been studied experimentally, and have been presumed to have the electronic configuration of Cu 4p(1). The origins of the triplet and the quartet are not yet fully clear, although many models have been proposed. It has been argued, for example, that the existence of different trapping sites would give rise to two partly overlapping triplets, leading to spectra having three or four lines or more. Below, the electronic structures of the ground state and lowest excited states of the Cu atom in the neon matrix are clarified by means of ab initio molecular orbital calculations, using the cluster model. It was found that a rather large vacancy (hollow) with residual Ne atoms is vital for explaining the observed spectra having three or more lines; the Cu atom occupies the center of the substitutional site of a face-centered cubic (fcc)-like cluster comprising 66 Ne atoms, in which the first shell composed of 12 Ne atoms is empty. The presence of the residual Ne atoms in the first shell gives rise to more than three excited states, explaining the experimental spectra. Electron-electron interaction (including the crystal field) and spin-orbit interaction are both important in explaining the experimental spectra.

  6. Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms

    International Nuclear Information System (INIS)

    Liu Tang-Kun; Zhang Kang-Long; Tao Yu; Shan Chuan-Jia; Liu Ji-Bing

    2016-01-01

    The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. (paper)

  7. Theory of the time orbiting potential (TOP) quadrupole magnetic trap for cold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Minogin, V.G.; Richmond, J.A.; Opat, G.I.

    1997-12-31

    An analytical theory of the time orbiting potential (TOP) quadrupole magnetic trap for cold atoms is developed. It is shown that the rotating magnetic filed used to create the time-average harmonic potential is responsible for the formation of quasi-energy states of an atom in the trap. It is found that the motion of an atom near the origin of the trap can be represented as consisting of slow motion in the effective potential and fast oscillations with small amplitude. Dipole, quadrupole and higher order atomic transitions between quasi-energy states are shown to be responsible for an additional effective potential for slow atomic motion which is proportional to the fourth power of the atomic co-ordinate. Eigenstates and eigenfunctions are used to calculate the co-ordinate distribution for a single atom. It is concluded that at low temperature the quantum statistical co-ordinate distribution for a single atom exhibits a narrow central peak due to the ground state population, together with relatively broad wings due to the excited state population. (authors). 20 refs., 1 tab., 6 figs.

  8. The Analytical Evaluation Of Three-Center Magnetic Multipole Moment Integrals By Using Slater Type Orbitals

    International Nuclear Information System (INIS)

    Oztekin, E.

    2010-01-01

    In this study, magnetic multipole moment integrals are calculated by using Slater type orbitals (STOs), Fourier transform and translation formulas. Firstly, multipole moment operators which appear in the three-center magnetic multipole moment integrals are translated to b-center from 0-center. So, three-center magnetic multipole moment integrals have been reduced to the two-center. Then, the obtained analytical expressions have been written in terms of overlap integrals. When the magnetic multipole moment integrals calculated, matrix representations for x-, y- and z-components of multipole moments was composed and every component was separately calculated to analytically. Consequently, magnetic multipole moment integrals are also given in terms of the same and different screening parameters.

  9. On the exchange of orbital angular momentum between twisted photons and atomic electrons

    International Nuclear Information System (INIS)

    Davis, Basil S; Kaplan, L; McGuire, J H

    2013-01-01

    We obtain an expression for the matrix element for scattering of a twisted (Laguerre–Gaussian profile) photon from a hydrogen atom. We consider photons incoming with an orbital angular momentum (OAM) of ℓħ, carried by a factor of e iℓϕ not present in a plane-wave or pure Gaussian profile beam. The nature of the transfer of +2ℓ units of OAM from the photon to the azimuthal atomic quantum number of the atom is investigated. We obtain simple formulas for these OAM flip transitions for elastic forward scattering of twisted photons when the photon wavelength λ is large compared with the atomic target size a, and small compared with the Rayleigh range z R , which characterizes the collimation length of the twisted photon beam. (paper)

  10. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    uniformly thick sheet of semitransparent polymer such as Kapton H polyimide, then as atomic oxygen erodes the polymer, the short-circuit current from the photodiode will increase in an exponential manner with fluence. This nonlinear response with fluence results in a lack of sensitivity for measuring low atomic oxygen fluences. However, if one uses a variable-thickness polymer or carbon sample, which is configured as shown in the preceding figure, then a linear response can be achieved for opaque materials using a parabolic well for a circular geometry detector or a V-shaped well for a rectangular-geometry detector. Variable-thickness samples can be fabricated using many thin polymer layers. For semitransparent polymers such as Kapton H polyimide, there is an initial short-circuit current that is greater than zero. This current has a slightly nonlinear dependence on atomic oxygen fluence in comparison to opaque materials such as black Kapton as shown in the graph. For this graph figure, the total thickness of Kapton H was assumed to be 0.03 cm. The photodiode short-circuit current shown in the graph was generated on the basis of preliminary measurements-a total reflectance rho of 0.0424 and an optical absorption coefficient a of 146.5 cm(sup -1). In addition to obtaining on-orbit data, the advantage of this active erosion and erosion yield measurement technique is its simplicity and reliance upon well-characterized fluence witness materials as well as a nearly linear photodiode short-circuit current dependence upon atomic oxygen fluence. The optical technique is useful for measuring either atomic oxygen fluence or erosion, depending on the information desired. To measure the atomic oxygen erosion yield of a test material, one would need to have two photodiode sensors, one for the test material and one that uses a known erosion yield material (such as Kapton) to measure the atomic oxygen fluence.

  11. Atom-field interaction in the single-quantum limit in a two dimensional travelling-wave cavity

    International Nuclear Information System (INIS)

    Youn, Sun Hyun; Chough, Young Tak; An, Kyung Won

    2003-01-01

    We analyze the interaction of an atom with two dimensional travelling-wave cavity modes in the strong coupling region, with the quantized atomic center of mass motion taken into account. Analytic and numerical calculation shows that the atom in two independent pairs of travelling wave modes can be made to interact only with a particular travelling mode by matching the initial momentum and the detuning of the cavities. We also numerically investigate the atomic momentum deflection in the cavities

  12. Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chenchen; Martínez, Todd J. [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-07

    We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N{sup 2.6} for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 are less than 0.5 kcal/mol for all systems tested (up to 162 atoms).

  13. Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity.

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J

    2016-05-07

    We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N(2.6) for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 are less than 0.5 kcal/mol for all systems tested (up to 162 atoms).

  14. Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY

    Science.gov (United States)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2015-03-01

    Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.

  15. S2 like Star Orbits near the Galactic Center in Rn and Yukawa Gravity

    Science.gov (United States)

    Borka, Dusko; Jovanović, Predrag; Jovanović Vesna Borka; Zakharov, Alexander F.

    2015-01-01

    In this chapter we investigate the possibility to provide theoretical explanation for the observed deviations of S2 star orbit around the Galactic Center using gravitational potentials derived from extended gravity models, but in absence of dark matter. Extended Theories of Gravity are alternative theories of gravitational interaction developed from the exact starting points investigated first by Einstein and Hilbert and aimed from one side to extend the positive results of General Relativity and, on the other hand, to cure its shortcomings. One of the aims of these theories is to explain galactic and extragalactic dynamics without introduction of dark matter. They are based on straightforward generalizations of the Einstein theory where the gravitational action (the Hilbert-Einstein action) is assumed to be linear in the Ricci curvature scalar R. The f(R) gravity is a type of modified gravity which generalizes Einstein's General Relativity, i.e. the simplest case is just the General Relativity. It is actually a family of models, each one defined by a different function of the Ricci scalar. Here, we consider Rn (power-law fourth-order theories of gravity) and Yukawa-like modified gravities in the weak field limit and discuss the constrains on these theories. For that purpose we simulate the orbit of S2 star around the Galactic Center in Rn and Yukawa-like gravity potentials and compare it with New Technology Telescope/Very Large Telescope (NTT/VLT) as well as by Keck telescope observations. Our simulations result in strong constraints on the range of gravity interaction and showed that both Rn and Yukawa gravity could satisfactorily explain the observed orbits of S2 star. However, we concluded that parameters of Rn and Yukawa gravity theories must be very close to those corresponding to the Newtonian limit of the theory. Besides, in contrast to Newtonian gravity, these two modified theories induce orbital precession, even in the case of point-like central mass. The

  16. Testing General Relativity with Stellar Orbits around the Supermassive Black Hole in Our Galactic Center.

    Science.gov (United States)

    Hees, A; Do, T; Ghez, A M; Martinez, G D; Naoz, S; Becklin, E E; Boehle, A; Chappell, S; Chu, D; Dehghanfar, A; Kosmo, K; Lu, J R; Matthews, K; Morris, M R; Sakai, S; Schödel, R; Witzel, G

    2017-05-26

    We demonstrate that short-period stars orbiting around the supermassive black hole in our Galactic center can successfully be used to probe the gravitational theory in a strong regime. We use 19 years of observations of the two best measured short-period stars orbiting our Galactic center to constrain a hypothetical fifth force that arises in various scenarios motivated by the development of a unification theory or in some models of dark matter and dark energy. No deviation from general relativity is reported and the fifth force strength is restricted to an upper 95% confidence limit of |α|<0.016 at a length scale of λ=150 astronomical units. We also derive a 95% confidence upper limit on a linear drift of the argument of periastron of the short-period star S0-2 of |ω[over ˙]_{S0-2}|<1.6×10^{-3}  rad/yr, which can be used to constrain various gravitational and astrophysical theories. This analysis provides the first fully self-consistent test of the gravitational theory using orbital dynamic in a strong gravitational regime, that of a supermassive black hole. A sensitivity analysis for future measurements is also presented.

  17. Comparative molecular-orbital and atomic-orbital study of electron transfer and excitation in He++Na(3s) collisions at energies of 0.05 to 20 keV/amu

    International Nuclear Information System (INIS)

    Fritsch, W.; Kimura, M.; Lane, N.F.

    1990-01-01

    Electron transfer and excitation in 0.05- to 20-keV/amu He + +Na(3s) collisions is studied theoretically within the close-coupling method with two-electron molecular- and atomic-orbital expansion basis sets. Results agree with the trend of other information on this system. Remaining discrepancies that are larger than those in similar contemporary studies of one-electron systems are discussed with reference to the convergence of this two-electron study. Results for the integral alignment parameter A 20 are also presented as a guideline for future experimental study

  18. Calculation of two-center one-electron molecular integrals with STOs

    International Nuclear Information System (INIS)

    Rico, J.F.; Lopez, R.; Paniagua, M.; Ramirez, G.

    1991-01-01

    A program for the calculation of two-center one-electron integrals (overlap, nuclear attraction and kinetic energy) between real Slater-type orbitals (STOs) is reported. The integrals are obtained by recursion over simple auxiliary matrices, whose elements are calculated in terms of further auxiliary functions evaluated in a quick and accurate way. (orig.)

  19. Orbital and total atomic momentum expectation values with Roothaan-Hartree-Fock wave functions

    International Nuclear Information System (INIS)

    De La Vega, J.M.G.; Miguel, B.

    1993-01-01

    Orbital and total momentum expectation values are computed using the Roothaan-Hartree-Fock wave functions of Clementi and Roetti. These values are calculated analytically and may be used to study the quality of basis sets. Tabulations for ground and excited states of atoms from Z = 2 to Z = 54 are presented. 23 refs., 1 tab

  20. Stereo photograph of atomic arrangement by circularly-polarized-light two-dimensional photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Daimon, Hiroshi

    2003-01-01

    A stereo photograph of atomic arrangement was obtained for the first time. The stereo photograph was displayed directly on the screen of display-type spherical-mirror analyzer without any computer-aided conversion process. This stereo photography was realized taking advantage of the phenomenon of circular dichroism in photoelectron angular distribution due to the reversal of orbital angular momentum of photoelectrons. The azimuthal shifts of forward focusing peaks in a photoelectron angular distribution pattern taken with left and right helicity light in a special arrangement are the same as the parallaxes in a stereo view of atoms. Hence a stereoscopic recognition of three-dimensional atomic arrangement is possible, when the left eye and the right eye respectively view the two images obtained by left and right helicity light simultaneously. (author)

  1. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Blais, N.C.

    1988-01-01

    A high intensity (10 19 O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 22 O-atoms/cm 2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO 2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O 2 mixtures. Visible and infrared photon flux levels of 1 watt/cm 2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H 2 O, NO, CO 2 ). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  2. Bose-Einstein condensate in an optical lattice with Raman-assisted two-dimensional spin-orbit coupling

    Science.gov (United States)

    Pan, Jian-Song; Zhang, Wei; Yi, Wei; Guo, Guang-Can

    2016-10-01

    In a recent experiment (Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji, Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, arXiv:1511.08170 [cond-mat.quant-gas]), a Raman-assisted two-dimensional spin-orbit coupling has been realized for a Bose-Einstein condensate in an optical lattice potential. In light of this exciting progress, we study in detail key properties of the system. As the Raman lasers inevitably couple atoms to high-lying bands, the behaviors of the system in both the single- and many-particle sectors are significantly affected. In particular, the high-band effects enhance the plane-wave phase and lead to the emergence of "roton" gaps at low Zeeman fields. Furthermore, we identify high-band-induced topological phase boundaries in both the single-particle and the quasiparticle spectra. We then derive an effective two-band model, which captures the high-band physics in the experimentally relevant regime. Our results not only offer valuable insights into the two-dimensional lattice spin-orbit coupling, but also provide a systematic formalism to model high-band effects in lattice systems with Raman-assisted spin-orbit couplings.

  3. THEORETICAL CALCULATIONS OF THE MAGNETIZABILITY OF SOME SMALL FLUORINE-CONTAINING MOLECULES USING LONDON ATOMIC ORBITALS

    DEFF Research Database (Denmark)

    Ruud, K.; Helgaker, T.; Jørgensen, Poul

    1994-01-01

    We report a systematic investigation of the magnetizability of a series of small molecules. The use of London atomic orbitals ensures gauge invariance and a fast basis set convergence. Good agreement is obtained with experimental magnetizabilities, both isotropic and anisotropic. The calculations...

  4. Topology of tokamak orbits

    International Nuclear Information System (INIS)

    Rome, J.A.; Peng, Y.K.M.

    1978-09-01

    Guiding center orbits in noncircular axisymmetric tokamak plasmas are studied in the constants of motion (COM) space of (v, zeta, psi/sub m/). Here, v is the particle speed, zeta is the pitch angle with respect to the parallel equilibrium current, J/sub parallels/, and psi/sub m/ is the maximum value of the poloidal flux function (increasing from the magnetic axis) along the guiding center orbit. Two D-shaped equilibria in a flux-conserving tokamak having β's of 1.3% and 7.7% are used as examples. In this space, each confined orbit corresponds to one and only one point and different types of orbits (e.g., circulating, trapped, stagnation and pinch orbits) are represented by separate regions or surfaces in the space. It is also shown that the existence of an absolute minimum B in the higher β (7.7%) equilibrium results in a dramatically different orbit topology from that of the lower β case. The differences indicate the confinement of additional high energy (v → c, within the guiding center approximation) trapped, co- and countercirculating particles whose orbit psi/sub m/ falls within the absolute B well

  5. Calculation of two-center one-electron molecular integrals with STOs. [BICEN

    Energy Technology Data Exchange (ETDEWEB)

    Rico, J.F.; Lopez, R.; Paniagua, M.; Ramirez, G. (Universidad Autonoma de Madrid (Spain). Dept. de Quimica Fisica y Quimica Cuantica)

    1991-05-01

    A program for the calculation of two-center one-electron integrals (overlap, nuclear attraction and kinetic energy) between real Slater-type orbitals (STOs) is reported. The integrals are obtained by recursion over simple auxiliary matrices, whose elements are calculated in terms of further auxiliary functions evaluated in a quick and accurate way. (orig.).

  6. Regimes of spray formation in gas-centered swirl coaxial atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, D.; Kulkarni, V. [Indian Institute of Science, Department of Aerospace Engineering, Bangalore (India)

    2011-09-15

    Spray formation in ambient atmosphere from gas-centered swirl coaxial atomizers is described by carrying out experiments in a spray test facility. The atomizer discharges a circular air jet and an axisymmetric swirling water sheet from its coaxially arranged inner and outer orifices. A high-speed digital imaging system along with a backlight illumination arrangement is employed to record the details of liquid sheet breakup and spray development. Spray regimes exhibiting different sheet breakup mechanisms are identified and their characteristic features presented. The identified spray regimes are wave-assisted sheet breakup, perforated sheet breakup, segmented sheet breakup, and pulsation spray regime. In the regime of wave-assisted sheet breakup, the sheet breakup shows features similar to the breakup of two-dimensional planar air-blasted liquid sheets. At high air-to-liquid momentum ratios, the interaction process between the axisymmetric swirling liquid sheet and the circular air jet develops spray processes which are more specific to the atomizer studied here. The spray exhibits a periodic ejection of liquid masses whose features are dominantly controlled by the central air jet. (orig.)

  7. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  8. Effects of Rashba and Dresselhaus spin-orbit interactions on the ground state of two-dimensional localized spins.

    Science.gov (United States)

    Oh, J H; Lee, K-J; Lee, Hyun-Woo; Shin, M

    2014-05-14

    Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin-orbit interactions, we derive the Dzyaloshinskii-Moriya interaction of localized spins. The strength of the Dzyaloshinskii-Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field-temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system.

  9. Effects of Rashba and Dresselhaus spin–orbit interactions on the ground state of two-dimensional localized spins

    International Nuclear Information System (INIS)

    Oh, J H; Shin, M; Lee, K-J; Lee, Hyun-Woo

    2014-01-01

    Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin–orbit interactions, we derive the Dzyaloshinskii–Moriya interaction of localized spins. The strength of the Dzyaloshinskii–Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field–temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system. (paper)

  10. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  11. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    International Nuclear Information System (INIS)

    Stuyver, T.; Fias, S.; De Proft, F.; Geerlings, P.; Fowler, P. W.

    2015-01-01

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability

  12. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.; Geerlings, P. [ALGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Fowler, P. W. [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom)

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  13. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    Science.gov (United States)

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  14. On the Post-Keplerian Corrections to the Orbital Periods of a Two-body System and Their Application to the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo [Ministero dell’Istruzione, dell’Università e della Ricerca (M.I.U.R.)-Istruzione (Italy); Zhang, Fupeng, E-mail: lorenzo.iorio@libero.it, E-mail: zhangfp7@mail.sysu.edu.cn [School of Physics and Astronomy, Sun Yat-Sen University, Guangzhou 510275 (China)

    2017-04-10

    We perform detailed numerical analyses of the orbital motion of a test particle around a spinning primary, with the aim of investigating the possibility of using the post-Keplerian (pK) corrections to the orbiter’s periods (draconitic, anomalistic, and sidereal) as a further opportunity to perform new tests of post-Newtonian gravity. As a specific scenario, the S-stars orbiting the massive black hole (MBH) supposedly lurking in Sgr A* at the center of the Galaxy are adopted. We first study the effects of the pK Schwarzchild, Lense–Thirring, and quadrupole moment accelerations experienced by a target star for various possible initial orbital configurations. It turns out that the results of the numerical simulations are consistent with the analytical ones in the small eccentricity approximation for which almost all the latter ones were derived. For highly elliptical orbits, the sizes of the three pK corrections considered turn out to increase remarkably. The periods of the observed S2 and S0-102 stars as functions of the MBH’s spin axis orientation are considered as well. The pK accelerations lead to corrections of the orbital periods of the order of 1–100 days (Schwarzschild), 0.1–10 hr (Lense–Thirring), and 1–10{sup 3} s (quadrupole) for a target star with a = 300–800 au and e ≈ 0.8, which could be measurable with future facilities.

  15. Nuclear Data Center (NDC) of Korea Atomic Energy Research Institute (KAERI). Progress Report to the IAEA Technical Meeting of Nuclear Reaction Data Centers (NRDC)

    International Nuclear Information System (INIS)

    Lee, Young-Ouk

    2012-01-01

    Nuclear Data Center (NDC, former Nuclear Data Evaluation Lab.) of Korea Atomic Energy Research Institute (KAERI) has a director, 10 permanent staffs (2 in evaluation, 1 in measurement, 2 in atomic and molecular data, 2 in processing and validation, 3 in applications), one PhD student and one secretary. KAERI/NDC recently expanded its scope of work into the atomic and molecular data where two permanent staffs are involved. Mission of KAERI/NDC is disseminating outcomes of international network as well as promoting domestic nuclear data activities and related applications.

  16. Electronic structure of thin films by the self-consistent numerical-basis-set linear combination of atomic orbitals method: Ni(001)

    International Nuclear Information System (INIS)

    Wang, C.S.; Freeman, A.J.

    1979-01-01

    We present the self-consistent numerical-basis-set linear combination of atomic orbitals (LCAO) discrete variational method for treating the electronic structure of thin films. As in the case of bulk solids, this method provides for thin films accurate solutions of the one-particle local density equations with a non-muffin-tin potential. Hamiltonian and overlap matrix elements are evaluated accurately by means of a three-dimensional numerical Diophantine integration scheme. Application of this method is made to the self-consistent solution of one-, three-, and five-layer Ni(001) unsupported films. The LCAO Bloch basis set consists of valence orbitals (3d, 4s, and 4p states for transition metals) orthogonalized to the frozen-core wave functions. The self-consistent potential is obtained iteratively within the superposition of overlapping spherical atomic charge density model with the atomic configurations treated as adjustable parameters. Thus the crystal Coulomb potential is constructed as a superposition of overlapping spherically symmetric atomic potentials and, correspondingly, the local density Kohn-Sham (α = 2/3) potential is determined from a superposition of atomic charge densities. At each iteration in the self-consistency procedure, the crystal charge density is evaluated using a sampling of 15 independent k points in (1/8)th of the irreducible two-dimensional Brillouin zone. The total density of states (DOS) and projected local DOS (by layer plane) are calculated using an analytic linear energy triangle method (presented as an Appendix) generalized from the tetrahedron scheme for bulk systems. Distinct differences are obtained between the surface and central plane local DOS. The central plane DOS is found to converge rapidly to the DOS of bulk paramagnetic Ni obtained by Wang and Callaway. Only a very small surplus charge (0.03 electron/atom) is found on the surface planes, in agreement with jellium model calculations

  17. Model analysis of molecular conformations in terms of weak interactions between non bonded atoms

    International Nuclear Information System (INIS)

    Lombardi, E.

    1988-01-01

    The aim of the present paper is to establish a reliable basis for the evaluation of stable conformations and rotational barriers for molecules, with possible applications to systems of biological interest. It is proceeded in two steps: first, the effect of chemical environment on orbitals of a given atom is studied for diatomic units, adopting a valence-bond approach and considering, as prototypes, the two simplest series of diatomic molecules with one valence electron each, i.e. the alkali diatomics and the alkali hydrides. In the model, the orbital of the hydrogen atom by a simple (''1S'') gaussian function, the valence orbital of an alkali atom by a function (r 2 -a 2 ) times a simple gaussian (''2S'' gaussian). Dissociation energies D e and equilibrium distances R e are calculated using a scanning procedure. Agreement with experiment is quantitative for the alkali diatomics. For alkali hydrides, good agreement is obtained only if validity of a rule β e R e =constant, for the two atoms separately, is postulated; β e is the characteristic parameter of a ''1S'' gaussian (hydrogen) or a ''2S'' gaussian (alkali atom) function. In a second step, the authors assume validity of the same rule in conformational analysis for any single bonded A-B molecule with A=C, O, N, P, Si, Ge and B=H, or a halogen atom. Gauge β e values for H, F and C are obtained by fitting experimental rotational barriers in C 2 H 6 , C 2 F 6 and C 3 H 8 . Stable conformation of, and barriers to rotation in, ethane-like rotors are determined, applying first-order exchange perturbation theory, in terms of two- and many-center exchange interactions in cluster of non-bonded atoms. Some 60 molecules are analyzed. Agreement with experiments is strikngly good except for a few systematic deviation. Reasons for such discrepancies are discussed

  18. Heralded entanglement of two remote atoms

    Science.gov (United States)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  19. Pseudo-atomic orbitals as basis sets for the O(N) DFT code CONQUEST

    Energy Technology Data Exchange (ETDEWEB)

    Torralba, A S; Brazdova, V; Gillan, M J; Bowler, D R [Materials Simulation Laboratory, UCL, Gower Street, London WC1E 6BT (United Kingdom); Todorovic, M; Miyazaki, T [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Choudhury, R [London Centre for Nanotechnology, UCL, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)], E-mail: david.bowler@ucl.ac.uk

    2008-07-23

    Various aspects of the implementation of pseudo-atomic orbitals (PAOs) as basis functions for the linear scaling CONQUEST code are presented. Preliminary results for the assignment of a large set of PAOs to a smaller space of support functions are encouraging, and an important related proof on the necessary symmetry of the support functions is shown. Details of the generation and integration schemes for the PAOs are also given.

  20. A survey on orbital fractures in an educational center

    Directory of Open Access Journals (Sweden)

    Farahvash MR

    2009-06-01

    Full Text Available "n Normal 0 false false false EN-GB X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Trauma is the 2nd cause of mortality in Iran, after cardiovascular diseases. In traumatic patients, head and neck and face skeletal fracture is common. The most common facial fracture is mandible fracture and the least common is frontal fracture. Complications due to orbital fracture are more devasting than the other fractures in face."n"nMethods: These descriptive cross sectional studies are designed on 92 patients with orbital fractures in a referral educational trauma center, Imam Khomeini hospital, Tehran, Iran. Sample size was the patients who referred to this hospital with orbital fracture during the ten years period (1986-2000."n"nResults: In this study 74 patients were male and 18 patients were female. Mean age of patients was 30 years. The most common cause of orbital fracture was motor vehicle accident which was seen in 38 patients.46 patients had fracture in left orbit and 44 patients in right. Isolated orbital fracture was seen in 38 patients and 54 patients had concomitant trauma and fracture in the other organs. Management of orbital fracture was reduction of displaced bone fragment and fixation for osteosynthesis. The most common methods for osteosynthesis was

  1. Spin-orbit coupling calculations with the two-component normalized elimination of the small component method

    Science.gov (United States)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2013-07-01

    A new algorithm for the two-component Normalized Elimination of the Small Component (2cNESC) method is presented and tested in the calculation of spin-orbit (SO) splittings for a series of heavy atoms and their molecules. The 2cNESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac SO splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000), 10.1103/PhysRevB.62.7809]. The use of the screened nucleus potential for the two-electron SO interaction leads to accurate spinor energy splittings, for which the deviations from the accurate Dirac Fock-Coulomb values are on the average far below the deviations observed for other effective one-electron SO operators. For hydrogen halides HX (X = F, Cl, Br, I, At, and Uus) and mercury dihalides HgX2 (X = F, Cl, Br, I) trends in spinor energies and SO splittings as obtained with the 2cNESC method are analyzed and discussed on the basis of coupling schemes and the electronegativity of X.

  2. Observation of the spin-orbit activated interchannel coupling in the 3d photoionization of caesium atoms

    International Nuclear Information System (INIS)

    Farrokhpour, H; Alagia, M; Amusia, M Ya

    2006-01-01

    The ionization cross-section of the 3d spin-orbit components of the Cs atom has been measured from about 12 to 70 eV above their respective thresholds. The measured relative ionization cross-section of the 3d 5/2 channel exhibits a pronounced minimum above threshold followed by a second maximum near the 3d 3/2 ionization onset and thus qualitatively confirms the theoretical predictions of a spin-orbit activated interchannel coupling (Amusia et al 2002 Phys. Rev. Lett 88 093002)

  3. Observation of the spin-orbit activated interchannel coupling in the 3d photoionization of caesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhpour, H [Chemistry Department, Isfahan University of Technology, Isfahan 84154 (Iran, Islamic Republic of); Abdus Salam International Centre for Theoretical Physics, I-34014 Trieste (Italy); Alagia, M [CNR-ISMN Sez.Roma1, P.le A Moro 5, I-00185 Rome (Italy) and CNR-Lab. Naz. TASC-INFM, Gas Phase Beamline at Elettra, Area Science Park, I-34012 Basovizza, Trieste (Italy); Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); A F Ioffe Physical-Technical Institute, St Petersburg 194021 (Russian Federation)] (and others)

    2006-02-21

    The ionization cross-section of the 3d spin-orbit components of the Cs atom has been measured from about 12 to 70 eV above their respective thresholds. The measured relative ionization cross-section of the 3d{sub 5/2} channel exhibits a pronounced minimum above threshold followed by a second maximum near the 3d{sub 3/2} ionization onset and thus qualitatively confirms the theoretical predictions of a spin-orbit activated interchannel coupling (Amusia et al 2002 Phys. Rev. Lett 88 093002)

  4. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  5. ORNL's Controlled Fusion Atomic Data Center

    International Nuclear Information System (INIS)

    Barnett, C.F.; Gregory, D.C.

    1983-01-01

    The Data Center maintains a detailed bibliography of atomic data measurements and calculations for processes of interest to the fusion community. One hundred nineteen journals are regularly searched for papers of interest, including back issues to 1950. Entries are categorized by author, process, reactants, energy range, and theory/experiment. Complete bibliographies have been published since 1978 and a computerized data retrieval system is available. In addition, an updated and extended multi-volume critical compilation of cross sections (the ORNL Redbooks) is under way

  6. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Lockman, F. J. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J., E-mail: naomi.mcclure-griffiths@csiro.au [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  7. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    International Nuclear Information System (INIS)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S.; Lockman, F. J.; Dickey, J. M.; Gaensler, B. M.; Green, A. J.

    2013-01-01

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of ∼14 km s –1 , and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at ∼200 km s –1 in a Galactic wind.

  8. Visualisation and orbital-free parametrisation of the large-Z scaling of the kinetic energy density of atoms

    Science.gov (United States)

    Cancio, Antonio C.; Redd, Jeremy J.

    2017-03-01

    The scaling of neutral atoms to large Z, combining periodicity with a gradual trend to homogeneity, is a fundamental probe of density functional theory, one that has driven recent advances in understanding both the kinetic and exchange-correlation energies. Although research focus is normally upon the scaling of integrated energies, insights can also be gained from energy densities. We visualise the scaling of the positive-definite kinetic energy density (KED) in closed-shell atoms, in comparison to invariant quantities based upon the gradient and Laplacian of the density. We notice a striking fit of the KED within the core of any atom to a gradient expansion using both the gradient and the Laplacian, appearing as an asymptotic limit around which the KED oscillates. The gradient expansion is qualitatively different from that derived from first principles for a slowly varying electron gas and is correlated with a nonzero Pauli contribution to the KED near the nucleus. We propose and explore orbital-free meta-GGA models for the kinetic energy to describe these features, with some success, but the effects of quantum oscillations in the inner shells of atoms make a complete parametrisation difficult. We discuss implications for improved orbital-free description of molecular properties.

  9. Orbits in weak and strong bars

    CERN Document Server

    Contopoulos, George

    1980-01-01

    The authors study the plane orbits in simple bar models embedded in an axisymmetric background when the bar density is about 1% (weak), 10% (intermediate) or 100% (strong bar) of the axisymmetric density. Most orbits follow the stable periodic orbits. The basic families of periodic orbits are described. In weak bars with two Inner Lindblad Resonances there is a family of stable orbits extending from the center up to the Outer Lindblad Resonance. This family contains the long period orbits near corotation. Other stable families appear between the Inner Lindblad Resonances, outside the Outer Lindblad Resonance, around corotation (short period orbits) and around the center (retrograde). Some families become unstable or disappear in strong bars. A comparison is made with cases having one or no Inner Lindblad Resonance. (12 refs).

  10. Start up of the Tandem Accelerator in the Ezeiza Atomic Center

    International Nuclear Information System (INIS)

    Bianchini, R.; Consorti, S.; Roldan, M.; Llovera, R.; Arenilla, P.; Alvarez, D.E.; Ugarte, R.

    2010-01-01

    A High Voltage tandem electrostatic accelerator FN model was installed and started up by the Nuclear Regulatory Authority (ARN) on the campus of Ezeiza Atomic Center. Subsequently, the facility was transferred to the National Atomic Energy Commission for a new start up, re-engineering, maintenance, and operation [es

  11. The ORNL Controlled Fusion Atomic Data Center: Overview of Activities 2011

    International Nuclear Information System (INIS)

    Schultz, D.R.

    2011-01-01

    The Controlled Fusion Atomic Data Center (CFADC) of the Oak Ridge National Laboratory continued operation aimed at collecting, evaluating, and disseminating atomic, molecular, and particle-surface interaction (AM and PSI) data needed by both the U.S. and international plasma science communities. This work has been carried out within an overarching atomic physics research group which produces much of the required data through an active experimental and theoretical science program. The production of an annotated bibliography of AM and PSI literature relevant to plasma science continues to be among the most important activities of the data center, forming the basis for the CFADC on-line bibliographic search engine and a significant part of the IAEA A+M Data Unit's 'International Bulletin on Atomic and Molecular Data for Fusion.' Also chief among the data center's activities are responses to specific data requests from the plasma science community, leading to either rapid feedback using existing data resources or long term data production projects, as well as participation in IAEA Coordinated Research Programs including recently 'Data for Surface Composition Dynamics Relevant to Erosion Processes' and 'Atomic and Molecular Data for Plasma Modeling.' Highlights of recent data production projects include the following: Experimental and theoretical data for inelastic electron-hydrocarbon reactions, large scale computational results for particle reflection from surfaces, measurements of chemical sputtering from carbon, inaugural experiments considering molecular ion collisions with neutral hydrogen, and expansion of the database of elastic and related transport cross sections calculated for intrinsic and extrinsic impurities in hydrogen plasmas. Progress is being hampered owing to news from the US Department of Energy that it plans to close out the program after a ramp down of funding in 2012, following a distinguished 52 year history of contributions to the US and

  12. Method of producing excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    1976-01-01

    A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation

  13. Local orbitals by minimizing powers of the orbital variance

    DEFF Research Database (Denmark)

    Jansik, Branislav; Høst, Stinne; Kristensen, Kasper

    2011-01-01

    's correlation consistent basis sets, it is seen that for larger penalties, the virtual orbitals become more local than the occupied ones. We also show that the local virtual HF orbitals are significantly more local than the redundant projected atomic orbitals, which often have been used to span the virtual...

  14. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    Science.gov (United States)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  15. Orbital order and effective mass enhancement in t2 g two-dimensional electron gases

    Science.gov (United States)

    Tolsma, John; Principi, Alessandro; Polini, Marco; MacDonald, Allan

    2015-03-01

    It is now possible to prepare d-electron two-dimensional electron gas systems that are confined near oxide heterojunctions and contain t2 g electrons with a density much smaller than one electron per metal atom. I will discuss a generic model that captures all qualitative features of electron-electron interaction physics in t2 g two-dimensional electron gas systems, and the use of a GW approximation to explore t2 g quasiparticle properties in this new context. t2 g electron gases contain a high density isotropic light mass xy component and low-density xz and yz anisotropic components with light and heavy masses in orthogonal directions. The high density light mass band screens interactions within the heavy bands. As a result the wave vector dependence of the self-energy is reduced and the effective mass is increased. When the density in the heavy bands is low, the difference in anisotropy between the two heavy bands favors orbital order. When orbital order does not occur, interactions still reshape the heavy-band Fermi surfaces. I will discuss these results in the context of recently reported magnetotransport experiments.

  16. Measure synchronization in a spin-orbit-coupled bosonic Josephson junction

    Science.gov (United States)

    Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin

    2015-11-01

    We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.

  17. Coherent effects on two-photon correlation and directional emission of two two-level atoms

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond; Kim, Byung-Gyu; Lee, Hai-Woong

    2007-01-01

    Sub- and superradiant dynamics of spontaneously decaying atoms are manifestations of collective many-body systems. We study the internal dynamics and the radiation properties of two atoms in free space. Interesting results are obtained when the atoms are separated by less than half a wavelength of the atomic transition, where the dipole-dipole interaction gives rise to new coherent effects, such as (a) coherence between two intermediate collective states, (b) oscillations in the two-photon correlation G (2) , (c) emission of two photons by one atom, and (d) the loss of directional correlation. We compare the population dynamics during the two-photon emission process with the dynamics of single-photon emission in the cases of a Λ and a V scheme. We compute the temporal correlation and angular correlation of two successively emitted photons using the G (2) for different values of atomic separation. We find antibunching when the atomic separation is a quarter wavelength λ/4. Oscillations in the temporal correlation provide a useful feature for measuring subwavelength atomic separation. Strong directional correlation between two emitted photons is found for atomic separation larger than a wavelength. We also compare the directionality of a photon spontaneously emitted by the two atoms prepared in phased-symmetric and phased-antisymmetric entangled states vertical bar ±> k 0 =e ik 0 ·r 1 vertical bar a 1 ,b 2 >±e ik 0 ·r 2 vertical bar b 1 ,a 2 > by a laser pulse with wave vector k 0 . Photon emission is directionally suppressed along k 0 for the phased-antisymmetric state. The directionality ceases for interatomic distances less than λ/2

  18. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  19. Dynamics of a trapped two-level and three-level atom interacting with classical electromagnetic field

    International Nuclear Information System (INIS)

    Ray, Aditi

    2004-01-01

    The dynamics of a two-level atom driven by a single laser beam and three-level atom (Lambda configuration) irradiated by two laser beams are studied taking into account of the quantized center-of-mass motion of the atom. It is shown that the trapped atom system under appropriate resonance condition exhibits the large time-scale revivals when the index of the vibrational sideband responsible for the atomic electronic transition is greater than unity. The revival times are shown to be dependent on the initial number of vibrational excitations and the magnitude of the Lamb-Dicke parameter. The sub-Poissonian statistics in vibrational quantum number is observed at certain time intervals. The minimum time of interaction for which the squeezed states of motional quadrature are generated is found to be decreasing with the increase in the Lamb-Dicke parameter

  20. Instrumentation at the National Center for Electron Microscopy: the Atomic Resolution Microscope

    International Nuclear Information System (INIS)

    Gronsky, R.; Thomas, G.

    1983-01-01

    The Atomic Resolution Microscope (ARM) is one of two unique high voltage electron microscopes at the Lawrence Berkeley Laboratory's National Center for Electron Microscopy (NCEM). The latest results from this new instrument which was manufactured by JEOL, Ltd. to the performance specifications of the NCEM, delivered in January of 1983, and soon to be open to access by the entire microscopy community are given. Details of its history and development are given and its performance specifications are reviewed

  1. Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J.

    2017-01-01

    In the first paper of the series [Paper I, C. Song and T. J. Martinez, J. Chem. Phys. 144, 174111 (2016)], we showed how tensor-hypercontracted (THC) SOS-MP2 could be accelerated by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs). This reduced the formal scaling of the SOS-MP2 energy calculation to cubic with respect to system size. The computational bottleneck then becomes the THC metric matrix inversion, which scales cubically with a large prefactor. In this work, the local THC approximation is proposed to reduce the computational cost of inverting the THC metric matrix to linear scaling with respect to molecular size. By doing so, we have removed the primary bottleneck to THC-SOS-MP2 calculations on large molecules with O(1000) atoms. The errors introduced by the local THC approximation are less than 0.6 kcal/mol for molecules with up to 200 atoms and 3300 basis functions. Together with the graphical processing unit techniques and locality-exploiting approaches introduced in previous work, the scaled opposite spin MP2 (SOS-MP2) calculations exhibit O(N2.5) scaling in practice up to 10 000 basis functions. The new algorithms make it feasible to carry out SOS-MP2 calculations on small proteins like ubiquitin (1231 atoms/10 294 atomic basis functions) on a single node in less than a day.

  2. Role of atom--atom inelastic collisions in two-temperature nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Kunc, J.A.

    1987-01-01

    The contribution of inelastic atom--atom collisions to the production of electrons and excited atoms in two-temperature (with electron temperature T/sub e/, atomic temperature T/sub a/, and atomic density N/sub a/), steady-state, nonequilibrium atomic hydrogen plasma is investigated. The results are valid for plasmas having large amounts of atomic hydrogen as one of the plasma components, so that e--H and H--H inelastic collisions and interaction of these atoms with radiation dominate the production of electrons and excited hydrogen atoms. Densities of electrons and excited atoms are calculated in low-temperature plasma, with T/sub e/ and T/sub a/≤8000 K and 10 16 cm -3 ≤N/sub a/≤10 18 cm -3 , and with different degrees of the reabsorption of radiation. The results indicate that inelastic atom--atom collisions are important for production of electrons and excited atoms in partially ionized plasmas with medium and high atomic density and temperatures below 8000 K

  3. New analytical treatment for a kind of two dimensional integrals in ion-atom collisions

    International Nuclear Information System (INIS)

    Yang Qifeng; Kuang Yurang

    1994-01-01

    A kind of two-dimensional integrals, separated from two-center matrix elements in ion-atom collisions, is analytically integrated by introducing the Laplace transform into the integrals and expressed by the modified Bessel functions. The traditional Feynman transform is very complicated for this kind of more general integrals related to the excited state capture

  4. Multistability in an optomechanical system with a two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Dong Ying; Ye Jinwu; Pu Han

    2011-01-01

    We investigate a system consisting of a two-component Bose-Einstein condensate interacting dispersively with a Fabry-Perot optical cavity where the two components of the condensate are resonantly coupled to each other by another classical field. The key feature of this system is that the atomic motional degrees of freedom and the internal pseudospin degrees of freedom are coupled to the cavity field simultaneously, hence an effective spin-orbital coupling within the condensate is induced by the cavity. The interplay among the atomic center-of-mass motion, the atomic collective spin, and the cavity field leads to a strong nonlinearity, resulting in multistable behavior in both matter wave and light wave at the few-photon level.

  5. Quantum theory of an atom in proximity to a superconductor

    Science.gov (United States)

    Le Dall, Matthias; Diniz, Igor; Dias da Silva, Luis G. G. V.; de Sousa, Rogério

    2018-02-01

    The impact of superconducting correlations on localized electronic states is important for a wide range of experiments in fundamental and applied superconductivity. This includes scanning tunneling microscopy of atomic impurities at the surface of superconductors, as well as superconducting-ion-chip spectroscopy of neutral ions and Rydberg states. Moreover, atomlike centers close to the surface are currently believed to be the main source of noise and decoherence in qubits based on superconducting devices. The proximity effect is known to dress atomic orbitals in Cooper-pair-like states known as Yu-Shiba-Rusinov (YSR) states, but the impact of superconductivity on the measured orbital splittings and optical-noise transitions is not known. Here we study the interplay between orbital degeneracy and particle-number admixture in atomic states, beyond the usual classical spin approximation. We model the atom as a generalized Anderson model interacting with a conventional s -wave superconductor. In the limit of zero on-site Coulomb repulsion (U =0 ), we obtain YSR subgap energy levels that are identical to the ones obtained from the classical spin model. When Δ is large and U >0 , the YSR spectra are no longer quasiparticle-like, and the highly degenerate orbital subspaces are split according to their spin, orbital, and number-parity symmetry. We show that U >0 activates additional poles in the atomic Green's function, suggesting an alternative explanation for the peak splittings recently observed in scanning tunneling microscopy of orbitally-degenerate impurities in superconductors. We describe optical excitation and absorption of photons by YSR states, showing that many additional optical channels open up in comparison to the nonsuperconducting case. Conversely, the additional dissipation channels imply increased electromagnetic noise due to impurities in superconducting devices.

  6. Force on an electric/magnetic dipole and classical approach to spin-orbit coupling in hydrogen-like atoms

    Science.gov (United States)

    Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.

    2017-09-01

    We carry out the classical analysis of spin-orbit coupling in hydrogen-like atoms, using the modern expressions for the force and energy of an electric/magnetic dipole in an electromagnetic field. We disclose a novel physical meaning of this effect and show that for a laboratory observer the energy of spin-orbit interaction is represented solely by the mechanical energy of the spinning electron (considered as a gyroscope) due to the Thomas precession of its spin. Concurrently we disclose some errors in the old and new publications on this subject.

  7. Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

    Directory of Open Access Journals (Sweden)

    V. Fallahi

    2012-06-01

    Full Text Available The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls can be controlled through the domain walls separation. Also, we have represented another alternative way that enables us to handle easily the magnetoresistance of such a system as well as its conductance by utilizing the Rashba-type spin-orbit interaction induced by the external gates.

  8. Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

    Science.gov (United States)

    Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem; Faghihi, Mohammad Javad

    2015-08-01

    In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.

  9. Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion

    International Nuclear Information System (INIS)

    Lin, Lin; Yang, Chao; Chen, Mohan; He, Lixin

    2013-01-01

    We describe how to apply the recently developed pole expansion and selected inversion (PEXSI) technique to Kohn–Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating the charge density, the total energy, the Helmholtz free energy and the atomic forces (including both the Hellmann–Feynman force and the Pulay force) without using the eigenvalues and eigenvectors of the Kohn–Sham Hamiltonian. We also show how to update the chemical potential without using Kohn–Sham eigenvalues. The advantage of using PEXSI is that it has a computational complexity much lower than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEXSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEXSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEXSI are modest. This even makes it possible to perform Kohn–Sham DFT calculations for 10 000-atom nanotubes with a sequential implementation of the selected inversion algorithm. We also perform an accurate geometry optimization calculation on a truncated (8, 0) boron nitride nanotube system containing 1024 atoms. Numerical results indicate that the use of PEXSI does not lead to loss of the accuracy required in a practical DFT calculation. (paper)

  10. New conception in the theory of chemical bonding; the role of core and valence atomic orbitals in formation of chemical bonds

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Kostikov, Yu.P.; Korol'kov, D.V.

    1986-01-01

    An analysis of x-ray photoelectron spectra leads to a simple and consistent conception in the theory of chemical bonding, which satisfies (unlike the simple MO-LCAO theory) the virial theorem and defines the roles of the core and valence atomic orbitals in the formation of chemical bonds. Its essence is clear from the foregoing: the exothermic effects of the formation of complexes are caused by the lowering of the energies of the core levels of the central atoms with simultaneous small changes in the energies of the core levels of the ligands despite the significant destabilization of the delocalized valence MO's in comparison to the orbital energies of the corresponding free atoms. In order to confirm these ideas, they recorded the x-ray photoelectron spectra of the valence region and the inner levels of single-crystal silicon carbide, silicon, and graphite

  11. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable

  12. Experimental atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The experimental atomic physics program within the physics division is carried out by two groups, whose reports are given in this section. Work of the accelerator atomic physics group is centered around the 6.5-MV EN tandem accelerator; consequently, most of its research is concerned with atomic processes occurring to, or initiated by, few MeV/amu heavy ions. Other activities of this group include higher energy experiments at the Holifield Heavy Ion Research Facility (HHIRF), studies of electron and positron channeling radiation, and collaborative experiments at other institutions. The second experimental group concerns itself with lower energy atomic collision physics in support of the Fusion Energy Program. During the past year, the new Electron Cyclotron Resonance Source has been completed and some of the first data from this facility is presented. In addition to these two activities in experimental atomic physics, other chapters of this report describe progress in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compilation activities

  13. Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals

    Science.gov (United States)

    Robertson, Michael J.; Jorgensen, William L.

    2015-01-01

    Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…

  14. On the performance of atomic natural orbital basis sets: A full configuration interaction study

    International Nuclear Information System (INIS)

    Illas, F.; Ricart, J.M.; Rubio, J.; Bagus, P.S.

    1990-01-01

    The performance of atomic natural orbital (ANO) basis sets has been studied by comparing self-consistant field (SCF) and full configuration interaction (CI) results obtained for the first row atoms and hydrides. The ANO results have been compared with those obtained using a segmented basis set containing the same number of contracted basis functions. The total energies obtained with the ANO basis sets are always lower than the one obtained by using the segmented one. However, for the hydrides, differential electronic correlation energy obtained with the ANO basis set may be smaller than the one recovered with the segmented set. We relate this poorer differential correlation energy for the ANO basis set to the fact that only one contracted d function is used for the ANO and segmented basis sets

  15. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  16. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED: ''PARTON ORBITAL ANGULAR MOMENTUM'' VOLUME 81

    International Nuclear Information System (INIS)

    Bunce, G.; Fields, D.; Vogelsang, W.

    2006-01-01

    The joint UNM/RBRC 'Workshop on Parton Orbital Angular Momentum' was held on February 24th through 26th at the University of New Mexico Department of Physics and Astronomy in Albuquerque, New Mexico, and was sponsored by The University of New Mexico (Physics Department, New Mexico Center for Particle Physics, Dean of Arts and Sciences, and Office of the Vice Provost for Research and Economic Development) and the NUN-BNL Research Center. The workshop was motivated by recent and upcoming experimental data based on methods which have been proposed to access partonic angular momenta, including Deeply Virtual Compton Scattering, measuring the Sivers functions, and measuring helicity dependent k t in jets. Our desire was to clarify the state of the art in the theoretical understanding in this area, and to help define what might be learned about partonic orbital angular momenta Erom present and upcoming high precision data, particularly at RHIC, Jlab, COMPASS and HERMES. The workshop filled two rather full days of talks fiom both theorists and experimentalists, with a good deal of discussion during, and in between talks focusing on the relationship between the intrinsic transverse momentum, orbital angular momentum, and observables such as the Sivers Function. These talks and discussions were particularly illuminating and the organizers wish to express their sincere thanks to everyone for contributing to this workshop. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are eighty proceeding volumes available

  17. Resonance fluorescence based two- and three-dimensional atom localization

    Science.gov (United States)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  18. Density functional theory calculations establish the experimental evidence of the DX center atomic structure in CdTe.

    Science.gov (United States)

    Lany, Stephan; Wolf, Herbert; Wichert, Thomas

    2004-06-04

    The In DX center and the DX-like configuration of the Cd host atom in CdTe are investigated using density functional theory. The simultaneous calculation of the atomic structure and the electric field gradient (EFG) allows one to correlate the theoretically predicted structure of the DX center with an experimental observable, namely, the EFG obtained from radioactive 111In/111Cd probe atoms in In doped CdTe. In this way, the experimental identification of the DX center structure is established.

  19. Internationally Safeguarded Atomic Fuel Exchange Center for the Asian Pacific Basin

    International Nuclear Information System (INIS)

    Selvaduray, G.; Anderson, R.N.; Goldstein, M.K.

    1979-01-01

    The concept of an Internationally Safeguarded Atomic Fuel Exchange Center (ISAFE) for the Asia-Pacific Basin is examined. The geography and nuclear capabilitiy of the countries that comprise the Asia-Pacific Basin is described in full length. The incentives and the limitations for the establishment of the ISAFE center in the Asia-Pacific Basin are discussed in detail. 34 refs

  20. Measurement of angular differential cross sections at the SSL Atomic Scattering Facility

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1988-01-01

    The design of the SSL Atomic Scattering Facility (ASF) located at the NASA/Marshall Space Flight Center as well as some of the initial experiments to be performed with it, are covered. The goal is to develop an apparatus capable of measuring angular differential cross sections (ADCS) for the scattering of 2 to 14 eV atomic oxygen from various gaseous targets. At present little is known about atomic oxygen scattering with kinetic energies of a few eV. This apparatus is designed to increase the understanding of collisions in this energy region. Atomic oxygen scattering processes are of vital interest to NASA because the space shuttle as well as other low earth orbit satellites will be subjected to a flux of 5 eV atomic oxygen on the ram surfaces while in orbit. The primary experiments will involve the measurements of ADCS for atomic oxygen scattering from gaseous targets (in particular, molecular nitrogen). These, as well as the related initial experiments involving thermal He scattering from N2 and O2 targets will be described

  1. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins

    2016-12-09

    Intense, ultra-short laser pulses interacting with atoms, molecules, clusters, and solids give rise to many new fascinating phenomena, not at all accessible to quantum mechanics textbook perturbation theory. A full numerical solution of the time-dependent Schr¨odinger equation (TDSE) for such strong-field problems is also impossible for more than two electrons. Hence, powerful time-dependent quantum many-body approaches need to be developed. Unfortunately, efficient methods such as time-dependent density functional theory (TDDFT) fail in reproducing experimental observations, in particular if strong correlations are involved. In TDDFT, the approximation not only lies in the so-called exchange correlation potential but also in the density functionals for the observables of interest. In fact, with just the single-particle density alone it is unclear how to calculate, e.g., multiple-ionization probabilities or photoelectron spectra, or, even worse, correlated photoelectron spectra, as measured in nowadays experiments. In general, the simple structure of the time-dependent many-body Schroedinger equation for a highly-dimensional many-body wavefunction can only be traded for more complicated equations of motion for simpler quantities. In this thesis, a theory is examined that goes one step beyond TDDFT as far as the complexity of the propagated quantity is concerned. In time-dependent renormalized natural orbital theory (TDRNOT), the basic quantities that are propagated in time are the eigenvalues and eigenstates of the one-body reduced density matrix (1-RDM). The eigenstates are called natural orbitals (NOs), the eigenvalues are the corresponding occupation numbers (ONs). Compared to TDDFT, the knowledge of the NOs and the ONs relax the problem of calculating observables in practice because they can be used to construct the 1-RDM and the two-body reduced density matrix (2-RDM). After the derivation of the equations of motion for a combination of NOs and ONs, the so

  2. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    International Nuclear Information System (INIS)

    Brics, Martins

    2016-01-01

    Intense, ultra-short laser pulses interacting with atoms, molecules, clusters, and solids give rise to many new fascinating phenomena, not at all accessible to quantum mechanics textbook perturbation theory. A full numerical solution of the time-dependent Schr¨odinger equation (TDSE) for such strong-field problems is also impossible for more than two electrons. Hence, powerful time-dependent quantum many-body approaches need to be developed. Unfortunately, efficient methods such as time-dependent density functional theory (TDDFT) fail in reproducing experimental observations, in particular if strong correlations are involved. In TDDFT, the approximation not only lies in the so-called exchange correlation potential but also in the density functionals for the observables of interest. In fact, with just the single-particle density alone it is unclear how to calculate, e.g., multiple-ionization probabilities or photoelectron spectra, or, even worse, correlated photoelectron spectra, as measured in nowadays experiments. In general, the simple structure of the time-dependent many-body Schroedinger equation for a highly-dimensional many-body wavefunction can only be traded for more complicated equations of motion for simpler quantities. In this thesis, a theory is examined that goes one step beyond TDDFT as far as the complexity of the propagated quantity is concerned. In time-dependent renormalized natural orbital theory (TDRNOT), the basic quantities that are propagated in time are the eigenvalues and eigenstates of the one-body reduced density matrix (1-RDM). The eigenstates are called natural orbitals (NOs), the eigenvalues are the corresponding occupation numbers (ONs). Compared to TDDFT, the knowledge of the NOs and the ONs relax the problem of calculating observables in practice because they can be used to construct the 1-RDM and the two-body reduced density matrix (2-RDM). After the derivation of the equations of motion for a combination of NOs and ONs, the so

  3. Two-craft Coulomb formation study about circular orbits and libration points

    Science.gov (United States)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the

  4. Spectroscopy of two-electron atoms

    International Nuclear Information System (INIS)

    Desesquelles, J.

    1988-01-01

    Spectroscopy of heliumlike ions is discussed putting emphasis on mid and high Z atoms. Experimental aspects of ion charge, excitation production, clean spectra, and precise wavelength measurement are detailed. Recent results obtained at several laboratories including Lyon, Argonne, Notre-Dame, Oxford, Berkeley, Darmstadt, Paris, are used to test the QED contributions and higher order relativistic corrections to two-electron atom energies. (orig.)

  5. Development of constraint algorithm for the number of electrons in molecular orbitals consisting mainly 4f atomic orbitals of rare-earth elements and its introduction to tight-binding quantum chemical molecular dynamics method

    International Nuclear Information System (INIS)

    Endou, Akira; Onuma, Hiroaki; Jung, Sun-ho

    2007-01-01

    Our original tight-binding quantum chemical molecular dynamics code, Colors', has been successfully applied to the theoretical investigation of complex materials including rare-earth elements, e.g., metal catalysts supported on a CeO 2 surface. To expand our code so as to obtain a good convergence for the electronic structure of a calculation system including a rare-earth element, we developed a novel algorithm to provide a constraint condition for the number of electrons occupying the selected molecular orbitals that mainly consist of 4f atomic orbitals of the rare-earth element. This novel algorithm was introduced in Colors. Using Colors, we succeeded in obtaining the classified electronic configurations of the 4f atomic orbitals of Ce 4+ and reduced Ce ions in a CeO 2 bulk model with one oxygen defect, which makes it difficult to obtain a good convergence using a conventional first-principles quantum chemical calculation code. (author)

  6. Activities of the JILA Atomic Collisions Cross Sections Data Center

    International Nuclear Information System (INIS)

    Gallagher, J.W.

    1983-01-01

    The JILA Atomic Collisions Cross Sections Data Center compiles, critically evaluates, and reviews cross sections and rates for low energy (<100 keV) collisions of electrons, photons, and heavy particles with atoms, ions, and simple molecules. Reports are prepared which provide easily accessible recommended data with error limits, list the fundamental literature related to specific topics, identify regions where data are missing, and point out inconsistencies in existing data. The general methodology used in producing evaluated compilations is described. Recently completed projects and work in progress are reported

  7. Core-electron binding energies from self-consistent field molecular orbital theory using a mixture of all-electron real atoms and valence-electron model atoms

    International Nuclear Information System (INIS)

    Quinn, C.M.; Schwartz, M.E.

    1981-01-01

    The chemistry of large systems such as clusters may be readily investigated by valence-electron theories based on model potentials, but such an approach does not allow for the examination of core-electron binding energies which are commonly measured experimentally for such systems. Here we merge our previously developed Gaussian based valence-electron model potential theory with all-electron ab initio theory to allow for the calculation of core orbital binding energies when desired. For the atoms whose cores are to be examined, we use the real nuclear changes, all of the electrons, and the appropriate many-electron basis sets. For the rest of the system we use reduced nuclear charges, the Gaussian based model potentials, only the valence electrons, and appropriate valence-electron basis sets. Detailed results for neutral Al 2 are presented for the cases of all-electron, mixed real--model, and model--model SCF--MO calculations. Several different all-electron and valence electron calculations have been done to test the use of the model potential per se, as well as the effect of basis set choice. The results are in all cases in excellent agreement with one another. Based on these studies, a set of ''double-zeta'' valence and all-electron basis functions have been used for further SCF--MO studies on Al 3 , Al 4 , AlNO, and OAl 3 . For a variety of difference combinations of real and model atoms we find excellent agreement for relative total energies, orbital energies (both core and valence), and Mulliken atomic populations. Finally, direct core-hole-state ionic calculations are reported in detail for Al 2 and AlNO, and noted for Al 3 and Al 4 . Results for corresponding frozen-orbital energy differences, relaxed SCF--MO energy differences, and relaxation energies are in all cases in excellent agreement (never differing by more than 0.07 eV, usually by somewhat less). The study clearly demonstrates the accuracy of the mixed real--model theory

  8. Bose-Einstein atoms in atomic traps with predominantly attractive two-body interactions

    International Nuclear Information System (INIS)

    Hussein, M.S.; Vorov, O.K.

    2002-01-01

    Using the Perron-Frobenius theorem, we prove that the results by Wilkin, Gunn, and Smith [Phys. Rev. Lett. 80, 2265 (1998)] for the ground states at angular momentum L of N harmonically trapped Bose atoms, interacting via weak attractive δ 2 (r) forces, are valid for a broad class of predominantly attractive interactions V(r), not necessarily attractive for any r. This class is described by sufficient conditions on the two-body matrix elements of the potential V(r). It includes, in particular, the Gaussian attraction of arbitrary radius, -1/r-Coulomb and log(r)-Coulomb forces, as well as all the short-range interactions satisfying inequality ∫d 2 r-vectorV(r)<0. In the precollapse regime, the angular momentum L is concentrated in the collective 'center-of-mass' mode, and there is no condensation at high L

  9. Nonlinear Jaynes–Cummings model for two interacting two-level atoms

    International Nuclear Information System (INIS)

    Santos-Sánchez, O de los; González-Gutiérrez, C; Récamier, J

    2016-01-01

    In this work we examine a nonlinear version of the Jaynes–Cummings model for two identical two-level atoms allowing for Ising-like and dipole–dipole interplays between them. The model is said to be nonlinear in the sense that it can incorporate both a general intensity-dependent interaction between the atomic system and the cavity field and/or the presence of a nonlinear medium inside the cavity. As an example, we consider a particular type of atom-field coupling based upon the so-called Buck–Sukumar model and a lossless Kerr-like cavity. We describe the possible effects of such features on the evolution of some quantities of current interest, such as atomic excitation, purity, concurrence, the entropy of the field and the evolution of the latter in phase space. (paper)

  10. Quantum incommensurate skyrmion crystals and commensurate to in-commensurate transitions in cold atoms and materials with spin-orbit couplings in a Zeeman field

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-08-01

    In this work, we study strongly interacting spinor atoms in a lattice subject to a two dimensional (2d) anisotropic Rashba type of spin orbital coupling (SOC) and an Zeeman field. We find the interplay between the Zeeman field and the SOC provides a new platform to host rich and novel classes of quantum commensurate and in-commensurate phases, excitations and phase transitions. These commensurate phases include two collinear states at low and high Zeeman field, two co-planar canted states at mirror reflected SOC parameters respectively. Most importantly, there are non-coplanar incommensurate Skyrmion (IC-SkX) crystal phases surrounded by the four commensurate phases. New excitation spectra above all the five phases, especially on the IC-SKX phase are computed. Three different classes of quantum commensurate to in-commensurate transitions from the IC-SKX to its four neighboring commensurate phases are identified. Finite temperature behaviors and transitions are discussed. The critical temperatures of all the phases can be raised above that reachable by current cold atom cooling techniques simply by tuning the number of atoms N per site. In view of recent impressive experimental advances in generating 2d SOC for cold atoms in optical lattices, these new many-body phenomena can be explored in the current and near future cold atom experiments. Applications to various materials such as MnSi, {Fe}}0.5 {Co}}0.5Si, especially the complex incommensurate magnetic ordering in Li2IrO3 are given.

  11. Adsorption configurations of two nitrogen atoms on graphene

    International Nuclear Information System (INIS)

    Rani, Babita; Jindal, V. K.; Dharamvir, Keya

    2014-01-01

    We present calculations for different possible configurations of two nitrogen adatoms on graphene using the code VASP, based on Density Functional Theory (DFT). Two N atoms adsorbed on the graphene sheet can share a bond in two ways. They take positions either just above two adjacent carbon atoms or they form a bridge across opposite bonds of a hexagon in the graphene sheet. Both these configurations result into structural distortion of the sheet. Another stable configuration involving two N atoms consists of an N 2 molecule which is physisorbed at a distance 3.69 Å on the graphene sheet. Two N atoms can also be adsorbed on alternate bridge sites of neighbouring hexagons of graphene. This configuration again leads to distortion of the sheet in perpendicular direction

  12. Relativity mission with two counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. An experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit is described. For a 2 1 / 2 year experiment, the measurement accuracy should approach 1 percent. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data. (auth)

  13. Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation

    International Nuclear Information System (INIS)

    Schurkus, Henry F.; Ochsenfeld, Christian

    2016-01-01

    An atomic-orbital (AO) reformulation of the random-phase approximation (RPA) correlation energy is presented allowing to reduce the steep computational scaling to linear, so that large systems can be studied on simple desktop computers with fully numerically controlled accuracy. Our AO-RPA formulation introduces a contracted double-Laplace transform and employs the overlap-metric resolution-of-the-identity. First timings of our pilot code illustrate the reduced scaling with systems comprising up to 1262 atoms and 10 090 basis functions. 

  14. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    Science.gov (United States)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, David

    2018-05-01

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.

  15. An atomic oxygen device based on PIG oxygen negative ion source

    International Nuclear Information System (INIS)

    Yu Jinxiang; Cai Minghui; Han Jianwei

    2008-01-01

    It is an important research subject for the spaceflight countries to conduct equivalent simulation of 5 eV atomic oxygen effects for the spaceflight material in low earth orbit. This paper introduces an apparatus used for producing atomic oxygen, which consists of a PIG ion source with permanent magnet, two electrodes extraction system, an electron deflector, an einzel lens, an ion decelerating electrode and a sample bracket. At present it has been used on the small debris accelerator in the Center for Space Science and Applied Research, Chinese Academy of Sciences, and the producing experiments of O - are carried out. 200-300μA of O - ions are extracted at the extraction voltage of 2-3 kV. The experiments for decelerating of O - ions and erosion of kapton foil are carried out also. Because of the target room used for both the atomic oxygen device and the small debris accelerator, the facility can be used for small debris impinging and atomic erosion for spaceflight materials simultaneously. (authors)

  16. Ultracold Atoms in a Square Lattice with Spin-Orbit Coupling: Charge Order, Superfluidity, and Topological Signatures

    Science.gov (United States)

    Rosenberg, Peter; Shi, Hao; Zhang, Shiwei

    2017-12-01

    We present an ab initio, numerically exact study of attractive fermions in square lattices with Rashba spin-orbit coupling. The ground state of this system is a supersolid, with coexisting charge and superfluid order. The superfluid is composed of both singlet and triplet pairs induced by spin-orbit coupling. We perform large-scale calculations using the auxiliary-field quantum Monte Carlo method to provide the first full, quantitative description of the charge, spin, and pairing properties of the system. In addition to characterizing the exotic physics, our results will serve as essential high-accuracy benchmarks for the intense theoretical and especially experimental efforts in ultracold atoms to realize and understand an expanding variety of quantum Hall and topological superconductor systems.

  17. Two-dimensional atom localization via Raman-driven coherence

    Energy Technology Data Exchange (ETDEWEB)

    Rahmatullah,; Qamar, Sajid, E-mail: sajid_qamar@comsats.edu.pk

    2014-02-07

    A scheme for two-dimensional (2D) atom localization via Raman-driven coherence in a four-level diamond-configuration system is suggested. The atom interacts with two orthogonal standing-wave fields where each standing-wave field is constructed from the superposition of the two-standing wave fields along the corresponding directions. Due to the position-dependent atom–field interaction, the frequency of the spontaneously emitted photon carries the position information about the atom. We investigate the effect of the detunings and phase shifts associated with standing-wave fields. Unique position information of the single atom is obtained by properly adjusting the system parameters. This is an extension of our previous proposal for one-dimensional atom localization via Raman-driven coherence.

  18. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    Science.gov (United States)

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.

  19. Two atoms scattering at low and cold energies

    Indian Academy of Sciences (India)

    A modified static-exchange model is developed to study the collision of an atom with another atom. It includes the effect of long-range dipole–dipole van der Waals interaction between two atoms in addition to the exact effect of short-range force due to Coulomb exchange between two system electrons. Both these ...

  20. Two-dimensional atom localization via probe absorption in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization

  1. Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Juan; FANG Mao-Fa

    2004-01-01

    From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number,squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle,the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.

  2. Two-photon decay in heavy atoms and ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Dunford, R.W

    2003-08-01

    We review the status of and comment on current developments in the field of two-photon decay in atomic physics research. Recent work has focused on two-photon decays in highly-charged ions and two-photon decay of inner-shell vacancies in heavy neutral atoms. We emphasize the importance of measuring the shape of the continuum emission in two-photon decay as a probe of relativistic effects in the strong central fields found in heavy atomic systems. New experimental approaches and their consequences will be discussed. (orig.)

  3. Ionization due to the interaction between two Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F

    2005-01-01

    Using a classical trajectory Monte Carlo method, we have computed the ionization resulting from the interaction between two cold Rydberg atoms. We focus on the products resulting from close interaction between two highly excited atoms. We give information on the distribution of ejected electron energies, the distribution of internal atom energies and the velocity distribution of the atoms and ions after the ionization. If the potential for the atom is not purely Coulombic, the average interaction between two atoms can change from attractive to repulsive giving a Van de Graaff-like mechanism for accelerating atoms. In a small fraction of ionization cases, we find that the ionization leads to a positive molecular ion where all of the distances are larger than 1000 Bohr radii

  4. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. [Surgical treatment of diffuse adult orbital lymphangioma: two case studies].

    Science.gov (United States)

    Berthout, A; Jacomet, P V; Putterman, M; Galatoire, O; Morax, S

    2008-12-01

    Orbital lymphangioma is a rare vascular malformation; it is a benign but severe anomaly because of its infiltrative, diffuse, and hemorrhagic nature, and its high morbidity rate. Surgical resection is a real challenge on account of the intricate architecture of the lesion. The authors report their surgical experience concerning two cases of diffuse orbital lymphangioma whose diagnosis was established in adulthood and whose surgical treatment was successful. Two patients presented with adult orbital lymphangioma. Progression was slow during the first decade and then was quickly followed by complications: major exorbitism, compressive optic neuropathy, and corneal exposure. Neuroimaging showed a diffuse and cystic orbital malformation. Surgical resection was performed as completely as possible, in one case with a Krönlein orbitotomy and in the other case only via a conjunctive route. An aspirate drain was put in the orbit for 48 h so as to prevent dead spaces forming after resection, an essential risk factor of hemorrhagic or cystic recurrence. Systemic corticotherapy was administered for the 5 days following surgery. The resection was total in one case and subtotal in the other. The surgical follow-up was uneventful with an excellent aesthetic result and an improvement in visual acuity. After 12 months, no tumoral or hemorrhagic recurrence was noted. The surgical treatment of orbital lymphangiomas is challenging because of their infiltrative nature. In diffuse forms, a complete resection is rarely possible because of the risk of sacrificing visual function. In the two cases reported herein, the resection of the extraconal portion was complete, but the intraconal portion was completely removed only in one case. Using the aspirate drain, negative pressure was maintained in the orbital cavity, preventing the formation of chocolate cysts induced by surgery. Although the clinical result was very satisfying, long-term follow-up is necessary to evaluate recurrence

  6. GLONASS orbit/clock combination in VNIIFTRI

    Science.gov (United States)

    Bezmenov, I.; Pasynok, S.

    2015-08-01

    An algorithm and a program for GLONASS satellites orbit/clock combination based on daily precise orbits submitted by several Analytic Centers were developed. Some theoretical estimates for combine orbit positions RMS were derived. It was shown that under condition that RMS of satellite orbits provided by the Analytic Centers during a long time interval are commensurable the RMS of combine orbit positions is no greater than RMS of other satellite positions estimated by any of the Analytic Centers.

  7. Regular perturbation theory for two-electron atoms

    International Nuclear Information System (INIS)

    Feranchuk, I.D.; Triguk, V.V.

    2011-01-01

    Regular perturbation theory (RPT) for the ground and excited states of two-electron atoms or ions is developed. It is shown for the first time that summation of the matrix elements from the electron-electron interaction operator over all intermediate states can be calculated in a closed form by means of the two-particle Coulomb Green's function constructed in the Letter. It is shown that the second order approximation of RPT includes the main part of the correlation energy both for the ground and excited states. This approach can be also useful for description of two-electron atoms in external fields. -- Highlights: → We develop regular perturbation theory for the two-electron atoms or ions. → We calculate the sum of the matrix elements over all intermediate states. → We construct the two-particle Coulomb Green's function.

  8. Orbit determination with the two-body integrals: III

    Science.gov (United States)

    Gronchi, G. F.; Baù, G.; Marò, S.

    2015-10-01

    We present the results of our investigation on the use of the two-body integrals to compute preliminary orbits by linking too short arcs of observations of celestial bodies. This work introduces a significant improvement with respect to the previous papers on the same subject: Gronchi et al. (2010, 2011). Here we find a univariate polynomial equation of degree 9 in the radial distance ρ of the orbit at the mean epoch of one of the two arcs. This is obtained by a combination of the algebraic integrals of the two-body problem. Moreover, the elimination step, which in Gronchi et al. (2010, 2011) was done by resultant theory coupled with the discrete Fourier transform, is here obtained by elementary calculations. We also show some numerical tests to illustrate the performance of the new algorithm.

  9. The method of intersecting spheres for determination of coordination numbers of atoms in crystal structures

    International Nuclear Information System (INIS)

    Serezhkin, V.N.; Buslaev, Yu.A.; Mikhajlov, Yu.N.

    1997-01-01

    New method for determination of coordination numbers (CN) of atoms in crystal structures, based on the model of interatomic interaction, within the frames whereof each atom is approximated by two spheres with the common center in the atom nuclei, is proposed. One of the spheres specifies conditionally isolated (chemically unbound) atom and its radius is a constant, which for atoms of the given chemical sort in the structure of any compound is equal to quasi-orbital Sleiter radius. The sphere of the other radius specifies chemically bound atom and coincides with the sphere, the volume whereof is equal to the volume of the Voronoj-Dirichlet polyhedron of the corresponding atom in the structure of the concrete crystal. Using a series of examples, workability of the given method for CN determination of atoms in structures of both simple substances and chemical compounds (alkali, transition metals, U, Th). Good agreement of the obtained results with the generally accepted CN s of atoms for the considered crystals is noted and a number of principal advantages of the new method, as compared to classical one of the CNs evaluation, is demonstrated

  10. Energy level diagrams for black hole orbits

    Science.gov (United States)

    Levin, Janna

    2009-12-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  11. Energy level diagrams for black hole orbits

    International Nuclear Information System (INIS)

    Levin, Janna

    2009-01-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  12. Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)

  13. wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials

    Science.gov (United States)

    Gastegger, M.; Schwiedrzik, L.; Bittermann, M.; Berzsenyi, F.; Marquetand, P.

    2018-06-01

    We introduce weighted atom-centered symmetry functions (wACSFs) as descriptors of a chemical system's geometry for use in the prediction of chemical properties such as enthalpies or potential energies via machine learning. The wACSFs are based on conventional atom-centered symmetry functions (ACSFs) but overcome the undesirable scaling of the latter with an increasing number of different elements in a chemical system. The performance of these two descriptors is compared using them as inputs in high-dimensional neural network potentials (HDNNPs), employing the molecular structures and associated enthalpies of the 133 855 molecules containing up to five different elements reported in the QM9 database as reference data. A substantially smaller number of wACSFs than ACSFs is needed to obtain a comparable spatial resolution of the molecular structures. At the same time, this smaller set of wACSFs leads to a significantly better generalization performance in the machine learning potential than the large set of conventional ACSFs. Furthermore, we show that the intrinsic parameters of the descriptors can in principle be optimized with a genetic algorithm in a highly automated manner. For the wACSFs employed here, we find however that using a simple empirical parametrization scheme is sufficient in order to obtain HDNNPs with high accuracy.

  14. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  15. Scattering resonances in a low-dimensional Rashba-Dresselhaus spin-orbit coupled quantum gas

    Science.gov (United States)

    Wang, Su-Ju; Blume, D.

    2017-04-01

    Confinement-induced resonances allow for the tuning of the effective one-dimensional coupling constant. When the scattering state associated with the ground transverse mode is brought into resonance with the bound state attached to the energetically excited transverse modes, the atoms interact through an infinitely strong repulsion. This provides a route to realize the Tonks-Girardeau gas. On the other hand, the realization of synthetic gauge fields in cold atomic systems has attracted a lot of attention. For instance, bound-state formation is found to be significantly modified in the presence of spin-orbit coupling in three dimensions. This motivates us to study ultracold collisions between two Rashba-Dresselhaus spin-orbit coupled atoms in a quasi-one-dimensional geometry. We develop a multi-channel scattering formalism that accounts for the external transverse confinement and the spin-orbit coupling terms. The interplay between these two single-particle terms is shown to give rise to new scattering resonances. In particular, it is analyzed what happens when the scattering energy crosses the various scattering thresholds that arise from the single-particle confinement and the spin-orbit coupling. Support by the NSF is gratefully acknowledged.

  16. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    Science.gov (United States)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  17. Micrometeorological study of the emplacement at the Ezeiza Atomic Center

    International Nuclear Information System (INIS)

    Berri, G.J.; Robbio, C.A.

    1986-01-01

    An evaluation of meteorological conditions searched at the Ezeiza Atomic Center is presented by means of the data obtained at the micrometeorological station of the Atomic Center during the period January-December 1979. The daily and yearly mean behaviour of the temperature, humidity and wind's directions and speed is shown as well as extreme values persistence of temperature and humidity, the annual behaviour of the precipitation and its relation with the wind's direction. Special attention is given to the atmospheric dispersion characteristic through the study of the low-wind-speed persistence, wind direction persistence and wind's direction distribution confronted with the stability classes. An evaluation of the dispersion factor or normalized concentration, both for short term releases (1 hour), as well as long term releases (time integrated concentration annual factor) is shown. Those factors are representative for mean situations; they can not be employed for isolated situations. Finally, it is emphasized that although the results were obtained by means of 1979 data, significative differences are no expected for other years. (M.E.L.) [es

  18. Motion of guiding center drift atoms in the electric and magnetic field of a Penning trap

    International Nuclear Information System (INIS)

    Kuzmin, S.G.; O'Neil, T.M.

    2005-01-01

    The ApparaTus for High precision Experiment on Neutral Antimatter and antihydrogen TRAP collaborations have produced antihydrogen atoms by recombination in a cryogenic antiproton-positron plasma. This paper discusses the motion of the weakly bound atoms in the electric and magnetic field of the plasma and trap. The effective electric field in the moving frame of the atom polarizes the atom, and then gradients in the field exert a force on the atom. An approximate equation of motion for the atom center of mass is obtained by averaging over the rapid internal dynamics of the atom. The only remnant of the atom internal dynamics that enters this equation is the polarizability for the atom. This coefficient is evaluated for the weakly bound and strongly magnetized (guiding center drift) atoms understood to be produced in the antihydrogen experiments. Application of the approximate equation of motion shows that the atoms can be trapped radially in the large space charge field near the edge of the positron column. Also, an example is presented for which there is full three-dimensional trapping, not just radial trapping. Even untrapped atoms follow curved trajectories, and such trajectories are discussed for the important class of atoms that reach a field ionization diagnostic. Finally, the critical field for ionization is determined as an upper bound on the range of applicability of the theory

  19. Charge-spin-orbital dynamics of one-dimensional two-orbital Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Hiroaki [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2010-01-15

    We study the real-time evolution of a charge-excited state in a one-dimensional e{sub g}-orbital degenerate Hubbard model, by a time-dependent density-matrix renormalization group method. Considering a chain along the z direction, electrons hop between adjacent 3z{sup 2}-r{sup 2} orbitals, while x{sup 2}-y{sup 2} orbitals are localized. For the charge-excited state, a holon-doublon pair is introduced into the ground state at quarter filling. At initial time, there is no electron in a holon site, while a pair of electrons occupies 3z{sup 2}-r{sup 2} orbital in a doublon site. As the time evolves, the holon motion is governed by the nearest-neighbor hopping, but the electron pair can transfer between 3z{sup 2}-r{sup 2} orbital and x{sup 2}-y{sup 2} orbital through the pair hopping in addition to the nearest-neighbor hopping. Thus holon and doublon propagate at different speed due to the pair hopping that is characteristic of multi-orbital systems.

  20. Orbital apex syndrome associated with fractures of the inferomedial orbital wall

    Directory of Open Access Journals (Sweden)

    Sugamata A

    2013-03-01

    Full Text Available Akira SugamataDepartment of Plastic and Reconstructive Surgery, Tokyo Medical University Hachioji Medical Center, Tokyo, JapanAbstract: Although trauma is one of the main causes of orbital apex syndrome (OAS, reports of OAS associated with orbital fractures are relatively rare. We recently treated two patients who sustained severe visual impairment with damage to multiple cranial nerves (third to sixth associated with inferomedial orbital wall fractures. In these patients, posterior movement of the globe caused neuropathy of the cranial and optic nerves by posterior globe edema and hemorrhage, or direct impact between the globe and wall, which might then have induced OAS in the cases described in this report. Steroid therapy was unsuccessful for optic neuropathy due to the delay between injury and administration. When treating patients with inferomedial orbital blowout fractures due to globe-to-wall contact, it is necessary to routinely assess and monitor visual acuity since there may be a delay between the injury and OAS onset.Keywords: orbital apex syndrome, orbital fracture, blowout fracture, optic nerve, globe-to-wall contact mechanism

  1. One Photon Can Simultaneously Excite Two or More Atoms.

    Science.gov (United States)

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  2. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined with...... and experiment is excellent. In addition, by properly choosing the Rabi frequencies of the two optical transitions a velocity independent atomic dark state is observed....

  3. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    Science.gov (United States)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  4. A Hartree–Fock study of the confined helium atom: Local and global basis set approaches

    Energy Technology Data Exchange (ETDEWEB)

    Young, Toby D., E-mail: tyoung@ippt.pan.pl [Zakład Metod Komputerowych, Instytut Podstawowych Prolemów Techniki Polskiej Akademia Nauk, ul. Pawińskiego 5b, 02-106 Warszawa (Poland); Vargas, Rubicelia [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico); Garza, Jorge, E-mail: jgo@xanum.uam.mx [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico)

    2016-02-15

    Two different basis set methods are used to calculate atomic energy within Hartree–Fock theory. The first is a local basis set approach using high-order real-space finite elements and the second is a global basis set approach using modified Slater-type orbitals. These two approaches are applied to the confined helium atom and are compared by calculating one- and two-electron contributions to the total energy. As a measure of the quality of the electron density, the cusp condition is analyzed. - Highlights: • Two different basis set methods for atomic Hartree–Fock theory. • Galerkin finite element method and modified Slater-type orbitals. • Confined atom model (helium) under small-to-extreme confinement radii. • Detailed analysis of the electron wave-function and the cusp condition.

  5. Spin-orbital quantum liquid on the honeycomb lattice

    Science.gov (United States)

    Corboz, Philippe

    2013-03-01

    The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.

  6. A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle

    Science.gov (United States)

    Yang, Yong; Wang, Xiaojun; Tang, Yihua

    2002-01-01

    Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.

  7. The large second-harmonic generation of LiCs{sub 2}PO{sub 4} is caused by the metal-cation-centered groups

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiyue; Guo, Guo-Cong; Hong, Maochun; Deng, Shuiquan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Whangbo, Myung-Hwan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Department of Chemistry, North Carolina State University, Raleigh, NC (United States)

    2018-04-03

    We evaluated the individual atom contributions to the second harmonic generation (SHG) coefficients of LiCs{sub 2}PO{sub 4} (LCPO) by introducing the partial response functionals on the basis of first principles calculations. The SHG response of LCPO is dominated by the metal-cation-centered groups CsO{sub 6} and LiO{sub 4}, not by the nonmetal-cation-centered groups PO{sub 4} expected from the existing models and theories. The SHG coefficients of LCPO are determined mainly by the occupied orbitals O 2p and Cs 5p as well as by the unoccupied orbitals Cs 5d and Li 2p. For the SHG response of a material, the polarizable atomic orbitals of the occupied and the unoccupied states are both important. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Critical hand ischemia treatment via orbital atherectomy-A single center observational retrospective analysis.

    Science.gov (United States)

    Bahro, Abdul; Igyarto, Zsuzsanna; Martinsen, Brad

    2017-03-01

    Critical hand ischemia (CHI) can be devastating and may result in amputation. Distal vessel calcification has been shown to be a major factor in causing CHI. Atherectomy in the upper extremities is not typically considered due to the small anatomy; however, the Diamondback 360° Peripheral Orbital Atherectomy System (OAS) (Cardiovascular Systems, Inc.) can access treatment areas with a reference vessel diameter of 1.5mm. A retrospective, observational, single center (Merit Health Center, Jackson, MS) analysis of 11 CHI patients with calcific disease of the radial artery treated with orbital atherectomy (OAS) was completed. Demographics and procedural to 30-day outcomes were assessed. All patients had good blood flow to the hand after intervention and none experienced complications during or immediately post-procedure. At 30-days the freedom from revascularization and amputation was 100%, and all the wounds were healed. The following important principles were followed during the use of OAS for CHI: (1) ACT was therapeutic (~250s); (2) Gentle wire manipulation; (3) Utilization of a small OAS crown (1.25mm); (4) Aggressive vasodilator use-given through the exchange catheter; (5) Angioplasty balloon was matched to the size of the vessel and long and low pressure inflations were completed. Critical hand ischemia can be treated with endovascular techniques. Obtaining good outflow to the fingers is critical for wound healing and preventing amputation. Orbital atherectomy is a useful tool in preparing vessels for balloon angioplasty; particularly in cases where calcification is present. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. BepiColombo — The Next Step of Mercury Exploration with Two Orbiting Spacecraft

    Science.gov (United States)

    Benkhoff, J.

    2018-05-01

    BepiColombo is a joint project between ESA and JAXA. The mission consists of two orbiters — the Mercury Planetary Orbiter and the Mercury Magnetospheric Orbiter. From dedicated orbits, the spacecraft will be studying the planet and its environment.

  10. Angles-only relative orbit determination in low earth orbit

    Science.gov (United States)

    Ardaens, Jean-Sébastien; Gaias, Gabriella

    2018-06-01

    The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.

  11. Focusing effects by one and two Coulomb centers in the autoionization of He

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, S; Otranto, S [CONICET and Dto. de Fisica, Universidad Nacional del Sur, 8000 Bahia Blanca (Argentina); Suarez, S; Garibotti, C R, E-mail: smartine@criba.edu.a, E-mail: sotranto@uns.edu.a [CONICET and Centro Atomico Bariloche, 8400 S. C. de Bariloche (Argentina)

    2009-11-01

    In this work we consider the autoionization of He following double electron capture in He{sup 2+} + H{sub 2} collisions at an impact energy of 14 keV/amu. The post-collisional interaction with the two Coulomb centers is treated within the Barrachina-Macek model by employing the {Phi}{sub 2} correlated wave function introduced by Gasaneo et al to represent the continuum of the emitted electron in the field of two Coulomb centers. We compare the angular profiles in the electron spectrum with those obtained following double electron capture for the collision system He{sup 2+}+ He. Clear differences are observed in the spectra obtained for the atomic and molecular targets.

  12. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-01-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s 2 1 S 0 ↔ 6s7s 1 S 0 ) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm 3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s 1 S 0 state via the intercombination 6s6p 3 P 1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  13. The Atomic Spectroscopy Data Center at the National Institute of Standards and Technology (NIST). Activities 1999-2001

    International Nuclear Information System (INIS)

    Wiese, W.L.

    2001-01-01

    Dr. Wiese discussed activities and trends at the NIST Data Centers in the last two years. He reviewed priorities covered in data work and reviewed the bibliographic and numerical databases now on their website. The Atomic Spectra Database (ASD) is their main atomic physics web database and this is a reference data, e.g., the wavelength data is generally accurate to six significant figures and transition probability data is certain to with less than ±50%. Dr. Wiese also reported about recent work on the compilation and evaluation of data for wavelengths and energy levels of elements Cu, Kr and Mo (and several others), which are fusion relevant

  14. The Atomic Spectroscopy Data Center at the National Institute of Standards and Technology (NIST). Activities 1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, W L

    2001-12-01

    Dr. Wiese discussed activities and trends at the NIST Data Centers in the last two years. He reviewed priorities covered in data work and reviewed the bibliographic and numerical databases now on their website. The Atomic Spectra Database (ASD) is their main atomic physics web database and this is a reference data, e.g., the wavelength data is generally accurate to six significant figures and transition probability data is certain to with less than {+-}50%. Dr. Wiese also reported about recent work on the compilation and evaluation of data for wavelengths and energy levels of elements Cu, Kr and Mo (and several others), which are fusion relevant.

  15. Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light

    Science.gov (United States)

    Seipt, D.; Müller, R. A.; Surzhykov, A.; Fritzsche, S.

    2016-11-01

    The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultraviolet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target atoms with regard to the beam axis. In addition, analog to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of the atoms relative to the beam. For macroscopically extended targets, in contrast, three of these dichroism signals tend to zero, while the other four just coincide with the standard circular dichroism, similar as for Bessel beams with a small opening angle. Detailed computations of the dichroism are performed and discussed for the 4 s valence-shell photoionization of Ca+ ions.

  16. Beams made of twisted atoms: A theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hayrapetyan, Armen [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, 69120 Heidelberg (Germany); Matula, Oliver [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, 69120 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Surzhykov, Andrey [Helmholtz-Institut Jena, 07743 Jena (Germany); Fritzsche, Stephan [Helmholtz-Institut Jena, 07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena, 07743 Jena (Germany)

    2014-07-01

    We have analyzed Bessel beams of two-level atoms that are driven by a linearly polarized laser light. Based on the Schroedinger equation for two-level systems, we first determine the states of two-level atoms in a plane-wave field by taking into account propagation directions both of the atom and the field. For such laser-driven two-level atoms, we construct Bessel beams by going beyond the typical paraxial approximation. In particular, we show that the probability density of these atomic beams exhibits a non-trivial, Bessel-squared-type behavior. The profile of such twisted atoms is affected by atom and laser parameters, such as the nuclear charge, atom velocity, laser frequency, and propagation geometry of the atom and laser beams. Moreover, we spatially and temporally characterize the beam of hydrogen and selected (neutral) alkali-metal atoms that carry non-zero orbital angular momentum (OAM). The proposed spatiotemporal Bessel states (i) are able to describe twisted states of any two-level system which is driven by the radiation field and (ii) have potential applications in atomic and nuclear processes as well as in quantum communication.

  17. Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities

    Science.gov (United States)

    Zheng, Bin; Shen, Li-Tuo; Chen, Ming-Feng

    2016-05-01

    We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X-Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.

  18. The entanglement evolution between two entangled atoms

    Indian Academy of Sciences (India)

    ... entanglement between the two atoms changes periodically and undergoes the entanglement sudden death (ESD) and sudden birth at some time. The entanglement properties between the field and the atom insidethe cavity are dependent on the photon number. Most interestingly, the entanglement between the field and ...

  19. Goods and services from the activities of the Constituyentes Atomic Center

    International Nuclear Information System (INIS)

    Hermida, Jorge D.

    2001-01-01

    Technologies developed and used at the Constituyentes Atomic Center (CAC) are applied in Argentina in different fields, such as seamless pipes industry, non-destructive testing and quality assurance, food industry, microalloyed steels, medicine, space activities, air pollution studies, etc. The CAC has also a wide program of technical assistance to the industry

  20. Two-pulse atomic coherent control spectroscopy of Eley-Rideal reactions: An application of an atom laser

    International Nuclear Information System (INIS)

    Joergensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC (two-pulse atomic coherent control) employs the coherent properties of matter waves from a two-pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas-phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schroedinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters

  1. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    Science.gov (United States)

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  2. Use of the neighboring orbital model for analysis of electronic coupling in Class III intervalence compounds

    International Nuclear Information System (INIS)

    Nelsen, Stephen F.; Weaver, Michael N.; Luo Yun; Lockard, Jenny V.; Zink, Jeffrey I.

    2006-01-01

    Symmetrical charge-delocalized intervalence radical ions should not be described by the traditional two-state model that has been so successful for their localized counterparts. If they lack direct overlap between their charge-bearing units (M), their diabatic orbitals have an equal energy pair of symmetrized M-centered combination orbitals that are symmetric (S) or antisymmetric (A) with respect to a symmetry element at the center of the molecule. The M combination orbitals will mix separately with bridge orbitals of the same symmetry. We call the simplest useful model for this situation the neighboring orbital model, which uses the S and A bridge orbitals of high overlap that lie closest in energy to the M orbital pair, resulting in two two-state models that have a common energy for one pair. This model is developed quantitatively, and examples having 1, 3, 5, and 7 electrons in the neighboring orbitals are illustrated

  3. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Tai Hyun [Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-02-15

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s{sup 2} {sup 1}S{sub 0}{r_reversible} 6s7s {sup 1}S{sub 0}) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm{sup 3} and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s{sup 1}S{sub 0} state via the intercombination 6s6p{sup 3}P{sub 1} state with a high signal-to-noise ratio even at the temperature of 340 Degree-Sign C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  4. Atomic Center interactions in BaO; Al2O3; B2O3 glasses containing silver

    International Nuclear Information System (INIS)

    Pontuschka, W.M.; Piccini, A.

    1979-01-01

    The EPR study of borate glasses, with 30% of BaO and 5% mole of silver, X-irradiated at 77 0 K, showed Ag 0 and Ag ++ centers. In addition were detected the boron electron center (BEC) and the boron hole center. The silver centers and BEC were studied in detail and the spin Hamiltonian parameters are given. The different Al 2 O 3 concentrations exerted only little influence on the tabulated constants. The Ag + 2 center was not observed, indicating that the collisions between Ag atoms are not very frequent in these glasses, even during the process of thermal bleaching. The hfs of the boron electron center suffered severe variation as one compared the spectra of base glasses and those containing silver. This is an evidence of the action of silver as a glass modifier like the alkali atoms [pt

  5. Roothaan's approach to solve the Hartree-Fock equations for atoms confined by soft walls: Basis set with correct asymptotic behavior.

    Science.gov (United States)

    Rodriguez-Bautista, Mariano; Díaz-García, Cecilia; Navarrete-López, Alejandra M; Vargas, Rubicelia; Garza, Jorge

    2015-07-21

    In this report, we use a new basis set for Hartree-Fock calculations related to many-electron atoms confined by soft walls. One- and two-electron integrals were programmed in a code based in parallel programming techniques. The results obtained with this proposal for hydrogen and helium atoms were contrasted with other proposals to study just one and two electron confined atoms, where we have reproduced or improved the results previously reported. Usually, an atom enclosed by hard walls has been used as a model to study confinement effects on orbital energies, the main conclusion reached by this model is that orbital energies always go up when the confinement radius is reduced. However, such an observation is not necessarily valid for atoms confined by penetrable walls. The main reason behind this result is that for atoms with large polarizability, like beryllium or potassium, external orbitals are delocalized when the confinement is imposed and consequently, the internal orbitals behave as if they were in an ionized atom. Naturally, the shell structure of these atoms is modified drastically when they are confined. The delocalization was an argument proposed for atoms confined by hard walls, but it was never verified. In this work, the confinement imposed by soft walls allows to analyze the delocalization concept in many-electron atoms.

  6. Cavity-QED interactions of two correlated atoms

    Science.gov (United States)

    Esfandiarpour, Saeideh; Safari, Hassan; Bennett, Robert; Yoshi Buhmann, Stefan

    2018-05-01

    We consider the resonant van der Waals (vdW) interaction between two correlated identical two-level atoms (at least one of which being excited) within the framework of macroscopic cavity quantum electrodynamics in linear, dispersing and absorbing media. The interaction of both atoms with the body-assisted electromagnetic field of the cavity is assumed to be strong. Our time-independent evaluation is based on an extended Jaynes–Cummings model. For a system prepared in a superposition of its dressed states, we derive the general form of the vdW forces, using a Lorentzian single-mode approximation. We demonstrate the applicability of this approach by considering the case of a planar cavity and showing the position dependence of Rabi oscillations. We also show that in the limiting case of weak coupling, our results reproduce the perturbative ones for the case where the field is initially in vacuum state while the atomic state is in a superposition of two correlated states sharing one excitation.

  7. Wavefunction and energy of the 1s22sns configuration in a beryllium atom

    International Nuclear Information System (INIS)

    Huang Shizhong; Ma Kun; Yu Jiaming; Liu Fen

    2008-01-01

    A new set of trial functions for 1s 2 2sns configurations in a beryllium atom is suggested. A Mathematica program based on the variational method is developed to calculate the wavefunctions and energies of 1s 2 2sns (n = 3–6) configurations in a beryllium atom. Non-relativistic energy, polarization correction and relativistic correction which include mass correction, one-and two-body Darwin corrections, spin-spin contact interaction and orbit-orbit interaction, are calculated respectively. The results are in good agreement with experimental data. (atomic and molecular physics)

  8. Present status and future plans of the National Atomic Research Center of Malaysia

    International Nuclear Information System (INIS)

    Rashid, N.K.

    1980-01-01

    The Malaysian Atomic Research Center (PUSPATI) was established in 1972 and operates under the Ministry of Science, Technology and the Environment. It is the first research center of this kind in Malaysia. Some of the objectives of this center are: operation and maintenance of the research reactor; research and development in reactor science and technology; production of short-lived radioisotopes for use in medicine, agriculture and industry; coordination of the utilization of the reactor and its experimental facilities among the various research institutes and universities; training in nuclear radiation field; personnel monitoring and environmental surveillance

  9. Probabilistic teleportation of an arbitrary pure state of two atoms

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao; Wu Huai-Zhi; Su Wan-Jun

    2007-01-01

    In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement,it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.

  10. Quantum interference between two phonon paths and reduced heat transport in diamond lattice with atomic-scale planar defects

    Science.gov (United States)

    Kosevich, Yu. A.; Strelnikov, I. A.

    2018-02-01

    Destructive quantum interference between the waves propagating through laterally inhomogeneous layer can result in their total reflection, which in turn reduces energy flux carried by these waves. We consider the systems of Ge atoms, which fully or partly, in the chequer-wise order, fill a crystal plane in diamond-like Si lattice. We have revealed that a single type of the atomic defects, which are placed in identical positions in different unit cells in the defect crystal plane, can result in double transmission antiresonances of phonon wave packets. This new effect we relate with the complex structure of the diamond-like unit cell, which comprises two atoms in different positions and results in two distinct vibration resonances in two interfering phonon paths. We also consider the propagation of phonon wave packets in the superlatticies made of the defect planes, half-filled in the chequer-wise order with Ge atoms. We have revealed relatively broad phonon stop bands with center frequencies at the transmission antiresonances. We elaborate the equivalent analytical quasi-1D lattice model of the two phonon paths through the complex planar defect in the diamond-like lattice and describe the reduction of phonon heat transfer through the atomic-scale planar defects.

  11. Probabilistic Teleportation of an Arbitrary Two-Atom State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-Ming

    2007-01-01

    We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED.It is shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not,our teleportation scheme can always be probabilistically realized.The success probability of teleportation is determined by the smaller coefficients of the two initially entangled atom pairs.

  12. Effect of an elliptical orbit on SPECT resolution and image uniformity

    International Nuclear Information System (INIS)

    Gottschalk, S.; Salem, D.

    1982-01-01

    This paper studies the impact of elliptical motion on SPECT resolution and detector flood correction as implemented in a Technicare Omega 500. Bringing the detector closer to the object improves detector resolution in each view, which results in improved resolution in the reconstructed image. In the Omega 500 the elliptical orbit is realized by a succession of translational and rotational motions of the detector head. This introduces motion of the detector center relative to the object center. Statistical fluctuations in the flood correction matrix due to the finite acquisition time result in ring artifacts for the circular orbit. The relative center motion of an elliptical orbit results in an averaging of the flood correction noise and a significant reduction in artifacts. These two aspects of SPECT spatial resolution and flood correction response improvement in elliptical orbit have been analyzed through computer simulations for point sources and a uniform activity 20 x 30 cm ellipse. Results compared a 35 cm diameter circular orbit to a 35 x 25 cm elliptical orbit

  13. Two-electron germanium centers with a negative correlation energy in lead chalcogenides

    International Nuclear Information System (INIS)

    Terukov, E. I.; Marchenko, A. V.; Zaitseva, A. V.; Seregin, P. P.

    2007-01-01

    It is shown that the charge state of the 73 Ge antisite defect that arises in anionic sublattices of PbS, PbSe, and PbTe after radioactive transformation of 73 As does not depend on the position of the Fermi level, whereas the 73 Ge center in cationic sublattices of PbS and PbSe represents a two-electron donor with the negative correlation energy: the Moessbauer spectrum for the n-type samples corresponds to the neutral state of the donor center (Ge 2+ ), while this spectrum corresponds to the doubly ionized state (Ge 4+ ) of the center in the p-type samples. In partially compensated PbSe samples, a fast electron exchange between the neutral and ionized donor centers is realized. It is shown by the method of Moessbauer spectroscopy for the 119 Sn isotope that the germanium-related energy levels are located higher than the levels formed in the band gap of these semiconductors by the impurity tin atoms

  14. Correction of the horizontal closed orbit at all energies

    International Nuclear Information System (INIS)

    Degueurce, L.; Nakach, A.

    The method followed is accomplished in two steps. At average energy, the closed orbit is corrected by a remote realignment of the focusing quadrupoles by a known quantity. This closed orbit, created by the position adjustment of the quadrupoles, is valid during the whole cycle; but at low energy level, a closed orbit is added because of constant currents or parasitic fields whose effects decrease as the energy level increases. This residual orbit is corrected during the injection by dipolar correction fields, located on the inside of the quadrupoles and fed by direct currents. Therefore, the closed orbit resulting from the superposition of the two types of corrections and defects is brought back to +- 2.5 mm with respect to the center of the quadrupoles

  15. Roothaan’s approach to solve the Hartree-Fock equations for atoms confined by soft walls: Basis set with correct asymptotic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Bautista, Mariano; Díaz-García, Cecilia; Navarrete-López, Alejandra M.; Vargas, Rubicelia; Garza, Jorge, E-mail: jgo@xanum.uam.mx [Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa C. P. 09340, México D. F., México (Mexico)

    2015-07-21

    In this report, we use a new basis set for Hartree-Fock calculations related to many-electron atoms confined by soft walls. One- and two-electron integrals were programmed in a code based in parallel programming techniques. The results obtained with this proposal for hydrogen and helium atoms were contrasted with other proposals to study just one and two electron confined atoms, where we have reproduced or improved the results previously reported. Usually, an atom enclosed by hard walls has been used as a model to study confinement effects on orbital energies, the main conclusion reached by this model is that orbital energies always go up when the confinement radius is reduced. However, such an observation is not necessarily valid for atoms confined by penetrable walls. The main reason behind this result is that for atoms with large polarizability, like beryllium or potassium, external orbitals are delocalized when the confinement is imposed and consequently, the internal orbitals behave as if they were in an ionized atom. Naturally, the shell structure of these atoms is modified drastically when they are confined. The delocalization was an argument proposed for atoms confined by hard walls, but it was never verified. In this work, the confinement imposed by soft walls allows to analyze the delocalization concept in many-electron atoms.

  16. Time ordering of two-step processes in energetic ion-atom collisions: Basic formalism

    International Nuclear Information System (INIS)

    Stolterfoht, N.

    1993-01-01

    The semiclassical approximation is applied in second order to describe time ordering of two-step processes in energetic ion-atom collisions. Emphasis is given to the conditions for interferences between first- and second-order terms. In systems with two active electrons, time ordering gives rise to a pair of associated paths involving a second-order process and its time-inverted process. Combining these paths within the independent-particle frozen orbital model, time ordering is lost. It is shown that the loss of time ordering modifies the second-order amplitude so that its ability to interfere with the first-order amplitude is essentially reduced. Time ordering and the capability for interference is regained, as one path is blocked by means of the Pauli exclusion principle. The time-ordering formalism is prepared for papers dealing with collision experiments of single excitation [Stolterfoht et al., following paper, Phys. Rev. A 48, 2986 (1993)] and double excitation [Stolterfoht et al. (unpublished)

  17. Two-dimensional electron states bound to an off-plane donor in a magnetic field

    International Nuclear Information System (INIS)

    Bruno-Alfonso, A; Candido, L; Hai, G-Q

    2010-01-01

    The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

  18. Collapse–revival of squeezing of two atoms in dissipative cavities

    International Nuclear Information System (INIS)

    Zou Hong-Mei; Fang Mao-Fa

    2016-01-01

    Based on the time-convolutionless master-equation approach, we investigate the squeezing dynamics of two atoms in dissipative cavities. We find that the atomic squeezing is related to initial atomic states, atom–cavity couplings, non-Markovian effects and resonant frequencies of an atom and its cavity. The results show that a collapse–revival phenomenon will occur in the atomic squeezing and this process is accompanied by the buildup and decay of entanglement between two atoms. Enhancing the atom–cavity coupling can increase the frequency of the collapse–revival of the atomic squeezing. The stronger the non-Markovian effect is, the more obvious the collapse–revival phenomenon is. In particular, if the atom–cavity coupling or the non-Markovian effect is very strong, the atomic squeezing will tend to a stably periodic oscillation in a long time. The oscillatory frequency of the atomic squeezing is dependent on the resonant frequency of the atom and its cavity. (paper)

  19. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. III. The Covalent Bonding Structure of Urea.

    Science.gov (United States)

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2015-10-15

    The analysis of molecular electron density matrices in terms of quasi-atomic orbitals, which was developed in previous investigations, is quantitatively exemplified by a detailed application to the urea molecule. The analysis is found to identify strong and weak covalent bonding interactions as well as intramolecular charge transfers. It yields a qualitative as well as quantitative ab initio description of the bonding structure of this molecule, which raises questions regarding some traditional rationalizations.

  20. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    International Nuclear Information System (INIS)

    Herman, R.M.

    1982-01-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms

  1. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    Science.gov (United States)

    Herman, R. M.

    1982-03-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.

  2. A simple analytical model for electronic conductance in a one dimensional atomic chain across a defect

    International Nuclear Information System (INIS)

    Khater, Antoine; Szczesniak, Dominik

    2011-01-01

    An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.

  3. Two wide-angle imaging neutral-atom spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.

    1997-12-31

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , {approximately} 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ``Sun-Earth Connections`` science theme of the NASA Office of Space Science.

  4. Two wide-angle imaging neutral-atom spectrometers

    International Nuclear Information System (INIS)

    McComas, D.J.

    1997-01-01

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , ∼ 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ''Sun-Earth Connections'' science theme of the NASA Office of Space Science

  5. A novel spacetime concept for describing electronic motion within a helium atom

    OpenAIRE

    Xu, Kunming

    2007-01-01

    Euclidean space and linear algebra do not characterize dynamic electronic orbitals satisfactorily for even the motion of both electrons in an inert helium atom cannot be defined in reasonable details. Here the author puts forward a novel two-dimensional spacetime model from scratch in the context of defining both electrons in a helium atom. Space and time are treated as two orthogonal, symmetric and complementary quantities under the atomic spacetime. Electronic motion observed the rule of di...

  6. Discrete spectrum of the two-center problem of p bar He+ atomcule

    International Nuclear Information System (INIS)

    Pavlov, D.V.; Puzynin, I.V.; Vinitskij, S.I.

    1999-01-01

    A discrete spectrum of the two-center Coulomb problem of p bar He + system is studied. For solving this problem the finite-difference scheme of the 4th-order and the continuous analog of Newton's method are applied. The algorithm for calculation of eigenvalues and eigenfunctions with optimization of the parameter of the fractional-rational transformation of the quasiradial variable to a finite interval is developed. The specific behaviour of the solutions in a vicinity of the united and separated atoms is discussed

  7. Atom and Bond Fukui Functions and Matrices: A Hirshfeld-I Atoms-in-Molecule Approach.

    Science.gov (United States)

    Oña, Ofelia B; De Clercq, Olivier; Alcoba, Diego R; Torre, Alicia; Lain, Luis; Van Neck, Dimitri; Bultinck, Patrick

    2016-09-19

    The Fukui function is often used in its atom-condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms-in-molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld-I atoms-in-molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld-I approach to obtain atom- and bond-condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms-in-molecule approach shows low correlation between the two partitioning schemes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Verifying black hole orbits with gravitational spectroscopy

    International Nuclear Information System (INIS)

    Drasco, Steve

    2009-01-01

    Gravitational waves from test masses bound to geodesic orbits of rotating black holes are simulated, using Teukolsky's black hole perturbation formalism, for about ten thousand generic orbital configurations. Each binary radiates power exclusively in modes with frequencies that are integer-linear combinations of the orbit's three fundamental frequencies. General spectral properties are found with a survey of orbits about a black hole taken to be rotating at 80% of the maximal spin. The orbital eccentricity is varied from 0.1 to 0.9. Inclination ranges from 20 deg. to 160 deg. and comes to within 20 deg. of polar. Semilatus rectum is varied from 1.2 to 3 times the value at the innermost stable circular orbits. The following general spectral properties are found: (i) 99% of the radiated power is typically carried by a few hundred modes, and at most by about a thousand modes, (ii) the dominant frequencies can be grouped into a small number of families defined by fixing two of the three integer frequency multipliers, and (iii) the specifics of these trends can be qualitatively inferred from the geometry of the orbit under consideration. Detections using triperiodic analytic templates modeled on these general properties would constitute a verification of radiation from an adiabatic sequence of black hole orbits and would recover the evolution of the fundamental orbital frequencies. In an analogy with ordinary spectroscopy, this would compare to observing the Bohr model's atomic hydrogen spectrum without being able to rule out alternative atomic theories or nuclei. The suitability of such a detection technique is demonstrated using snapshots computed at 12-hour intervals throughout the last three years before merger of a kludged inspiral. The system chosen is typical of those thought to occur in galactic nuclei and to be observable with space-based gravitational wave detectors like LISA. Because of circularization, the number of excited modes decreases as the binary

  9. Calculation of spin and orbital magnetizations in Fe slab systems at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Garibay-Alonso, R [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Coahuila, Conjunto Universitario Camporredondo, Edificio ' D' , 25000 Saltillo (Mexico); Reyes-Reyes, M [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis PotosI, Alvaro Obregon 64, San Luis PotosI (Mexico); Urrutia-Banuelos, EfraIn [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico); Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, CP 78216, San Luis PotosI (Mexico)

    2010-02-10

    The temperature dependence of spin and orbital local magnetizations is theoretically determined for the non-bulk atomic region of (001) and (110) Fe slab systems. A d band Hamiltonian, including spin-orbit coupling terms, was used to model the slabs, which were emulated by using Fe films of sufficient thickness to reach a bulk behavior at their most inner atomic layers. The temperature effects were considered within the static approximation and a simple mean field theory was used to integrate the local magnetic moment and charge thermal fluctuations. The results reflect a clear interplay between electronic itinerancy and the local atomic environment and they can be physically interpreted from the local small charge transfers occurring in the superficial region of the slabs. For recovering the experimental behavior on the results for the (001) slab system, the geometrical relaxations at its non-bulk atomic layers and a d band filling variation are required. A study on the magnetic anisotropy aspects in the superficial region of the slabs is additionally performed by analyzing the results for the orbital local magnetization calculated along two different magnetization directions in both slab systems.

  10. High-fidelity Rydberg quantum gate via a two-atom dark state

    DEFF Research Database (Denmark)

    Petrosyan, David; Motzoi, Felix; Saffman, Mark

    2017-01-01

    We propose a two-qubit gate for neutral atoms in which one of the logical state components adiabatically follows a two-atom dark state formed by the laser coupling to a Rydberg state and a strong, resonant dipole-dipole exchange interaction between two Rydberg excited atoms. Our gate exhibits...

  11. Innovation projects of atomic energy institute of national nuclear center RK in the area of peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Kenzhin, E.; Tazhibayeva, I.; Vasiliyev, Y.; Kolodeshnikov, A.; Vurim, A.

    2010-01-01

    Institute of Atomic Energy of National Nuclear Center RK (IAE NNC RK) is located in Kurchatov. The city is situated at the border of former Semipalatinsk test site. The institute includes two reactor complexes - IGR and Baikal-1, which are rather distant from Kurchatov. Main activities of IAE NNC RK are: 1. Experimental researches of the nuclear power reactors safety; 2. Experimental researches of behavior of the structural materials for fusion and fission facilities under reactor irradiation; 3. Management of radioactive wastes; 4. Participation in the projects on decommissioning of the fast neutron reactor BN-350; 5. innovation projects: creation of first Kazakhstan's fusion reactor - tokamak KTM for materials; research and testing; development of new technologies (irradiated Be-recycling); development of new reactor technologies - project on creation of high temperature gas-cooled reactor KHTR. IAE NNC RK jointly with Japanese Atomic Energy Agency and with participation of Japanese Atomic Power Company is performing the activities on experimental substantiation of design of active core of prospective fast neutron reactor. Main goal of out-of-pile experiments at the EAGLE facility is obtaining of the information on fuel movement processes under conditions simulating the accident with melting of fast reactor core containing tube-design fuel assembly. Batch mixture is loaded into graphite crucible; then it is melded into electric melting furnace and poured into melt top trap. The outlet pipe is melted by the melt, which is poured into bottom melt trap through the pipe with sodium

  12. STABLE CONIC-HELICAL ORBITS OF PLANETS AROUND BINARY STARS: ANALYTICAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. [Physics Department, 206 Allison Lab., Auburn University, Auburn, AL 36849 (United States)

    2015-05-10

    Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z′ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape of a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the

  13. Valley-orbit hybrid states in Si quantum dots

    Science.gov (United States)

    Gamble, John; Friesen, Mark; Coppersmith, S. N.

    2013-03-01

    The conduction band for electrons in layered Si nanostructures oriented along (001) has two low-lying valleys. Most theoretical treatments assume that these valleys are decoupled from the long-wavelength physics of electron confinement. In this work, we show that even a minimal amount of disorder (a single atomic step at the quantum well interface) is sufficient to mix valley states and electron orbitals, causing a significant distortion of the long-wavelength electron envelope. For physically realistic electric fields and dot sizes, this valley-orbit coupling impacts all electronic states in Si quantum dots, implying that one must always consider valley-orbit hybrid states, rather than distinct valley and orbital degrees of freedom. We discuss the ramifications of our results on silicon quantum dot qubits. This work was supported in part by ARO (W911NF-08-1-0482) and NSF (DMR-0805045).

  14. A model for the stabilization of atomic hydrogen centers in borate glasses

    International Nuclear Information System (INIS)

    Pontuschka, W.M.; Isotani, S.; Furtado, W.W.; Piccini, A.; Rabbani, S.R.

    1989-04-01

    A model describing the trapping site of the interstitial atomic hydrogen (H sup(0) sub(i) in borate glasses x-irradiated at 77 K is proposed. The hydrogen atom is stabilized at the centers of oxygen polygons belonging to B-O ring structures in the glass network by van der Waals forces. The previously reported H sup(0) sub(i) isothermal decay experimental data are discussed in the light of this microscopic model. A coupled differential equation system describing the possible reactions was numerically solved by means of Runge-Kutta's method. The parameter best fit was found by trial and error. The untrapping parameter provided an activation energy of 0.7 x 10 sup(-19) J, in good agreement with the calculated results for dispersion interactions between the stabilized atomic hydrogen and the neighbouring oxygen atoms at the vertices of hexagonal and heptagonal structures. The retrapping and recombination parameters were found to be correlated to (T sup1/2) - T sup(1/2) sub(0)) where t sub(0)=179 K is a cutoff temperature for the kinetics process. (author)

  15. Bonding character and s-p hybridization of orbitals of hydride molecules according to photoelectron spectroscopy data

    International Nuclear Information System (INIS)

    Vovna, V.I.

    1988-01-01

    In consideration of the electron structure of the molecules in terms of canonical many-centered orbitals by s-p hybridization we mean mixture of the ns and np orbitals of an atom into one molecular orbital. The PE spectra of the valence levels of the molecules give direct information on the influence of s-p hybridization on the bonding character and energies of the levels [1, 3]. In this article we discuss the influence of hybridization on the bonding character of the MO of the isoelectronic series A 7 H - A 6 H 2 - A 5 H 2 - A 4 H 4 according to the results of PE spectroscopy. To simplify the discussion we adopt the approximation of Kupmans theorem IP i = -var epsilon i

  16. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.

    Science.gov (United States)

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-07

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods

  17. Consistent structures and interactions by density functional theory with small atomic orbital basis sets

    International Nuclear Information System (INIS)

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-01-01

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT

  18. The entanglement evolution between two entangled atoms

    Indian Academy of Sciences (India)

    Entanglement is an important resource for quantum information processing. [1–3] and also one of the most important nonclassical properties in quantum theory. ... consideration, which consists of two entangled two-level atoms A and B with ...

  19. Entangling two transportable neutral atoms via local spin exchange.

    Science.gov (United States)

    Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-11-12

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  20. Hybrid Orbital and Numerical Grid Representationfor Electronic Continuum Processes: Double Photoionization of Atomic Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Frank L; McCurdy, C. William; Rescigno, Thomas N

    2010-04-19

    A general approach for ab initio calculations of electronic continuum processes is described in which the many-electron wave function is expanded using a combination of orbitals at short range and the finite-element discrete variable representation(FEM-DVR) at larger distances. The orbital portion of the basis allows the efficient construction of many-electron configurations in which some of the electrons are bound, but because the orbitals are constructed from an underlying FEM-DVR grid, the calculation of two-electron integrals retains the efficiency of the primitive FEM-DVR approach. As an example, double photoionization of beryllium is treated in a calculation in which the 1s{sup 2} core is frozen. This approach extends the use of exterior complex scaling (ECS) successfully applied to helium and H{sub 2} to calculations with two active electrons on more complicated targets. Integrated, energy-differential and triply-differential cross sections are exhibited, and the results agree well with other theoretical investigations.

  1. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  2. Distribution of quantum information between an atom and two photons

    International Nuclear Information System (INIS)

    Weber, Bernhard

    2008-01-01

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  3. Distribution of quantum information between an atom and two photons

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Bernhard

    2008-11-03

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  4. Condensation of bosons with Rashba-Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Baym, Gordon; Ozawa, Tomoki

    2014-01-01

    Cold atomic Bose-Einstein systems in the presence of simulated Rashba- Dresselhaus spin-orbit coupling exhibit novel physical features. With pure in-plane Rashba coupling the system is predicted in Bogoliubov-Hartree-Fock to have a stable Bose condensate below a critical temperature, even though the effective density of states is two-dimensional. In addition the system has a normal state at all temperatures. We review here the new physics when the system has such spin-orbit coupling, and discuss the nature of the finite temperature condensation phase transition from the normal to condensed phases.

  5. Quantitative evaluation of orbital hybridization in carbon nanotubes under radial deformation using π-orbital axis vector

    Directory of Open Access Journals (Sweden)

    Masato Ohnishi

    2015-04-01

    Full Text Available When a radial strain is applied to a carbon nanotube (CNT, the increase in local curvature induces orbital hybridization. The effect of the curvature-induced orbital hybridization on the electronic properties of CNTs, however, has not been evaluated quantitatively. In this study, the strength of orbital hybridization in CNTs under homogeneous radial strain was evaluated quantitatively. Our analyses revealed the detailed procedure of the change in electronic structure of CNTs. In addition, the dihedral angle, the angle between π-orbital axis vectors of adjacent atoms, was found to effectively predict the strength of local orbital hybridization in deformed CNTs.

  6. Two-dimensional atom localization based on coherent field controlling in a five-level M-type atomic system.

    Science.gov (United States)

    Jiang, Xiangqian; Li, Jinjiang; Sun, Xiudong

    2017-12-11

    We study two-dimensional sub-wavelength atom localization based on the microwave coupling field controlling and spontaneously generated coherence (SGC) effect. For a five-level M-type atom, introducing a microwave coupling field between two upper levels and considering the quantum interference between two transitions from two upper levels to lower levels, the analytical expression of conditional position probability (CPP) distribution is obtained using the iterative method. The influence of the detuning of a spontaneously emitted photon, Rabi frequency of the microwave field, and the SGC effect on the CPP are discussed. The two-dimensional sub-half-wavelength atom localization with high-precision and high spatial resolution is achieved by adjusting the detuning and the Rabi frequency, where the atom can be localized in a region smaller thanλ/10×λ/10. The spatial resolution is improved significantly compared with the case without the microwave field.

  7. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    International Nuclear Information System (INIS)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao

    1996-01-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; 1) Hyper ion microbeam analysis apparatus, 2) Fourier conversion infrared microscopy, 3) Pico second two-dimensional fluorescence measuring apparatus, 4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  8. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology

    1996-12-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; (1) Hyper ion microbeam analysis apparatus, (2) Fourier conversion infrared microscopy, (3) Pico second two-dimensional fluorescence measuring apparatus, (4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  9. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang; Wang, Xuhui; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  10. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang

    2016-01-11

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  11. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Energy Technology Data Exchange (ETDEWEB)

    Kocharian, Armen N. [Department of Physics, California State University, Los Angeles, CA 90032 (United States); Fernando, Gayanath W.; Fang, Kun [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Palandage, Kalum [Department of Physics, Trinity College, Hartford, Connecticut 06106 (United States); Balatsky, Alexander V. [AlbaNova University Center Nordita, SE-106 91 Stockholm (Sweden)

    2016-05-15

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  12. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Directory of Open Access Journals (Sweden)

    Armen N. Kocharian

    2016-05-01

    Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  13. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    Science.gov (United States)

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  14. The geometric phase in two-level atomic systems

    International Nuclear Information System (INIS)

    Tian Mingzhen; Barber, Zeb W.; Fischer, Joe A.; Randall Babbitt, Wm.

    2004-01-01

    We report the observation of the geometric phase in a closed two-level atomic system using stimulated photon echoes. The two-level system studied consists of the two-electronic energy levels ( 3 H 4 and 3 H 6 ) of Tm 3+ doped in YAG crystal. When a two-level atom at an arbitrary superposition state is excited by a pair of specially designed laser pulses, the excited state component gains a relative phase with respect to the ground state component. We identified the phase shift to be of pure geometric nature. The dynamic phase associated to the driving Hamiltonian is unchanged. The experiment results of the phase change agree with the theory to the extent of the measurement limit

  15. Probabilistic Cloning of two Single-Atom States via Thermal Cavity

    Science.gov (United States)

    Rui, Pin-Shu; Liu, Dao-Jun

    2016-12-01

    We propose a cavity QED scheme for implementing the 1 → 2 probabilistic quantum cloning (PQC) of two single-atom states. In our scheme, after the to-be-cloned atom and the assistant atom passing through the first cavity, a measurement is carried out on the assistant atom. Based on the measurement outcome we can judge whether the PQC should be continued. If the cloning fails, the other operations are omitted. This makes our scheme economical. If the PQC is continued (with the optimal probability) according to the measurement outcome, two more cavities and some unitary operations are used for achieving the PQC in a deterministic way. Our scheme is insensitive to the decays of the cavities and the atoms.

  16. Associative ionization of two laser excited Na atoms

    International Nuclear Information System (INIS)

    Meijer, H.A.J.

    1988-01-01

    An investigation into the associative ionization of two sodium atoms excited by polarized laser beams is described. It was possible to excite the Na atoms in a velocity-selective way by exploiting the Doppler effect. The excitation of Na to the 3 2 P 3/2 , F=3 level is discussed on the basis of so-called saturation curves. Experiments with seven different combinations of polarization of the two exciting laser beams are described and the results discussed. 86 refs.; 53 figs.; 6 tabs

  17. The spectral distribution of intermediate L-K molecular-orbital radiation in symmetric heavy-ion collisions

    International Nuclear Information System (INIS)

    Heinig, K.-H.; Jager, H.-U.; Richter, H.; Woittennek, H.; Frank, W.; Gippener, P.; Kaun, K.-H.; Manfrass, P.

    1977-01-01

    Two distinct x-ray continua C1 and C2 above the characteristic lines are observed in high-energy collisions between atoms with atomic numbers of 28 to 57. This structure is explained by a superposition of K molecular-orbital (KMO) radiation and of an intermediate L-K molecular-orbital (ILKMO) radiation of high intensity which is due to 2psigma vacancies. In the framework of the dynamical theory of intermediate molecular phenomena and using a scaling of the H 2 + correlation diagram with screened state-dependent charges good agreement between the shapes of the measured and calculated spectra is obtained. (author)

  18. Theoretical treatment of electron capture and excitation in two-electron system ion-atom, atom-atom collisions at low to intermediate energy

    International Nuclear Information System (INIS)

    Kimura, M.

    1986-01-01

    A review of various theoretical treatments which have been used to study electron-capture and excitation processes in two-electron-system ion-atom, atom-atom collisions at low to intermediate energy is presented. Advantages as well as limitations associated with these theoretical models in application to practical many-electron ion-atom, atom-atom collisions are specifically pointed out. Although a rigorous theoretical study of many-electron systems has just begun so that reports of theoretical calculations are scarce to date in comparison to flourishing experimental activities, some theoretical results are of great interest and provide important information for understanding collision dynamics of the system which contains many electrons. Selected examples are given for electron capture in a multiply charged ion-He collision, ion-pair formation in an atom-atom collision and alignment and orientation in a Li + + He collision. (Auth.)

  19. Hydrogen atom as a quantum-classical hybrid system

    International Nuclear Information System (INIS)

    Zhan, Fei; Wu, Biao

    2013-01-01

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  20. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    Science.gov (United States)

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-05

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  1. Generation of maximally entangled mixed states of two atoms via on-resonance asymmetric atom-cavity couplings

    International Nuclear Information System (INIS)

    Li, Shang-Bin

    2007-01-01

    A scheme for generating the maximally entangled mixed state of two atoms on-resonance asymmetrically coupled to a single mode optical cavity field is presented. The part frontier of both maximally entangled mixed states and maximal Bell violating mixed states can be approximately reached by the evolving reduced density matrix of two atoms if the ratio of coupling strengths of two atoms is appropriately controlled. It is also shown that exchange symmetry of global maximal concurrence is broken if and only if coupling strength ratio lies between (√(3)/3) and √(3) for the case of one-particle excitation and asymmetric coupling, while this partial symmetry breaking cannot be verified by detecting maximal Bell violation

  2. Radiative processes of two entangled atoms in cosmic string spacetime

    Science.gov (United States)

    Cai, Huabing; Ren, Zhongzhou

    2018-01-01

    We investigate the radiative processes of two static two-level atoms in a maximally entangled state coupled to vacuum electromagnetic field in the cosmic string spacetime. We find that the decay rate from the entangled state to the ground state crucially depends on the atomic separation, the polarization directions of the individual atoms, the atom-string distance and the deficit angle induced by the string. As the atom-string distance increases, the decay rate oscillates around the result in Minkowski spacetime and the amplitude gradually decreases. The oscillation is more severe for larger planar angle deficit. We analyze the decay rate in different circumstances such as near zone and specific polarization cases. Some comparisons between symmetric and antisymmetric states are performed. By contrast with the case in Minkowski spacetime, we can reveal the effects of the cosmic string on the radiative properties of the entangled atoms.

  3. Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Xiong Hao; Zhang Duo

    2011-01-01

    The behavior of two-dimensional (2D) atom localization is explored by monitoring the probe absorption in a microwave-driven four-level atomic medium under the action of two orthogonal standing-wave fields. Because of the position-dependent atom-field interaction, the information about the position of the atom can be obtained via the absorption measurement of the weak probe field. It is found that the localization behavior is significantly improved due to the joint quantum interference induced by the standing-wave and microwave-driven fields. Most importantly, the atom can be localized at a particular position and the maximal probability of finding the atom in one period of the standing-wave fields reaches unity by properly adjusting the system parameters. The proposed scheme may provide a promising way to achieve high-precision and high-resolution 2D atom localization.

  4. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  5. Generating Animated Displays of Spacecraft Orbits

    Science.gov (United States)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  6. Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities

    Science.gov (United States)

    Song, L. N.; Wang, Z. H.; Li, Yong

    2018-05-01

    We study the optical nonreciprocal propagation in an optical molecule of two coupled cavities with one of them interacting with a two-level atomic ensemble. The effect of increasing the number of atoms on the optical isolation ratio of the system is studied. We demonstrate that the significant nonlinearity supplied by the coupling of the atomic ensemble with the cavity leads to the realization of greatly-enhanced optical nonreciprocity compared with the case of single atom.

  7. Local orbit feedback

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Critically aligned experiments are sensitive to small changes in the electron beam orbit. At the NSLS storage rings, the electron beam and photon beam motions have been monitored over the past several years. In the survey conducted in 1986 by the NSLS Users Executive Committee, experimenters requested the vertical beam position variation and the vertical angle variation, within a given fill, remain within 10 μm and 10 μr, respectively. This requires improvement in the beam stability by about one order of magnitude. At the NSLS and SSRL storage rings, the beam that is originally centered on the position monitor by a dc orbit correction is observed to have two kinds of motion: a dc drift over a storage period of several hours and a beam bounce about its nominal position. These motions are a result of the equilibrium orbit not being held perfectly stable due to time-varying errors introduced into the magnetic guide field by power supplies, mechanical vibration of the magnets, cooling water temperature variations, etc. The approach to orbit stabilization includes (1) identifying and suppressing as many noise sources on the machine as possible, (2) correcting the beam position globally (see Section 6) by controlling a number of correctors around the circumference of the machine, and (3) correcting the beam position and angle at a given source location by position feedback using local detectors and local orbit bumps. The third approach, called Local Orbit Feedback will be discussed in this section

  8. European Virtual Atomic And Molecular Data Center - VAMDC

    Science.gov (United States)

    Dimitrijevic, M. S.; Sahal-Brechot, S.; Kovacevic, A.; Jevremovic, D.; Popovic, L. C.

    2010-07-01

    Reliable atomic and molecular data are of great importance for different applications in astrophysics, atmospheric physics, fusion, environmental sciences, combustion chemistry, and in industrial applications from plasmas and lasers to lighting. Currently, very important resources of such data are highly fragmented, presented in different, nonstandardized ways, available through a variety of highly specialized and often poorly documented interfaces, so that the full exploitation of all their scientific worth is limited, hindering research in many topics like e.g. the characterization of extrasolar planets, understanding the chemistry of our local solar system and of the wider universe, the study of the terrestrial atmosphere and quantification of climate change; the development of the fusion rersearch, etc. The Virtual Atomic and Molecular Data Centre (http://www.vamdc.eu, VAMDC) is an European Union funded FP7 project aiming to build a secure, documented, flexible and interoperable e-science environment-based interface to existing atomic and molecular data. It will also provide a forum for training potential users and dissemination of expertise worldwide. Partners in the Consortium of the Project are: 1) Centre National de Recherche Scientifique - CNRS (Paris, Reims, Grenoble, Bordeaux, Dijon, Toulouse); 2) The Chancellor, Masters and Scholars of the University of Cambridge - CMSUC; 3) University College London - UCL; 4) Open University - OU; (Milton Keynes, England); 5) Universitaet Wien - UNIVIE; 6) Uppsala Universitet - UU; 7) Universitaet zu Koeln - KOLN; 8) Istituto Nazionale di Astrofisica - INAF (Catania, Cagliari); 9) Queen's University Belfast - QUB; 10) Astronomska Opservatorija - AOB (Belgrade, Serbia); 11) Institute of Spectroscopy RAS - ISRAN (Troitsk, Russia); 12) Russian Federal Nuclear Center - All-Russian Institute of Technical Physics - RFNC-VNIITF (Snezhinsk, Chelyabinsk Region, Russia; 13) Institute of Atmospheric Optics - IAO (Tomsk, Russia

  9. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  10. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian; Shao Bin; Zou Jian

    2009-01-01

    In this paper,we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling.We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially.The effects of the field squeezing factor,the two-level atomic transition frequency,the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed.Without intrinsic decoherence,the increase of field squeezing factor can break the entropy squeezing.The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing.The influence of the second field frequency is complicated.With the intrinsic decoherence taken into consideration,the results show that the stronger the intrinsic decoherence is,the more quickly the entropy squeezing will disappear.The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.

  11. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    International Nuclear Information System (INIS)

    Jian, Zhang; Bin, Shao; Jian, Zou

    2009-01-01

    In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing. (classical areas of phenomenology)

  12. Storage ring to investigate cold unidimensional atomic collisions

    International Nuclear Information System (INIS)

    Marcassa, L. G.; Caires, A. R. L.; Nascimento, V. A.; Dulieu, O.; Weiner, J.; Bagnato, V. S.

    2005-01-01

    In this paper we employ a circulating ring of trapped atoms, that we have named the atomotron, to study cold collisions. The atomotron is obtained from a conventional magneto-optical trap when the two pairs of normally retroreflecting Gaussian laser beams in the x-y plane are slightly offset. Circulating stable atomic orbits then form a racetrack geometry in this plane. The circulating atom flux behaves similarly to an atomic beam with an average tangential velocity much greater than the transverse components, and is therefore suitable for one-dimensional atomic collision studies. Using the atomotron, we have investigated the polarization dependence of ultracold photoassociation collisions between Rb atoms circulating in the racetrack. The ability to investigate collisions in ultracold circulating atomic rings reveals alignment and orientation properties that are averaged away in ordinary three-dimensional magneto-optical trap collision processes

  13. Magnetic hyperfine interactions of U2 center in CaF2, SrF2 and BaF2

    International Nuclear Information System (INIS)

    Graf, C.J.F.

    1976-02-01

    The magnetic hyperfine parameters of the U 2 center in CaF 2 , SeF 2 and BaF 2 , using a molecular orbitals scheme have been calculated. The need for the inclusion of mechanisms such as Pauli Repulsion and Covalence in order to describe the electronic structure of the defect has been shown. In the molecular orbitals model a weak covalence parameter has been phenomenologically introduced, mixing the is atomic wavefunction of hydrogen with a properly symmetrized linear combination of 2p F - functions centered on the ions of the first fluorine shell. The results obtained are compared with experimental measurements of EPR and ENDOR. (Author) [pt

  14. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  15. Two-photon emission and multiphoton absorption by atoms

    International Nuclear Information System (INIS)

    Mu, X.

    1988-01-01

    This thesis consists of investigations of two problems concerning photon-atom interactions. The first topic deals with two-photon transitions in atomic inner shells. An independent-particle model has been used to describe the two-photon transitions between different inner-shell electron states. The first relativistic self-consistent-field calculation of these transition rates in Ag, Mo, and Xe has been carried out. The theoretical results are compared with recent measurements. Good agreement with measured rates is found except in some cases where more reliable experiments still need to be done. The second topic is multiphoton multiionization of atoms. The maximum entropy principle has been employed in this theoretical investigation. A detailed statistical analysis of measured ionic charge distributions produced in strong laser pulses has been carried out. The results of this analysis indicates that the charge-state distribution is a Poissonian, rather than the binomial which prevails under infrared radiation, and hence that ionization occurs stepwise during the pulse. This result is shown to be consistent with experimental data

  16. Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

    Science.gov (United States)

    Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu

    2018-03-01

    By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.

  17. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    Science.gov (United States)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  18. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii

    Directory of Open Access Journals (Sweden)

    Raka Biswas

    2002-02-01

    Full Text Available Abstract. A set of theoretical atomic radii corresponding to the principal maximum in the radial distribution function, 4πr2R2 for the outermost orbital has been calculated for the ground state of 103 elements of the periodic table using Slater orbitals. The set of theoretical radii are found to reproduce the periodic law and the Lother Meyer’s atomic volume curve and reproduce the expected vertical and horizontal trend of variation in atomic size in the periodic table. The d-block and f-block contractions are distinct in the calculated sizes. The computed sizes qualitatively correlate with the absolute size dependent properties like ionization potentials and electronegativity of elements. The radii are used to calculate a number of size dependent periodic physical properties of isolated atoms viz., the diamagnetic part of the atomic susceptibility, atomic polarizability and the chemical hardness. The calculated global hardness and atomic polarizability of a number of atoms are found to be close to the available experimental values and the profiles of the physical properties computed in terms of the theoretical atomic radii exhibit their inherent periodicity. A simple method of computing the absolute size of atoms has been explored and a large body of known material has been brought together to reveal how many different properties correlate with atomic size.

  19. Self-consistent-field calculations of atoms and ions using a modified local-density approximation

    International Nuclear Information System (INIS)

    Liberman, D.A.; Albritton, J.R.; Wilson, B.G.; Alley, W.E.

    1994-01-01

    Local-density-approximation calculations of atomic structure are useful for the description of atoms and ions in plasmas. The large number of different atomic configurations that exist in typical plasmas leads one to consider the expression of total energies in terms of a Taylor series in the orbital occupation numbers. Two schemes for computing the second derivative Taylor-series coefficients are given; the second, and better one, uses the linear response method developed by Zangwill and Soven [Phys. Rev. A 21, 1561 (1980)] for the calculation of optical response in atoms. A defect in the local-density approximation causes some second derivatives involving Rydberg orbitals to be infinite. This is corrected by using a modified local-density approximation that had previously been proposed [Phys. Rev. B 2, 244 (1970)

  20. Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Scazza, Francesco

    2015-01-01

    This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted. With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of 173 Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N=6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model.

  1. Mean-field study of correlation-induced antisymmetric spin-orbit coupling in a two-orbital honeycomb model

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2018-05-01

    We investigate a two-orbital Hubbard model on a honeycomb structure, with a special focus on the antisymmetric spin-orbit coupling (ASOC) induced by symmetry breaking in the electronic degrees of freedom. By investigating the ground-state phase diagram by the mean-field approximation in addition to the analysis in the strong correlation limit, we obtain a variety of symmetry-broken phases that induce different types of effective ASOCs by breaking of spatial inversion symmetry. We find several unusual properties emergent from the ASOCs, such as a linear magnetoelectric effect in a spin-orbital ordered phase at 1/4 filling and a spin splitting in the band structure in charge ordered phases at 1/4 and 1/2 fillings. We also show that a staggered potential on the honeycomb structure leads to another type of ASOC, which gives rise to a valley splitting in the band structure at 1/2 filling. We discuss the experimental relevance of our results to candidate materials including transition metal dichalcogenides and trichalcogenides.

  2. Dynamics for a two-atom two-mode intensity-dependent Raman coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S., E-mail: vasudha-rnc1@rediffmail.com, E-mail: sudhhasingh@gmail.com; Gilhare, K. [Ranchi University, Department of Physics (India)

    2016-06-15

    We study the quantum dynamics of a two-atom Raman coupled model interacting with a quantized bimodal field with intensity-dependent coupling terms in a lossless cavity. The unitary transformation method used to solve the time-dependent problem also gives the eigensolutions of the interaction Hamiltonian. We study the atomic-population dynamics and dynamics of the photon statistics in the two cavity modes, and present evidence of cooperative effects in the production of antibunching and anticorrelations between the modes. We also investigate the effect of detuning on the evolution of second-order correlation functions and observe that the oscillations become more rapid for large detuning.

  3. Interaction of Rydberg atoms with two contrapropagating ultrashort laser pulses

    International Nuclear Information System (INIS)

    Lugovskoy, A. V.; Bray, I.

    2006-01-01

    In this paper we investigate how Rydberg atoms respond to perturbation by two contrapropagating ultrashort laser pulses. We consider the case where the durations of both pulses τ 1 and τ 2 are shorter than the inverse of the initial-state energy ε i -1 . When acting alone such a pulse passes through the atom without noticeable alteration in the atomic state. The situation is different if two such pulses interfere in the region of atom localization. In this case the atomic response is significantly enhanced. This is due to the nonzero momentum transferred to the electron by the interplay of the electric field of one pulse and the magnetic field of the other. The sudden perturbation approximation is used to evaluate the transition probabilities. They are shown to depend on the atom position with respect to the pulse interference region. This dependence is determined by the relationship between the atomic diameter d i and the interference-region size l=c(τ 1 +τ 2 ) (c is the speed of light). If d i i >>l the transition probabilities are sensitive to the electron density distribution along the propagation direction. The probabilities of the initial-state destruction and atom ionization drop as l/d i irrespective of the characteristics of the pulses

  4. Two-Particle Four-Mode Interferometer for Atoms

    Science.gov (United States)

    Dussarrat, Pierre; Perrier, Maxime; Imanaliev, Almazbek; Lopes, Raphael; Aspect, Alain; Cheneau, Marc; Boiron, Denis; Westbrook, Christoph I.

    2017-10-01

    We present a free-space interferometer to observe two-particle interference of a pair of atoms with entangled momenta. The source of atom pairs is a Bose-Einstein condensate subject to a dynamical instability, and the interferometer is realized using Bragg diffraction on optical lattices, in the spirit of our recent Hong-Ou-Mandel experiment. We report on an observation ruling out the possibility of a purely mixed state at the input of the interferometer. We explain how our current setup can be extended to enable a test of a Bell inequality on momentum observables.

  5. Superexchange-mediated magnetization dynamics with ultracold alkaline-earth atoms in an optical lattice

    International Nuclear Information System (INIS)

    Zhu Shaobing; Qian Jun; Wang Yuzhu

    2017-01-01

    Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding (orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases. Here we study the spin dynamics of ultracold alkaline-earth atoms in an optical lattice when the two exchange interactions coexist. In the superexchange interaction dominating regime, we find that the time-resolved spin imbalance shows a remarkable modulated oscillation, which can be attributed to the interplay between local and nonlocal quantum mechanical exchange mechanisms. Moreover, the filling of the long-lived excited atoms affects the collapse and revival of the magnetization dynamics. These observations can be realized in state-dependent optical lattices combined with the state-of-the-art advances in optical lattice clock spectroscopy. (paper)

  6. Tau electron atoms at RHIC

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1985-01-01

    An amusement ancillary to the proposed quark-gluon plasma production hypothesized from a relativistic heavy ion collider (RHIC is a sufficient quantity of tau electrons to potentially admit the study of its exotic atoms. In this paper the given wealth of nuclear phenomena is derived from muonic atoms assume a tau atom is more forthcoming of information due to the lower orbits entirely contained within the nucleus. It is the purpose of this brief note to discuss the production mechanism at a RHIC and to delineate some of the more obvious properties of the tau atom. As in the case of the mu, more exotic phenomena derived from resonance ''accidents'' with nuclear transitions takes place, but it would be presumptions to discuss them at this time. Given the complete containment in nuclear matter of the tau lepton in its innermost atomic orbits. An experiment performed with such an exotic species results in the measurement of its lifetime

  7. Orbital occupancy evolution across spin- and charge-ordering transitions in YBaFe2O5

    Science.gov (United States)

    Lindén, J.; Lindroos, F.; Karen, P.

    2017-08-01

    Thermal evolution of the Fe2+-Fe3+ valence mixing in YBaFe2O5 is investigated using Mössbauer spectroscopy. In this high-spin double-cell perovskite, the d6 and d5 Fe states differ by the single minority-spin electron which then controls all the spin- and charge-ordering transitions. Orbital occupancies can be extracted from the spectra in terms of the dxz , dz2 and either dx2-y2 (Main Article) or dxy (Supplement) populations of this electron upon conserving its angular momentum. At low temperatures, the minority-spin electrons fill up the ordered dxz orbitals of Fe2+, in agreement with the considerable orthorhombic distortion of the structure. Heating through the Verwey transition supplies 93% of the mixing entropy, at which point the predominantly mixing electron occupies mainly the dx2-y2 /dxy orbitals weakly bonding the two Fe atoms that face each other across the bases of their coordination pyramids. This might stabilize a weak coulombic checkerboard order suggested by McQueeney et alii in Phys. Rev. B 87(2013)045127. When the remaining 7% of entropy is supplied at a subsequent transition, the mixing electron couples the two Fe atoms predominantly via their dz2 orbitals. The valence mixing concerns more than 95% of the Fe atoms present in the crystalline solid; the rest is semi-quantitatively interpreted as domain walls and antiphase boundaries formed upon cooling through the Néel and Verwey-transition temperatures, respectively.

  8. Orbital magnetism of Bloch electrons I. General formula

    International Nuclear Information System (INIS)

    Ogata, Masao; Fukuyama, Hidetoshi

    2015-01-01

    We derive an exact formula of orbital susceptibility expressed in terms of Bloch wave functions, starting from the exact one-line formula by Fukuyama in terms of Green's functions. The obtained formula contains four contributions: (1) Landau-Peierls susceptibility, (2) interband contribution, (3) Fermi surface contribution, and (4) contribution from occupied states. Except for the Landau-Peierls susceptibility, the other three contributions involve the crystal-momentum derivatives of Bloch wave functions. Physical meaning of each term is clarified. The present formula is simplified compared with those obtained previously by Hebborn et al. Based on the formula, it is seen first of all that diamagnetism from core electrons and Van Vleck susceptibility are the only contributions in the atomic limit. The band effects are then studied in terms of linear combination of atomic orbital treating overlap integrals between atomic orbitals as a perturbation and the itinerant feature of Bloch electrons in solids are clarified systematically for the first time. (author)

  9. STS-26 Discovery, Orbiter Vehicle (OV) 103, OMS pod leak repair at KSC

    Science.gov (United States)

    1988-01-01

    At the Kennedy Space Center (KSC), Rockwell manufacturing engineering specialist Claude Willis (left) and Rockwell manufacturing supervisor George Gallagher begin installation of a 'clamshell' device in the left orbital maneuvering system (OMS) pod reaction control system (RCS) of Discovery, Orbiter Vehicle (OV) 103. Gallagher performed the OMS pod nitric acid oxidizer leak repair operation using the two newly cut access ports in the Orbiter's aft bulkhead.

  10. The Atomic Physics Center of Toulouse

    International Nuclear Information System (INIS)

    Blanc, Daniel.

    The research program was concerned with the aerosol and atmospheric exchange physics and, in atomic physics essentially with: atomic collisions, postluminescence in gases, discharges in gases at medium and high pressure, the electric arc, dielectric physics, and radiation transport in matter [fr

  11. Localization of a two-level atom via the absorption spectrum

    International Nuclear Information System (INIS)

    Xu, Jun; Hu, Xiang-Ming

    2007-01-01

    We show that it is possible to localize a two-level atom as it passes through a standing-wave field by measuring the probe-field absorption. There is 50% detecting probability of the atom at the nodes of the standing-wave field in the subwavelength domain when the probe field is tuned resonant with the atomic transition

  12. Atomic spectroscopy with twisted photons: Separation of M 1 -E 2 mixed multipoles

    Science.gov (United States)

    Afanasev, Andrei; Carlson, Carl E.; Solyanik, Maria

    2018-02-01

    We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity E 2 -M 1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photoexcitation rate as a function of the atom's position (or impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the target's atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical examples are presented for Boron-like highly charged ions.

  13. Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom

    International Nuclear Information System (INIS)

    Jin Shiqi; Gong Shangqing; Li Ruxin; Xu Zhizhan

    2004-01-01

    Coherent population transfer and superposition of atomic states via a technique of stimulated Raman adiabatic passage in an excited-doublet four-level atomic system have been analyzed. It is shown that the behavior of adiabatic passage in this system depends crucially on the detunings between the laser frequencies and the corresponding atomic transition frequencies. Particularly, if both the fields are tuned to the center of the two upper levels, the four-level system has two degenerate dark states, although one of them contains the contribution from the excited atomic states. The nonadiabatic coupling of the two degenerate dark states is intrinsic, it originates from the energy difference of the two upper levels. An arbitrary superposition of atomic states can be prepared due to such nonadiabatic coupling effect

  14. Teleporting the one-qubit state via two-level atoms with spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu Mingliang, E-mail: mingliang0301@xupt.edu.cn, E-mail: mingliang0301@163.com [School of Science, Xi' an University of Posts and Telecommunications, Xi' an 710061 (China)

    2011-05-14

    We study quantum teleportation via two two-level atoms coupled collectively to a multimode vacuum field and prepared initially in different atomic states. We concentrated on the influence of the spontaneous emission, collective damping and dipole-dipole interaction of the atoms on fidelity dynamics of quantum teleportation and obtained the region of spatial distance between the two atoms over which the state can be teleported nonclassically. Moreover, we showed through concrete examples that entanglement of the channel state is the prerequisite but not the only essential quantity for predicting the teleportation fidelity.

  15. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    International Nuclear Information System (INIS)

    Wang Dawei; Li Zhenghong; Zheng Hang; Zhu Shiyao

    2010-01-01

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  16. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  17. Light absorption during alkali atom-noble gas atom interactions at thermal energies: a quantum dynamics treatment.

    Science.gov (United States)

    Pacheco, Alexander B; Reyes, Andrés; Micha, David A

    2006-10-21

    The absorption of light during atomic collisions is treated by coupling electronic excitations, treated quantum mechanically, to the motion of the nuclei described within a short de Broglie wavelength approximation, using a density matrix approach. The time-dependent electric dipole of the system provides the intensity of light absorption in a treatment valid for transient phenomena, and the Fourier transform of time-dependent intensities gives absorption spectra that are very sensitive to details of the interaction potentials of excited diatomic states. We consider several sets of atomic expansion functions and atomic pseudopotentials, and introduce new parametrizations to provide light absorption spectra in good agreement with experimentally measured and ab initio calculated spectra. To this end, we describe the electronic excitation of the valence electron of excited alkali atoms in collisions with noble gas atoms with a procedure that combines l-dependent atomic pseudopotentials, including two- and three-body polarization terms, and a treatment of the dynamics based on the eikonal approximation of atomic motions and time-dependent molecular orbitals. We present results for the collision induced absorption spectra in the Li-He system at 720 K, which display both atomic and molecular transition intensities.

  18. Two impulse trajectory optimization for the RAE-B orbit trim problem

    Science.gov (United States)

    Payne, M. H.; Pines, S.; Horsewood, J. L.

    1972-01-01

    The results are reported of work on an appropriate approach to the solution of the optimum two-impulse transfer problem between orbits of specified inclination. The task included a literature search to identify the current state of the art and a definition of the suggested approach for the specific application of a lunar orbit trim. The applications of the results to the problem are included. The formulation for a computer program developed under this task following a more conventional approach is also included.

  19. Molecular orbital study of the chemisorption of carbon monoxide on a tungsten (100) surface

    International Nuclear Information System (INIS)

    Lee, T.H.; Rabalais, J.W.

    1978-01-01

    The adsorption energies of carbon monoxide chemisorbed at various sites on a tungsten (100) surface have been calculated by extended Hueckel molecular orbital theory (EHMO). The concept of a 'surface molecule' in which CO is bonded to an array of tungsten atoms Wsub(n) has been employed. Dissociative adsorption in which C occupies a four-fold, five-coordination site and O occupies either a four- or two-fold site has been found to be the most stable form for CO on a W surface. Stable one-fold and two-fold sites of molecularly adsorbed CO have also been found in which the CO group is normal to the surface plane and the C atom is nearest the surface. Adsorption energies and molecular orbitals for the stable molecularly and dissociatively adsorbed CO sites are compared with the experimental data on various types of adsorbed CO, i.e. virgin-, α-, and β-CO. Models are suggested for each of these adsorption types. The strongest bonding interactions occur between the CO 5sigma orbital and the totally symmetric 5d and 6s orbitals of the Wsub(n) cluster. Possible mechanisms for conversion of molecularly adsorbed CO to dissociatively adsorbed CO are proposed and the corresponding activation energies are estimated. (Auth.)

  20. Population inversion of two atoms under the phase decoherence in the multiphoton process

    International Nuclear Information System (INIS)

    Zhang Dongxia; Sa Chuerfu; Mu Qier

    2011-01-01

    By means of the quantum theory, the population inversion of two atoms in the system of two two-level atoms coupled to a light field in the Binomial Optical Field are investigated in the presence of phase decoherence in the multiphoton Tavis-Cumming Model. The influences of the phase decoherence coefficient, the parameters η of the binomial optical field, the maximum number of photons and the number of the transitional photons on the properties of the population inversion of two atoms have been discussed. The results show that the phase decoherence reduced the oscillation amplitude of the population inversion of two atoms and destroyed the atomic quantum characteristic. Changing the number of the transitional photons, evolved cycle and evolved intensity the population inversion of two atoms can be changed. The phenomena of collapse and revival disappear as photon number increase. When the binomial optical state changes from a coherent state to a Fock state, the oscillation frequency of the atomic population reduces gradually, the phenomena of collapse and revival vanishes gradually. (authors)

  1. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding

    Science.gov (United States)

    Nishimoto, Yoshio; Fedorov, Dmitri G.

    2018-02-01

    The exactly analytic gradient is derived and implemented for the fragment molecular orbital (FMO) method combined with density-functional tight-binding (DFTB) using adaptive frozen orbitals. The response contributions which arise from freezing detached molecular orbitals on the border between fragments are computed by solving Z-vector equations. The accuracy of the energy, its gradient, and optimized structures is verified on a set of representative inorganic materials and polypeptides. FMO-DFTB is applied to optimize the structure of a silicon nano-wire, and the results are compared to those of density functional theory and experiment. FMO accelerates the DFTB calculation of a boron nitride nano-ring with 7872 atoms by a factor of 406. Molecular dynamics simulations using FMO-DFTB applied to a 10.7 μm chain of boron nitride nano-rings, consisting of about 1.2 × 106 atoms, reveal the rippling and twisting of nano-rings at room temperature.

  2. Wigner’s phase-space function and atomic structure: II. Ground states for closed-shell atoms

    DEFF Research Database (Denmark)

    Springborg, Michael; Dahl, Jens Peder

    1987-01-01

    We present formulas for reduced Wigner phase-space functions for atoms, with an emphasis on the first-order spinless Wigner function. This function can be written as the sum of separate contributions from single orbitals (the natural orbitals). This allows a detailed study of the function. Here we...... display and analyze the function for the closed-shell atoms helium, beryllium, neon, argon, and zinc in the Hartree-Fock approximation. The quantum-mechanical exact results are compared with those obtained with the approximate Thomas-Fermi description of electron densities in phase space....

  3. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....

  4. New perspectives for Rashba spin–orbit coupling

    KAUST Repository

    Manchon, Aurelien; Koo, H. C.; Nitta, J.; Frolov, S. M.; Duine, R. A.

    2015-01-01

    In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past 30 years, Rashba spin-orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and the discovery of new topological classes of materials. This progress has reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered graphene-like materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter.

  5. New perspectives for Rashba spin–orbit coupling

    KAUST Repository

    Manchon, Aurelien

    2015-08-20

    In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past 30 years, Rashba spin-orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and the discovery of new topological classes of materials. This progress has reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered graphene-like materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter.

  6. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-01

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).

  7. Enhanced pairing susceptibility in a photodoped two-orbital Hubbard model

    Science.gov (United States)

    Werner, Philipp; Strand, Hugo U. R.; Hoshino, Shintaro; Murakami, Yuta; Eckstein, Martin

    2018-04-01

    Local spin fluctuations provide the glue for orbital-singlet spin-triplet pairing in the doped Mott insulating regime of multiorbital Hubbard models. At large Hubbard repulsion U , the pairing susceptibility is nevertheless tiny because the pairing interaction cannot overcome the suppression of charge fluctuations. Using nonequilibrium dynamical mean field simulations of the two-orbital Hubbard model, we show that out of equilibrium the pairing susceptibility in this large-U regime can be strongly enhanced by creating a photoinduced population of the relevant charge states. This enhancement is supported by the long lifetime of photodoped charge carriers and a built-in cooling mechanism in multiorbital Hubbard systems.

  8. Emergent low-energy bound states in the two-orbital Hubbard model

    Science.gov (United States)

    Núñez-Fernández, Y.; Kotliar, G.; Hallberg, K.

    2018-03-01

    A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ =U -U12 in the other band. These excitations are interband holon-doublon bound states. At the symmetric point U =U12 , the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.

  9. Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions.

    Science.gov (United States)

    Ben-Nun, M; Mills, J D; Hinde, R J; Winstead, C L; Boatz, J A; Gallup, G A; Langhoff, P W

    2009-07-02

    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H(2), CH) and triatomic (H(3), CH(2)) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or

  10. De Haas-van Alphen effect of a two-dimensional ultracold atomic gas

    Science.gov (United States)

    Farias, B.; Furtado, C.

    2016-01-01

    In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.

  11. Two-electron one-photon decay rates in doubly ionized atoms

    International Nuclear Information System (INIS)

    Baptista, G.B.

    1984-01-01

    The transion rate for the two-electron one-photon and one-electron one-photon decaying processes in atoms bearing initially two K-shell vacancies were evaluated for Ne up to Zr. The two-electron one-photon decay process is considered to be the result of the interaction between the jumping electrons and their interaction with the radiation field. The calculation is performed in second order perturbation theory and the many particle states are constructed from single particle solutions. The present approach allows one to discuss several aspects of the decaying process. The results obtained for the branching ratio between the two processes reproduces reasonably well available experimental data and show an almost linear dependence on the second power of the atomic number. A comparison with other theoretical predictions is also presented for the two decaying processes and the strong dependence of the branching ratio on the initial configuration of the decaying atom is pointed out. (Author) [pt

  12. The 17-orbit microtron from the Institute of Atomic Physics - Bucharest. Research work performed from 1977 up to present

    International Nuclear Information System (INIS)

    Catana, D.; Axinescu, S.; Minea, R.

    1992-01-01

    The 17-orbit microtron from the Institute of Atomic Physics, Bucharest, Romania, is described. It is a machine with a 11 MeV energy (first regime of acceleration) and 16 MeV energy (second regime of acceleration). The pulse beam power is about 400 kw with a duty ratio of 10 -3 . The parameters of the microtron are presented. The microtron was used in many fields such as: non-destructive testing, activation analysis, semiconductor irradiation. Research an photonuclear reactions, study of uranium and thorium photo-fission were also performed using this microtron. (Author)

  13. Frequency shifts in spontaneous emission from two interacting atoms

    International Nuclear Information System (INIS)

    James, D.F.V.

    1993-01-01

    A model radiating system consisting of two atoms in close proximity is analyzed. This system demonstrates the influence of spatial coherence on the spectrum of the radiation field. Explicit expressions for the degree of coherence, the source spectrum, and the spectrum of the radiation field are derived. The results are discussed in terms of Wolf's work [Phys. Rev. Lett. 56, 1370 (1986)] on this effect, which can be considered in terms of a multiple-atom analog of the effects of radiation reaction on a single atom, i.e., spontaneous decay and the Lamb shift

  14. Evaluation and analysis of real-time precise orbits and clocks products from different IGS analysis centers

    Science.gov (United States)

    Zhang, Liang; Yang, Hongzhou; Gao, Yang; Yao, Yibin; Xu, Chaoqian

    2018-06-01

    To meet the increasing demands from the real-time Precise Point Positioning (PPP) users, the real-time satellite orbit and clock products are generated by different International GNSS Service (IGS) real-time analysis centers and can be publicly received through the Internet. Based on different data sources and processing strategies, the real-time products from different analysis centers therefore differ in availability and accuracy. The main objective of this paper is to evaluate availability and accuracy of different real-time products and their effects on real-time PPP. A total of nine commonly used Real-Time Service (RTS) products, namely IGS01, IGS03, CLK01, CLK15, CLK22, CLK52, CLK70, CLK81 and CLK90, will be evaluated in this paper. Because not all RTS products support multi-GNSS, only GPS products are analyzed in this paper. Firstly, the availability of all RTS products is analyzed in two levels. The first level is the epoch availability, indicating whether there is outage for that epoch. The second level is the satellite availability, which defines the available satellite number for each epoch. Then the accuracy of different RTS products is investigated on nominal accuracy and the accuracy degradation over time. Results show that Root-Mean-Square Error (RMSE) of satellite orbit ranges from 3.8 cm to 7.5 cm for different RTS products. While the mean Standard Deviations of Errors (STDE) of satellite clocks range from 1.9 cm to 5.6 cm. The modified Signal In Space Range Error (SISRE) for all products are from 1.3 cm to 5.5 cm for different RTS products. The accuracy degradation of the orbit has the linear trend for all RTS products and the satellite clock degradation depends on the satellite clock types. The Rb clocks on board of GPS IIF satellites have the smallest degradation rate of less than 3 cm over 10 min while the Cs clocks on board of GPS IIF have the largest degradation rate of more than 10 cm over 10 min. Finally, the real-time kinematic PPP is

  15. Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap

    International Nuclear Information System (INIS)

    Sowinski, Tomasz; Brewczyk, Miroslaw; Gajda, Mariusz; RzaPzewski, Kazimierz

    2010-01-01

    We study dynamics of two interacting ultracold Bose atoms in a harmonic oscillator potential in one spatial dimension. Making use of the exact solution of the eigenvalue problem of a particle in the δ-like potential, we study the time evolution of an initially separable state of two particles. The corresponding time-dependent single-particle density matrix is obtained and diagonalized, and single-particle orbitals are found. This allows us to study decoherence as well as creation of entanglement during the dynamics. The evolution of the orbital corresponding to the largest eigenvalue is then compared to the evolution according to the Gross-Pitaevskii equation. We show that if initially the center of mass and relative degrees of freedom are entangled, then the Gross-Pitaevskii equation fails to reproduce the exact dynamics and entanglement is produced dynamically. We stress that predictions of our study can be verified experimentally in an optical lattice in the low-tunneling limit.

  16. Two-photon decay of K-shell vacancy states in heavy atoms

    International Nuclear Information System (INIS)

    Ilakovac, K.; Uroic, M.; Majer, M.; Pasic, S.; Vukovic, B.

    2006-01-01

    Two-photon decay has been extensively studied in atomic, nuclear and particle physics since the 1930s when the problem of stability of the 2s state of the hydrogen atom emerged. Since then, many theoretical and experimental investigations have been made on hydrogen and one-electron (H-like) ions and on helium and two-electron (He-like) ions. The work on two-photon decay in many-electron systems involving inner shells started about 30 years ago and, in the meantime, two-photon decay of the K-shell vacancy state has been the subject of many theoretical and experimental studies. Experimental results have been obtained for 2s->1s and higher-state electron ->1s two-photon transitions in molybdenum, and for 2s -> 1s, 3s -> 1s, 3d -> 1s and 4sd -> 1s two-photon transitions in silver, xenon, hafnium and mercury. Nonrelativistic and relativistic calculations of the processes have been made. The relativistic calculations for transitions in molybdenum, silver and xenon atoms are in a reasonable agreement with the experimental results, but some problems remain to be solved. A review of investigations of two-photon transitions in atomic systems is presented

  17. Geometric manipulation of the quantum states of two-level atoms

    International Nuclear Information System (INIS)

    Tian, Mingzhen; Barber, Zeb W.; Fischer, Joe A.; Babbitt, Wm. Randall

    2004-01-01

    Manipulation of the quantum states of two-level atoms has been investigated using laser-controlled geometric phase change, which has the potential to build robust quantum logic gates for quantum computing. For a qubit based on two electronic transition levels of an atom, two basic quantum operations that can make any universal single qubit gate have been designed employing resonant laser pulses. An operation equivalent to a phase gate has been demonstrated using Tm 3+ doped in a yttrium aluminum garnet crystal

  18. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets

    Science.gov (United States)

    Zhang, Xing; Carter, Emily A.

    2018-01-01

    We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.

  19. Electron spin torque in atoms

    International Nuclear Information System (INIS)

    Hara, Takaaki; Senami, Masato; Tachibana, Akitomo

    2012-01-01

    The spin torque and zeta force, which govern spin dynamics, are studied by using monoatoms in their steady states. We find nonzero local spin torque in transition metal atoms, which is in balance with the counter torque, the zeta force. We show that d-orbital electrons have a crucial effect on these torques. Nonzero local chirality density in transition metal atoms is also found, though the electron mass has the effect to wash out nonzero chirality density. Distribution patterns of the chirality density are the same for Sc–Ni atoms, though the electron density distributions are different. -- Highlights: ► Nonzero local spin torque is found in the steady states of transition metal atoms. ► The spin steady state is realized by the existence of a counter torque, zeta force. ► D-orbital electrons have a crucial effect on the spin torque and zeta force. ► Nonzero local chiral density is found in spite of the washout by the electron mass. ► Chiral density distribution have the same pattern for Sc–Ni atoms.

  20. Graphene as a flexible template for controlling magnetic interactions between metal atoms.

    Science.gov (United States)

    Lee, Sungwoo; Kim, Dongwook; Robertson, Alex W; Yoon, Euijoon; Hong, Suklyun; Ihm, Jisoon; Yu, Jaejun; Warner, Jamie H; Lee, Gun-Do

    2017-03-01

    Metal-doped graphene produces magnetic moments that have potential application in spintronics. Here we use density function theory computational methods to show how the magnetic interaction between metal atoms doped in graphene can be controlled by the degree of flexure in a graphene membrane. Bending graphene by flexing causes the distance between two substitutional Fe atoms covalently bonded in graphene to gradually increase and these results in the magnetic moment disappearing at a critical strain value. At the critical strain, a carbon atom can enter between the two Fe atoms and blocks the interaction between relevant orbitals of Fe atoms to quench the magnetic moment. The control of interactions between doped atoms by exploiting the mechanical flexibility of graphene is a unique approach to manipulating the magnetic properties and opens up new opportunities for mechanical-magnetic 2D device systems.

  1. Relative Stabilities and Reactivities of Isolated Versus Conjugated Alkenes: Reconciliation Via a Molecular Orbital Approach

    Science.gov (United States)

    Sotiriou-Leventis, Chariklia; Hanna, Samir B.; Leventis, Nicholas

    1996-04-01

    The well-accepted practice of generating a pair of molecular orbitals, one of lower energy and another of higher energy than the original pair of overlapping atomic orbitals, and the concept of a particle in a one-dimensional box are implemented in a simplified, nonmathematical method that explains the relative stabilities and reactivities of alkenes with conjugated versus isolated double bonds. In this method, Huckel-type MO's of higher polyenes are constructed by energy rules of linear combination of atomic orbitals. One additional rule is obeyed: bonding molecular orbitals overlap only with bonding molecular orbitals, and antibonding molecular orbitals overlap only with antibonding molecular orbitals.

  2. Electronic Raman spectra in iron-based superconductors with two-orbital model

    International Nuclear Information System (INIS)

    Lu Hongyan; Wang Da; Chen San; Wang Wei; Gong Pifeng

    2011-01-01

    Electronic Raman spectra were calculated in orbital space in a microscopic theory. Both Raman spectra and spectra weight were presented. Raman spectra for the gap symmetries are different from each other. The results can help decide the gap symmetry by comparing with experiments. Electronic Raman spectra in iron-based superconductors with two-orbital model is discussed. In the orbital space, some possible pairing symmetries of the gap are selected. To further discriminate them, electronic Raman spectra and spectra weight at Fermi surface (FS) which helps understand the Raman spectra are calculated in each case. From the low energy threshold, the number of Raman peaks, and the low frequency power law behavior, we can judge whether it is full gap or nodal gap, and even one gap or multi-gaps. The results provide useful predictions for comparison with experiments.

  3. Superconducting fluctuations in systems with Rashba-spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Orth, Peter P.; Scheurer, Mathias; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We investigate the BEC-BCS crossover in a two-dimensional system with Rashba-spin-orbit coupling. To include the effects of phase and amplitude fluctuations of the superconducting order parameter we perform a loop expansion of the effective field theory. We analyze in particular the probability of a low density superconducting quantum phase transition. The theory is relevant to LaAlO{sub 3}/SrTiO{sub 3} interfaces and two-dimensional cold atom systems with synthetic gauge fields.

  4. Electronic orbital angular momentum and magnetism of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ji, E-mail: ji.luo@upr.edu

    2014-10-01

    Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated and corresponding magnetic moment is used to investigate the magnetism of perfect graphene. Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field, and de Haas–van Alphen oscillation. Regulation of graphene's magnetism by a parallel electric field is presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector hopping interaction between carbon atomic orbitals is the building element. A comparison between OAM of graphene electrons, OAM of Dirac fermions, and total angular momentum of the latter demonstrates their different roles in graphene's magnetism. Applicability and relation to experiments of the results are discussed. - Highlights: • Orbital angular momentum of graphene electrons is calculated. • Orbital magnetic moment of graphene electrons is obtained. • Variation in magnetization of graphene is calculated. • Roles of different kinds of angular momentum are investigated.

  5. Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction

    Science.gov (United States)

    Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.

    2018-01-01

    We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.

  6. Self-consistent assessment of Englert-Schwinger model on atomic properties

    Science.gov (United States)

    Lehtomäki, Jouko; Lopez-Acevedo, Olga

    2017-12-01

    Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-1/5 vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model.

  7. Intense source of cold cesium atoms based on a two-dimensional magneto–optical trap with independent axial cooling and pushing

    International Nuclear Information System (INIS)

    Huang Jia-Qiang; Wu Chen-Fei; Wang Li-Jun; Yan Xue-Shu; Zhang Jian-Wei

    2016-01-01

    We report our studies on an intense source of cold cesium atoms based on a two-dimensional (2D) magneto–optical trap (MOT) with independent axial cooling and pushing. The new-designed source, proposed as 2D-HP MOT, uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam. With the independent pushing beam, the atomic flux can be substantially optimized. The total atomic flux maximum obtained in the 2D-HP MOT is 4.02 × 10 10 atoms/s, increased by 60 percent compared to the traditional 2D + MOT in our experiment. Moreover, with the pushing power 10 μW and detuning 0 Γ , the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20. The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s. The dependences of the atomic flux on the pushing power and detuning are studied in detail. The experimental results are in good agreement with the theoretical model. (paper)

  8. Teleportation of an Arbitrary Two-Atom Entangled State via Thermal Cavity

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; LIU Yi-Min; GAO Gan; SHI Shou-Hua; ZHANG Zhan-Jun

    2007-01-01

    We present an experimentally feasible scheme for teleportation of an arbitrary unknown two-atom entangled state by using two-atom Bell states in driven thermal cavities.In this scheme,the effects of thermal field and cavity decay can be all eliminated.Moreover,the present scheme is feasible according to current technologies.

  9. Two-band model with off-diagonal occupation dependent hopping rate

    International Nuclear Information System (INIS)

    Zawadowski, A.

    1989-01-01

    In this paper two-band hopping model is treated on a two-dimensional square lattice. The atoms are located at the corners and the middles of the edges of the squares. In addition to the strongly overlapping orbitals of the atoms, there are extra orbitals at the corners, which are weakly hybridized. The assumption is made that the Fermi level is inside the broad band and is every near to the narrow band formed by the extra orbitals. The hamiltonian is Hubbard type, but the off-diagonal part of the two-site interaction t is kept also where one creation or annihilation operator acts on the extra orbital and the others on one of its neighbors. The weak coupling t is enhanced by the on-site Coulomb repulsion at the corners, which enhancement is a power function of the ratio of the broad band width and the narrow bank position measured from the Fermi level. That enhancement is obtained by summation of logarithmic Kondo-type corrections of orbital origin, which reflects the formation of a ground state of new type with strong orbital and spin correlations. Interaction between the particles of the broad band is generated by processes with one heavy and one light particle in the intermediate state

  10. Ab initio phonon dispersions of face centered cubic Pb: effects of spin-orbit coupling

    International Nuclear Information System (INIS)

    Dal Corso, Andrea

    2008-01-01

    I present the ab initio phonon dispersions of face centered cubic Pb calculated within the framework of density functional perturbation theory, with plane waves and a fully relativistic ultrasoft pseudopotential which includes spin-orbit coupling effects. I find that, within the local density approximation, the theory gives phonon frequencies close to the experimental inelastic neutron scattering data. Many of the anomalies present in these dispersions are well reproduced by the fully relativistic pseudopotential theory and can be shown to appear only for small values of the smearing parameter that controls the sharpness of the Fermi surface.

  11. Drude weight and optical conductivity of a two-dimensional heavy-hole gas with k-cubic spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mawrie, Alestin; Ghosh, Tarun Kanti [Department of Physics, Indian Institute of Technology-Kanpur, Kanpur 208 016 (India)

    2016-01-28

    We present a detailed theoretical study on zero-frequency Drude weight and optical conductivity of a two-dimensional heavy-hole gas (2DHG) with k-cubic Rashba and Dresselhaus spin-orbit interactions. The presence of k-cubic spin-orbit couplings strongly modifies the Drude weight in comparison to the electron gas with k-linear spin-orbit couplings. For large hole density and strong k-cubic spin-orbit couplings, the density dependence of Drude weight deviates from the linear behavior. We establish a relation between optical conductivity and the Berry connection. Unlike two-dimensional electron gas with k-linear spin-orbit couplings, we explicitly show that the optical conductivity does not vanish even for equal strength of the two spin-orbit couplings. We attribute this fact to the non-zero Berry phase for equal strength of k-cubic spin-orbit couplings. The least photon energy needed to set in the optical transition in hole gas is one order of magnitude smaller than that of electron gas. Types of two van Hove singularities appear in the optical spectrum are also discussed.

  12. Oscillations of Doppler-Raby of two level atom moving in resonator

    International Nuclear Information System (INIS)

    Kozlovskij, A.V.

    2001-01-01

    The interaction of the two-level atom with the quantum mode of the high-quality resonator uniformly moving by the classic trajectory, is considered. The recurrent formula for the probability of the atom transition with the photon radiation is determined through the dressed states method. It is shown, that the ratio between the Doppler shift value of the atom transition and the Raby frequency value of the atom-field system qualitatively effects the dependence of the moving atom transition probability on its position in the resonator, as well as on its value [ru

  13. A Hartree-Fock program for atomic structure calculations

    International Nuclear Information System (INIS)

    Mitroy, J.

    1999-01-01

    The Hartree-Fock equations for a general open shell atom are described. The matrix equations that result when the single particle orbitals are written in terms of a linear combination of analytic basis functions are derived. Attention is paid to the complexities that occur when open shells are present. The specifics of a working FORTRAN program which is available for public use are described. The program has the flexibility to handle either Slater-type orbitals or Gaussian-type orbitals. It can be obtained over the internet at http://lacebark.ntu.edu.au/j_mitroy/research/atomic.htm Copyright (1999) CSIRO Australia

  14. Interaction-induced decay of a heteronuclear two-atom system

    Science.gov (United States)

    Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng

    2015-01-01

    Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051

  15. Building one molecule from a reservoir of two atoms.

    Science.gov (United States)

    Liu, L R; Hood, J D; Yu, Y; Zhang, J T; Hutzler, N R; Rosenband, T; Ni, K-K

    2018-05-25

    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Two wide-angle imaging neutral-atom spectrometers (TWINS)

    International Nuclear Information System (INIS)

    McComas, D.J.; Blake, B.; Burch, J.

    1998-01-01

    Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a revolutionary new mission designed to stereoscopically image the magnetosphere in charge exchange neutral atoms for the first time. The authors propose to fly two identical TWINS instruments as a mission of opportunity on two widely-spaced high-altitude, high-inclination US Government spacecraft. Because the spacecraft are funded independently, TWINS can provide a vast quantity of high priority science observations (as identified in an ongoing new missions concept study and the Sun-Earth Connections Roadmap) at a small fraction of the cost of a dedicated mission. Because stereo observations of the near-Earth space environs will provide a particularly graphic means for visualizing the magnetosphere in action, and because of the dedication and commitment of the investigator team to the principles of carrying space science to the broader audience, TWINS will also be an outstanding tool for public education and outreach

  17. Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble

    Science.gov (United States)

    Li, Jun; Zhou, Ming-Ti; Jing, Bo; Wang, Xu-Jie; Yang, Sheng-Jun; Jiang, Xiao; Mølmer, Klaus; Bao, Xiao-Hui; Pan, Jian-Wei

    2016-10-01

    We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

  18. Parameningeal rhabdomyosarcoma (including the orbit): results of orbital irradiation

    International Nuclear Information System (INIS)

    Jereb, B.; Haik, B.G.; Ong, R.; Ghavimi, F.

    1985-01-01

    Twenty-three patients with parameningeal (including orbital rhabdomyosarcoma (RMS)) were treated at Memorial Sloan-Kettering Cancer Center (MSKCC) between July 1971 and January 1983. Twenty were children with a mean age of 6 and 3 were adults. In 6 patients, the primary tumor was from the orbit, whereas the remaining 17 had other parameningeal primary sites. The tumors were in a very progressive local stage, with extensive destruction of the facial bones in 19 patients. Eight patients were treated with T2 chemotherapy protocol and 15 received T6. Seven patients received 5,000 to 7,200 rad delivered to the primary tumor in 11-16 weeks, 15 patients received between 4,500 to 5,000 rad in 4-7 weeks, and 1 patient received 3,000 rad in 3 weeks for residual microscopic disease following surgery. Two patients were treated with radiation to the whole brain; no patients received radiation of the whole central nervous axis (CNA). Fifteen of the 23 patients (65%) are alive and well with a medical follow-up time of 5 years. Two patients died of therapeutic complications and six died of tumor spread. In five patients, involvement of the central nervous system (CNS) was the cause of death. The prognosis of orbital RMS with parameningeal involvement is no better than in other tumors of parameningeal sites. In those patients who had impaired vision because of optic nerve damage prior to treatment, the vision did not improve following treatment. There was no impaired vision seen due to radiation damage of eye structures except in the lens

  19. The Rashba and Dresselhaus spin-orbit interactions in a two-dimensional quantum pseudo-dot system

    Science.gov (United States)

    Akbari, M.; Rezaei, G.; Khordad, R.

    2017-01-01

    We study the impact of the spin-orbit coupling due to both structure and crystal inversion asymmetry and external magnetic field on the level structure in a two-dimensional quantum pseudo-dot. It is demonstrated that, both the spin-orbit interactions and magnetic field strength have a great influence on energy eigenvalues of the system. Also, we found that an increase in magnetic field enhances the spin-orbit coupling strength. This phenomena leads to increase the energy eigenvalues and energy splitting due to the spin-orbit coupling.

  20. Atomic-scale origin of piezoelectricity in wurtzite ZnO.

    Science.gov (United States)

    Lee, Jung-Hoon; Lee, Woo-Jin; Lee, Sung-Hoon; Kim, Seong Min; Kim, Sungjin; Jang, Hyun Myung

    2015-03-28

    ZnO has been extensively studied by virtue of its remarkably high piezoelectric responses, especially in nanowire forms. Currently, the high piezoelectricity of wurtzite ZnO is understood in terms of the covalent-bonding interaction between Zn 3d and O 2p orbitals. However, the Zn 3d orbitals are not capable of forming hybridized orbitals with the O 2pz orbitals since the Zn ion is characterized by fully filled non-interacting 3d orbitals. To resolve this puzzling problem, we have investigated the atomic-scale origin of piezoelectricity by exploiting density-functional theory calculations. On the basis of the computed orbital-resolved density of states and the band structure over the Γ-M first Brillouin zone, we propose an intriguing bonding mechanism that accounts for the observed high piezoelectricity - intra-atomic 3dz(2)-4pz orbital self-mixing of Zn, followed by asymmetric hybridization between the Zn 3dz(2)-4pz self-mixed orbital and the O 2pz orbital along the polar c-axis of the wurtzite ZnO.

  1. Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao

    2007-01-01

    An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.

  2. Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems

    Science.gov (United States)

    Kucska, Nóra; Gulácsi, Zsolt

    2018-06-01

    A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.

  3. Coupling of spin and orbital motion of electrons in carbon nanotubes

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Ilani, S; Ralph, D C

    2008-01-01

    Electrons in atoms possess both spin and orbital degrees of freedom. In non-relativistic quantum mechanics, these are independent, resulting in large degeneracies in atomic spectra. However, relativistic effects couple the spin and orbital motion, leading to the well-known fine structure in their...... systems, entailing new design principles for the realization of quantum bits (qubits) in nanotubes and providing a mechanism for all-electrical control of spins in nanotubes....

  4. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NARCIS (Netherlands)

    Marinov, D.; Drag, C.; Blondel, C.; Guaitella, O.; Golda, J.; Klarenaar, B.L.M.; Engeln, R.A.H.; Schulz-von der Gathen, V.; Booth, J.-P.

    2016-01-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was

  5. Two photon spectroscopy of rubidium atoms in a magneto-optic trap

    International Nuclear Information System (INIS)

    Fretel, E.

    1997-01-01

    Two photon transitions without doppler effect can be used as an atomic reference. The aim of this work is to study two photon transitions of rubidium atoms in a magneto-optical trap. The chosen transition is from the level 5 2 S 1/2 toward the level 5 2 D 5/2 . The magneto-optical trap is achieved by using 3 pairs of perpendicular laser beams and by setting a magnetic field gradient. About 10 18 atoms are trapped and cooled in a 1 mm 3 volume. In a first stage we have realized an optical double resonance experiment from the level 5 2 S 1/2 toward the level 5 2 D 5/2 by populating the intermediate level 5 2 P 3/2 . Then we have studied the two photon transition in this cluster of cold atoms. A particular setting of the experiment allows to reduce the effect of ray broadening and shifting due to the magnetic field of the trap

  6. Phase-space curvature in spin-orbit-coupled ultracold atomic systems

    Science.gov (United States)

    Armaitis, J.; Ruseckas, J.; Anisimovas, E.

    2017-04-01

    We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.

  7. Atomic wavefunctions probed through strong-field light-matter interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mairesse, Y; Villeneuve, D M; Corkum, P B; Dudovich, N [Natl Res Council Canada, Ottawa, ON K1A 0R6 (Canada); Shafir, D; Dudovich, N [Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, (Israel); Mairesse, Y [Univ Bordeaux 1, CELIA, CNRS, UMR 5107, CEA, F-33405 Talence (France)

    2009-07-01

    Strong-field light-matter interactions can encode the spatial properties of the electronic wavefunctions that contribute to the process. In particular, the broadband harmonic spectra, measured for a series of molecular alignments, can be used to create a tomographic reconstruction of molecular orbitals. Here, we present an extension of the tomography approach to systems that cannot be naturally aligned. We demonstrate this ability by probing the two-dimensional properties of atomic wavefunctions. By manipulating an electron-ion re-collision process, we are able to resolve the symmetry of the atomic wavefunction with high contrast. (authors)

  8. Mössbauer studies of two-electron centers with negative correlation energy in crystalline and amorphous semiconductors

    International Nuclear Information System (INIS)

    Bordovsky, G. A.; Nemov, S. A.; Marchenko, A. V.; Seregin, P. P.

    2012-01-01

    The results of the study of donor U − -centers of tin and germanium in lead chalcogenides by Mössbauer emission spectroscopy are discussed. The published data regarding the identification of amphoteric U − -centers of tin in glassy binary arsenic and germanium chalcogenides using Mössbauer emission spectroscopy, and in multicomponent chalcogenide glasses using Mössbauer absorption spectroscopy are considered. Published data concerning the identification of two-atom U − -centers of copper in lattices of semimetal copper oxides by Mössbauer emission spectroscopy are analyzed. The published data on the detection of spatial inhomogeneity of the Bose-Einstein condensate in superconducting semiconductors and semimetal compounds, and on the existence of the correlation between the electron density in lattice sites and the superconducting transition temperature are presented. The principal possibility of using Mössbauer U − -centers as a tool for studying the Bose-Einstein condensation of electron pairs during the superconducting phase transition in semiconductors and semimetals is considered.

  9. Two atoms scattering at low and cold energies

    Indian Academy of Sciences (India)

    terms exactly with exchange/antisymmetry between the system electrons. ... Figure 1a presents the picture of two atoms with nuclei A and B attached with electrons ..... Physical Chemistry Dept. of IACS, Kolkata, India, Private Communication.

  10. Adiabatic interpretation of a two-level atom diode, a laser device for unidirectional transmission of ground-state atoms

    International Nuclear Information System (INIS)

    Ruschhaupt, A.; Muga, J. G.

    2006-01-01

    We present a generalized two-level scheme for an 'atom diode', namely, a laser device that lets a two-level ground-state atom pass in one direction, say from left to right, but not in the opposite direction. The laser field is composed of two lateral state-selective mirror regions and a central pumping region. We demonstrate the robustness of the scheme and propose a physical realization. It is shown that the inclusion of a counterintuitive laser field blocking the excited atoms on the left side of the device is essential for a perfect diode effect. The reason for this, the diodic behavior, and the robustness may be understood with an adiabatic approximation. The conditions to break down the approximation, which imply also the diode failure, are analyzed

  11. Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach

    Science.gov (United States)

    Fujiuchi, Ryo; Sugimoto, Koudai; Ohta, Yukinori

    2018-06-01

    Using the variational cluster approach based on the self-energy functional theory, we study the possible occurrence of excitonic order and superconductivity in the two-orbital Hubbard model with intra- and inter-orbital Coulomb interactions. It is known that an antiferromagnetic Mott insulator state appears in the regime of strong intra-orbital interaction, a band insulator state appears in the regime of strong inter-orbital interaction, and an excitonic insulator state appears between them. In addition to these states, we find that the s±-wave superconducting state appears in the small-correlation regime, and the dx2 - y2-wave superconducting state appears on the boundary of the antiferromagnetic Mott insulator state. We calculate the single-particle spectral function of the model and compare the band gap formation due to the superconducting and excitonic orders.

  12. Time-Dependent Close-Coupling Methods for Electron-Atom/Molecule Scattering

    International Nuclear Information System (INIS)

    Colgan, James

    2014-01-01

    The time-dependent close-coupling (TDCC) method centers on an accurate representation of the interaction between two outgoing electrons moving in the presence of a Coulomb field. It has been extensively applied to many problems of electrons, photons, and ions scattering from light atomic targets. Theoretical Description: The TDCC method centers on a solution of the time-dependent Schrödinger equation for two interacting electrons. The advantages of a time-dependent approach are two-fold; one treats the electron-electron interaction essentially in an exact manner (within numerical accuracy) and a time-dependent approach avoids the difficult boundary condition encountered when two free electrons move in a Coulomb field (the classic three-body Coulomb problem). The TDCC method has been applied to many fundamental atomic collision processes, including photon-, electron- and ion-impact ionization of light atoms. For application to electron-impact ionization of atomic systems, one decomposes the two-electron wavefunction in a partial wave expansion and represents the subsequent two-electron radial wavefunctions on a numerical lattice. The number of partial waves required to converge the ionization process depends on the energy of the incoming electron wavepacket and on the ionization threshold of the target atom or ion.

  13. Effects of spin orbital coupling on atomic and electronic structures in Al2Cu and Al2Au crystal and liquid phases via ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Y.; Lu, Y.H.; Wang, X.D.; Cao, Q.P.; Zhang, D.X.; Jiang, J.Z.

    2014-01-01

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al 2 Cu and Al 2 Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al 2 Cu and Al 2 Au

  14. Concept of APDL, the atomic process description language

    International Nuclear Information System (INIS)

    Sasaki, Akira

    2004-01-01

    The concept of APDL, the Atomic Process Description Language, which provides simple and complete description of atomic model is presented. The syntax to describe electron orbital and configuration is defined for the use in the atomic structure, kinetics and spectral synthesis simulation codes. (author)

  15. X-ray atomic scattering factors of low-Z ions with a core hole

    International Nuclear Information System (INIS)

    Hau-Riege, Stefan P.

    2007-01-01

    Short and intense x-ray pulses may be used for atomic-resolution diffraction imaging of single biological molecules. One of the dominant damage mechanisms is atomic ionization, resulting in a large fraction of atoms with core holes. We calculated the atomic scattering factor of atoms with atomic charge numbers between 3 and 10 in different ionization states with and without a core hole. Our results show that orbital occupation and the change of the orbitals upon core ionization (core relaxation) have a significant impact on the diffraction pattern

  16. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map.

    Science.gov (United States)

    Akaishi, A; Shudo, A

    2009-12-01

    We investigate the stickiness of the two-dimensional piecewise linear map with a family of marginal unstable periodic orbits (FMUPOs), and show that a series of unstable periodic orbits accumulating to FMUPOs plays a significant role to give rise to the power law correlation of trajectories. We can explicitly specify the sticky zone in which unstable periodic orbits whose stability increases algebraically exist, and find that there exists a hierarchy in accumulating periodic orbits. In particular, the periodic orbits with linearly increasing stability play the role of fundamental cycles as in the hyperbolic systems, which allows us to apply the method of cycle expansion. We also study the recurrence time distribution, especially discussing the position and size of the recurrence region. Following the definition adopted in one-dimensional maps, we show that the recurrence time distribution has an exponential part in the short time regime and an asymptotic power law part. The analysis on the crossover time T(c)(*) between these two regimes implies T(c)(*) approximately -log[micro(R)] where micro(R) denotes the area of the recurrence region.

  17. Quantum dynamics of a two-atom-qubit system

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Nguyen Bich Ha; Le Thi Ha Linh

    2009-01-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  18. Extreme orbital evolution from hierarchical secular coupling of two giant planets

    International Nuclear Information System (INIS)

    Teyssandier, Jean; Naoz, Smadar; Lizarraga, Ian; Rasio, Frederic A.

    2013-01-01

    Observations of exoplanets over the last two decades have revealed a new class of Jupiter-size planets with orbital periods of a few days, the so-called 'hot Jupiters'. Recent measurements using the Rossiter-McLaughlin effect have shown that many (∼50%) of these planets are misaligned; furthermore, some (∼15%) are even retrograde with respect to the stellar spin axis. Motivated by these observations, we explore the possibility of forming retrograde orbits in hierarchical triple configurations consisting of a star-planet inner pair with another giant planet, or brown dwarf, in a much wider orbit. Recently, it was shown that in such a system, the inner planet's orbit can flip back and forth from prograde to retrograde and can also reach extremely high eccentricities. Here we map a significant part of the parameter space of dynamical outcomes for these systems. We derive strong constraints on the orbital configurations for the outer perturber (the tertiary) that could lead to the formation of hot Jupiters with misaligned or retrograde orbits. We focus only on the secular evolution, neglecting other dynamical effects such as mean-motion resonances, as well as all dissipative forces. For example, with an inner Jupiter-like planet initially on a nearly circular orbit at 5 AU, we show that a misaligned hot Jupiter is likely to be formed in the presence of a more massive planetary companion (>2 M J ) within ∼140 AU of the inner system, with mutual inclination >50° and eccentricity above ∼0.25. This is in striking contrast to the test particle approximation, where an almost perpendicular configuration can still cause large-eccentricity excitations, but flips of an inner Jupiter-like planet are much less likely to occur. The constraints we derive can be used to guide future observations and, in particular, searches for more distant companions in systems containing a hot Jupiter.

  19. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  20. Diplopia and Orbital Wall Fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  1. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  2. Localization of the relative position of two atoms induced by spontaneous emission

    International Nuclear Information System (INIS)

    Zheng, L.; Li, C.; Li, Y.; Sun, C.P.

    2005-01-01

    We reexamine the back-action of emitted photons on the wave packet evolution about the relative position of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the localization of the relative position of the two atoms through the entanglement between the spatial motion of individual atoms and their emitted photons. The obtained result provides a more realistic model for the analysis of the environment-induced localization of a macroscopic object

  3. Polarization effects in two-colour ionization of atomic hydrogen with incommensurable frequencies

    International Nuclear Information System (INIS)

    Cionga, A.

    1993-01-01

    The angular distribution of ejected electrons for two-colour ionization of atomic hydrogen are studied using an approach which takes into account the radiative corrections to both bound and the continuum states. One considers the ionization process in which one high-frequency photon has enough energy to ionize the atom, meanwhile, one extra-photon is exchanged between atomic system and the low-frequency field. We focus our attention to the case of two incommensurable frequencies. (Author)

  4. Distribution of electron orbits having a definite angular momentum in a static magnetic field

    International Nuclear Information System (INIS)

    Olszewski, S.

    1996-01-01

    Electron orbits having a definite angular momentum in a static magnetic field are calculated with the aid of the Bohr-Sommerfeld quantization rules. The quantization gives that orbits are arranged along a straight line but the distance between the centers of two neighboring orbits decreases with increase of the absolute value of the angular momentum. With the energy correction equal to the zero-point energy of the harmonic oscillator, the distribution of orbits becomes identical to that obtained recently with the aid of a mixed semiclassical and quantum mechanical theory. 16 refs., 1 fig

  5. The RPA Atomization Energy Puzzle.

    Science.gov (United States)

    Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I

    2010-01-12

    There is current interest in the random phase approximation (RPA), a "fifth-rung" density functional for the exchange-correlation energy. RPA has full exact exchange and constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases (uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged effect that is captured by a local spin density approximation (LSDA) or a generalized gradient approximation (GGA). Nonempirical density functionals for the correction to RPA were constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth, Lundqvist, and collaborators. While they make important and helpful corrections to RPA total and ionization energies of free atoms, they correct the RPA atomization energies of molecules by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average, about 10 kcal/mol lower than those of accurate values from experiment. We find here that a hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies much more accurate than either one does alone. This suggests a solution to the puzzle: While the proper correction to RPA is short-ranged in some systems, its contribution to the correlation hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.

  6. Ultimate temperature for laser cooling of two-level neutral atoms

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Zilio, S.C.

    1989-01-01

    We present a simple pedagogical method to evaluate the minimum attainable temperature for laser cooling of two-level neutral atoms. Results are given as a function of the laser detuning and intensity. We also discuss the use of this approach to predict the minimum temperature of neutral atoms confined in magnetic traps. (author) [pt

  7. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture

    International Nuclear Information System (INIS)

    Yuan Jianmin

    2002-01-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H 2 O), and CO 2 at a few temperatures and densities are presented

  8. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.

    Science.gov (United States)

    Yuan, Jianmin

    2002-10-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.

  9. Electron capture in collisions of Si3+ ions with atomic hydrogen from low to intermediate energies

    Science.gov (United States)

    Liu, C. H.; Liu, L.; Wang, J. G.

    2014-07-01

    The electron capture process for the Si3+(3s) + H(1s) collisions is investigated by the quantum-mechanical molecular orbital close-coupling (MOCC) method and by the two-center atomic orbital close-coupling (AOCC) method in the energy range of 10-5-10 keV/u and 0.8-200 keV/u, respectively. Total and state-selective cross sections are presented and compared with the available theoretical and experimental results. The present MOCC and AOCC results agree well with the experimental measurements, but show some discrepancy with the calculations of Wang et al. [Phys. Rev. A 74, 052709 (2006), 10.1103/PhysRevA.74.052709] at E > 40 eV/u because of the inclusion of rotational couplings, which play important roles in the electron capture process. At lower energies, the present results are about three to five times smaller than those of Wang et al. due to the difference in the molecular data at large internuclear distances. The energy behaviors of the electron capture cross sections are discussed on the basis of identified reaction mechanisms.

  10. Concurrence Measurement for the Two-Qubit Optical and Atomic States

    Directory of Open Access Journals (Sweden)

    Lan Zhou

    2015-06-01

    Full Text Available Concurrence provides us an effective approach to quantify entanglement, which is quite important in quantum information processing applications. In the paper, we mainly review some direct concurrence measurement protocols of the two-qubit optical or atomic system. We first introduce the concept of concurrence for a two-qubit system. Second, we explain the approaches of the concurrence measurement in both a linear and a nonlinear optical system. Third, we introduce some protocols for measuring the concurrence of the atomic entanglement system.

  11. Atomic structure of a metal-supported two-dimensional germania film

    Science.gov (United States)

    Lewandowski, Adrián Leandro; Schlexer, Philomena; Büchner, Christin; Davis, Earl M.; Burrall, Hannah; Burson, Kristen M.; Schneider, Wolf-Dieter; Heyde, Markus; Pacchioni, Gianfranco; Freund, Hans-Joachim

    2018-03-01

    The growth and microscopic characterization of two-dimensional germania films is presented. Germanium oxide monolayer films were grown on Ru(0001) by physical vapor deposition and subsequent annealing in oxygen. We obtain a comprehensive image of the germania film structure by combining intensity-voltage low-energy electron diffraction (I/V-LEED) and ab initio density functional theory (DFT) analysis with atomic-resolution scanning tunneling microscopy (STM) imaging. For benchmarking purposes, the bare Ru(0001) substrate and the (2 ×2 )3 O covered Ru(0001) were analyzed with I/V-LEED with respect to previous reports. STM topographic images of the germania film reveal a hexagonal network where the oxygen and germanium atom positions appear in different imaging contrasts. For quantitative LEED, the best agreement has been achieved with DFT structures where the germanium atoms are located preferentially on the top and fcc hollow sites of the Ru(0001) substrate. Moreover, in these atomically flat germania films, local site geometries, i.e., tetrahedral building blocks, ring structures, and domain boundaries, have been identified, indicating possible pathways towards two-dimensional amorphous networks.

  12. The role of terminations and coordination atoms on the pseudocapacitance of titanium carbonitride monolayers.

    Science.gov (United States)

    Zhang, Wenqiang; Cheng, Chuan; Fang, Peilin; Tang, Bin; Zhang, Jindou; Huang, Guoming; Cong, Xin; Zhang, Bao; Ji, Xiao; Miao, Ling

    2016-02-14

    Nowadays, MXenes have received extensive concern as a prominent electrode material of electrochemical capacitors. As two important factors to the capacitance, the influence of the intrinsical terminations (F, O and OH) and coordination atoms (C and N) is investigated using first-principles calculations. According to the density of states aligned with the standard hydrogen electrode, it turns out that a Ti3CNO2 monolayer is proven to show an obvious pseudocapacitive behavior, while the bare, F and OH terminated Ti3CN monolayers may only present electrochemical double layer characters in an aqueous electrolyte. Moreover, the illustration of molecular orbitals over the Fermi level are mainly contributed by the d-orbitals of Ti atoms coordinated with O and N atoms, indicating that the redox pseudocapacitance of the Ti3CNO2 monolayer is promoted by the coordination N atoms. Then the superiority of N bonded Ti atoms in accepting charges can be visualized through the charge population. Further, the larger ratio of C/N in the coordination environment of Ti atoms indicates that more electrons can be stored. Our investigation can give an instructional advice in the MXenes-electrode production.

  13. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  14. Periodicity and chaos in strongly perturbed classical orbitals for Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Klar, H

    1986-01-01

    Within the framework of classical mechanics two prototypes of strongly perturbed orbitals, the diamagnetism in hydrogen and electronic double excitation, are analyzed near critical phase space points (fixed points). The motion of the hydrogen electron under the joint influence of the Coulomb field and the magnetic field is periodic for any field strengths. For a two-electron atom however the author finds a chaotic time evolution of the electron pair correlation, causing presumably irregular spectral patterns. (Auth.).

  15. Bohr orbit theory revisited

    International Nuclear Information System (INIS)

    Harcourt, R.D.

    1987-01-01

    Bohr orbit theory is used to calculate energies for the 1S, 2P, 3D, 4F and 5G states of the helium muonic atom, when the muon is excited. These energies are close to those which have been calculated variationally by Huang (1977, Phys. Rev. A 15 1832-8). (author)

  16. Searching for Supersolidity in Ultracold Atomic Bose Condensates with Rashba Spin-Orbit Coupling

    Science.gov (United States)

    Liao, Renyuan

    2018-04-01

    We developed a functional integral formulation for the stripe phase of spinor Bose-Einstein condensates with Rashba spin-orbit coupling. The excitation spectrum is found to exhibit double gapless band structures, identified to be two Goldstone modes resulting from spontaneously broken internal gauge symmetry and translational invariance symmetry. The sound velocities display anisotropic behavior with the lower branch vanishing in the direction perpendicular to the stripe in the x -y plane. At the transition point between the plane-wave phase and the stripe phase, physical quantities such as fluctuation correction to the ground-state energy and quantum depletion of the condensates exhibit discontinuity, characteristic of the first-order phase transition. Despite strong quantum fluctuations induced by Rashba spin-orbit coupling, we show that the supersolid phase is stable against quantum depletion. Finally, we extend our formulation to finite temperatures to account for interactions between excitations.

  17. Interaction of charged 3D soliton with Coulomb center

    International Nuclear Information System (INIS)

    Rybakov, Yu.P.

    1996-03-01

    The Einstein - de Broglie particle-soliton concept is applied to simulate stationary states of an electron in a hydrogen atom. According to this concept, the electron is described by the localized regular solutions to some nonlinear equations. In the framework of Synge model for interacting scalar and electromagnetic fields a system of integral equations has been obtained, which describes the interaction between charged 3D soliton and Coulomb center. The asymptotic expressions for physical fields, describing soliton moving around the fixed Coulomb center, have been obtained with the help of integral equations. It is shown that the electron-soliton center travels along some stationary orbit around the Coulomb center. The electromagnetic radiation is absent as the Poynting vector has non-wave asymptote O(r -3 ) after averaging over angles, i.e. the existence of spherical surface corresponding to null Poynting vector stream, has been proved. Vector lines for Poynting vector are constructed in asymptotical area. (author). 22 refs, 2 figs

  18. Shaft Center Orbit in Dynamically Loaded Bearings

    DEFF Research Database (Denmark)

    Klit, Peder

    2005-01-01

    The aim of this work is to demonstrate how to utilize the bearings damping coe±cients to estimate the orbit for a dynamically loaded journal bearing. The classical method for this analysis was developed by Booker in 1965 [1]and described further in 1972 [2]. Several authors have re¯ned this metho...

  19. Introducing a new bond reactivity index: Philicities for natural bond orbitals.

    Science.gov (United States)

    Sánchez-Márquez, Jesús; Zorrilla, David; García, Víctor; Fernández, Manuel

    2017-12-22

    In the present work, a new methodology defined for obtaining reactivity indices (philicities) is proposed. This is based on reactivity functions such as the Fukui function or the dual descriptor, and makes it possible to project the information from reactivity functions onto molecular orbitals, instead of onto the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecules' natural bond orbitals (bond reactivity indices) because these orbitals have the advantage of being localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology provides a "philicity" index for every NBO, and a representative set of molecules has been used to test the new definition. A new methodology has also been developed to compare the "finite difference" and the "frontier molecular orbital" approximations. To facilitate their use, the proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, condensation schemes based on atomic populations of the "atoms in molecules" theory, the Hirshfeld population analysis, the approximation of Mulliken (with a minimal basis set) and electrostatic potential-derived charges have also been implemented, including the calculation of "bond reactivity indices" defined in previous studies. Graphical abstract A new methodology defined for obtaining bond reactivity indices (philicities) is proposed and makes it possible to project the information from reactivity functions onto molecular orbitals. The proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, this version can use new atomic condensation schemes and new "utilities" have also been included in this second version.

  20. Interference effects on the photoionization cross sections between two neighbouring atoms: nitrogen as an example

    International Nuclear Information System (INIS)

    Jian-Hua, Wu; Jian-Min, Yuan

    2009-01-01

    Interference effects on the photoionization cross sections between two neighbouring atoms are considered based on the coherent scattering of the ionized electrons by the two nuclei when their separation is less than or comparable to the de Broglie wave length of the ionized electrons. As an example, the single atomic nitrogen ionization cross section and the total cross sections of two nitrogen atoms with coherently added photoionization amplitudes are calculated from the threshold to about 60 Å (1 Å = 0.1 nm) of the photon energy. The photoionization cross sections of atomic nitrogen are obtained by using the close-coupling R-matrix method. In the calculation 19 states are included. The ionization energy of the atomic nitrogen and the photoionization cross sections agree well with the experimental results. Based on the R-matrix results of atomic nitrogen, the interference effects between two neighbouring nitrogen atoms are obtained. It is shown that the interference effects are considerable when electrons are ionized just above the threshold, even for the separations between the two atoms are larger than two times of the bond length of N 2 molecules. Therefore, in hot and dense samples, effects caused by the coherent interference between the neighbours are expected to be observable for the total photoionization cross sections. (atomic and molecular physics)

  1. Efficient two-dimensional subrecoil Raman cooling of atoms in a tripod configuration

    International Nuclear Information System (INIS)

    Ivanov, Vladimir S.; Rozhdestvensky, Yuri V.; Suominen, Kalle-Antti

    2011-01-01

    We present an efficient method for subrecoil cooling of neutral atoms by applying Raman cooling in two dimensions to a four-level tripod system. The atoms can be cooled simultaneously in two directions using only three laser beams. We describe the cooling process with a simple model showing that the momentum distribution can be rapidly narrowed to velocity spread down to 0.1v rec , corresponding to effective temperature equal to 0.01T rec . This method opens new possibilities for cooling of neutral atoms.

  2. Entanglement for a Bimodal Cavity Field Interacting with a Two-Level Atom

    International Nuclear Information System (INIS)

    Liu Jia; Chen Ziyu; Bu Shenping; Zhang Guofeng

    2009-01-01

    Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom and a two-mode cavity field. Effects of Kerr-like medium and the number of photon inside the cavity on the entanglement are studied. Our results show that atomic initial state must be superposed, so that the two cavity field modes can be entangled. Moreover, we also conclude that the number of photon in the two cavity mode should be equal. The interaction between modes, namely, the Kerr effect, has a significant negative contribution. Note that the atom frequency and the cavity frequency have an indistinguishable effect, so a corresponding approximation has been made in this article. These results may be useful for quantum information in optics systems.

  3. The Kondo temperature of a two-dimensional electron gas with Rashba spin–orbit coupling

    International Nuclear Information System (INIS)

    Chen, Liang; Lin, Hai-Qing; Sun, Jinhua; Tang, Ho-Kin

    2016-01-01

    We use the Hirsch–Fye quantum Monte Carlo method to study the single magnetic impurity problem in a two-dimensional electron gas with Rashba spin–orbit coupling. We calculate the spin susceptibility for various values of spin–orbit coupling, Hubbard interaction, and chemical potential. The Kondo temperatures for different parameters are estimated by fitting the universal curves of spin susceptibility. We find that the Kondo temperature is almost a linear function of Rashba spin–orbit energy when the chemical potential is close to the edge of the conduction band. When the chemical potential is far away from the band edge, the Kondo temperature is independent of the spin–orbit coupling. These results demonstrate that, for single impurity problems in this system, the most important reason to change the Kondo temperature is the divergence of density of states near the band edge, and the divergence is induced by the Rashba spin–orbit coupling. (paper)

  4. Two-step photoionization of hydrogen atoms in interplanetary space

    International Nuclear Information System (INIS)

    Gruntman, M.A.

    1990-01-01

    Photoionization is one of the key processes which determine the properties of fluxes of neutral atoms in interplanetary space. A new two-step channel (called indirect) of photoionization of hydrogen atoms is proposed. Hydrogen atoms are at first excited to states with principal quantum number n > 2, then decay to metastable H(2S) states, where they can be photoionized. Competing processes due to the interaction with solar wind plasma and solar radiation are considered and the photoionization rate through the proposed indirect channel is calculated. This rate depends on distance from the Sun as ∝ 1/R 4 at large distances (R > 1-2 a.u.) and as ∝ 1/R 2 at close approaches, where it is higher than the rate of direct photoionization. (author)

  5. Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej

    2015-01-01

    Near-surface two-dimensional electron gases on the topological insulator Bi$_2$Te$_2$Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The $k$-dependent splitting is strongly anisotropic to a...

  6. Sub-half-wavelength atom localization via two standing-wave fields

    International Nuclear Information System (INIS)

    Jin Luling; Sun Hui; Niu Yueping; Gong Shangqing

    2008-01-01

    We propose a scheme for sub-half-wavelength atom localization in a four-level ladder-type atomic system, which is coupled by two classical standing-wave fields. We find that one of the standing-wave fields can help in enhancing the localization precision, and the other is of crucial importance in increasing the detecting probability and leading sub-half-wavelength localization

  7. Theoretical atomic and molecular physics: Progress report, July 1, 1988 through June 30, 1989

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University emphasizes fundamental questions regarding the structure and collision dynamics of various atomic and molecular systems with some attention given to atomic processes at surfaces. Our activities have been centered on continuing the projects initiated last year as well as beginning some new studies. These include: differential elastic and charge-transfer scattering and alignment and orientation of the excited electron cloud in ion-atom, atom-atom and ion-molecule collisions, using a molecular-orbital representation and both semiclassical and quantal methods; quenching of low-lying Rydberg states of a sodium atom in a collision with a rare-gas atom, using a semiclassical representation; so far, target atoms He, Ne and Ar have been studied; chemiionization and ion-pair formation in a collision of a Li atom with a metastable He atom at intermediate collision energies, using a combination of quantal and semi-classical methods; Penning ionization of alkali atoms Na and K, using advanced Cl and Stieltjes imaging methods; radiative and nonradiative charge-transfer in He + + H collisions at ultra-low collision energies, using quantal methods; elastic and inelastic processes in electron-molecule collisions, using the continuum-multiple-scattering method; and inelastic collision processes in dense, high-temperature plasmas. Selected highlights of our research progress are briefly summarized in this paper

  8. Estimation of a beam centering error in the JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    Fukuda, M.; Okumura, S.; Arakawa, K.; Ishibori, I.; Matsumura, A.; Nakamura, N.; Nara, T.; Agematsu, T.; Tamura, H.; Karasawa, T.

    1999-01-01

    A method for estimating a beam centering error from a beam density distribution obtained by a single radial probe has been developed. Estimation of the centering error is based on an analysis of radial beam positions in the direction of the radial probe. Radial motion of a particle is described as betatron oscillation around an accelerated equilibrium orbit. By fitting the radial beam positions of several consecutive turns to an equation of the radial motion, not only amplitude of the centering error but also frequency of the radial betatron oscillation and energy gain per turn can be evaluated simultaneously. The estimated centering error amplitude was consistent with a result of an orbit simulation. This method was exceedingly helpful for minimizing the centering error of a 10 MeV proton beam during the early stages of acceleration. A well-centered beam was obtained by correcting the magnetic field with a first harmonic produced by two pairs of harmonic coils. In order to push back an orbit center to a magnet center, currents of the harmonic coils were optimized on the basis of the estimated centering error amplitude. (authors)

  9. Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations

    International Nuclear Information System (INIS)

    Zapukhlyak, Myroslav

    2008-01-01

    The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation int he time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He 2+ -He, and Ar q+ -He (q=15-18) [de

  10. Correlated motion of two atoms trapped in a single-mode cavity field

    International Nuclear Information System (INIS)

    Asboth, Janos K.; Domokos, Peter; Ritsch, Helmut

    2004-01-01

    We study the motion of two atoms trapped at distant positions in the field of a driven standing-wave high-Q optical resonator. Even without any direct atom-atom interaction the atoms are coupled through their position dependent influence on the intracavity field. For sufficiently good trapping and low cavity losses the atomic motion becomes significantly correlated and the two particles oscillate in their wells preferentially with a 90 deg. relative phase shift. The onset of correlations seriously limits cavity cooling efficiency, raising the achievable temperature to the Doppler limit. The physical origin of the correlation can be traced back to a cavity mediated crossfriction, i.e., a friction force on one particle depending on the velocity of the second particle. Choosing appropriate operating conditions allows for engineering these long range correlations. In addition this cross-friction effect can provide a basis for sympathetic cooling of distant trapped clouds

  11. Orbital fractures due to domestic violence: an epidemiologic study.

    Science.gov (United States)

    Goldberg, Stuart H.; McRill, Connie M.; Bruno, Christopher R.; Ten Have, Tom; Lehman, Erik

    2000-09-01

    Domestic violence is an important cause of orbital fractures in women. Physicians who treat patients with orbital fractures may not suspect this mechanism of injury. The purpose of this study was to assess the association between domestic violence and orbital fractures. A medical center-based case-control study with matching on age and site of admission was done. Medical center databases were searched using ICD-9 codes to identify all cases of orbital fractures encountered during a three-year period. Medical records of female patients age 13 and older were reviewed along with those of age, gender and site of admission matched controls. A stratified exact test was employed to test the association between domestic violence and orbital fracture. Among 41 adult female cases with orbital fractures treated at our medical center, three (7.3%) reported domestic violence compared to zero among the matched controls (p = 0.037). We believe that domestic violence may be under-reported in both orbital fracture cases and controls. This may result in an underestimate of the orbital fracture versus domestic violence association. Domestic violence is a serious women's health and societal problem. Domestic violence may have a variety of presentations, including illnesses and injuries. Orbital fracture is an identifiable manifestation of domestic violence. Domestic violence is more likely to be detected in adult female hospital patients with orbital fracture than in matched controls with any other diagnosis. Physicians who treat patients with orbital fractures should be familiar with this mechanism of injury.

  12. High-precision two-dimensional atom localization from four-wave mixing in a double-Λ four-level atomic system

    Science.gov (United States)

    Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu

    2018-03-01

    We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.

  13. Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Fedorov, D. V.; Jensen, A. S.

    2015-01-01

    We investigate a two-dimensional system of fermions with two internal (spin) degrees of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field $N...

  14. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from 55Cs to 80Hg

    Directory of Open Access Journals (Sweden)

    Hiroshi Tatewaki

    2015-06-01

    Full Text Available We consider, for atoms from 55Cs to 80Hg, the effective atomic radius (rear, which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He2. The values of rear are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of rear decreases from 55Cs to 56Ba and undergoes increases and decreases with rising nuclear charge from 57La to 70Y b. In fact rear is understood as comprising two interlaced sequences; one consists of 57La, 58Ce, and 64Gd, which have electronic configuration (4fn−1(5d1(6s2, and the remaining atoms have configuration (4fn(6s2. The sphere defined by rear contains 85%–90% of the 6s electrons. From 71Lu to 80Hg the radius rear also involves two sequences, corresponding to the two configurations 5dn+16s1 and 5dn6s2. The radius rear according to the present methodology is considerably larger than rvdW obtained by other investigators, some of who have found values of rvdW close to .

  15. Long-range dispersion interactions. I. Formalism for two heteronuclear atoms

    International Nuclear Information System (INIS)

    Zhang, J.-Y.; Mitroy, J.

    2007-01-01

    A general procedure for systematically evaluating the long-range dispersion interaction between two heteronuclear atoms in arbitrary states is outlined. The C 6 dispersion parameter can always be written in terms of sum rules involving oscillator strengths only and formulas for a number of symmetry cases are given. The dispersion coefficients for excited alkali-metal atoms interacting with the ground-state H and He are tabulated

  16. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.

    Science.gov (United States)

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    2017-11-28

    We present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.

  17. Intermediate L-K molecular-orbital radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Heinig, K.H.; Jaeger, H.U.; Richter, H.; Woittennek, H.

    1976-01-01

    The structure of X-ray continua observed recently in violent collisions between mean-mass atoms can be explained by a superposition of K molecular orbital (KMO) radiation and an intermediate L-K molecular orbital (ILKMO) radiation of high intensity which is due to 2psigma vacancies. (Auth.)

  18. Study of confined many electron atoms by means of the POEP method

    International Nuclear Information System (INIS)

    Sarsa, A; Buendía, E; Gálvez, F J

    2014-01-01

    The electronic structure of confined atoms under impenetrable spherical walls is studied by means of the parameterized optimized effective potential method. A cut-off factor is employed to account for Dirichlet boundary conditions. Two atomic basis sets commonly used for describing free atoms have been analyzed within this scheme. The accuracy of the method is similar to that achieved for the free atoms. The ground state electrostatic multiplet of the carbon atom as well as the ground state and both the [Ar]4s3d 7 5 F and [Ar]3d 8 3 F excited states of the iron atom are studied. The behaviour of the energy levels with the confinement has been analyzed in terms of the different contributions to the total energy of the atom. For the iron atom, the effect of confinement on the outermost orbitals is studied. (paper)

  19. Interactions of atomic hydrogen with amorphous SiO2

    Science.gov (United States)

    Yue, Yunliang; Wang, Jianwei; Zhang, Yuqi; Song, Yu; Zuo, Xu

    2018-03-01

    Dozens of models are investigated by the first-principles calculations to simulate the interactions of an atomic hydrogen with a defect-free random network of amorphous SiO2 (a-SiO2) and oxygen vacancies. A wide variety of stable configurations are discovered due to the disorder of a-SiO2, and their structures, charges, magnetic moments, spin densities, and density of states are calculated. The atomic hydrogen interacts with the defect-free a-SiO2 in positively or negatively charged state, and produces the structures absent in crystalline SiO2. It passivates the neutral oxygen vacancies and generates two neutral hydrogenated E‧ centers with different Si dangling bond projections. Electron spin resonance parameters, including Fermi contacts, and g-tensors, are calculated for these centers. The atomic hydrogen interacts with the positive oxygen vacancies in dimer configuration, and generate four different positive hydrogenated defects, two of which are puckered like the Eγ‧ centers. This research helps to understand the interactions between an atomic hydrogen, and defect-free a-SiO2 and oxygen vacancies, which may generate the hydrogen-complexed defects that play a key role in the degeneration of silicon/silica-based microelectronic devices.

  20. Atomic Charges and Chemical Bonding in Y-Ga Compounds

    Directory of Open Access Journals (Sweden)

    Yuri Grin

    2018-02-01

    Full Text Available A negative deviation from Vegard rule for the average atomic volume versus yttrium content was found from experimental crystallographic information about the binary compounds of yttrium with gallium. Analysis of the electron density (DFT calculations employing the quantum theory of atoms in molecules revealed an increase in the atomic volumes of both Y and Ga with the increase in yttrium content. The non-linear increase is caused by the strengthening of covalent Y-Ga interactions with stronger participation of genuine penultimate shell electrons (4d electrons of yttrium in the valence region. Summing the calculated individual atomic volumes for a unit cell allows understanding of the experimental trend. With increasing yttrium content, the polarity of the Y-Ga bonding and, thus its ionicity, rises. The covalency of the atomic interactions in Y-Ga compounds is consistent with their delocalization from two-center to multi-center ones.

  1. From Slater orbitals to Coulomb Sturmians

    Indian Academy of Sciences (India)

    The simple connection between the Slater orbitals, venerable in quantum chemistry, and ... Thanks to the growth of computing ... of classical mechanics for the motion of planets or pro- ... riments show that a ionized gas of H atom has a con-.

  2. Many-body physics using cold atoms

    Science.gov (United States)

    Sundar, Bhuvanesh

    Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin

  3. Two-dimensional spin-orbit Dirac point in monolayer HfGeTe

    Science.gov (United States)

    Guan, Shan; Liu, Ying; Yu, Zhi-Ming; Wang, Shan-Shan; Yao, Yugui; Yang, Shengyuan A.

    2017-10-01

    Dirac points in two-dimensional (2D) materials have been a fascinating subject of research, with graphene as the most prominent example. However, the Dirac points in existing 2D materials, including graphene, are vulnerable against spin-orbit coupling (SOC). Here, based on first-principles calculations and theoretical analysis, we propose a new family of stable 2D materials, the HfGeTe-family monolayers, which host so-called spin-orbit Dirac points (SDPs) close to the Fermi level. These Dirac points are special in that they are formed only under significant SOC, hence they are intrinsically robust against SOC. We show that the existence of a pair of SDPs are dictated by the nonsymmorphic space group symmetry of the system, which are very robust under various types of lattice strains. The energy, the dispersion, and the valley occupation around the Dirac points can be effectively tuned by strain. We construct a low-energy effective model to characterize the Dirac fermions around the SDPs. Furthermore, we find that the material is simultaneously a 2D Z2 topological metal, which possesses nontrivial Z2 invariant in the bulk and spin-helical edge states on the boundary. From the calculated exfoliation energies and mechanical properties, we show that these materials can be readily obtained in experiment from the existing bulk materials. Our result reveals HfGeTe-family monolayers as a promising platform for exploring spin-orbit Dirac fermions and topological phases in two-dimensions.

  4. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  5. Alternative Scheme for Teleportation of Two-Atom Entangled State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen-Biao

    2006-01-01

    We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a ∧-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed.The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.

  6. The generalized sturmian method for calculating spectra of atoms and ions

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2003-01-01

    The properties of generalized Sturmian basis sets are reviewed, and functions of this type are used to perform direct configuration interaction calculations on the spectra of atoms and ions. Singlet excited states calculated in this way show good agreement with experimentally measured spectra. When...... the generalized Sturmian method is applied to atoms, the configurations are constructed from hydrogenlike atomic orbitals with an effective charge which is characteristic of the configuration. Thus, orthonormality between the orbitals of different configurations cannot be assumed, and the generalized Slater...

  7. Intermediate L-K molecular orbital radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Heinig, K.H.; Jaeger, H.U.; Richter, H.; Woittennek, H.

    1975-09-01

    The structure of x-ray continua observed recently in violent collisions between intermediate mass atoms can be explained by a superposition of K molecular orbital (KMO) radiation and of an intermediate L-K molecular orbital (ILKMO) radiation of high intensity which is due to 2psigma vacancies. (author)

  8. Two-photon Doppler cooling of alkaline-earth-metal and ytterbium atoms

    International Nuclear Information System (INIS)

    Magno, Wictor C.; Cavasso Filho, Reinaldo L.; Cruz, Flavio C.

    2003-01-01

    The possibility of laser cooling of alkaline-earth-metal atoms and ytterbium atoms using a two-photon transition is analyzed. We consider a 1 S 0 - 1 S 0 transition with excitation in near resonance with the 1 P 1 level. This greatly increases the two-photon transition rate, allowing an effective transfer of momentum. The experimental implementation of this technique is discussed and we show that for calcium, for example, two-photon cooling can be used to achieve a Doppler limit of 123 μK. The efficiency of this cooling scheme and the main loss mechanisms are analyzed

  9. The atomic structure of transition metal clusters

    International Nuclear Information System (INIS)

    Riley, S.J.

    1995-01-01

    Chemical reactions are used to probe the atomic (geometrical) structure of isolated clusters of transition metal atoms. The number of adsorbate molecules that saturate a cluster, and/or the binding energy of molecules to cluster surfaces, are determined as a function of cluster size. Systematics in these properties often make it possible to propose geometrical structures consistent with the experimental observations. We will describe how studies of the reactions of cobalt and nickel clusters with ammonia, water, and nitrogen provide important and otherwise unavailable structural information. Specifically, small (less than 20 atoms) clusters of cobalt and nickel atoms adopt entirely different structures, the former having packing characteristic of the bulk and the latter having pentagonal symmetry. These observations provide important input for model potentials that attempt to describe the local properties of transition metals. In particular, they point out the importance of a proper treatment of d-orbital binding in these systems, since cobalt and nickel differ so little in their d-orbital occupancy

  10. Fingerprints of spin-orbital polarons and of their disorder in the photoemission spectra of doped Mott insulators with orbital degeneracy

    Science.gov (United States)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-04-01

    We explore the effects of disordered charged defects on the electronic excitations observed in the photoemission spectra of doped transition metal oxides in the Mott insulating regime by the example of the R1 -xCaxVO3 perovskites, where R = La, ⋯, Lu. A fundamental characteristic of these vanadium d2 compounds with partly filled t2 g valence orbitals is the persistence of spin and orbital order up to high doping, in contrast to the loss of magnetic order in high-Tc cuprates at low defect concentration. We study the disordered electronic structure of such doped Mott-Hubbard insulators within the unrestricted Hartree-Fock approximation and, as a result, manage to explain the spectral features that occur in photoemission and inverse photoemission. In particular, (i) the atomic multiplet excitations in the inverse photoemission spectra and the various defect-related states and satellites are qualitatively well reproduced, (ii) a robust Mott gap survives up to large doping, and (iii) we show that the defect states inside the Mott gap develop a soft gap at the Fermi energy. The soft defect-states gap, which separates the highest occupied from the lowest unoccupied states, can be characterized by a shape and a scale parameter extracted from a Weibull statistical sampling of the density of states near the chemical potential. These parameters provide a criterion and a comprehensive schematization for the insulator-metal transition in disordered systems. Our results provide clear indications that doped holes are bound to charged defects and form small spin-orbital polarons whose internal kinetic energy is responsible for the opening of the soft defect-states gap. We show that this kinetic gap survives disorder fluctuations of defects and is amplified by the long-range electron-electron interactions, whereas we observe a Coulomb singularity in the atomic limit. The small size of spin-orbital polarons is inferred by an analysis of the inverse participation ratio and by

  11. Atomization Performance Predictions of Gas-Centered Swirl-Coaxial Injectors

    National Research Council Canada - National Science Library

    Lightfoot, Malissa D; Danczyk, Stephen A; Talley, Douglas G

    2007-01-01

    .... The theory relates the mass of film lost via atomization to the mass of liquid introduced into the atomizer to predict atomization efficiency and offers some estimations of primary droplet diameter...

  12. Atomic contributions to the valence band photoelectron spectra of metal-free, iron and manganese phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Bidermane, I., E-mail: ieva.bidermane@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Institut des Nanosciences de Paris, UPMC Univ. Paris 06, CNRS UMR 7588, F-75005 Paris (France); Brumboiu, I.E. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Totani, R. [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, Coppito, I-67010 L’Aquila (Italy); Grazioli, C. [CNR-IOM, Laboratorio TASC, ss. 14 km. 163.5, Basovizza, 34149 Trieste (Italy); Departement of Chemical and Pharmaceutical Sciences, University of Trieste (Italy); Shariati-Nilsson, M.N.; Herper, H.C.; Eriksson, O.; Sanyal, B. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Ressel, B. [University of Nova Gorica, Vipavska Cesta 11c, 5270 Ajdovščina (Slovenia); Simone, M. de [CNR-IOM, Laboratorio TASC, ss. 14 km. 163.5, Basovizza, 34149 Trieste (Italy); Lozzi, L. [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, Coppito, I-67010 L’Aquila (Italy); Brena, B.; Puglia, C. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden)

    2015-11-15

    Highlights: • In detail comparison between the valence band structure of H{sub 2}Pc, FePc and MnPc. • Comparison between the gas phase samples and thin evaporated films on Au (1 1 1). • Detailed analysis of the atomic orbital contributions to the valence band features. • DFT/HSE06 study of the valence band electronic structure of H{sub 2}Pc, FePc and MnPc. - Abstract: The present work reports a photoelectron spectroscopy study of the low-energy region of the valence band of metal-free phthalocyanine (H{sub 2}Pc) compared with those of iron phthalocyanine (FePc) and manganese phthalocyanine (MnPc). We have analysed in detail the atomic orbital composition of the valence band both experimentally, by making use of the variation in photoionization cross-sections with photon energy, and theoretically, by means of density functional theory. The atomic character of the Highest Occupied Molecular Orbital (HOMO), reflected on the outermost valence band binding energy region, is different for MnPc as compared to the other two molecules. The peaks related to the C 2p contributions, result in the HOMO for H{sub 2}Pc and FePc and in the HOMO-1 for MnPc as described by the theoretical predictions, in very good agreement with the experimental results. The DFT simulations, discerning the atomic contribution to the density of states, indicate how the central metal atom interacts with the C and N atoms of the molecule, giving rise to different partial and total density of states for these three Pc molecules.

  13. Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field

    International Nuclear Information System (INIS)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2016-01-01

    In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.

  14. Orbital Battleship: A Guessing Game to Reinforce Atomic Structure

    Science.gov (United States)

    Kurushkin, Mikhail; Mikhaylenko, Maria

    2016-01-01

    A competitive educational guessing game "Orbital Battleship" which reinforces Madelung's and Hund's rules, values of quantum numbers, and understanding of periodicity was designed. The game develops strategic thinking, is not time-consuming, requires minimal preparation and supervision, and is an efficient and fun alternative to more…

  15. Energy optimized Gaussian basis sets for the atoms T1 - Rn

    International Nuclear Information System (INIS)

    Faegri, K. Jr.

    1987-01-01

    Energy optimized Gaussian basis sets have been derived for the atoms Tl-Rn. Two sets are presented - a (20,16,10,6) set and a (22,17,13,8) set. The smallest sets yield atomic energies 107 to 123 mH above the numerical Hartree-Fock values, while the larger sets give energies 11 mH above the numerical results. Energy trends from the smaller sets indicate that reduced shielding by p-electrons may place a greater demand on the flexibility of d- and f-orbital description for the lighter elements of the series

  16. High-efficiency one-dimensional atom localization via two parallel standing-wave fields

    International Nuclear Information System (INIS)

    Wang, Zhiping; Wu, Xuqiang; Lu, Liang; Yu, Benli

    2014-01-01

    We present a new scheme of high-efficiency one-dimensional (1D) atom localization via measurement of upper state population or the probe absorption in a four-level N-type atomic system. By applying two classical standing-wave fields, the localization peak position and number, as well as the conditional position probability, can be easily controlled by the system parameters, and the sub-half-wavelength atom localization is also observed. More importantly, there is 100% detecting probability of the atom in the subwavelength domain when the corresponding conditions are satisfied. The proposed scheme may open up a promising way to achieve high-precision and high-efficiency 1D atom localization. (paper)

  17. Two- versus four-handed techniques for endonasal resection of orbital apex tumors.

    Science.gov (United States)

    Craig, John R; Lee, John Y K; Petrov, Dmitriy; Mehta, Sonul; Palmer, James N; Adappa, Nithin D

    2015-01-01

    Open versus endonasal resection of orbital apex (OA) tumors is generally based on tumor size, location, and pathology. For endonasal resection, two- and four-handed techniques have been reported, but whether one technique is more optimal based on these tumor features has not been evaluated. To determine whether two- versus four-handed techniques result in better outcomes after endoscopic resection of OA tumors, and whether either technique is better suited for intra- versus extraconal location and for benign versus malignant pathology. A retrospective review of all expanded endonasal approaches for OA tumors was performed at a single institution from 2009 to 2013. A PubMed database search was also performed to review series published on endonasal OA tumor resection. Across all the cases reviewed, the following data were recorded: two- versus four-handed techniques, intra- versus extraconal tumor location, and benign versus malignant pathology. The relationship between these variables and resection extent was analyzed by the Fisher exact test. Postoperative visual status and complications were also reviewed. Ten cases from the institution and 94 cases from 17 publications were reviewed. Both two- and four-handed techniques were used to resect extra- and intraconal OA tumors, for both benign and malignant pathology. Four-handed techniques included a purely endonasal approach and a combined endonasal-orbital approach. On univariate analysis, the strongest predictor of complete resection was benign pathology (p = 0.005). No significant difference was found between the extent of resection and a two- versus a four-handed technique. Visual status was improved or unchanged in 94% of cases, and other complications were rare. Benign tumors that involve the medial extraconal and posterior inferomedial intraconal OA can be treated by either two- or four-handed endonasal techniques. Selecting two- versus four-handed techniques and endonasal versus endonasal-orbital four

  18. Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons

    Science.gov (United States)

    Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.

    2018-05-01

    We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.

  19. Attempt to compare two arc orbit correction schemes analytically

    International Nuclear Information System (INIS)

    Chao, A.; Weng, W.

    1983-01-01

    Consider a transport line that consists of periodic cells. Let the beam position monitors and the orbit correctors be located with the same period as the cells and let the BPM's and the corrector distributions interlace each other. The arrangement does not always provide a stable orbit correction. The criterion for stability has been derived by Joe Murray and is reproduced. We calculate the rms orbit, the effect of BPM errors and the rms corrector strength in such correction schemes, yielding analytic formulae for these quantities. We then apply these formulae to the SLC arcs

  20. Spectroscopy of systems of two identical atoms: effects of quantum interference

    International Nuclear Information System (INIS)

    Makarov, A.A.; Yudson, V.I.

    2017-01-01

    Several effects of quantum interference in spectroscopy of a system of two atoms are discussed. (i) In the system of spatially separated atoms in a one-dimensional (1D) geometry (a single-mode waveguide or photon crystal), a (meta)stable excited entangled state can be formed, its decay being very sensitive to the distance between the atoms and to perturbations which cause a difference between their resonance frequencies. (ii) In a system of closely located atoms in 3D space, the extreme sensitivity of absorption and fluorescence spectra to the direction of the applied magnetic field is demonstrated. These theoretical predictions can be useful for the quantum information processing and ultrasensitive measurements.

  1. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  2. Submicron Positioning of Single Atoms in a Microcavity

    International Nuclear Information System (INIS)

    Nussmann, Stefan; Hijlkema, Markus; Weber, Bernhard; Rohde, Felix; Rempe, Gerhard; Kuhn, Axel

    2005-01-01

    The coupling of individual atoms to a high-finesse optical cavity is precisely controlled and adjusted using a standing-wave dipole-force trap, a challenge for strong atom-cavity coupling. Ultracold Rubidium atoms are first loaded into potential minima of the dipole trap in the center of the cavity. Then we use the trap as a conveyor belt that we set into motion perpendicular to the cavity axis. This allows us to repetitively move atoms out of and back into the cavity mode with a repositioning precision of 135 nm. This makes it possible to either selectively address one atom of a string of atoms by the cavity, or to simultaneously couple two precisely separated atoms to a higher mode of the cavity

  3. Resonances in the two centers Coulomb system

    International Nuclear Information System (INIS)

    Seri, Marcello

    2012-01-01

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  4. Resonances in the two centers Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Marcello

    2012-09-14

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  5. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We solve the three-dimensional time-dependent Schrödinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond...

  6. Use of pseudopotentials in atom-atom (or molecule) collisions

    International Nuclear Information System (INIS)

    Pascale, J.

    1985-09-01

    Knowledge of interactions between ions, atoms or molecules is fundamental for interpretating or predicting collisional processes which may occur under various circumstances. The aim of this paper is to demonstrate the usefulness of using semiempirical effective interactions (more particularly, emphasis will be put on the pseudopotential approach) in the study of atom-atom (or molecule) collisions. We would like to show that if the semiempirical effective interactions are carefully defined, their use in molecular-structure calculations and in collision problems can give quite accurate results. We will limit our examples to one-electron systems. We consider the M-atom-He systems as a first example. For these systems, recent molecular-structure calculations have been carried out using an 1-dependent semiempirical pseudopotential approach and they have been tested against numerous experimental data in extensive calculations of cross sections for intra-and-inter-doublet transitions in the M-atom in collisions with He. Our second example will concern the M-H 2 systems, for which semiempirical pseudopotential molecular-structure calculations have been performed very recently using an one-electron two-center model. The results of these calculations are quite encouraging and we foresee the use of the pseudopotential approach in future studies of some reactive scattering processes

  7. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  8. Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments.

    Science.gov (United States)

    Li, Chuang; Yang, Sen; Song, Jie; Xia, Yan; Ding, Weiqiang

    2017-05-15

    In this paper, a scheme for the generation of long-living entanglement between two distant Λ-type three-level atoms separately trapped in two dissipative cavities is proposed. In this scheme, two dissipative cavities are coupled to their own non-Markovian environments and two three-level atoms are driven by the classical fields. The entangled state between the two atoms is produced by performing Bell state measurement (BSM) on photons leaving the dissipative cavities. Using the time-dependent Schördinger equation, we obtain the analytical results for the evolution of the entanglement. It is revealed that, by manipulating the detunings of classical field, the long-living stationary entanglement between two atoms can be generated in the presence of dissipation.

  9. The Eccentric Behavior of Nearly Frozen Orbits

    Science.gov (United States)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  10. Quadrupole moments as measures of electron correlation in two-electron atoms

    International Nuclear Information System (INIS)

    Ceraulo, S.C.; Berry, R.S.

    1991-01-01

    We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments

  11. Two-body loss rates for reactive collisions of cold atoms

    Science.gov (United States)

    Cop, C.; Walser, R.

    2018-01-01

    We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.

  12. Anisotropy in the simultaneous excitation of two colliding atoms to various substate combinations

    International Nuclear Information System (INIS)

    Moorman, L.

    1987-01-01

    In this thesis double-atom excitation (DAE) processes in atomic collision experiments are studied by measuring the angular correlation of two coincident photons emitted by both excited collision particles. The analytical expression for the angular correlation function is derived which contains as adjustable parameters the various (complex) excitation amplitudes integrated over all scattering angles. The He+He system is investigated, for projectile energies between 0.5 and 3.5 keV, in which both particles are excited simultaneously to the 2 1 P state. The relation between photon correlations and atomic state correlations is investigated and the density matrix elements are calculated for a statistical distribution of the excited atomic substates into which a certain symmetry is incorporated. Collisions between metastable and groundstate He atoms are considered. Single-photon spectra are presented and compared with spectra from the He+He collision system. Coincidence measurements were performed on these collision systems to study possible double-atom excitations. Coincidences between two ultraviolet as well as an ultraviolet and a visible photon were measu0515 Also a measurement is reported of the relative population of the magnetic substates of the 3 1 D state of helium. Coincidence measurements on two ultraviolet photons emitted upon Ne-Ne and He-Ne collisions are described and the double-atom excitations for these systems are studied. For Ne+Ne no coincidence peaks were found. For He+Ne double-atom excitation was observed and from the measured angular correlations the corresponding density matrix elements for some kinetic energies of the projectile. (Auth.)

  13. The method of local increments for the calculation of adsorption energies of atoms and small molecules on solid surfaces. Part I. A single Cu atom on the polar surfaces of ZnO.

    Science.gov (United States)

    Schmitt, Ilka; Fink, Karin; Staemmler, Volker

    2009-12-21

    The method of local increments is used in connection with the supermolecule approach and an embedded cluster model to calculate the adsorption energy of single Cu atoms at different adsorption sites at the polar surfaces of ZnO. Hartree-Fock calculations for the full system, adsorbed atom and solid surface, and for the fragments are the first step in this approach. In the present study, restricted open-shell Hartree-Fock (ROHF) calculations are performed since the Cu atom possesses a singly-occupied 4s orbital. The occupied Hartree-Fock orbitals are then localized by means of the Foster-Boys localization procedure. The correlation energies are expanded into a series of many-body increments which are evaluated separately and independently. In this way, the very time-consuming treatment of large systems is replaced with a series of much faster calculations for small subunits. In the present application, these subunits consist of the orbitals localized at the different atoms. Three adsorption situations with rather different bonding characteristics have been studied: a Cu atom atop a threefold-coordinated O atom of an embedded Zn(4)O(4) cluster, a Cu atom in an O vacancy site at the O-terminated ZnO(000-1) surface, and a Cu atom in a Zn vacancy site at the Zn-terminated ZnO(0001) surface. The following properties are analyzed in detail: convergence of the many-body expansion, contributions of the different n-body increments to the adsorption energy, treatment of the singly-occupied orbital as "localized" or "delocalized". Big savings in computer time can be achieved by this approach, particularly if only the localized orbitals in the individual increment under consideration are described by a large correlation adapted basis set, while all other orbitals are treated by a medium-size Hartree-Fock-type basis set. In this way, the method of local increments is a powerful alternative to the widely used methods like DFT or RI-MP2.

  14. One- and two-photon ionization of hydrogen atom embedded in Debye plasmas

    International Nuclear Information System (INIS)

    Chang, T. N.; Fang, T. K.; Ho, Y. K.

    2013-01-01

    We present a detailed analysis of the plasma-induced resonance-like atomic structures near the ionization threshold in one- and two-photon ionization of hydrogen atom. Such resonance-like structures result from the migration of the upper bound excited states of bound-bound atomic transitions into the continuum due to the less attractive screened Coulomb potential which simulates the external environmental effect for an atom embedded in Debye plasma. The change from the resonance-like narrow structures into broad continuous spectra as the plasma effect increases could be accounted for by the overlap between the respective wavefunctions of the atomic electron in the initial state and its corresponding outgoing ionized state in the continuum

  15. Entanglement of two atoms interacting with a dissipative coherent cavity field without rotating wave approximation

    International Nuclear Information System (INIS)

    Kang Guo-Dong; Fang Mao-Fa; Ouyang Xi-Cheng; Deng Xiao-Juan

    2010-01-01

    Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in different states using concurrence. Interestingly, our results show that the entanglement between the two atoms that initially disentangled will come up to a large constant rapidly, and then keeps steady in the following time or always has its maximum when prepared in some special Bell states. The model considered in this study is a good candidate for quantum information processing especially for quantum computation as steady high-degree atomic entanglement resource obtained in dissipative cavity

  16. Two-photon transitions in hydrogen atoms embedded in weakly coupled plasmas

    International Nuclear Information System (INIS)

    Paul, S.; Ho, Y. K.

    2008-01-01

    The pseudostate method has been applied to calculate energy eigenvalues and corresponding eigenfunctions of the hydrogen atom in Debye plasma environments. Resonant two-photon transition rates from the ground state of atomic hydrogen to 2s and 3s excited states have been computed as a function of photon frequency in the length and velocity gauges for different Debye lengths. A two-photon transparency is found in correspondence to each resonance for 1s-3s. The transparency frequency and resonance enhancement frequency vary significantly with the Debye length.

  17. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  18. Spontaneous excitation of a circularly accelerated atom coupled to electromagnetic vacuum fluctuations

    International Nuclear Information System (INIS)

    Jin, Yao; Hu, Jiawei; Yu, Hongwei

    2014-01-01

    We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature. -- Highlights: •We study the spontaneous excitation of a circularly accelerated atom. •Contribution of radiation reaction to the excitation is affected by acceleration. •The radiation perceived by a circularly orbiting observer is no longer thermal. •An effective temperature can be defined in terms of atomic transition rates. •Effective temperature is larger than Unruh temperature and frequency-dependent

  19. Atomic and Molecular Data activities at NDC/JAERI

    International Nuclear Information System (INIS)

    Shirai, Toshizo

    2000-01-01

    The NDC/JAERI is a member of the international atomic and molecular (A+M) data center network for fusion, coordinated by the International Atomic Energy Agency. In this poster we introduce our Evaluated Atomic and Molecular Data Library (JEAMDL) developed in collaboration with the JAERI Research Committee on A+M Data and with researchers of ORNL and NIST under the US-Japan fusion cooperation program. JEAMDL comprises databases of collision cross section data and of spectroscopic data. We briefly summarize these two databases below. (author)

  20. On the trends of Fukui potential and hardness potential derivatives in isolated atoms vs. atoms in molecules.

    Science.gov (United States)

    Bhattacharjee, Rituparna; Roy, Ram Kinkar

    2014-10-28

    In the present study, trends of electronic contribution to molecular electrostatic potential [Vel(r¯)(r=0)], Fukui potential [v(+)f|(r=0) and v(-)f|(r=0)] and hardness potential derivatives [Δ(+)h(k) and Δ(-)h(k)] for isolated atoms as well as atoms in molecules are investigated. The generated numerical values of these three reactivity descriptors in these two electronically different situations are critically analyzed through the relevant formalism. Values of Vel(r¯) (when r → 0, i.e., on the nucleus) are higher for atoms in molecules than that of isolated atoms. In contrast, higher values of v(+)|(r=0) and v(-)|(r=0) are observed for isolated atoms compared to the values for atoms in a molecule. However, no such regular trend is observed for the Δ(+)h(k) and Δ(-)h(k) values, which is attributed to the uncertainty in the Fukui function values of atoms in molecules. The sum of Fukui potential and the sum of hardness potential derivatives in molecules are also critically analyzed, which shows the efficacy of orbital relaxation effects in quantifying the values of these parameters. The chemical consequence of the observed trends of these descriptors in interpreting electron delocalization, electronic relaxation and non-negativity of atomic Fukui function indices is also touched upon. Several commonly used molecules containing carbon as well as heteroatoms are chosen to make the investigation more insightful.

  1. Circular magnetic dichroism of the Fa center adsorption in KCl doped with Li and Na

    International Nuclear Information System (INIS)

    Baldacchini, G.; Botti, S.; Grassano, U.M.

    1990-01-01

    The spin-orbit structure of F A in KCl:Li and KCl:Na have been studied by means of the magnetic circular dichroism. Due to their C 4V , symmetry the F A centers have two different spin-orbit parameters, Δ * and Δ * , which only in the KCl:Li case follow the relation: Δ * F A centers have been determined using the method of moment

  2. Effects of the LDEF orbital environment on the reflectance of optical mirror materials

    Science.gov (United States)

    Herzig, Howard; Fleetwood, Charles, Jr.

    1995-01-01

    Specimens of eight different optical mirror materials were flown in low earth orbit as part of the Long Duration Exposure Facility (LDEF) manifest to determine their ability to withstand exposure to the residual atomic oxygen and other environmental effects at those altitudes. Optical thin films of aluminum, gold, iridium, osmium, platinum, magnesium fluoride-overcoated aluminum and reactively deposited, silicon monoxide-protected aluminum, all of which were vacuum deposited on polished fused silica substrates, were included as part of Experiment S0010, Exposure of Spacecraft Coatings. Two specimens of polished, chemical vapor deposited (CVD) silicon carbide were installed in sites available in Experiment A0114, Interaction of Atomic Oxygen with Solid Surfaces at Orbital Altitudes, which included trays in two of the spacecraft bays, one on the leading edge and the other on the trailing edge. One of the silicon carbide samples was located in each of these trays. This paper will compare specular reflectance data from the preflight and postflight measurements made on each of these samples and attempt to explain the changes in light of the specific environments to which the experiments were exposed.

  3. Simulation of the Atomic and Electronic Structure of Oxygen Vacancies and Polyvacancies in ZrO2

    Science.gov (United States)

    Perevalov, T. V.

    2018-03-01

    Cubic, tetragonal, and monoclinic phases of zirconium oxide with oxygen vacancies and polyvacancies are studied by quantum chemical modeling of the atomic and electronic structure. It is demonstrated that an oxygen vacancy in ZrO2 may act as both an electron trap and a hole one. An electron added to the ZrO2 structure with an oxygen vacancy is distributed between two neighboring Zr atoms and is a bonding orbital by nature. It is advantageous for each subsequent O vacancy to form close to the already existing ones; notably, one Zr atom has no more than two removed O atoms related to it. Defect levels from oxygen polyvacancies are distributed in the bandgap with preferential localization in the vicinity of the oxygen monovacancy level.

  4. Stationary D = 4 black holes in supergravity: The issue of real nilpotent orbits

    Energy Technology Data Exchange (ETDEWEB)

    Ruggeri, Daniele [Universita di Torino, Dipartimento di Fisica (Italy); INFN, Torino (Italy); Trigiante, Mario [Universita di Torino, Dipartimento di Fisica (Italy); DISAT, Politecnico di Torino (Italy); INFN, Torino (Italy)

    2017-05-15

    The complete classification of the nilpotent orbits of SO(2,2){sup 2} in the representation (2,2,2,2), achieved in [14], is applied to the study of multi-center, asymptotically flat, extremal black hole solutions to the STU model. These real orbits provide an intrinsic characterization of regular single-center solutions, which is invariant with respect to the action of the global symmetry group SO(4,4), underlying the stationary solutions of the model, and provide stringent regularity constraints on multi-centered solutions. The known almost-BPS and composite non-BPS solutions are revisited in this setting. We systematically provide, for the relevant SO(2,2){sup 2}-nilpotent orbits of the global Noether charge matrix, regular representatives thereof. This analysis unveils a composition law of the orbits according to which those containing regular multi-centered solutions can be obtained as combinations of specific single-center orbits defining the constituent black holes. Some of the SO(2,2){sup 2}-orbits of the total Noether charge matrix are characterized as ''intrinsically singular'' in that they cannot contain any regular solution. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Continuum states in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Garibotti, C.R. (Centro Atomico Bariloche and CONICET (Argentina)); Barrachina, R.O. (Centro Atomico Bariloche and CONICET (Argentina))

    1994-03-01

    We review the experimental and theoretical situation for ionization collisions of nude ions with neutral gas atoms, at intermediate and high impact energies. We consider particularly that part of the electron spectrum where emission is larger, corresponding to the joint action to the two ions. We discuss the evidence of this two-center interaction and how it is described by current theories. (orig.)

  6. Photon echo with a few photons in two-level atoms

    International Nuclear Information System (INIS)

    Bonarota, M; Dajczgewand, J; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T

    2014-01-01

    To store and retrieve signals at the single photon level, various photon echo schemes have resorted to complex preparation steps involving ancillary shelving states in multi-level atoms. For the first time, we experimentally demonstrate photon echo operation at such a low signal intensity without any preparation step, which allows us to work with mere two-level atoms. This simplified approach relies on the so-coined ‘revival of silenced echo’ (ROSE) scheme. Low noise conditions are obtained by returning the atoms to the ground state before the echo emission. In the present paper we manage ROSE in photon counting conditions, showing that very strong control fields can be compatible with extremely weak signals, making ROSE consistent with quantum memory requirements. (paper)

  7. Analysis for orbital rendezvous of Chang'E-5 using SBI technique

    Science.gov (United States)

    Huang, Y.; Shan, Q.; Li, P.

    2016-12-01

    Chang'E-5 will be launched in later 2017/early 2018 using a new generation rocket from Wenchang satellite launch center, Hainan, China. It is a lunar sampling return mission, and it is the first time for China to carry out orbital rendezvous and docking in the Moon. How to achieve orbital rendezvous successfully in the Moon is very important in Chang'E-5 mission. Orbital rendezvous will be implemented between an orbiter and an ascender 200 km above the Moon. The ground tracking techniques include range, Doppler and VLBI, and they will be used to track the orbiter and the ascender when the ascender is about 70 km farther away from the orbiter. Later the ascender will approach the orbiter automatically. As a successful example, in Chang'E-3, the differential phase delay (delta delay) data between the rover and the lander are obtained with a random error of about 1 ps, and the relative position of the rover is determined with an accuracy of several meters by using same beam VLBI (SBI) technique. Here the application of the SBI technique for Chang'E-5 orbital rendezvous is discussed. SBI technique can be used to track the orbiter and the ascender simultaneously when they are in the same beam. Delta delay of the two probes can be derived, and the measurement accuracy is much higher than that of the traditional VLBI data because of the cancelation of common errors. Theoretically it can result in a more accurate relative orbit between the two probes. In the simulation, different strategies are discussed to analyze the contribution of SBI data to the orbit accuracy improvement especially relative orbit between the orbiter and ascender. The simulation results show that the relative position accuracy of the orbiter and ascender can reach about 1 m with delta delay data of 10 ps.

  8. Coding/decoding two-dimensional images with orbital angular momentum of light.

    Science.gov (United States)

    Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping

    2016-04-01

    We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.

  9. Some exact identities connecting one- and two-particle Green's functions in spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Yang Huatong

    2007-01-01

    Some exact identities connecting one- and two-particle Green's functions in the presence of spin-orbit coupling have been derived. These identities are similar to the Ward identity in usual quantum transport theory of electrons. A satisfying approximate calculation of the spin transport in spin-orbit coupling system should also preserve these identities, just as the Ward identities should be remained in the usual electronic transport theory

  10. Induced absorption and stimulated emission in a driven two-level atom

    International Nuclear Information System (INIS)

    Mavroyannis, C.

    1992-01-01

    We have considered the induced processes that occur in a driven two-level atom, where a laser photon is absorbed and emitted by the ground and by the excited states of the atom, respectively. In the low-intensity limit of the laser field, the induced spectra arising when a laser photon is absorbed by the ground state of the atom consist of two peaks describing induced absorption and stimulated-emission processes, respectively, where the former prevails over the latter. Asymmetry of the spectral lines occurs at off-resonance and its extent depends on the detuning of the laser field. The physical. process where a laser photon is emitted by the excited state is the reverse of that arising from the absorption of a laser photon by the ground state of the atom. The former differs from the latter in that the emission of a laser photon by the excited state occurs in the low frequency regime and that the stimulated-emission process prevails over that of the induced absorption. In this case, amplification of ultrashort pulses is likely to occur without the need of population inversion between the optical transitions. The computed spectra are graphically presented and discussed. (author)

  11. Orbital effects in actinide systems

    International Nuclear Information System (INIS)

    Lander, G.H.

    1983-01-01

    Actinide magnetism presents a number of important challenges; in particular, the proximity of 5f band to the Fermi energy gives rise to strong interaction with both d and s like conduction electrons, and the extended nature of the 5f electrons means that they can interact with electron orbitals from neighboring atoms. Theory has recently addressed these problems. Often neglected, however, is the overwhelming evidence for large orbital contributions to the magnetic properties of actinides. Some experimental evidence for these effects are presented briefly in this paper. They point, clearly incorrectly, to a very localized picture for the 5f electrons. This dichotomy only enhances the nature of the challenge

  12. High-precision two-dimensional atom localization via quantum interference in a tripod-type system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    A scheme is proposed for high-precision two-dimensional atom localization in a four-level tripod-type atomic system via measurement of the excited state population. It is found that because of the position-dependent atom–field interaction, the precision of 2D atom localization can be significantly improved by appropriately adjusting the system parameters. Our scheme may be helpful in laser cooling or atom nanolithography via high-precision and high-resolution atom localization. (letter)

  13. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1978-01-01

    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  14. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    Science.gov (United States)

    Welte, Stephan; Hacker, Bastian; Daiss, Severin; Ritter, Stephan; Rempe, Gerhard

    2018-02-01

    Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2 μ s . We show an entangling operation between the two atoms by generating a Bell state with 76(2)% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6)% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  15. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    Directory of Open Access Journals (Sweden)

    Stephan Welte

    2018-02-01

    Full Text Available Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2  μs. We show an entangling operation between the two atoms by generating a Bell state with 76(2% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  16. Magnetic and orbital instabilities in a lattice of SU(4) organometallic Kondo complexes

    International Nuclear Information System (INIS)

    Lobos, A M; Aligia, A A

    2014-01-01

    Motivated by experiments of scanning tunneling spectroscopy (STS) on self- assembled networks of iron(II)-phtalocyanine (FePc) molecules deposited on a clean Au(111) surface [FePc/Au(111)] and its explanation in terms of the extension of the impurity SU(4) Anderson model to the lattice in the Kondo regime, we study the competition between the Kondo effect and the magneto-orbital interactions occurring in FePc/Au(111). We explore the quantum phases and critical points of the model using a large-N slave-boson method in the mean-field approximation. The SU(4) symmetry in the impurity appears as a combination of the usual spin and an orbital pseudospin arising from the degenerate 3d xz and 3d yz orbitals in the Fe atom. In the case of the lattice, our results show that the additional orbital degrees of freedom crucially modify the low-temperature phase diagram, and induce new types of orbital interactions among the Fe atoms, which can potentially stabilize exotic quantum phases with magnetic and orbital order. The dominant instability corresponds to spin ferromagnetic and orbital antiferromagnetic order

  17. Interactions between nitrogen molecules and barium atoms on Ru (0001) surface

    International Nuclear Information System (INIS)

    Zhao Xinxin; Mi Yiming; Xu Hongxia; Wang Lili; Ren Li; Tao Xiangming; Tan Mingqiu

    2011-01-01

    We had performed first principles calculations on interactions between nitrogen molecules and barium atoms on Ru (0001) surface using density function theory methods. It was shown that effects of barium atoms weakened the bond strength of nitrogen molecules. The bond length of nitrogen molecule increases from 0.113 nm on Ru (001)-N 2 to 0.120 nm on Ru (001)-N 2 /Ba surface. While stretch vibrational frequency of nitrogen molecule decreased from 2222 cm -1 and charge transfer toward nitrogen molecule increased from 0.3 e to 1.1 e. Charge was mainly translated from 6 s orbitals of barium atoms to 4 d orbitals of substrate, which enhanced the hybridization between 4 d and 2 π orbitals and increased the dipole moment of 5 σ and d π orbitals of nitrogen molecule. The molecular dipole moment of nitrogen molecule was increased by -0.136 e Anstrom. It was suggested that barium had some characters to be an electronic promoter on the process of activating nitrogen molecules on Ru (0001) surface. (authors)

  18. The entanglement between two isolated atoms in the double mode–mode competition model

    International Nuclear Information System (INIS)

    Qin, Wu; Mao-Fa, Fang; Yao-Hua, Hu; Jian-Wu, Cai

    2009-01-01

    Extending the double Jaynes–Cummings model to a more complicated case where the mode–mode competition is considered, we investigate the entanglement character of two isolated atoms by means of concurrence, and discuss the dependence of atom–atom entanglement on the different initial state and the relative coupling strength between the atom and the corresponding cavity field. The results show that the amplitude and the period of the atom–atom entanglement evolution can be controlled by the choice of initial state and relative coupling strength, respectively. We find that the phenomenon of entanglement sudden death (ESD) is sensitive to the initial conditions. The length of the time interval for zero entanglement depends not only on the initial degree of entanglement between two atoms but also on the relative coupling strength of atom–field interaction. The ESD effect can be weakened by enhancing the mode–mode competition between the three- and single-photon processes. (classical areas of phenomenology)

  19. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Zhan Zhiming; Liu Jibing

    2011-01-01

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  20. SYSTEMATIC BIASES IN THE OBSERVED DISTRIBUTION OF KUIPER BELT OBJECT ORBITS

    International Nuclear Information System (INIS)

    Jones, R. L.; Parker, J. Wm.; Bieryla, A.; Marsden, B. G.; Gladman, B.; Kavelaars, JJ.; Petit, J.-M.

    2010-01-01

    The orbital distribution of Kuiper Belt objects (KBOs) provides important tests of solar system evolution models. However, our understanding of this orbital distribution can be affected by many observational biases. An important but difficult to quantify bias results from tracking selection effects; KBOs are recovered or lost depending on assumptions made about their orbital elements when fitting the initial (short) observational arc. Quantitatively studying the effects and significance of this bias is generally difficult, because only the objects where the assumptions were correct are recovered and thus available to study 'the problem', and because different observers use different assumptions and methods. We have used a sample of 38 KBOs that were discovered and tracked, bias-free, as part of the Canada-France Ecliptic Plane Survey to evaluate the potential for losing objects based on the two most common orbit and ephemeris prediction sources: the Minor Planet Center (MPC) and the Bernstein and Khushalani (BK) orbit fitting code. In both cases, we use early discovery and recovery astrometric measurements of the objects to generate ephemeris predictions that we then compare to later positional measurements; objects that have large differences between the predicted and actual positions would be unlikely to be recovered and are thus considered 'lost'. We find systematic differences in the orbit distributions which would result from using the two orbit-fitting procedures. In our sample, the MPC-derived orbit solutions lost slightly fewer objects (five out of 38) due to large ephemeris errors at one year recovery, but the objects which were lost belonged to more 'unusual' orbits such as scattering disk objects or objects with semimajor axes interior to the 3:2 resonance. Using the BK code, more objects (seven out of 38) would have been lost due to ephemeris errors, but the lost objects came from a range of orbital regions, primarily the classical belt region. We also

  1. Behavior of orbits of two coupled oscillators

    International Nuclear Information System (INIS)

    Greene, J.M.

    1984-06-01

    There has been very considerable progress in the past few years on the theory of two conservative, coupled, nonlinear oscillators. This is a very general theory, and applies to many equivalent systems. A typical problem of this class has a solution that is so complicated that it is impossible to find an expression for the state of the system that is valid for all time. However, recent results are making it possible to determine the next most useful type of information. This is the asymptotic behavior of individual orbits in the limit of very long times. It is just the information that is desired in many situations. For example, it determines the stability of the motion. The key to our present understanding is renormalization. The present state of the art has been described in Robert MacKay's thesis, for which this is an advertisement

  2. Teleportation of a two-atom entangled state using a single EPR pair in cavity QED

    Institute of Scientific and Technical Information of China (English)

    Ji Xin; Li Ke; Zhang Shou

    2006-01-01

    We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics(QED).In the scheme,we choose a single Einstein-Podolsky-Rosen (EPR) pair as the quantum channel which is shared by the sender and the receiver.By using the atom-cavity-field interaction and introducing an additional atom,we can teleport the two-atom entangled state successfully with a probability of 1.0.Moreover,we show that the scheme is insensitive to cavity decay and thermal field.

  3. Optical properties of an atom in the presence of a two-nanosphere cluster

    International Nuclear Information System (INIS)

    Klimov, Vasilii V; Guzatov, D V

    2007-01-01

    The optical properties of an atom located near a cluster of two arbitrarily arranged nanospheres of an arbitrary composition are studied. Changes in the spontaneous decay rates of excited states and emission frequency shifts are considered for different orientations of the dipole moment and different positions of the atom with respect to the cluster. It is shown that a two-nanosphere cluster can be used to control efficiently the spontaneous decay rates of excited states of the atom by changing the distance between spheres. It is found that spontaneous decay rates of the excited states of an atom located between silver nanospheres and having the dipole moment directed along the axis connecting the centres of spheres can increase by a factor of 10 5 and more when nanospheres are brought closer together. (invited paper)

  4. Few helium atoms in quasi two-dimensional space

    International Nuclear Information System (INIS)

    Kilic, Srecko; Vranjes, Leandra

    2003-01-01

    Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established

  5. Two-probe atomic-force microscope manipulator and its applications

    Science.gov (United States)

    Zhukov, A. A.; Stolyarov, V. S.; Kononenko, O. V.

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  6. Two-probe atomic-force microscope manipulator and its applications.

    Science.gov (United States)

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  7. Analytical energy gradient for the two-component normalized elimination of the small component method

    Science.gov (United States)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter

    2015-06-01

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown that bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg2 and Cn2, which are due to the admixture of more bonding character to the highest occupied spinors.

  8. Entanglement and Other Nonclassical Properties of Two Two-Level Atoms Interacting with a Two-Mode Binomial Field: Constant and Intensity-Dependent Coupling Regimes

    International Nuclear Information System (INIS)

    Tavassoly, M.K.; Hekmatara, H.

    2015-01-01

    In this paper, we consider the interaction between two two-level atoms and a two-mode binomial field with a general intensity-dependent coupling regime. The outlined dynamical problem has explicit analytical solution, by which we can evaluate a few of its physical features of interest. To achieve the purpose of the paper, after choosing a particular nonlinearity function, we investigate the quantum statistics, atomic population inversion and at last the linear entropy of the atom-field system which is a good measure for the degree of entanglement. In detail, the effects of binomial field parameters, in addition to different initial atomic states on the temporal behavior of the mentioned quantities have been analyzed. The results show that, the values of binomial field parameters and the initial state of the two atoms influence on the nonclassical effects in the obtained states through which one can tune the nonclassicality criteria appropriately. Setting intensity-dependent coupling function equal to 1 reduces the results to the constant coupling case. By comparing the latter case with the nonlinear regime, we will observe that the nonlinearity disappears the pattern of collapse-revival phenomenon in the evolution of Mandel parameter and population inversion (which can be seen in the linear case with constant coupling), however, more typical collapse-revivals will be appeared for the cross-correlation function in the nonlinear case. Finally, in both linear and nonlinear regime, the entropy remains less than (but close to) 0.5. In other words the particular chosen nonlinearity does not critically affect on the entropy of the system. (paper)

  9. Relative Lyapunov Center Bifurcations

    DEFF Research Database (Denmark)

    Wulff, Claudia; Schilder, Frank

    2014-01-01

    Relative equilibria (REs) and relative periodic orbits (RPOs) are ubiquitous in symmetric Hamiltonian systems and occur, for example, in celestial mechanics, molecular dynamics, and rigid body motion. REs are equilibria, and RPOs are periodic orbits of the symmetry reduced system. Relative Lyapunov...... center bifurcations are bifurcations of RPOs from REs corresponding to Lyapunov center bifurcations of the symmetry reduced dynamics. In this paper we first prove a relative Lyapunov center theorem by combining recent results on the persistence of RPOs in Hamiltonian systems with a symmetric Lyapunov...... center theorem of Montaldi, Roberts, and Stewart. We then develop numerical methods for the detection of relative Lyapunov center bifurcations along branches of RPOs and for their computation. We apply our methods to Lagrangian REs of the N-body problem....

  10. Nanoscale Topographical Characterization of Orbital Implant Materials

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2018-04-01

    Full Text Available The search for an ideal orbital implant is still ongoing in the field of ocular biomaterials. Major limitations of currently-available porous implants include the high cost along with a non-negligible risk of exposure and postoperative infection due to conjunctival abrasion. In the effort to develop better alternatives to the existing devices, two types of new glass-ceramic porous implants were fabricated by sponge replication, which is a relatively inexpensive method. Then, they were characterized by direct three-dimensional (3D contact probe mapping in real space by means of atomic force microscopy in order to assess their surface micro- and nano-features, which were quantitatively compared to those of the most commonly-used orbital implants. These silicate glass-ceramic materials exhibit a surface roughness in the range of a few hundred nanometers (Sq within 500–700 nm and topographical features comparable to those of clinically-used “gold-standard” alumina and polyethylene porous orbital implants. However, it was noted that both experimental and commercial non-porous implants were significantly smoother than all the porous ones. The results achieved in this work reveal that these porous glass-ceramic materials show promise for the intended application and encourage further investigation of their clinical suitability.

  11. Imaging orbitals and defects in superconducting FeSe/SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Jennifer [Harvard University, Cambridge, MA (United States); University of British Columbia, Vancouver (Canada); Huang, Dennis; Webb, Tatiana; Feng, Shiang; Kaxiras, Efthimios [Harvard University, Cambridge, MA (United States); Song, Can-Li [Harvard University, Cambridge, MA (United States); Tsinghua University, Beijing (China); Chang, Cui-Zu; Moodera, Jagadeesh [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2016-07-01

    Single-layer FeSe grown epitaxially on SrTiO{sub 3} has been shown to superconduct with T{sub c} as high as 100 K, more than a factor of 10 higher than bulk FeSe. This dramatic enhancement motivates intense efforts to understand the superconducting mechanism and to design and fabricate devices. Nematic order, breaking the 4-fold rotational symmetry of the crystal, has been proposed as an important factor in the superconducting phase diagram. Meanwhile, atomic defects, which may pin nematic fluctuations or otherwise perturb superconductivity, can provide important clues into the superconducting mechanism as well as practical routes to superconducting devices. Here we use scanning tunneling microscopy (STM) to search for orbital nematicity in single-layer FeSe/SrTiO{sub 3}, and to investigate atomic-scale defects which locally influence superconductivity. From quasiparticle interference (QPI) images, we disentangle scattering intensities from the orthogonal Fe 3d{sub xz} and 3d{sub yz} bands, and quantitatively exclude pinned nematic orbital order with domain size larger than δ r ∝ 20 nm. Furthermore, we identify a prevalent ''dumbbell''-shaped atomic-scale defect whose placement could be harnessed to define two-dimensional superconducting devices.

  12. Collective excitations in circular atomic configurations and single-photon traps

    International Nuclear Information System (INIS)

    Hammer, Hanno

    2004-01-01

    Correlated excitations in a plane circular configuration of identical atoms with parallel dipole moments are investigated. The collective energy eigenstates, which are formally identical to Frenkel excitons, can be computed together with their level shifts and decay rates by decomposing the atomic state space into carrier spaces for the irreducible representations of the symmetry group Z N of the circle. It is shown that the index p of these representations can be used as a quantum number analogously to the orbital angular momentum quantum number l in hydrogenlike systems. Just as the hydrogen s states are the only electronic wave functions which can occupy the central region of the Coulomb potential, the quasiparticle corresponding to a collective excitation of the atoms in the circle can occupy the central atom only for vanishing Z N quantum number p. If a central atom is present, the p=0 state splits into two and shows level crossing at certain radii; in the regions between these radii, damped quantum beats between two 'extreme' p=0 configurations occur. The physical mechanisms behind super- and subradiance at a given radius are discussed. It is shown that, beyond a certain critical number of atoms in the circle, the lifetime of the maximally subradiant state increases exponentially with the number of atoms in the configuration, making the system a natural candidate for a single-photon trap

  13. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  14. Testing general relativity and alternative theories of gravity with space-based atomic clocks and atom interferometers

    Directory of Open Access Journals (Sweden)

    Bondarescu Ruxandra

    2015-01-01

    Full Text Available The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft’s reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth’s gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ∼ 10−16 in an elliptic orbit around the Earth would constrain the PPN parameters |β − 1|, |γ − 1| ≲ 10−6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.

  15. Quantum-Classical Connection for Hydrogen Atom-Like Systems

    Science.gov (United States)

    Syam, Debapriyo; Roy, Arup

    2011-01-01

    The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…

  16. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Ding Chunling; Li Jiahua; Yang Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhan Zhiming [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Liu Jibing, E-mail: clding2006@126.com, E-mail: huajia_li@163.com [Department of Physics, Hubei Normal University, Huangshi 435002 (China)

    2011-07-28

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  17. Effects of spin orbital coupling on atomic and electronic structures in Al{sub 2}Cu and Al{sub 2}Au crystal and liquid phases via ab initio molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Lu, Y.H., E-mail: luyh@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-11-15

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al{sub 2}Cu and Al{sub 2}Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al{sub 2}Cu and Al{sub 2}Au.

  18. Searching sequences of resonant orbits between a spacecraft and Jupiter

    International Nuclear Information System (INIS)

    Formiga, J K S; Prado, A F B A

    2013-01-01

    This research shows a study of the dynamical behavior of a spacecraft that performs a series of close approaches with the planet Jupiter. The main idea is to find a sequence of resonant orbits that allows the spacecraft to stay in the region of the space near the orbit of Jupiter around the Sun gaining energy from each passage by the planet. The dynamical model considers the existence of only two massive bodies in the systems, which are the Sun and Jupiter. They are assumed to be in circular orbits around their center of mass. Analytical equations are used to obtain the values of the parameters required to get this sequence of close approaches. Those equations are useful, because they show which orbits are physically possible when taking into account that the periapsis distances have to be above the surface of the Sun and that the closest approach distances during the passage by Jupiter have to be above its surface

  19. Atomic masses 1995. The 1995 atomic mass evaluation

    International Nuclear Information System (INIS)

    Audi, G.; Wapstra, A.H.

    1995-01-01

    The 1995 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment or systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  20. Atomic masses 1993. The 1993 atomic mass evaluation

    International Nuclear Information System (INIS)

    Audi, G.; Wapstra, A.H.

    1993-01-01

    The 1993 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment of systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  1. Two novel mixed-ligand complexes containing organosulfonate ligands.

    Science.gov (United States)

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  2. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    Science.gov (United States)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  3. Energy levels of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential

    Science.gov (United States)

    Wang, Wen-Yuan; Cao, Hui; Zhu, Shi-Liang; Liu, Jie; Fu, Li-Bin

    2015-02-01

    We investigate the energy levels of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential under the mean-field approximation. We find that the energy levels of the system can be significantly influenced by the atomic interactions. Without atomic interaction, four energy levels change linearly with the tunneling amplitude, the Raman coupling, and the spin-orbit coupling. However, whenever atomic interaction is considered, three more energy levels will appear, which have a nonlinear dependence on those parameters above. These three energy levels are multi-degenerate and related to the macro-symmetry of the system.

  4. Energy levels of a spin–orbit-coupled Bose–Einstein condensate in a double-well potential

    International Nuclear Information System (INIS)

    Wang, Wen-Yuan; Liu, Jie; Cao, Hui; Fu, Li-Bin; Zhu, Shi-Liang

    2015-01-01

    We investigate the energy levels of a spin–orbit-coupled Bose–Einstein condensate in a double-well potential under the mean-field approximation. We find that the energy levels of the system can be significantly influenced by the atomic interactions. Without atomic interaction, four energy levels change linearly with the tunneling amplitude, the Raman coupling, and the spin–orbit coupling. However, whenever atomic interaction is considered, three more energy levels will appear, which have a nonlinear dependence on those parameters above. These three energy levels are multi-degenerate and related to the macro-symmetry of the system. (paper)

  5. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  6. Radial Matrix Elements of Hydrogen Atom and the Correspondence ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Hydrogen excited states—radial matrix element—corres- ... atoms, its availability, production, its spectras, and importance in astrophysics (Dupree ... far away revolving lazily around in a slow orbit like a distant planet in the solar system. As the electron orbit diameter grows rapidly, its energy also decreases rapidly. Currently ...

  7. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    Science.gov (United States)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  8. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Energy Technology Data Exchange (ETDEWEB)

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  9. Ultrafast intersystem-crossing in platinum containing π-conjugated polymers with tunable spin-orbit coupling.

    Science.gov (United States)

    Sheng, C-X; Singh, S; Gambetta, A; Drori, T; Tong, M; Tretiak, S; Vardeny, Z V

    2013-01-01

    The development of efficient organic light-emitting diodes (OLED) and organic photovoltaic cells requires control over the dynamics of spin sensitive excitations. Embedding heavy metal atoms in π-conjugated polymer chains enhances the spin-orbit coupling (SOC), and thus facilitates intersystem crossing (ISC) from the singlet to triplet manifolds. Here we use various nonlinear optical spectroscopies such as two-photon absorption and electroabsorption in conjunction with electronic structure calculations, for studying the energies, emission bands and ultrafast dynamics of spin photoexcitations in two newly synthesized π-conjugated polymers that contain intrachain platinum (Pt) atoms separated by one (Pt-1) or three (Pt-3) organic spacer units. The controllable SOC in these polymers leads to a record ISC time of white OLEDs.

  10. TWO STARS TWO WAYS: CONFIRMING A MICROLENSING BINARY LENS SOLUTION WITH A SPECTROSCOPIC MEASUREMENT OF THE ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Jennifer C.; Johnson, John Asher; Eastman, Jason; Vanderburg, Andrew [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Skowron, Jan [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, Andrew [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Pineda, J. Sebastian [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Howard, Andrew, E-mail: jyee@cfa.harvard.edu, E-mail: jjohnson@cfa.harvard.edu, E-mail: jason.eastman@cfa.harvard.edu, E-mail: avanderburg@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States)

    2016-04-20

    Light curves of microlensing events involving stellar binaries and planetary systems can provide information about the orbital elements of the system due to orbital modulations of the caustic structure. Accurately measuring the orbit in either the stellar or planetary case requires detailed modeling of subtle deviations in the light curve. At the same time, the natural, Cartesian parameterization of a microlensing binary is partially degenerate with the microlens parallax. Hence, it is desirable to perform independent tests of the predictions of microlens orbit models using radial velocity (RV) time series of the lens binary system. To this end, we present 3.5 years of RV monitoring of the binary lens system OGLE-2009-BLG-020 L, for which Skowron et al. constrained all internal parameters of the 200–700 day orbit. Our RV measurements reveal an orbit that is consistent with the predictions of the microlens light curve analysis, thereby providing the first confirmation of orbital elements inferred from microlensing events.

  11. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis

    Directory of Open Access Journals (Sweden)

    Sumeet Jain

    2016-01-01

    Full Text Available Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  12. Behavior of orbits of two coupled oscillators

    International Nuclear Information System (INIS)

    Greene, J.M.

    1985-01-01

    There has been very considerable progress in the past few years on the theory of two conservative, coupled, nonlinear oscillators. This work also applies to many equivalent systems, so it has applications to particle containment and heating, for example, and wherever else in plasma physics that the validity of adiabatic invariants is a matter of concern. A general problem of this class has a solution that is so complicated that it is impossible to find an expression for the state of the system that is valid for all time. However, recent results are making it possible to determine the next most useful type of information. This is the asymptotic behavior of individual orbits in the limit of very long times. This is just the information that is desired in many situations. For example, it determines the stability of the motion. The key to our present understanding is renormalization. The present state of the art has been described in Robert Mackay's thesis, for which this is an advertisement

  13. Observation of correlated atom pairs in spontaneous four wave mixing of two colliding Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Perrin, A.

    2007-11-01

    In this thesis, we report on the observation of pairs of correlated atoms produced in the collision of two Bose-Einstein condensates of metastable helium. Three laser beams perform a Raman transfer which extracts the condensate from the magnetic trap and separates it into two parts with opposite mean momenta. While the condensates propagate, elastic scattering of pairs of atoms occurs, whose momenta satisfy energy and momentum conservation laws. Metastable helium atoms large internal energy allows the use of a position-sensitive, single-atom detector which permits a three-dimensional reconstruction of the scattered atoms'momenta. The statistics of these momenta show correlations for atoms with opposite momenta. The measured correlation volume can be understood from the uncertainty-limited momentum spread of the colliding condensates. This interpretation is confirmed by the observation of the momentum correlation function for two atoms scattered in the same direction. This latter effect is a manifestation of the Hanbury Brown-Twiss effect for indistinguishable bosons. Such a correlated-atom-pair source is a first step towards experiments in which one would like to confirm the pairs'entanglement. (author)

  14. Nonresonant absorption of one photon by one atom and resonant absorption of two photons by two atoms

    International Nuclear Information System (INIS)

    Mizushima, Masataka

    1990-01-01

    When a radiation field of frequency ω 1 interacts with atoms, etch of which has a transition frequency ω ba =(E b -E a )/h, with ω 1 -ω ba =Δ≠0, nonresonant absorption can take place with probability P 1 inversely proportional to Δ 2 (a pressure broadening). When another radiation field of frequency ω 2 , such that ω 1 +ω 2 =2ω ba, interacts simultaneously with the gas a resonant two-photon absorption can take place in addition to the nonresonant absorption. The probability of this two-photon absorption process, P 2 , is found to be inversely proportional to Δ 4 . If Ω=| | is the Rabi frequency of the transition, it is found that P 2 /(P 1 (Δ)+P 1 (-Δ)) is given by 12 {Ω(-Δ)Ω(-Δ)} 2 / {Δ 2 (Ω(-Δ) 2 + Ω(Δ) 2 )}. (author)

  15. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  16. STS-49 Endeavour, Orbiter Vehicle (OV) 105, Orbit Team O1 in MCC Bldg 30 FCR

    Science.gov (United States)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Orbit Team 1 (O1) poses in front of large display screens in JSC's Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) for group portrait. Lead Flight Director (FD) Granvil A. Pennington stands next to a model of the James Cook's ship, the Endeavour (left). Astronaut and Spacecraft Communicator (CAPCOM) John H. Casper stands at the right of the model.

  17. GLONASS Orbits in Teqc: Methodology and Future Extension for Using SP3 Orbits

    Science.gov (United States)

    Estey, L.; Wier, S.

    2011-12-01

    UNAVCO's teqc software package provides translation of a wide variety of GNSS receiver formats, metadata editing (either during translation to RINEX or on existing RINEX files), time-windowing and epoch decimation editing, and quality check (qc) analysis. Teqc is used extensively in GNSS pre-processing, and is designed to handle mixed satellite constellations, such as GPS, GLONASS, Galileo, and SBAS. The latest release of teqc adds GLONASS orbit calculations using GLONASS broadcast navigation messages, read from RINEX file format, during qc. The ephemerides for each GLONASS SV have time and orbit position in Earth-centered, Earth-fixed x, y, and z coordinates. Following Schenewerk [2003], we use trigonometric interpolation, essentially a fit of a partial sum of the Fourier series for each time-varying cartesian orbital component, allowing estimates of orbit positions at most GLONASS observation times. Tests show the interpolated GLONASS orbits made from the broadcast messages diverge from final orbits little more than the same differences using GPS orbits computed from their broadcast messages. Since GLONASS ephemerides do not use Keplerian orbital elements, GLONASS SV orbits can only be interpolated using this method for time intervals when an adequate sequence of ephemerides are available. For typical daily navigation messages collected at a single sit, when a GLONASS SV is in view less than three hours, that SV's signals are generally not used by teqc due to less precise orbit positions. Teqc quality control including SV position can now use GPS alone, GLONASS alone, or the joint solution. Future work will extend teqc to use SP3 format files, such as the IGS final orbit files, and SBAS data, which have broadcast ephemerides with elements similar to GLONASS.

  18. Impact of GPS antenna phase center and code residual variation maps on orbit and baseline determination of GRACE

    Science.gov (United States)

    Mao, X.; Visser, P. N. A. M.; van den IJssel, J.

    2017-06-01

    Precision Orbit Determination (POD) is a prerequisite for the success of many Low Earth Orbiting (LEO) satellite missions. With high-quality, dual-frequency Global Positioning System (GPS) receivers, typically precisions of the order of a few cm are possible for single-satellite POD, and of a few mm for relative POD of formation flying spacecraft with baselines up to hundreds of km. To achieve the best precision, the use of Phase Center Variation (PCV) maps is indispensable. For LEO GPS receivers, often a-priori PCV maps are obtained by a pre-launch ground campaign, which is not able to represent the real space-borne environment of satellites. Therefore, in-flight calibration of the GPS antenna is more widely conducted. This paper shows that a further improvement is possible by including the so-called Code Residual Variation (CRV) maps in absolute/undifferenced and relative/Double-differenced (DD) POD schemes. Orbit solutions are produced for the GRACE satellite formation for a four months test period (August-November, 2014), demonstrating enhanced orbit precision after first using the in-flight PCV maps and a further improvement after including the CRV maps. The application of antenna maps leads to a better consistency with independent Satellite Laser Ranging (SLR) and K-band Ranging (KBR) low-low Satellite-to-Satellite Tracking (ll-SST) observations. The inclusion of the CRV maps results also in a much better consistency between reduced-dynamic and kinematic orbit solutions for especially the cross-track direction. The improvements are largest for GRACE-B, where a cross-talk between the GPS main antenna and the occultation antenna yields higher systematic observation residuals. For high-precision relative POD which necessitates DD carrier-phase ambiguity fixing, in principle frequency-dependent PCV maps would be required. To this aim, use is made of an Extended Kalman Filter (EKF) that is capable of optimizing relative spacecraft dynamics and iteratively fixing

  19. Saturated two-photon absorption by atoms in a perturber gas

    International Nuclear Information System (INIS)

    Nienhuis, G.

    1980-01-01

    We derive a general expression for the two-photon absorption spectrum of a three-state atom excited by two mono-chromatic radiation fields. Collisional line-broadening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are recovered in the appropriate limits. Saturation affects the different lines in the two-photon absorption spectrum in a different fashion. (orig.)

  20. Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model

    Science.gov (United States)

    Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad

    2018-02-01

    In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.