WorldWideScience

Sample records for two-cell porcine embryos

  1. Treatment of porcine donor cells and reconstructed embryos with the antioxidant melatonin enhances cloning efficiency.

    Science.gov (United States)

    Pang, Yun-Wei; An, Lei; Wang, Peng; Yu, Yong; Yin, Qiu-Dan; Wang, Xiao-Hong; Xin-Zhang; Qian-Zhang; Yang, Mei-Ling; Min-Guo; Wu, Zhong-Hong; Tian, Jian-Hui

    2013-05-01

    This study was conducted to investigate the effect of melatonin during the culture of donor cells and cloned embryos on the in vitro developmental competence and quality of cloned porcine embryos. At concentrations of 10(-6 )M or 10(-8) M, melatonin significantly enhanced the proliferation of porcine fetal fibroblasts (PFFs), and the blastocyst rate was significantly increased in the 10(-10) M melatonin-treated donor cell group. Cloned embryo development was also improved in embryo culture medium that was supplemented with 10(-9) M or 10(-12) M melatonin. When both donor cells and cloned embryos were treated with melatonin, the cleavage rate and total cell number of blastocysts were not significantly affected; however, the blastocyst rate was increased significantly (20.0% versus 11.7%). TUNEL assays showed that combined melatonin treatment reduced the rate of apoptotic nuclei (3.6% versus 6.1%). Gene expression analysis of the apoptosis-related genes BAX, BCL2L1, and p53 showed that the expression of BCL2L1 was significantly elevated 2.7-fold relative to the control group, while the expression of BAX and p53 was significantly decreased by 3.7-fold and 23.2-fold, respectively. In addition, we detected the expression of two melatonin receptors (MT1 and MT2) in PFFs but not in porcine cloned embryos. We conclude that exogenous melatonin enhances the development of porcine cloned embryos and improves embryo quality by inhibiting p53-mediated apoptotic pathway. The proliferation of PFFs may be mediated by receptor binding, but the beneficial effects of melatonin on embryonic development may be receptor-independent, possibly through melatonin's ability to directly scavenge free radicals. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  2. Developmental competence of porcine chimeric embryos produced by aggregation

    DEFF Research Database (Denmark)

    Li, Juan; Jakobsen, Jannik E.; Xiong, Qiang

    2015-01-01

    The purpose of our study was to compare the developmental competence and blastomere allocation of porcine chimeric embryos formed by micro-well aggregation. Chimeras were created by aggregating either two blastomeres originating from 2-cell embryos or two whole embryos, where embryos were produced...... either by parthenogenetic activation (PA) or handmade cloning (HMC). Results showed that the developmental competence of chimeric embryos, evaluated based on their blastocyst rate and total cell number per blastocyst, was increased when two whole 2-cell stage embryos (PA or HMC) were aggregated....... In comparison, when two blastomeres were aggregated, the developmental competence of the chimeric embryos decreased if the blastomeres were either from PA or from HMC embryos, but not if they were from different sources, i.e. one PA and one HMC blastomere. To evaluate the cell contribution in embryo formation...

  3. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...

  4. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    from porcine embryos or induced pluripotent stem cells is presented. The neural induction is performed in coculture and the isolation of rosette structures is carried out manually to ensure a homogenous population of NPCs. Using this method, multipotent NPCs can be obtained in approximately 1 month......The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement...... therapy. The pig has become recognized as an important large animal model and establishment of in vitro-derived porcine NPCs would allow for preclinical safety testing by transplantation in a porcine biomedical model. In this chapter, a detailed method for isolation and in vitro culture of porcine NPCs...

  5. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.

    Science.gov (United States)

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.

  6. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

    Directory of Open Access Journals (Sweden)

    Binghua Xue

    Full Text Available Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.

  7. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure.

    Science.gov (United States)

    Jeon, Yubyeol; Nam, Yeong-Hee; Cheong, Seung-A; Kwak, Seong-Sung; Lee, Eunsong; Hyun, Sang-Hwan

    2016-08-25

    Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation.

  8. Pro-apoptotic Effect of Pifithrin-α on Preimplantation Porcine Fertilized Embryo Development

    Directory of Open Access Journals (Sweden)

    Brendan Mulligan

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of a reported p53 inhibitor, pifithrin-α (PFT-α, on preimplantation porcine in vitro fertilized (IVF embryo development in culture. Treatment of PFT-α was administered at both early (0 to 48 hpi, and later stages (48 to 168 hpi of preimplantation development, and its impact upon the expression of five genes related to apoptosis (p53, bak, bcl-xL, p66Shc and caspase3, was assessed in resulting d 7 blastocysts, using real-time quantitative PCR. Total cell numbers, along with the number of apoptotic nuclei, as detected by the in situ cell death detection assay, were also calculated on d 7 in treated and non-treated control embryos. The results indicate that PFT-α, when administered at both early and later stages of porcine IVF embryo development, increases the incidence of apoptosis in resulting blastocysts. When administered at early cleavage stages, PFT-α treatment was shown to reduce the developmental competence of porcine IVF embryos, as well as reducing the quality of resulting blastocysts in terms of overall cell numbers. In contrast, at later stages, PFT-α administration resulted in marginally increased blastocyst development rates amongst treated embryos, but did not affect cell numbers. However, PFT-α treatment induced apoptosis and apoptotic related gene expression, in all treated embryos, irrespective of the timing of treatment. Our results indicate that PFT-α may severely compromise the developmental potential of porcine IVF embryos, and is a potent apoptotic agent when placed into porcine embryo culture media. Thus, caution should be exercised when using PFT-α as a specific inhibitor of p53 mediated apoptosis, in the context of porcine IVF embryo culture systems.

  9. Efficiency of two enucleation methods connected to handmade cloning to produce transgenic porcine embryos

    DEFF Research Database (Denmark)

    Li, J; Villemoes, K; Zhang, Y

    2009-01-01

    The purpose of our work was to establish an efficient-oriented enucleation method to produce transgenic embryos with handmade cloning (HMC). After 41â€"42 h oocytes maturation, the oocytes were further cultured with or without 0.4 μg/ml demecolcine for 45 min [chemically assisted handmade...... cytoplasts without extrusion cones or PB were selected as recipients. Two cytoplasts were electrofused with one transgenic fibroblasts expressing green fluorescent protein (GFP), while non-transgenic fibroblasts were used as controls. Reconstructed embryos were cultured in Well of Wells (WOWs) with porcine......%) of cloned embryos with GFP transgenic fibroblast cells after CAHE vs OHE. With adjusted time-lapse for zonae-free cloned embryos cultured in WOWs with PZM-3, it was obvious that in vitro developmental competence after CAHE was compromised when compared with the OHE method. OHE enucleation method seems...

  10. Developmental Competence and Epigenetic Profile of Porcine Embryos Produced by Two Different Cloning Methods.

    Science.gov (United States)

    Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern; Li, Rong; Hermann, Doris; Hassel, Petra; Ziegler, Maren; Larsen, Knud; Niemann, Heiner; Callesen, Henrik

    2017-06-01

    The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.

  11. Developmental competence and epigenetic profile of porcine embryos produced by two different cloning methods

    DEFF Research Database (Denmark)

    Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern

    2017-01-01

    on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either...

  12. [TSA improve transgenic porcine cloned embryo development and transgene expression].

    Science.gov (United States)

    Kong, Qing-Ran; Zhu, Jiang; Huang, Bo; Huan, Yan-Jun; Wang, Feng; Shi, Yong-Qian; Liu, Zhong-Feng; Wu, Mei-Ling; Liu, Zhong-Hua

    2011-07-01

    Uncompleted epigenetic reprogramming is attributed to the low efficiency of producing transgenic cloned animals. Histone modification associated with epigenetics can directly influence the embryo development and transgene expression. Trichostatin A (TSA), as an inhibitor of histone deacetylase, can change the status of histone acetylation, improve somatic cell reprogramming, and enhance cloning efficiency. TSA prevents the chromatin structure from being condensed, so that transcription factor could binds to DNA sequence easily and enhance transgene expression. Our study established the optimal TSA treatment on porcine donor cells and cloned embryos, 250 nmol/L, 24 h and 40 nmol/L, 24 h, respectively. Furthermore, we found that both the cloned embryo and the donor cell treated by TSA resulted in the highest development efficiency. Meanwhile, TSA can improve transgene expression in donor cell and cloned embryo. In summary, TSA can significantly improve porcine reconstructed embryo development and transgene expression.

  13. Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos.

    Science.gov (United States)

    Sugimura, S; Narita, K; Yamashiro, H; Sugawara, A; Shoji, T; Terashita, Y; Nishimori, K; Konno, T; Yoshida, M; Sato, E

    2009-09-01

    Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (Ptip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.

  14. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Pang, Daxin, E-mail: pdx@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Ouyang, Hongsheng, E-mail: ouyh@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China)

    2011-07-29

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  15. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue; Pang, Daxin; Ouyang, Hongsheng

    2011-01-01

    Highlights: → Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. → The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. → A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 μg/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  16. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Josef; Gao, Yu

    2009-01-01

      The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... pluripotency in human embryonic stem cells is detectable in the porcine epiblast, but not in the inner cell mass. Copyright (c) 2009 Wiley-Liss, Inc.......  The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... (LIF, LIFR, GP130), FGF pathway (bFGF, FGFR1, FGFR2), BMP pathway (BMP4), and downstream-activated genes (STAT3, c-Myc, c-Fos, and SMAD4). We discovered two different expression profiles exist in the developing porcine embryo. The D6 porcine blastocyst (inner cell mass stage) is devoid...

  17. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  18. Development, DNA fragmentation and cell death in porcine embryos afer 24 h storage under different conditions

    NARCIS (Netherlands)

    Rubio Pomar, F.J.; Ducro-Steverink, D.W.B.; Hazeleger, W.; Teerds, K.J.; Colenbrander, B.; Bevers, M.M.

    2004-01-01

    For practical applications of porcine embryo transfer (ET) it is important to develop feasible embryo storage conditions. The aim of the present study was to evaluate the effect of short-term storage (24 h) on the quality of in vivo produced porcine embryos. Three temperatures 18, 25 and 38 degreesC

  19. PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun-Xue; Kang, Jin-Dan; Li, Suo; Jin, Long; Zhu, Hai-Ying; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2015-01-02

    Highlights: • First explored that the effects of PXD101 on the development of SCNT embryos in vitro. • 0.5 μM PXD101 treated for 24 h improved the development of porcine SCNT embryos. • Level of AcH3K9 was significantly higher than control group at early stages. - Abstract: In this study, we investigated the effects of the histone deacetylase inhibitor PXD101 (belinostat) on the preimplantation development of porcine somatic cell nuclear transfer (SCNT) embryos and their expression of the epigenetic markers histone H3 acetylated at lysine 9 (AcH3K9). We compared the in vitro developmental competence of SCNT embryos treated with various concentrations of PXD101 for 24 h. Treatment with 0.5 μM PXD101 significantly increased the proportion of SCNT embryos that reached the blastocyst stage, in comparison to the control group (23.3% vs. 11.5%, P < 0.05). We tested the in vitro developmental competence of SCNT embryos treated with 0.5 μM PXD101 for various amounts of times following activation. Treatment for 24 h significantly improved the development of porcine SCNT embryos, with a significantly higher proportion of embryos reaching the blastocyst stage in comparison to the control group (25.7% vs. 10.6%, P < 0.05). PXD101-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and four fetuses developed. PXD101 treatment significantly increased the fluorescence intensity of immunostaining for AcH3K9 in embryos at the pseudo-pronuclear and 2-cell stages. At these stages, the fluorescence intensities of immunostaining for AcH3K9 were significantly higher in PXD101-treated embryos than in control untreated embryos. In conclusion, this study demonstrates that PXD101 can significantly improve the in vitro and in vivo developmental competence of porcine SCNT embryos and can enhance their nuclear reprogramming.

  20. Development of porcine transgenic nuclear-transferred embryos derived from fibroblast cells transfected by the novel technique of nucleofection or standard lipofection.

    Science.gov (United States)

    Skrzyszowska, M; Samiec, M; Słomski, R; Lipiński, D; Mały, E

    2008-07-15

    The aim of our study was to determine the in vitro developmental potential of porcine nuclear-transferred (NT) embryos that had been reconstructed with Tg(pWAPhGH-GFPBsd) transgene-expressing fibroblast cells. The gene construct was introduced into fibroblast cells by the novel method of nucleofection or standard lipofection. NT oocytes derived from foetal and adult dermal fibroblast cells were stimulated by either simultaneous fusion and electrical activation (Groups IA and IB) or sequential electrical and chemical activation (Groups IIA and IIB). The percentages of cloned embryos that reached the morula and blastocyst stages were 152/254 (59.8%) and 77/254 (30.3%) or 139/276 (50.4%) and 45/276 (16.3%) in Groups IA or IB, respectively. The rates of NT embryos that developed to the morula and blastocyst stages were 103/179 (57.5%) and 41/179 (22.9%) or 84/193 (43.5%) and 27/193 (14.0%) in Groups IIA and IIB, respectively. In conclusion, the in vitro developmental competences of porcine transgenic NT embryos that had been reconstructed with the Tg(pWAPhGH-GFPBsd) gene-transfected fibroblast cells were relatively high. Further, the nucleofection efficiency of all the porcine fibroblast cell lines as estimated by intra-vitam fluorescent evaluation based on the index of reporter eGFP transgene expression was nearly 100%. However, PCR analysis for transgene screening confirmed the absence of Tg(pWAPhGH-GFPBsd) fusion gene in some of the nucleofected cell lines. To our knowledge, the novel method of nucleofection is the first to transfect nuclear donor cells in the production of transgenic cloned embryos.

  1. Breaking down pluripotency in the porcine embryo reveals both a premature and reticent stem cell state in the inner cell mass and unique expression profiles of the naive and primed stem cell states.

    Science.gov (United States)

    Hall, Vanessa Jane; Hyttel, Poul

    2014-09-01

    To date, it has been difficult to establish bona fide porcine embryonic stem cells (pESC) and stable induced pluripotent stem cells. Reasons for this remain unclear, but they may depend on inappropriate culture conditions. This study reports the most insights to date on genes expressed in the pluripotent cells of the porcine embryo, namely the inner cell mass (ICM), the trophectoderm-covered epiblast (EPI), and the embryonic disc epiblast (ED). Specifically, we reveal that the early porcine ICM represents a premature state of pluripotency due to lack of translation of key pluripotent proteins, and the late ICM enters a transient, reticent pluripotent state which lacks expression of most genes associated with pluripotency. We describe a unique expression profile of the porcine EPI, reflecting the naive stem cell state, including expression of OCT4, NANOG, CRIPTO, and SSEA-1; weak expression of NrOB1 and REX1; but very limited expression of genes in classical pathways involved in regulating pluripotency. The porcine ED, reflecting the primed stem cell state, can be characterized by the expression of OCT4, NANOG, SOX2, KLF4, cMYC, REX1, CRIPTO, and KLF2. Further cell culture experiments using inhibitors against FGF, JAK/STAT, BMP, WNT, and NODAL pathways on cell cultures derived from day 5 and 10 embryos reveal the importance of FGF, JAK/STAT, and BMP signaling in maintaining cell proliferation of pESCs in vitro. Together, this article provides new insights into the regulation of pluripotency, revealing unique stem cell states in the different porcine stem cell populations derived from the early developing embryo.

  2. DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos

    DEFF Research Database (Denmark)

    Tao, Jia; Zhang, Yu; Zuo, Xiaoyuan

    2017-01-01

    Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological...... inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mouse induced pluripotent stem cells. However, the roles of DOT1L in porcine nuclear transfer-mediated cellular reprogramming are not yet known. Here we showed that DOT1L inhibition via 0.5 nM EPZ treatment...

  3. In vitro manipulation techniques of porcine embryos

    DEFF Research Database (Denmark)

    Liu, Ying; Li, Juan; Løvendahl, Peter

    2015-01-01

    During the last 17 years, considerable advancements have been achieved in the production of pigs, transgenic and non-transgenic, by methods of somatic cell nuclear transfer, in vitro fertilisation, intracytoplasmic sperm injection, microinjection and sperm-mediated gene transfer by artificial...... insemination. Therefore, a review of the overall efficiency for the developmental competence of embryos produced by these in vitro methods would be useful in order to obtain a more thorough overview of this growing area with respect to its development and present status. In this review a meta-analysis was used...... to analyse data collected from all published articles with a focus on zygotes and embryos for transfer, pregnancy, full-term development and piglets born. It was generally concluded that an increasing level of in vitro manipulation of porcine embryos decreased the overall efficiency for production of piglets...

  4. Expression of nucleolar-related proteins in porcine preimplantation embryos produced in vivo and in vitro

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Wrenzycki, Christine; Strejcek, Frantisek

    2004-01-01

    The expression of nucleolar-related proteins was studied as an indirect marker of the ribosomal RNA (rRNA) gene activation in porcine embryos up to the blastocyst stage produced in vivo and in vitro. A group of the in vivo-developed embryos were cultured with alpha-amanitin to block the de novo...... proteins pRb and p130, which are involved in cell-cycle regulation, was assessed by semiquantitative RT-PCR up to the blastocyst stage. Toward the end of third cell cycle, the nuclei in non-alpha-amanitin-treated, in vivo-produced embryos displayed different stages of transformation of the nuclear...... was delayed in porcine embryos produced in vitro compared to the in vivo-derived counterparts with respect to mRNAs encoding PAF53 and UBF. Moreover, differences existed in the mRNA expression patterns of pRb between in vivo- and in vitro-developed embryos. These findings show, to our knowledge for the first...

  5. DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome...

  6. DNA methylation in porcine preimplantation embryos developed in-vivo or produced by in-vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome...

  7. Effect of ambient light exposure of media and embryos on development and quality of porcine parthenogenetically activated embryos.

    Science.gov (United States)

    Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard; Callesen, Henrik

    2015-06-01

    Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time. In conclusion, exposure to ambient light can be harmful to embryo development, both when medium is exposed for a long period of time and, to a greater extent, when the embryo itself is exposed for >1 h. In practice, it is therefore recommended to protect both culture medium and porcine embryos against ambient light during in vitro handling in the laboratory.

  8. Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis.

    Science.gov (United States)

    Ji, Qianqian; Zhu, Kongju; Liu, Zhiguo; Song, Zhenwei; Huang, Yuankai; Zhao, Haijing; Chen, Yaosheng; He, Zuyong; Mo, Delin; Cong, Peiqing

    2013-03-15

    Trichostain A (TSA), an inhibitor of histone deacetylases, improved developmental competence of SCNT embryos in many species, apparently by improved epigenetic reprogramming. The objective of the present study was to determine the effects of TSA-induced apoptosis in cloned porcine embryos. At various developmental stages, a comet assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining were used to detect apoptosis, and real-time polymerase chain reaction was used to assess expression of genes related to apoptosis and pluripotency. In this study, TSA significantly induced apoptosis (in a dose-dependent manner) at the one-, two-, and four-cell stages. However, in blastocyst stage embryos, TSA decreased the apoptotic index (P < 0.05). Expression levels of Caspase 3 were higher in TSA-treated versus control embryos at the two-cell stage (not statistically significant). The expression ratio of antiapoptotic Bcl-xl gene to proapoptotic Bax gene, an indicator of antiapoptotic potential, was higher in TSA-treated groups at the one-, two-, and four-cell and blastocyst stages. Furthermore, expression levels of pluripotency-related genes, namely, Oct4 and Nanog, were elevated at the morula stage (P < 0.05) in TSA treatment groups. We concluded that inducing apoptosis might be a mechanism by which TSA promotes development of reconstructed embryos. At the initial stage of apoptosis induction, abnormal cells were removed, thereby enhancing proliferation of healthy cells and improving embryo quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    2014-11-01

    Full Text Available Cloned pigs generated by somatic cell nuclear transfer (SCNT show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP. q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos.

  10. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Science.gov (United States)

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  11. TSA and BIX-01294 Induced Normal DNA and Histone Methylation and Increased Protein Expression in Porcine Somatic Cell Nuclear Transfer Embryos.

    Science.gov (United States)

    Cao, Zubing; Hong, Renyun; Ding, Biao; Zuo, Xiaoyuan; Li, Hui; Ding, Jianping; Li, Yunsheng; Huang, Weiping; Zhang, Yunhai

    2017-01-01

    The poor efficiency of animal cloning is mainly attributed to the defects in epigenetic reprogramming of donor cells' chromatins during early embryonic development. Previous studies indicated that inhibition of histone deacetylases or methyltransferase, such as G9A, using Trichostatin A (TSA) or BIX-01294 significantly enhanced the developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos. However, potential mechanisms underlying the improved early developmental competence of SCNT embryos exposed to TSA and BIX-01294 are largely unclear. Here we found that 50 nM TSA or 1.0 μM BIX-01294 treatment alone for 24 h significantly elevated the blastocyst rate (P TSA treatment alone significantly reduced H3K9me2 level at the 4-cell stage, which is comparable with that in in vivo and in vitro fertilized counterparts. However, only co-treatment significantly decreased the levels of 5mC and H3K9me2 in trophectoderm lineage and subsequently increased the expression of OCT4 and CDX2 associated with ICM and TE lineage differentiation. Altogether, these results demonstrate that co-treatment of TSA and BIX-01294 enhances the early developmental competence of porcine SCNT embryos via improvements in epigenetic status and protein expression.

  12. Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse.

    Science.gov (United States)

    Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe

    2016-09-01

    The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes

  13. Optimal developmental stage for vitrification of parthenogenetically activated porcine embryos

    DEFF Research Database (Denmark)

    Li, Rong; Li, Juan; Kragh, Peter

    2012-01-01

    The objective of this experiment was to determine the optimal developmental stage to vitrify in-vitro cultured porcine parthenogenetically activated (PA) embryos. Embryos were vitrified by Cryotop on Day 4, 5 or 6 after oocyte activation (Day 0), and immediately after warming they were either time...

  14. In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and yucatan mini pig embryos at days 20-24 of gestation

    DEFF Research Database (Denmark)

    Petkov, Stoyan Gueorguiev; Marks, Hendrik; Klein, Tino

    2011-01-01

    Embryonic germ cells (EGC) are cultured pluripotent cells derived from primordial germ cells (PGC). This study explored the possibility of establishing porcine EGC from domestic breeds and Yucatan mini pigs using embryos at Days 17-24 of gestation. In vitro culture of PGC from both pooled...

  15. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions

    DEFF Research Database (Denmark)

    Østrup, Olga; Olbricht, Gayla; Østrup, Esben

    2013-01-01

    produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and human embryos showed striking overlap in functional annotation of transcripts during the EGA, suggesting conserved basic mechanisms...... a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell...... from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos...

  16. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-01-01

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further

  17. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  18. Toxicity of beauvericin on porcine oocyte maturation and preimplantation embryo development

    NARCIS (Netherlands)

    Schoevers, Eric J; Santos, Regiane R; Fink-Gremmels, Johanna; Roelen, Bernard A J

    2016-01-01

    Beauvericin (BEA) is one of many toxins produced by Fusarium species that contaminate feed materials. The aim of this study was to assess its effects on porcine oocyte maturation and preimplantation embryo development. Cumulus-oocyte-complexes and developing embryos were exposed to BEA and cultured

  19. Toward Development of Pluripotent Porcine Stem Cells by Road Mapping Early Embryonic Development

    DEFF Research Database (Denmark)

    Petkov, Stoyan; Freude, Kristine; Mashayekhi-Nezamabadi, Kaveh

    2017-01-01

    The lack in production of bona fide porcine pluripotent stem cells has definitely been hampered by a lack of research into porcine embryo development. Embryonic development in mammals is the extraordinary transition of a single-celled fertilized zygote into a complex fetus, which occurs...... in the uterus of the maternal adult during the early stages of gestation. Biomedical pig models could serve as genetic backgrounds for establishment of embryonic stem cells (ESCs) or other pluripotent stem cells (such as iPSC), which may be used to model and study diseases in vitro. This chapter provides...... insight into the current knowledge of pluripotent states in the developing pig embryo and the current status in establishment of bona fide porcine ESC (pESC) and piPSCs. It reflects the potential causes underlying the difficulty in establishing pluripotent stem cells and reviews recent data on global...

  20. Effect of ambient light exposure of media and embryos on development and quality of porcine parthenogenetically activated embryos

    DEFF Research Database (Denmark)

    Li, Rong; Liu, Ying; Callesen, Henrik

    2015-01-01

    Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos...... was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased...... the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time...

  1. Effect of zona pellucida on porcine parthenogenetically activated embryos

    DEFF Research Database (Denmark)

    Li, Rong; Liu, Ying; Li, Juan

    2011-01-01

    μg mL–1 cytochalasin B and 10 μg mL–1 cycloheximide in PZM-3 medium for 4 h. ZP was removed by 3.3 mg mL–1 pronase. Both zona-intact (PAZI) and zona-free (PAZF) embryos were cultured individually for 6 days either in time-lapse incubator (Embryoscope D, Unisense A/S, Aarhus, Denmark) for 15-min......). The timing of morulae was recorded when they completed compaction. Good blastocysts were defined when they expanded to 1.5 times larger than oocytes and formed regular blastocoel cavity with uniform colour and distribution of cells. Timing data were analysed by Student's t-test, while development rates....... 22, 234). In the present study, we expanded this study to include also the timing of early development and the resulting quality and robustness (for vitrification) of porcine PA embryos. Parthenogenetic activation was made first by an electric pulse (1.26 kV cm–1, 80 μs) and then by incubation with 5...

  2. Pre-incubation of porcine semen reduces the incidence of polyspermy on embryos derived from low quality oocytes

    Directory of Open Access Journals (Sweden)

    Cláudio Francisco Brogni

    2016-06-01

    Full Text Available ABSTRACT: The main cause of low efficiency of in vitro produced porcine embryos is the high polyspermic penetration rates at fertilization, which is aggravated in low quality oocytes. Experiment 1 evaluated the embryo development in high and low quality oocytes. Experiment 2 evaluated the embryo development and quality of low quality oocytes fertilized with sperm pre-incubated during 0h (control, 0.5h, 1h and 1.5h. Experiment 3 investigated fertilization and monospermic rates of the same groups of Experiment 2. Experiment 4 evaluated embryo development, cell density, fertilization and monospermic rates of high quality oocytes using semen pre incubated during the best time observed in the previous experiments. Cleavage and blastocyst rates were analyzed by chi-square test, and remaining data by ANOVA and Tukey test (P≤0.05. The cleavage (74.8 vs 51.7% and blastocyst (33.7 vs 9.8% rates were greater in oocytes of high versus low quality, with no differences in cell density. Fertilization rates (65.6 to 79.5% were not influenced by pre-incubation time. However, semen pre-incubation during 1.5h increased monospermic penetration (53.3% and cleavage rates (92.5% in low quality oocytes. Blastocyst rate was improved with 1.5h of semen pre incubation; however they were still lower than that observed with high quality control oocytes. Ultimately, pre-incubation did not influence fertilization, monospermic penetration, embryo development rates, nor cell density in oocytes of high quality. Low-quality porcine oocytes resulted in better rates of embryo development if in vitro fertilized with sperm pre-incubated for 1.5 hour.

  3. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality.

    Science.gov (United States)

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.

  4. Three-dimensional localisation of NANOG, OCT4, and E-CADHERIN in porcine pre- and peri-implantation embryos

    DEFF Research Database (Denmark)

    Wolf, Xenia Asbæk; Serup, Palle; Hyttel, Poul

    2011-01-01

    . The expression of NANOG differed remarkably from that reported in other species. NANOG was not detected in the inner cell mass of hatched porcine blastocysts, but later appeared in the epiblast and hypoblast of spherical blastocysts where Rauber's layer had disintegrated. In pre-gastrulating, filamentous embryos...

  5. The possible FAT1-mediated apoptotic pathways in porcine cumulus cells

    NARCIS (Netherlands)

    Wu, Xinhui; Fu, Yao; Liu, Chang; Chai, Menglong; Chen, Chengzhen; Dai, Lisheng; Gao, Yan; Jiang, Hao; Zhang, Jiabao

    Porcine cumulus cells are localized around oocytes and act as a specific type of granulosa that plays essential roles in the development and maturation of oocytes, the development and atresia of follicles, and the development of embryos. Studies of FAT1 have demonstrated its functions in cell-cell

  6. Effect of the well of the well (WOW) system on in vitro culture for porcine embryos after intracytoplasmic sperm injection.

    Science.gov (United States)

    Taka, Mikiko; Iwayama, Hiroshi; Fukui, Yutaka

    2005-08-01

    For developmental competence of porcine embryos in vitro, it is important to improve the culture environment. The present study was performed to evaluate four different culture systems for in vitro matured porcine oocytes following intracytoplasmic sperm injection (ICSI); drop, well and two sizes of the well of the well (WOW) systems (500 and 1,000 microm in diameter). The cleavage rate on Day 2 and the mean cell number in blastocysts on Day 6 were not significantly different among the four treatments. However, the 1,000 microm WOW (24.6%) resulted in a significantly higher (PWOW, respectively). The present study indicates that the microenvironment created by the 1,000 microm diameter WOW improves blastocyst production of in vitro matured porcine oocytes after ICSI, and that the effectiveness of the WOW system is dependent on the size (diameter) of the WOW.

  7. Formation of nucleoli in interspecies nuclear transfer embryos derived from bovine, porcine, and rabbit oocytes and nuclear donor cells of various species.

    Science.gov (United States)

    Lagutina, Irina; Zakhartchenko, Valeri; Fulka, Helena; Colleoni, Silvia; Wolf, Eckhard; Fulka, Josef; Lazzari, Giovanna; Galli, Cesare

    2011-04-01

    The most successful development of interspecies somatic cell nuclear transfer (iSCNT) embryos has been achieved in closely related species. The analyses of embryonic gene activity in iSCNT embryos of different species combinations have revealed the existence of significant aberrations in expression of housekeeping genes and genes dependent on the major embryonic genome activation (EGA). However, there are many studies with successful blastocyst (BL) development of iSCNT embryos derived from donor cells and oocytes of animal species with distant taxonomical relations (inter-family/inter-class) that should indicate proper EGA at least in terms of RNA polymerase I activation, nucleoli formation, and activation of genes engaged in morula and BL formation. We investigated the ability of bovine, porcine, and rabbit oocytes to activate embryonic nucleoli formation in the nuclei of somatic cells of different mammalian species. In iSCNT embryos, nucleoli precursor bodies originate from the oocyte, while most proteins engaged in the formation of mature nucleoli should be transcribed from genes de novo in the donor nucleus at the time of EGA. Thus, the success of nucleoli formation depends on species compatibility of many components of this complex process. We demonstrate that the time and cell stage of nucleoli formation are under the control of recipient ooplasm. Oocytes of the studied species possess different abilities to support nucleoli formation. Formation of nucleoli, which is a complex but small part of the whole process of EGA, is essential but not absolutely sufficient for the development of iSCNT embryos to the morula and BL stages.

  8. Confinement and clearance of OCT4 in the porcine embryo at stereomicroscopically defined stages around gastrulation

    DEFF Research Database (Denmark)

    Vejlsted, Morten; Offenberg, Hanne Kjær; Thorup, Flemming

    2006-01-01

    was selectively observed in the epiblast. A prominent crescent-shaped thickening at the posterior region of the embryonic disk marked the first polarization within this structure reflecting incipient cell ingression. Following differentiation of the epiblast, clearance of OCT4 from the three germ layers......In the areas of developmental biology and embryonic stem cell research, reliable molecular markers of pluripotency and early lineage commitment are sparse in large animal species. In this study, we present morphological and immunohistochemical findings on the porcine embryo in the period around...... gastrulation, days 8-17 postinsemination, introducing a steromicroscopical staging system in this species. In embryos at the expanding hatched blastocyst stage, OCT4 is confined to the inner cell mass. Following detachment of the hypoblast, and formation of the embryonic disk, this marker of pluripotency...

  9. Piglets produced by transfer of vitrified porcine embryos after stepwise dilution of cryoprotectants.

    Science.gov (United States)

    Kobayashi, S; Takei, M; Kano, M; Tomita, M; Leibo, S P

    1998-02-01

    ; two other recipients failed to litter although one had been pregnant for 65 days. These results demonstrate that porcine embryos can be successfully cryopreserved by rapid cooling in EG-PVP and by careful dilution of the CPA after warming.

  10. Targeted DNA Methylation Analysis by High Throughput Sequencing in Porcine Peri-attachment Embryos

    OpenAIRE

    MORRILL, Benson H.; COX, Lindsay; WARD, Anika; HEYWOOD, Sierra; PRATHER, Randall S.; ISOM, S. Clay

    2013-01-01

    Abstract The purpose of this experiment was to implement and evaluate the effectiveness of a next-generation sequencing-based method for DNA methylation analysis in porcine embryonic samples. Fourteen discrete genomic regions were amplified by PCR using bisulfite-converted genomic DNA derived from day 14 in vivo-derived (IVV) and parthenogenetic (PA) porcine embryos as template DNA. Resulting PCR products were subjected to high-throughput sequencing using the Illumina Genome Analyzer IIx plat...

  11. Influences of somatic donor cell sex on and embryo development following somatic cell nuclear transfer in pigs

    Directory of Open Access Journals (Sweden)

    Jae-Gyu Yoo

    2017-04-01

    Full Text Available Objective The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. Methods Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. Results The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture (143.8±10.5 to 159.2±14.8 was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT groups (31.4±8.3 to 33.4±11.1. After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05 between sexes. Conclusion The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell.

  12. Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Bishop, Jack; Lowe, Xiu; Wyrobek, Andrew J

    2008-10-14

    Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cell embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.

  13. The effect of oxygen tension on porcine embryonic development is dependent on embryo type

    DEFF Research Database (Denmark)

    Booth, Paul; Holm, Peter; Callesen, Henrik

    2005-01-01

    of the embryos prior to culture--a study was performed to examine the effect of O2 tension during culture on three different types of porcine embryos, namely: in vivo flushed embryos, and in vitro matured oocytes either fertilized in vitro or parthenogenetically activated. In vivo embryos (n=208) were flushed...... supplemented with 10% calf serum until day 7. The gas environment for IVM/IVF was 5% CO2 in air, while that for IVC was either 5% CO2 in air or 5% O2, 5% CO2 and 90% N2. Low O2 tension increased both day 7 blastocyst rates (high versus low O2, respectively; 9.3+/-2.9%: 26/280; 23.9+/-4.2%: 71/293; P...

  14. Assessment of porcine-induced pluripotent stem cells by in vivo assays

    DEFF Research Database (Denmark)

    Secher, Jan Ole Bertelsen; Freude, Karla Kristine; Petkov, Stoyan Gueorguiev

    Concerted efforts have been expended in deriving porcine induced pluripotent stem cells (piPSC) which are envisaged to more faithfully mimic human physiology than existing rodent-derived iPSC lines. While initial piPSC lines, first generated in 2009, exhibit the majority of hallmarks displayed by i......, human and murine episomal reprogramming approaches lead to integration of such transgenes. Thirdly, current culturing conditions fail to support the maintenance of either porcine embryonic stem cells (pESC) or piPSC. Lastly, piPSC are unable to reproducibly contribute to chimeric embryos as demonstrated......PSCs derived from other mammalian species, this is not without some caveats. Firstly, all existing piPSC-like cells are afflicted by insufficient activation of endogenous pluripotency genes. Secondly and associated with this, lack of silencing of exogenous pluripotency genes is a general drawback: in contrast...

  15. Strain preservation of experimental animals: vitrification of two-cell stage embryos for multiple mouse strains.

    Science.gov (United States)

    Eto, Tomoo; Takahashi, Riichi; Kamisako, Tsutomu

    2015-04-01

    Strain preservation of experimental animals is crucial for experimental reproducibility. Maintaining complete animal strains, however, is costly and there is a risk for genetic mutations as well as complete loss due to disasters or illness. Therefore, the development of effective vitrification techniques for cryopreservation of multiple experimental animal strains is important. We examined whether a vitrification method using cryoprotectant solutions, P10 and PEPeS, is suitable for preservation of multiple inbred and outbred mouse strains. First, we investigated whether our vitrification method using cryoprotectant solutions was suitable for two-cell stage mouse embryos. In vitro development of embryos exposed to the cryoprotectant solutions was similar to that of fresh controls. Further, the survival rate of the vitrified embryos was extremely high (98.1%). Next, we collected and vitrified two-cell stage embryos of 14 mouse strains. The average number of embryos obtained from one female was 7.3-33.3. The survival rate of vitrified embryos ranged from 92.8% to 99.1%, with no significant differences among mouse strains. In vivo development did not differ significantly between fresh controls and vitrified embryos of each strain. For strain preservation using cryopreserved embryos, two offspring for inbred lines and one offspring for outbred lines must be produced from two-cell stage embryos collected from one female. The expected number of surviving fetuses obtained from embryos collected from one female of either the inbred or outbred strains ranged from 2.9 to 19.5. The findings of the present study indicated that this vitrification method is suitable for strain preservation of multiple mouse strains. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. In vitro development of canine somatic cell nuclear transfer embryos in different culture media.

    Science.gov (United States)

    Kim, Dong-Hoon; No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.

  17. Function of donor cell centrosome in intraspecies and interspecies nuclear transfer embryos

    International Nuclear Information System (INIS)

    Zhong Zhisheng; Zhang Gang; Meng Xiaoqian; Zhang Yanling; Chen Dayuan; Schatten, Heide; Sun Qingyuan

    2005-01-01

    Centrosomes, the main microtubule-organizing centers (MTOCs) in most animal cells, are important for many cellular activities such as assembly of the mitotic spindle, establishment of cell polarity, and cell movement. In nuclear transfer (NT), MTOCs that are located at the poles of the meiotic spindle are removed from the recipient oocyte, while the centrosome of the donor cell is introduced. We used mouse MII oocytes as recipients, mouse fibroblasts, rat fibroblasts, or pig granulosa cells as donor cells to construct intraspecies and interspecies nuclear transfer embryos in order to observe centrosome dynamics and functions. Three antibodies against centrin, γ-tubulin, and NuMA, respectively, were used to stain the centrosome. Centrin was not detected either at the poles of transient spindles or at the poles of first mitotic spindles. γ-tubulin translocated into the two poles of the transient spindles, while no accumulated γ-tubulin aggregates were detected in the area adjacent to the two pseudo-pronuclei. At first mitotic metaphase, γ-tubulin was translocated to the spindle poles. The distribution of γ-tubulin was similar in mouse intraspecies and rat-mouse interspecies embryos. The NuMA antibody that we used can recognize porcine but not murine NuMA protein, so it was used to trace the NuMA protein of donor cell in reconstructed embryos. In the pig-mouse interspecies reconstructed embryos, NuMA concentrated between the disarrayed chromosomes soon after activation and translocated to the transient spindle poles. NuMA then immigrated into pseudo-pronuclei. After pseudo-pronuclear envelope breakdown, NuMA was located between the chromosomes and then translocated to the spindle poles of first mitotic metaphase. γ-tubulin antibody microinjection resulted in spindle disorganization and retardation of the first cell division. NuMA antibody microinjection also resulted in spindle disorganization. Our findings indicate that (1) the donor cell centrosome, defined as

  18. Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells.

    Science.gov (United States)

    Ji, Chun-Miao; Wang, Bin; Zhou, Jiyong; Huang, Yao-Wei

    2018-04-01

    A monkey cell line Vero (ATCC CCL-81) is commonly used for porcine epidemic diarrhea virus (PEDV) propagation in vitro. However, it is still controversial whether the porcine aminopeptidase N (pAPN) counterpart on Vero cells (Vero-APN) confers PEDV entry. We found that endogenous expression of Vero-APN was undetectable in the mRNA and the protein levels in Vero cells. We cloned the partial Vero-APN gene (3340-bp) containing exons 1 to 9 from cellular DNA and subsequently generated two APN-knockout Vero cell lines by CRISPR/Cas9 approach. PEDV infection of two APN-knockout Vero cells had the same efficiency as the Vero cells with or without neuraminidase treatment. A Vero cells stably expressing pAPN did not increase PEDV production. SiRNA-knockdown of pAPN in porcine jejunum epithelial cells had no effects on PEDV infection. The results suggest that there exists an additional cellular receptor on Vero or porcine jejunal cells independent of APN for PEDV entry. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets.

    Science.gov (United States)

    Liu, Ying; Li, Juan; Løvendahl, Peter; Schmidt, Mette; Larsen, Knud; Callesen, Henrik

    2015-03-01

    During the last 17 years, considerable advancements have been achieved in the production of pigs, transgenic and non-transgenic, by methods of somatic cell nuclear transfer, in vitro fertilisation, intracytoplasmic sperm injection, microinjection and sperm-mediated gene transfer by artificial insemination. Therefore, a review of the overall efficiency for the developmental competence of embryos produced by these in vitro methods would be useful in order to obtain a more thorough overview of this growing area with respect to its development and present status. In this review a meta-analysis was used to analyse data collected from all published articles with a focus on zygotes and embryos for transfer, pregnancy, full-term development and piglets born. It was generally concluded that an increasing level of in vitro manipulation of porcine embryos decreased the overall efficiency for production of piglets. The techniques of nuclear transfer have been developed markedly through the increasing number of studies performed, and the results have become more stable. Prolonged in vitro culture period did not lead to any negative effect on nuclear transfer embryos after their transfer and it resulted in a similar or even higher litter size. More complete information is needed in future scientific articles about these in vitro manipulation techniques to establish a more solid basis for the evaluation of their status and to reveal and further investigate any eventual problems.

  20. Lipid Supplement in the Cultural Condition Facilitates the Porcine iPSC Derivation through cAMP/PKA/CREB Signal Pathway

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Large numbers of lipids exist in the porcine oocytes and early embryos and have the positive effects on their development, suggesting that the lipids may play an important role in pluripotency establishment and maintenance in pigs. However, the effects of lipids and their metabolites, such as fatty acids on reprogramming and the pluripotency gene expression of porcine-induced pluripotent stem cells (iPSCs, are unclear. Here, we generated the porcine iPSCs that resemble the mouse embryonic stem cells (ESCs under lipid and fatty-acid-enriched cultural conditions (supplement of AlbuMAX. These porcine iPSCs show positive for the ESCs pluripotency markers and have the differentiation abilities to all three germ layers, and importantly, have the capability of aggregation into the inner cell mass (ICM of porcine blastocysts. We further confirmed that lipid and fatty acid enriched condition can promote the cell proliferation and improve reprogramming efficiency by elevating cAMP levels. Interestingly, this lipids supplement promotes mesenchymal–epithelial transition (MET through the cAMP/PKA/CREB signal pathway and upregulates the E-cadherin expression during porcine somatic cell reprogramming. The lipids supplement also makes a contribution to lipid droplets accumulation in the porcine iPSCs that resemble porcine preimplantation embryos. These findings may facilitate understanding of the lipid metabolism in porcine iPSCs and lay the foundation of bona fide porcine embryonic stem cell derivation.

  1. No-Disjunction and loss of anafasica Hamster-human hybrid embryos of two cells

    International Nuclear Information System (INIS)

    Ponsa, I.; Tusell, L.; Alvarez, R.; Genesca, A.; Miro, R.; Egozcue, J.

    1998-01-01

    To investigate the possible effect anafasica the ionizing radiations in masculine germinal cells a new test it has been developed combining two techniques, the fecundation interspecific gives ovocitos hamster without area pellucid with human sperms and the fluorescent in situ hybridization in cells in interface using probes gives DNA specific centrometricas. Analyzing the segregation gives the chromosomes marked in the embryos two cells, you can detect the reciprocal products easily an anomalous segregation. Give this way the recount the fluorescent signs in the nuclei siblings and in the micronucleus it provides an esteem the due aneuploidy to errors meiotic or premiotic, with this way the resulting aneuploidy the errors in the first division mitotic the embryos, as much no-disjunction as lost anafasica

  2. Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos

    Directory of Open Access Journals (Sweden)

    Svetlana Gavrilov

    2011-01-01

    Full Text Available We report the derivation and characterization of two new human embryonic stem cells (hESC lines (CU1 and CU2 from embryos with an irreversible loss of integrated organismic function. In addition, we analyzed retrospective data of morphological progression from embryonic day (ED 5 to ED6 for 2480 embryos not suitable for clinical use to assess grading criteria indicative of loss of viability on ED5. Our analysis indicated that a large proportion of in vitro fertilization (IVF embryos not suitable for clinical use could be used for hESC derivation. Based on these combined findings, we propose that criteria commonly used in IVF clinics to determine optimal embryos for uterine transfer can be employed to predict the potential for hESC derivation from poor quality embryos without the destruction of vital human embryos.

  3. Porcine induced pluripotent stem cells produce chimeric offspring.

    Science.gov (United States)

    West, Franklin D; Terlouw, Steve L; Kwon, Dae Jin; Mumaw, Jennifer L; Dhara, Sujoy K; Hasneen, Kowser; Dobrinsky, John R; Stice, Steven L

    2010-08-01

    Ethical and moral issues rule out the use of human induced pluripotent stem cells (iPSCs) in chimera studies that would determine the full extent of their reprogrammed state, instead relying on less rigorous assays such as teratoma formation and differentiated cell types. To date, only mouse iPSC lines are known to be truly pluripotent. However, initial mouse iPSC lines failed to form chimeric offspring, but did generate teratomas and differentiated embryoid bodies, and thus these specific iPSC lines were not completely reprogrammed or truly pluripotent. Therefore, there is a need to address whether the reprogramming factors and process used eventually to generate chimeric mice are universal and sufficient to generate reprogrammed iPSC that contribute to chimeric offspring in additional species. Here we show that porcine mesenchymal stem cells transduced with 6 human reprogramming factors (POU5F1, SOX2, NANOG, KLF4, LIN28, and C-MYC) injected into preimplantation-stage embryos contributed to multiple tissue types spanning all 3 germ layers in 8 of 10 fetuses. The chimerism rate was high, 85.3% or 29 of 34 live offspring were chimeras based on skin and tail biopsies harvested from 2- to 5-day-old pigs. The creation of pluripotent porcine iPSCs capable of generating chimeric offspring introduces numerous opportunities to study the facets significantly affecting cell therapies, genetic engineering, and other aspects of stem cell and developmental biology.

  4. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

    DEFF Research Database (Denmark)

    Morovic, Martin; Murin, Matej; Strejcek, Frantisek

    2016-01-01

    in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a) genes in early......One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription....... In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly...

  5. Influence of embryo handling and transfer method on pig cloning efficiency.

    Science.gov (United States)

    Shi, Junsong; Zhou, Rong; Luo, Lvhua; Mai, Ranbiao; Zeng, Haiyu; He, Xiaoyan; Liu, Dewu; Zeng, Fang; Cai, Gengyuan; Ji, Hongmei; Tang, Fei; Wang, Qinglai; Wu, Zhenfang; Li, Zicong

    2015-03-01

    The somatic cell nuclear transfer (SCNT) technique could be used to produce genetically superior or genetically engineered cloned pigs that have wide application in agriculture and bioscience research. However, the efficiency of porcine SCNT currently is very low. Embryo transfer (ET) is a key step for the success of SCNT. In this study, the effects of several ET-related factors, including cloned embryo culture time, recipient's ovulation status, co-transferred helper embryos and ET position, on the success rate of pig cloning were investigated. The results indicated that transfer of cloned embryos cultured for a longer time (22-24h vs. 4-6h) into pre-ovulatory sows decreased recipient's pregnancy rate and farrowing rate, and use of pre-ovulatory and post-ovulatory sows as recipients for SCNT embryos cultured for 22-24h resulted in a similar porcine SCNT efficiency. Use of insemination-produced in vivo fertilized, parthenogenetically activated and in vitro fertilized embryos as helper embryos to establish and/or maintain pregnancy of SCNT embryos recipients could not improve the success rate of porcine SCNT. Transfer of cloned embryos into double oviducts of surrogates significantly increased pregnancy rate as well as farrowing rate of recipients, and the developmental rate of transferred cloned embryos, as compared to unilateral oviduct transfer. This study provided useful information for optimization of the embryo handling and transfer protocol, which will help to improve the ability to generate cloned pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of sorbitol on porcine oocyte maturation and embryo development in vitro.

    Science.gov (United States)

    Lin, Tao; Zhang, Jin Yu; Diao, Yun Fei; Kang, Jung Won; Jin, Dong-Il

    2015-04-01

    In the present study, a porcine system was supplemented with sorbitol during in vitro maturation (IVM) or in vitro culture (IVC), and the effects of sorbitol on oocyte maturation and embryonic development following parthenogenetic activation were assessed. Porcine immature oocytes were treated with different concentrations of sorbitol during IVM, and the resultant metaphase II stage oocytes were activated and cultured in porcine zygote medium-3 (PZM-3) for 7 days. No significant difference was observed in cumulus expansion and the nuclear maturation between the control and sorbitol-treated groups, with the exception of the 100 mM group, which showed significantly decreased nuclear maturation and cumulus expansion. There was no significant difference in the intracellular reactive oxygen species (ROS) levels between oocytes matured with 10 or 20 mM sorbitol and control groups, but 50 and 100 mM groups had significantly higher ROS levels than other groups. The 20 mM group showed significant increases in intracellular glutathione and subsequent blastocyst formation rates following parthenogenetic activation compared with the other groups. During IVC, supplementation with sorbitol significantly reduced blastocyst formation and increased the apoptotic index compared with the control. The apoptotic index of blastocysts from the sorbitol-treated group for entire culture period was significantly higher than those of the partially sorbitol-exposed groups. Based on these findings, it can be concluded that the addition of a low concentration of sorbitol (20 mM) during IVM of porcine oocytes benefits subsequent blastocyst development and improves embryo quality, whereas sorbitol supplement during IVC has a negative effect on blastocyst formation.

  7. Nucleolar re-activation is delayed in mouse embryos cloned from two different cell lines

    DEFF Research Database (Denmark)

    Svarcova, Olga; Dinnyes, A.; Polgar, Z.

    2009-01-01

    displayed early NPBs transformation. In conclusion, despite normal onset of EGA in cloned embryos, activation of functional nucleoli was one cell cycle delayed in NT embryos. NT-MEF embryos displayed normal targeting but delayed activation of nucleolar proteins. Contrary, in NT-HM1 embryos, both......Aim of this study was to evaluate and compare embryonic genome activation (EGA) in mouse embryos of different origin using nucleolus as a marker. Early and late 2-cell and late 4-cell stage embryos, prepared by in vitro fertilization (IVF), parthenogenetic activation (PG), and nuclear transfer...... ofmouse embryonic fibroblast (MEF) and mouse HM1 emryonic stem cells (HM1), were processed for autoradiography following 3H-uridine incubation (transcriptional activity), transmission electron microscopy (ultrastructure) and immunofluorescence (nucleolar proteins; upstream binding factor, UBF...

  8. A porcine astrocyte/endothelial cell co-culture model of the blood-brain barrier.

    Science.gov (United States)

    Jeliazkova-Mecheva, Valentina V; Bobilya, Dennis J

    2003-10-01

    A method for the isolation of porcine atrocytes as a simple extension of a previously described procedure for isolation of brain capillary endothelial cells from adolescent pigs [Methods Cell Sci. 17 (1995) 2] is described. The obtained astroglial culture purified through two passages and by the method of the selective detachment was validated by a phase contrast microscopy and through an immunofluorescent assay for the glial fibrillary acidic protein (GFAP). Porcine astrocytes were co-cultivated with porcine brain capillary endothelial cells (PBCEC) for the development of an in vitro blood-brain barrier (BBB) model. The model was visualized by an electron microscopy and showed elevated transendothellial electrical resistance and reduced inulin permeability. To our knowledge, this is the first report for the establishment of a porcine astrocyte/endothelial cell co-culture BBB model, which avoids interspecies and age differences between the two cell types, usually encountered in the other reported co-culture BBB models. Considering the availability of the porcine brain tissue and the close physiological and anatomical relation between the human and pig brain, the porcine astrocyte/endothelial cell co-culture system can serve as a reliable and easily reproducible model for different in vitro BBB studies.

  9. Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes.

    Science.gov (United States)

    Morovic, Martin; Strejcek, Frantisek; Nakagawa, Shoma; Deshmukh, Rahul S; Murin, Matej; Benc, Michal; Fulka, Helena; Kyogoku, Hirohisa; Pendovski, Lazo; Fulka, Josef; Laurincik, Jozef

    2017-12-01

    It is well known that nucleoli of fully grown mammalian oocytes are indispensable for embryonic development. Therefore, the embryos originated from previously enucleolated (ENL) oocytes undergo only one or two cleavages and then their development ceases. In our study the interspecies (mouse/pig) nucleolus transferred embryos (NuTE) were produced and their embryonic development was analyzed by autoradiography, transmission electron microscopy (TEM) and immunofluorescence (C23 and upstream binding factor (UBF)). Our results show that the re-injection of isolated oocyte nucleoli, either from the pig (P + P) or mouse (P + M), into previously enucleolated and subsequently matured porcine oocytes rescues their development after parthenogenetic activation and some of these develop up to the blastocyst stage (P + P, 11.8%; P + M, 13.5%). In nucleolus re-injected 8-cell and blastocyst stage embryos the number of nucleoli labeled with C23 in P + P and P + M groups was lower than in control (non-manipulated) group. UBF was localized in small foci within the nucleoli of blastocysts in control and P + P embryos, however, in P + M embryos the labeling was evenly distributed in the nucleoplasm. The TEM and autoradiographic evaluations showed the formation of functional nucleoli and de novo rRNA synthesis at the 8-cell stage in both, control and P + P group. In the P + M group the formation of comparable nucleoli was delayed. In conclusion, our results indicate that the mouse nucleolus can rescue embryonic development of enucleolated porcine oocytes, but the localization of selected nucleolar proteins, the timing of transcription activation and the formation of the functional nucleoli in NuTE compared with control group show evident aberrations.

  10. Quality of porcine blastocysts produced in vitro in the presence of absence of GH

    NARCIS (Netherlands)

    Kidson, A.; Rubio-Pomar, F.J.; Knegsel, van A.; Tol, van H.T.A.; Hazeleger, W.; Ducro-Steverink, D.W.B.; Colenbrander, B.; Dieleman, S.J.; Bevers, M.M.

    2004-01-01

    GH receptor (GHR) mRNA is expressed in bovine in vitro produced embryos up to the blastocyst stage and GH improves the quality of bovine embryos by increasing blastocyst cell numbers and reducing the incidence of apoptosis as evaluated by DNA strand-break labelling. Porcine in vitro produced

  11. Vitamin C supplementation enhances compact morulae formation but reduces the hatching blastocyst rate of bovine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Li, Qian; Wang, Yong-Sheng; Wang, Li-Jun; Zhang, Hui; Li, Rui-Zhe; Cui, Chen-Chen; Li, Wen-Zhe; Zhang, Yong; Jin, Ya-Ping

    2014-08-01

    Vitamin C, an antioxidant that reduces reactive oxygen species (ROS) in cells, is capable of significantly improving the developmental competence of porcine and mouse somatic cell nuclear transfer (SCNT) embryos, both in vitro and in vivo. In the present study, the effects of vitamin C on the developmental competence of bovine SCNT embryos were investigated. The results indicated that vitamin C (40 μg/mL) positively affected the scavenging of intracellular ROS, cleavage rate at 24 h (76.67 vs. 68.26%, pvitamin C supplementation did not significantly affect the blastocyst formation rate and proportion of inner cell mass over total cells per blastocyst on day 7. Moreover, vitamin C supplementation obviously impaired the total cell numbers per blastocyst (97.20 ± 11.35 vs. 88.57 ± 10.43, pVitamin C supplementation preferentially improved the viability of bovine SCNT embryos prior to the blastocyst stage, but did not enhance the formation and quality of blastocysts in vitro. In conclusion, the effect of vitamin C on the development of bovine SCNT embryos is complex, and vitamin C is not a suitable antioxidant chemical for the in vitro culture of bovine SCNT embryos.

  12. Molecular characterization and analysis of the porcine NURR1 gene

    Directory of Open Access Journals (Sweden)

    Knud Larsen

    2016-12-01

    Here we report the isolation and characterization of porcine NURR1 cDNA. The NURR1 cDNA was RT-PCR cloned using NURR1-specific oligonucleotide primers derived from in silico sequences. The porcine NURR1 cDNA encodes a polypeptide of 598 amino acids, displaying a very high similarity with bovine, human and mouse (99% NURR1 protein. Expression analysis revealed a differential NURR1 mRNA expression in various organs and tissues. NURR1 transcripts could be detected as early as at 60 days of embryo development in different brain tissues. A significant increase in NURR1 transcript in the cerebellum and a decrease in NURR1 transcript in the basal ganglia was observed during embryo development. The porcine NURR1 gene was mapped to chromosome 15. Two missense mutations were found in exon 3, the first coding exon of NURR1. Methylation analysis of the porcine NURR1 gene body revealed a high methylation degree in brain tissue, whereas methylation of the promoter was very low. A decrease in DNA methylation in a discrete region of the NURR1 promoter was observed in pig frontal cortex during pig embryo development. This observation correlated with an increase in NURR1 transcripts. Therefore, methylation might be a determinant of NURR1 expression at certain time points in embryo development.

  13. Efficiency of porcine somatic cell nuclear transfer – a retrospective study of factors related to embryo recipient and embryos transferred

    Directory of Open Access Journals (Sweden)

    Yongye Huang

    2013-10-01

    The successful generation of pigs via somatic cell nuclear transfer depends on reducing risk factors in several aspects. To provide an overview of some influencing factors related to embryo transfer, the follow-up data related to cloned pig production collected in our laboratory was examined. (i Spring showed a higher full-term pregnancy rate compared with winter (33.6% vs 18.6%, P = 0.006. Furthermore, a regression equation can be drawn between full-term pregnancy numbers and pregnancy numbers in different months (y = 0.692x−3.326. (ii There were no significant differences detected in the number of transferred embryos between surrogate sows exhibiting full-term development compared to those that did not. (iii Non-ovulating surrogate sows presented a higher percentage of full-term pregnancies compared with ovulating sows (32.0% vs 17.5%, P = 0.004; respectively. (iv Abortion was most likely to take place between Day 27 to Day 34. (v Based on Life Table Survival Analysis, delivery in normally fertilized and surrogate sows is expected to be completed before Day 117 or Day 125, respectively. Additionally, the length of pregnancy in surrogate sows was negatively correlated with the average litter size, which was not found for normally fertilized sows. In conclusion, performing embryo transfer in appropriate seasons, improving the quality of embryos transferred, optimizing the timing of embryo transfer, limiting the occurrence of abortion, combined with ameliorating the management of delivery, is expected to result in the harvest of a great number of surviving cloned piglets.

  14. Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion

    International Nuclear Information System (INIS)

    Pirro, Valentina; Oliveri, Paolo; Ferreira, Christina Ramires; González-Serrano, Andrés Felipe; Machaty, Zoltan; Cooks, Robert Graham

    2014-01-01

    Highlights: • Repeated analysis by DESI(±)-MS of intact single oocytes for lipid characterization. • Deployment of a data fusion strategy to merge positive and negative ion mode data. • Enhanced interpretation of metabolic changes by more efficient analysis of spectral data. • Discovery of increased fatty acid metabolism and membrane complexity during maturation. • Assistance in the improvement of in vitro embryo production for porcine species. - Abstract: The development of sensitive measurements to analyze individual cells is of relevance to elucidate specialized roles or metabolic functions of each cell under physiological and pathological conditions. Lipids play multiple and critical roles in cellular functions and the application of analytical methods in the lipidomics area is of increasing interest. In this work, in vitro maturation of porcine oocytes was studied. Two independent sources of chemical information (represented by mass spectra in the positive and negative ion modes) from single oocytes (immature oocytes, 24-h and 44-h in vitro matured oocytes) were acquired by using desorption electrospray ionization-mass spectrometry (DESI-MS). Low and mid-level data fusion strategies are presented with the aim of better exploring the large amount of chemical information contained in the two mass spectrometric lipid profiles. Data were explored by principal component analysis (PCA) within the two multi-block approaches to include information on free fatty acids, phospholipids, cholesterol-related molecules, di- and triacylglycerols. After data fusion, clearer differences among immature and in vitro matured porcine oocytes were observed, which provide novel information regarding lipid metabolism throughout oocyte maturation. In particular, changes in TAG composition, as well as increase in fatty acid metabolism and membrane complexity were evidenced during the in vitro maturation process. This information can assist the improvement of in vitro embryo

  15. Nucleoli from two-cell embryos support the development of enucleolated germinal vesicle oocytes in the pig.

    Science.gov (United States)

    Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi

    2012-11-01

    Recent research has shown that nucleoli of oocytes at the germinal vesicle (GV) stage (GV nucleoli) are not necessary for oocyte maturation but are essential for early embryonic development. Nucleoli of 2-cell embryos (2-cell nucleoli) have morphology similar to that of nucleoli in oocytes at the GV stage. In this study, we examined the ability of 2-cell nucleoli to substitute for GV nucleoli in terms of supporting early embryonic development by nucleolus aspiration (enucleolation) and transfer into metaphase II (MII) oocytes or 2-cell embryos that were derived from enucleolated oocytes at the GV stage in the pig. When 2-cell embryos were centrifuged to move the lipid droplets to one side of the blastomere, multiple nucleoli in the nucleus fused into a single nucleolus. The nucleoli were then aspirated from the 2-cell embryos by micromanipulation. The injection of 2-cell nucleoli to GV enucleolated oocytes at the MII stage rescued the embryos from the early embryonic arrest, and the resulting oocytes developed to blastocysts. However, the injection of 2-cell and GV nucleoli to 2-cell embryos derived from GV enucleolated oocytes rarely restored the development to blastocysts. These results indicate that 2-cell nucleoli support early embryonic development as GV nucleoli and that the presence of nucleoli is essential for pig embryos before the 2-cell stage.

  16. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection system.

    Science.gov (United States)

    Nakayama, Asuka; Sato, Masahiro; Shinohara, Mariko; Matsubara, Shyuichiro; Yokomine, Takaaki; Akasaka, Eri; Yoshida, Mitsutoshi; Takao, Sonshin

    2007-01-01

    Porcine embryonic fibroblasts (PEF) are important as donor cells for nuclear transfer for generation of genetically modified pigs. In this study, we determined an optimal protocol for transfection of PEF with the Amaxa Nucleofection system, which directly transfers DNA into the nucleus of cells, and compared its efficiency with conventional lipofection and electroporation. Cell survival and transfection efficiency were assessed using dye-exclusion assay and a green fluorescent protein (GFP) reporter construct, respectively. Our optimized nucleofection parameters yielded survival rates above 60%. Under these conditions, FACS analysis demonstrated that 79% of surviving cells exhibited transgene expression 48 h after nucleofection when program U23 was used. This efficiency was higher than that of transfection of PEFs with electroporation (ca. 3-53%) or lipofection (ca. 3-8%). Transfected cells could be expanded as stably transgene-expressing clones over a month. When porcine nuclear transfer (NT) was performed using stable transformant expressing GFP as a donor cell, 5-6% of reconstituted embryos developed to blastocysts, from which 30-50% of embryos exhibited NT-embryo-derived green fluorescence. Under the conditions evaluated, nucleofection exhibited higher efficiency than conventional electroporation and lipofection, and may be a useful alternative for generation of genetically engineered pigs through nuclear transfer.

  17. Effects of sphingosine-1-phosphate on gene expression of two cell mouse embryos induced by C2-Ceramide

    Directory of Open Access Journals (Sweden)

    Xujing Geng

    2014-06-01

    Conclusions: This study provides a map of genes in the pre-implantation two cell mouse embryo. Further investigation based on these data will provide a better understanding of the effects of S1P on the pre-implantation embryos in other mammalian species, especially human.

  18. Derivation of porcine pluripotent stem cells for biomedical research.

    Science.gov (United States)

    Shiue, Yow-Ling; Yang, Jenn-Rong; Liao, Yu-Jing; Kuo, Ting-Yung; Liao, Chia-Hsin; Kang, Ching-Hsun; Tai, Chein; Anderson, Gary B; Chen, Lih-Ren

    2016-07-01

    Pluripotent stem cells including embryonic stem cells (ESCs), embryonic germ cells (EGCs), and induced pluripotent stem cells (iPSCs) are capable of self-renew and limitlessly proliferating in vitro with undifferentiated characteristics. They are able to differentiate in vitro, spontaneously or responding to suitable signals, into cells of all three primary germ layers. Consequently, these pluripotent stem cells will be valuable sources for cell replacement therapy in numerous disorders. However, the promise of human ESCs and EGCs is cramped by the ethical argument about destroying embryos and fetuses for cell line creation. Moreover, there are still carcinogenic risks existing toward the goal of clinical application for human ESCs, EGCs, and iPSCs. Therefore, a suitable animal model for stem cell research will benefit the further development of human stem cell technology. The pigs, on the basis of their similarity in anatomy, immunology, physiology, and biochemical properties, have been wide used as model animals in the study of various human diseases. The development of porcine pluripotent stem cell lines will hold the opportunity to provide an excellent material for human counterpart to the transplantation in biomedical research and further development of cell-based therapeutic strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo.

    Science.gov (United States)

    Tassan, Jean-Pierre; Wühr, Martin; Hatte, Guillaume; Kubiak, Jacek

    2017-01-01

    Asymmetric cell divisions produce two daughter cells with distinct fate. During embryogenesis, this mechanism is fundamental to build tissues and organs because it generates cell diversity. In adults, it remains crucial to maintain stem cells. The enthusiasm for asymmetric cell division is not only motivated by the beauty of the mechanism and the fundamental questions it raises, but has also very pragmatic reasons. Indeed, misregulation of asymmetric cell divisions is believed to have dramatic consequences potentially leading to pathogenesis such as cancers. In diverse model organisms, asymmetric cell divisions result in two daughter cells, which differ not only by their fate but also in size. This is the case for the early Xenopus laevis embryo, in which the two first embryonic divisions are perpendicular to each other and generate two pairs of blastomeres, which usually differ in size: one pair of blastomeres is smaller than the other. Small blastomeres will produce embryonic dorsal structures, whereas the larger pair will evolve into ventral structures. Here, we present a speculative model on the origin of the asymmetry of this cell division in the Xenopus embryo. We also discuss the apparently coincident asymmetric distribution of cell fate determinants and cell-size asymmetry of the 4-cell stage embryo. Finally, we discuss the asymmetric furrowing during epithelial cell cytokinesis occurring later during Xenopus laevis embryo development.

  20. Activation of the ribosomal RNA genes late in the third cell cycle of porcine embryos

    DEFF Research Database (Denmark)

    Viuff, Dorthe; Greve, Torben; Holm, Peter

    2002-01-01

    ; there was no silver staining at the sites of the rRNA genes and nucleolus precursor bodies. From 30 hpc onwards, most 4-cell embryos had medium size to large clusters of FITC-labeled areas colocalized with silver staining of rRNA gene clusters and fibrillogranular nucleoli. These observations indicate that r...

  1. Two-photon-based photoactivation in live zebrafish embryos.

    Science.gov (United States)

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-12-24

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a perfect model organism for controlling the activity of a variety of chemical agents and proteins by focused light. Here we describe the use of two-photon microscopy to induce the activation of chemically caged fluorescein, which in turn allows us to follow cell's destiny in live zebrafish embryos. We use embryos expressing a live genetic landmark (GFP) to locate and precisely target any cells of interest. This procedure can be similarly used for precise light induced activation of proteins, hormones, small molecules and other caged compounds.

  2. Two-cell embryos are more sensitive than blastocysts to AMPK-dependent suppression of anabolism and stemness by commonly used fertility drugs, a diet supplement, and stress.

    Science.gov (United States)

    Bolnick, Alan; Abdulhasan, Mohammed; Kilburn, Brian; Xie, Yufen; Howard, Mindie; Andresen, Paul; Shamir, Alexandra M; Dai, Jing; Puscheck, Elizabeth E; Secor, Eric; Rappolee, Daniel A

    2017-12-01

    This study tests whether metformin or diet supplement BR-DIM-induced AMP-activated protein kinase (AMPK) mediated effects on development are more pronounced in blastocysts or 2-cell mouse embryos. Culture mouse zygotes to two-cell embryos and test effects after 0.5-1 h AMPK agonists' (e.g., Met, BR-DIM) exposure on AMPK-dependent ACCser79P phosphorylation and/or Oct4 by immunofluorescence. Culture morulae to blastocysts and test for increased ACCser79P, decreased Oct4 and for AMPK dependence by coculture with AMPK inhibitor compound C (CC). Test whether Met or BR-DIM decrease growth rates of morulae cultured to blastocyst by counting cells. Aspirin, metformin, and hyperosmotic sorbitol increased pACC ser79P ~ 20-fold, and BR-DIM caused a ~ 30-fold increase over two-cell embryos cultured for 1 h in KSOMaa but only 3- to 6-fold increase in blastocysts. We previously showed that these stimuli decreased Oct4 40-85% in two-cell embryos that was ~ 60-90% reversible by coculture with AMPK inhibitor CC. However, Oct4 decreased only 30-50% in blastocysts, although reversibility of loss by CC was similar at both embryo stages. Met and BR-DIM previously caused a near-complete cell proliferation arrest in two-cell embryos and here Met caused lower CC-reversible growth decrease and AMPK-independent BR-DIM-induced blastocyst growth decrease. Inducing drug or diet supplements decreased anabolism, growth, and stemness have a greater impact on AMPK-dependent processes in two-cell embryos compared to blastocysts.

  3. Progress, problems and prospects of porcine pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hanning WANG,Yangli PEI,Ning LI,Jianyong HAN

    2014-02-01

    Full Text Available Pluripotent stem cells (PSCs, including embryonic stem cells (ESCs and induced PSCs (iPSCs, can differentiate into cells of the three germ layers, suggesting that PSCs have great potential for basic developmental biology research and wide applications for clinical medicine. Genuine ESCs and iPSCs have been derived from mice and rats, but not from livestock such as the pig─an ideal animal model for studying human disease and regenerative medicine due to similarities with human physiologic processes. Efforts to derive porcine ESCs and iPSCs have not yielded high-quality PSCs that can produce chimeras with germline transmission. Thus, exploration of the unique porcine gene regulation network of preimplantation embryonic development may permit optimization of in vitro culture systems for raising porcine PSCs. Here we summarize the recent progress in porcine PSC generation as well as the problems encountered during this progress and we depict prospects for generating porcine naive PSCs.

  4. Analysis of trace elements in chicken embryo cells

    International Nuclear Information System (INIS)

    Qiu Zhijun; Wang Jiqing; Guo Panlin; Li Xiaolin; Zhu Jieqing; Lu Rongrong

    2002-01-01

    A scanning proton microprobe (SPM) with high resolution and high sensitivity was applied to analyze trace elements in chicken embryo forebrain neutron cell and skeletal muscle myotube cell. The absorption of the two different cells to zinc ions, correlation of elements and trace elemental distributions in the cells were studied. The results indicate that the absorptive capacity of the chicken embryo forebrain neuron cell to zinc ions is larger than that of the chicken embryo skeletal muscle myotube cell, and the concentrations of intracellular trace elements such as Cr, Fe, Ni are explicitly higher. The correlations of elements such as S and Zn or Fe and Zn are positive, but the correlations of P and Ni or Cr and Fe are negative. From the maps of cellular elemental distribution the contents of the different elements are different in the intracellular parts, for example, the contents of the elements phosphorus, sulfur, potassium in the cell membranes are higher than that in the cells

  5. Analysis of structural and numerical chromosomal aberrations at the first and second mitosis after X irradiation of two-cell mouse embryos

    International Nuclear Information System (INIS)

    Weissenborn, U.; Streffer, C.

    1989-01-01

    Two-cell mouse embryos were X-irradiated in the late G2 phase in vivo. The first and second postradiation mitoses were analyzed for chromosomal anomalies. The majority of structural aberrations visible at the first mitosis after irradiation were chromatid breaks and chromatid gaps; only a few interchanges and dicentrics were observed. The aberration frequency resulted in a dose-effect relationship which was well described by a linear model. At the second mitosis 29% of the structural aberrations of the first mitosis were counted; the aberration quality changed only slightly. It is discussed whether these aberrations are to be considered new, derived, or unchanged transmitted aberrations. Contrary to the results obtained after irradiation of one-cell embryos, little chromosome loss was induced by radiation in two-cell embryos

  6. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  7. Corneal epithelial cell viability of an ex vivo porcine eye model.

    Science.gov (United States)

    Chan, Ka Yin; Cho, Pauline; Boost, Maureen

    2014-07-01

    The aim was to assess the consistency of corneal epithelial cell viability of an ex vivo porcine eye model. Six porcine eye models (four test and two control) were prepared for each experiment. The model has a computer-controlled mechanical arm, which could move the eyelid of the porcine eye and apply phosphate buffered saline to simulate blinking and lacrimation. The four test eyes were set up to simulate evaporative dry eyes with simulated lacrimation and blinking (one blink and one drop of buffered saline per minute) over three hours. Control A models were set up to collect pre-experimental baseline data, while those of control B were the same as the test eyes but without lacrimation and blinking simulation. All porcine eyes were kept in a closed chamber with temperature and humidity well controlled. After three hours, the cells of all eyes (except control A, which were assessed immediately before commencement of the experiment) were assessed. The eyes were first dipped into 0.4 per cent trypan blue solution. Following the dissection and separation of the cells, the number of dead cells were then counted under the microscope with a field size of 0.25 mm(2). The experiment was repeated 11 times. No significant differences were found in the number of dead cells among the four test eyes in both the central and peripheral cornea. There were significantly more dead cells in the test eyes compared to control A but significantly less when compared to control B. More dead cells were found in the central cornea than the peripheral cornea in the test eyes but the difference was not observed in controls A and B. Epithelial cell viabilities among the four porcine eye models with simulated lacrimation and blinking were consistent. The majority of cells were viable before the experiment and simulated lacrimation and blinking maintained more viable cells over time. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  8. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  9. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    International Nuclear Information System (INIS)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun; Lv, Xiaonan; Herrler, Georg; Enjuanes, Luis; Zhou, Xingdong; Qu, Bo; Meng, Fandan; Cong, Chengcheng; Ren, Xiaofeng; Li, Guangxing

    2015-01-01

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs

  10. Buffalo (Bubalus bubalis in vitro embryo production in two different defined culture media

    Directory of Open Access Journals (Sweden)

    B. Gasparrini

    2011-03-01

    Full Text Available In vitro embryo production (IVEP is largely applied world wide to animal breeding. One of the principal steps of the IVEP is represented by embryo culture (Khurana and Niemann., 2000. In the past, embryos were grown in co-culture systems with other cells such as oviductal epithelial cells, cumulus cells, Buffalo rat liver (BRL and VERO cells (Duszewska et al., 2000. These cells are able to supply the nutrients for embryo development by their replication and metabolism. Nevertheless, the metabolic activity of these cells is also responsible of an early lowering of pH in the culture medium: that needs to be changed every two days. Furthermore, with this culture system it is impossible to standardize all the procedure: in fact the result is dependent from several variables, as the quality of the cells and their concentration in co-culture. The use of defined culture media is necessary to acquire a better comprehension of metabolism and biochemical requirements for IVEP........

  11. Stimulatory Effects of Melatonin on Porcine In Vitro Maturation Are Mediated by MT2 Receptor

    Directory of Open Access Journals (Sweden)

    Sanghoon Lee

    2018-05-01

    Full Text Available Melatonin is a multifunctional molecule with numerous biological activities. The fact that melatonin modulates the functions of porcine granulosa cells via the MT2 receptor suggests the possibility of MT2 receptor-mediation for melatonin to promote cumulus expansion of porcine cumulus-oocyte complexes (COCs. Therefore, we investigated the presence of MT2 in porcine COCs, and the effects of melatonin with or without selective MT2 antagonists (luzindole and 4-P-PDOT on this process; COCs underwent in vitro maturation culturing with six different conditions (control, melatonin, luzindole, 4-P-PDOT, melatonin + luzindole or melatonin + 4-P-PDOT. Cumulus expansion, oocyte nuclear maturation, and subsequent embryo development after parthenogenetic activation (PA were evaluated. In experiment 1, MT2 was expressed in both oocytes and cumulus cells. In experiment 2, melatonin significantly increased the proportion of complete cumulus expansion (degree 4, which was inhibited by simultaneous addition of either luzindole or 4-P-PDOT. A similar pattern was observed in the expression of genes related to cumulus expansion, apoptosis, and MT2. In experiment 3, no significant difference was observed in immature, degenerate, and MII oocyte rates among the groups. In experiment 4, melatonin significantly increased blastocyst formation rates and total blastocyst cell numbers after PA, but these effects were abolished when either luzindole or 4-P-PDOT was added concomitantly. In conclusion, our results indicate that the MT2 receptor mediated the stimulatory effects of melatonin on porcine cumulus expansion and subsequent embryo development.

  12. Derivation of Rabbit Embryonic Stem Cells from Vitrified–Thawed Embryos

    Science.gov (United States)

    Chen, Chien-Hong; Li, Yi; Hu, Yeshu; An, Li-You; Yang, Lan; Zhang, Jifeng; Chen, Y. Eugene

    2015-01-01

    Abstract The rabbit is a useful animal model for regenerative medicine. We previously developed pluripotent rabbit embryonic stem cell (rbESC) lines using fresh embryos. We also successfully cryopreserved rabbit embryos by vitrification. In the present work, we combined these two technologies to derive rbESCs using vitrified–thawed (V/T) embryos. We demonstrate that V/T blastocysts (BLs) can be used to derive pluripotent rbESCs with efficiencies comparable to those using fresh BLs. These ESCs are undistinguishable from the ones derived from fresh embryos. We tested the developmental capacity of rbESCs derived from V/T embryos by BL injection experiments and produced chimeric kits. Our work adds cryopreservation to the toolbox of rabbit stem cell research and applications and will greatly expand the available research materials for regenerative medicine in a clinically relevant animal model. PMID:26579970

  13. In vitro development of cloned bovine embryos produced by handmade cloning using somatic cells from distinct levels of cell culture confluence.

    Science.gov (United States)

    Gerger, R P C; Ribeiro, E S; Forell, F; Bertolini, L R; Rodrigues, J L; Ambrósio, C E; Miglino, M A; Mezzalira, A; Bertolini, M

    2010-02-18

    The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and >95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (>90%) for nuclear transfer significantly improved blastocyst yield after cloning.

  14. Examination of relaxin and its receptors expression in pig gametes and embryos

    Directory of Open Access Journals (Sweden)

    Bathgate Ross A

    2011-01-01

    Full Text Available Abstract Background Relaxin is a small peptide also known as pregnancy hormone in many mammals. It is synthesized by both male and female tissues, and its secretions are found in various body fluids such as plasma serum, ovarian follicular fluid, utero-oviduct secretions, and seminal plasma of many mammals, including pigs. However, the presence and effects of relaxin in porcine gametes and embryos are still not well-known. The purpose of this study was to assess the presence of relaxin and its receptors RXFP1 and RXFP2 in pig gametes and embryos. Methods Immature cumulus-oocyte complexes (COCs were aspirated from sows' ovaries collected at the abattoir. After in vitro-maturation, COCs were in vitro-fertilized and cultured. For studies, immature and mature COCs were separately collected, and oocytes were freed from their surrounding cumulus cells. Denuded oocytes, cumulus cells, mature boar spermatozoa, zygotes, and embryos (cleaved and blastocysts were harvested for temporal and spatial gene expression studies. Sections of ovary, granulosa and neonatal porcine uterine cells were also collected to use as controls. Results Using both semi-quantitative and quantitative PCRs, relaxin transcripts were not detected in all tested samples, while RXFP1 and RXFP2 mRNA were present. Both receptor gene products were found at higher levels in oocytes compared to cumulus cells, irrespective of the maturation time. Cleaved-embryos contained higher levels of RXFP2 mRNA, whereas, blastocysts were characterized by a higher RXFP1 mRNA content. Using western-immunoblotting or in situ immunofluorescence, relaxin and its receptor proteins were detected in all samples. Their fluorescence intensities were consistently more important in mature oocytes than immature ones. The RXFP1 and RXFP2 signal intensities were mostly located in the plasma membrane region, while the relaxin ones appeared homogeneously distributed within the oocytes and embryonic cells. Furthermore

  15. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    Directory of Open Access Journals (Sweden)

    Rajvi H Mehta

    2014-01-01

    Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  16. Development and quality of porcine parthenogenetically activated embryos after removal of zona pellucida

    DEFF Research Database (Denmark)

    Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard

    2013-01-01

    at all developmental stages, but the difference was only significant at the five-cell stage. When compared with development of zona-intact embryos, ZP removal decreased the overall blastocyst percentage (83.9 ± 2.0 vs. 72.5 ± 2.9, respectively) and especially the percentage of good morphology (grades 1......, the developmental percentages, the frequency of apoptosis, and robustness after removal of the ZP by pronase. Three experiments were made between zona-free PA embryos and zona-intact embryos: (1) determination of the timing of developmental stages using time-lapse observations for 6 days; (2) determination...

  17. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus

    International Nuclear Information System (INIS)

    Silva-Campa, Erika; Flores-Mendoza, Lilian; Resendiz, Monica; Pinelli-Saavedra, Araceli; Mata-Haro, Veronica; Mwangi, Waithaka; Hernandez, Jesus

    2009-01-01

    Delayed development of virus-specific immune response has been observed in pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Several studies support the hypothesis that the PRRSV is capable of modulating porcine immune system, but the mechanisms involved are yet to be defined. In this study, we evaluated the induction of T regulatory cells by PRRSV-infected dendritic cells (DCs). Our results showed that PRRSV-infected DCs significantly increased Foxp3 + CD25 + T cells, an effect that was reversible by IFN-α treatment, and this outcome was reproducible using two distinct PRRSV strains. Analysis of the expressed cytokines suggested that the induction of Foxp3 + CD25 + T cells is dependent on TGF-β but not IL-10. In addition, a significant up-regulation of Foxp3 mRNA, but not TBX21 or GATA3, was detected. Importantly, our results showed that the induced Foxp3 + CD25 + T cells were able to suppress the proliferation of PHA-stimulated PBMCs. The T cells induced by the PRRSV-infected DCs fit the Foxp3 + CD25 + T helper 3 (Th3) regulatory cell phenotype described in the literature. The induction of this cell phenotype depended, at least in part, on PRRSV viability because IFN-α treatment or virus inactivation reversed these effects. In conclusion, this data supports the hypothesis that the PRRSV succeeds to establish and replicate in porcine cells early post-infection, in part, by inducing Th3 regulatory cells as a mechanism of modulating the porcine immune system.

  18. High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos

    DEFF Research Database (Denmark)

    Li, J.; Østrup, Olga; Villemoes, Klaus

    2008-01-01

    Abnormal epigenetic modification is supposed to be one of factors accounting for inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone deacetylase, potentially enhancing cloning efficiency. The aim...... transferred to 2 recipients resulting in one pregnancy and birth of one live and five dead piglets. Our data demonstrate that TSA treatment after HMC in pigs may affect reprogramming of the somatic genome resulting in higher in vitro embryo development, and enable full-term in vivo development....

  19. Effect of Different Concentrations of Melatonin on Live Births Resulting from the Transfer of Two-Cell Embryos of NMRI Mice

    Directory of Open Access Journals (Sweden)

    Mahdi Saadati

    2014-12-01

    Full Text Available Background & objectives : Infertility is a global problem affecting millions of men and women in developed and developing countries. In this regard, in-vitro fertilization (IVF plays an important role in improving the quality of life in infertile patients. However, studies have shown that the implantation failure in IVF is the main challenge of this procedure. Melatonin can increase the survival rate of embryos and IVF success rate through eliminating free radicals and removing reactive oxygen species. So, this study is conducted to investigate the effects of different concentrations of melatonin on the rate of newborns of mice following transfer oftwo-cell embryos .   Methods : In this study, female mice with average age of six to eight weeks were superovulated by administering pregnant mares serum gonadotropin (PMSG intraperitoneally (7.5 IU. ip, and followed after 48h by human chorionic gonadotropin (hCG (7.5 IU. ip. Two-cell mouse embryos were obtained from female mice oviduct after 48 h. The embryos transferred bilaterally into pseudopregnant mice of the same strain through surgical procedure and 8-14 embryos were transferred to each tube. The study included 4 treatment groups and one control group (6 mice in each group. The treatment groups were exposed to subcutaneous injection of concentrations of 100 µm , 10 µm , 1 µm and 100 nm of melatonin. After the cesarean on 18th day of pregnancy, the percentage of live births was assessed. The outcomes of the live birth rate were as­sessed using the chi-square test and statistical analyses were carried out using SPSS version 16.0. Percentage of live birth was calculated and compared with the control group.   Results: A total of 701 two-cell mouse embryos were transferred into one control group and four experimental groups. The number and percentage of live births at concentrations of 100 µm and 10 µm of melatonin and the control groups were 21 (15.55%, 13 (9.15% and 9 (6

  20. Xenotransplantation of neonatal porcine liver cells.

    Science.gov (United States)

    Garkavenko, O; Emerich, D F; Muzina, M; Muzina, Z; Vasconcellos, A V; Ferguson, A B; Cooper, I J; Elliott, R B

    2005-01-01

    Xenotransplantation of porcine liver cell types may provide a means of overcoming the shortage of suitable donor tissues to treat hepatic diseases characterized by inherited inborn errors of metabolism or protein production. Here we report the successful isolation, culture, and xenotransplantation of liver cells harvested from 7- to 10-day-old piglets. Liver cells were isolated and cultured immediately after harvesting. Cell viability was excellent (>90%) over the duration of the in vitro studies (3 weeks) and the cultured cells continued to significantly proliferate. These cells also retained their normal secretory and metabolic capabilities as determined by continued release of albumin, factor 8, and indocyanin green (ICG) uptake. After 3 weeks in culture, porcine liver cells were loaded into immunoisolatory macro devices (Theracyte devices) and placed into the intraperitoneal cavity of immunocompetant CD1 mice. Eight weeks later, the devices were retrieved and the cells analyzed for posttransplant determinations of survival and function. Post mortem analysis confirmed that the cell-loaded devices were biocompatible, and were well-tolerated without inducing any notable inflammatory reaction in the tissues immediately surrounding the encapsulated cells. Finally, the encapsulated liver cells remained viable and functional as determined by histologic analyses and ICG uptake/release. The successful harvesting, culturing, and xenotransplantation of functional neonatal pig liver cells support the continued development of this approach for treating a range of currently undertreated or intractable hepatic diseases.

  1. Porcine endogenous retroviral nucleic acid in peripheral tissues is associated with migration of porcine cells post islet transplant.

    Science.gov (United States)

    Binette, Tanya M; Seeberger, Karen L; Lyon, James G; Rajotte, Ray V; Korbutt, Gregory S

    2004-07-01

    Porcine islets represent an alternative source of insulin-producing tissue, however, porcine endogenous retrovirus (PERV) remains a concern. In this study, SCID mice were transplanted with nonencapsulated (non-EC), microencapsulated (EC) or macroencapsulated (in a TheraCyte trade mark device) neonatal porcine islets (NPIs), and peripheral tissues were screened for presence of viral DNA and mRNA. To understand the role of an intact immune system in PERV incidence, mice with established NPI grafts were reconstituted with splenocytes. Peripheral tissues were screened for PERV and porcine DNA using PCR. Tissues with positive DNA were analyzed for PERV mRNA using RT-PCR. No significant difference was observed between non-EC and EC transplants regarding presence of PERV or porcine-specific DNA or mRNA. In reconstituted animals, little PERV or porcine DNA, and no PERV mRNA was detected. No PERV or porcine-specific DNA was observed in animals implanted with a TheraCyte trade mark device. In conclusion, an intact immune system significantly lowered the presence of PERV. Microencapsulation of islets did not alter PERV presence, however, macroencapsulation in the TheraCyte device did. Lower PERV incidence coincided with lower porcine DNA in peripheral tissues, linking the presence of PERV to migration of porcine cells.

  2. Effects of caffeine on protein phosphorylation and cell cycle progression in X-irradiated two-cell mouse embryos

    International Nuclear Information System (INIS)

    Jung, Th.; Streffer, C.

    1992-01-01

    To understand the mechanism of the caffeine-induced uncoupling of mitosis and the cellular reactions to DNA-damaging agents, the authors studied the effects of caffeine treatment on cell cycle progression and protein phosphorylation in two-cell mouse embryos after X-irradiation. Caffeine alone had no effect on timing of and changes in phosphorylation associated with the embryonic cell cycle. In combination with X-rays, caffeine was able to override the radiation induced G 2 block and restored normal timing of these phosphorylation changes after X-irradiation. New additional changes in protein phosphorylation appeared after the combined treatment. Isobutyl-methylxanthine (IBMX), a substance chemically related to caffeine but a more specific inhibitor of the phosphodiesterase that breaks down cyclic AMP, reduced radiation induced G 2 block from 4 to 5 h to about 1 h and restored the cell cycle associated changes in protein phosphorylation. (author)

  3. Effects of caffeine on protein phosphorylation and cell cycle progression in X-irradiated two-cell mouse embryos

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Th. (AFRC Institute of Animal Physiology and Genetics Research, Babraham (United Kingdom)); Streffer, C. (Essen Univ (Germany). Inst. fuer Medizinische Strahlenbiolgie)

    1992-08-01

    To understand the mechanism of the caffeine-induced uncoupling of mitosis and the cellular reactions to DNA-damaging agents, the authors studied the effects of caffeine treatment on cell cycle progression and protein phosphorylation in two-cell mouse embryos after X-irradiation. Caffeine alone had no effect on timing of and changes in phosphorylation associated with the embryonic cell cycle. In combination with X-rays, caffeine was able to override the radiation induced G[sub 2] block and restored normal timing of these phosphorylation changes after X-irradiation. New additional changes in protein phosphorylation appeared after the combined treatment. Isobutyl-methylxanthine (IBMX), a substance chemically related to caffeine but a more specific inhibitor of the phosphodiesterase that breaks down cyclic AMP, reduced radiation induced G[sub 2] block from 4 to 5 h to about 1 h and restored the cell cycle associated changes in protein phosphorylation. (author).

  4. Generation of single-copy transgenic mouse embryos directly from ES cells by tetraploid embryo complementation

    Directory of Open Access Journals (Sweden)

    Zhao Roong

    2001-12-01

    Full Text Available Abstract Background Transgenic mice have been used extensively to analyze gene function. Unfortunately, traditional transgenic procedures have only limited use in analyzing alleles that cause lethality because lines of founder mice cannot be established. This is frustrating given that such alleles often reveal crucial aspects of gene function. For this reason techniques that facilitate the generation of embryos expressing such alleles would be of enormous benefit. Although the transient generation of transgenic embryos has allowed limited analysis of lethal alleles, it is expensive, time consuming and technically challenging. Moreover a fundamental limitation with this approach is that each embryo generated is unique and transgene expression is highly variable due to the integration of different transgene copy numbers at random genomic sites. Results Here we describe an alternative method that allows the generation of clonal mouse embryos harboring a single-copy transgene at a defined genomic location. This was facilitated through the production of Hprt negative embryonic stem cells that allow the derivation of embryos by tetraploid embryo complementation. We show that targeting transgenes to the hprt locus in these ES cells by homologous recombination can be efficiently selected by growth in HAT medium. Moreover, embryos derived solely from targeted ES cells containing a single copy LacZ transgene under the control of the α-myosin heavy chain promoter exhibited the expected cardiac specific expression pattern. Conclusion Our results demonstrate that tetraploid embryo complementation by F3 hprt negative ES cells facilitates the generation of transgenic mouse embryos containing a single copy gene at a defined genomic locus. This approach is simple, extremely efficient and bypasses any requirement to generate chimeric mice. Moreover embryos generated by this procedure are clonal in that they are all derived from a single ES cell lines. This

  5. Laser fusion of mouse embryonic cells and intra-embryonic fusion of blastomeres without affecting the embryo integrity.

    Science.gov (United States)

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.

  6. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  7. Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication.

    Science.gov (United States)

    Simmet, Kilian; Reichenbach, Myriam; Reichenbach, Horst-Dieter; Wolf, Eckhard

    2015-12-01

    Multiplication of bovine embryos by the production of aggregation chimeras is based on the concept that few blastomeres of a donor embryo form the inner cell mass (ICM) and thus the embryo proper, whereas cells of a host embryo preferentially contribute to the trophectoderm (TE), the progenitor cells of the embryonic part of the placenta. We aggregated two fluorescent blastomeres from enhanced green fluorescent protein (eGFP) transgenic Day 5 morulae with two Day 4 embryos that did not complete their first cleavage until 27 hours after IVF and tested the effect of phytohemagglutinin-L (PHA) on chimeric embryo formation. The resulting blastocysts were characterized by differential staining of cell lineages using the TE-specific factor CDX2 and confocal laser scanning microscopy to facilitate the precise localization of eGFP-positive cells. The proportions of blastocyst development of sandwich aggregates with (n = 99) and without PHA (n = 46) were 85.9% and 54.3% (P chimeric blastocysts analyzed by confocal laser scanning microscopy, nine had eGFP-positive cells (three of them in the ICM, three in the TE, and three in both lineages). When integration in the ICM occurred, the number of eGFP-positive cells in this compartment was 8.3 ± 2.3 (mean ± standard error of the mean). We conclude that PHA is advantageous for the formation of aggregation chimeras, but the approach tested in the present study with only two donor blastomeres and two host embryos did not result in multiplication of genetically valuable donor embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evaluation of porcine stem cells competence for somatic cell nuclear transfer and production of cloned animals

    DEFF Research Database (Denmark)

    Secher, Jan; Liu, Ying; Petkov, Stoyan

    2017-01-01

    Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than...... somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem...... cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl...

  9. Porcine UCHL1: genomic organization, chromosome localization and expression analysis

    DEFF Research Database (Denmark)

    Larsen, Knud; Madsen, Lone Bruhn; Bendixen, Christian

    2012-01-01

    to and protection from Parkinson’s disease. Here we report cloning, characterization, expression analysis and mapping of porcine UCHL1. The UCHL1 cDNA was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The porcine cDNA codes...... in developing porcine embryos. UCHL1 transcript was detected as early as 40 days of gestation. A significant decrease in UCHL1 transcript was detected in basal ganglia from day 60 to day 115 of gestation...

  10. Obesity does not aggravate vitrification injury in mouse embryos: a prospective study

    Directory of Open Access Journals (Sweden)

    Ma Wenhong

    2012-08-01

    Full Text Available Abstract Background Obesity is associated with poor reproductive outcomes, but few reports have examined thawed embryo transfer in obese women. Many studies have shown that increased lipid accumulation aggravates vitrification injury in porcine and bovine embryos, but oocytes of these species have high lipid contents (63 ng and 161 ng, respectively. Almost nothing is known about lipids in human oocytes except that these cells are anecdotally known to be relatively lipid poor. In this regard, human oocytes are considered to be similar to those of the mouse, which contain approximately 4 ng total lipids/oocyte. To date, no available data show the impact of obesity on vitrification in mouse embryos. The aim of this study was to establish a murine model of maternal diet-induced obesity and to characterize the effect of obesity on vitrification by investigating the survival rate and embryo developmental competence after thawing. Methods Prospective comparisons were performed between six–eight-cell embryos from obese and normal-weight mice and between fresh and vitrified embryos. Female C57BL/6 mice were fed standard rodent chow (normal-weight group or a high-fat diet (obese group for 6 weeks. The mice were mated, zygotes were collected from oviducts and cultured for 3 days, and six–eight-cell embryos were then selected to assess lipid content in fresh embryos and to evaluate differences in apoptosis, survival, and development rates in response to vitrification. Results In fresh embryos from obese mice, the lipid content (0.044 vs 0.030, Pvs.9.3%, Pvs. 93.1%, P Conclusions This study demonstrated that differences in survival and developmental rates between embryos from obese and normal-weight mice were eliminated after vitrification. Thus, maternal obesity does not aggravate vitrification injury, but obesity alone greatly impairs pre-implantation embryo survival and development.

  11. Comparative Studies of Estrous Synchronization, Ovulation Induction, Luteal Function and Embryo Cryopreservation in Domestic Sheep and Application to Related Nondomestic Ungulate Species

    Science.gov (United States)

    1989-12-20

    swine vesicular disease virus (SVDV, Singh, 1987) from porcine embryos, which also appear permeable to a variety of viruses (porcine parvovirus ...for follicular maturation. In contrast, when MAP pessaries are used, the removal of the sponge results in a more attenuated decline in circulating...porcine parvovirus on development of fertilized pig eggs in vitro. Br. Vet. J. 135: 249-254, 1979. Wright, J.M. Non-surgical embryo transfer in

  12. High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ying Ao

    Full Text Available Hepatocyte transplantation is considered to be a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs provide an unlimited source for the generation of functional hepatocytes. In this study, we generated iPSCs from porcine ear fibroblasts (PEFs by overexpressing Sox2, Klf4, Oct4, and c-Myc (SKOM, and developed a novel strategy for the efficient differentiation of hepatocyte-like cells from porcine iPSCs by following the processes of early liver development. The differentiated cells displayed the phenotypes of hepatocytes, exhibited classic hepatocyte-associated bio-functions, such as LDL uptake, glycogen storage and urea secretion, as well as possessed the metabolic activities of cytochrome P-450 (CYP 3A and 2C. Furthermore, we compared the hepatocyte differentiation efficacy of our protocol with another published method, and the results demonstrated that our differentiation strategy could significantly improve the generation of morphological and functional hepatocyte-like cells from porcine iPSCs. In conclusion, this study establishes an efficient method for in vitro generation of functional hepatocytes from porcine iPSCs, which could represent a promising cell source for preclinical testing of cell-based therapeutics for liver failure and for pharmacological applications.

  13. Microencapsulation of porcine thyroid cell organoids within a polymer microcapsule construct.

    Science.gov (United States)

    Yang, Yipeng; Opara, Emmanuel C; Liu, Yingbin; Atala, Anthony; Zhao, Weixin

    2017-02-01

    Hypothyroidism is a common condition of hormone deficiency, and oral administration of thyroid hormones is currently the only available treatment option. However, there are some disadvantages with this treatment modality including compliance challenges to patients. Therefore, a physiologically based alternative therapy for hypothyroidism with little or no side-effects is needed. In this study, we have developed a method for microencapsulating porcine thyroid cells as a thyroid hormone replacement approach. The hybrid wall of the polymer microcapsules permits thyroid hormone release while preventing immunoglobulin antibodies from entry. This strategy could potentially enable implantation of the microcapsule organoids containing allogeneic or xenogeneic thyroid cells to secret hormones over time without the need for immunosuppression of recipients. Porcine thyroid cells were isolated and encapsulated in alginate-poly-L-ornithine-alginate microcapsules using a microfluidic device. The porcine thyroid cells formed three-dimensional follicular spheres in the microcapsules with decent cell viability and proliferation. Thyroxine release from the encapsulated cells was higher than from unencapsulated cells ( P 28 days). These results suggest that the microencapsulated thyroid cell organoids may have the potential to be used for therapy and/or drug screening.

  14. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    International Nuclear Information System (INIS)

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming

    2016-01-01

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  15. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming, E-mail: zengshenming@gmail.com

    2016-04-22

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  16. Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells.

    Science.gov (United States)

    Yang, Jinjuan; Liu, Hao; Wang, Kunfu; Li, Lu; Yuan, Hongyi; Liu, Xueting; Liu, Yingjie; Guan, Weijun

    2017-12-01

    Skeletal muscle has a huge regenerative potential for postnatal muscle growth and repair, which mainly depends on a kind of muscle progenitor cell population, called satellite cell. Nowadays, the majority of satellite cells were obtained from human, mouse, rat and other animals but rarely from pig. In this article, the porcine skeletal muscle satellite cells were isolated and cultured in vitro. The expression of surface markers of satellite cells was detected by immunofluorescence and RT-PCR assays. The differentiation capacity was assessed by inducing satellite cells into adipocytes, myoblasts and osteoblasts. The results showed that satellite cells isolated from porcine tibialis anterior were subcultured up to 12 passages and were positive for Pax7, Myod, c-Met, desmin, PCNA and NANOG but were negative for Myogenin. Satellite cells were also induced to differentiate into adipocytes, osteoblasts and myoblasts, respectively. These findings indicated that porcine satellite cells possess similar biological characteristics of stem cells, which may provide theoretical basis and experimental evidence for potential therapeutic application in the treatment of dystrophic muscle and other muscle injuries.

  17. Embryo quality predictive models based on cumulus cells gene expression

    Directory of Open Access Journals (Sweden)

    Devjak R

    2016-06-01

    Full Text Available Since the introduction of in vitro fertilization (IVF in clinical practice of infertility treatment, the indicators for high quality embryos were investigated. Cumulus cells (CC have a specific gene expression profile according to the developmental potential of the oocyte they are surrounding, and therefore, specific gene expression could be used as a biomarker. The aim of our study was to combine more than one biomarker to observe improvement in prediction value of embryo development. In this study, 58 CC samples from 17 IVF patients were analyzed. This study was approved by the Republic of Slovenia National Medical Ethics Committee. Gene expression analysis [quantitative real time polymerase chain reaction (qPCR] for five genes, analyzed according to embryo quality level, was performed. Two prediction models were tested for embryo quality prediction: a binary logistic and a decision tree model. As the main outcome, gene expression levels for five genes were taken and the area under the curve (AUC for two prediction models were calculated. Among tested genes, AMHR2 and LIF showed significant expression difference between high quality and low quality embryos. These two genes were used for the construction of two prediction models: the binary logistic model yielded an AUC of 0.72 ± 0.08 and the decision tree model yielded an AUC of 0.73 ± 0.03. Two different prediction models yielded similar predictive power to differentiate high and low quality embryos. In terms of eventual clinical decision making, the decision tree model resulted in easy-to-interpret rules that are highly applicable in clinical practice.

  18. Viability of bovine demi embryo after splitting of fresh and frozen thawed embryo derived from in vitro embryo production

    Directory of Open Access Journals (Sweden)

    M Imron

    2007-06-01

    Full Text Available In vivo embryo production was limited by number of donor, wide variability respond due to superovulation program and also immunoactifity of superovulation hormone (FSH. Splitting technology could be an alternative to increase the number of transferrable embryos into recipien cows. Splitting is done with cutting embryo becoming two equal pieces (called demi embrio base on ICM orientation. The objective of this research was to determine the viability of demi embryo obtained from embryo splitting of fresh and frozen thawed embryo. The results showed that demi embryos which performed blastocoel reexpansion 3 hours after embryo splitting using fresh and frozen thawed embryos were 76.9 and 76.2% respectively. Base on existention of inner cell mass (ICM, the number of demi embryos developed with ICM from fresh and frozen thawed embryos were not significantly different (90.6 and 85.7% respectively. The cell number of demi embryo from fresh embryos splitting was not different compared with those from frozen thawed embryos (36.1 and 35.9 respectively. These finding indicated that embryo splitting can be applied to frozen thawed embryos with certain condition as well as fresh embryos.

  19. Response of maternal immune cells of irradiation of mouse embryos

    International Nuclear Information System (INIS)

    Nicholls, E.M.; Markovic, B.

    1988-01-01

    This work began as an attempt to explain the paradox of pregnancy - the survival and growth of the semi-allogenic embryo in an immunologically hostile environment. In 1982 and 1983 we reported the tracing of quinacrine labelled maternal leukocytes (WBC) in maternal, placental and embryonic mouse tissues by fluorescence microscopy. We found that cells in the placenta phagocytose labelled WBC, so that after 1-2 hours the labelled nuclear DNA is found as brightly fluorescing particles in the cytoplasm of the phagocytes with no evidence of it in the nuclei. Identical cells were observed in slide preparations of embryos which had been carefully separated from their placentas. We also found a small population of intact labelled lymphocytes, clearly maternal in origin, in the embryos. This seems to be another paradox - placental phagocytes are observed to be phagocytosing maternal WBC in the placenta and embryo, but there are also free maternal cells in the placenta and embryo. A theoretical explanation is that maternal lymphocytes alloreactive against the embryo will attempt to react with placental cells and in the process be phagocytosed, while other maternal cells will be able to enter the embryo where they could have a surveillance function, removing dead or mutant embryonic cells. To test this theory a series of experiments were carried out and are reported

  20. Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications.

    Science.gov (United States)

    Kalatova, Beata; Jesenska, Renata; Hlinka, Daniel; Dudas, Marek

    2015-01-01

    Tripolar mitosis is a specific case of cell division driven by typical molecular mechanisms of mitosis, but resulting in three daughter cells instead of the usual count of two. Other variants of multipolar mitosis show even more mitotic poles and are relatively rare. In nature, this phenomenon was frequently observed or suspected in multiple common cancers, infected cells, the placenta, and in early human embryos with impaired pregnancy-yielding potential. Artificial causes include radiation and various toxins. Here we combine several pieces of the most recent evidence for the existence of different types of multipolar mitosis in preimplantation embryos together with a detailed review of the literature. The related molecular and cellular mechanisms are discussed, including the regulation of centriole duplication, mitotic spindle biology, centromere functions, cell cycle checkpoints, mitotic autocorrection mechanisms, and the related complicating factors in healthy and affected cells, including post-mitotic cell-cell fusion often associated with multipolar cell division. Clinical relevance for oncology and embryo selection in assisted reproduction is also briefly discussed in this context. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Alpha-Tocopherol Counteracts the Cytotoxicity Induced by Ochratoxin A in Primary Porcine Fibroblasts

    DEFF Research Database (Denmark)

    Fusi, Elenora; Rebucci, Raffaella; Pecorini, Chiara

    2010-01-01

    The aims of the current study were to determine the half-lethal concentration of ochratoxin A (OTA) as well as the levels of lactate dehydrogenase release and DNA fragmentation induced by OTA in primary porcine fibroblasts, and to examine the role of α-tocopherol in counteracting its toxicity....... Cells showed a dose-, time- and origin-dependent (ear vs. embryo) sensitivity to ochratoxin A. Pre-incubation for 3 h with 1 nM α-tocopherol significantly (P tocopherol...

  2. Effect of punicalagin on proliferation of porcine ovarian granulosa cells in vitro

    Directory of Open Access Journals (Sweden)

    Dagmara Packová

    2016-12-01

    Full Text Available Punicalagin is a major component responsible for pomegranate's (Punica granatum antioxidant properties. Punicalagin is the predominant ellagitannin of Punica granatum and present in two isomeric forms: punicalagin α and β. Punicalagin is metabolised to ellagic acid (antioxidant and microorganisms present in colon can metabolize ellagic acid to urolithins. The aim of in vitro study was to examine the effect of punicalagin on mitochondrial activity and markers of proliferation in porcine ovarian granulosa cells. The cells were cultivated during 24h without (control group and with various doses (0.01, 0.1, 1, 10 and 100 μg*ml-1 of pomegranate compound – punicalagin. MTT assay and immunocytochemistry were used in this study. Stimulatory influence of punicalagin on the mitochondrial activity of ovarian granulosa cells at concentrations 1 μg*ml-1 was found. Punicalagin (at 1 μg*ml-1 had a significant (P < 0.05 impact on the presence of proliferative markers cyclin B1 (increase and PCNA - proliferating cell nuclear antigen (decrease in porcine ovarian granulosa cells. These results suggest dose-dependent effect of punicalagin on cell proliferation. Further verification of possible role of punicalagin in proliferation is therefore needed.

  3. Co-expression network analysis to identify pluripotency biomarkers in bovine and porcine embryos

    DEFF Research Database (Denmark)

    Mazzoni, Gianluca; Freude, Karla Kristine; Hall, Vanessa Jane

    Differentiated somatic cells can be reprogrammed in induced pluripotent stem cells (iPSCs); a cell type with great potentials in regenerative medicine and in vitro disease modeling. In the pig, we have developed iPSCs, but proper culture conditions for maintaining pluripotency over time are still...... lacking. Hence, there is a need for a more fundamental dissection of the pluripotency apparatus in the pig as well as in cattle. The aim of this study is to analyze RNA-seq data to increase the knowledge about biological pathways in porcine and bovine embryonic pluripotent cell populations exploiting...... the mouse data as proof of principle. In particular we studied cell populations from three different stages of pluripotency after fertilization: the inner cell mass, the epithelial epiblast and the gastrulating epiblast. Reads quality was checked with FASTQC, then the reads were pre-processed using Prinseq...

  4. Rayleigh instability of the inverted one-cell amphibian embryo

    International Nuclear Information System (INIS)

    Nouri, Comron; Gordon, Richard; Luppes, Roel; Veldman, Arthur E P; Tuszynski, Jack A

    2008-01-01

    The one-cell amphibian embryo is modeled as a rigid spherical shell containing equal volumes of two immiscible fluids with different densities and viscosities and a surface tension between them. The fluids represent denser yolk in the bottom hemisphere and clearer cytoplasm and the germinal vesicle in the top hemisphere. The unstable equilibrium configuration of the inverted system (the heavier fluid on top) depends on the value of the contact angle. The theoretically calculated normal modes of perturbation and the instability of each mode are in agreement with the results from ComFlo computational fluid dynamic simulations of the same system. The two dominant types of modes of perturbation give rise to axisymmetric and asymmetric sloshing of the cytoplasm of the inverted embryos, respectively. This work quantifies our hypothesis that the axisymmetric mode corresponds to failure of development, and the asymmetric sloshing mode corresponds to development proceeding normally, but with reversed pigmentation, for inverted embryos

  5. A novel porcine cell culture based protocol for the propagation of hepatitis E virus

    Directory of Open Access Journals (Sweden)

    Walter Chingwaru

    2016-08-01

    Full Text Available Objective: To present a comprehensive protocol for the processing of hepatitis E virus (HEV infected samples and propagation of the virus in primary cell cultures. Methods: Hepatitis E was extracted from porcine liver and faecal samples following standard protocols. The virus was then allowed to attach in the presence of trypsin to primary cells that included porcine and bovine intestinal epithelial cells and macrophages over a period of up to 3 h. The virus was propagated by rotational passaging through the cell cultures. Propagation was confirmed by immunoblotting. Results: We developed a comprehensive protocol to propagate HEV in porcine cell model that includes (i rotational culturing of the virus between porcine cell types, (ii pre-incubation of infected cells for 210 min, (iii use of a semi-complete cell culture medium supplemented with trypsin (0.33 µg/mL and (iv the use of simple immunoblot technique to detect the amplified virus based on the open reading frame 2/3. Conclusions: This protocol opens doors towards systematic analysis of the mechanisms that underlie the pathogenesis of HEV in vitro. Using our protocol, one can complete the propagation process within 6 to 9 d.

  6. Detection of programmed cell death in plant embryos.

    Science.gov (United States)

    Filonova, Lada H; Suárez, María F; Bozhkov, Peter V

    2008-01-01

    Programmed cell death (PCD) is an integral part of embryogenesis. In plant embryos, PCD functions during terminal differentiation and elimination of the temporary organ, suspensor, as well as during establishment of provascular system. Embryo abortion is another example of embryonic PCD activated at pathological situations and in polyembryonic seeds. Recent studies identified the sequence of cytological events leading to cellular self-destruction in plant embryos. As in most if not all the developmental cell deaths in plants, embryonic PCD is hallmarked by autophagic degradation of the cytoplasm and nuclear disassembly that includes breakdown of the nuclear envelope and DNA fragmentation. The optimized setup of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) allows the routine in situ analysis of nuclear DNA fragmentation in plant embryos. This chapter provides step-by-step procedure of how to process embryos for TUNEL and how to combine TUNEL with immunolocalization of the protein of interest.

  7. Stem cell research on other worlds, or why embryos do not have a right to life.

    Science.gov (United States)

    Blackford, R

    2006-03-01

    Anxieties about the creation and destruction of human embryos for the purpose of scientific research on embryonic stem cells have given a new urgency to the question of whether embryos have moral rights. This article uses a thought experiment involving two possible worlds, somewhat removed from our own in the space of possibilities, to shed light on whether early embryos have such rights as a right not to be destroyed or discarded (a "right to life"). It is argued that early embryos do not have meaningful interests or any moral rights. Accordingly, claims about the moral rights of embryos do not justify restrictions on stem cell research.

  8. Porcine platelet lysate as a supplement for animal cell culture

    Science.gov (United States)

    Aldén, Anna; Gonzalez, Lorena; Persson, Anna; Christensson, Kerstin; Holmqvist, Olov

    2007-01-01

    A novel supplementation of cell growth media based on a porcine platelet lysate was developed for culture of animal-derived cells. The platelet lysate was produced from porcine blood and contained lysate of platelets and plasma components. It showed satisfactory microbiological integrity and it carried only low amount of endotoxins (platelet lysate supported well proliferation of Vero (African green monkey transformed kidney epithelial cells), Chinese hamster ovary (CHO) and hybridoma cells comparable to fetal bovine serum (FBS). Platelet lysate shows promise as a viable choice over FBS as it can be produced in large quantities, high lot-to-lot consistency and with an attractive price structure. Furthermore it is a strong alternative to FBS for ethical reasons. It is expected that it can be used as a general supplementation for most animal cells for research studies on the proliferation of cells and their expression of products. PMID:19002989

  9. Improved cell line IPEC-J2, characterized as a model for porcine jejunal epithelium.

    Directory of Open Access Journals (Sweden)

    Silke S Zakrzewski

    Full Text Available Cell lines matching the source epithelium are indispensable for investigating porcine intestinal transport and barrier properties on a subcellular or molecular level and furthermore help to reduce animal usage. The porcine jejunal cell line IPEC-J2 is established as an in vitro model for porcine infection studies but exhibits atypically high transepithelial resistances (TER and only low active transport rates so that the effect of nutritional factors cannot be reliably investigated. This study aimed to properly remodel IPEC-J2 and then to re-characterize these cells regarding epithelial architecture, expression of barrier-relevant tight junction (TJ proteins, adequate TER and transport function, and reaction to secretagogues. For this, IPEC-J2 monolayers were cultured on permeable supports, either under conventional (fetal bovine serum, FBS or species-specific (porcine serum, PS conditions. Porcine jejunal mucosa was analyzed for comparison. Main results were that under PS conditions (IPEC-J2/PS, compared to conventional FBS culture (IPEC-J2/FBS, the cell height increased 6-fold while the cell diameter was reduced by 50%. The apical cell membrane of IPEC-J2/PS exhibited typical microvilli. Most importantly, PS caused a one order of magnitude reduction of TER and of trans- and paracellular resistance, and a 2-fold increase in secretory response to forskolin when compared to FBS condition. TJ ultrastructure and appearance of TJ proteins changed dramatically in IPEC-J2/PS. Most parameters measured under PS conditions were much closer to those of typical pig jejunocytes than ever reported since the cell line's initial establishment in 1989. In conclusion, IPEC-J2, if cultured under defined species-specific conditions, forms a suitable model for investigating porcine paracellular intestinal barrier function.

  10. Glycogen distribution in porcine fallopian tube epithelium during the estrus cycle.

    Science.gov (United States)

    Gregoraszczuk, E Ł; Cała, M; Witkowska, E

    2000-01-01

    Histochemical features of two different parts of the porcine Fallopian tube have been studied, with special reference to cyclic changes in the distribution of glycogen particles. Porcine Fallopian tubes were obtained from a local slaughterhouse. Slides were studied under light microscopy utilising histological and histochemical techniques. The most striking feature during the periovulatory stage of the estrus cycle was the occurrence of glycogen granules in the apical cytoplasm of epithelial cells in both the ampulla and isthmus of the Fallopian tubes. In the isthmus, cells containing numerous granules of polysaccharides aggregated into areas of different sizes were noted after ovulation. During the midluteal phase their number was minimal or were even absent. In the ampula typical extrusion of secretory granules and nuclei protruding into the tubal lumen was visible after ovulation. In the luteal phase a lot of nuclei protruded into the tubal lumen and some free in the lumen were noted. It is possible that glycogen in the preovulatory stage functions as a source of energy for ciliary movement and as a nourishment for the ovum. In the isthmus large number of aggregated glycogen particles was observed also after ovulation. In this stage of the cycle, numerous granules of polysaccharide aggregated in isthmus epithelium could be the major energy source for embriogenesis when the embryo travels down the Fallopian tubes, during the early cleavage stage.

  11. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    Science.gov (United States)

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as

  12. Assay using embryo aggregation chimeras for the detection of nonlethal changes in X-irradiated mouse preimplantation embryos

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Miller, L.; Samuels, S.J.; Chang, R.J.; Overstreet, J.W.

    1988-01-01

    We have developed a short-term in vitro assay for the detection of sublethal effects produced by very low levels of ionizing radiation. The assay utilizes mouse embryo aggregation chimeras consisting of one irradiated embryo paired with an unirradiated embryo whose blastomeres have been labeled with fluorescein isothiocyanate (FITC). X irradiation (from 0.05 to 2 Gy) and chimera construction were performed with four-cell stage embryos, and the chimeras were cultured for 40 h to the morula stage. The morulae were partially dissociated with calcium-free culture medium and viewed under phase contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution of irradiated (unlabeled) and control (FITC labeled) embryos per chimera. In chimeras where neither embryo was irradiated, the ratio of the unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.50 (17.8 +/- 5.6 cells per unlabeled embryo and 17.4 +/- 5.5 cells per FITC-labeled partner embryo). However, in chimeras formed after the unlabeled embryos were irradiated with as little as 0.05 Gy, the ratio of unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.43 (P less than 0.01). The apparent decreases in cell proliferation were not observed in irradiated embryos that were merely cocultured with control embryos, regardless of whether the embryos were zona enclosed or zona free. We conclude that very low levels of radiation induce sublethal changes in cleaving embryos that are expressed as a proliferative disadvantage within two cell cycles when irradiated embryos are in direct cell-to-cell contact with unirradiated embryos

  13. Radiation effects on cultured mouse embryos in relation to cell division cycle

    International Nuclear Information System (INIS)

    Domon, M.

    1982-01-01

    The authors have worked with mouse embryos in vitro asking first, what are the suitable parameters to define the radiation sensitivity of embryos, and second what is a major factor determining it. The LD 50 was adopted as a parameter of the radiation sensitivity of a population in a mouse embryo system in culture. The fertilized ova were collected into Whitten's medium at various times during the pronuclear and 2-cell stages of development. They were irradiated in chambers with X-rays at doses of 0 to 800 rads. After the embryos were cultured, a set of the lethal fractions for various X-ray doses were obtained. Regarding the radiation sensitivity variation of the embryos, the LD 50 varied from 100 to 200 rads during the pronuclear stage and from 100 to 600 rads during the 2-cell stage. The embryos during the pronuclear stage were most radioresistant at early G 2 phase, followed by an increase in the sensitivity. The embryos during the 2-cell stage were also most radioresistant at early G 2 phase and were more sensitive when they got close to either the first or the second cleavage division. Furthermore, it seems that the factor 6 of the large variation was due to the extremely long G 2 period, 14 hrs for the 2-cell embryos. That is, the pooled 2-cell embryos were in a relative sense well synchronized with G 2 phase. In contrast, the synchrony was poor during the pronuclear stage, which led to less variation of the LD 50 for the pronuclear embryos. It is concluded that during the early cleavage stages of mice, radiosensitivity is mainly governed by the content of cells of various cell cycle ages in the embryo. (Namekawa, K.)

  14. Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos

    Directory of Open Access Journals (Sweden)

    Hartung Odelya

    2007-12-01

    Full Text Available Abstract Background The formation of two distinctive cell lineages in preimplantation mouse embryos is characterized by differential gene expression. The cells of the inner cell mass are pluripotent and express high levels of Oct4 mRNA, which is down-regulated in the surrounding trophectoderm. In contrast, the trophectoderm of female embryos contains Xist mRNA, which is absent from cells of the inner mass. Prior to blastocyst formation, all blastomeres of female embryos still express both of these RNAs. We, thus, postulated that simultaneous quantification of Oct4 and Xist transcripts in individual blastomeres at the 8-cell stage could be informative as to their subsequent fate. Testing this hypothesis, however, presented numerous technical challenges. We overcame these difficulties by combining PurAmp, a single-tube method for RNA preparation and quantification, with LATE-PCR, an advanced form of asymmetric PCR. Results We constructed a duplex RT-LATE-PCR assay for real-time measurement of Oct4 and Xist templates and confirmed its specificity and quantitative accuracy with different methods. We then undertook analysis of sets of blastomeres isolated from embryos at the 8-cell stage. At this stage, all cells in the embryo are still pluripotent and morphologically equivalent. Our results demonstrate, however, that both Oct4 and Xist RNA levels vary in individual blastomeres comprising the same embryo, with some cells having particularly elevated levels of either transcript. Analysis of multiple embryos also shows that Xist and Oct4 expression levels are not correlated at the 8-cell stage, although transcription of both genes is up-regulated at this time in development. In addition, comparison of data from males and females allowed us to determine that the efficiency of the Oct4/Xist assay is unaffected by sex-related differences in gene expression. Conclusion This paper describes the first example of multiplex RT-LATE-PCR and its utility, when

  15. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  16. X-linked gene transcription patterns in female and male in vivo, in vitro and cloned porcine individual blastocysts.

    Directory of Open Access Journals (Sweden)

    Chi-Hun Park

    Full Text Available To determine the presence of sexual dimorphic transcription and how in vitro culture environments influence X-linked gene transcription patterns in preimplantation embryos, we analyzed mRNA expression levels in in vivo-derived, in vitro-fertilized (IVF, and cloned porcine blastocysts. Our results clearly show that sex-biased expression occurred between female and male in vivo blastocysts in X-linked genes. The expression levels of XIST, G6PD, HPRT1, PGK1, and BEX1 were significantly higher in female than in male blastocysts, but ZXDA displayed higher levels in male than in female blastocysts. Although we found aberrant expression patterns for several genes in IVF and cloned blastocysts, similar sex-biased expression patterns (on average were observed between the sexes. The transcript levels of BEX1 and XIST were upregulated and PGK1 was downregulated in both IVF and cloned blastocysts compared with in vivo counterparts. Moreover, a remarkable degree of expression heterogeneity was observed among individual cloned embryos (the level of heterogeneity was similar in both sexes but only a small proportion of female IVF embryos exhibited variability, indicating that this phenomenon may be primarily caused by faulty reprogramming by the somatic cell nuclear transfer (SCNT process rather than in vitro conditions. Aberrant expression patterns in cloned embryos of both sexes were not ameliorated by treatment with Scriptaid as a potent HDACi, although the blastocyst rate increased remarkably after this treatment. Taken together, these results indicate that female and male porcine blastocysts produced in vivo and in vitro transcriptional sexual dimorphisms in the selected X-linked genes and compensation of X-linked gene dosage may not occur at the blastocyst stage. Moreover, altered X-linked gene expression frequently occurred in porcine IVF and cloned embryos, indicating that X-linked gene regulation is susceptible to in vitro culture and the SCNT process

  17. Porcine spermatogonial stem cells self-renew effectively in a three dimensional culture microenvironment.

    Science.gov (United States)

    Park, Ji Eun; Park, Min Hee; Kim, Min Seong; Park, Yeo Reum; Yun, Jung Im; Cheong, Hee Tae; Kim, Minseok; Choi, Jung Hoon; Lee, Eunsong; Lee, Seung Tae

    2017-12-01

    Generally, self-renewal of spermatogonial stem cells (SSCs) is maintained in vivo in a three-dimensional (3D) microenvironment consisting of the seminiferous tubule basement membrane, indicating the importance of the 3D microenvironment for in vitro culture of SSCs. Here, we report a 3D culture microenvironment that effectively maintains porcine SSC self-renewal during culture. Porcine SSCs were cultured in an agarose-based 3D hydrogel and in 2D culture plates either with or without feeder cells. Subsequently, the effects of 3D culture on the maintenance of undifferentiated SSCs were identified by analyzing cell colony formation and morphology, AP activity, and transcriptional and translational regulation of self-renewal-related genes and the effects on proliferation by analyzing cell viability and single cell-derived colony number. The 3D culture microenvironment constructed using a 0.2% (w/v) agarose-based 3D hydrogel showed the strongest maintenance of porcine SSC self-renewal and induced significant improvements in proliferation compared with 2D culture microenvironments. These results demonstrate that self-renewal of porcine SSCs can be maintained more effectively in a 3D than in a 2D culture microenvironment. Moreover, this will play a significant role in developing novel culture systems for SSCs derived from diverse species in the future, which will contribute to SSC-related research. © 2017 International Federation for Cell Biology.

  18. Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos.

    Directory of Open Access Journals (Sweden)

    Tony Y-C Tsai

    2014-02-01

    Full Text Available During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min and the subsequent 11 cycles are short (∼30 min and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development.

  19. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf. Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  20. Gene expression of bovine embryos developing at the air-liquid interface on oviductal epithelial cells (ALI-BOEC).

    Science.gov (United States)

    van der Weijden, Vera A; Chen, Shuai; Bauersachs, Stefan; Ulbrich, Susanne E; Schoen, Jennifer

    2017-11-25

    We recently developed an air-liquid interface long-term culture of differentiated bovine oviductal epithelial cells (ALI-BOEC). This ex vivo oviduct epithelium is capable of supporting embryo development in co-culture up to the blastocyst stage without addition of embryo culture medium. However, blastocyst rates in co-culture were markedly lower than in conventional in vitro embryo production procedures. In the present study, we assessed target gene expression of ALI-BOEC derived embryos to test their similarity to embryos from conventional in vitro embryo culture. We screened previously published data from developing bovine embryos and selected 41 genes which are either differentially expressed during embryo development, or reflect differences between various in vitro culture conditions or in vitro and in vivo embryos. Target gene expression was measured in 8-cell embryos and blastocysts using a 48.48 Dynamic Array™ on a Biomark HD instrument. For comparison with the ALI-BOEC system, we generated embryos by two different standard IVP protocols. The culture conditions lead to differential gene expression in both 8-cell embryos and blastocysts. Across the expression of all target genes the embryos developing on ALI-BOEC did not depart from conventional IVP embryos. These first results prove that gene expression in ALI-BOEC embryos is not largely aberrant. However, there was no clear indication for a more in vivo-like target gene expression of these embryos. This calls for further optimization of the ALI-BOEC system to increase its efficiency both quantitatively and qualitatively.

  1. Successful non-surgical deep uterine transfer of porcine morulae after 24 hour culture in a chemically defined medium.

    Directory of Open Access Journals (Sweden)

    Emilio A Martinez

    Full Text Available Excellent fertility and prolificacy have been reported after non-surgical deep uterine transfers of fresh in vivo-derived porcine embryos. Unfortunately, when this technology is used with vitrified embryos, the reproductive performance of recipients is low. For this reason and because the embryos must be stored until they are transferred to the recipient farms, we evaluated the potential application of non-surgical deep uterine transfers with in vivo-derived morulae cultured for 24 h in liquid stage. In Experiment 1, two temperatures (25 °C and 37 °C and two media (one fully defined and one semi-defined were assessed. Morulae cultured in culture medium supplemented with bovine serum albumin and fetal calf serum at 38.5 °C in 5% CO2 in air were used as controls. Irrespective of medium, the embryo viability after 24 h of culture was negatively affected (P<0.05 at 25 °C but not at 37 °C compared with the controls. Embryo development was delayed in all experimental groups compared with the control group (P<0.001. Most of the embryos (95.7% cultured at 37 °C achieved the full or expanded blastocyst stage, and unlike the controls, none of them hatched at the end of culture. In Experiment 2, 785 morulae were cultured in the defined medium at 37 °C for 24 h, and the resulting blastocysts were transferred to the recipients (n = 24. Uncultured embryos collected at the blastocyst stage (n = 750 were directly transferred to the recipients and used as controls (n = 25. No differences in farrowing rates (91.7% and 92.0% or litter sizes (9.0 ± 0.6 and 9.4 ± 0.8 were observed between the groups. This study demonstrated, for the first time, that high reproductive performance can be achieved after non-surgical deep uterine transfers with short-term cultured morulae in a defined medium, which opens new possibilities for the sanitary, safe national and international trade of porcine embryos and the commercial use of embryo transfer in pigs.

  2. Regional heterogeneity of endothelial cells in the porcine vortex vein system.

    Science.gov (United States)

    Tan, Priscilla Ern Zhi; Yu, Paula K; Cringle, Stephen J; Morgan, William H; Yu, Dao-Yi

    2013-09-01

    The aim of this study was to investigate whether region-dependent endothelial heterogeneity is present within the porcine vortex vein system. The superior temporal vortex vein in young adult pig eyes were dissected out and cannulated. The intact vortex vein system down to the choroidal veins was then perfused with labels for f-actin and nucleic acid. The endothelial cells within the choroidal veins, pre-ampulla, anterior portion of the ampulla, mid-ampulla, posterior portion of the ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein regions were studied in detail using a confocal microscopy technique. The endothelial cell and nuclei length, width, area and perimeter were measured and compared between the different regions. Significant regional differences in the endothelial cell and nuclei length, width, area and perimeter were observed throughout the porcine vortex vein system. Most notably, very narrow and elongated endothelia were found in the post-ampulla region. A lack of smooth muscle cells was noted in the ampulla region compared to other regions. Heterogeneity in endothelial cell morphology is present throughout the porcine vortex vein system and there is a lack of smooth muscle cells in the ampulla region. This likely reflects the highly varied haemodynamic conditions and potential blood flow control mechanisms in different regions of the vortex vein system. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. A sub-population of circulating porcine gammadelta T cells can act as professional antigen presenting cells.

    Science.gov (United States)

    Takamatsu, H-H; Denyer, M S; Wileman, T E

    2002-09-10

    A sub-population of circulating porcine gammadelta T cells express cell surface antigens associated with antigen presenting cells (APCs), and are able to take up soluble antigen very effectively. Functional antigen presentation by gammadelta T cells to memory helper T cells was studied by inbred pig lymphocytes immunised with ovalbumin (OVA). After removing all conventional APCs from the peripheral blood of immunised pigs, the remaining lymphocytes still proliferated when stimulated with OVA. When gammadelta T cells were further depleted, OVA specific proliferation was abolished, but reconstitution with gammadelta T cells restored proliferation. The proliferation was blocked by monoclonal antibodies (mAb) against MHC class II or CD4, and by pre-treatment of gammadelta T cells with chloroquine. These results indicate that a sub-population of circulating porcine gammadelta T cells act as APCs and present antigen via MHC class II.

  4. Long-Term Survival of Neonatal Porcine Islets Without Sertoli Cells in Rabbits

    Directory of Open Access Journals (Sweden)

    Rafael Vald and eacute;s-Gonz and aacute;lez

    2013-04-01

    Full Text Available Cell-based therapy is a promising treatment for metabolic disorders such as type-1 diabetes. Transplantation protocols have investigated several anatomical sites for cell implantation; however, some of these procedures, such as intraportal infusion, can cause organ failure or thrombosis secondarily. Bio-artificial organs could be the choice, although concerns still remain. Using a subcutaneous device, we are able to preserve neonatal porcine islets without sertoli cells in healthy New Zealand rabbits. Devices were implanted in the back of the animals underneath the skin, and after 3 months the islets were transplanted. Histology showed the presence of inflammatory cells, predominantly eosinophils; however, insulin- and glucagon-positive cell clusters were identified inside the device at different time points for at least 90 days, and porcine C-peptide was also detected during the follow-up, indicating graft functionality. We have found that our device induces the deposition of a fibrous matrix enriched in blood vessels, which forms a good place for cell grafting, and this model is probably able to induce an immunoprivileged site. Under these conditions, transplanted porcine islet cells have the capability of producing insulin and glucagon for at least three months. [Arch Clin Exp Surg 2013; 2(2.000: 101-108

  5. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    International Nuclear Information System (INIS)

    Puente, Pilar de la; Ludeña, Dolores; López, Marta; Ramos, Jennifer; Iglesias, Javier

    2013-01-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  6. Effect of Kaempferol on in vitro Maturation of Porcine Oocytes

    Directory of Open Access Journals (Sweden)

    Delia Orlovschi

    2014-10-01

    Full Text Available We investigated the effects of kaempferol on porcine oocytes in vitro maturation. Kaempferol is one the most studied flavonoids and is in research attention on animal cells until 1979. Flavonoids are known as polyphenolic compounds synthesized by the plants. Cumulus-oocyte complexes aspirated from the ovaries were maturated in vitro, fertilized and embryos were cultured in a defined conditioned medium with 5, 15, 25, 35 µg/ml or without kaempferol supplementation. During in vitro maturation with highest kaempferol concentration (35 µg/ml distinct significantly increase the rate of cumulus cell expansion in grad 4 (42.74 vs. 50.96%, p<0.01. The same, addition of 5 µg/ml kaempferol to the in vitro maturation medium increase significantly the rate of expansion compared to 25 µg/ml (42.20 vs. 48.67%, p<0.05 and increase distinct significantly the rate of expansion compared to 35 µg/ml (42.20 vs. 50.96%, p<0.01. Kaempferol supplementation (15 µg/ml vs. 35 µg/ml of the in vitro fertilization medium led to a significant increase in the rate of 4-8 cells formation (0.69 vs. 4.96%, p<0.05. In conclusion, these results demonstrate that supplementation with kaempferol during in vitro maturation improved the developmental competence of porcine oocytes.

  7. Live embryo imaging to follow cell cycle and chromosomes stability after nuclear transfer.

    Science.gov (United States)

    Balbach, Sebastian T; Boiani, Michele

    2015-01-01

    Nuclear transfer (NT) into mouse oocytes yields a transcriptionally and functionally heterogeneous population of cloned embryos. Most studies of NT embryos consider only embryos at predefined key stages (e.g., morula or blastocyst), that is, after the bulk of reprogramming has taken place. These retrospective approaches are of limited use to elucidate mechanisms of reprogramming and to predict developmental success. Observing cloned embryo development using live embryo cinematography has the potential to reveal otherwise undetectable embryo features. However, light exposure necessary for live cell cinematography is highly toxic to cloned embryos. Here we describe a protocol for combined bright-field and fluorescence live-cell imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This protocol, which can be adapted to observe other reporters such as Oct4-GFP or Nanog-GFP, allowed us to quantitatively analyze cleavage kinetics of cloned embryos.

  8. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells.

    Science.gov (United States)

    Garba, Abubakar; Acar, Delphine D; Roukaerts, Inge D M; Desmarets, Lowiese M B; Devriendt, Bert; Nauwynck, Hans J

    2017-09-01

    Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell

  9. MODELS FOR MOUSE CHIMERA PRODUCTION: AGGREGATION OF ES CELLS WITH CLEAVAGE STAGE EMBRYOS

    Directory of Open Access Journals (Sweden)

    STANCA CLAUDIA

    2007-01-01

    Full Text Available In a mutant ES cells↔ wild-type embryo chimera, ES cells behave more like epiblastcells. They can contribute to the primitive ectoderm layers, which give rise to all theembryonic tissues and some extraembryonic tissues (Beddington and Robertson,1989, but not to trophectoderm or primitive endoderm. Using transgenic ES celllines, aggregated with cleavage stage host embryo, ES cells can integrate randomlyin the embryo proper. If they will be take part in the formation of ICM (inner cellmass, it will be possible to obtain germline chimera animals. To generate ES cells↔ cleavage stage host embryo chimeras, we used (CD-1 mice as donors of hostembryos as well as recipients of manipulated embryos. For chimera production, weused fluorescent-labeled ES cell line (CD1/EGFP, because in this case we canfollow the fate of ES cells during the embryonic development. We produced thechimers using “aggregation chimera technique”. 8 cells stage zona pellucida free,mouse embryos were aggregated in an aggregation plates, with a clump of ES cells(10 – 15 cells. The chimera embryos were cultivated for 24 hours in the incubator(at 37 °C, 5% CO2 in air. The chimera blastocysts resulted after cultivation, weretransferred to the uterus of the 2.5-dpc pseudo pregnant females.

  10. MODELS FOR MOUSE CHIMERA PRODUCTION: AGGREGATION OF ES CELLS WITH CLEAVAGE STAGE EMBRYOS

    Directory of Open Access Journals (Sweden)

    CLAUDIA STANCA

    2007-05-01

    Full Text Available In a mutant ES cells↔ wild-type embryo chimera, ES cells behave more like epiblastcells. They can contribute to the primitive ectoderm layers, which give rise to all theembryonic tissues and some extraembryonic tissues (Beddington and Robertson,1989, but not to trophectoderm or primitive endoderm. Using transgenic ES celllines, aggregated with cleavage stage host embryo, ES cells can integrate randomlyin the embryo proper. If they will be take part in the formation of ICM (inner cellmass, it will be possible to obtain germline chimera animals. To generate ES cells↔ cleavage stage host embryo chimeras, we used (CD-1 mice as donors of hostembryos as well as recipients of manipulated embryos. For chimera production, weused fluorescent-labeled ES cell line (CD1/EGFP, because in this case we canfollow the fate of ES cells during the embryonic development. We produced thechimers using “aggregation chimera technique”. 8 cells stage zona pellucida free,mouse embryos were aggregated in an aggregation plates, with a clump of ES cells(10 – 15 cells. The chimera embryos were cultivated for 24 hours in the incubator(at 37 °C, 5% CO2 in air. The chimera blastocysts resulted after cultivation, weretransferred to the uterus of the 2.5-dpc pseudo pregnant females.

  11. DsRed gene expression by doxycycline in porcine fibroblasts and ...

    African Journals Online (AJOL)

    DsRed gene expression by doxycycline in porcine fibroblasts and cloned embryos using transposon. SuJin Kim, JoonHo Moon, BegoRoibas da Torre, Islam M Saadeldin, JungTaek Kang, JiYei Choi, SolJi Park, Byeong-Chun Lee, Goo Jang Goo Jang ...

  12. Autoradiographic study of protein synthesis recovery in root cells of Zea mays embryos during early stages of germination

    International Nuclear Information System (INIS)

    Deltour, Roger

    1977-01-01

    Recovery of protein synthesis was studied in primary root of germinating Zea mays embryos. [H 3 ] leucine or [H 3 ] lysine was provided for two hours at 16 0 C to embryos excised from kernels at various times after the beginning of germination. Protein synthesis (probably dependent on long-lived mRNA stocked in dormant embryo root cells) resumed during the first two hours of seed imbibition [fr

  13. Autoradiographic study of protein synthesis recovery in root cells of Zea mays embryos during early stages of germination

    Energy Technology Data Exchange (ETDEWEB)

    Deltour, R [Liege Univ. (Belgium)

    1977-05-02

    Recovery of protein synthesis was studied in primary root of germinating Zea mays embryos. (H/sup 3/) leucine or (H/sup 3/) lysine was provided for two hours at 16/sup 0/C to embryos excised from kernels at various times after the beginning of germination. Protein synthesis (probably dependent on long-lived mRNA stocked in dormant embryo root cells) resumed during the first two hours of seed imbibition.

  14. Effect of Short-Term Hypergravity Treatment on Mouse 2-Cell Embryo Development

    Science.gov (United States)

    Ning, Li-Na; Lei, Xiao-Hua; Cao, Yu-Jing; Zhang, Yun-Fang; Cao, Zhong-Hong; Chen, Qi; Duan, En-Kui

    2015-11-01

    Though there are numerous biological experiments, which have been performed in a space environment, to study the physiological effect of space travel on living organisms, while the potential effect of weightlessness or short-term hypergravity on the reproductive system in most species, particularly in mammalian is still controversial and unclear. In our previous study, we investigated the effect of space microgravity on the development of mouse 4-cell embryos by using Chinese SJ-8. .Unexpectedly, we did not get any developed embryo during the space-flight. Considering that the process of space experiment is quite different from most experiments done on earth in several aspects such as, the vibration and short-term hypergravity during the rock launching and landing. Thus we want to know whether the short-term hypergravity produced by the launch process affect the early embryo development in mice, and howthe early embryos respond to the hypergravity. In present study, we are mimicking the short-term hypergravity during launch by using a centrifuge to investigate its influence on the development of early embryo (2-cell) in mice. We also examined the actin filament distribution in 2-cell embryos by immunostaining to test their potential capacity of development under short-term hypergravity exposure. Our results showed that most 2-cell embryos in the hypergravity exposure groups developed into blastocysts with normal morphology after 72h cultured in vitro, and there is no obvious difference in the development rate of blastocyst formation compared to the control. Moreover, there were no statistically significant differences in birth rates after oviduct transfer of 2-cell mouse embryos exposed on short-term hypergravity compared with 1 g condition. In addition, the well-organized actin distribution appeared in 2-cell embryos after exposed on hypergravity and also in the subsequent developmental blastocysts. Taken together, our data shows that short-term exposure in

  15. [Specification of cell destiny in early Caenorhabditis elegans embryo].

    Science.gov (United States)

    Schierenberg, E

    1997-02-01

    Embryogenesis of the nematode Caenorhabditis elegans has been described completely on a cell-by-cell basis and found to be essentially invariant. With this knowledge in hands, micromanipulated embryos and mutants have been analyzed for cell lineage defects and the distribution of specific gene products. The results challenge the classical view of cell-autonomous development in nematodes and indicate that the early embryo of C. elegans is a highly dynamic system. A network of inductive events between neighboring cells is being revealed, which is necessary to assign different developmental programs to blastomeres. In those cases where molecules involved in these cell-cell interactions have been identified, homologies to cell surface receptors, ligands and transcription factors found in other systems have become obvious.

  16. Blastocyst morphology, actin cytoskeleton quality and chromosome content are correlated with embryo quality in the pig

    NARCIS (Netherlands)

    Zijlstra, C.; Kidson, A.; Schoevers, E.J.; Daemen, A.J.J.M.; Tharasanit, T.; Kuijk, E.W.; Hazeleger, W.; Ducro-Steverink, D.W.B.; Colenbrander, B.; Roelen, B.A.J.

    2008-01-01

    Embryo survival rates obtained after transfer of in vitro produced porcine blastocysts are very poor. This is probably related to poor quality of the embryos. The aim of the present study was to determine markers for good quality blastocysts. Therefore, we tried to link blastocyst morphology to

  17. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1

    Directory of Open Access Journals (Sweden)

    Helen eSingleton

    2016-06-01

    Full Text Available Monocyte-derived macrophages (MoMØ and monocyte-derived dendritic cells (MoDC are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV is known to infect myeloid cells, such as macrophages (MØ and dendritic cells (DC. Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated monocyte-derived macrophages (MoMØ were stimulated with activators for classical (M1 or alternative (M2 activation. GM-CSF and IL-4 generated monocyte-derived dendritic cells (MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells towards PRRSV-1 infection.

  18. Quercetin Efficacy on in vitro Maturation of Porcine Oocytes

    Directory of Open Access Journals (Sweden)

    Delia Orlovschi

    2014-05-01

    Full Text Available The present study proposed to examine the effects of a polyphenol (quercetin on in vitro maturated parameters. Quercetin it has been extensively studied by researchers on animals over the 35 years. It is a plant derived flavonoid from fruits and vegetables that has antioxidant action as a free radical scavenger. Immature porcine oocytes were untreated and treated with 5, 15, 25, 35 µg/ml quercetin during in vitro maturation. After then the mature oocytes were fertilized. It was observed that cumulus cell expansion of COCs cultured in maturation media supplemented with 5 µg/ml quercetin in grad 3 could be very significantly increased (p<0.001. In grad 4 could be significantly between different levels of quercetin (5 vs. 25, 5 vs. 35, p<0.001. The rates of embryos cultured in medium supplemented with different levels of quercetin did not presented significantly statistically different. The presence of 25 µg/ml quercetin in the maturation medium increased the percentage of embryos in the morula stage compared with the control. In the morula stage all the concentrations of quercetin resulted percentages increased to control. This results shows that quercetin added during in vitro maturation has a positive effect on future embryos development.

  19. Different Donor Cell Culture Methods Can Influence the Developmental Ability of Cloned Sheep Embryos.

    Directory of Open Access Journals (Sweden)

    LiBing Ma

    Full Text Available It was proposed that arresting nuclear donor cells in G0/G1 phase facilitates the development of embryos that are derived from somatic cell nuclear transfer (SCNT. Full confluency or serum starvation is commonly used to arrest in vitro cultured somatic cells in G0/G1 phase. However, it is controversial as to whether these two methods have the same efficiency in arresting somatic cells in G0/G1 phase. Moreover, it is unclear whether the cloned embryos have comparable developmental ability after somatic cells are subjected to one of these methods and then used as nuclear donors in SCNT. In the present study, in vitro cultured sheep skin fibroblasts were divided into four groups: (1 cultured to 70-80% confluency (control group, (2 cultured to full confluency, (3 starved in low serum medium for 4 d, or (4 cultured to full confluency and then further starved for 4 d. Flow cytometry was used to assay the percentage of fibroblasts in G0/G1 phase, and cell counting was used to assay the viability of the fibroblasts. Then, real-time reverse transcription PCR was used to determine the levels of expression of several cell cycle-related genes. Subsequently, the four groups of fibroblasts were separately used as nuclear donors in SCNT, and the developmental ability and the quality of the cloned embryos were compared. The results showed that the percentage of fibroblasts in G0/G1 phase, the viability of fibroblasts, and the expression levels of cell cycle-related genes was different among the four groups of fibroblasts. Moreover, the quality of the cloned embryos was comparable after these four groups of fibroblasts were separately used as nuclear donors in SCNT. However, cloned embryos derived from fibroblasts that were cultured to full confluency combined with serum starvation had the highest developmental ability. The results of the present study indicate that there are synergistic effects of full confluency and serum starvation on arresting fibroblasts in

  20. Elevated NaCl concentration improves cryotolerance and developmental competence of porcine oocytes

    DEFF Research Database (Denmark)

    Lin, L; Du, Y; Liu, Y

    2009-01-01

    High hydrostatic pressure has been reported to improve the fertilizing or developmental ability of mammalian spermatozoa, oocytes and embryos. This study investigated the effect of another stress, temporarily increased NaCl concentration, on cryotolerance and developmental competence of porcine...

  1. Relative biological effectiveness (RBE) of alpha radiation in cultured porcine aortic endothelial cells.

    Science.gov (United States)

    Thomas, Patricia; Tracy, Bliss; Ping, Tilly; Baweja, Anar; Wickstrom, Mark; Sidhu, Narinder; Hiebert, Linda

    2007-03-01

    Northern peoples can receive elevated radiation doses (1- 10 mSv/y) from transfer of polonium-210 (210Po) through the lichen-caribou-human food chain. Ingested 210Po is primarily blood-borne and thus many of its short range alpha particles irradiate the endothelial cells lining the blood vessels. The relative biological effectiveness (RBE) of alpha particles vs. x-rays was examined in porcine aortic endothelial cells as a surrogate for understanding what might happen to human endothelial cells in northern populations consuming traditional foods. Cultured porcine aortic endothelial cells were exposed to x-ray and 210Po alpha particle radiation. Alpha irradiation was applied to the cell cultures internally via the culture medium and externally, using thin-bottomed culture dishes. The results given here are based on the external irradiation method, which was found to be more reliable. Dose-response curves were compared for four lethal endpoints (cell viability, live cell fraction, release of lactate dehydrogenase [LDH] and clonogenic survival) to determine the relative biological effectiveness (RBE) of alpha radiation. The alpha RBE for porcine cells varied from 1.6-21, depending on the endpoint: 21.2+/-4.5 for cell viability, 12.9+/-2.7 for decrease in live cell number, 5.3+/-0.4 for LDH release to the medium but only 1.6 +/-0.1 for clonogenic survival. The low RBE of 1.6 was due to x-ray hypersensitivity of endothelial cells at low doses.

  2. Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos

    DEFF Research Database (Denmark)

    Lin, Lin; Luo, Yonglun; Sørensen, Peter

    2014-01-01

    derived by PA or HMC. Hierarchical clustering depicted stage-specific genomic expression profiling. At the 4-cell and blastocyst stages, 103 and 163 transcripts were differentially expressed between the HMC and PA embryos, respectively (P

  3. Increased blastocyst formation of cloned porcine embryos produced with donor cells pre-treated with Xenopus egg extract and/or digitonin

    DEFF Research Database (Denmark)

    Liu, Ying; Østrup, Olga; Li, Juan

    2012-01-01

    from Xenopus laevis eggs. In Experiment 1, fetal fibroblasts were permeabilized by digitonin, incubated in egg extract and, after re-sealing of cell membranes, cultured for 3 or 5 days before use as donor cells in handmade cloning (HMC). Controls were produced by HMC with non-treated donor cells....... The blastocyst rate for reconstructed embryos increased significantly when digitonin-permeabilized, extract-treated cells were used after 5 days of culture after re-sealing. In Experiment 2, fetal and adult fibroblasts were treated with digitonin alone before re-sealing the cell membranes, then cultured for 3...... cells after pre-treatment with permeabilization/re-sealing and Xenopus egg extract. Interestingly, we observe a similar increase in cloning efficiency by permeabilization/re-sealing of donor cells without extract treatment that seems to depend on choice of donor cell type. Thus, pre-treatment of donor...

  4. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice.

    Science.gov (United States)

    Tarkowski, Andrzej K; Suwińska, Aneta; Czołowska, Renata; Ożdżeński, Wacław

    2010-12-15

    Cell and developmental studies have clarified how, by the time of implantation, the mouse embryo forms three primary cell lineages: epiblast (EPI), primitive endoderm (PE), and trophectoderm (TE). However, it still remains unknown when cells allocated to these three lineages become determined in their developmental fate. To address this question, we studied the developmental potential of single blastomeres derived from 16- and 32-cell stage embryos and supported by carrier, tetraploid blastomeres. We were able to generate singletons, identical twins, triplets, and quadruplets from individual inner and outer cells of 16-cell embryos and, sporadically, foetuses from single cells of 32-cell embryos. The use of embryos constitutively expressing GFP as the donors of single diploid blastomeres enabled us to identify their cell progeny in the constructed 2n↔4n blastocysts. We showed that the descendants of donor blastomeres were able to locate themselves in all three first cell lineages, i.e., epiblast, primitive endoderm, and trophectoderm. In addition, the application of Cdx2 and Gata4 markers for trophectoderm and primitive endoderm, respectively, showed that the expression of these two genes in the descendants of donor blastomeres was either down- or up-regulated, depending on the cell lineage they happened to occupy. Thus, our results demonstrate that up to the early blastocysts stage, the destiny of at least some blastomeres, although they have begun to express markers of different lineage, is still labile. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  6. CRISPR/Cas9 as tool for functional study of genes involved in preimplantation embryo development.

    Directory of Open Access Journals (Sweden)

    Jeongwoo Kwon

    Full Text Available The CRISPR/Cas9 system has proven to be an efficient gene-editing tool for genome modification of cells and organisms. However, the applicability and efficiency of this system in pig embryos have not been studied in depth. Here, we aimed to remove porcine OCT4 function as a model case using the CRISPR/Cas9 system. Injection of Cas9 and single-guide RNA (sgRNA against OCT4 decreased the percentages of OCT4-positive embryos to 37-50% of total embryos, while ~100% of control embryos exhibited clear OCT4 immunostaining. We assessed the mutation status near the guide sequence using polymerase chain reaction (PCR and DNA sequencing, and a portion of blastocysts (20% in exon 2 and 50% in exon 5 had insertions/deletions near protospacer-adjacent motifs (PAMs. Different target sites had frequent deletions, but different concentrations of sgRNA made no impact. OCT4 mRNA levels dramatically decreased at the 8-cell stage, and they were barely detectable in blastocysts, while mRNA levels of other genes, including NANOG, and CDX2 were not affected. In addition, the combination of two sgRNAs led to large-scale deletion (about 1.8 kb in the same chromosome. Next, we injected an enhanced green fluorescent protein (eGFP vector targeting the OCT4 exon with Cas9 and sgRNA to create a knockin. We confirmed eGFP fluorescence in blastocysts in the inner cell mass, and also checked the mutation status using PCR and DNA sequencing. A significant portion of blastocysts had eGFP sequence insertions near PAM sites. The CRISPR/CAS9 system provides a good tool for gene functional studies by deleting target genes in the pig.

  7. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  8. Evaluation of cell number and DNA content in mouse embryos cultivated with uranium

    International Nuclear Information System (INIS)

    Kundt, Mirian S.; Cabrini, Romulo L.

    2000-01-01

    The evaluation of the degree of development, the number of cells and the DNA content, were used to evaluate the embryotoxicity of uranium. Embryos at a one cell stage were cultured with uranyl nitrate hexahydrate (UN) at a final concentration of uranium (U) of 26, 52 and 104 μgU/ml. At 24 hs of culture, the embryos at the 2 cell stage, were put in new wells with the same concentrations of U as the previous day, until the end of the period of incubation at 72 hs. At 72 hs of culture, 87% of the original one cell embryos were at morula stage, and in those cultivated with uranium, the percentage decreased significantly to 77; 63.24 and 40.79% respectively for the different U concentrations. Those embryos that exhibited a normal morphology, were selected and fixed on slides. The number of cells per embryo was evaluated in Giemsa stained preparations. The DNA content was evaluated cytophotometrically in Feulgen stained nuclei. The number of cells decreased significantly from 20,3 ± 5.6 in the control to 19 ± 6; 14 ± 3 and 13.9 ± 5.6 for the different concentrations. All the embryos evaluated showed one easy recognizable polar body, which was used a haploid indicator (n). The content of DNA was measured in a total of 20 control embryos and 16 embryos cultivated with UN. In control embryos, 92,7% of the nuclei presented a normal ploidy from 2n to 4n, 2,9% nuclei were hypoploid and 4,4% were hyperploid. The percentage of hypoploid nuclei rose in a dose-dependent fashion to 3.45; 44.45 and 50.34% respectively for the embryos cultured at the different U concentrations. The results indicate that U is embryotoxic, that its effects are dose dependent at the concentrations used in this study and that even those embryos that show a normal morphology, can be genetically affected. We show that the model employed is extremely sensitive. It is possible to use the preimplantation embryos, as a model to test the effect of possibly mutagenic agents of the nuclear industry. (author)

  9. Caspase activity and expression of cell death genes during development of human preimplantation embryos.

    Science.gov (United States)

    Spanos, S; Rice, S; Karagiannis, P; Taylor, D; Becker, D L; Winston, R M L; Hardy, K

    2002-09-01

    It has been observed that apoptosis occurs in human blastocysts. In other types of cell, the characteristic morphological changes seen in apoptotic cells are executed by caspases, which are regulated by the BCL-2 family of proteins. This study investigated whether these components of the apoptotic cascade are present throughout human preimplantation development. Developing and arrested two pronucleate embryos at all stages were incubated with a fluorescently tagged caspase inhibitor that binds only to active caspases, fixed, counterstained with 4,6-diamidino-2-phenylindole (DAPI) to assess nuclear morphology and examined using confocal microscopy. Active caspases were detected only after compaction, at the morula and blastocyst stages, and were frequently associated with apoptotic nuclei. Occasional labelling was seen in arrested embryos. Expression of proapoptotic BAX and BAD and anti-apoptotic BCL-2 was examined in single embryos using RT-PCR and immunohistochemistry. BAX and BCL-2 mRNAs were expressed throughout development, whereas BAD mRNA was expressed mainly after compaction. Simultaneous expression of BAX and BCL-2 proteins within individual embryos was confirmed using immunohistochemistry. The onset of caspase activity and BAD expression after compaction correlates with the previously reported appearance of apoptotic nuclei. As in other types of cell, human embryos express common molecular components of the apoptotic cascade, although apoptosis appears to be suppressed before compaction and differentiation.

  10. Culture of porcine luteal cells as a substrate for in vitro maturation of porcine cumulus oocyte complexes. Establishment and characterization

    Directory of Open Access Journals (Sweden)

    Teplitz MA

    2016-12-01

    Full Text Available The aim of this study was to establish and characterize the porcine luteal cells (PLC culture for the subsequent coculture with porcine COC. The final purpose is to promote the oocyte maturation. The PLC was established using corpora lutea obtained from slaughterhouse ovaries. Corpora lutea were dissected and luteal tissue submitted to a mechanical and enzymatic digestion with collagenase IV. The cell suspension was filtered and centrifuged and the cells obtained were diluted in 15 mL of DMEM-F12 supplemented media. Diluted cells were seeded in 3 culture flasks T25, staying in a controlled environment and changing the medium every 2 days. For the analysis and characterization, the cells were assessed by the Nile red staining to detect intracellular lipids, immunocytochemistry (ICC for 3β-hydroxy steroid dehidrogenase (3β-HSD and ELISA for P4 determination. We observed the presence of lipid intracellular droplets. Also, we observed an increase of P4 concentration at 48, 96 y 144 h of primary culture and almost all the cells were positive to the ICC evaluation for 3β-HSD, showing the steroidogenic capacity of the culture cells.

  11. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, Pcloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. © 2016 Society for Reproduction and Fertility.

  12. PCI-24781 can improve in vitro and in vivo developmental capacity of pig somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Jin, Long; Zhu, Hai-Ying; Guo, Qing; Li, Xiao-Chen; Zhang, Yu-Chen; Zhang, Guang-Lei; Xing, Xiao-Xu; Xuan, Mei-Fu; Luo, Qi-Rong; Yin, Xi-Jun; Kang, Jin-Dan

    2016-09-01

    To examine the effect of PCI-24781 (abexinostat) on the blastocyst formation rate in pig somatic cell nuclear transferred (SCNT) embryos and acetylation levels of the histone H3 lysine 9 and histone H4 lysine 12. Treatment with 0.5 nM PCI-24781 for 6 h significantly improved the development of cloned embryos, in comparison to the control group (25.3 vs. 10.5 %, P PCI-24781 treatment led to elevated acetylation of H3K9 and H4K12. TUNEL assay and Hoechst 33342 staining revealed that the percentage of apoptotic cells in blastocysts was significantly lower in PCI-24781-treated SCNT embryos than in untreated embryos. Also, PCI-24781-treated embryos were transferred into three surrogate sows, one of whom became pregnant and two fetuses developed. PCI-24781 improves nuclear reprogramming and the developmental potential of pig SCNT embryos.

  13. Developmental block and programmed cell death in Bos indicus embryos: effects of protein supplementation source and developmental kinetics.

    Directory of Open Access Journals (Sweden)

    Sheila Merlo Garcia

    Full Text Available The aims of this study were to determine if the protein source of the medium influences zebu embryo development and if developmental kinetics, developmental block and programmed cell death are related. The culture medium was supplemented with either fetal calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235 or Slow (n = 485 based on the time required to reach the fourth cell cycle (48 h and 90 h post insemination - hpi -, respectively. The Slow group was further separated into two groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells and those that reached the fourth cell cycle at 90 hpi (Slow. Blastocyst quality, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher incidence of developmental block than the Fast group. The embryos supplemented with fetal calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal calf serum reduces blastocyst development and quality, but the mechanism appears to be independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible mechanism of programmed cell death activation prior to genome activation. The apoptotic cells observed in the slow-developing embryos suggested a relationship between programmed cell death and embryonic developmental kinetics in zebu in vitro-produced embryos.

  14. Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro

    DEFF Research Database (Denmark)

    Nielsen, Hanne Mørck; Rassing, Margrethe Rømer

    2002-01-01

    The present study was conducted to investigate and compare the effect of pH and drug concentration on nicotine permeability across the TR146 cell culture model and porcine buccal mucosa in vitro. As a further characterization of the TR146 cell culture model, it was explored whether the results were...... comparable for bi-directional and uni-directional transport in the presence of a transmembrane pH gradient. Nicotine concentrations between 10(-5) and 10(-2) M were applied to the apical side of the TR146 cell culture model or the mucosal side of porcine buccal mucosa. Buffers with pH values of 5.5, 7.......4 and 8.1 were used to obtain different fractions of non- and mono-ionized nicotine. The apparent permeability (P(app)) of nicotine across both models increased significantly with increasing pH, and the P(app) values obtained with the two models could be correlated in a linear manner. With increasing...

  15. Nucleolar ultrastructure in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Kanka, J; Smith, S D; Soloy, E

    1999-01-01

    in nuclear morphology as a transformation of the nucleolus precursor body into a functional rRNA synthesising nucleolus with a characteristic ultrastructure. We examined nucleolar ultrastructure in bovine in vitro produced (control) embryos and in nuclear transfer embryos reconstructed from a MII phase...... at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary...... time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear...

  16. Influence of recipient cytoplasm cell stage on transcription in bovine nucleus transfer embryos

    DEFF Research Database (Denmark)

    Smith, Steven D.; Soloy, Eva; Kanka, Jiri

    1996-01-01

    Nucleus transfer for the production of multiple embryos derived from a donor embryo relies upon the reprogramming of the donor nucleus so that it behaves similar to a zygotic nucleus. One indication of nucleus reprogramming is the RNA synthetic activity. In normal bovine embryogenesis, the embryo....... NTE were produced using either a MII phase (nonactivated) cytoplasts at 32 hr of maturation or S-phase (activated) cytoplasts activated with calcium ionophore A23187 and cycloheximide treatment approximately 8 hr prior to fusion with a blastomere from an in-vitro-produced morula stage embryo at 32 hr...... of maturation. Control in-vitro-produced embryos were 3H-uridine-labelled and fixed at the 2-, 4-, early 8-, and late 8-cell stages. NTE were similarly prepared at 1, 3, and 20 hr postfusion and at the 2-, 4-, and 8-cell stages. In the control embryos, RNA synthesis was absent in the 2-, 4-, and early 8-cell...

  17. Long-term effect on in vitro cloning efficiency after treatment of somatic cells with Xenopus egg extract in the pig.

    Science.gov (United States)

    Liu, Ying; Ostrup, Olga; Li, Rong; Li, Juan; Vajta, Gábor; Kragh, Peter M; Schmidt, Mette; Purup, Stig; Hyttel, Poul; Klærke, Dan; Callesen, Henrik

    2014-08-01

    In somatic cell nuclear transfer (SCNT), donor cell reprogramming is considered as a biologically important and vulnerable event. Various donor cell pre-treatments with Xenopus egg extracts can promote reprogramming. Here we investigated if the reprogramming effect of one treatment with Xenopus egg extract on donor cells was maintained for several cell passages. The extract treatment resulted in increased cell-colony formation from early passages in treated porcine fibroblasts (ExTES), and increased development of cloned embryos. Partial dedifferentiation was observed in ExTES cells, shown as a tendency towards upregulation of NANOG, c-MYC and KLF-4 and downregulation of DESMIM compared with ExTES at Passage 2. Compared with our routine SCNT, continuously increased development of cloned embryos was observed in the ExTES group, and ExTES cloned blastocysts displayed hypermethylated DNA patterns and hypermethylation of H3K4me3 and H3K27me3 in ICM compared with TE. All seven recipients became pregnant after transferral of ExTES cloned embryos and gave birth to 7-22 piglets per litter (average 12). In conclusion, our results demonstrate that one treatment of porcine fibroblasts with Xenopus egg extract can result in long-term increased ability of the cells to promote their in vitro function in subsequent SCNT. Finally these cells can also result in successful development of cloned embryos to term.

  18. Occurance of apoptosis during ischemia in porcine pancreas islet cells.

    Science.gov (United States)

    Stadlbauer, V; Schaffellner, S; Iberer, F; Lackner, C; Liegl, B; Zink, B; Kniepeiss, D; Tscheliessnigg, K H

    2003-03-01

    Pancreas islet transplantation is a potential treatment of diabetes mellitus and porcine organs provide an easily available source of cells. Unfortunately quality and quantity of isolated islets are still not satisfactory. Apoptosis occurs in freshly isolated islets and plays a significant role in early graft loss. We evaluated the influence of four storage solutions on porcine pancreas islets. After warm ischemia of 15-20 minutes 12 organs were stored in 4 cold preservation solutions: Histidine-Tryptophan-Ketoglutarate solution (HTK), Hank's buffered saline solution (HBSS), University of Wisconsin (UW) solution and Ringer-Lactate (R). After cold ischemia for 100 minutes, organs were fixed in 3% formalin. Apoptotic cells were counted on hematocylin-eosin stainings. Most apoptotic cells were found in organs stored in R. Low numbers were found in the other groups. The difference between organs stored in R and organs stored in UW, HTK, or HBSS was highly significant. No significant difference could be found between UW, HTK and HBSS. Cold and warm ischemia of the pancreas seems to induce apoptosis in islet cells. Preservation solutions cause less apoptosis than electrolyte solution. No significant differences could be found among the preservation solutions.

  19. Interaction of different forms of graphene with chicken embryo red blood cells

    DEFF Research Database (Denmark)

    Jaworski, S.; Hinzmann, Mateusz; Sawosz, Ewa

    2017-01-01

    , while others have indicated that graphene might become health hazards. In this study, we explore the biocompatibility of graphene-related materials with chicken embryo red blood cells (RBC). The hemolysis assay was employed to evaluate the in vitro blood compatibility of reduced graphene, graphene oxide......, and reduced graphene oxide, because these materials have recently been used for biomedical applications, including injectable graphene-related particles. This study investigated structural damage, ROS production and hemolysis of chicken embryo red blood cells. Different forms of graphene, when incubated...... with chicken embryo RBC, were harmful to cell structure and induced hemolysis....

  20. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study.

    Directory of Open Access Journals (Sweden)

    Xiangyi Kong

    Full Text Available Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI treatment cycles, n = 799 were classified as follows: less than 5 cells (10C; n = 42. Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In 10C embryos increased compared to 7-8C embryos (45.8%, 33.3% vs. 11.1%, respectively. In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas 10C. In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number.

  1. Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning.

    Science.gov (United States)

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang

    2013-02-01

    Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a

  2. Gastrin-releasing peptide in the porcine pancreas

    DEFF Research Database (Denmark)

    Holst, J J; Poulsen, Steen Seier

    1987-01-01

    to consist of one main form, namely the 27-amino acid peptide originally extracted from porcine stomach, and small amounts of a C-terminal fragment identical with the C-terminal 10-amino acid peptide. Gastrin-releasing peptide-like immunoreactivity released from the isolated perfused porcine pancreas during...... electrical vagal stimulation was shown by gel filtration to consist of the same two forms. By use of immunocytochemical techniques employing an antiserum directed against its N terminus, GRP was localized to varicose nerve fibers in close association with the exocrine tissue of the porcine pancreas...... in particular. Some fibers were found penetrating into pancreatic islets also. Immunoreactive nerve cell bodies as well as fibers were found within intrapancreatic ganglia. The potency of GRP in stimulating exocrine as well as endocrine secretion from the porcine pancreas, its presence in close contact...

  3. Control of protein synthesis in cell-free extracts of sea urchin embryos

    International Nuclear Information System (INIS)

    Hansen, L.J.; Huang, W.I.; Jagus, R.

    1986-01-01

    Although the increase in protein synthesis that occurs after fertilization of sea urchin eggs results from increased utilization of stored maternal mRNA, the underlying mechanism is unknown. The authors have prepared cell-free extracts from S.purpuratus and A.puctulata unfertilized eggs and 2-cell embryos that retain the protein synthetic differences observed in vivo. The method is based on that of Dr. Alina Lopo. 35 S methionine incorporation is linear during a 30 min incubation and is 10-20 fold higher in extracts from 2-cell embryos than unfertilized eggs. Addition of purified mRNA does not stimulate these systems, suggesting a regulatory mechanism other than mRNA masking. Addition of rabbit reticulocyte ribosomal salt wash stimulated protein synthesis in extracts from eggs but not embryos, suggesting deficiencies in translational components in unfertilized eggs. Mixing of egg and embryo lysates indicated the presence of a weak protein synthesis inhibitor in eggs. Translational control in developing sea urchin embryos thus appears to be complex, involving both stimulatory and inhibitory factors

  4. Regional localization of suspensor mRNAs during early embryo development.

    Science.gov (United States)

    Weterings, K; Apuya, N R; Bi, Y; Fischer, R L; Harada, J J; Goldberg, R B

    2001-11-01

    We investigated gene activity within the giant embryos of the scarlet runner bean (Phaseolus coccineus) to gain understanding of the processes by which the apical and basal cells become specified to follow different developmental pathways after division of the zygote. We identified two mRNAs, designated G564 and C541, that accumulate specifically within the suspensor of globular-stage embryos. G564 mRNA accumulates uniformly throughout the suspensor, whereas C541 mRNA accumulates to a higher level within the large basal cells of the suspensor that anchor the embryo to the surrounding seed tissue. Both G564 and C541 mRNAs begin to accumulate shortly after fertilization and are present within the two basal cells of embryos at the four-cell stage. In contrast, at the same stage, these mRNAs are not detectable within the two descendants of the apical cell. Nor are they detectable within cells of the embryo sac before fertilization, including the egg cell. We used a G564/beta-glucuronidase reporter gene to show that the G564 promoter is activated specifically within the basal region and suspensor of preglobular tobacco embryos. Analysis of the G564 promoter identified a sequence domain required for transcription within the suspensor that contains several copies of a conserved motif. These results show that derivatives of the apical and basal cells transcribe different genes as early as the four-cell stage of embryo development and suggest that the apical and basal cells are specified at the molecular level after division of the zygote.

  5. Regional Localization of Suspensor mRNAs during Early Embryo Development

    Science.gov (United States)

    Weterings, Koen; Apuya, Nestor R.; Bi, Yuping; Fischer, Robert L.; Harada, John J.; Goldberg, Robert B.

    2001-01-01

    We investigated gene activity within the giant embryos of the scarlet runner bean (Phaseolus coccineus) to gain understanding of the processes by which the apical and basal cells become specified to follow different developmental pathways after division of the zygote. We identified two mRNAs, designated G564 and C541, that accumulate specifically within the suspensor of globular-stage embryos. G564 mRNA accumulates uniformly throughout the suspensor, whereas C541 mRNA accumulates to a higher level within the large basal cells of the suspensor that anchor the embryo to the surrounding seed tissue. Both G564 and C541 mRNAs begin to accumulate shortly after fertilization and are present within the two basal cells of embryos at the four-cell stage. In contrast, at the same stage, these mRNAs are not detectable within the two descendants of the apical cell. Nor are they detectable within cells of the embryo sac before fertilization, including the egg cell. We used a G564/β-glucuronidase reporter gene to show that the G564 promoter is activated specifically within the basal region and suspensor of preglobular tobacco embryos. Analysis of the G564 promoter identified a sequence domain required for transcription within the suspensor that contains several copies of a conserved motif. These results show that derivatives of the apical and basal cells transcribe different genes as early as the four-cell stage of embryo development and suggest that the apical and basal cells are specified at the molecular level after division of the zygote. PMID:11701878

  6. Use of "excess" human embryos for stem cell research: protecting women's rights and health.

    Science.gov (United States)

    Cohen, C B

    2000-01-01

    Proposed National Institutes of Health guidelines for stem cell research are too narrowly drawn and do not adequately protect the freedom of choice and health of women who donate embryos. They need to be expanded to cover not only the point of embryo donation, but also that of embryo creation. Guidelines are provided to ensure that donors undergoing hyperstimulation and egg retrieval gave voluntary informed consent to the production of embryos that might later prove in excess. A standard for determining when embryos have been overproduced is presented to address the possibility that additional embryos will be created for stem cell research in violation of the guidelines and at risk to women's health.

  7. Mouse Embryo Compaction.

    Science.gov (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  8. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed

    International Nuclear Information System (INIS)

    Jegla, D.E.; Sussex, I.M.

    1989-01-01

    We mapped the fate of cells in the shoot meristem of the dry-seed embryo of sunflower, Helianthus annuus L. cv. Peredovic, using irradiation-induced somatic sectors. We analyzed 249 chlorophyll-deficient or glabrous (hairless) sectors generated in 236 plants. Most sectors observed in the inflorescence extended into vegetative nodes. Thus cell lineages that ultimately gave rise to reproductive structures also contributed to vegetative structures. No single sector extended the entire length of the shoot. Thus the shoot is not derived from one or a few apical initials. Rather, the position, vertical extent, and width of the sectors at different levels of the shoot suggest that the shoot is derived from three to four circumferential populations of cells in each of three cell layers of the embryo meristem. Sectors had no common boundaries even in plants with two or three independent sectors, but varied in extent and overlapped along the length of the shoot. Thus individual cells in a single circumferential population behaved independently to contribute lineages of different vertical extents to the growing shoot. The predicted number of circumferential populations of cells as well as the apparent cell number in each population was consistent with the actual number of cells in the embryo meristem observed in histological sections

  9. Autophagy is essential for the differentiation of porcine PSCs into insulin-producing cells.

    Science.gov (United States)

    Ren, Lipeng; Yang, Hong; Cui, Yanhua; Xu, Shuanshuan; Sun, Fen; Tian, Na; Hua, Jinlian; Peng, Sha

    2017-07-01

    Porcine pancreatic stem cells (PSCs) are seed cells with potential use for diabetes treatment. Stem cell differentiation requires strict control of protein turnover and lysosomal digestion of organelles. Autophagy is a highly conserved process that controls the turnover of organelles and proteins within cells and contributes to the balance of cellular components. However, whether autophagy plays roles in PSC differentiation remains unknown. In this study, we successfully induced porcine PSCs into insulin-producing cells and found that autophagy was activated during the second induction stage. Inhibition of autophagy in the second stage resulted in reduced differentiational efficiency and impaired glucose-stimulated insulin secretion. Moreover, the expression of active β-catenin increased while autophagy was activated but was suppressed when autophagy was inhibited. Therefore, autophagy is essential to the formation of insulin-producing cells, and the effects of autophagy on differentiation may be regulated by canonical Wnt signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media.

    Science.gov (United States)

    Kleijkers, Sander H M; Eijssen, Lars M T; Coonen, Edith; Derhaag, Josien G; Mantikou, Eleni; Jonker, Martijs J; Mastenbroek, Sebastiaan; Repping, Sjoerd; Evers, Johannes L H; Dumoulin, John C M; van Montfoort, Aafke P A

    2015-10-01

    Is gene expression in human preimplantation embryos affected by the medium used for embryo culture in vitro during an IVF treatment? Six days of in vitro culture of human preimplantation embryos resulted in medium-dependent differences in expression level of genes involved in apoptosis, protein degradation, metabolism and cell-cycle regulation. Several human studies have shown an effect of culture medium on embryo development, pregnancy outcome and birthweight. However, the underlying mechanisms in human embryos are still unknown. In animal models of human development, it has been demonstrated that culture of preimplantation embryos in vitro affects gene expression. In humans, it has been found that culture medium affects gene expression of cryopreserved embryos that, after thawing, were cultured in two different media for 2 more days. In a multicenter trial, women were randomly assigned to two culture medium groups [G5 and human tubal fluid (HTF)]. Data on embryonic development were collected for all embryos. In one center, embryos originating from two pronuclei (2PN) zygotes that were not selected for transfer or cryopreservation on Day 2 or 3 because of lower morphological quality, were cultured until Day 6 and used in this study, if couples consented. Ten blastocysts each from the G5 and HTF study groups, matched for fertilization method, maternal age and blastocyst quality, were selected and their mRNA was isolated and amplified. Embryos were examined individually for genome-wide gene expression using Agilent microarrays and PathVisio was used to identify the pathways that showed a culture medium-dependent activity. Expression of 951 genes differed significantly (P differences observed between the study groups are caused by factors that we did not investigate. Extrapolation of these results to embryos used for transfer demands caution as in the present study embryos that were not selected for either embryo transfer or cryopreservation have been used for the

  11. Establishment and characterization of a differentiated epithelial cell culture model derived from the porcine cervix uteri.

    Science.gov (United States)

    Miessen, Katrin; Einspanier, Ralf; Schoen, Jennifer

    2012-03-19

    Cervical uterine epithelial cells maintain a physiological and pathogen-free milieu in the female mammalian reproductive tract and are involved in sperm-epithelium interaction. Easily accessible, differentiated model systems of the cervical epithelium are not yet available to elucidate the underlying molecular mechanisms within these highly specialized cells. Therefore, the aim of the study was to establish a cell culture of the porcine cervical epithelium representing in vivo-like properties of the tissue. We tested different isolation methods and culture conditions and validated purity of the cultured cells by immunohistochemistry against keratins. We could reproducibly culture pure epithelial cells from cervical tissue explants. Based on a morphology score and the WST-1 Proliferation Assay, we optimized the growth medium composition. Primary porcine cervical cells performed best in conditioned Ham's F-12, containing 10% FCS, EGF and insulin. After cultivation in an air-liquid interface for three weeks, the cells showed a discontinuously multilayered phenotype. Finally, differentiation was validated via immunohistochemistry against beta catenin. Mucopolysaccharide production could be shown via alcian blue staining. We provide the first suitable protocol to establish a differentiated porcine epithelial model of the cervix uteri, based on easily accessible cells using slaughterhouse material.

  12. Two different pathways for the transport of primitive and definitive blood cells from the yolk sac to the embryo in humans.

    Science.gov (United States)

    Pereda, Jaime; Monge, Juan I; Niimi, Gen

    2010-08-01

    During the early human embryonic period nutrients and blood cells are temporarily provided by the extraembryonic yolk sac (YS). The YS before week six is involved not only in primitive but also in definitive erythropoiesis. While the destiny of primitive erythroid cells that fill the blood vessels of the YS is well known, the final destination of erythrocytes present in the endodermal vesicular system is unknown. In the present study we have investigated, step by step, the destiny of the erythrocytes present in the endodermal vesicles during the embryonic period. Twelve human YSs and their corresponding yolk stalks were analyzed between weeks 4 and 7 of embryonic age by light and scanning electron microscopy. It is shown that erythrocytes (according to their size and morphological features) located within the endodermal vesicles of the YS wall are pulled out through endodermal pits into the YS cavity, from where they reach the lumen of the primitive gut of the embryo through the vitelline duct, a temporary pathway communicating both compartments. During the study period no erythrocytes were seen within the embryo's vascular network where only primitive erythroblasts were identified. Our results indicate that the vitelline duct plays an important transient role as a pathway for the transport of nutrients and blood cells between the YS and the embryo before week five of embryonic development that ends just at the time when YS-embryo circulation becomes established. (c) 2010 Wiley-Liss, Inc.

  13. Action of uranium on pre implanted mouse embryos

    International Nuclear Information System (INIS)

    Kundt, Miriam S.

    2001-01-01

    The cultured preimplantation embryos are normally employed to evaluate the effects of environmental pollutants specially metals. Embryos were obtained from hybrid females CBA x C57 Bl following induction of super ovulation. They were incubated from 1 cell stage during 120 hs. in M16 cultured medium. Three different experiments were carried out: A, B and C using uranyl nitrate UO 2 (NO 3 ) 2 6H 2 O as source of uranium. In experiment 'A' the embryos were cultivated in the same culture dish containing final U concentrations of 13, 26, 52, 104 and 208 μgU/ml. In experiment 'B' embryos in a one cell stage were placed in culture medium with uranyl nitrate with final U concentrations of 26, 52, 104 μgU/ml. After 24 hours those embryos which had reached the two-cell stage were transferred to another culture dish to which fresh solutions of uranyl nitrate were added, maintaining the same concentrations of the previous one. In experiment 'C' the embryos were cultivated containing final U concentrations of 26, 52 and 104 μgU/ml and they were transferred to another culture dish every day to which fresh solutions of uranyl nitrate were added. Different embryos parameters were analyzed: 1) Development grade; 2) Number of cell per embryo and metaphases index; and 3) Embryo ploidy. 1) Embryos were observed each 24 hs. to evaluate development grade: 2, 4 and 8 cell stage, morula, early -expanded- hatched blastocysts and atresic embryos. No significant differences were observed in the proportion of embryos arrested either in the one-cell or in the two cell stages in control culture medium regarding different concentrations of U, in a total of 4388 embryos analyzed. From 2 cell stage, moment that the embryo begins to synthesize its own ARNm, the delay in embryonic development increased dose dependent. On the other hand, the toxicological effects in the same concentration are increase from 'A' treatment to 'C' treatment. Embriotoxicology effects are evidenced by an increment in

  14. Tyrosine hydroxylase positive nerves and mast cells in the porcine gallbladder

    Directory of Open Access Journals (Sweden)

    I. Stefanov

    2017-03-01

    Full Text Available The aim of this study was to detect the localisation of tyrosine hydroxylase (TH positive nerve fibres (THN and distribution of tyrosine hydroxylase positive mast cells (THMC in the wall of porcine gallbladder. THN were observed as single fibres, nerve fibres forming perivascular plexuses and nerve fibres grouped within the nerve fascicles. In the gallbladder`s fundus, body and neck, the TH+ fibres formed mucosal, muscular and serosal nonganglionated nerve plexuses. Toluidine blue (TB staining was used to confirm that the TH positive cells were mast cells. The number of THMC in the propria of gallbladder`s fundus, body and neck was significantly higher than in the muscular and serosal layers in both genders. The number of mast cells in the musculature was higher than in the serosa. The density and location of the THMC were similar to the TB positive (with gamma meta-chromasia mast cells in both males and females, and statistically significant difference was not established. In conclusion, original data concerning the existence and localisation of catecholaminergic nerves and THMC distribution in the porcine gallbladder’s wall are presented. The results could con-tribute to the body of knowledge of functional communication between autonomic nerves and mast cells in the gallbladder.

  15. Enhancement of NMRI Mouse Embryo Development In vitro

    Directory of Open Access Journals (Sweden)

    Abedini, F.

    2013-12-01

    Full Text Available Most of the systematic studies used in the development of human embryo culture media have been done first on mouse embryos. The general use of NMRI outbred mice is a model for toxicology, teratology and pharmacology. NMRI mouse embryo exhibit the two-cell block in vitro. The objective of this study was to evaluate and compare the effects of four kinds of culture media on the development of zygotes (NMRI after embryo vitrification. One-cell mouse embryos were obtained from NMRI mice after superovulation and mating with adult male NMRI mice. And then randomly divided into 4 groups for culture in four different cultures media including: M16 (A, DMEM/Ham, F-12 (B, DMEM/Ham's F-12 co-culture with Vero cells(C and DMEM/Ham's F-12 co-culture with MEF cells (D. Afterward all of the embryos were vitrified in EFS40 solution and collected. Results of our study revealed, more blastocysts significantly were developed with co-culture with MEF cells in DMEM/Ham's F-12 medium. More research needed to understand the effect of other components of culture medium, and co-culture on NMRI embryo development.

  16. Directed differentiation of porcine epiblast-derived neural progenitor cells into neurons and glia

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Carter, T.F.

    2011-01-01

    Neural progenitor cells (NPCs) are promising candidates for cell-based therapy of neurodegenerative diseases; however, safety concerns must be addressed through transplantation studies in large animal models, such as the pig. The aim of this study was to derive NPCs from porcine blastocysts...

  17. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Marianne; Rasmussen, Mikkel Aabech

    2012-01-01

    Porcine induced pluripotent stem cells (piPSCs) have the capacity to differentiate in vitro and in vivo and form chimeras. However, the lack of transgene silencing of exogenous DNA integrated into the genome and the inability of cells to proliferate in the absence of transgene expression...... pluripotency in the pig. This may help to explain the difficulties in producing stable piPSCs and bona fide embryonic stem cell lines in this species....... transgenes on the expression of the porcine endogenous pluripotency machinery. Endogenous and exogenous gene expression of OCT4, NANOG, SOX2, KLF4, and cMYC was determined at passages 5, 10, 15, and 20, both in cells cultured at 1¿µg/mL doxycycline or 4¿µg/mL doxycycline. Our results revealed that endogenous...

  18. Beneficial effect of two culture systems with small groups of embryos on the development and quality of in vitro-produced bovine embryos.

    Science.gov (United States)

    Cebrian-Serrano, A; Salvador, I; Silvestre, M A

    2014-02-01

    Currently, in vitro-produced embryos derived by ovum pick up (OPU) and in vitro fertilization (IVF) technologies represent approximately one-third of the embryos worldwide in cattle. Nevertheless, the culture of small groups of embryos from an individual egg donor is an issue that OPU-IVF laboratories have to face. In this work, we tested whether the development and quality of the preimplantation embryos in vitro cultured in low numbers (five embryos) could be improved by the addition of epidermal growth factor, insulin, transferrin and selenium (EGF-ITS) or by the WOW system. With this aim, immature oocytes recovered from slaughtered heifers were in vitro matured and in vitro fertilized. Presumptive zygotes were then randomly cultured in four culture conditions: one large group (LG) (50 embryos/500 μl medium) and three smaller groups [five embryos/50 μl medium without (control) or with EGF-ITS (EGF-ITS) and five embryos per microwell in the WOW system (WOW)]. Embryos cultured in LG showed a greater ability to develop to blastocyst stage than embryos cultured in smaller groups, while the blastocyst rate of WOW group was significantly higher than in control. The number of cells/blastocyst in LG was higher than control or WOW, whereas the apoptosis rate per blastocyst was lower. On the other hand, the addition of EGF-ITS significantly improved both parameters compared to the control and resulted in similar embryo quality to LG. In conclusion, the WOW system improved embryo development, while the addition of EGF-ITS improved the embryo quality when smaller groups of embryos were cultured. © 2013 Blackwell Verlag GmbH.

  19. Can a genetically-modified organism-containing diet influence embryo development? A preliminary study on pre-implantation mouse embryos

    Directory of Open Access Journals (Sweden)

    B Cisterna

    2009-08-01

    Full Text Available In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs. Recent studies have demonstrated that a diet containing a genetically modified (GM soybean can induce modifications of nuclear constituents involved in RNA processing in some tissues of young, adult and old mice. On this basis, we have investigated the ultrastructural and immunocytochemical features of pre-implantation embryos from mice fed either GM or non- GM soybean in order to verify whether the parental diet can affect the morpho-functional development of the embryonic ribonucleoprotein structural constituents involved in premRNA pathways. Morphological observations revealed that the general aspect of embryo nuclear components is similar in the two experimental groups. However, immunocytochemical and in situ hybridization results suggest a temporary decrease of pre-mRNA transcription and splicing in 2-cell embryos and a resumption in 4-8-cell embryos from mice fed GM soybean; moreover, pre-mRNA maturation seems to be less efficient in both 2-cell and 4-8-cell embryos from GM-fed mice than in controls. Although our results are still preliminary and limited to the pre-implantation phases, the results of this study encourage deepening on the effects of food components and/or contaminants on embryo development.

  20. Can a genetically-modified organism-containing diet influence embryo development? A preliminary study on pre-implantation mouse embryos.

    Science.gov (United States)

    Cisterna, B; Flach, F; Vecchio, L; Barabino, S M L; Battistelli, S; Martin, T E; Malatesta, M; Biggiogera, M

    2008-01-01

    In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs. Recent studies have demonstrated that a diet containing a genetically modified (GM) soybean can induce modifications of nuclear constituents involved in RNA processing in some tissues of young, adult and old mice. On this basis, we have investigated the ultrastructural and immunocytochemical features of pre-implantation embryos from mice fed either GM or non- GM soybean in order to verify whether the parental diet can affect the morpho-functional development of the embryonic ribonucleoprotein structural constituents involved in pre-mRNA pathways. Morphological observations revealed that the general aspect of embryo nuclear components is similar in the two experimental groups. However, immunocytochemical and in situ hybridization results suggest a temporary decrease of pre-mRNA transcription and splicing in 2-cell embryos and a resumption in 4-8-cell embryos from mice fed GM soybean; moreover, pre-mRNA maturation seems to be less efficient in both 2-cell and 4-8-cell embryos from GM-fed mice than in controls. Although our results are still preliminary and limited to the pre-implantation phases, the results of this study encourage deepening on the effects of food components and/or contaminants on embryo development.

  1. Establishment and characterization of a differentiated epithelial cell culture model derived from the porcine cervix uteri

    Directory of Open Access Journals (Sweden)

    Miessen Katrin

    2012-03-01

    Full Text Available Abstract Background Cervical uterine epithelial cells maintain a physiological and pathogen-free milieu in the female mammalian reproductive tract and are involved in sperm-epithelium interaction. Easily accessible, differentiated model systems of the cervical epithelium are not yet available to elucidate the underlying molecular mechanisms within these highly specialized cells. Therefore, the aim of the study was to establish a cell culture of the porcine cervical epithelium representing in vivo-like properties of the tissue. Results We tested different isolation methods and culture conditions and validated purity of the cultured cells by immunohistochemistry against keratins. We could reproducibly culture pure epithelial cells from cervical tissue explants. Based on a morphology score and the WST-1 Proliferation Assay, we optimized the growth medium composition. Primary porcine cervical cells performed best in conditioned Ham's F-12, containing 10% FCS, EGF and insulin. After cultivation in an air-liquid interface for three weeks, the cells showed a discontinuously multilayered phenotype. Finally, differentiation was validated via immunohistochemistry against beta catenin. Mucopolysaccharide production could be shown via alcian blue staining. Conclusions We provide the first suitable protocol to establish a differentiated porcine epithelial model of the cervix uteri, based on easily accessible cells using slaughterhouse material.

  2. THE EFFECT OF GREEN TEA EXTRACT - EPIGALLOCATECHIN GALLATE (EGCG ON PORCINE OVARIAN GRANULOSA CELL

    Directory of Open Access Journals (Sweden)

    Attila Kádasi

    2014-02-01

    Full Text Available The aim of our study was to elucidate the potential effect of green tea substance on basic ovarian functions. For this purpose, we examined the action of green tea bioactive molecule, epigallocatechin gallate (given at doses 0, 1, 10, 100 μg/mL, on cultured porcine ovarian granulosa cell functions - proliferation, apoptosis and steroidogenesis. Accumulation of PCNA (marker of proliferation, BAX (marker of apoptosis and the release of steroid hormones (progesterone and testosterone were analysed by immunocytochemistry and RIA respectively. It was observed that epigallocatechin gallate addition decreased the percentage of proliferative (PCNA-positive cells at all used doses (1, 10 and 100 μg/mL. The percentage of apoptotic (BAX-positive cells was increased at the highest used dose (100 μg/mL, but not a lower doses. Epigallocatechin gallate stimulated progesterone release (at 10 μg/mL but not at 1 and 100 μg/mL and diminished testosterone release (at 1 μg/mL but not at 10 and 100 μg/mL by porcine granulosa cells. Our results suggest a direct effect of epigallocatechin gallate on proliferation, apoptosis and steroidogenesis in porcine ovaries. Taken together, these data suggest that green tea molecule epigallocatechin gallate can negatively affect reproductive (ovarian functions – suppress ovarian cell proliferation, promote their apoptosis and alter release of steroid hormones.

  3. Effect of roscovitine treated donor cells and different activation methods on development of handmade cloned goat (Capra hircus) embryos.

    Science.gov (United States)

    Akshey, Y S; Malakar, D; De, A Kumar; Jena, M Kumar; Pawar, S Kumar; Dutta, R; Sahu, S

    2011-05-01

    The aim of the present investigation was to find out the effects of roscovitine treatment of donor cells and different activation methods on development of HMC goat embryos. Goat fetal fibroblast cells were cultured and divided into three treatment groups-contact inhibition group, roscovitine treatment group and serum starvation group. There was a significant decrease in blastocyst yield in serum starvation group (6.82%) compared to roscovitine treatment group (19.31%) and contact inhibition group (18.52%), however, no significant difference was found between roscovitine treatment group and contact inhibition group. To see the effect of different methods of activation, the reconstructed embryos were randomly divided into two groups and activated by two methods-one half by 2 μM Ca ionophore and another half by 2.31 kV/cm for 15 μSec electrical pulse. Subsequently, cloned embryos were cultured in TCM-199 based embryo development medium supplemented with 10 mg/mL bovine serum albumin in WOW culture system. There was a significant increase in the rate of cleavage and blastocyst production in electric pulse activation of 78.57% and 21.43% than Ca ionophore activation of 62.63% and 10.61% respectively. In conclusion, treatment of donor cells with roscovitine yields a significantly increased blastocyst than serum starved donor cells but equivalent blastocyst to contact inhibition group and electrical pulse activation (EPA) improves the production of HMC goat embryos. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Birth of normal infants after transfer of embryos that were twice vitrified/warmed at cleavage stages: report of two cases.

    Science.gov (United States)

    Valle, Marcello; Guimarães, Fernando; Cavagnoli, Melissa; Sampaio, Marcos; Geber, Selmo

    2012-12-01

    The role of cryopreservation in assisted reproductive technology programs has increased within the last years allowing the transfer of a limited number of embryos and the storage of the remaining for future use. The reduction in the number of transferred embryos decreases the frequency of multiple pregnancy rates and of ovarian hyperstimulation syndrome while the cumulative pregnancy rate can be maximized. Moreover, as not all embryos will survive the warming process more cleavage stage embryos are warmed to improve selection for transfer. Therefore, surplus good quality cleavage stage embryos and/or blastocysts must be re-vitrified for further transfer to achieve pregnancy. To our knowledge, there have been no reports demonstrating that human embryos can be successfully vitrified/warmed twice at the cleavage stage. Thus we report two successful pregnancies and deliveries of healthy babies after transfer of embryos that were twice vitrified/warmed at 2-4 cells stage. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice.

    Directory of Open Access Journals (Sweden)

    Jin Hee Kim

    Full Text Available When expression of more than one gene is required in cells, bicistronic or multicistronic expression vectors have been used. Among various strategies employed to construct bicistronic or multicistronic vectors, an internal ribosomal entry site (IRES has been widely used. Due to the large size and difference in expression levels between genes before and after IRES, however, a new strategy was required to replace IRES. A self-cleaving 2A peptide could be a good candidate to replace IRES because of its small size and high cleavage efficiency between genes upstream and downstream of the 2A peptide. Despite the advantages of the 2A peptides, its use is not widespread because (i there are no publicly available cloning vectors harboring a 2A peptide gene and (ii comprehensive comparison of cleavage efficiency among various 2A peptides reported to date has not been performed in different contexts. Here, we generated four expression plasmids each harboring different 2A peptides derived from the foot-and-mouth disease virus, equine rhinitis A virus, Thosea asigna virus and porcine teschovirus-1, respectively, and evaluated their cleavage efficiency in three commonly used human cell lines, zebrafish embryos and adult mice. Western blotting and confocal microscopic analyses revealed that among the four 2As, the one derived from porcine teschovirus-1 (P2A has the highest cleavage efficiency in all the contexts examined. We anticipate that the 2A-harboring cloning vectors we generated and the highest efficiency of the P2A peptide we demonstrated would help biomedical researchers easily adopt the 2A technology when bicistronic or multicistronic expression is required.

  6. The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*

    Science.gov (United States)

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539

  7. Embryo Cell Membranes Reconstruction by Tensor Voting

    OpenAIRE

    Michelin , Gaël; Guignard , Léo; Fiuza , Ulla-Maj; Malandain , Grégoire

    2014-01-01

    International audience; Image-based studies of developing organs or embryos produce a huge quantity of data. To handle such high-throughput experimental protocols, automated computer-assisted methods are highly desirable. This article aims at designing an efficient cell segmentation method from microscopic images. The proposed approach is twofold: first, cell membranes are enhanced or extracted by the means of structure-based filters, and then perceptual grouping (i.e. tensor voting) allows t...

  8. Rape embryogenesis. III. Embryo development in time

    Directory of Open Access Journals (Sweden)

    Teresa Tykarska

    2014-01-01

    Full Text Available It was found that the growth curve of the rape embryo axis is of triple sigmoid type. Embryo growth occurs in 3 phases corresponding to 3 different periods of development. Phase I includes growth of the apical cell up to it's division into two layers of octants. Phase II comprises the increase of the spherical proembryo to the change of its symmetry from radial to bilateral. Phase III includes, growth of the embryo from the heart stage up to the end of embryogenesis. In each phase the relative growth rate increases drastically and then diminishes. The differences in growth intensity during the same phase are several-fold. The growth intensity maximum of the embryo axis occurs in phase II. The phasic growth intensity maxima occur: in phase I during apical cell elongation, :before its division, and in phases II and III in the periods of cell division ;growth in globular and torpedo-shaped -shaped embryos.

  9. Epithelialization and stromalization of porcine follicular granulosa cells during real-time proliferation - a primary cell culture approach.

    Science.gov (United States)

    Ciesiółka, S; Bryja, A; Budna, J; Kranc, W; Chachuła, A; Bukowska, D; Piotrowska, H; Porowski, L; Antosik, P; Bruska, M; Brüssow, K P; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    The process of oocyte growth and development takes place during long stages of folliculogenesis and oogenesis. This is accompanied by biochemical and morphological changes, occurring from the preantral to antral stages during ovarian follicle differentiation. It is well known that the process of follicle growth is associated with morphological modifications of theca (TCs) and granulosa cells (GCs). However, the relationship between proliferation and/or differentiation of porcine GCs during long-term in vitro culture requires further investigation. Moreover, the expression of cytokeratins and vimentin in porcine GCs, in relation to real-time cell proliferation, has yet to be explored. Utilizing confocal microscopy, we analyzed cytokeratin 18 (CK18), cytokeratin 8 + 18 + 19 (panCK), and vimentin (Vim) expression, as well as their protein distribution, within GCs isolated from slaughtered ovarian follicles. The cells were cultured for 168 h with protein expression and cell proliferation index analyzed at 24-h intervals. We found the highest expression of CK18, panCK, and Vim occurred at 120 h of in vitro culture (IVC) as compared with other experimental time intervals. All of the investigated proteins displayed cytoplasmic distribution. Analysis of real-time cell proliferation revealed an increased cell index after the first 24 h of IVC. Additionally, during each period between 24-168 h of IVC, a significant difference in the proliferation profile, expressed as the cell index, was also observed. We concluded that higher expression of vimentin at 120 h of in vitro proliferation might explain the culmination of the stromalization process associated with growth and domination of stromal cells in GC culture. Cytokeratin expression within GC cytoplasm confirms the presence of epithelial cells as well as epithelial-related GC development during IVC. Moreover, expression of both cytokeratins and vimentin during short-term culture suggests that the process of GC proliferation

  10. Effects of Mycoplasma hyopneumoniae on porcine nasal cavity dendritic cells.

    Science.gov (United States)

    Shen, Yumeng; Hu, Weiwei; Wei, Yanna; Feng, Zhixin; Yang, Qian

    2017-01-01

    Mycoplasma hyopneumoniae (Mhp) is the primary etiological agent responsible for swine enzootic pneumonia (EP), a disease that cause tremendous economic losses all over the swine industry. Dendritic cells (DCs), the most effective antigen-presenting cells, are widely distributed beneath respiratory epithelium. DCs uptake and present antigens to T cells, to initiate protective immune responses or generate immune-mediated pathology in different infections. In this study, we investigated the changes in the different DCs subpopulations, T cells and SIgA positive cells counts in porcine nasal cavity after long time Mhp infection. We further evaluated the role of porcine DCs in Mhp exposure. Our results showed that the number of SLA-II-DR + SWC3a + DCs, SLA-II-DR + CD11b + DCs, T cells, SIgA positive cells in nasal cavity were decreased after Mhp 28 days infection in vivo experiment. The antigen presenting ability of DCs were inhibited by Mhp exposure. DCs couldn't activate T-cell proliferation by down-regulating the antigen presenting molecule CD1a expression and promoting high level of IL-10 production. Further more, the expression levels of IL-12 and IFN-γ in DCs were decreased, suggesting that DCs favour for Th2 immune response development after Mhp exposure in vitro. Taken together, Mhp infection impairs the immune function which allows the persistence of Mhp and cause predispose pigs to secondary infections. The decline of DCs presentation ability is the reason why dysfunction and persistence in Mhp infection. These findings are benefit for exploring the pathogenic mechanisms of Mhp in pigs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.

    Science.gov (United States)

    Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel

    2011-02-15

    At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.

  12. Fe(III Is Essential for Porcine Embryonic Development via Mitochondrial Function Maintenance.

    Directory of Open Access Journals (Sweden)

    Ming-Hui Zhao

    Full Text Available Iron is an important trace element involved in several biological processes. The role of iron in porcine early embryonic development remains unknown. In the present study, we depleted iron (III, Fe3+ with deferoxamine (DFM, a specific Fe3+ chelator, in cultured porcine parthenotes and monitored embryonic development, apoptosis, mitochondrial membrane potential, and ATP production. Results showed biphasic function of Fe3+ in porcine embryo development. 0.5 μM DFM obviously increased blastocyst formation (57.49 ± 2.18% vs. control, 43.99 ± 1.72%, P < 0.05 via reduced (P < 0.05 production of reactive oxygen species (ROS, further increased mitochondrial membrane potential and ATP production in blastocysts (P < 0.05. 0.5 μM DFM decreased mRNA expression of Caspase 3 (Casp3 and increased Bcl-xL. However, results showed a significant reduction in blastocyst formation in the presence of 5.0 μM DFM compared with the control group (DFM, 21.62 ± 3.92% vs. control, 43.99 ± 1.73%, P < 0.05. Fe3+ depletion reduced the total (DFM, 21.10 ± 8.78 vs. control, 44.09 ± 13.65, P < 0.05 and increased apoptotic cell number (DFM, 11.10 ± 5.24 vs. control, 2.64 ± 1.43, P < 0.05 in the blastocyst. An obvious reduction in mitochondrial membrane potential and ATP level after 5.0 μM DFM treatment was observed. Co-localization between mitochondria and cytochrome c was reduced after high concentration of DFM treatment. In conclusion, Fe3+ is essential for porcine embryonic development via mitochondrial function maintenance, but redundant Fe3+ impairs the function of mitochondria.

  13. No Relationship between Embryo Morphology and Successful Derivation of Human Embryonic Stem Cell Lines

    Science.gov (United States)

    Ström, Susanne; Rodriguez-Wallberg, Kenny; Holm, Frida; Bergström, Rosita; Eklund, Linda; Strömberg, Anne-Marie; Hovatta, Outi

    2010-01-01

    Background The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. Methods We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. Results Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. Conclusion Even very poor quality embryos with few cells in the ICM can give origin to hESC lines. PMID:21217828

  14. Comparative Analysis of the Regulatory T Cells Dynamics in Peripheral Blood in Human and Porcine Polytrauma

    Directory of Open Access Journals (Sweden)

    Rafael Serve

    2018-03-01

    Full Text Available BackgroundSeverely injured patients experience substantial immunological stress in the aftermath of traumatic insult, which often results in systemic immune dysregulation. Regulatory T cells (Treg play a key role in the suppression of the immune response and in the maintenance of immunological homeostasis. Little is known about their presence and dynamics in blood after trauma, and nothing is known about Treg in the porcine polytrauma model. Here, we assessed different subsets of Treg in trauma patients (TP and compared those to either healthy volunteers (HV or data from porcine polytrauma.MethodsPeripheral blood was withdrawn from 20 TP with injury severity score (ISS ≥16 at the admittance to the emergency department (ED, and subsequently on day 1 and at day 3. Ten HV were included as controls (ctrl. The porcine polytrauma model consisted of a femur fracture, liver laceration, lung contusion, and hemorrhagic shock resulting in an ISS of 27. After polytrauma, the animals underwent resuscitation and surgical fracture fixation. Blood samples were withdrawn before and immediately after trauma, 24 and 72 h later. Different subsets of Treg, CD4+CD25+, CD4+CD25+FoxP3+, CD4+CD25+CD127−, and CD4+CD25+CD127−FoxP3+ were characterized by flow cytometry.ResultsAbsolute cell counts of leukocytes were significantly increasing after trauma, and again decreasing in the follow-up in human and porcine samples. The proportion of human Treg in the peripheral blood of TP admitted to the ED was lower when compared to HV. Their numbers did not recover until 72 h after trauma. Comparable data were found for all subsets. The situation in the porcine trauma model was comparable with the clinical data. In porcine peripheral blood before trauma, we could identify Treg with the typical immunophenotype (CD4+CD25+CD127−, which were virtually absent immediately after trauma. Similar to the human situation, most of these cells expressed FoxP3, as assessed by

  15. An Epigenetic Modifier Results in Improved In Vitro Blastocyst production after Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Zhang, Yunhai; Li, Juan; Villemoes, Klaus

    2007-01-01

    The present study was designed to examine the effect of trichostatin A (TSA), an inhibitor of histone deacetylase, on development of porcine cloned embryos. Our results showed that treatment of cloned embryos derived from sow oocytes with 50 nM TSA for up to 24 h after the onset of activation cou...... were tested, and for all cell lines an enhancement in blastocyst development compared to their corresponding control was observed. Our data demonstrate that TSA treatment after somatic cell nuclear transfer in the pig can significantly improve the in vitro blastocyst production...

  16. Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro.

    Directory of Open Access Journals (Sweden)

    Xunsi Qin

    Full Text Available Oxidative stress (OS, as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA, as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM. In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2', 7'-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce

  17. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Ki-Eun Park

    2016-05-01

    Full Text Available The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT. By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.

  18. Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development

    Directory of Open Access Journals (Sweden)

    Coyral-Castel Stéphanie

    2010-03-01

    Full Text Available Abstract Background Adiponectin is an adipokine, mainly produced by adipose tissue. It regulates several reproductive processes. The protein expression of the adiponectin system (adiponectin, its receptors, AdipoR1 and AdipoR2 and the APPL1 adaptor in bovine ovary and its role on ovarian cells and embryo, remain however to be determined. Methods Here, we identified the adiponectin system in bovine ovarian cells and embryo using RT-PCR, immunoblotting and immunohistochemistry. Furthermore, we investigated in vitro the effects of recombinant human adiponectin (10 micro g/mL on proliferation of granulosa cells (GC measured by [3H] thymidine incorporation, progesterone and estradiol secretions measured by radioimmunoassay in the culture medium of GC, nuclear oocyte maturation and early embryo development. Results We show that the mRNAs and proteins for the adiponectin system are present in bovine ovary (small and large follicles and corpus luteum and embryo. Adiponectin, AdipoR1 and AdipoR2 were more precisely localized in oocyte, GC and theca cells. Adiponectin increased IGF-1 10(-8 M-induced GC proliferation (P Conclusions In bovine species, adiponectin decreased insulin-induced steroidogenesis and increased IGF-1-induced proliferation of cultured GC through a potential involvement of ERK1/2 MAPK pathway, whereas it did not modify oocyte maturation and embryo development in vitro.

  19. Monomeric adiponectin increases cell viability in porcine aortic endothelial cells cultured in normal and high glucose conditions: Data on kinases activation

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-09-01

    Full Text Available We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent. For interpretation of the data presented in this article, please see the research article “Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions” (Grossini et al., in press [1].

  20. Systematic in vitro and in vivo characterization of Leukemia-inhibiting factor- and Fibroblast growth factor-derived porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Secher, Jan Ole Bertelsen; Ceylan, Ahmet; Mazzoni, Gianluca

    2017-01-01

    Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to sh...

  1. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.

    Science.gov (United States)

    Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2016-03-01

    Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix. © The Author(s) 2015.

  2. Immunogold study on lectin binding in the porcine zona pellucida and granulosa cells

    Directory of Open Access Journals (Sweden)

    F Parillo

    2009-06-01

    Full Text Available An ultrastructural localization of lectin receptors on the zona pellucida (ZP of porcine antral oocytes and on the granulosa cells was performed using a panel of horseradish peroxidase- labelled lectins in conjunction with antiperoxidase antibody and protein A-gold. In some cases, lectin incubation was preceded by sialidase digestion. WGA-, Con-A-, UEA-I-, RCA-I-, PNA- and SBA-reactive sites were distributed differently in the porcine ZP. Sialidase digestion increased the positivity obtained with RCA-I and it was necessary to promote PNA and SBA reactivity. These results indicated that the ZP contained N-acetylglucosamine, a-mannose, a- fucose, b-Gal-(1-4GlcNAc, b-Gal- (1-3GalNAc, b-GalNAc and sialic acid residues. We also observed the presence of vesicles in both the ooplasm and granulosa cells, showing a similar lectin binding pattern to that of the ZP, thus suggesting that the oocyte and granulosa cells are the site of synthesis of ZP glucidic determinants.

  3. Telomere Length Reprogramming in Embryos and Stem Cells

    Directory of Open Access Journals (Sweden)

    Keri Kalmbach

    2014-01-01

    Full Text Available Telomeres protect and cap linear chromosome ends, yet these genomic buffers erode over an organism’s lifespan. Short telomeres have been associated with many age-related conditions in humans, and genetic mutations resulting in short telomeres in humans manifest as syndromes of precocious aging. In women, telomere length limits a fertilized egg’s capacity to develop into a healthy embryo. Thus, telomere length must be reset with each subsequent generation. Although telomerase is purportedly responsible for restoring telomere DNA, recent studies have elucidated the role of alternative telomeres lengthening mechanisms in the reprogramming of early embryos and stem cells, which we review here.

  4. Fusion of blastomeres in mouse embryos under the action of femtosecond laser radiation. Efficiency of blastocyst formation and embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Osychenko, A A; Zalesskii, A D; Krivokharchenko, A S; Zhakhbazyan, A K; Nadtochenko, V A [N N Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Ryabova, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-05-31

    Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using the methods of femtosecond laser surgery is demonstrated. (extreme light fields and their applications)

  5. BMP15 Prevents Cumulus Cell Apoptosis Through CCL2 and FBN1 in Porcine Ovaries

    Directory of Open Access Journals (Sweden)

    Bo Zhai

    2013-07-01

    Full Text Available Background: Bone morphogenetic protein-15 (BMP15 is a maternal gene necessary for mammalian reproduction. BMP15 expression increased in oocytes accompanied by follicle growth and development. The function and regulation mechanism of BMP15 in porcine cumulus cell apoptosis process is still unclear now. Methods: In this study, flow cytometry (FCM was used to analyze the effects of BMP15 with different concentrations to cumulus cell apoptosis. High-throughput sequencing technology was carried out to screen regulatory genes linked closely with BMP15. In order to confirm the function of (MCP-1/CCL2 and FBN1 in cumulus cell apoptosis, RNA interference (RNAi method was used to inhibit the expression of (MCP-1/CCL2 and FBN1. Apoptosis and proliferation of cumulus cell treated with siRNA transfection technology were measured by FCM, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, quantitative real time-PCR (RT-qPCR and western blotting. Results: The results showed that the apoptosis levels of cumulus cell treated by BMP15 decreased significantly in a dose-dependent manner. The expression of related genes protein 1 (MCP-1/CCL2 and fibrillin1 (FBN1 were both regulated by BMP15. After transfection, the proliferation of porcine cumulus cells increased significantly and apoptosis of cumulus cells was prevented while FBN1 was silenced after BMP15 treatment. The proliferation of cumulus cells decreased significantly and apoptosis rate of cumulus cells increased significantly while CCL2 was silenced. Conclusion: The results obtained in this study firstly demonstrated that CCL2 and FBN1 are important regulatory factors of BMP15 in preventing cumulus cell apoptosis in porcine ovaries.

  6. Influence of the radiation (Co60) in pre-implants rabbit embryos: effect on atypic mitotic index and embryo pole development

    International Nuclear Information System (INIS)

    Approbato, Mario S.; Oliveira Moura, Katia K.V. de; Souza Florencio, Rodopiano de; Garcia, Ricardo; Faria, Renato S.; Benedetti, Leonardo N.; Goulart, Flamarion B.

    1995-01-01

    We studied the effect of ionizing irradiation on 12 New Zealand rabbits (65 embryos), at three different times: at match time (zero hour), two days after and four days after, with two different irradiation doses: five c Gy and ten c Gy. Six rabbits (36 blastocysts) were used as controls. the matching instant was the zero hour. Exactly six days after (± 60 minutes) the embryos of each rabbit was picked up by flushing the uterus with culture media. the embryos were fixed in methanol for 48 hours, and colored with acid Mayer hematoxylin. The following embryo parameters were studied: embryo pole development; percentage of abnormal mitotic figures. irradiation time was associated with lower scores of embryo pole development, but not with irradiation dose. There were no gross abnormalities of embryo pole. The abnormal mitotic cells was affected both by the time and dose of irradiation. (author)

  7. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2012-11-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs and porcine ear fibroblasts (PEFs could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

  8. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells are critically important for antiviral immunity. Devastating viruses like porcine reproductive and respiratory syndrome virus (PRRSV) are capable of directly infecting these cells, subverting host immunity. Monocyte-derived DCs (mDCs) are major target cells in ...

  9. Functional study and regional mapping of 44 hormono-regulated genes isolated from a porcine granulosa cell library

    Directory of Open Access Journals (Sweden)

    Hatey François

    2001-01-01

    Full Text Available Abstract cDNA clones from a pig granulosa cell cDNA library were isolated by differential hybridisation for follicle stimulating hormone (FSH regulation in granulosa cells in a previous study. The clones that did not match any known sequence were studied for their expression in granulosa cells (treated or not by FSH and in fresh isolated ovarian follicles mainly by comparative RT-PCR analysis. These results give functional data on genes that may be implicated in follicular growing. These ESTs have been localised on the porcine genome, using a somatic cell hybrid panel, providing new type I markers on the porcine map and information on the comparative map between humans and pigs.

  10. Two-Photon-Based Photoactivation in Live Zebrafish Embryos

    OpenAIRE

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-01-01

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a...

  11. Analysis of porcine granulosa cell death signaling pathways induced by vinclozolin.

    Science.gov (United States)

    Knet, Malgorzata; Wartalski, Kamil; Hoja-Lukowicz, Dorota; Tabarowski, Zbigniew; Slomczynska, Maria; Duda, Malgorzata

    2015-10-01

    Recent studies suggest that disturbing androgen-signaling pathways in porcine ovarian follicles may cause granulosa cell (GC) death. For this reason, we investigated which apoptotic pathway is initiated after GC exposure to an environmental antiandrogen, vinclozolin (Vnz), in vitro. Immunocytochemistry, Western blots, and fluorometric assays were used to quantify caspase-3 and -9 expression and activity. To elucidate the specific mechanism of Vnz action and toxicity, GCs were assessed for viability, cytotoxicity, and apoptotic activity using the ApoTox-Glo Triplex Assay. To further determine the mechanism of GC death induced by Vnz, we used the Apoptosis Antibody Array Kit. In response to Vnz stimulus, we found an increased level of caspase-3 protein expression (P ≤ 0.001) and an increase in caspase-3 proteolytic activity (P ≤ 0.001), confirming that Vnz is a potent proapoptotic factor. The strong immunoreaction of caspase-9 after Vnz treatment (P ≤ 0.001) suggests that intrinsic mitochondrial apoptosis pathway was activated during GC death. On the other hand, caspase-8, being a part of the extrinsic receptor pathway, was also activated (P ≤ 0.001). Therefore, it is possible that Vnz induces porcine granulosal apoptosis also through a parallel pathway. Activation of these two pathways was confirmed by the Apoptosis Antibody Array Kit. In conclusion, it is possible that the intrinsic signaling pathway may not act as an initial trigger for GC apoptosis but might contribute to the amplification and propagation of apoptotic cell death in the granulosa layer after treatment with this antiandrogen. Moreover, Vnz disturbs the physiological process of programmed cell death. Consequently, this could explain why atretic follicles are rapidly removed and suggests that normal function of the ovarian follicle may be destroyed. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Angela C.H. McDonald

    2014-10-01

    Full Text Available Little is known about the gene regulatory networks (GRNs distinguishing extraembryonic endoderm (ExEn stem (XEN cells from those that maintain the extensively characterized embryonic stem cell (ESC. An intriguing network candidate is Sox17, an essential transcription factor for XEN derivation and self-renewal. Here, we show that forced Sox17 expression drives ESCs toward ExEn, generating XEN cells that contribute to ExEn when placed back into early mouse embryos. Transient Sox17 expression is sufficient to drive this fate change during which time cells transit through distinct intermediate states prior to the generation of functional XEN-like cells. To orchestrate this conversion process, Sox17 acts in autoregulatory and feedforward network motifs, regulating dynamic GRNs directing cell fate. Sox17-mediated XEN conversion helps to explain the regulation of cell-fate changes and reveals GRNs regulating lineage decisions in the mouse embryo.

  13. Porcine, murine and human sialoadhesin (Sn/Siglec-1/CD169): portals for porcine reproductive and respiratory syndrome virus entry into target cells.

    Science.gov (United States)

    Van Breedam, Wander; Verbeeck, Mieke; Christiaens, Isaura; Van Gorp, Hanne; Nauwynck, Hans J

    2013-09-01

    Porcine sialoadhesin (pSn; a sialic acid-binding lectin) and porcine CD163 (pCD163) are molecules that facilitate infectious entry of porcine reproductive and respiratory syndrome virus (PRRSV) into alveolar macrophages. In this study, it was shown that murine Sn (mSn) and human Sn (hSn), like pSn, can promote PRRSV infection of pCD163-expressing cells. Intact sialic acid-binding domains are crucial, since non-sialic acid-binding mutants of pSn, mSn and hSn did not promote infection. Endodomain-deletion mutants of pSn, mSn and hSn promoted PRRSV infection less efficiently, but also showed markedly reduced expression levels, making further research into the potential role of the Sn endodomain in PRRSV receptor activity necessary. These data further complement our knowledge on Sn as an important PRRSV receptor, and suggest - in combination with other published data - that species differences in the main PRRSV entry mediators Sn and CD163 do not account for the strict host species specificity displayed by the virus.

  14. Characterization of membrane lipid fluidity in human embryo cells malignantly transfer med post 238Pu α irradiation

    International Nuclear Information System (INIS)

    Qi Zirong; Sun Ling; Liu Guolian; Shen Zhiyuan

    1992-01-01

    The membrane lipid fluidity of malignantly transformed human embryo cells following 238 Pu α particlce irradiation in vitro has been studied. The results indicate that the ontogenesis depends on irradiation dose (Gy) and the membrane lipid fluidity in malignantly transformed cells is higher than that in normal embryo cells. With the microviscosity (η) of cells plotted against the cell counts, the correlation coefficient (γ) is calculated to be between 0.9936 and 0.9999. Since the malignant transformation of irradiated embryo cells is manifested early on cell membrane lipid, the fluidity of membrane lipid can be used as an oncologic marker

  15. Nuclear and cellular expression data from the whole 16-cell stage Arabidopsis thaliana embryo and a cell type-specific expression atlas of the early Arabidopsis embryo

    NARCIS (Netherlands)

    Palovaara, J.P.J.

    2017-01-01

    SuperSeries contain expression data from the nuclei of cell types involved in patterning events, with focus on root apical stem cell formation, at 16-cell stage, early globular stage and late globular stage in the early Arabidopsis embryo (atlas). Expression data comparing nuclear and cellular RNA

  16. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo.

    Science.gov (United States)

    Capmany, G; Taylor, A; Braude, P R; Bolton, V N

    1996-05-01

    The timing of pronuclear formation and breakdown, DNA synthesis and cleavage during the first cell cycle of human embryogenesis are described. Pronuclei formed between 3 and 10 h post-insemination (hpi; median 8 hpi). S-phase commenced between 8 and 14 hpi, and was completed between 10 and 18 hpi. M-phase was observed between 22 and 31 hpi (median duration 3 h), and cleavage to the 2-cell stage took place between 25 and 33 hpi. The timing of the same events was determined in 1-cell embryos derived from re-inseminated human oocytes that had failed to fertilize during therapeutic in-vitro fertilization (IVF). In these embryos, pronuclei formed between 3 and 8 h post-re-insemination (hpr-i), coinciding with the beginning of S-phase. While S-phase was completed as early as 10 hpr-i in some embryos, it extended until at least 16 hpr-i in others. Pronuclear breakdown and cleavage occurred from 23 and 26 hpr-i respectively; however, they did not occur in some embryos until after 46 hpr-i. The results demonstrate a markedly greater degree of variation in the timing of these events in embryos derived from re-inseminated oocytes compared with embryos derived from conventional IVF, and thus throw into question the validity of using the former as models for studies of the first cell cycle of human embryogenesis.

  17. Co-administration of amygdalin and deoxynivalenol disrupted regulatory proteins linked to proliferation of porcine ovarian cells in vitro

    Directory of Open Access Journals (Sweden)

    Marek Halenár

    2017-01-01

    Full Text Available Deoxynivalenol (DON represents one of the most prevalent trichothecene mycotoxin produced by Fusarium species, causing economic and health impacts. On the other hand, amygdalin has been demonstrated to possess both prophylactic and curative properties, thus it has been used as a traditional drug because of its wide range of medicinal benefits, including curing or preventing cancer, relieving fever, suppressing cough, and quenching thirst. The aim of this in vitro study was to evaluate potential effects of natural product amygdalin combined with mycotoxin deoxynivalenol (DON on the key regulators of cell proliferation and apoptosis in porcine ovarian granulosa cells. Ovarian granulosa cells were incubated for 24h with amygdalin (1, 10, 100, 1000, 10 000 μg.mL-1 combined with deoxynivalenol (1 μg.mL-1, while the control group remained untreated. The presence of proliferative (cyclin B1, PCNA and apoptotic markers (caspase-3 in porcine ovarian granulosa cells after amygdalin treatment (1, 10, 100, 1000, 10 000 μg.mL-1 combined with deoxynivalneol (1 μg.mL-1 was detected by immunocytochemistry. The presence of proliferative (cyclin B1, PCNA and apoptotic markers (caspase-3 in porcine ovarian granulosa cells was detected by immunocytochemistry. Co-administration of amygdalin plus DON significantly (p <0.05 increased the number of granulosa cells containing cyclin B1 and PCNA at all tested concetrations, when compared to control. However, percentage of granulosa cells containing major apoptotic marker caspase-3 did not differ after co-administration of amygdalin and DON. In summary, results form this in vitro study indicate that co-exposure of amygdalin and deoxynivalenol  may act to stimulate proliferation-associated peptides in porcine ovarian granulosa cells, and thus alter cell proliferation and normal follicular development.

  18. Behavior of the P1.HTR mastocytoma cell line implanted in the chorioallantoic membrane of chick embryos

    Directory of Open Access Journals (Sweden)

    S.F. Avram

    2013-01-01

    Full Text Available The P1.HTR cell line includes highly transfectable cells derived from P815 mastocytoma cells originating from mouse breast tissue. Despite its widespread use in immunogenic studies, no data are available about the behavior of P1.HTR cells in the chick embryo chorioallantoic membrane model. The objective of the present investigation was to study the effects of P1.HTR cells implanted on the chorioallantoic membrane of chick embryos. We inoculated P1.HTR cells into the previously prepared chick embryo chorioallantoic membrane and observed the early and late effects of these cells by stereomicroscopy, histochemistry and immunohistochemistry. A highly angiotropic and angiogenic effect occurred early after inoculation and a tumorigenic potential with the development of mastocytoma keeping well mast cells immunophenotype was detected later during the development. The P1.HTR mastocytoma cell line is a good tool for the development of the chick embryo chorioallantoic membrane mastocytoma model and also for other studies concerning the involvement of blood vessels. The chick embryo chorioallantoic membrane model of mastocytoma retains the mast cell immunophenotype under experimental conditions and could be used as an experimental tool for in vivo preliminary testing of antitumor and antivascular drugs.

  19. Organ and Tissue-Specific Localisation of Selected Cell Wall Epitopes in the Zygotic Embryo of Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Alexander Betekhtin

    2018-03-01

    Full Text Available The plant cell wall shows a great diversity regarding its chemical composition, which may vary significantly even during different developmental stages. In this study, we analysed the distribution of several cell wall epitopes in embryos of Brachypodium distachyon (Brachypodium. We also described the variations in the nucleus shape and the number of nucleoli that occurred in some embryo cells. The use of transmission electron microscopy, and histological and immunolocalisation techniques permitted the distribution of selected arabinogalactan proteins, extensins, pectins, and hemicelluloses on the embryo surface, internal cell compartments, and in the context of the cell wall ultrastructure to be demonstrated. We revealed that the majority of arabinogalactan proteins and extensins were distributed on the cell surface and that pectins were the main component of the seed coat and other parts, such as the mesocotyl cell walls and the radicula. Hemicelluloses were localised in the cell wall and outside of the radicula protodermis, respectively. The specific arrangement of those components may indicate their significance during embryo development and seed germination, thus suggesting the importance of their protective functions. Despite the differences in the cell wall composition, we found that some of the antibodies can be used as markers to identify specific cells and the parts of the developing Brachypodium embryo.

  20. Stem cells from residual IVF-embryos - Continuation of life justifies isolation.

    NARCIS (Netherlands)

    Bongaerts, G.P.A.; Severijnen, R.S.V.M.

    2007-01-01

    Embryonic stem cells are undifferentiated pluripotent cells that can indefinitely grow in vitro. They are derived from the inner mass of early embryos. Because of their ability to differentiate into all three embryonic germ layers, and finally into specialized somatic cell types, human embryonic

  1. Site-specific modification of genome with cell-permeable Cre fusion protein in preimplantation mouse embryo

    International Nuclear Information System (INIS)

    Kim, Kyoungmi; Kim, Hwain; Lee, Daekee

    2009-01-01

    Site-specific recombination (SSR) by Cre recombinase and its target sequence, loxP, is a valuable tool in genetic analysis of gene function. Recently, several studies reported successful application of Cre fusion protein containing protein transduction peptide for inducing gene modification in various mammalian cells including ES cell as well as in the whole animal. In this study, we show that a short incubation of preimplantation mouse embryos with purified cell-permeable Cre fusion protein results in efficient SSR. X-Gal staining of preimplantation embryos, heterozygous for Gtrosa26 tm1Sor , revealed that treatment of 1-cell or 2-cell embryos with 3 μM of Cre fusion protein for 2 h leads to Cre-mediated excision in 70-85% of embryos. We have examined the effect of the concentration of the Cre fusion protein and the duration of the treatment on embryonic development, established a condition for full term development and survival to adulthood, and demonstrated the germ line transmission of excised Gtrosa26 allele. Potential applications and advantages of the highly efficient technique described here are discussed.

  2. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    Science.gov (United States)

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Small Molecule Injection into Single-Cell C. elegans Embryos via Carbon-Reinforced Nanopipettes

    Science.gov (United States)

    Morton, Diane G.; Fellman, Shanna M.; Chung, SueYeon; Soltani, Mohammad; Kevek, Joshua W.; McEuen, Paul M.; Kemphues, Kenneth J.; Wang, Michelle D.

    2013-01-01

    The introduction of chemical inhibitors into living cells at specific times in development is a useful method for investigating the roles of specific proteins or cytoskeletal components in developmental processes. Some embryos, such as those of Caenorhabditis elegans, however, possess a tough eggshell that makes introducing drugs and other molecules into embryonic cells challenging. We have developed a procedure using carbon-reinforced nanopipettes (CRNPs) to deliver molecules into C. elegans embryos with high temporal control. The use of CRNPs allows for cellular manipulation to occur just subsequent to meiosis II with minimal damage to the embryo. We have used our technique to replicate classical experiments using latrunculin A to inhibit microfilaments and assess its effects on early polarity establishment. Our injections of latrunculin A confirm the necessity of microfilaments in establishing anterior-posterior polarity at this early stage, even when microtubules remain intact. Further, we find that latrunculin A treatment does not prevent association of PAR-2 or PAR-6 with the cell cortex. Our experiments demonstrate the application of carbon-reinforced nanopipettes to the study of one temporally-confined developmental event. The use of CRNPs to introduce molecules into the embryo should be applicable to investigations at later developmental stages as well as other cells with tough outer coverings. PMID:24086620

  4. [INFLUENCE OF NANODIAMONDS AND CARBON NANOWIRES ON SURVIVAL AND CELLS STRUCTURE IN CHICKEN EMBRYO].

    Science.gov (United States)

    Lavrinenko, V; Zinabadinova, S; Chaikovsky, Yu; Sokurenko, L; Shobat, L

    2016-06-01

    Aim - to determine the effect of nanodiamonds and carbon nanowires on the survival and ultrastructure of chicken embryo cells. The experiment was carried out on chicken embryos, incubated from eggs of Hy-Line breed. Control and two experimental groups were formed (total number of embryos - 100). Diamond nanoparticles and carbon nanowires were administered on day 3 of incubation as a suspension of a biocompatible dextran. Ultrastructural analysis and general study of embryos state were carried out. The most expressed pathological effects were observed in the group with the introduction of the CNW, which caused visual impairment of embryogenesis that started from the early incubation periods. As for ND we can claim their prolonged impact on the development of embryos, manifested in the gradual deterioration of the embryos condition with the manifestations of the pathology in the provisory organs and the body of embryos. The results of our study demonstrate that both types of nanostructures can cause sublethal and irreversible morphologic changes. Detection of morphological evidence of the impact of nanomaterials at significant distances from the site of administration of nanoparticles shows highly penetrating ability of nanomaterials. The presence of damages specific for each type of nanoparticles shows affinity to various tissues and cellular structures. It is demonstrated that similar, at first glance, impact of nanomaterials, such as the induction of oxidative stress might be caused by specific structural transformations. So, ND cause vacuolization of mitochondria, and the CNW - deformation of their shape and appearance of dark inclusions in them.

  5. Sequence and expression analyses of porcine ISG15 and ISG43 genes.

    Science.gov (United States)

    Huang, Jiangnan; Zhao, Shuhong; Zhu, Mengjin; Wu, Zhenfang; Yu, Mei

    2009-08-01

    The coding sequences of porcine interferon-stimulated gene 15 (ISG15) and the interferon-stimulated gene (ISG43) were cloned from swine spleen mRNA. The amino acid sequences deduced from porcine ISG15 and ISG43 genes coding sequence shared 24-75% and 29-83% similarity with ISG15s and ISG43s from other vertebrates, respectively. Structural analyses revealed that porcine ISG15 comprises two ubiquitin homologues motifs (UBQ) domain and a conserved C-terminal LRLRGG conjugating motif. Porcine ISG43 contains an ubiquitin-processing proteases-like domain. Phylogenetic analyses showed that porcine ISG15 and ISG43 were mostly related to rat ISG15 and cattle ISG43, respectively. Using quantitative real-time PCR assay, significant increased expression levels of porcine ISG15 and ISG43 genes were detected in porcine kidney endothelial cells (PK15) cells treated with poly I:C. We also observed the enhanced mRNA expression of three members of dsRNA pattern-recognition receptors (PRR), TLR3, DDX58 and IFIH1, which have been reported to act as critical receptors in inducing the mRNA expression of ISG15 and ISG43 genes. However, we did not detect any induced mRNA expression of IFNalpha and IFNbeta, suggesting that transcriptional activations of ISG15 and ISG43 were mediated through IFN-independent signaling pathway in the poly I:C treated PK15 cells. Association analyses in a Landrace pig population revealed that ISG15 c.347T>C (BstUI) polymorphism and the ISG43 c.953T>G (BccI) polymorphism were significantly associated with hematological parameters and immune-related traits.

  6. Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported.To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures.Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.

  7. Effect of altering the intervals between consecutive superovulatory doses of porcine follicle-stimulating hormone on ovarian responses and embryo yields in anestrous ewes.

    Science.gov (United States)

    Bartlewski, P M; Murawski, M; Schwarz, T; Oliveira, M E F

    2017-05-01

    The effect of varying intervals between successive gonadotropin injections on the superovulatory outcomes in anestrous Rideau Arcott ewes superstimulated for ovarian follicular development with multiple doses of porcine FSH (pFSH) was evaluated in a single study. Twenty-five animals received six (1×2.5ml and 5×1.25ml) injections of Folltropin ® -V given at 0800 and 1600h or at 0800 and 2000h in Group 1 (n=9) or Group 2 (n=16), respectively. An i.m. injection of 500 IU of equine chorionic gonadotropin (eCG; Folligon ® ) was given concurrently with the first pFSH dose. Time of estrus was synchronized among ewes with intravaginal sponges containing 60mg of medroxyprogesterone acetate (Veramix ® ) that were left in place for 14days; sponges were removed at the time of the 5th pFSH injection. Six days after insertion of MAP sponges, all ewes received an i.m. injection of estradiol-17β dissolved in 1ml of sesame oil (350μg/ewe) to synchronize follicular wave emergence. Following the last pFSH dose, all animals were given a single i.m. injection of 50μg of gonadotropin-releasing hormone (GnRH; Cystorelin ® ) to induce ovulations before placing in a pen with four fertile rams for 36h. The ovarian responses were assessed and embryos recovered surgically 7days after GnRH injections. The mean number of corpora lutea was greater (Pewes (21.0±2.9 compared with 10.4±1.6, respectively; mean±SEM) but there was no difference (P>0.05) in the number of transferable embryos (5.4±2.4 compared with 5.4±1.3/ewe, respectively), and Group 1 animals had significantly more degenerated embryos than Group 2 ewes (2.6±1.2 compared with 0.6±0.3/ewe, respectively). A superovulatory protocol wherein pFSH injections were given at 0800 and 1600h was more effective in terms of inducing multiple ovulations than the protocol with 12-h intervals between consecutive pFSH doses, but it was not associated with an increased production of transferable quality embryos by anestrous ewes

  8. Developmental imaging: the avian embryo hatches to the challenge.

    Science.gov (United States)

    Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca

    2013-06-01

    The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair. Copyright © 2013 Wiley Periodicals, Inc.

  9. Single-Cell Profiling of Epigenetic Modifiers Identifies PRDM14 as an Inducer of Cell Fate in the Mammalian Embryo

    Directory of Open Access Journals (Sweden)

    Adam Burton

    2013-11-01

    Full Text Available Cell plasticity or potency is necessary for the formation of multiple cell types. The mechanisms underlying this plasticity are largely unknown. Preimplantation mouse embryos undergo drastic changes in cellular potency, starting with the totipotent zygote through to the formation of the pluripotent inner cell mass (ICM and differentiated trophectoderm in the blastocyst. Here, we set out to identify and functionally characterize chromatin modifiers that define the transitions of potency and cell fate in the mouse embryo. Using a quantitative microfluidics approach in single cells, we show that developmental transitions are marked by distinctive combinatorial profiles of epigenetic modifiers. Pluripotent cells of the ICM are distinct from their differentiated trophectoderm counterparts. We show that PRDM14 is heterogeneously expressed in 4-cell-stage embryos. Forced expression of PRDM14 at the 2-cell stage leads to increased H3R26me2 and can induce a pluripotent ICM fate. Our results shed light on the epigenetic networks that govern cellular potency and identity in vivo.

  10. Molecular cloning and expression analyses of porcine MAP1LC3A in the granulosa cells of normal and miniature pig

    Directory of Open Access Journals (Sweden)

    Kim Sang H

    2013-02-01

    Full Text Available Abstract Background The members of the microtubule-associated protein 1 light chain (MAP1LC family, especially those of the LC3 family (MAP1LC3A, B, C, are known to induce autophagy upon localization onto the autophagosomal membrane. In this regard, LC3 can be utilized as a marker for the formation of autophagosomes during the process of autophagy. The aims of this study are to clone porcine MAP1LC3A, and analyze the pattern of its expression in the ovarian tissues of normal and miniature pig ovary in an attempt to understand the distinct mode of apoptosis between two strains. Methods Rapid amplification of cDNA ends (RACE were used to obtain the 5′ and 3′ ends of the porcine MAP1LC3A full length cDNA. Reverse-transcriptase-PCR (RT-PCR, real-time PCR, and western blot analysis were performed to examine the expression of porcine MAP1LC3A. The localization of MAP1LC3A in the ovary was determined by In situ Hybridization and Immunohistochemical staining. Results We cloned the full-length cDNA of porcine MAP1LC3A and identified an open reading frame of 980 bp encoding 121 amino acids. Based on its homology to known mammalian proteins (98% this novel cDNA was designated as porcine MAP1LC3A and registered to the GenBank (Accession No. GU272221. We compared the expression of MAP1LC3A in the Graafian follicles of normal and miniature pigs by in situ hybridization at day 15 of the estrus cycle. While normal pigs showed a stronger expression of MAP1LC3A mRNA than miniature pigs in the theca cell area, the expression was lower in the granulosa cells. Immunofluorescence analysis of the MAP1LC3A fusion reporter protein showed the subcellular localization of porcine MAP1LC3A and ATG5 as a punctate pattern in the cytoplasm of porcine granulosa cells under stress conditions. In addition, the expressions of MAP1LC3A and ATG5 were higher in normal pigs than in miniature pigs both in the presence and absence of rapamycin. Conclusions The newly cloned porcine

  11. Brachyury expression in tailless Molgulid ascidian embryos.

    Science.gov (United States)

    Takada, Norio; York, Jonathan; Davis, J Muse; Schumpert, Brenda; Yasuo, Hitoyoshi; Satoh, Nori; Swalla, Billie J

    2002-01-01

    The T-box transcription factor gene Brachyury is important for the differentiation of notochord in all chordates, including the ascidians Halocynthia roretzi and Ciona intestinalis. We isolated Brachyury from molgulid ascidians, which have evolved tailless larvae multiple times independently, and found the genes appear functional by cDNA sequence analyses. We then compared the expression of Mocu-Bra in tailed Molgula oculata embryos to two tailless species, Molgula occulta (Mocc-Bra) and Molgula tectiformis (Mt-Bra). Here we show that both tailless species express Brachyury in the notochord lineage during embryogenesis. Initial expression of Mocu-Bra is normal in tailed M. oculata embryos; 10 precursor notochord cells divide twice to result in 40 notochord cells that converge and extend to make a notochord down the center of the tail. In contrast, in tailless Molgula occulta, Mocc-Bra expression disappears prematurely, and there is only one round of division, resulting in 20 cells in the final notochord lineage that never converge or extend. In M. occulta x M. oculata hybrid embryos, expression of Mocu-Bra is prolonged, and the embryos form a tail with 20 notochord cells that converge and extend normally. However, in Molgula tectiformis, a different tailless ascidian, Mt-Bra was expressed only in the 10 notochord precursor cells, which never divide, converge, or extend. In summary, neither Brachyury function nor the early establishment of the notochord lineage appears to be impaired in tailless embryos. In light of these results, we are continuing to investigate how and why notochord development is lost in tailless molgulid ascidian embryos.

  12. A longitudinal study of cell-mediated immunity in pigs infected with porcine parvovirus

    DEFF Research Database (Denmark)

    Ladekjaer-Mikkelsen, A.S.; Nielsen, Jens

    2002-01-01

    Porcine parvovirus (PPV) is an ubiquitous pathogen causing reproductive failure in swine. Protection against reproductive failure caused by acute PPV infection has commonly been related to the presence of specific antibodies in the dam. However, the role of cell-mediated immunity during chronic PPV...

  13. Mechanistic dissection of plant embryo initiation

    NARCIS (Netherlands)

    Radoeva, T.M.

    2016-01-01

    Land plants can reproduce sexually by developing an embryo from a fertilized egg cell, the zygote. After fertilization, the zygote undergoes several rounds of controlled cell divisions to generate a mature embryo. However, embryo formation can also be induced in a variety of other cell types in

  14. Cell lineage of timed cohorts of Tbx6-expressing cells in wild-type and Tbx6 mutant embryos

    Directory of Open Access Journals (Sweden)

    Daniel Concepcion

    2017-07-01

    Full Text Available Tbx6 is a T-box transcription factor with multiple roles in embryonic development as evidenced by dramatic effects on mesoderm cell fate determination, left/right axis determination, and somite segmentation in mutant mice. The expression of Tbx6 is restricted to the primitive streak and presomitic mesoderm, but some of the phenotypic features of mutants are not easily explained by this expression pattern. We have used genetically-inducible fate mapping to trace the fate of Tbx6-expressing cells in wild-type and mutant embryos to explain some of the puzzling features of the mutant phenotype. We created an inducible Tbx6-creERT2 transgenic mouse in which cre expression closely recapitulates endogenous Tbx6 expression both temporally and spatially. Using a lacZ-based Cre reporter and timed tamoxifen injections, we followed temporally overlapping cohorts of cells that had expressed Tbx6 and found contributions to virtually all mesodermally-derived embryonic structures as well as the extraembryonic allantois. Contribution to the endothelium of major blood vessels may account for the embryonic death of homozygous mutant embryos. In mutant embryos, Tbx6-creERT2-traced cells contributed to the abnormally segmented anterior somites and formed the characteristic ectopic neural tubes. Retention of cells in the mutant tail bud indicates a deficiency in migratory behavior of the mutant cells and the presence of Tbx6-creERT2-traced cells in the notochord, a node derivative provides a possible explanation for the heterotaxia seen in mutant embryos.

  15. High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival

    DEFF Research Database (Denmark)

    Dupont, Yoko; Lin, Lin; Schmidt, Mette

    2008-01-01

    and cryotolerance of embryos produced by handmade cloning (HMC) after pressure treatment of recipient oocytes. In vitro-matured porcine oocytes were treated with a sublethal hydrostatic pressure of 20 MPa (200 times greater than atmospheric pressure) and recovered for either 1 or 2 h (HHP1 and HHP2 groups......, respectively) before they were used for HMC. After 7 days of in vitro culture, blastocyst rates and mean cell numbers were determined. Randomly selected blastocysts were vitrified with the Cryotop method based on minimum volume cooling procedure. The blastocyst rate was higher in the HHP2 group than...... in the control group (68.2 +/- 4.1% vs. 46.4 +/- 4.2%; p 0.05). Similar mean cell numbers of produced blastocysts were obtained in HHP2 and control groups (56 +/- 4 vs. 49 +/- 5; p > 0.05). Subsequent...

  16. Propagation of avian metapneumovirus subtypes A and B using chicken embryo related and other cell systems.

    Science.gov (United States)

    Coswig, Lia Treptow; dos Santos, Márcia Bianchi; Hafez, Hafez Mohamed; Ferreira, Helena Lage; Arns, Clarice Weis

    2010-07-01

    Primary isolation of avian metapneumovirus (aMPV) is carried out using tracheal organ culture (TOC) or chicken embryonated eggs with subsequent adaptation in chicken embryo fibroblasts (CEF) or Vero cultures. This study was conducted to evaluate six different cell lines and two avian culture systems for the propagation of aMPV subtypes A and B. The chicken embryo related (CER) cells were used successfully for primary isolation. In addition to Vero and baby hamster kidney (BHK-21) cells, CER cells were also shown to be the most appropriate for propagation of aMPV considering high titres. Propagation of A and B subtypes in CEF and TOC remained efficient after the primary isolation and several passages of viruses in the CER cell line. The growth curves were created using CER, Vero and BHK-21 cell lines. Compared with growth, both yielded higher titres in CER cells during the first 30 h after infection, but no significant difference was observed in the results obtained from CER and Vero cells. This data show that CER cells are adequate for aMPV subtypes A and B propagation, giving similar results to Vero cells. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos.

    Directory of Open Access Journals (Sweden)

    Ryutaro Hirasawa

    Full Text Available The great majority of embryos generated by somatic cell nuclear transfer (SCNT display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts. The embryos retrieved from the uteri were separated into embryonic (epiblast and extraembryonic (extraembryonic ectoderm and ectoplacental cone tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs (>2-fold vs. controls than did the extraembryonic tissues (P<1.0 × 10(-26. In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1-5% per embryos transferred in our laboratory, because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT.

  18. Surgical induction of choroidal neovascularization in a porcine model

    DEFF Research Database (Denmark)

    Lassota, Nathan; Kiilgaard, Jens Folke; Prause, Jan Ulrik

    2007-01-01

    PURPOSE: To develop a reproducible surgical technique for the induction of choroidal neovascularization (CNV) in the subretinal space of porcine eyes and to analyse the resulting CNV clinically and histologically. METHODS: Two different modifications of a surgical technique previously described...... were compared with the original method. In ten porcine eyes retinal pigment epithelial (RPE) cells were removed using a silicone tipped cannula, in ten porcine eyes Bruch's membrane was perforated once with a retinal perforator without prior RPE removal and in ten eyes RPE removal was followed...... by a single perforation of Bruch's membrane. Fifteen of the eyes, five from each group, were enucleated 30 minutes after surgery, while the remaining eyes were enucleated after 14 days. Prior to enucleation, at day 14, fundus photographs and fluorescein angiograms were obtained. Eyes were examined by light...

  19. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model

    Directory of Open Access Journals (Sweden)

    Katherine A. Willard

    2017-12-01

    Full Text Available Zika virus (ZIKV has quietly circulated in Africa and Southeast Asia for the past 65 years. However, the recent ZIKV epidemic in the Americas propelled this mosquito-borne virus to the forefront of flavivirus research. Based on historical evidence, ZIKV infections in Africa were sporadic and caused mild symptoms such as fever, skin rash, and general malaise. In contrast, recent Asian-lineage ZIKV infections in the Pacific Islands and the Americas are linked to birth defects and neurological disorders. The aim of this study is to compare replication, pathogenicity, and transmission efficiency of two historic and two contemporary ZIKV isolates in cell culture, the mosquito host, and an embryo model to determine if genetic variation between the African and Asian lineages results in phenotypic differences. While all tested isolates replicated at similar rates in Vero cells, the African isolates displayed more rapid viral replication in the mosquito C6/36 cell line, yet they exhibited poor infection rates in Aedes aegypti mosquitoes compared to the contemporary Asian-lineage isolates. All isolates could infect chicken embryos; however, infection with African isolates resulted in higher embryo mortality than infection with Asian-lineage isolates. These results suggest that genetic variation between ZIKV isolates can significantly alter experimental outcomes.

  20. Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes.

    Science.gov (United States)

    Sutovsky, Peter; Manandhar, Gaurishankar; Laurincik, Jozef; Letko, Juraj; Caamaño, Jose Nestor; Day, Billy N; Lai, Liangxue; Prather, Randall S; Sharpe-Timms, Kathy L; Zimmer, Randall; Sutovsky, Miriam

    2005-03-01

    Major vault protein (MVP), also called lung resistance-related protein is a ribonucleoprotein comprising a major part (>70%) of the vault particle. The function of vault particle is not known, although it appears to be involved in multi-drug resistance and cellular signaling. Here we show that MVP is expressed in mammalian, porcine, and human ova and in the porcine preimplantation embryo. MVP was identified by matrix-assisted laser-desorption ionization-time-of-flight (MALDI-TOF) peptide sequencing and Western blotting as a protein accumulating in porcine zygotes cultured in the presence of specific proteasomal inhibitor MG132. MVP also accumulated in poor-quality human oocytes donated by infertile couples and porcine embryos that failed to develop normally after in vitro fertilization or somatic cell nuclear transfer. Normal porcine oocytes and embryos at various stages of preimplantation development showed mostly cytoplasmic labeling, with increased accumulation of vault particles around large cytoplasmic lipid inclusions and membrane vesicles. Occasionally, MVP was associated with the nuclear envelope and nucleolus precursor bodies. Nucleotide sequences with a high degree of homology to human MVP gene sequence were identified in porcine oocyte and endometrial cell cDNA libraries. We interpret these data as the evidence for the expression and ubiquitin-proteasome-dependent turnover of MVP in the mammalian ovum. Similar to carcinoma cells, MVP could fulfill a cell-protecting function during early embryonic development.

  1. Lentiviral Vector Gene Transfer to Porcine Airways

    Directory of Open Access Journals (Sweden)

    Patrick L Sinn

    2012-01-01

    Full Text Available In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE. Interestingly, feline immunodeficiency virus (FIV-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1–based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF.

  2. Cultures of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Streffer, C.; Molls, M.

    1987-01-01

    In the preimplantation mouse embryos the chromosomal damage develops through several postradiation cell cycles and mitoses. New chromosome aberrations are seen during the second and third postradiation mitoses. Also, more micronuclei appear during later postradiation interphases. This is in agreement with the assumption that unrepaired chromosomal radiation damage develops during the cell generation cycle to such a form (i.e. double-strand breaks in DNA) that chromosomal breaks occur. This proposition is strengthened by the observation that radiation-induced damage is more rapidly expressed after neutron exposure (first or second postradiation mitosis) than after exposure to X rays at the one- or two-cell stage. The preimplantation mouse embryo culture is an inviting system for additional studies at the molecular level, especially now that within the last few years more sensitive methods have been developed for study of DNA and protein structure, regulation, and synthesis. The results from these studies of cultures of preimplantation mouse embryos present a favorable case for the study of complex biological systems under very defined conditions in vitro for extrapolation to effects in vivo

  3. The Well of the Well (WOW) system: an efficient approach to improve embryo development

    DEFF Research Database (Denmark)

    Vajta, G; Korösi, T; Du, Y

    2008-01-01

    Transfer of human embryos at the blastocyst stage may offer considerable benefits including the increased implantation rates and decreased risks of multiple pregnancies, however, it requires an efficient and reliable in vitro embryo culture system. In our study, the effect of the Well of the Well...... (WOW) system consisting of microwells formed on the bottom of the culture dish was tested in three mammalian species including humans. The WOW system has resulted in significant improvement compared the drops for culture of in vitro matured and parthenogenetically activated porcine oocytes or in vivo...

  4. Regulation of membrane fusion and secretory events in the sea urchin embryo

    International Nuclear Information System (INIS)

    Roe, J.L.

    1990-01-01

    Membrane fusion and secretory events play a key role in fertilization and early development in the sea urchin embryo. To investigate the mechanism of membrane fusion, the effect of inhibitors of metalloendoprotease activity was studied on two model systems of cell fusion; fertilization and spiculogenesis by primary mesenchyme cells in the embryo. Both the zinc chelator, 1,10-phenanthroline, and peptide metalloprotease substrates were found to inhibit both fertilization and gamete fusion, while peptides that are not substrates of metalloproteases did not affect either process. Primary mesenchyme cells form the larval skeleton in the embryo by deposition of mineral and an organic matrix into a syncytial cavity formed by fusion of filopodia of these cells. Metalloprotease inhibitors were found to inhibit spiculogenesis both in vivo and in cultures of isolated primary mesenchyme cells, and the activity of a metalloprotease of the appropriate specificity was found in the primary mesenchyme cells. These two studies implicate the activity of a metalloprotease in a necessary step in membrane fusion. Following fertilization, exocytosis of the cortical granules results in the formation of the fertilization envelope and the hyaline layer, that surround the developing embryo. The hatching enzyme is secreted by the blastula stage sea urchin embryo, which proteolyzes the fertilization envelope surrounding the embryo, allowing the embryo to hatch. Using an assay that measures 125 I-fertilization envelope degradation, the hatching enzyme was identified as a 33 kDa metalloprotease, and was purified by ion-exchange and affinity chromatography from the hatching media of Strongylocentrotus purpuratus embryos. The hatching enzyme showed a substrate preference for only a minor subset of fertilization envelope proteins

  5. Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT) embryos.

    Science.gov (United States)

    Arias, María E; Ross, Pablo J; Felmer, Ricardo N

    2013-01-01

    Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT) embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively). No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (Pculture system yielding a higher rate of blastocysts (28%) compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively). Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA). Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.

  6. Isolation and partial characterization of two porcine spleen ferritin fractions with different electrophoretic mobility

    NARCIS (Netherlands)

    C.M. Van Gelder (Carin); M.I.E. Huijskes-Heins (M. I E); D. Klepper (D.); W.L. van Noort (W.); M.I. Cleton-Soeteman (Maud); H.G. van Eijk (Henk)

    1996-01-01

    textabstractFerritin isolated from porcine spleen could routinely be separated in two fractions on nondenaturating gradient gels. Both fractions could be isolated with a purity of 96% when applied to two serially linked columns, each 200 cm in length, packed respectively with Sepharose 4B and

  7. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media.

    Science.gov (United States)

    Kelley, Rebecca L; Gardner, David K

    2017-05-01

    Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P Culture in microwell plates for the EmbryoScope and Primo Vision time-lapse systems changed cleavage timings and increased inner cell mass cell number (24.1 ± 1.0; 23.4 ± 1.2) compared with a 2 µl microdrop (18.4 ± 1.0; P media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P culture before or after compaction is therefore detrimental; oxygen, media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    Science.gov (United States)

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (Pcloning efficiency using SCNT. PMID:24146866

  9. Perkembangan Praimplantasi Embrio Mencit dengan Materi Genetik yang Berasal dari Parental, Maternal, dan Inti Sel Somatik (PRE-IMPLANTATION DEVELOPMENT OF MOUSE EMBRYO WITH GENETIC MATERIAL DERIVED FROM PARENTAL, MATERNAL AND SOMATIC CELL NUCLEUS

    Directory of Open Access Journals (Sweden)

    Harry Murti

    2014-05-01

    Full Text Available Cloned embryo and parthenogenetic embryo are a potential source of stem cells for regenerativemedicine. Stem cells derived from those embryos are expected to overcome the ethical issues to the use offertilization embryos for therapeutic purposes. The pre-implantation development is a critical step fordeveloping embryos reach the blastocyst stage. The objectives in vivo of this research are to produce mousecloned embryo, parthenogenetic embryo, and fertilized embryo and to study stages of  in vitro pre-implantation development culture. In vivo fertilized embryos, mouse oocytes, and cumulus cells were usedin this study. Treatment was performed on female mice superovulated with PMSG and hCG injections.Two-cell stage of in vivo fertilized embryos were collected on the second day post hCG injection. Clonedembryos were produced through Somatic Cell Nuclear Transfer (SCNT, which included enucleation, nucleartransfer and artificial activation. Parthenogenetic embryos were produced with artificial activationtechnique. The result of the research indicated that SCNT application was able to produce cloned embryos which could develop to blastocyst stage (3,2%. In addition, artificial activation of oocytes could produceparthenogenetic embryos which were able to develop up to the blastocyst stage (8,6%. In conclusion,efficiency level of parthenogenetic embryos that is able to reach the blastocyst stage was higher than in thecloned embryos. Fertilized embryos shows a better development and more efficient compared to in vitrocloned embryos and parthenogenetic embryos cultures.

  10. Influence of Porcine Intervertebral Disc Matrix on Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Hans-Lothar Fuchsbauer

    2011-08-01

    Full Text Available For back disorders, cell therapy is one approach for a real regeneration of a degenerated nucleus pulposus. Human mesenchymal stem cells (hMSC could be differentiated into nucleus pulposus (NP-like cells and used for cell therapy. Therefore it is necessary to find a suitable biocompatible matrix, which supports differentiation. It could be shown that a differentiation of hMSC in a microbial transglutaminase cross-linked gelatin matrix is possible, but resulted in a more chondrocyte-like cell type. The addition of porcine NP extract to the gelatin matrix caused a differentiation closer to the desired NP cell phenotype. This concludes that a hydrogel containing NP extract without any other supplements could be suitable for differentiation of hMSCs into NP cells. The NP extract itself can be cross-linked by transglutaminase to build a hydrogel free of NP atypical substrates. As shown by side-specific biotinylation, the NP extract contains molecules with free glutamine and lysine residues available for the transglutaminase.

  11. Expression of Aquaporins in Human Embryos and Potential Role of AQP3 and AQP7 in Preimplantation Mouse Embryo Development

    Directory of Open Access Journals (Sweden)

    Yun Xiong

    2013-05-01

    Full Text Available Background/Aims: Water channels, also named aquaporins (AQPs, play crucial roles in cellular water homeostasis. Methods: RT-PCR indicated the mRNA expression of AQPs 1-5, 7, 9, and 11-12, but not AQPs 0, 6, 8, and 10 in the 2∼8-cell stage human embryos. AQP3 and AQP7 were further analyzed for their mRNA expression and protein expression in the oocyte, zygote, 2-cell embryo, 4-cell embryo, 8-cell embryo, morula, and blastocyst from both human and mouse using RT-PCR and immunofluorescence, respectively. Results: AQP3 and AQP7 were detected in all these stages. Knockdown of either AQP3 or AQP7 by targeted siRNA injection into 2-cell mouse embryos significantly inhibited preimplantation embryo development. However, knockdown of AQP3 in JAr spheroid did not affect its attachment to Ishikawa cells. Conclusion: These data demonstrate that multiple aquaporins are expressed in the early stage human embryos and that AQP3 and AQP7 may play a role in preimplantation mouse embryo development.

  12. Embryo density and medium volume effects on early murine embryo development.

    Science.gov (United States)

    Canseco, R S; Sparks, A E; Pearson, R E; Gwazdauskas, F C

    1992-10-01

    One-cell mouse embryos were used to determine the effects of drop size and number of embryos per drop for optimum development in vitro. Embryos were collected from immature C57BL6 female mice superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin and mated by CD1 males. Groups of 1, 5, 10, or 20 embryos were cultured in 5-, 10-, 20-, or 40-microliters drops of CZB under silicon oil at 37.5 degrees C in a humidified atmosphere of 5% CO2 and 95% air. Development score for embryos cultured in 10 microliters was higher than that of embryos cultured in 20 or 40 microliters. Embryos cultured in groups of 5, 10, or 20 had higher development scores than embryos cultured singly. The highest development score was obtained by the combination of 5 embryos per 10-microliters drop. The percentage of live embryos in 20 or 40 microliters was lower than that of embryos cultured in 10 microliters. Additionally, the percentage of live embryos cultured singly was lower than that of embryos cultured in groups. Our results suggest that a stimulatory interaction occurs among embryos possibly exerted through the secretion of growth factors. This effect can be diluted if the embryos are cultured in large drops or singly.

  13. Eighteen-Year Cryopreservation Does Not Negatively Affect the Pluripotency of Human Embryos: Evidence from Embryonic Stem Cell Derivation

    Science.gov (United States)

    Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Isarasena, Nipan; Virutamasen, Pramuan

    2012-01-01

    Abstract Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research. PMID:23514952

  14. Cell membrane and cell junctions in differentiation of preimplanted mouse embryos.

    Science.gov (United States)

    Izquierdo, L; Fernández, S; López, T

    1976-12-01

    Cell membrane and cell junctions in differentiation of preimplanted mouse embryos, (membrana celular y uniones celulares en la diferenciación del embrión de ratón antes de la implantación). Arch. Biol. Med. Exper. 10: 130-134, 1976. The development of cell junctions that seal the peripheral blastomeres could be a decisive step in the differentiation of morulae into blastocysts. The appearance of these junctions is studied by electron microscopy of late morulae and initial blastocysts. Zonulae occludentes as well as impermeability to lanthanum emulsion precedes the appearance of the blastocel and hence might be considered as one of its necessary causes.

  15. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bodewein, Lambert [Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Frankfurt & Aachen (Germany); Institute of Environmental Research (Biology V), RWTH Aachen University (Germany); Schmelter, Frank; Di Fiore, Stefano [Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Molecular Biology Division, Aachen (Germany); Hollert, Henner [Institute of Environmental Research (Biology V), RWTH Aachen University (Germany); Fischer, Rainer [Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Frankfurt & Aachen (Germany); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Molecular Biology Division, Aachen (Germany); Fenske, Martina, E-mail: martina.fenske@ime.fraunhofer.de [Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Frankfurt & Aachen (Germany)

    2016-08-15

    Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96 h and human cancer cell lines for 24 h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, with EC50 values ranging from 0.16 to just below 1.7 μM at 24 and 48 hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values ≥ 402 μM (PAMAMs) and ≤ 240 μM (PPIs) for HepG2 and ≤ 13.24 μM (PAMAMs) and ≤ 12.84 μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. - Highlights: • Zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time. • Zebrafish embryo toxicity of cationic dendrimers did not increase with generation. • Cationic dendrimers induced apoptosis in zebrafish embryos. • Toxicity of cationic dendrimers was lower in HepG2 and DU145 than zebrafish embryos.

  16. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines

    International Nuclear Information System (INIS)

    Bodewein, Lambert; Schmelter, Frank; Di Fiore, Stefano; Hollert, Henner; Fischer, Rainer; Fenske, Martina

    2016-01-01

    Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96 h and human cancer cell lines for 24 h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, with EC50 values ranging from 0.16 to just below 1.7 μM at 24 and 48 hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values ≥ 402 μM (PAMAMs) and ≤ 240 μM (PPIs) for HepG2 and ≤ 13.24 μM (PAMAMs) and ≤ 12.84 μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. - Highlights: • Zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time. • Zebrafish embryo toxicity of cationic dendrimers did not increase with generation. • Cationic dendrimers induced apoptosis in zebrafish embryos. • Toxicity of cationic dendrimers was lower in HepG2 and DU145 than zebrafish embryos.

  17. Early aberrations in chromatin dynamics in embryos produced under In vitro conditions

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Strejcek, Frantisek

    2012-01-01

    standard to that of embryos produced by IVF, parthenogenetic activation (PA), or SCNT. In contrast to IV embryos, chromatin spatial and temporal dynamics in PA, IVF, and SCNT embryos were altered; starting with aberrant chromatin-nuclear envelope interactions at the two-cell stage, delayed chromatin...... decondensation and nucleolar development at the four-cell stage, and ultimately culminating in failure of proper first lineage segregation at the blastocyst stage, demonstrated by poorly defined inner cell mass. Interestingly, in vitro produced (IVP) embryos also lacked a heterochromatin halo around nucleolar...

  18. Transcriptome profile and cytogenetic analysis of immortalized neuronally restricted progenitor cells derived from the porcine olfactory bulb

    Science.gov (United States)

    Recently, we established and phenotypically characterized an immortalized porcine olfactory bulb neuroblast cell line, OBGF400 (Uebing-Czipura et al., 2008). To facilitate the future application of these cells in studies of neurological dysfunction and neuronal replacement therapies, a comprehensive...

  19. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  20. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  1. β-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Noriko Okumura

    Full Text Available The canonical Wnt/β-catenin signaling pathway plays a crucial role in the maintenance of the balance between proliferation and differentiation throughout embryogenesis and tissue homeostasis. β-Catenin, encoded by the Ctnnb1 gene, mediates an intracellular signaling cascade activated by Wnt. It also plays an important role in the maintenance of various types of stem cells including adult stem cells and cancer stem cells. However, it is unclear if β-catenin is required for the derivation of mouse embryo-derived stem cells. Here, we established β-catenin-deficient (β-cat(Δ/Δ mouse embryo-derived stem cells and showed that β-catenin is not essential for acquiring self-renewal potential in the derivation of mouse embryonic stem cells (ESCs. However, teratomas formed from embryo-derived β-cat(Δ/Δ ESCs were immature germ cell tumors without multilineage differentiated cell types. Re-expression of functional β-catenin eliminated their neoplastic, transformed phenotype and restored pluripotency, thereby rescuing the mutant ESCs. Our findings demonstrate that β-catenin has pleiotropic effects in ESCs; it is required for the differentiation of ESCs and prevents them from acquiring tumorigenic character. These results highlight β-catenin as the gatekeeper in differentiation and tumorigenesis in ESCs.

  2. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.

    Science.gov (United States)

    Schmaltz-Panneau, Barbara; Cordova, Amanda; Dhorne-Pollet, Sophie; Hennequet-Antier, Christelle; Uzbekova, Sveltlana; Martinot, Emmanuelle; Doret, Sarah; Martin, Patrice; Mermillod, Pascal; Locatelli, Yann

    2014-10-01

    In mammals, the oviduct may participate to the regulation of early embryo development. In vitro co-culture of early bovine embryos with bovine oviduct epithelial cells (BOEC) has been largely used to mimic the maternal environment. However, the mechanisms of BOEC action have not been clearly elucidated yet. The aim of this study was to determine the response of BOEC cultures to the presence of developing bovine embryos. A 21,581-element bovine oligonucleotide array was used compare the gene expression profiles of confluent BOEC cultured for 8 days with or without embryos. This study revealed 34 differentially expressed genes (DEG). Of these 34 genes, IFI6, ISG15, MX1, IFI27, IFI44, RSAD2, IFITM1, EPSTI1, USP18, IFIT5, and STAT1 expression increased to the greatest extent due to the presence of embryos with a major impact on antiviral and immune response. Among the mRNAs at least 25 are already described as induced by interferons. In addition, transcript levels of new candidate genes involved in the regulation of transcription, modulation of the maternal immune system and endometrial remodeling were found to be increased. We selected 7 genes and confirmed their differential expression by quantitative RT-PCR. The immunofluorescence imaging of cellular localization of STAT1 protein in BOEC showed a nuclear translocation in the presence of embryos, suggesting the activation of interferon signaling pathway. This first systematic study of BOEC transcriptome changes in response to the presence of embryos in cattle provides some evidences that these cells are able to adapt their transcriptomic profile in response to embryo signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The Well-of-the-Well system: an efficient approach to improve embryo development.

    Science.gov (United States)

    Vajta, Gábor; Korösi, Tamás; Du, Yutao; Nakata, Kumiko; Ieda, Shoko; Kuwayama, Masashige; Nagy, Zsolt Peter

    2008-07-01

    Transfer of human embryos at the blastocyst stage may offer considerable benefits including an increased implantation rate and a decreased risk of multiple pregnancies; however, blastocyst culture requires an efficient and reliable in-vitro embryo culture system. In this study, the effect of the Well-of-the-Well (WOW) system consisting of microwells formed on the bottom of the culture dish was tested in three mammalian species, including humans. The WOW system resulted in significant improvement when comparing the drops for culture of in-vitro-matured and parthenogenetically activated porcine oocytes, and in-vivo-derived mouse zygotes. In human embryos, using a sibling oocyte design, embryos cultured in WOW developed to the blastocyst stage in a significantly higher proportion than did embryos cultured traditionally (55% in WOW and 37% in conventional culture; P WOW system or in microdrops. Transferable quality blastocyst development (48.9% of cultured zygotes) was observed in the WOW system. Ninety-four blastocysts transferred to 45 patients resulted in clinical pregnancy rates of 48.9%, including nine twin pregnancies, seven single pregnancies, five miscarriages and one ectopic pregnancy. The results indicate that the WOW system provides a promising alternative for microdrop culture of mammalian embryos, including human embryos.

  4. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  5. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos.

    Science.gov (United States)

    Shi, Li-Hong; Miao, Yi-Liang; Ouyang, Ying-Chun; Huang, Jun-Cheng; Lei, Zi-Li; Yang, Ji-Wen; Han, Zhi-Ming; Song, Xiang-Fen; Sun, Qing-Yuan; Chen, Da-Yuan

    2008-03-01

    The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit-rabbit intraspecies and rabbit-human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit-rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA-treated rabbit-human interspecies cloned embryos decreased. We also found evident time-dependent histone deacetylation-reacetylation changes in rabbit-rabbit cloned embryos, but not in rabbit-human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA-treatment does not improve blastocyst development of rabbit-human iSCNT embryos and that abnormal histone deacetylation-reacetylation changes in iSCNT embryos may account for their poor blastocyst development. (c) 2008 Wiley-Liss, Inc.

  6. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    Science.gov (United States)

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  7. Automation and Optimization of Multipulse Laser Zona Drilling of Mouse Embryos During Embryo Biopsy.

    Science.gov (United States)

    Wong, Christopher Yee; Mills, James K

    2017-03-01

    Laser zona drilling (LZD) is a required step in many embryonic surgical procedures, for example, assisted hatching and preimplantation genetic diagnosis. LZD involves the ablation of the zona pellucida (ZP) using a laser while minimizing potentially harmful thermal effects on critical internal cell structures. Develop a method for the automation and optimization of multipulse LZD, applied to cleavage-stage embryos. A two-stage optimization is used. The first stage uses computer vision algorithms to identify embryonic structures and determines the optimal ablation zone farthest away from critical structures such as blastomeres. The second stage combines a genetic algorithm with a previously reported thermal analysis of LZD to optimize the combination of laser pulse locations and pulse durations. The goal is to minimize the peak temperature experienced by the blastomeres while creating the desired opening in the ZP. A proof of concept of the proposed LZD automation and optimization method is demonstrated through experiments on mouse embryos with positive results, as adequately sized openings are created. Automation of LZD is feasible and is a viable step toward the automation of embryo biopsy procedures. LZD is a common but delicate procedure performed by human operators using subjective methods to gauge proper LZD procedure. Automation of LZD removes human error to increase the success rate of LZD. Although the proposed methods are developed for cleavage-stage embryos, the same methods may be applied to most types LZD procedures, embryos at different developmental stages, or nonembryonic cells.

  8. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histone deacetylase inhibitor TSA.

    Science.gov (United States)

    Hai, Tang; Hao, Jie; Wang, Liu; Jouneau, Alice; Zhou, Qi

    2011-02-01

    Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.

  9. Methanol as a cryoprotectant for equine embryos.

    Science.gov (United States)

    Bass, L D; Denniston, D J; Maclellan, L J; McCue, P M; Seidel, G E; Squires, E L

    2004-09-15

    Equine embryos (n=43) were recovered nonsurgically 7-8 days after ovulation and randomly assigned to be cryopreserved in one of two cryoprotectants: 48% (15M) methanol (n=22) or 10% (136 M) glycerol (n=21). Embryos (300-1000 microm) were measured at five intervals after exposure to glycerol (0, 2, 5, 10 and 15 min) or methanol (0, 15, 35, 75 and 10 min) to determine changes (%) in diameter over time (+/-S.D.). Embryos were loaded into 0.25-ml plastic straws, sealed, placed in a programmable cell freezer and cooled from room temperature (22 degrees C) to -6 degrees C. Straws were then seeded, held at -6 degrees C for 10 min and then cooled to -33 degrees C before being plunged into liquid nitrogen. Two or three embryos within a treatment group were thawed and assigned to be either cultured for 12 h prior to transfer or immediately nonsurgically transferred to a single mare. Embryo diameter decreased in all embryos upon initial exposure to cryoprotectant. Embryos in methanol shrank and recovered slightly to 76+/-8 % of their original diameter; however, embryos in glycerol continued to shrink, reaching 57+/-6 % of their original diameter prior to cryopreservation. Survival rates of embryos through Day 16 of pregnancy were 38 and 23%, respectively (P>0.05) for embryos cryopreserved in the presence of glycerol or methanol. There was no difference in pregnancy rates of mares receiving embryos that were cultured prior to transfer or not cultured (P>0.05). Preliminary experiments indicated that 48% methanol was not toxic to fresh equine embryos but methanol provided no advantage over glycerol as a cryoprotectant for equine blastocysts.

  10. Regulation of cAMP on the first mitotic cell cycle of mouse embryos.

    Science.gov (United States)

    Yu, Aiming; Zhang, Zhe; Bi, Qiang; Sun, Bingqi; Su, Wenhui; Guan, Yifu; Mu, Runqing; Miao, Changsheng; Zhang, Jie; Yu, Bingzhi

    2008-03-01

    Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo. Copyright 2007 Wiley-Liss, Inc.

  11. Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT embryos

    Directory of Open Access Journals (Sweden)

    María E Arias

    2013-01-01

    Full Text Available Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively. No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (P<0.01 in the rate of blastocyst development, with the K-K/ FBS culture system yielding a higher rate of blastocysts (28% compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively. Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA. Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.

  12. Association between expression of cumulus expansion markers and real-time proliferation of porcine follicular granulosa cells in a primary cell culture model.

    Science.gov (United States)

    Ciesiółka, S; Budna, J; Bryja, A; Kranc, W; Chachuła, A; Dyszkiewicz-Konwińska, M; Piotrowska, H; Bukowska, D; Antosik, P; Bruska, M; Brüssow, K P; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    Folliculogenesis is a compound process that involves both ovarian follicle growth and oocyte development, which is tightly attached to the follicular wall. During this process, cells that form the follicle structure undergo substantial morphological and molecular modifications that finally lead to differentiation and specialization of ovarian follicular cells. The differentiation of ovarian cells encompasses formation of follicle, which is composed of theca (TCs), mural granulosa (GCs), and cumulus cells (CCs). It was previously hypothesized that GCs and CCs represent undifferentiated and highly specialized follicular cells, respectively, which may have similar primordial cell origins. In this study, we investigated the expression pattern of cumulus expansion markers such as COX2, HAS2, PTX3, and TSG6 in porcine GCs during short-term, in vitro culture. We hypothesized that these genes may display an important function in GCs in relation to cellular real-time proliferation. The expression pattern of COX2, HAS2, PTX3, and TSG6 was evaluated after using RT-qPCR in relation to confocal microscopy observations of protein expression and distribution during real-time proliferation of porcine follicular GCs. The COX2 and HAS2 mRNAs were highly expressed after 120 h of in vitro culture (IVC), whereas PTX3 and TSG6 mRNAs were increased during the first 24-48 h of IVC (P less than 0.001, P less than 0.01). Conversely, all of the encoded proteins were highly expressed after 144-168 h of IVC as compared to other culture periods (P less than 0.001, P less than 0.01). When analyzing the realtime proliferation of GCs in vitro, we observed a logarithmic increase of cell proliferation between 0 h and 120 h of IVC. However, after 120-168 h of IVC, the cells reached the lag phase of proliferation. Since it is well accepted that porcine GCs undergo luteinization shortly after 24-48 h of IVC, the expression pattern of investigated genes indicated that Cox2 and Has2 are independent from

  13. Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells

    International Nuclear Information System (INIS)

    Li, Zhipeng; Huang, Baoxin; Mai, Sui; Wu, Xiayi; Zhang, Hanqing; Qiao, Wei; Luo, Xin; Chen, Zhuofan

    2015-01-01

    Biological hydroxyapatite, derived from animal bones, is the most widely used bone substitute in orthopedic and dental treatments. Fluorine is the trace element involved in bone remodeling and has been confirmed to promote osteogenesis when administered at the appropriate dose. To take advantage of this knowledge, fluorinated porcine hydroxyapatite (FPHA) incorporating increasing levels of fluoride was derived from cancellous porcine bone through straightforward chemical and thermal treatments. Physiochemical characteristics, including crystalline phases, functional groups and dissolution behavior, were investigated on this novel FPHA. Human osteoblast-like MG63 cells were cultured on the FPHA to examine cell attachment, cytoskeleton, proliferation and osteoblastic differentiation for in vitro cellular evaluation. Results suggest that fluoride ions released from the FPHA play a significant role in stimulating osteoblastic activity in vitro, and appropriate level of fluoridation (1.5 to 3.1 atomic percents of fluorine) for the FPHA could be selected with high potential for use as a bone substitute. (paper)

  14. Significant Down-Regulation of “Biological Adhesion” Genes in Porcine Oocytes after IVM

    Directory of Open Access Journals (Sweden)

    Joanna Budna

    2017-12-01

    Full Text Available Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group, or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group. As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.

  15. Self-Organization of Genome Expression from Embryo to Terminal Cell Fate: Single-Cell Statistical Mechanics of Biological Regulation

    Directory of Open Access Journals (Sweden)

    Alessandro Giuliani

    2017-12-01

    Full Text Available A statistical mechanical mean-field approach to the temporal development of biological regulation provides a phenomenological, but basic description of the dynamical behavior of genome expression in terms of autonomous self-organization with a critical transition (Self-Organized Criticality: SOC. This approach reveals the basis of self-regulation/organization of genome expression, where the extreme complexity of living matter precludes any strict mechanistic approach. The self-organization in SOC involves two critical behaviors: scaling-divergent behavior (genome avalanche and sandpile-type critical behavior. Genome avalanche patterns—competition between order (scaling and disorder (divergence reflect the opposite sequence of events characterizing the self-organization process in embryo development and helper T17 terminal cell differentiation, respectively. On the other hand, the temporal development of sandpile-type criticality (the degree of SOC control in mouse embryo suggests the existence of an SOC control landscape with a critical transition state (i.e., the erasure of zygote-state criticality. This indicates that a phase transition of the mouse genome before and after reprogramming (immediately after the late 2-cell state occurs through a dynamical change in a control parameter. This result provides a quantitative open-thermodynamic appreciation of the still largely qualitative notion of the epigenetic landscape. Our results suggest: (i the existence of coherent waves of condensation/de-condensation in chromatin, which are transmitted across regions of different gene-expression levels along the genome; and (ii essentially the same critical dynamics we observed for cell-differentiation processes exist in overall RNA expression during embryo development, which is particularly relevant because it gives further proof of SOC control of overall expression as a universal feature.

  16. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  17. Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells

    Directory of Open Access Journals (Sweden)

    Han Yong-Mahn

    2009-07-01

    Full Text Available Abstract Background Interspecies somatic cell nuclear transfer (iSCNT has been proposed as a tool to address basic developmental questions and to improve the feasibility of cell therapy. However, the low efficiency of iSCNT embryonic development is a crucial problem when compared to in vitro fertilization (IVF and intraspecies SCNT. Thus, we examined the effect of donor cell species on the early development of SCNT embryos after reconstruction with bovine ooplasm. Results No apparent difference in cleavage rate was found among IVF, monkey-bovine (MB-iSCNT, and bovine-bovine (BB-SCNT embryos. However, MB-iSCNT embryos failed to develop beyond the 8- or 16-cell stages and lacked expression of the genes involved in embryonic genome activation (EGA at the 8-cell stage. From ultrastructural observations made during the peri-EGA period using transmission electron microscopy (TEM, we found that the nucleoli of MB-iSCNT embryos were morphologically abnormal or arrested at the primary stage of nucleologenesis. Consistent with the TEM analysis, nucleolar component proteins, such as upstream binding transcription factor, fibrillarin, nucleolin, and nucleophosmin, showed decreased expression and were structurally disorganized in MB-iSCNT embryos compared to IVF and BB-SCNT embryos, as revealed by real-time PCR and immunofluorescence confocal laser scanning microscopy, respectively. Conclusion The down-regulation of housekeeping and imprinting genes, abnormal nucleolar morphology, and aberrant patterns of nucleolar proteins during EGA resulted in developmental failure in MB-iSCNT embryos. These results provide insight into the unresolved problems of early embryonic development in iSCNT embryos.

  18. Nuclear organization during in vitro differentiation of porcine mesenchymal stem cells (MSCs) into adipocytes.

    Science.gov (United States)

    Stachecka, Joanna; Walczak, Agnieszka; Kociucka, Beata; Ruszczycki, Błażej; Wilczyński, Grzegorz; Szczerbal, Izabela

    2018-02-01

    Differentiation of progenitor cells into adipocytes is accompanied by remarkable changes in cell morphology, cytoskeletal organization, and gene expression profile. Mature adipocytes are filled with a large lipid droplet and the nucleus tends to move to the cell periphery. It was hypothesized that the differentiation process is also associated with changes of nuclear organization. The aim of this study was to determine the number and distribution of selected components of nuclear architecture during porcine in vitro adipogenesis. The pig is an important animal model sharing many similarities to humans at the anatomical, physiological, and genetic levels and has been recognized as a good model for human obesity. Thus, understanding how cellular structures important for fundamental nuclear processes may be altered during adipocyte differentiation is of great importance. Mesenchymal stem cells (MSCs) were derived from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) and were cultured for 7 days in the adipogenic medium. A variable differentiation potential of these cell populations towards adipogenic lineage was observed, and for further study, a comparative characteristic of the nuclear organization in BM-MSCs and AD-MSCs was performed. Nuclear substructures were visualized by indirect immunofluorescence (nucleoli, nuclear speckles, PML bodies, lamins, and HP1α) or fluorescence in situ hybridization (telomeres) on fixed cells at 0, 3, 5, and 7 days of differentiation. Comprehensive characterization of these structures, in terms of their number, size, dynamics, and arrangement in three-dimensional space of the nucleus, was performed. It was found that during differentiation of porcine MSCs into adipocytes, changes of nuclear organization occurred and concerned: (1) the nuclear size and shape; (2) reduced lamin A/C expression; and (3) reorganization of chromocenters. Other elements of nuclear architecture such as nucleoli, SC-35 nuclear speckles, and telomeres

  19. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    International Nuclear Information System (INIS)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae; Uhm, Sang Jun; Lee, Hoon Taek

    2010-01-01

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  20. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae [Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Uhm, Sang Jun [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Hoon Taek, E-mail: htl3675@konkuk.ac.kr [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2010-07-09

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  1. Follicle-stimulating hormone (FSH) unmasks specific high affinity FSH-binding sites in cell-free membrane preparations of porcine granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ford, K.A.; LaBarbera, A.R.

    1988-11-01

    The purpose of these studies was to determine whether changes in FSH receptors correlated with FSH-induced attenuation of FSH-responsive adenylyl cyclase in immature porcine granulosa cells. Cells were incubated with FSH (1-1000 ng/ml) for up to 24 h, treated with acidified medium (pH 3.5) to remove FSH bound to cells, and incubated with (125I)iodo-porcine FSH to quantify FSH-binding sites. FSH increased binding of FSH in a time-, temperature-, and FSH concentration-dependent manner. FSH (200 ng/ml) increased binding approximately 4-fold within 16 h. Analysis of equilibrium saturation binding data indicated that the increase in binding sites reflected a 2.3-fold increase in receptor number and a 5.4-fold increase in apparent affinity. The increase in binding did not appear to be due to 1) a decrease in receptor turnover, since the basal rate of turnover appeared to be very slow; 2) an increase in receptor synthesis, since agents that inhibit protein synthesis and glycosylation did not block the increase in binding; or 3) an increase in intracellular receptors, since agents that inhibit cytoskeletal components had no effect. Agents that increase intracellular cAMP did not affect FSH binding. The increase in binding appeared to result from unmasking of cryptic FSH-binding sites, since FSH increased binding in cell-free membrane preparations to the same extent as in cells. Unmasking of cryptic sites was hormone specific, and the sites bound FSH specifically. Unmasking of sites was reversible in a time- and temperature-dependent manner after removal of bound FSH. The similarity between the FSH dose-response relationships for unmasking of FSH-binding sites and attenuation of FSH-responsive cAMP production suggests that the two processes are functionally linked.

  2. [Observation in situ of differentiation from PGC to hematopoietic system cells in chicken embryo].

    Science.gov (United States)

    Zhou, Dong-Yu; Liu, Rong-Xiu; Pei, Yue-Hu

    2009-02-01

    To study the relationship between hematopoiesis and primordial germ cells, chick embryos at different developing stages were flatbed and located. After fixed by glutaral, the embryos were PAS and HE stained respectively, dehydrated serially, transparent, mounted, and were observed in situ or in cut sheet condition. The results showed: (1) the cellule amorphous and the disposition in chick embryo of PGCs were coincident no matter stained by PAS or HE staining, and HE staining could disclose the morphologic characteristics more clearly, exactly and completely; (2) genesis of blood island could be observed at the boundary of light and dark region of the extraembryonic blastoderm at about 26 hours; (3) both the blood vessel endothelium cells and free cells of the blood island were differentiated from PGCs. The generating of genuine yolk sac was at about 44 - 48 hours. It is concluded that the initial anatomic site of blood island genesis may be is mesoblast of extraembryonic blastoderm rather than the yolk sac; the blood vessel endothelium cells and the blood cells are generated parallel; the PGCs are the common ancestry of angioblast and HSC.

  3. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Science.gov (United States)

    Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben

    2015-01-01

    In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).

  4. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Directory of Open Access Journals (Sweden)

    Louiza Bohn Thomsen

    Full Text Available In vitro blood-brain barrier (BBB models based on primary brain endothelial cells (BECs cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP and breast cancer related protein (BCRP, and the transferrin receptor.

  5. Effect of early addition of bone morphogenetic protein 5 (BMP5) to embryo culture medium on in vitro development and expression of developmentally important genes in bovine preimplantation embryos.

    Science.gov (United States)

    García, Elina V; Miceli, Dora C; Rizo, Gabriela; Valdecantos, Pablo A; Barrera, Antonio D

    2015-09-01

    Previous studies have reported that bone morphogenetic protein 5 (BMP5) is differentially expressed in the isthmus of bovine oviducts and it is present in the oviductal fluid. However, the specific action of this factor is unknown. To evaluate whether BMP5 exerts some effect during early bovine embryo development, gene expression of BMP5, BMP receptors, and the effect of exogenous BMP5 on in vitro development and expression of developmentally important genes were assessed. In experiment 1, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from in vitro fertilization, were collected for analysis of BMP5 and BMP receptors (BMPR1A, BMPR1B, and BMPR2) messenger RNA (mRNA) expression. On the basis of previous results, in experiment 2, presumptive zygotes were cultured for the first 48 hours after insemination in CR1aa medium assaying three different treatments: (1) control (CR1aa); (2) vehicle control (CR1aa + 0.04 mM HCl), and (3) BMP5 treatment (CR1aa + 100 ng/mL of BMP5). The cleavage rate was evaluated 48 hours after insemination (Day 2), and then, embryos were transferred to CR1aa + 10% fetal bovine serum. The blastocyst rate was determined on Day 7. In experiment 3, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from control and BMP5-treated groups, were collected for analysis of ID2 (BMP target gene), OCT4, NANOG, and SOX2 (pluripotency genes) mRNA expression. BMP5 transcripts were not detectable in any of the embryonic stages examined, whereas the relative mRNA abundance of the three BMP receptors analyzed was greater in early embryo development stages before maternal-embryonic transition, raising the possibility of a direct effect of exogenous BMPs on the embryo during the first developmental period. Although early addition of 100 ng/mL of BMP5 to the embryo culture medium had no effect on the cleavage rate, a significantly higher proportion of cleaved embryos developed to the

  6. High-Magnification In Vivo Imaging of Xenopus Embryos for Cell and Developmental Biology

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Esther K. Kieserman, Chanjae Lee, Ryan S. Gray, Tae Joo Park and John B. Wallingford Corresponding author ([]()). ### INTRODUCTION Embryos of the frog *Xenopus laevis* are an ideal model system for in vivo imaging of dynamic biological processes, from the inner workings of individual cells to the reshaping of tissues during embryogenesis. Their externally developing embryos are more amenable to in vivo analysis than in...

  7. Effects of Two Types of Melatonin-Loaded Nanocapsules with Distinct Supramolecular Structures: Polymeric (NC) and Lipid-Core Nanocapsules (LNC) on Bovine Embryo Culture Model.

    Science.gov (United States)

    Komninou, Eliza Rossi; Remião, Mariana Härter; Lucas, Caroline Gomes; Domingues, William Borges; Basso, Andrea Cristina; Jornada, Denise Soledade; Deschamps, João Carlos; Beck, Ruy Carlos Ruver; Pohlmann, Adriana Raffin; Bordignon, Vilceu; Seixas, Fabiana Kömmling; Campos, Vinicius Farias; Guterres, Silvia Stanisçuaski; Collares, Tiago

    2016-01-01

    Melatonin has been used as a supplement in culture medium to improve the efficiency of in vitro produced mammalian embryos. Through its ability to scavenge toxic oxygen derivatives and regulate cellular mRNA levels for antioxidant enzymes, this molecule has been shown to play a protective role against damage by free radicals, to which in vitro cultured embryos are exposed during early development. In vivo and in vitro studies have been performed showing that the use of nanocapsules as active substances carriers increases stability, bioavailability and biodistribution of drugs, such as melatonin, to the cells and tissues, improving their antioxidant properties. These properties can be modulated through the manipulation of formula composition, especially in relation to the supramolecular structures of the nanocapsule core and the surface area that greatly influences drug release mechanisms in biological environments. This study aimed to evaluate the effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures, polymeric (NC) and lipid-core (LNC) nanocapsules, on in vitro cultured bovine embryos. Embryonic development, apoptosis, reactive oxygen species (ROS) production, and mRNA levels of genes involved in cell apoptosis, ROS and cell pluripotency were evaluated after supplementation of culture medium with non-encapsulated melatonin (Mel), melatonin-loaded polymeric nanocapsules (Mel-NC) and melatonin-loaded lipid-core nanocapsules (Mel-LNC) at 10-6, 10-9, and 10-12 M drug concentrations. The highest hatching rate was observed in embryos treated with 10-9 M Mel-LNC. When compared to Mel and Mel-NC treatments at the same concentration (10-9 M), Mel-LNC increased embryo cell number, decreased cell apoptosis and ROS levels, down-regulated mRNA levels of BAX, CASP3, and SHC1 genes, and up-regulated mRNA levels of CAT and SOD2 genes. These findings indicate that nanoencapsulation with LNC increases the protective effects of melatonin

  8. Effects of Two Types of Melatonin-Loaded Nanocapsules with Distinct Supramolecular Structures: Polymeric (NC and Lipid-Core Nanocapsules (LNC on Bovine Embryo Culture Model.

    Directory of Open Access Journals (Sweden)

    Eliza Rossi Komninou

    Full Text Available Melatonin has been used as a supplement in culture medium to improve the efficiency of in vitro produced mammalian embryos. Through its ability to scavenge toxic oxygen derivatives and regulate cellular mRNA levels for antioxidant enzymes, this molecule has been shown to play a protective role against damage by free radicals, to which in vitro cultured embryos are exposed during early development. In vivo and in vitro studies have been performed showing that the use of nanocapsules as active substances carriers increases stability, bioavailability and biodistribution of drugs, such as melatonin, to the cells and tissues, improving their antioxidant properties. These properties can be modulated through the manipulation of formula composition, especially in relation to the supramolecular structures of the nanocapsule core and the surface area that greatly influences drug release mechanisms in biological environments. This study aimed to evaluate the effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures, polymeric (NC and lipid-core (LNC nanocapsules, on in vitro cultured bovine embryos. Embryonic development, apoptosis, reactive oxygen species (ROS production, and mRNA levels of genes involved in cell apoptosis, ROS and cell pluripotency were evaluated after supplementation of culture medium with non-encapsulated melatonin (Mel, melatonin-loaded polymeric nanocapsules (Mel-NC and melatonin-loaded lipid-core nanocapsules (Mel-LNC at 10-6, 10-9, and 10-12 M drug concentrations. The highest hatching rate was observed in embryos treated with 10-9 M Mel-LNC. When compared to Mel and Mel-NC treatments at the same concentration (10-9 M, Mel-LNC increased embryo cell number, decreased cell apoptosis and ROS levels, down-regulated mRNA levels of BAX, CASP3, and SHC1 genes, and up-regulated mRNA levels of CAT and SOD2 genes. These findings indicate that nanoencapsulation with LNC increases the protective effects of

  9. Inhibition of prostaglandin synthesis after metabolism of menadione by cultured porcine endothelial cells.

    OpenAIRE

    Barchowsky, A; Tabrizi, K; Kent, R S; Whorton, A R

    1989-01-01

    We have examined the effects of menadione on porcine aortic endothelial cell prostaglandin synthesis. Addition of 1-20 microM menadione caused a dose- and time-dependent inhibition of stimulated prostaglandin synthesis with an IC50 of 5 microM at 15 min. Concentrations greater than 100 microM menadione were necessary to increase 51Cr release from prelabeled cells. Recovery of enzyme inactivated by menadione required a 6-h incubation in 1% serum. In a microsomal preparation, menadione was show...

  10. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    International Nuclear Information System (INIS)

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen

    2015-01-01

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection

  11. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn

    2015-01-09

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection.

  12. Morphological characterization of pre- and peri-implantation in vitro cultured, somatic cell nuclear transfer and in vivo derived ovine embryos

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille Yde; Peura, T.T.; Hartwich, K.M.

    2005-01-01

    The processes of cellular differentiation were studied in somatic cell nuvlear transfer (SCNT), in vitro cultured (IVC) and in vivo developed (in vivo) ovine embryos on days 7, 9, 11, 13, 17 and 19. SCNT embryos were constructed from in vitro matured oocytes and granulosa cells, and IVC embryos...... were produced by in vitro culture of in vivo fertilized zygotes. Most SCNT and IVC embryos were transferred to recipients on day 6 while some remained in culture for day 7 processing. In vivo embryos were collected as zygotes, transferred to intermediate recipients and retransferred to final recipients...

  13. Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo.

    Science.gov (United States)

    Dai, Shan-Jun; Xu, Chang-Long; Wang, Jeffrey; Sun, Ying-Pu; Chian, Ri-Cheng

    2012-07-01

    To determine the optimal volume or density of embryos for the well-of-the-well (WOW) system in order to track the development of individual embryos and to determine whether the WOW system can reverse the negative impact of culturing embryos singly. (1) Mouse embryos (groups of nine at the 2-cell stage) were cultured in 6.25 μl, 12.50 μl, 25.00 μl and 50.00 μl of droplets of culture medium under paraffin oil; (2) Groups of three, six, nine and twelve embryos at the 2-cell stage were cultured in 50 μl of droplet of culture medium under paraffin oil; (3) Groups of nine embryos at the 2-cell stage were cultured in 50 μl of droplet under paraffin oil with or without nine micro-wells made on the bottom of the Petri dish into each of which were placed one of the nine embryos (WOW system). Also single 2-cell stage embryos was cultured individually in 5.5 μl of droplet of culture medium under paraffin oil with or without a single micro-well made on the bottom of the Petri dish (WOW system for single culture). At the end of culture, the percentages of blastocyst development, hatching and hatched blastocysts were compared in each group. The blastocysts were fixed for differential staining. The blastocyst development was significantly higher (P WOW system. The blastocyst development was not improved when single embryo cultured individually in a micro-well was compared to single embryo cultured individually without micro-well. The total cell numbers of blastocysts were significantly higher in group embryo culture than single embryo culture regardless of whether the WOW system was used. In addition, the total cell numbers of blastocysts were significantly higher (P WOW system than without. Group embryo culture is superior to single embryo culture for blastocyst development. The WOW system with 50 μl of droplet of culture medium can be used to track the individual development of embryo cultured in groups while preserving good embryonic development. The reduced

  14. Change of nucleolus characteristic of fish embryo cells under the influence of low-level radiation

    International Nuclear Information System (INIS)

    Arkhipchuk, V.V.

    1995-01-01

    The nucleolus activity of fish embryo cells was stimulated by low-level radiation at a dose rate of 2-13 mGy/h. The size of nucleoli generally increased in embryos of Cyprinus carpio, whereas the number of nucleoli was greater in embryos of Carassius auratus gibelio. The higher the functional activity of nucleolus is, the more pronounced are changes in the characteristics. The size of single nucleolus at gastrulation is the most sensitive characteristic. 16 refs.; 1 tab

  15. Lipofection of siRNA into bovine 8-16-cell stage embryos using zona removal and the well-of-the-well culture system.

    Science.gov (United States)

    Ikeda, Shuntaro; Sugimoto, Miki; Kume, Shinichi

    2018-04-13

    Bovine preimplantation embryos exhibit dramatic biological changes between before and after the 8-16-cell stage. Here we report a simple lipofection method to transfect siRNA into bovine 8-16-cell stage embryos using zona removal and the well-of-the-well (WOW) culture system. Bovine one-cell embryos produced in vitro were freed from the zona pellucida and cultured up to the 8-16-cell stage in WOW dishes. The 8-16-cell embryos were lipofected with siRNA and the transfection efficiency was assessed at 48 h of transfection. Lipofection with a red fluorescent non-targeting siRNA revealed the importance of zona removal for transfection of siRNA into embryos. Using this method, we knocked down the methionine adenosyltransferase 2A (MAT2A) gene, achieving a significant reduction in MAT2A expression (P lipofection', may be useful to analyze gene functions in bovine preimplantation embryos without expensive equipment and skill-intensive techniques.

  16. Manipulating early pig embryos.

    Science.gov (United States)

    Niemann, H; Reichelt, B

    1993-01-01

    On the basis of established surgical procedures for embryo recovery and transfer, the early pig embryo can be subjected to various manipulations aimed at a long-term preservation of genetic material, the generation of identical multiplets, the early determination of sex or the alteration of the genetic make-up. Most of these procedures are still at an experimental stage and despite recent considerable progress are far from practical application. Normal piglets have been obtained after cryopreservation of pig blastocysts hatched in vitro, whereas all attempts to freeze embryos with intact zona pellucida have been unsuccessful. Pig embryos at the morula and blastocyst stage can be bisected microsurgically and the resulting demi-embryos possess a high developmental potential in vitro, whereas their development in vivo is impaired. Pregnancy rates are similar (80%) but litter size is reduced compared with intact embryos and twinning rate is approximately 2%. Pig blastomeres isolated from embryos up to the 16-cell stage can be grown in culture and result in normal blastocysts. Normal piglets have been born upon transfer of blastocysts derived from isolated eight-cell blastomeres, clearly underlining the totipotency of this developmental stage. Upon nuclear transfer the developmental capacity of reconstituted pig embryos is low and culture. Sex determination can be achieved either by separation of X and Y chromosome bearing spermatozoa by flow cytometry or by analysing the expression of the HY antigen in pig embryos from the eight-cell to morula stage. Microinjection of foreign DNA has been successfully used to alter growth and development of transgenic pigs, and to produce foreign proteins in the mammary gland or in the bloodstream, indicating that pigs can be used as donors for valuable human pharmaceutical proteins. Another promising area of gene transfer is the increase of disease resistance in transgenic lines of pigs. Approximately 30% of pig spermatozoa bind

  17. Control of the proportion of inner cells by asymmetric divisions and the ensuing resilience of cloned rabbit embryos

    Science.gov (United States)

    Duranthon, Véronique

    2018-01-01

    ABSTRACT Mammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged in toto until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability. Preferential cell death of inner cells in clones, probably pertaining to the epigenetic plasticity of the transferred nucleus, is identified as a major difference with effects on the proportion of inner cell. In wild type and clones, similar patterns of outer cell asymmetric divisions are shown to be essential to the robust proportion of inner cells observed in wild type. Asymmetric inner cell division, which is not described in mice, is identified as a regulator of the proportion of inner cells and likely gives rise to resilient clones. PMID:29567671

  18. Novel Approach of Differential Staining to Detect Necrotic Cells in Preimplantation Embryos

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Nasr Esfahani

    2007-01-01

    Full Text Available Background: This novel approach describes a rapid and simple method for identification of necrotic vs. viable cells within a mammalian blastocyst.Materials and Methods: Hatched bovine blastocysts produced in vitro were first incubated for 30 min in pre-equilibrated culture medium containing propidium iodide (PI; 300μg/ml and bisbenzimide (Hoechst: H33342; 5μg/ml fluorescent dyes. Embryos were then freed from residual dyes by thoroughly washing in warm phosphate buffer saline free of calcium and magnesium (PBS-, fixed in 2.5% glutharaldehyde and washed again in PBS- . Stained embryos afterwards were mounted in a drop of glycerol over a microscopic slide. Prepared samples were examined under an epifluorescent microscope using the same excitation wavelength (330-385nm and barrier filter (400nm to distinguish necrosed vs. viable blastomers as being appeared in red and blue, respectively.Results: Obtained results showed that in cells with altered cell membrane such as late apoptotic or necrotic cells, PI and H33342 readily enter through the cytoplasmic barriers and so the chromatin materials are stained by both, but since PI quenches bisbenzimide fluorescence, necrotic blastomeres are seen in red to pinky red, while live cells are seen just as blue.Conclusion: Obtained results clearly indicated that this novel approach can be used as a simple, feasible and precise method for every embryology lab and with all the mammalian blastocysts produced either in vitro or in vivo. The basic assay can be completed in 60 min, and valuable and reliable information can be obtained about the quality of the embryos.

  19. Pituitary Gonadotropins, Prolactin and Growth Hormone Differentially Regulate AQP1 Expression in the Porcine Ovarian Follicular Cells

    Directory of Open Access Journals (Sweden)

    Mariusz T. Skowronski

    2017-12-01

    Full Text Available The present in vitro study analyzed whether the hormones that affect the ovarian follicular steroidogenesis process also participate in the regulation of AQP1 mRNA and protein expression. Granulosa (Gc and theca cells (Tc of medium and large porcine ovarian follicles were exposed to follicle-stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL and growth hormone (GH for 24 h in separated cells and co-cultures of these cells. Real-time PCR, Western blotting, immunofluorescence and volumetric analysis were then performed. Gonadotropins, PRL and GH had a stimulatory impact on AQP1 mRNA and protein expression in Gc and Tc of medium and large ovarian cells. Moreover, swelling assays, in response to a hypotonic environment, demonstrated the functional presence of AQPs in porcine Gc and Tc. Immunofluorescence analysis showed that AQP1 protein was mainly localized in the perinuclear region of the cytoplasm, endosomes and cell membranes of Gc and Tc from medium and large follicles. It seems possible that AQP1 present in Gc and Tc cells may be implicated not only in the regulation of water homeostasis required for follicle development but also in cell proliferation and migration.

  20. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method

    DEFF Research Database (Denmark)

    Joergensen, Mette Warming; Agerholm, Inge; Hindkjaer, Johnny

    2014-01-01

    PURPOSE: To analyze the cleavage patterns in dipronuclear (2PN) and tripronuclear (3PN) embryos in relation to fertilization method. METHOD: Time-lapse analysis. RESULTS: Compared to 2PN, more 3PN IVF embryos displayed early cleavage into 3 cells (p ... stage (p embryos, the 2nd and 3rd cleavage cycles were completed within the expected time frame. However, timing of the cell divisions within the cleavage cycles differed between the two groups. In contrast......, the completion of the 1st, 2nd, and 3rd cleavage cycle was delayed, but with a similar division pattern for 3PN ICSI compared with the 2PN ICSI embryos. 3PN, more often than 2PN ICSI embryos, displayed early cleavage into 3 cells (p = 0.03) and arrested development from the compaction stage and onwards (p = 0...

  1. Die Behandlung menschliches Embryos und Menschenwurde

    OpenAIRE

    Matsui, Fumio

    2002-01-01

    We are confronted with an old and new problem, which has come up with the progress of modern biotechnologies: what is a life or when does a life begin? The expectation of order-made medicine has build up since the discovery of Embryo Stem cell called "a dream master cell", while there is any condemnation against the destruction of human embryo in order to gain it. It is a question whether a human embryo is a human being in the world. Human dignity(=HD) is a principle that keeps human embryos ...

  2. The influence of serum substituents on serum-free Vero cell conditioned culture media manufactured from Dulbecco's modified Eagle medium in mouse embryo culture.

    Science.gov (United States)

    Lee, Jong-Seon; Kim, Ju-Hwan; Seo, Young-Seok; Yang, Jung-Bo; Kim, Yong-Il; Kim, Hye-Jin; Lee, Ki-Hwan

    2013-09-01

    This study was conducted to examine the influences of supplementation of the serum substituents and available period of serum-free Vero cell conditioned media (SF-VCM) manufactured from Dulbecco's modified Eagle medium cultured with Vero cells for in vitro development of mouse preimplantation embryos. A total of 1,099 two-cell embryos collected from imprinting control region mice were cultured in SF-VCM with 10% and 20% human follicular fluid (hFF), serum substitute supplement (SSS), and serum protein substitute (SPS). Development of embryos was observed every 24 hours. Results between different groups were analyzed by chi-square test, and considered statistically significant when P-value was less than 0.05. The rates of embryonic development cultured in SF-VCM supplemented with serum substituents were significantly higher compare with serum-free group (P media up to 4 weeks did not affect on embryonic development.

  3. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    DEFF Research Database (Denmark)

    Li, Dong; Secher, Jan Ole Bertelsen; Juhl, Morten

    2017-01-01

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells...... are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast...... populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore...

  4. Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos.

    Science.gov (United States)

    Bolnick, Alan; Abdulhasan, Mohammed; Kilburn, Brian; Xie, Yufen; Howard, Mindie; Andresen, Paul; Shamir, Alexandra M; Dai, Jing; Puscheck, Elizabeth E; Rappolee, Daniel A

    2016-08-01

    The purpose of the present study is to test whether metformin, aspirin, or diet supplement (DS) BioResponse-3,3'-Diindolylmethane (BR-DIM) can induce AMP-activated protein kinase (AMPK)-dependent potency loss in cultured embryos and whether metformin (Met) + Aspirin (Asa) or BR-DIM causes an AMPK-dependent decrease in embryonic development. The methods used were as follows: culture post-thaw mouse zygotes to the two-cell embryo stage and test effects after 1-h AMPK agonists' (e.g., Met, Asa, BR-DIM, control hyperosmotic stress) exposure on AMPK-dependent loss of Oct4 and/or Rex1 nuclear potency factors, confirm AMPK dependence by reversing potency loss in two-cell-stage embryos with AMPK inhibitor compound C (CC), test whether Met + Asa (i.e., co-added) or DS BR-DIM decreases development of two-cell to blastocyst stage in an AMPK-dependent (CC-sensitive) manner, and evaluate the level of Rex1 and Oct4 nuclear fluorescence in two-cell-stage embryos and rate of two-cell-stage embryo development to blastocysts. Met, Asa, BR-DIM, or hyperosmotic sorbitol stress induces rapid ~50-85 % Rex1 and/or Oct4 protein loss in two-cell embryos. This loss is ~60-90 % reversible by co-culture with AMPK inhibitor CC. Embryo development from two-cell to blastocyst stage is decreased in culture with either Met + Asa or BR-DIM, and this is either >90 or ~60 % reversible with CC, respectively. These experimental designs here showed that Met-, Asa-, BR-DIM-, or sorbitol stress-induced rapid potency loss in two-cell embryos is AMPK dependent as suggested by inhibition of Rex1 and/or Oct4 protein loss with an AMPK inhibitor. The DS BR-DIM or fertility drugs (e.g., Met + Asa) that are used to enhance maternal metabolism to support fertility can also chronically slow embryo growth and block development in an AMPK-dependent manner.

  5. Cytological and oncogene alterations in radiation-transformed Syrian hamster embryo cells

    International Nuclear Information System (INIS)

    Trutschler, K.; Hieber, L.; Kellerer, A.M.

    1991-01-01

    Syrian hamster embryo (SHE) cells were neoplastically transformed by different types of ionizing radiation (γ-rays, α-particles or carbon ions). Transformed and tumor cell lines (derived from nude mice tumors) were analysed for alterations of the oncogenes c-Ha-ras and c-myc, i.e. RFLPs, gene amplifications, activation by point mutation, gene expression, and for cytological changes. In addition, the chromosome number and the numbers of micronuclei per cell have been determined in a series of cell lines. (author)

  6. Ethanol exposure affects cell movement during gastrulation and induces split axes in zebrafish embryos.

    Science.gov (United States)

    Zhang, Ying; Shao, Ming; Wang, Lifeng; Liu, Zhongzhen; Gao, Ming; Liu, Chao; Zhang, Hongwei

    2010-06-01

    To explore the toxic effects of ethanol on axis formation during embryogenesis, zebrafish embryos at different developmental stages were treated with 3% ethanol for 3h. The effects of ethanol exposure appeared to be stage-dependent. The dome stage embryo was most sensible to form posterior split axes upon ethanol exposure. Morphological and histological observations and whole-mount in situ hybridization results showed that ethanol exposure at this stage caused a general gastrulation delay, and induced double notochords, double neural tubes and two sets of somites in the posterior trunk. Mechanistically, no ectopic organizer was found by examining the expression patterns of dorsoventral markers including goosecoid, chordin and eve1 at the onset of gastrulation. However, radial intercalation, epiboly and convergence extension were inhibited by ethanol exposure as revealed by cell labeling, phenotypic observation and the expression patterns of axial or paraxial markers. Further investigation showed that the cell aggregation might be affected by ethanol exposure, as indicated by the much more scattered expression pattern of chordin, eve1 and wnt11 at the early gastrula stage, and the discontinuous gsc positive cells during migration. These results imply that ethanol might affect cell movement before and during gastrulation and as a consequence, induces a split axes phenotype. Copyright 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).

    Science.gov (United States)

    Correia, Sandra M; Canhoto, Jorge M

    2010-06-01

    The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.

  8. Extracellular matrix components direct porcine muscle stem cell behavior

    International Nuclear Information System (INIS)

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J.

    2010-01-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  9. Extracellular matrix components direct porcine muscle stem cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wilschut, Karlijn J. [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Haagsman, Henk P. [Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht (Netherlands); Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands)

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  10. Construction of EMSC-islet co-localizing composites for xenogeneic porcine islet transplantation.

    Science.gov (United States)

    Kim, Jung-Sik; Chung, Hyunwoo; Byun, Nari; Kang, Seong-Jun; Lee, Sunho; Shin, Jun-Seop; Park, Chung-Gyu

    2018-03-04

    Pancreatic islet transplantation is an ultimate solution for treating patients with type 1 diabetes (T1D). The pig is an ideal donor of islets for replacing scarce human islets. Besides immunological hurdles, non-immunological hurdles including fragmentation and delayed engraftment of porcine islets need solutions to succeed in porcine islet xenotransplantation. In this study, we suggest a simple but effective modality, a cell/islet co-localizing composite, to overcome these challenges. Endothelial-like mesenchymal stem cells (EMSCs), differentiated from bone-marrow derived mouse mesenchymal stem cells (MSCs), and MSCs evenly coated the surface of porcine islets (>85%) through optimized culture conditions. Both MSCs and EMSCs significantly reduced the fragmentation of porcine islets and increased the islet masses, designated as islet equivalents (IEQs). In fibrin in vitro and in vivo angiogenesis analysis, constructed EMSC-islet composites showed higher angiogenic potentials than naked islets, MSC-islet composites, or human endothelial cell-islet composites. This novel delivery method of porcine islets may have beneficial effects on the engraftment of transplanted islets by prevention of fragmentation and enhancement of revascularization. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis.

    Science.gov (United States)

    Nauwynck, H J; Duan, X; Favoreel, H W; Van Oostveldt, P; Pensaert, M B

    1999-02-01

    Porcine alveolar macrophages (AMphi) are the dominant cell type that supports the replication of porcine reproductive and respiratory syndrome virus (PRRSV) in vivo and in vitro. In order to determine the characteristics of the virus-receptor interaction, the attachment of PRRSV to cells was examined by using biotinylated virus in a series of flow cytometric assays. PRRSV bound specifically to AMphi in a dose-dependent manner. Binding of PRRSV to AMphi increased gradually and reached a maximum within 60 min at 4 degrees C. By confocal microscopy, it was shown that different degrees of PRRSV binding exist and that entry is by endocytosis. Virus uptake in vesicles is a clathrin-dependent process, as it was blocked by the addition of cytochalasin D and co-localization of PRRSV and clathrin was found. Furthermore, by the use of two weak bases, NH4Cl and chloroquine, it was demonstrated that PRRSV uses a low pH-dependent entry pathway. In the presence of these reagents, input virions accumulated in large vacuoles, indicating that uncoating was prevented. These results indicate that PRRSV entry into AMphi involves attachment to a specific virus receptor(s) followed by a process of endocytosis, by which virions are taken into the cell within vesicles by a clathrin-dependent pathway. A subsequent drop in pH is required for proper virus replication.

  12. Chronic Porcine Two-Hit Model with Hemorrhagic Shock and textitPseudomonas aeruginosa Sepsis

    OpenAIRE

    Eissner, B.;Matz, K.;Smorodchenko, A.;Röschmann, A.;Specht, B. U. v.

    2016-01-01

    Background: Sepsis is still a major cause of death despite well-developed therapeutical strategies such as antibiotics and supportive medication. The aim of this study was to characterize the long-term effects of a two-hit porcine sepsis model with a hemorrhagic shock as ‘first hit’ followed by a Pseudomonas aeruginosa infusion as ‘second hit’. Materials and Methods: Twelve juvenile healthy pigs were anesthetized and hemodynamically monitored. The two-hit group (n = 6) underwent a hemorrhagic...

  13. The use of embryonic stem cell derived bioactive material as a new protein supplement for the in vitro culture of bovine embryos.

    Science.gov (United States)

    Kim, Eun Young; Lee, Jun Beom; Park, Hyo Young; Jeong, Chang Jin; Riu, Key Zung; Park, Se Pill

    2011-06-01

    Embryonic stem (ES) cells are expanded versions of the inner cell mass cells that compose the early mammalian blastocyst. Components derived from ES cells may contain various bioactive materials (BM) helpful for early preimplantation embryo growth. In this study, we examined the effect of human ES cell derived BM (hES-BM) on in vitro culture of bovine embryos. When bovine parthenogenetic day 2 embryos were cultured in 10% hES-BM, a significantly higher embryo development rate (44.3%) and increased cell numbers were observed relative to control medium containing 3 mg/ml BSA (19.5%; Pculture environment to support the growth of bovine embryos in vitro (P<0.05). Little difference was observed between 10% hES-BM and 10% FBS treatment in the examined parthenogenetic or in vitro fertilized embryos, although the hES-BM group developed at a slightly better rate. However, the ICM cell numbers were significantly higher in the hES-BM group in irrespective of embryo origin (P<0.05). In addition, the relative levels of pluripotency (Oct4, × 1.8 fold; Nanog. × 3.3 fold), embryogenesis (Stat3, × 2.8 fold; FGF4, × 18.8 fold; E-cad, × 2.0 fold) and growth (Glut5, × 2.6 fold) genes were significantly higher in the 10% hES-BM group than in the 10% FBS group (P<0.05), while the levels of other genes (Bax, Bcl2, MnSOD and Connexin43) were not different. This is the first report examining the positive effects of hES-BM on bovine embryo development in vitro. Based on our results, we conclude that hES-BM can be used as a new protein supplement for bovine preimplantation embryo development.

  14. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  15. Stimulation of prostaglandin E2 production by phorbol esters and epidermal growth factor in porcine thyroid cells

    International Nuclear Information System (INIS)

    Kasai, K.; Hiraiwa, M.; Emoto, T.; Akimoto, K.; Takaoka, T.; Shimoda, S.I.

    1987-01-01

    Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E 2 production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E 2 production by the cells in dose related fashion. PMA stimulated prostaglandin E 2 production over fifty-fold with the dose of 10 -7 M compared with control. EGF (10 -7 M) also stimulated it about ten-fold. The ED 50 values of PMA and EGF were respectively around 1 x 10 -9 M and 5 x 10 -10 M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E 2 production from 1 to 24-h incubation. The release of radioactivity from [ 3 H]-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E 2 production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells. 36 references, 2 figures, 1 table

  16. Embryos, Clones, and Stem Cells: A Scientific Primer

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2004-01-01

    Full Text Available This article is intended to give the nonspecialist an insight into the nuances of “clones”, cloning, and stem cells. It distinguishes embryonic and adult stem cells, their normal function in the organism, their origin, and how they are recovered to produce stem cell lines in culture. As background, the fundamental processes of embryo development are reviewed and defined, since the manipulation of stem cell lines into desired specialized cells employs many of the same events. Stem cells are defined and characterized and shown how they function in the intact organism during early development and later during cell regeneration in the adult. The complexity of stem cell recovery and their manipulation into specific cells and tissue is illustrated by reviewing current experimentation on both embryonic and adult stem cells in animals and limited research on human stem cell lines. The current and projected use of stem cells for human diseases and repair, along with the expanding methodology for the recovery of human embryonic stem cells, is described. An assessment on the use of human embryonic stem cells is considered from ethical, legal, religious, and political viewpoints.

  17. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Science.gov (United States)

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  18. No specific gene expression signature in human granulosa and cumulus cells for prediction of oocyte fertilisation and embryo implantation.

    Directory of Open Access Journals (Sweden)

    Tanja Burnik Papler

    Full Text Available In human IVF procedures objective and reliable biomarkers of oocyte and embryo quality are needed in order to increase the use of single embryo transfer (SET and thus prevent multiple pregnancies. During folliculogenesis there is an intense bi-directional communication between oocyte and follicular cells. For this reason gene expression profile of follicular cells could be an important indicator and biomarker of oocyte and embryo quality. The objective of this study was to identify gene expression signature(s in human granulosa (GC and cumulus (CC cells predictive of successful embryo implantation and oocyte fertilization. Forty-one patients were included in the study and individual GC and CC samples were collected; oocytes were cultivated separately, allowing a correlation with IVF outcome and elective SET was performed. Gene expression analysis was performed using microarrays, followed by a quantitative real-time PCR validation. After statistical analysis of microarray data, there were no significantly differentially expressed genes (FDR<0,05 between non-fertilized and fertilized oocytes and non-implanted and implanted embryos in either of the cell type. Furthermore, the results of quantitative real-time PCR were in consent with microarray data as there were no significant differences in gene expression of genes selected for validation. In conclusion, we did not find biomarkers for prediction of oocyte fertilization and embryo implantation in IVF procedures in the present study.

  19. Allogeneic amniotic membrane-derived mesenchymal stromal cell transplantation in a porcine model of chronic myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Kimura M

    2012-01-01

    Full Text Available Introduction. Amniotic membrane contains a multipotential stem cell population and is expected to possess the machinery to regulate immunological reactions. We investigated the safety and efficacy of allogeneic amniotic membrane-derived mesenchymal stromal cell (AMSC transplantation in a porcine model of chronic myocardial ischemia as a preclinical trial. Methods. Porcine AMSCs were isolated from amniotic membranes obtained by cesarean section just before delivery and were cultured to increase their numbers before transplantation. Chronic myocardial ischemia was induced by implantation of an ameroid constrictor around the left circumflex coronary artery. Four weeks after ischemia induction, nine swine were assigned to undergo either allogeneic AMSC transplantation or normal saline injection. Functional analysis was performed by echocardiography, and histological examinations were carried out by immunohistochemistry 4 weeks after AMSC transplantation. Results. Echocardiography demonstrated that left ventricular ejection fraction was significantly improved and left ventricular dilatation was well attenuated 4 weeks after AMSC transplantation. Histological assessment showed a significant reduction in percentage of fibrosis in the AMSC transplantation group. Injected allogeneic green fluorescent protein (GFP-expressing AMSCs were identified in the immunocompetent host heart without the use of any immunosuppressants 4 weeks after transplantation. Immunohistochemistry revealed that GFP colocalized with cardiac troponin T and cardiac troponin I. Conclusions. We have demonstrated that allogeneic AMSC transplantation produced histological and functional improvement in the impaired myocardium in a porcine model of chronic myocardial ischemia. The transplanted allogeneic AMSCs survived without the use of any immunosuppressants and gained cardiac phenotype through either their transdifferentiation or cell fusion.

  20. Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro.

    Science.gov (United States)

    Hoelker, Michael; Rings, Franka; Lund, Qamaruddin; Ghanem, Nasser; Phatsara, Chirawath; Griese, Josef; Schellander, Karl; Tesfaye, Dawit

    2009-03-01

    The Well of the Well (WOW) system has been developed to culture embryos in small groups or to track the development of single embryos. In the present study, we aimed to examine the effects of the microenvironment provided by the WOW system and embryo density on developmental rates, embryo quality and preimplantative gene expression profile of the resulting embryos. Embryos cultured in a group of 16 reached the blastocyst stage at a significantly lower level than zygotes cultured in a group of 50 (22.2 vs 30.3%), whereas zygotes cultured in WOW were able to compensate against low embryo densities, reaching a blastocyst rate as high as embryos cultured in a group of 50 (31.3 vs 30.3%). Moreover, embryos derived from WOW culture did not differ in terms of differential cell counts and apoptotic cell index compared with controls. The gene expression analysis revealed 62 transcripts to be upregulated and 33 transcripts to be downregulated by WOW culture. Comparing the in vivo derived blastocysts with the blastocysts derived from WOW culture, and group culture, expression of ATP5A1, PLAC8 and KRT8 was more similar to the embryos derived from WOW culture, whereas expression of S100A10 and ZP3 genes was more similar to blastocysts cultured in a group. In conclusion, microenvironment as well as embryo density significantly affected developmental rates. While subsequent blastocysts did not differ in terms of differential cell counts and apoptotic cell index, significant differences were observed in terms of the relative abundance of transcripts in the resulting embryos.

  1. Porcine cluster of differentiation (CD) markers 2018 update.

    Science.gov (United States)

    Dawson, Harry D; Lunney, Joan K

    2018-06-01

    Pigs are a major source of food worldwide; preventing and treating their infectious diseases is essential, requiring a thorough understanding of porcine immunity. The use of pigs as models for human physiology is a growing area; progress in this area has been limited because the immune toolkit is not robust. The international community has established cluster of differentiation (CD) markers for assessing cells involved in immunity as well as characterizing numerous other cells like stem cells. Overall, for humans 419 proteins have been designated as CD markers, each reacting with a defined set of antibodies (Abs). This paper summarizes current knowledge of swine CD markers and identifies 359 corresponding CD proteins in pigs. A broad-based literature and vendor search was conducted to identify defined sets of monoclonal (mAbs) and polyclonal Abs (pAbs) reacting with porcine CD markers along with other reagents (fusion proteins, ELISAs, PCR assays, and gene edited cell and pig models). This process identified over 800 reagents that are reportedly reactive with 266 pig CD markers. Despite this number, there is a great need to develop and characterize additional CD marker reagents, particularly mAbs, for pig research. There are numerous high priority targets: reagents for the characterization of porcine innate lymphoid cells, polarized macrophages and T regulatory cells and for the detection of porcine CD45 isoforms. Overall, improved technologies and genomics have contributed to dramatic increases in our knowledge of the pig, its immune system, disease and vaccine responses, and utility as a biomedical model. The development of more CD reagents will clearly advance these initiatives. Published by Elsevier Ltd.

  2. Untwisting the Caenorhabditis elegans embryo

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  3. Untwisting the Caenorhabditis elegans embryo.

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-12-03

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

  4. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification.

    Science.gov (United States)

    Fresques, Tara; Swartz, Steven Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M

    2016-07-01

    Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. © 2016 Wiley Periodicals, Inc.

  5. Nucleolar remodeling in nuclear transfer embryos

    DEFF Research Database (Denmark)

    Laurincik, Jozef; Maddox-Hyttel, Poul

    2007-01-01

    Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate the devel......Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate...... nucleoli are not apparent until the 5th cell cycle, whereas in somatic cell nuclear transfer embryos the functional nucleoli emerge already during the 3rd cell cycle. Intergeneric reconstructed embryos produced by the fusion of bovine differentiated somatic cell to a nonactivated ovine cytoplast fail...

  6. Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fiona C. Lewis, BSc, PhD

    2017-12-01

    Full Text Available Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy.

  7. Functional and immunohistochemical evaluation of porcine neonatal islet-like cell clusters

    DEFF Research Database (Denmark)

    Nielsen, T B; Yderstraede, K B; Schrøder, H D

    2003-01-01

    Porcine neonatal islet-like cell clusters (NICCs) may be an attractive source of insulin-producing tissue for xenotransplantation in type I diabetic patients. We examined the functional and immunohistochemical outcome of the islet grafts in vitro during long-term culture and in vivo after...... transplantation to athymic nude mice. On average we obtained 29,000 NICCs from each pancreas. In a perifusion system, NICCs responded poorly to a glucose challenge alone, but 10 mmol/L arginine elicited a fourfold increase in insulin secretion and 16.7 mmol/L glucose + 10 mmol/L arginine caused a sevenfold...... co-stained for proliferation. However no co-staining was observed between insulin- and glucagon-positive cells or between hormone-and CK-positive cells. Following transplantation of 2000 NICCs under the renal capsule of diabetic nude mice, BG levels were normalized within an average of 13 weeks. Oral...

  8. Increasing The Number of Embryos Transferred from Two to Three, Does not Increase Pregnancy Rates in Good Prognosis Patients

    Directory of Open Access Journals (Sweden)

    Mahnaz Ashrafi

    2015-10-01

    Full Text Available Background: To compare the pregnancy outcomes after two embryos versus three embryos transfers (ETs in women undergoing in vitro fertilization (IVF/intracytoplasmic sperm injection (ICSI cycles. Materials and Methods: This retrospective study was performed on three hundred eighty seven women with primary infertility and with at least one fresh embryo in good quality in order to transfer at each IVF/ICSI cycle, from September 2006 to June 2010. Patients were categorized into two groups according to the number of ET as follows: ET2 and ET3 groups, indicating two and three embryos were respectively transferred. Pregnancy outcomes were compared between ET2 and ET3 groups. Chi square and student t tests were used for data analysis. Results: Clinical pregnancy and live birth rates were similar between two groups. The rates of multiple pregnancies were 27 and 45.2% in ET2 and ET3 groups, respectively. The rate of multiple pregnancies in young women was significantly increased when triple instead of double embryos were transferred. Logistic regression analysis indicated two significant prognostic variables for live birth that included number and quality of transferred embryos; it means that the chance of live birth following ICSI treatment increased 3.2-fold when the embryo with top quality (grade A was transferred, but the number of ET had an inverse relationship with live birth rate; it means that probability of live birth in women with transfer of two embryos was three times greater than those who had three ET. Conclusion: Due to the difficulty of implementation of the elective single-ET technique in some infertility centers in the world, we suggest transfer of double instead of triple embryos when at least one good quality embryo is available for transfer in women aged 39 years or younger. However, to reduce the rate of multiple pregnancies, it is recommended to consider the elective single ET strategy.

  9. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    International Nuclear Information System (INIS)

    Ocaña-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert; Stech, Jürgen; Stech, Olga; Summerfield, Artur

    2012-01-01

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-κB translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  10. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland); Stech, Juergen; Stech, Olga [Friedrich-Loeffler Institut, Greifswald-Insel Riems (Germany); Summerfield, Artur, E-mail: artur.summerfield@ivi.admin.ch [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland)

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  11. The Effect of Prolonged Culture of Chromosomally Abnormal Human Embryos on The Rate of Diploid Cells

    Directory of Open Access Journals (Sweden)

    Masood Bazrgar

    2016-12-01

    Full Text Available Background: A decrease in aneuploidy rate following a prolonged co-culture of human blastocysts has been reported. As co-culture is not routinely used in assisted reproductive technology, the present study aimed to evaluate the effect of the prolonged single culture on the rate of diploid cells in human embryos with aneuploidies. Materials and Methods: In this cohort study, we used fluorescence in situ hybridization (FISH to reanalyze surplus blastocysts undergoing preimplantation genetic diagnosis (PGD on day 3 postfertilization. They were randomly studied on days 6 or 7 following fertilization. Results: Of the 30 analyzed blastocysts, mosaicism was observed in 26(86.6%, while 2(6.7% were diploid, and 2(6.7% were triploid. Of those with mosaicism, 23(88.5% were determined to be diploid-aneuploid and 3(11.5% were aneuploid mosaic. The total frequency of embryos with more than 50% diploid cells was 33.3% that was lower on day 7 in comparison with the related value on day 6 (P<0.05; however, there were no differences when the embryos were classified according to maternal age, blastocyst developmental stage, total cell number on day 3, and embryo quality. Conclusion: Although mosaicism is frequently observed in blastocysts, the prolonged single culture of blastocysts does not seem to increase the rate of normal cells.

  12. Comparison of the effect of two freeze-thawing curves for porcine semen. Preliminary results

    Directory of Open Access Journals (Sweden)

    Caldevilla M

    2016-12-01

    Full Text Available Results obtained in fertility and litter size using frozen-thawed porcine semen are far from those obtained with natural service or artificial insemination of cooled semen. The objective of this study was to evaluate freeze-thawing of porcine semen comparing the traditional slow method to a rapid curve of temperature descent, using two cryoprotectants. Six males of proven fertility (n=6, r=2 were used. Semen was obtained using the gloved-hand technique and was transported to the laboratory at 17 ºC diluted in Androstar® plus. Samples were centrifuged 15 minutes at 800 g and re-diluted in: a 5% dimethylformamide, 11% lactose, 20% egg yolk, 0.5% Equex or b 3% glycerol, 11% lactose, 20% egg yolk, 0.5% Equex. The semen was frozen in 0.5 ml straws up to a final concentration of 300 millions sperm /ml using either a modified slow traditional Westendorff curve or a rapid curve. In both cases thawing was carried out at 37 ºC during 1 minute. Kinetic motility parameters were evaluated using a CASA system (ISAS v1, Proiser®, Spain. Sperm viability and acrosome status were evaluated using the FITC-PNA/PI stain. The results were analyzed using a factorial design (analysis ofvariance with two factors, with two levels for each one and using the male as a blocking factor. No interaction was observed between the parameters. No significant differences (p> 0.05 were observed between curves or between cryoprotectants neither in any of the kinetic motility parameters evaluated nor in sperm viability and acrosome status. No significant differences (p> 0.05 were observed between curves or between cryoprotectants in sperm morphology in thawed porcine semen. Taking into account the results obtained, the rapid curve would be the practical choice as it is, faster and more manageable for fieldwork in any pig farm.

  13. Isolation and identification of porcine reproductive and respiratory syndrome virus in cell cultures.

    Science.gov (United States)

    Valícek, L; Psikal, I; Smíd, B; Rodák, L; Kubalíková, R; Kosinová, E

    1997-10-01

    Three strains of porcine reproductive and respiratory syndrome virus (PRRSV) were isolated in porcine lung macrophage (PLM) cultures from three swine herds. This has been the first successful isolation of PRRSV in the Czech Republic and the strains received the designations CAPM V-501, CAPM V-502 and CAPM V-503, respectively. All the three isolates in PLM were identified by immunofluorescence and immunoperoxidase tests and the strain CAPM V-502 also by electron microscopy using the ultrathin section technique. The strain CAPM V-502 has been adapted to the cell line MARC-145. Viral RNA in PLM cultures infected with any of the isolated PRRSV strains was demonstrated by RT-PCR targeted to the more conserved ORF 7 genomic region encoding the nucleocapsid protein. The assessment of PCR products in agarose gel revealed a uniform size of 394 bp in all the three isolates and the European prototype strain Lelystad used as positive control.

  14. Targeted Porcine Genome Engineering with TALENs

    DEFF Research Database (Denmark)

    Luo, Yonglun; Lin, Lin; Golas, Mariola Monika

    2015-01-01

    confers precisely editing (e.g., mutations or indels) or insertion of a functional transgenic cassette to user-designed loci. Techniques for targeted genome engineering are growing dramatically and include, e.g., zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs......, including construction of sequence-specific TALENs, delivery of TALENs into primary porcine fibroblasts, and detection of TALEN-mediated cleavage, is described. This chapter is useful for scientists who are inexperienced with TALEN engineering of porcine cells as well as of other large animals....

  15. The effect of yucca on proliferation, apoptosis, and steroidogenesis of porcine ovarian granulosa cells

    Directory of Open Access Journals (Sweden)

    Aneta Štochmaľová

    2014-02-01

    Full Text Available Yucca shidigera is a medicinal plant native to Mexico. Is a plant widely used in folk medicine to treat a variety of ailmentary disorders, but its action on reproductive processes and possible mechanisms of such action remains unknown. Yucca schidigera extract contains a number of steroidal saponins that, because of their biological activity, have attracted attention from the food industry for many years. Yucca extract is used as a natural feed additive with positive effect to microflora, digestion, metabolism and to improve animal muscle growth. Its extract has been used as a foodstuff and folk medicine to treat a wide variety of diseases for many years. Nevertheless, it remaines unknown, whether consumption of yucca can affect reproductive system. The aim of this study was to examine the effects of yucca on basic ovarian cell functions - proliferation, apoptosis and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without yucca extract (added at doses 0; 1; 10 and 100 μg.mL-1 of medium. Markers of proliferation (% of PCNA-positive cells and apoptosis (% cells containing bax were analysed by immunocytochemistry. Release of steroid hormones (progesterone and testosterone was measured by EIA. It was observed, that addition of yucca inhibited proliferation (expression of PCNA, increased apoptosis (expression of bax, stimulated progesterone and inhibited testosterone release. The ability of yucca to reduce ovarian cell proliferation, to promote ovarian cell apoptosis and affect steroidogenesis demonstrates the direct influence of yucca on female gonads. Furthermore, our observations suggest the multiple sites of action (proliferation, apoptosis, steroidogenesis of yucca on porcine ovarian cell functions. It is not to be excluded, that consumption of yucca can suppress female reproductive functions.

  16. Endocardial tip cells in the human embryo - facts and hypotheses.

    Directory of Open Access Journals (Sweden)

    Mugurel C Rusu

    Full Text Available Experimental studies regarding coronary embryogenesis suggest that the endocardium is a source of endothelial cells for the myocardial networks. As this was not previously documented in human embryos, we aimed to study whether or not endothelial tip cells could be correlated with endocardial-dependent mechanisms of sprouting angiogenesis. Six human embryos (43-56 days were obtained and processed in accordance with ethical regulations; immunohistochemistry was performed for CD105 (endoglin, CD31, CD34, α-smooth muscle actin, desmin and vimentin antibodies. Primitive main vessels were found deriving from both the sinus venosus and aorta, and were sought to be the primordia of the venous and arterial ends of cardiac microcirculation. Subepicardial vessels were found branching into the outer ventricular myocardium, with a pattern of recruiting α-SMA+/desmin+ vascular smooth muscle cells and pericytes. Endothelial sprouts were guided by CD31+/CD34+/CD105+/vimentin+ endothelial tip cells. Within the inner myocardium, we found endothelial networks rooted from endocardium, guided by filopodia-projecting CD31+/CD34+/CD105+/ vimentin+ endocardial tip cells. The myocardial microcirculatory bed in the atria was mostly originated from endocardium, as well. Nevertheless, endocardial tip cells were also found in cardiac cushions, but they were not related to cushion endothelial networks. A general anatomical pattern of cardiac microvascular embryogenesis was thus hypothesized; the arterial and venous ends being linked, respectively, to the aorta and sinus venosus. Further elongation of the vessels may be related to the epicardium and subepicardial stroma and the intramyocardial network, depending on either endothelial and endocardial filopodia-guided tip cells in ventricles, or mostly on endocardium, in atria.

  17. Comparative proteome analysis between C . briggsae embryos and larvae reveals a role of chromatin modification proteins in embryonic cell division

    KAUST Repository

    An, Xiaomeng

    2017-06-21

    Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.

  18. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC matrix cells

    Directory of Open Access Journals (Sweden)

    Schultz Bruce

    2006-02-01

    Full Text Available Abstract Background Three transcription factors that are expressed at high levels in embryonic stem cells (ESCs are Nanog, Oct-4 and Sox-2. These transcription factors regulate the expression of other genes during development and are found at high levels in the pluripotent cells of the inner cell mass. The downregulation of these three transcription factors correlates with the loss of pluripotency and self-renewal, and the beginning of subsequent differentiation steps. The roles of Nanog, Oct-4 and Sox-2 have not been fully elucidated. They are important in embryonic development and maintenance of pluripotency in ESCs. We studied the expression of these transcription factors in porcine umbilical cord (PUC matrix cells. Methods Cells were isolated from Wharton's jelly of porcine umbilical cords (PUC and histochemically assayed for the presence of alkaline phosphatase and the presence of Nanog, Oct-4 and Sox-2 mRNA and protein. PCR amplicons were sequenced and compared with known sequences. The synthesis of Oct-4 and Nanog protein was analyzed using immunocytochemistry. FACS analysis was utilized to evaluate Hoechst 33342 dye-stained cells. Results PUC isolates were maintained in culture and formed colonies that express alkaline phosphatase. FACS analysis revealed a side population of Hoechst dye-excluding cells, the Hoechst exclusion was verapamil sensitive. Quantitative and non-quantitative RT-PCR reactions revealed expression of Nanog, Oct-4 and Sox-2 in day 15 embryonic discs, PUC cell isolates and porcine fibroblasts. Immunocytochemical analysis detected Nanog immunoreactivity in PUC cell nuclei, and faint labeling in fibroblasts. Oct-4 immunoreactivity was detected in the nuclei of some PUC cells, but not in fibroblasts. Conclusion Cells isolated from PUC express three transcription factors found in pluripotent stem cell markers both at the mRNA and protein level. The presence of these transcription factors, along with the other

  19. Characterization and endocytic internalization of Epith-2 cell surface glycoprotein during the epithelial-to-mesenchymal transition in sea urchin embryos

    Directory of Open Access Journals (Sweden)

    Norio eWakayama

    2013-08-01

    Full Text Available The epithelial cells of the sea urchin Hemicentrotus pulcherrimus embryo express an Epith-2, uncharacterized glycoprotein, on the lateral surface. Here, we describe internalization of Epith-2 during mesenchyme formation through the epithelial-to-mesenchymal transition (EMT. Epith-2 was first expressed on the entire egg surface soon after fertilization and on the blastomeres until the 4-cell stage, but was localized to the lateral surface of epithelial cells at and after the 16-cell stage throughout the later developmental period. However, primary (PMC and secondary mesenchyme cells (SMC that ingress by EMT lost Epith-2 from their cell surface by endocytosis during dissociation from the epithelium, which was associated with the appearance of cytoplasmic Epith-2 dots. The cytoplasmic Epith-2 retained a similar relative molecular mass to that of the cell surface immediately after ingression through the early period of the spreading to single cells. Then, Epith-2 was completely lost from the cytoplasm. Tyrosine residues of Epith-2 were phosphorylated. The endocytic retraction of Epith-2 was inhibited by herbimycin A (HA, a protein tyrosine kinase (PTK inhibitor, and suramin, a growth factor receptor (GFR inhibitor, suggesting the involvement of the GFR/PTK (GP signaling pathway. These two GP inhibitors also inhibited PMC and SMC spreading to individual cells after ingression, but the dissociation of PMC and SMC from the epithelium was not inhibited. In suramin-treated embryos, dissociated mesenchyme cells migrated partially by retaining their epithelial morphology. In HA-treated embryos, no mesenchyme cells migrated. Thus, the EMT occurs in relation to internalization of Epith-2 from presumptive PMC and SMC.

  20. Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.

    Science.gov (United States)

    Tanaka, W; Mantese, A I; Maddonni, G A

    2009-08-01

    Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P embryos with low oil concentration had an increased (P embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.

  1. Gene amplification in Chinese hamster embryo cells by the decay of incorporated iodine-125

    International Nuclear Information System (INIS)

    Luecke-Huhle, Christine; Ehrfeld, Angelika; Rau, Waltraud

    1988-01-01

    Simian Virus 40-transformed Chinese hamster embryo cells (Co631) contain 5 viral copies integrated per cell genome. These SV40 sequences were used as an endogenous indicator gene to study response of mammalian cells to radiation at gene level. Cells were internally irradiated by Auger electrons emitted by Iodine-125 which was incorporated in cell DNA in form of 5-[ 125 I] iododeoxyuridine ( 125 IdU). An increase in gene copy number was measured using dispersed cell blotting and Southern analysis in combination with highly sensitive DNA hybridization. A 13-fold amplification of the SV40 sequences and a 2-fold amplification of two cellular oncogenes of the ras family were found. Other cellular genes, like the α-actin gene, are not amplified and no variation in gene copy number was observed after incubation of cells with cold IdU. Thus, specific gene amplification seems to be the consequence of radiation-induced DNA damage and the resulting cell cycle arrest. (author)

  2. Porcine intestinal mast cells. Evaluation of different fixatives for histochemical staining techniques considering tissue shrinkage

    Directory of Open Access Journals (Sweden)

    J. Rieger

    2013-07-01

    Full Text Available Staining of mast cells (MCs, including porcine ones, is critically dependent upon the fixation and staining technique. In the pig, mucosal and submucosal MCs do not stain or stain only faintly after formalin fixation. Some fixation methods are particularly recommended for MC staining, for example the fixation with Carnoy or lead salts. Zinc salt fixation (ZSF has been reported to work excellently for the preservation of fixation-sensitive antigens. The aim of this study was to establish a reliable histological method for counting of MCs in the porcine intestinum. For this purpose, different tissue fixation and staining methods that also allow potential subsequent immunohistochemical investigations were evaluated in the porcine mucosa, as well as submucosa of small and large intestine. Tissues were fixed in Carnoy, lead acetate, lead nitrate, Zamboni and ZSF and stained subsequently with either polychromatic methylene blue, alcian blue or toluidine blue. For the first time our study reveals that ZSF, a heavy metal fixative, preserves metachromatic staining of porcine MCs. Zamboni fixation was not suitable for histochemical visualization of MCs in the pig intestine. All other tested fixatives were suitable. Alcian blue and toluidine blue co-stained intestinal goblet cells which made a prima facie identification of MCs difficult. The polychromatic methylene blue proved to be the optimal staining. In order to compare MC counting results of the different fixation methods, tissue shrinkage was taken into account. As even the same fixation caused shrinkage-differences between tissue from small and large intestine, different factors for each single fixation and intestinal localization had to be calculated. Tissue shrinkage varied between 19% and 57%, the highest tissue shrinkage was found after fixation with ZSF in the large intestine, the lowest one in the small intestine after lead acetate fixation. Our study emphasizes that MC counting results from

  3. Characterisation of CART-containing neurons and cells in the porcine pancreas, gastro-intestinal tract, adrenal and thyroid glands

    Directory of Open Access Journals (Sweden)

    Gunnarsdóttir Anna

    2007-07-01

    Full Text Available Abstract Background The peptide CART is widely expressed in central and peripheral neurons, as well as in endocrine cells. Known peripheral sites of expression include the gastrointestinal (GI tract, the pancreas, and the adrenal glands. In rodent pancreas CART is expressed both in islet endocrine cells and in nerve fibers, some of which innervate the islets. Recent data show that CART is a regulator of islet hormone secretion, and that CART null mutant mice have islet dysfunction. CART also effects GI motility, mainly via central routes. In addition, CART participates in the regulation of the hypothalamus-pituitary-adrenal-axis. We investigated CART expression in porcine pancreas, GI-tract, adrenal glands, and thyroid gland using immunocytochemistry. Results CART immunoreactive (IR nerve cell bodies and fibers were numerous in pancreatic and enteric ganglia. The majority of these were also VIP IR. The finding of intrinsic CART containing neurons indicates that pancreatic and GI CART IR nerve fibers have an intrinsic origin. No CART IR endocrine cells were detected in the pancreas or in the GI tract. The adrenal medulla harboured numerous CART IR endocrine cells, most of which were adrenaline producing. In addition CART IR fibers were frequently seen in the adrenal cortex and capsule. The capsule also contained CART IR nerve cell bodies. The majority of the adrenal CART IR neuronal elements were also VIP IR. CART IR was also seen in a substantial proportion of the C-cells in the thyroid gland. The majority of these cells were also somatostatin IR, and/or 5-HT IR, and/or VIP IR. Conclusion CART is a major neuropeptide in intrinsic neurons of the porcine GI-tract and pancreas, a major constituent of adrenaline producing adrenomedullary cells, and a novel peptide of the thyroid C-cells. CART is suggested to be a regulatory peptide in the porcine pancreas, GI-tract, adrenal gland and thyroid.

  4. Metabolic regulation of collagen gel contraction by porcine aortic valvular interstitial cells

    Science.gov (United States)

    Kamel, Peter I.; Qu, Xin; Geiszler, Andrew M.; Nagrath, Deepak; Harmancey, Romain; Taegtmeyer, Heinrich; Grande-Allen, K. Jane

    2014-01-01

    Despite a high incidence of calcific aortic valve disease in metabolic syndrome, there is little information about the fundamental metabolism of heart valves. Cell metabolism is a first responder to chemical and mechanical stimuli, but it is unknown how such signals employed in valve tissue engineering impact valvular interstitial cell (VIC) biology and valvular disease pathogenesis. In this study porcine aortic VICs were seeded into three-dimensional collagen gels and analysed for gel contraction, lactate production and glucose consumption in response to manipulation of metabolic substrates, including glucose, galactose, pyruvate and glutamine. Cell viability was also assessed in two-dimensional culture. We found that gel contraction was sensitive to metabolic manipulation, particularly in nutrient-depleted medium. Contraction was optimal at an intermediate glucose concentration (2 g l−1) with less contraction with excess (4.5 g l−1) or reduced glucose (1 g l−1). Substitution with galactose delayed contraction and decreased lactate production. In low sugar concentrations, pyruvate depletion reduced contraction. Glutamine depletion reduced cell metabolism and viability. Our results suggest that nutrient depletion and manipulation of metabolic substrates impacts the viability, metabolism and contractile behaviour of VICs. Particularly, hyperglycaemic conditions can reduce VIC interaction with and remodelling of the extracellular matrix. These results begin to link VIC metabolism and macroscopic behaviour such as cell–matrix interaction. PMID:25320066

  5. Differential expression and localization of glycosidic residues in in vitro- and in vivo-matured cumulus-oocyte complexes in equine and porcine species.

    Science.gov (United States)

    Accogli, Gianluca; Douet, Cécile; Ambruosi, Barbara; Martino, Nicola Antonio; Uranio, Manuel Filioli; Deleuze, Stefan; Dell'Aquila, Maria Elena; Desantis, Salvatore; Goudet, Ghylène

    2014-12-01

    Glycoprotein oligosaccharides play major roles during reproduction, yet their function in gamete interactions is not fully elucidated. Identification and comparison of the glycan pattern in cumulus-oocyte complexes (COCs) from species with different efficiencies of in vitro spermatozoa penetration through the zona pellucida (ZP) could help clarify how oligosaccharides affect gamete interactions. We compared the expression and localization of 12 glycosidic residues in equine and porcine in vitro-matured (IVM) and preovulatory COCs by means of lectin histochemistry. The COCs glycan pattern differed between animals and COC source (IVM versus preovulatory). Among the 12 carbohydrate residues investigated, the IVM COCs from these two species shared: (a) sialo- and βN-acetylgalactosamine (GalNAc)-terminating glycans in the ZP; (b) sialylated and fucosylated glycans in cumulus cells; and (c) GalNAc and N-acetylglucosamine (GlcNAc) glycans in the ooplasm. Differences in the preovulatory COCs of the two species included: (a) sialoglycans and GlcNAc terminating glycans in the equine ZP versus terminal GalNAc and internal GlcNAc in the porcine ZP; (b) terminal galactosides in equine cumulus cells versus terminal GlcNAc and fucose in porcine cohorts; and (c) fucose in the mare ooplasm versus lactosamine and internal GlcNAc in porcine oocyte cytoplasm. Furthermore, equine and porcine cumulus cells and oocytes contributed differently to the synthesis of ZP glycoproteins. These results could be attributed to the different in vitro fertilization efficiencies between these two divergent, large-animal models. © 2014 Wiley Periodicals, Inc.

  6. Study of embryonic ploidy: a probable embryo model

    Energy Technology Data Exchange (ETDEWEB)

    Kundt, Miriam S; Cabrini, Romulo L [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Radiobiologia

    2001-07-01

    The second polar body (PB) studies in preimplantation mouse embryos were carried out to evaluate the possibility as reference cell to analyze ploidy. For that purpose embryos in a one cell stage [obtained by crossing hybrid females (CBAxC57BL) to NIH males] were cultured in vitro during 72 hs, individually fixed at morula stage and stained with Feulgen. The DNA content of 263 individual nucleus was evaluated cytophotometrically corresponding to 22 compact morulas of normal development. As haploid PB is present in all pre implanted stage, only embryos with one haploid nuclei were considered as normal. In 95.5% (n = 21) of the embryos the PB was present. DNA measurement of 21 PB was 1n {+-} 0.1. By the height sensibility of PB ploidy, the abnormalities were detected by the criterion of >4.1 n and <1.9 n. The results showed that one embryo was completely haploid (1n). The rest of the embryos (n = 20) 222 blastomeres and 20 PB were analyzed. The DNA measurement showed that 92,7% of the blastomeres (n = 206) are between 2 n and 4 n and 7.3% showed ploidy anomalies, regarding the value n of their PB. The period of the cellular cycle was studied in the normal cell ploidy. This study showed that 16.5% of the blastomeres (n = 34) were in the period G1, 70.39% (n =34) in the period S and 13.2% in the period G2 (n = 27). It is concluded that the PB study showed that it has properties as an excellent indicator of internal ploidia: it is present from the moment of the conception, easily recognizable in the perivitelin space in the embryo of one-two cells, remains in interface during the preimplantation development, it is haploid and digitalized pixel by pixel PB study showed the homogeneity of this type of cell, giving a reliable value of ploidy. The properties of the PB and the results showed that the PB could be an excellent indicator for embryonic ploidy studies on genotoxicity, maintaining its original ploidia during the preimplantation development while the blastomeres are

  7. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    Science.gov (United States)

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  8. High resistance of fibroblasts from Mongolian gerbil embryos to cell killing and chromosome aberrations by X-irradiation

    International Nuclear Information System (INIS)

    Suzuki, F.; Nakao, N.; Nikaido, O.; Kondo, S.

    1992-01-01

    Mongolian gerbil (Meriones unguiculatus) is known to be one of the most radioresistant animal species. In order to determine whether there is any correlation between mortality of mammals exposed to γ- or X-rays and radiation sensitivity of culture cells derived from different mammalian species, we have examined the X-ray survival curves of normal diploid fibroblasts from Mongolian gerbil embryos and compared with those of other cultured embryo cells from various laboratory animals and normal human. There was a big difference in cell survival to X-rays among different mammalian species. The D 0 values of Mongolian gerbil cells ranged from 2.3 to 2.6 Gy which are twice as high as those of human cells. The mean D 0 value of human cells was 1.1 Gy. Mouse, rat, Chinese hamster and Syrian/golden hamster cells showed similar D 0 values ranging from 1.7 to 2.0 Gy. When cells were irradiated with 2 Gy of X-rays, three times longer mitotic delay was observed in human cells than in Mongolian gerbil cells. At this X-ray dose, furthermore, ten times more chromosome aberrations were detected in human cells than in Mongolian gerbil cells, and the frequencies of other rodent cells lay between the values for the two cell strains. These data indicate that the Mongolian gerbil cells are resistant to X-ray-induced cell killing and chromosome aberrations, and that radiation sensitivity of primarily cultured mammalian cells may be reflected by their radioresistance in vivo. (author)

  9. EFFECT OF NATURAL PLANT EXTRACTS ON PORCINE OVARIAN FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Attila Kádasi

    2015-02-01

    Full Text Available This report provides information about the impact of chosen natural plant extracts on basic ovarian functions. This article summarizes our results concerning the effect of selected plant extracts on proliferation, apoptosis and hormone secretion – release of progesterone (P4, testosterone (T and leptin (L on porcine granulosa cells (GC, We analyzed effects of ginkgo (GB, rooibos (RB, flaxseed (FL, green tea polyphenols (GTPP, green tea - epigallocatechin-3-gallate (EGCG, resveratrol (RSV and curcumin (CURC (0; 1; 10 and 100 μg.ml-1 on markers of proliferation, apoptosis and secretory activity of porcine ovarian granulosa cells by using immunocytochemistry and EIA. It was demonstrated, that all these natural plants and plant molecules inhibited the accumulation of proliferation-related peptide (PCNA and apoptosis-associated peptide (Bax in cultured. Furthermore, it was observed that natural plant extracts altered progesterone, testosterone and leptin release in porcine ovarian cells. It is concluded, that GB, RB, FL, RSV, CURC, GTPP and EGCG can directly affect ovarian cells and therefore they could potentially influence ovarian functions.

  10. In vivo survival of [14C]sucrose-loaded porcine carrier erythrocytes

    International Nuclear Information System (INIS)

    DeLoach, J.R.

    1983-01-01

    Porcine carrier erythrocyte survival was measured in adult pigs. [14C]Sucrose-loaded erythrocytes had a biphasic survival curve, with as much as 50% of the cells removed from circulation in the first 24 hours. The remaining cells had a 35-day half-life. Encapsulation values were measured for porcine erythrocytes and entrapment of [14C]sucrose was greater than 45%. Addition of inosine and glucose to the dialyzed cells and to the final wash buffer before reinjection of autologous cells did not improve their survival

  11. Targeting of Escherichia coli F4 fimbriae to Fcgamma receptors enhances the maturation of porcine dendritic cells.

    Science.gov (United States)

    Devriendt, Bert; Verdonck, Frank; Summerfield, Artur; Goddeeris, Bruno M; Cox, Eric

    2010-06-15

    F4(+) enterotoxigenic Escherichia coli (ETEC) infections are an important cause of postweaning diarrhoea in piglets and an oral immunization of piglets with purified F4 fimbriae protects them from a subsequent F4(+) ETEC infection. However, oral immunization of suckling piglets is hampered due to the immature status of their immune system. Targeting of antigens to Fcgamma receptors (FcgammaR) on human and murine dendritic cells (DC) has been shown to enhance DC maturation and both humoral and cellular immune responses. To investigate the effect of F4 fimbriae incorporated in immune complexes (F4-IC) on porcine DC, we used porcine monocytic-derived DC (MoDC) as a model system. The results in this study demonstrate that FcgammaRI, II and III mRNA is expressed by porcine MoDC. Furthermore, we show that FcgammaRII and III are expressed on the cell surface and that F4-IC are internalized by MoDC via FcgammaR. This FcgammaR ligation induced a significantly enhanced expression of Major Histocompatibility complex (MHCII) class II and the costimulatory molecules CD80/86 and CD40 by MoDC compared with immature MoDC. Furthermore, the phagocytic capacity of F4-IC stimulated MoDC was reduced as evidenced by a reduced uptake of DQ-ovalbumin and FITC-dextran. In an allogenic and autologous mixed lymphocyte reaction, these F4-IC-activated MoDC showed an improved T cell stimulatory capacity in comparison with immature MoDC. The F4-IC induced DC maturation correlated with significant higher expression levels of several pro-inflammatory cytokines such as interleukine (IL) 1beta, IL-6 and Tumor necrosis factor alpha, the chemokine IL-8 and IL-12p40 in comparison with immature MoDC. Altogether, these results clearly demonstrate that FcgammaR engagement enhances the maturation of porcine MoDC, which may suggest that antigen targeting to FcgammaR on DC could improve vaccine design against infections. Copyright 2009 Elsevier B.V. All rights reserved.

  12. DNA repair in lens cells during chick embryo development

    International Nuclear Information System (INIS)

    Counis, M.F.; Chaudun, E.; Simonneau, L.; Courtois, Y.

    1979-01-01

    When chick lens epithelium is cultured in vitro, differentiation into lens fiber cells is accompanied by DNA degradation. This phenomenon of terminal differentiation was studied in the epithelium from embryos at the 6th and 11th days of development. DNA size and the ability of the cells to repair DNA damage induced by X-rays were analysed in alkaline sucrose gradients. In the 6-day epithelium a rapid degradation and complete lack of DNA repair were recorded. Similar observations have been made in previous studies on the 11-day sample, but here degradation is progressive and occurs after a lag of several days. In the younger epithelium, internal irradiation by [ 3 H)thymidine also had a drastic effect resembling that caused by X-rays. In order to assess the process of differentiation in the experimental system the synthesis of delta- and αcrystallins was monitored. Stage-related modifications in the rates of synthesis were recorded. The results confirm that the DNA repair system is impaired during terminal differentiation. The differences observed between the two stages may reflect either a developmental modification in DNA repair mechanisms or a change in the relative proportions of differentiating cells. An hypothesis is proposed in support of the latter case. (Auth.)

  13. Effects of fluoxetine on human embryo development

    NARCIS (Netherlands)

    Kaihola, Helena; Yaldir, Fatma G.; Hreinsson, Julius; Hornaeus, Katarina; Bergquist, Jonas; Olivier, Jocelien D. A.; Akerud, Helena; Sundstrom-Poromaa, Inger

    2016-01-01

    The use of antidepressant treatment during pregnancy is increasing, and selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressants in pregnant women. Serotonin plays a role in embryogenesis, and serotonin transporters are expressed in two-cell mouse embryos. Thus,

  14. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex

    DEFF Research Database (Denmark)

    Holm, Peter; Shukri, Naseer Mahmoud; Vajta, Gabor

    1998-01-01

    The development of bovine IVP-embryos was observed in a time-lapse culture system to determine cell cycle lengths of 1) embryos that developed into compact morulae (CM) or blastocysts (BL) within 174 h after insemination (viable), 2) embryos that arrested during earlier stages (nonviable) and 3......) male and female embryos. In 4 replicates, inseminated oocytes were cultured on a microscope stage in 3 to 4 groups on a granulosa cell monolayer in supplemented TCM 199. Images were sequentially recorded and stored at 30-min intervals. All embryos that could be identified throughout the culture period...... were included (n=392), and the times of cleavage events noted. After culture, 100 CM or BL were randomly selected for sexing by PCR. BL developed equally well in the time-lapse and control culture systems (36 vs 38. The respective lengths of the first 4 cell cycles of viable embryos were 32.0 + 3.9, g...

  15. Assay for the detection of non-lethal changes that are expressed as a proliferative disadvantage in mouse (Mus musculus) embryo aggregation chimberas

    International Nuclear Information System (INIS)

    Obasaju, M.F.

    1986-01-01

    This study demonstrates the potential utility of the chimera embryo assay in measuring the effects of a variety of non-lethal, potentially hazardous environmental agents on normal mammalian embryonic cells. The two major findings to have emerged from this investigation are, (1) relative cellular contribution per embryo in chimeras was found to depend on the strain of the partner embryo and this relationship apparently does not require cell to cell contact between the partner embryos of the chimera and is already apparent after only two cell cycles; and (2) within the same outbred strain, exposure of one partner embryo in the chimera to either X-irradiation or chlorpromazine, at dose levels that were lower than those previously found to be embryotoxic; such toxicity was revealed as a proliferative disadvantage that was also evident after only 2 cell cycles. Partner embryos in the chimera were distinguished by labelling one of them with the fluorescent dye, fluorescein isothiocyanate (FITC), which was shown to have no detrimental effects on the proliferation rate of the labelled embryos

  16. Developmental potential of bovine hand-made clone embryos reconstructed by aggregation or fusion with distinct cytoplasmic volumes.

    Science.gov (United States)

    Ribeiro, Eduardo de Souza; Gerger, Renato Pereira da Costa; Ohlweiler, Lain Uriel; Ortigari, Ivens; Mezzalira, Joana Cláudia; Forell, Fabiana; Bertolini, Luciana Relly; Rodrigues, José Luiz; Ambrósio, Carlos Eduardo; Miglino, Maria Angélica; Mezzalira, Alceu; Bertolini, Marcelo

    2009-09-01

    Animal cloning has been associated with developmental abnormalities, with the level of heteroplasmy caused by the procedure being one of its potential limiting factors. The aim of this study was to determine the effect of the fusion of hemicytoplasts or aggregation of hemiembryos, varying the final cytoplasmic volume, on development and cell density of embryos produced by hand-made cloning (HMC), parthenogenesis or by in vitro fertilization (IVF). One or two enucleated hemicytoplasts were paired and fused with one skin somatic cell. Activated clone and zona-free parthenote embryos and hemiembryos were in vitro cultured in the well-of-the-well (WOW) system, being allocated to one of six experimental groups, on a per WOW basis: single clone or parthenote hemiembryos (1 x 50%); aggregation of two (2 x 50%), three (3 x 50%), or four (4 x 50%) clone or parthenote hemiembryos; single clone or parthenote embryos (1 x 100%); or aggregation of two clone or parthenote embryos (2 x 100%). Control zona-intact parthenote or IVF embryos were in vitro cultured in four-well dishes. Results indicated that the increase in the number of aggregated structures within each WOW was followed by a linear increase in cleavage, blastocyst rate, and cell density. The increase in cytoplasmic volume, either by fusion or by aggregation, had a positive effect on embryo development, supporting the establishment of pregnancies and the birth of a viable clone calf after transfer to recipients. However, embryo aggregation did not improve development on a hemicytoplast basis, except for the aggregation of two clone embryos.

  17. Temporal changes in glycogenolytic enzyme mRNAs during myogenesis of primary porcine satellite cells

    DEFF Research Database (Denmark)

    Henckel, Poul; Theil, Peter Kappel; Sørensen, Inge Lise

    2007-01-01

    , phosphorylase kinase, phosphorylase and glycogen debranching enzyme, and no alterations of the transporter molecule GLUT4, clearly indicate that glycogenolytic enzymes of potential importance to meat quality development are regulated at the gene level during myogenesis, and are heavily involved in muscle cell...... and muscle fibre development. The genes, however, are not influenced by insulin, and the lack of response to insulin of expression of gene-encoding enzymes involved in the formation and degradation of glycogen may question the applicability of porcine cell culture systems, like the one applied, as a model...

  18. Porcine circovirus diseases

    Directory of Open Access Journals (Sweden)

    Ristoski Trpe

    2009-05-01

    Full Text Available Porcine circovirus type 2 belongs on the family Circoviridae. This virus family includes small, non-enveloped viruses, with a circular, single-standed DNA genome.This virus causes mainly subclinical infections, but a number of diseases have been linked to it (porcine circovirus diseases, PCVD. The most economically important PCVD is postweaning multisystemic wasting syndrome (PMWS, which mainly affects pigs of 2 to 5 months of age, with progressive wasting, diarrhea and respiratory disorders. Main PMWS lesions are found in lymphoid tissues, which are characterized by lymphocyte depletion with granulomatous (histiocytic and multinucleate giant cell infiltration. PMWS is considered as multifactorial disease, with a number of infectious and non-infectious factors able to act as disease triggering in PCV2 infected pigs. PCVDs are worldwide distributed, and PMWS was diagnosed in Macedonia in 2007.

  19. Are human embryos Kantian persons?: Kantian considerations in favor of embryonic stem cell research.

    Science.gov (United States)

    Manninen, Bertha Alvarez

    2008-01-31

    One argument used by detractors of human embryonic stem cell research (hESCR) invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should not be disaggregated to obtain pluripotent stem cells for hESCR. Given that human embryos are Kantian persons from the time of their conception, killing them to obtain their cells for research fails to treat them as ends in themselves. This argument assumes two points that are rather contentious given a Kantian framework. First, the argument assumes that when Kant maintains that humanity must be treated as an end in itself, he means to argue that all members of the species Homo sapiens must be treated as ends in themselves; that is, that Kant regards personhood as co-extensive with belonging to the species Homo sapiens. Second, the argument assumes that the event of conception is causally responsible for the genesis of a Kantian person and that, therefore, an embryo is a Kantian person from the time of its conception. In this paper, I will present challenges against these two assumptions by engaging in an exegetical study of some of Kant's works. First, I will illustrate that Kant did not use the term "humanity" to denote a biological species, but rather the capacity to set ends according to reason. Second, I will illustrate that it is difficult given a Kantian framework to denote conception (indeed any biological event) as causally responsible for the creation of a person. Kant ascribed to a dualistic view of human agency, and personhood, according to him, was derived from the supersensible capacity for reason. To argue that a Kantian person is generated due to the event of conception ignores Kant's insistence in various aspects of his work that it is not possible to understand the generation of a person qua a physical operation. Finally, I will end the

  20. Are human embryos Kantian persons?: Kantian considerations in favor of embryonic stem cell research

    Directory of Open Access Journals (Sweden)

    Manninen Bertha

    2008-01-01

    Full Text Available Abstract One argument used by detractors of human embryonic stem cell research (hESCR invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should not be disaggregated to obtain pluripotent stem cells for hESCR. Given that human embryos are Kantian persons from the time of their conception, killing them to obtain their cells for research fails to treat them as ends in themselves. This argument assumes two points that are rather contentious given a Kantian framework. First, the argument assumes that when Kant maintains that humanity must be treated as an end in itself, he means to argue that all members of the species Homo sapiens must be treated as ends in themselves; that is, that Kant regards personhood as co-extensive with belonging to the species Homo sapiens. Second, the argument assumes that the event of conception is causally responsible for the genesis of a Kantian person and that, therefore, an embryo is a Kantian person from the time of its conception. In this paper, I will present challenges against these two assumptions by engaging in an exegetical study of some of Kant's works. First, I will illustrate that Kant did not use the term "humanity" to denote a biological species, but rather the capacity to set ends according to reason. Second, I will illustrate that it is difficult given a Kantian framework to denote conception (indeed any biological event as causally responsible for the creation of a person. Kant ascribed to a dualistic view of human agency, and personhood, according to him, was derived from the supersensible capacity for reason. To argue that a Kantian person is generated due to the event of conception ignores Kant's insistence in various aspects of his work that it is not possible to understand the generation of a person qua a physical

  1. Development of a green fluorescent protein metastatic-cancer chick-embryo drug-screen model.

    Science.gov (United States)

    Bobek, Vladimir; Plachy, Jiri; Pinterova, Daniela; Kolostova, Katarina; Boubelik, Michael; Jiang, Ping; Yang, Meng; Hoffman, Robert M

    2004-01-01

    The chick-embryo model has been an important tool to study tumor growth, metastasis, and angiogenesis. However, an imageable model with a genetic fluorescent tag in the growing and spreading cancer cells that is stable over time has not been developed. We report here the development of such an imageable fluorescent chick-embryo metastatic cancer model with the use of green fluorescent protein (GFP). Lewis lung carcinoma cells, stably expressing GFP, were injected on the 12th day of incubation in the chick embryo. GFP-Lewis lung carcinoma metastases were visualized by fluorescence, after seven days additional incubation, in the brain, heart, and sternum of the developing chick embryo, with the most frequent site being the brain. The combination of streptokinase and gemcitabine was evaluated in this GFP metastatic model. Twelve-day-old chick embryos were injected intravenously with GFP-Lewis lung cancer cells, along with these two agents either alone or in combination. The streptokinase-gemcitabine combination inhibited metastases at all sites. The effective dose of gemcitabine was found to be 10 mg/kg and streptokinase 2000 IU per embryo. The data in this report suggest that this new stably fluorescent imageable metastatic-cancer chick-embryo model will enable rapid screening of new antimetastatic agents.

  2. Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of Embryos

    OpenAIRE

    Guo, Jitong; Wu, Baojiang; Li, Shuyu; Bao, Siqin; Zhao, Lixia; Hu, Shuxiang; Sun, Wei; Su, Jie; Dai, Yanfeng; Li, Xihe

    2014-01-01

    Blastocyst injection and morula aggregation are commonly used to evaluate stem cell pluripotency based on chimeric contribution of the stem cells. To assess the protocols for generating chimeras from stem cells, 8-cell mouse embryos were either injected or cocultured with mouse embryonic stem cells and induced pluripotent stem cells, respectively. Although a significantly higher chimera rate resulted from blastocyst injection, the highest germline contribution resulted from injection of 8-cel...

  3. DNA repair ability of cultured cells derived from mouse embryos in comparison with human cells

    International Nuclear Information System (INIS)

    Yaki, T.

    1982-01-01

    DNA repair in mouse cells derived from embryos of 3 inbred strains were investigated in comparison with that in human cells. The levels of unscheduled DNA synthesis after UV irradiation appeared to change at different passages, but capacities of host-cell reactivation of UV-irradiated herpes simplex virus were always reduced to the same levels as those in xeroderma pigmentosum cells. This implied that mouse cells are reduced in excision-repair capacities and that the apparently high levels of unscheduled DNA synthesis at certain passages are not quantitatively related to high levels of cell survival. Essentially no differences in DNA repair were noted among 3 strains - BALB/c, C3H/He and C57BL/10. (orig.)

  4. Cryopreservation of porcine fetal ventral mesencephalic tissue for intrastriatal transplantation in Parkinson's disease

    NARCIS (Netherlands)

    Koopmans, J.; Hogenesch, I.; Copray, S.; Middel, B.; van Dijk, H.; Go, K-G.; Staal, M.

    2001-01-01

    In this study we examined the efficacy of cryopreserving porcine fetal mesencephalic tissue. After microscopical dissection of the ventral mesencephalon (VM) from E28 pig fetuses, the collection of explants was randomly divided into two equal parts. One part was directly prepared as cell suspension.

  5. Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Ingrid R. Cordeiro

    2015-09-01

    Full Text Available Human adipose-derived stromal cells (hADSC are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1 regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues.

  6. Co-culture of human embryos with autologous cumulus cell clusters and its beneficial impact of secreted growth factors on preimplantation development as compared to standard embryo culture in assisted reproductive technologies (ART

    Directory of Open Access Journals (Sweden)

    Alexandros Vithoulkas

    2017-12-01

    Conclusion(s: The investigated factors, among other substances, may be causally connected to the beneficial effect observed on embryo development. Our findings suggest that co-culture with autologous cumulus cell clusters improves the outcome of embryo culture in IVF programs.

  7. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    International Nuclear Information System (INIS)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng; Liu, Jun; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2016-01-01

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3 and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.

  8. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng; Liu, Jun; Zhang, Yu [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Cui, Xiang-Shun; Kim, Nam-Hyung [Department of Animal Science, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Sun, Shao-Chen, E-mail: sunsc@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-06-01

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3 and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.

  9. Effect of embryo density on in vitro development and gene expression in bovine in vitro-fertilized embryos cultured in a microwell system.

    Science.gov (United States)

    Sugimura, Satoshi; Akai, Tomonori; Hashiyada, Yutaka; Aikawa, Yoshio; Ohtake, Masaki; Matsuda, Hideo; Kobayashi, Shuji; Kobayashi, Eiji; Konishi, Kazuyuki; Imai, Kei

    2013-01-01

    To identify embryos individually during in vitro development, we previously developed the well-of-the-well (WOW) dish, which contains 25 microwells. Here we investigated the effect of embryo density (the number of embryos per volume of medium) on in vitro development and gene expression of bovine in vitro-fertilized embryos cultured in WOW dishes. Using both conventional droplet and WOW culture formats, 5, 15, and 25 bovine embryos were cultured in 125 μl medium for 168 h. The blastocysts at Day 7 were analyzed for number of cells and expression of ten genes (CDX2, IFN-tau, PLAC8, NANOG, OCT4, SOX2, AKR1B1, ATP5A1, GLUT1 and IGF2R). In droplet culture, the rates of formation of >4-cell cleavage embryos and blastocysts were significantly lower in embryos cultured at 5 embryos per droplet than in those cultured at 15 or 25 embryos per droplet, but not in WOW culture. In both droplet and WOW culture, developmental kinetics and blastocyst cell numbers did not differ among any groups. IFN-tau expression in embryos cultured at 25 embryos per droplet was significantly higher than in those cultured at 15 embryos per droplet and in artificial insemination (AI)-derived blastocysts. Moreover, IGF2R expression was significantly lower in the 25-embryo group than in the 5-embryo group and in AI-derived blastocysts. In WOW culture, these expressions were not affected by embryo density and were similar to those in AI-derived blastocysts. These results suggest that, as compared with conventional droplet culture, in vitro development and expression of IFN-tau and IGF2R in the microwell system may be insensitive to embryo density.

  10. Human interleukin for DA cells or leukemia inhibitory factor is released by Vero cells in human embryo coculture.

    Science.gov (United States)

    Papaxanthos-Roche, A; Taupin, J L; Mayer, G; Daniel, J Y; Moreau, J F

    1994-09-01

    In the light of the newly discovered implications of human interleukin for DA cells and leukemia inhibitory factor in embryology, we searched for the presence of this soluble cytokine in the supernatant of Vero cell coculture systems. Using a bioassay as well as a specific ELISA, we demonstrated that Vero cells are able to release large quantities of human interleukin for DA cells and leukemia inhibitory factor in the embryo-growing medium of such cocultures.

  11. Differential Effect of Medium on the Ratio of ICM/TE of Bovine Embryos in a Co-culture System

    Directory of Open Access Journals (Sweden)

    Mohsen Forouzanfar

    2010-01-01

    Full Text Available Background: This study was undertaken to investigate the efficiency of two differentembryo somatic cell co-culture conditions, tissue culture medium 199 (TCM199–vero cellsand Menezo B2 (B2-vero cells, for the in vitro developmental quantity and quality of bovineembryos.Materials and Methods: Bovine oocytes were allowed to mature and subsequently undergofertilization in vitro. Their presumptive zygotes were cultured in either TCM199 or B2 culturemedia in conjunction with vero cells for up to nine days. The culture media were refreshedevery two days and the proportion of embryos that cleaved and further developed to themorula and blastocyst (early, expand and hatched stages were recorded. Hatched blastocystsunderwent differential staining in order to determine the numbers of inner cell mass (ICMand tropho ectoderm (TE and total cell number (TCN.Results: Of the two groups, no significant difference was seen between the proportions ofthe presumptive zygotes cleaved, those which developed to 8-16 cells, morula and reacheddays 7or 8 blastocyst stage or hatched. However, the values for TCN and TE of the TCM199-vero embryos were significantly greater than those of B2-vero embryos. The values for ICM/TCN and ICM/TE were significantly greater in the B2-vero group versus the TCM199-verogroup.Conclusion: Both TCM199 and B2 culture media in conjunction with vero cells were ofthe same efficiency when used for in vitro development of bovine presumptive zygotes.However, TCM199 was superior in providing embryos with more embryo cell numbers,whereas B2 medium was superior in providing embryos with greater ICM/TE and ICM/TCN ratios.

  12. Surgical manipulation of mammalian embryos in vitro.

    Science.gov (United States)

    Naruse, I; Keino, H; Taniguchi, M

    1997-04-01

    Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.

  13. Reduction of spiked porcine circovirus during the manufacture of a Vero cell-derived vaccine.

    Science.gov (United States)

    Lackner, Cornelia; Leydold, Sandra M; Modrof, Jens; Farcet, Maria R; Grillberger, Leopold; Schäfer, Birgit; Anderle, Heinz; Kreil, Thomas R

    2014-04-11

    Porcine circovirus-1 (PCV1) was recently identified as a contaminant in live Rotavirus vaccines, which was likely caused by contaminated porcine trypsin. The event triggered the development of new regulatory guidance on the use of porcine trypsin which shall ensure that cell lines and porcine trypsin in use are free from PCV1. In addition, manufacturing processes of biologicals other than live vaccines include virus clearance steps that may prevent and mitigate any potential virus contamination of product. In this work, artificial spiking of down-scaled models for the manufacturing process of an inactivated pandemic influenza virus vaccine were used to investigate inactivation of PCV1 and the physico-chemically related porcine parvovirus (PPV) by formalin and ultraviolet-C (UV-C) treatment as well as removal by the purification step sucrose gradient ultracentrifugation. A PCV1 infectivity assay, using a real-time PCR infectivity readout was established. The formalin treatment (0.05% for 48h) showed substantial inactivation for both PCV1 and PPV with reduction factors of 3.0log10 and 6.8log10, respectively, whereas UV-C treatment resulted in complete PPV (≥5.9log10) inactivation already at a dose of 13mJ/cm but merely 1.7log10 at 24mJ/cm(2) for PCV1. The UV-C inactivation results with PPV were confirmed using minute virus of mice (MVM), indicating that parvoviruses are far more sensitive to UV-C than PCV1. The sucrose density gradient ultracentrifugation also contributed to PCV1 clearance with a reduction factor of 2log10. The low pH treatment during the production of procine trypsin was investigated and showed effective inactivation for both PCV1 (4.5log10) and PPV (6.4log10). In conclusion, PCV1 in general appears to be more resistant to virus inactivation than PPV. Still, the inactivated pandemic influenza vaccine manufacturing process provides for robust virus reduction, in addition to the already implemented testing for PCV1 to avoid any contaminations

  14. Proteomic analysis of the early bovine yolk sac fluid and cells from the day 13 ovoid and elongated preimplatation embryos

    DEFF Research Database (Denmark)

    Jensen, Pernille L.; Beck, Hans Christian; Petersen, Tonny S.

    2014-01-01

    differentiate into the hypoblast and epiblast, which remain surrounded by the trophectoderm. The formation of the hypoblast epithelium is also accompanied by a change in the fluid within the embryo, i.e., the blastocoel fluid gradually alters to become the primitive yolk sac (YS) fluid. Our previous research......The bovine blastocyst hatches 8 to 9 days after fertilization, and this is followed by several days of preimplantation development during which the embryo transforms from a spherical over an ovoid to an elongated shape. As the spherical embryo enlarges, the cells of the inner cell mass...... describes the protein composition of human and bovine blastocoel fluid, which is surrounded by the trophectoderm and undifferentiated cells of the inner cell mass. In this study, we further examine the changes in the protein composition in both the primitive YS fluid and the embryonic cells during early...

  15. An integrated modelling framework from cells to organism based on a cohort of digital embryos

    OpenAIRE

    Villoutreix, Paul; Delile, Julien; Rizzi, Barbara; Duloquin, Louise; Savy, Thierry; Bourgine, Paul; Doursat, Ren?; Peyri?ras, Nadine

    2016-01-01

    We conducted a quantitative comparison of developing sea urchin embryos based on the analysis of five digital specimens obtained by automatic processing of in toto 3D+ time image data. These measurements served the reconstruction of a prototypical cell lineage tree able to predict the spatiotemporal cellular organisation of a normal sea urchin blastula. The reconstruction was achieved by designing and tuning a multi-level probabilistic model that reproduced embryo-level dynamics from a small ...

  16. Analysis of compaction initiation in human embryos by using time-lapse cinematography.

    Science.gov (United States)

    Iwata, Kyoko; Yumoto, Keitaro; Sugishima, Minako; Mizoguchi, Chizuru; Kai, Yoshiteru; Iba, Yumiko; Mio, Yasuyuki

    2014-04-01

    To analyze the initiation of compaction in human embryos in vitro by using time-lapse cinematography (TLC), with the goal of determining the precise timing of compaction and clarifying the morphological changes underlying the compaction process. One hundred and fifteen embryos donated by couples with no further need for embryo-transfer were used in this study. Donated embryos were thawed and processed, and then their morphological behavior during the initiation of compaction was dynamically observed via time-lapse cinematography (TLC) for 5 days. Although the initiation of compaction occurred throughout the period from the 4-cell to 16-cell stage, 99 (86.1 %) embryos initiated compaction at the 8-cell stage or later, with initiation at the 8-cell stage being most frequent (22.6 %). Of these 99 embryos, 49.5 % developed into good-quality blastocysts. In contrast, of the 16 (13.9 %) embryos that initiated compaction prior to the 8-cell stage, only 18.8 % developed into good-quality blastocysts. Embryos that initiated compaction before the 8-cell stage showed significantly higher numbers of multinucleated blastomeres, due to asynchronism in nuclear division at the third mitotic division resulting from cytokinetic failure. The initiation of compaction primarily occurs at the third mitotic division or later in human embryos. Embryos that initiate compaction before the 8-cell stage are usually associated with aberrant embryonic development (i.e., cytokinetic failure accompanied by karyokinesis).

  17. Isolation and purification of porcine LH for radioimmunoassay and radioreceptor assay

    International Nuclear Information System (INIS)

    Ziecik, A.; Goralska, M.; Krzymowski, T.; Pogorzelski, K.

    1979-01-01

    The procedure of isolation and purification of LH from porcine pituitary glands is described. From 1 kg of pituitary glands 150 mg of LH GPZ-1 preparation of high purity were obtained. Immunization of rabbits with the prepared hormone gave homogeneous antibodies against porcine LH with high affinity and low cross-reactions with FSH. Radioreceptor assay with the use of the prepared porcine LH demonstrated the high capacity of cell membrane receptors of the boar tests for binding this hormone. (author)

  18. Rape embryogenesis. IV. Appearance and disappearance of starch during embryo development

    Directory of Open Access Journals (Sweden)

    Teresa Tykarska

    2014-01-01

    Full Text Available Starch appears first in the suspensor of the proembryo with two-cell apical part. It is observed in the embryo proper from the octant stage. At first it is visible in all the embryo cells in the form of minute transient grains which disappear during cell divisions. But the columella mother cells and their derivatives have persistent large grains. When the embryo turns green in the heart stage a gradual accumulation of storage starch begins and lasts to the end of embryogenesis. Storage starch grains appear first in the auter cortex layers of the hypocotyl where the largest grains are to be found later, and afterwards in all the other tissues. Starch is usually absent in the frequently dividing cells, but even there it appears in the form of minute grains after the end of cell divisions. Disappearance of starch starts when the intensive green colour of the seed coat begins to fade. The first to disappear are the smallest granules in the regions where they were noted latest. In the embryo axis the starch grains remain deposited longest in dermatogen and cortex cells in the lower hypocotyl part. They are visible there, still when the seed turns brown. In black seeds starch may be only found in the columella the cells of which throughout embryogenesis contain amyloplasts filled with starch. These grains disappear completely at the time when the seeds become dry.

  19. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells.

    Science.gov (United States)

    Kennedy, Allyson E; Kandalam, Suraj; Olivares-Navarrete, Rene; Dickinson, Amanda J G

    2017-01-01

    Since electronic cigarette (ECIG) introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM) in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.

  20. Cleavage events and sperm dynamics in chick intrauterine embryos.

    Directory of Open Access Journals (Sweden)

    Hyung Chul Lee

    Full Text Available This study was undertaken to elucidate detailed event of early embryogenesis in chicken embryos using a noninvasive egg retrieval technique before oviposition. White Leghorn intrauterine eggs were retrieved from 95 cyclic hens aged up to 54-56 weeks and morphogenetic observation was made under both bright field and fluorescent image in a time course manner. Differing from mammals, asymmetric cleavage to yield preblastodermal cells was observed throughout early embryogenesis. The first two divisions occurred synchronously and four polarized preblastodermal cells resulted after cruciform cleavage. Then, asynchronous cleavage continued in a radial manner and overall cell size in the initial cleavage region was smaller than that in the distal area. Numerous sperms were visible, regardless of zygotic nuclei formation. Condensed sperm heads were present mainly in the perivitelline space and cytoplasm, and rarely in the yolk region, while decondensed sperm heads were only visible in the yolk. In conclusion, apparent differences in sperm dynamics and early cleavage events compared with mammalian embryos were detected in chick embryo development, which demonstrated polarized cleavage with penetrating supernumerary sperm into multiple regions.

  1. Evaluation of transdermal delivery of nanoemulsions in ex vivo porcine skin using two-photon microscopy and confocal laser-scanning microscopy

    Science.gov (United States)

    Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho

    2014-10-01

    This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.

  2. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.

    Science.gov (United States)

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya

    2010-08-01

    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.

  3. Concise classification of the genomic porcine endogenous retroviral gamma1 load to defined lineages.

    Science.gov (United States)

    Klymiuk, Nikolai; Wolf, Eckhard; Aigner, Bernhard

    2008-02-05

    We investigated the infection history of porcine endogenous retroviruses (PERV) gamma1 by analyzing published env and LTR sequences. PERV sequences from various breeds, porcine cell lines and infected human primary cells were included in the study. We identified a considerable number of retroviral lineages indicating multiple independent colonization events of the porcine genome. A recent boost of the proviral load in an isolated pig herd and exclusive occurrence of distinct lineages in single studies indicated the ongoing colonization of the porcine genome with endogenous retroviruses. Retroviral recombination between co-packaged genomes was a general factor for PERV gamma1 diversity which indicated the simultaneous expression of different proviral loci over a period of time. In total, our detailed description of endogenous retroviral lineages is the prerequisite for breeding approaches to minimize the infectious potential of porcine tissues for the subsequent use in xenotransplantation.

  4. Proteome profile of swine testicular cells infected with porcine transmissible gastroenteritis coronavirus.

    Directory of Open Access Journals (Sweden)

    Ruili Ma

    Full Text Available The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV-infected swine testicular (ST cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1, caspase-8, and heat shock protein 90 alpha (HSP90α were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis.

  5. Studies Using an in Vitro Model Show Evidence of Involvement of Epithelial-Mesenchymal Transition of Human Endometrial Epithelial Cells in Human Embryo Implantation*

    Science.gov (United States)

    Uchida, Hiroshi; Maruyama, Tetsuo; Nishikawa-Uchida, Sayaka; Oda, Hideyuki; Miyazaki, Kaoru; Yamasaki, Akiko; Yoshimura, Yasunori

    2012-01-01

    Human embryo implantation is a critical multistep process consisting of embryo apposition/adhesion, followed by penetration and invasion. Through embryo penetration, the endometrial epithelial cell barrier is disrupted and remodeled by an unknown mechanism. We have previously developed an in vitro model for human embryo implantation employing the human choriocarcinoma cell line JAR and the human endometrial adenocarcinoma cell line Ishikawa. Using this model we have shown that stimulation with ovarian steroid hormones (17β-estradiol and progesterone, E2P4) and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, enhances the attachment and adhesion of JAR spheroids to Ishikawa. In the present study we showed that the attachment and adhesion of JAR spheroids and treatment with E2P4 or SAHA individually induce the epithelial-mesenchymal transition (EMT) in Ishikawa cells. This was evident by up-regulation of N-cadherin and vimentin, a mesenchymal cell marker, and concomitant down-regulation of E-cadherin in Ishikawa cells. Stimulation with E2P4 or SAHA accelerated Ishikawa cell motility, increased JAR spheroid outgrowth, and enhanced the unique redistribution of N-cadherin, which was most prominent in proximity to the adhered spheroids. Moreover, an N-cadherin functional blocking antibody attenuated all events but not JAR spheroid adhesion. These results collectively provide evidence suggesting that E2P4- and implanting embryo-induced EMT of endometrial epithelial cells may play a pivotal role in the subsequent processes of human embryo implantation with functional control of N-cadherin. PMID:22174415

  6. Composition of commercial media used for human embryo culture.

    Science.gov (United States)

    Morbeck, Dean E; Krisher, Rebecca L; Herrick, Jason R; Baumann, Nikola A; Matern, Dietrich; Moyer, Thomas

    2014-09-01

    To determine the composition of commercially available culture media and test whether differences in composition are biologically relevant in a murine model. Experimental laboratory study. University-based laboratory. Cryopreserved hybrid mouse one-cell embryos were used in experiments. Amino acid, organic acid, ions, and metal content were determined for two different lots of media from Cook, In Vitro Care, Origio, Sage, Vitrolife, Irvine CSC, and Global. To determine whether differences in the composition of these media are biologically relevant, mouse one-cell embryos were thawed and cultured for 120 hours in each culture media at 5% and 20% oxygen in the presence or absence of protein in an EmbryoScope time-lapse incubator. The compositions of seven culture media were analyzed for concentrations of 39 individual amino acids, organic acids, ions, and elements. Blastocyst rates and cell cycle timings were calculated at 96 hours of culture, and the experiments were repeated in triplicate. Of the 39 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium were present in variable concentrations, likely reflecting differences in the interpretation of animal studies. Essential trace elements, such as copper and zinc, were not detected. Mouse embryos failed to develop in one culture medium and were differentially affected by oxygen in two other media. Culture media composition varies widely, with differences in pyruvate, lactate, and amino acids especially notable. Blastocyst development was culture media dependent and showed an interaction with oxygen concentration and presence of protein. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Assessment of the developmental totipotency of neural cells in the cerebral cortex of mouse embryo by nuclear transfer

    Science.gov (United States)

    Yamazaki, Yukiko; Makino, Hatsune; Hamaguchi-Hamada, Kayoko; Hamada, Shun; Sugino, Hidehiko; Kawase, Eihachiro; Miyata, Takaki; Ogawa, Masaharu; Yanagimachi, Ryuzo; Yagi, Takeshi

    2001-01-01

    When neural cells were collected from the entire cerebral cortex of developing mouse fetuses (15.5–17.5 days postcoitum) and their nuclei were transferred into enucleated oocytes, 5.5% of the reconstructed oocytes developed into normal offspring. This success rate was the highest among all previous mouse cloning experiments that used somatic cells. Forty-four percent of live embryos at 10.5 days postcoitum were morphologically normal when premature and early-postmitotic neural cells from the ventricular side of the cortex were used. In contrast, the majority (95%) of embryos were morphologically abnormal (including structural abnormalities in the neural tube) when postmitotic-differentiated neurons from the pial side of the cortex were used for cloning. Whereas 4.3% of embryos cloned with ventricular-side cells developed into healthy offspring, only 0.5% of those cloned with differentiated neurons in the pial side did so. These facts seem to suggest that the nuclei of neural cells in advanced stages of differentiation had lost their developmental totipotency. The underlying mechanism for this developmental limitation could be somatic DNA rearrangements in differentiating neural cells. PMID:11698647

  8. Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology

    Directory of Open Access Journals (Sweden)

    Qisheng Zuo

    2016-06-01

    Full Text Available The present study established an efficient genome editing approach for the construction of stable transgenic cell lines of the domestic chicken (Gallus gallus domesticus. Our objectives were to facilitate the breeding of high-yield, high-quality chicken strains, and to investigate gene function in chicken stem cells. Three guide RNA (gRNAs were designed to knockout the C2EIP gene, and knockout efficiency was evaluated in DF-1 chicken fibroblasts and chicken ESCs using the luciferase single-strand annealing (SSA recombination assay, T7 endonuclease I (T7EI assay, and TA clone sequencing. In addition, the polyethylenimine-encapsulated Cas9/gRNA plasmid was injected into fresh fertilized eggs. At 4.5 d later, frozen sections of the embryos were prepared, and knockout efficiency was evaluated by the T7EI assay. SSA assay results showed that luciferase activity of the vector expressing gRNA-3 was double that of the control. Results of the T7EI assay and TA clone sequencing indicated that Cas9/gRNA vector-mediated gene knockdown efficiency was approximately 27% in both DF-1 cells and ESCs. The CRISPR/Cas9 vector was also expressed in chicken embryos, resulting in gene knockdown in three of the 20 embryos (gene knockdown efficiency 15%. Taken together, our results indicate that the CRISPR/Cas9 system can mediate stable gene knockdown at the cell and embryo levels in domestic chickens.

  9. The comparison of two different embryo culture methods in the course of in vitro fertilization program.

    Directory of Open Access Journals (Sweden)

    Barbara Grzechocinska

    2008-04-01

    Full Text Available The objective of the study was to compare two different embryo culture methods in the course of in vitro fertilization program by means of fertilization rate, embryo development, total time and cost. 98 patients undergoing assisted reproduction procedures due to infertility were analyzed. The inclusion criteria for the study: first IVF-ET program, at least 10 MII oocytes, no indications for ICSI. Oocytes were divided into two study groups: group A- open culture (oocytes placed in four-well dishes together, then inseminated and cultured in successive wells and group B - a closed culture (oocytes placed in microdroplets, each embryo cultured separately. The fertilization rate was assessed around 18 hours from insemination. The embryos were classified into four classes. The best embryos were chosen for transfer. In the group A the fertilization rate obtained was lower than in group B (68% vs. 78%, respectively. The microdroplet culture required more time on the insemination day and on the second day of culture, while the four-well dish method required more time on the first day of culture and on the day of transfer. On analyzing the total cost of the above procedures (MI medium and oil costs it occurred that the microdroplet culture was more expensive than the four-well dish method (due to the intake of paraffin oil. However, the difference was of no practical importance. In the conclusion, microdroplet culture gives a higher fertilization rate than four-well dish culture, probably due to a homogenous sperm distribution. Despite the differences in time outside the incubator and laboratory expenses (which are after all insignificant microdroplet culture allows a better control over the embryo development. The embryos of best developmental potential can therefore be chosen for ET.

  10. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Improve Left Ventricular Function, Perfusion, and Remodeling in a Porcine Model of Chronic Myocardial Ischemia

    Science.gov (United States)

    Liu, Chuan-Bin; Huang, He; Sun, Ping; Ma, Shi-Ze; Liu, An-Heng; Xue, Jian; Fu, Jin-Hui; Liang, Yu-Qian; Liu, Bing; Wu, Dong-Ying

    2016-01-01

    Stem cell therapy has emerged as a new strategy for treatment of ischemic heart disease. Although umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have been used preferentially in the acute ischemia model, data for the chronic ischemia model are lacking. In this study, we investigated the effect of UC-MSCs originated from Wharton’s jelly in the treatment of chronic myocardial ischemia in a porcine model induced by ameroid constrictor. Four weeks after ameroid constrictor placement, the surviving animals were divided randomly into two groups to undergo saline injection (n = 6) or UC-MSC transplantation (n = 6) through the left main coronary artery. Two additional intravenous administrations of UC-MSCs were performed in the following 2 weeks to enhance therapeutic effect. Cardiac function and perfusion were examined just before and at 4 weeks after intracoronary transplantation. The results showed that pigs with UC-MSC transplantation exhibited significantly greater left ventricular ejection fraction compared with control animals (61.3% ± 1.3% vs. 50.3% ± 2.0%, p UC-MSC treatment improves left ventricular function, perfusion, and remodeling in a porcine model with chronic myocardial ischemia. Significance Ischemic heart disease is the leading cause of death worldwide. Many patients with chronic myocardial ischemia are not suitable for surgery and have no effective drug treatment; they are called “no-option” patients. This study finds that umbilical cord-derived mesenchymal stromal cells transplanted by intracoronary delivery combined with two intravenous administrations was safe and could significantly improve left ventricular function, perfusion, and remodeling in a large-animal model of chronic myocardial ischemia, which provides a new choice for the no-option patients. In addition, this study used clinical-grade mesenchymal stem cells with delivery and assessment methods commonly used clinically to facilitate further clinical transformation. PMID

  11. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Effects of ulipristal acetate on human embryo attachment and endometrial cell gene expression in an in vitro co-culture system.

    Science.gov (United States)

    Berger, C; Boggavarapu, N R; Menezes, J; Lalitkumar, P G L; Gemzell-Danielsson, K

    2015-04-01

    Does ulipristal acetate (UPA) used for emergency contraception (EC) interfere with the human embryo implantation process? UPA, at the dosage used for EC, does not affect human embryo implantation process, in vitro. A single pre-ovulatory dose of UPA (30 mg) acts by delaying or inhibiting ovulation and is recommended as first choice among emergency contraceptive pills due to its efficacy. The compound has also been demonstrated to have a dose-dependent effect on the endometrium, which theoretically could impair endometrial receptivity but its direct action on human embryo implantation has not yet been studied. Effect of UPA on embryo implantation process was studied in an in vitro endometrial construct. Human embryos were randomly added to the cultures and cultured for 5 more days with UPA (n = 10) or with vehicle alone (n = 10) to record the attachment of embryos. Endometrial biopsies were obtained from healthy, fertile women on cycle day LH+4 and stromal and epithelial cells were isolated. A three-dimensional in vitro endometrial co-culture system was constructed by mixing stromal cells with collagen covered with a layer of epithelial cells and cultured in progesterone containing medium until confluence. The treatment group received 200 ng/ml of UPA. Healthy, viable human embryos were placed on both control and treatment cultures. Five days later the cultures were tested for the attachment of embryos and the 3D endometrial constructs were analysed for endometrial receptivity markers by real-time PCR. There was no significant difference in the embryo attachment rate between the UPA treated group and the control group as 5 out of 10 human embryos exposed to UPA and 7 out of 10 embryos in the control group attached to the endometrial cell surface (P = 0.650). Out of 17 known receptivity genes studied here, only 2 genes, HBEGF (P = 0.009) and IL6 (P = 0.025) had a significant up-regulation and 4 genes, namely HAND2 (P = 0.003), OPN (P = 0.003), CALCR (P = 0.016) and

  13. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos

    Science.gov (United States)

    Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.E.; Di Giulio, R.T.

    2001-01-01

    Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ???19.7??9.5 pg TCDD/??l (water bath) and 0.25??0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction. Copyright ?? 2001 Elsevier Science B.V.

  14. Effects of embryo-derived exosomes on the development of bovine cloned embryos.

    Directory of Open Access Journals (Sweden)

    Pengxiang Qu

    Full Text Available The developmental competence of in vitro cultured (IVC embryos is markedly lower than that of their in vivo counterparts, suggesting the need for optimization of IVC protocols. Embryo culture medium is routinely replaced three days after initial culture in bovine, however, whether this protocol is superior to continuous nonrenewal culture method under current conditions remains unclear. Using bovine somatic cell nuclear transfer (SCNT embryos as the model, our results showed that compared with routine renewal treatment, nonrenewal culture system significantly improved blastocyst formation, blastocyst quality (increased total cell number, decreased stress and apoptosis, enhanced Oct-4 expression and ratio of ICM/TE, as well as following development to term. Existence and function of SCNT embryo-derived exosomes were then investigated to reveal the cause of impaired development induced by culture medium replacement. Exosomes were successfully isolated through differential centrifugation and identified by both electron microscopy and immunostaining against exosomal membrane marker CD9. Supplementation of extracted exosomes into freshly renewed medium significantly rescued not only blastocyst formation and quality (in vitro development, but also following growth to term (in vivo development. Notably, ratio of ICM/TE and calving rate were enhanced to a similar level as that in nonrenewal group. In conclusion, our results for the first time indicate that 1: bovine SCNT embryos can secrete exosomes into chemically defined culture medium during IVC; 2: secreted exosomes are essential for SCNT blastocyst formation, blastocyst quality, and following development to term; 3: removal of exosomes induced by culture medium replacement impairs SCNT embryo development, which can be avoided by nonrenewal culture procedure or markedly recovered by exosome supplementation.

  15. Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection.

    Science.gov (United States)

    Du, Taofeng; Shi, Yunpeng; Xiao, Shuqi; Li, Na; Zhao, Qin; Zhang, Angke; Nan, Yuchen; Mu, Yang; Sun, Yani; Wu, Chunyan; Zhang, Hongtao; Zhou, En-Min

    2017-10-10

    Porcine reproductive and respiratory syndrome virus (PRRSV) could lead to pandemic diseases and huge financial losses to the swine industry worldwide. Curcumin, a natural compound, has been reported to serve as an entry inhibitor of hepatitis C virus, chikungunya virus and vesicular stomatitis virus. In this study, we investigated the potential effect of curcumin on early stages of PRRSV infection. Curcumin inhibited infection of Marc-145 cells and porcine alveolar macrophages (PAMs) by four different genotype 2 PRRSV strains, but had no effect on the levels of major PRRSV receptor proteins on Marc-145 cells and PAMs or on PRRSV binding to Marc-145 cells. However, curcumin did block two steps of the PRRSV infection process: virus internalization and virus-mediated cell fusion. Our results suggested that an inhibition of genotype 2 PRRSV infection by curcumin is virus strain-independent, and mainly inhibited by virus internalization and cell fusion mediated by virus. Collectively, these results demonstrate that curcumin holds promise as a new anti-PRRSV drug.

  16. From stem cell to embryo without centrioles.

    Science.gov (United States)

    Stevens, Naomi R; Raposo, Alexandre A S F; Basto, Renata; St Johnston, Daniel; Raff, Jordan W

    2007-09-04

    Centrosome asymmetry plays a key role in ensuring the asymmetric division of Drosophila neural stem cells (neuroblasts [NBs]) and male germline stem cells (GSCs) [1-3]. In both cases, one centrosome is anchored close to a specific cortical region during interphase, thus defining the orientation of the spindle during the ensuing mitosis. To test whether asymmetric centrosome behavior is a general feature of stem cells, we have studied female GSCs, which divide asymmetrically, producing another GSC and a cystoblast. The cystoblast then divides and matures into an oocyte, a process in which centrosomes exhibit a series of complex behaviors proposed to play a crucial role in oogenesis [4-6]. We show that the interphase centrosome does not define spindle orientation in female GSCs and that DSas-4 mutant GSCs [7], lacking centrioles and centrosomes, invariably divide asymmetrically to produce cystoblasts that proceed normally through oogenesis-remarkably, oocyte specification, microtubule organization, and mRNA localization are all unperturbed. Mature oocytes can be fertilized, but embryos that cannot support centriole replication arrest very early in development. Thus, centrosomes are dispensable for oogenesis but essential for early embryogenesis. These results reveal that asymmetric centrosome behavior is not an essential feature of stem cell divisions.

  17. Characterization of the onset of embryonic control and early development in the bovine embryo

    International Nuclear Information System (INIS)

    Barnes, F.L.

    1988-01-01

    Bovine embryos were used to determine if morphological and molecular features of early development are similar to in vivo recovered bovine embryos and to determine at what level early bovine development is regulated. Radiolabeling of IVP embryos and in vivo recovered embryos with 35 S-methionine for SDS-polyacrylamide gel electrophoresis reveals that these embryos are equivalent. Few differences in protein profiles are observed between 1- and early 4-cell embryos. A change in protein profiles begins at the mid 4-cell stage and continues into the 8-cell stage. Few differences in protein profiles are observed between 1- and early 4-cell embryos. A change in protein profiles begins at the mid 4-cell stage and continues into the 8-cell stage. Few differences in protein profiles are observed between late 8-cells and morulae. This transition is α-amanitin sensitive therefore due to de novo embryonic transcription. Embryonic transcription is partially responsible for terminating the post-transcriptionally regulated period of early bovine development. Argentophillic nucleolar organizing regions (Ag-NORs) indicate onset of nucleolar activation. Ag-NORs were absent in 2- and 4-cell IVP embryos and rarely occurred in 8-cell IVP embryos cultured in vitro. IVP 1- and 2-cell embryos cultured to blastocysts in sheep oviducts demonstrated Ag-NORs. Thus the lack of nucleolar activation of IVP embryos cultured in vitro is culture induced between the 2- and 8-cell stage

  18. Developmental effects of aerosols and coal burning particles in zebrafish embryos

    International Nuclear Information System (INIS)

    Olivares, Alba; Drooge, Barend L. van; Casado, Marta; Prats, Eva; Serra, Montserrat; Ven, Leo T. van der; Kamstra, Jorke H.; Hamers, Timo; Hermsen, Sanne; Grimalt, Joan O.; Piña, Benjamin

    2013-01-01

    Embryo toxicity of particles generated by combustion processes is of special concern for human health. A significant part of these toxic effects is linked to the binding of some pollutants (like polycyclic aromatic hydrocarbons or PAHs) to the Aryl hydrocarbon Receptor (AhR) and the activation of target genes, like the cytochrome P4501A. This activity was analyzed for ambient air and coal-combustion particle extracts in zebrafish embryos (the cyp1aDarT assay) and in two single-cell bioassays: the yeast-based YCM-RYA and the DR-luc (rat cells) assay. Observed AhR ligand activity of samples generally correlated to the predicted toxic effect according to their PAH composition, except for one of the coal combustion samples with an anomalously high activity in the cyp1aDarT assay. This sample induced deformities in zebrafish embryos. We concluded that the combination of morphological and molecular assays may detect embryonic toxic effects that cannot be predicted from chemical analyses or single-cell bioassays. -- Highlights: ► Samples from air particulated matter and coal waste gob showed embryo toxicity in zebrafish. ► PAHs composition of samples does not adequately predict the toxic effects in zebrafish. ► Active coal waste gob samples show maximal AhR-ligand activity and induce deformations in zebrafish embryos. -- Aerosols and coal burning particles showed a strong developmental toxicity in zebrafish, in a degree that cannot be directly predicted from chemical analyses or single-cell bioassays

  19. Cell lineages of the embryo of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Deppe, U; Schierenberg, E; Cole, T; Krieg, C; Schmitt, D; Yoder, B; von Ehrenstein, G

    1978-01-01

    Embryogenesis of the free-living soil nematode Caenorhabditis elegans produces a juvenile having about 550 cells at hatching. We have determined the lineages of 182 cells by tracing the divisions of individual cells in living embryos. An invariant pattern of cleavage divisions of the egg generates a set of stem cells. These stem cells are the founders of six stem cell lineages. Each lineage has its own clock--i.e., an autonomous rhythm of synchronous cell divisions. The rhythms are maintained in spite of extensive cellular rearrangement. The rate and the orientation of the cell divisions of the cell lineages are essentially invariant among individuals. Thus, the destiny of cells seems to depend primarily on their lineage history. The anterior position of the site of origin of the stem cells in the egg relates to the rate of the cell cycle clock, suggesting intracellular preprogramming of the uncleaved egg. We used a technique that allows normal embryogenesis, from the fertilized egg to hatching, outside the parent under a cover glass. Embryogenesis was followed microscopically with Nomarski interference optics and high-resolution video recording.

  20. Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange.

    Science.gov (United States)

    Loi, Pasqualino; Galli, Cesare; Lazzari, Giovanna; Matsukawa, Kazutsugu; Fulka, Josef; Goeritz, Frank; Hildebrandt, Thomas B

    2018-04-13

    Here we report in vitro and term development of sheep embryos after the inner cell mass (ICM) from one set of sheep blastocysts were injected into the trophoblast vesicles of another set. We also observed successful in vitro development of chimeric blastocysts made from sheep trophoblast vesicles injected with bovine ICM. First, we dissected ICMs from 35 sheep blastocysts using a stainless steel microblade and injected them into 29 re-expanded sheep trophoblastic vesicles. Of the 25 successfully micromanipulated trophoblastic vesicles, 15 (51.7%) re-expanded normally and showed proper ICM integration. The seven most well reconstructed embryos were transferred for development to term. Three ewes receiving manipulated blastocysts were pregnant at day 45 (42.8%), and all delivered normal offspring (singletons, two females and one male, average weight: 3.54 ± 0.358 kg). Next, we monitored in vitro development of sheep trophoblasts injected with bovine ICMs. Of 17 injected trophoblastic vesicles, 10 (58.8%) re-expanded after 4 h in culture, and four (40%) exhibited integrated bovine ICM. Our results indicate that ICM/trophoblast exchange is feasible, allowing full term development with satisfactory lambing rate. Therefore, ICM exchange is a promising approach for endangered species conservation.

  1. Canine distemper virus utilizes different receptors to infect chicken embryo fibroblasts and vero cells.

    Science.gov (United States)

    Chen, Jun; Liang, Xiu; Chen, Pei-fu

    2011-04-01

    Inducing animal viruses to adapt to chicken embryos or chicken embryo fibroblasts (CEF) is a common method to develop attenuated live vaccines with full security. Canine distemper virus (CDV) also does this, but the mechanisms and particular receptors remain unclear. Virus overlay protein blot assays were carried out on CEF membrane proteins, which were extracted respectively with a Mem-PER™ kit, a radioimmunoprecipitation assay buffer or a modified co-immunoprecipitation method, and revealed a common 57 kDa positive band that differed from the 42-kDa positive band in Vero cells and also from those receptors reported in lymphocytes and 293 cells, indicating a receptor diversity of CDV and the possibility of the 57-kDa protein acting as a receptor that is involved in adaptive infection of CDV Kunming strain to CEF.

  2. Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography

    Science.gov (United States)

    Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.

    2015-09-01

    Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.

  3. Ultrastructural changes in goat interspecies and intraspecies reconstructed early embryos

    DEFF Research Database (Denmark)

    Tao, Yong; Gheng, Lizi; Zhang, Meiling

    2008-01-01

    and dispered gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere......- and intraspecies reconstructed embryos have a similar pattern of developmental change to that of in vivo-produced embryos for ZP, rough ER, Gi and nucleolus, but differ for mitochondria, LD, vesicles, nucleus and gap junction development. In particular, the interspecies cloned embryos showed more severe...

  4. Metabolism and incorporation of (14C)-Aflatoxin B1 in chicken embryos

    International Nuclear Information System (INIS)

    Miura, Toshiyuki

    1980-01-01

    The metabolism of 14 C-aflatoxin B 1 (Af. B 1 ) in the chick embryo was studied. When inoculated into air cells, the embryos, egg membranes, other parts of the eggs and the expired carbon dioxide during a 1 hour period contained 8.0, 15.0, 76.0 and 1.0% of the total detected radio-activity, respectively. In the case of yolk sac inoculation, the embryos, other parts of the eggs and the expired carbon dioxide during a 1 hour period contained 3.4, 96.4 and 0.2% of the total detected counts, respectively. At equal doses of ( 14 C)-Af. B 1 into the air cell and yolk sac of eggs, the embryos incorporated 14 C in a ratio of 2.5 : 1, which is similar to the ratio of LD 50 values (air cell inoculation = 0.41 mu g/egg; yolk sac inoculation = 0.89 mu g/egg) by the two inoculation routes. The homogenate of embryos inoculated with Af. B 1 was partitioned into chloroform and methanol-water. As the time after inoculation increased, methanol-water-soluble metabolites from Af. B 1 increased and chloroform-soluble ones decreased. Af. M 1 was the principal metabolite among the chloroform-soluble substances. (author)

  5. Influence of Estradiol-17beta on Progesterone and Estrogen Receptor mRNA Expression in Porcine Follicular Granulosa Cells during Short-Term, In Vitro Real-Time Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Sylwia Ciesiółka

    2016-01-01

    Full Text Available Progesterone (P4 and estradiol (E2 play a significant role in mammalian reproduction. Our study demonstrated that separated porcine cumulus cells (CCs and/or granulosa cells (GCs might proliferate in vitro during short-term, real-time primary culture. The GCs were analyzed according to gene expression of the progesterone receptor (nuclear form (pgr, progesterone receptor membrane component 1 (pgrmc1, and estrogen-related receptor beta 3 (esrrb3 in relation to two housekeeping genes: actb and pbgd. GCs were cultivated in medium with the E2. Both pgr/actb and pgr/pbgd revealed higher expression between 24 and 168 h of IVC of prolonged E2 treatment and at 48 h of IVC after acute E2 administration. The pgrmc1/actb and pgrmc1/pbgd displayed increased expression after prolonged E2 treatment between 24 and 120 h of IVC. The highest level of esrrb3/actb at 120 and 144 h, as well as esrrb3/pbgd at 120 h, in untreated controls as compared to the hormone-stimulated group, was observed. We suggest that E2 significantly influences the upregulation of pgr, pgrmc1, and esrrb3 expression in porcine GCs during real-time cell proliferation. Since esrrb3 expression is stimulated by E2 in both an acute and prolonged manner, estradiol may be recognized as a potential estrogen receptor agonist in GCs.

  6. Transcription of ribosomal RNA genes is initiated in the third cell cycle of bovine embryos

    DEFF Research Database (Denmark)

    Jakobsen, Anne Sørig; Avery, Birthe; Dieleman, Steph J.

    2006-01-01

    Transcription from the embryos own ribosomal genes is initiated in most species at the same time as the maternal-embryonic transition. Recently data have indicated that a minor activation may take place during the third embryonic cell cycle in the bovine, one cell cycle before the major activation...

  7. Dioxin exerts anti-estrogenic actions in a novel dioxin-responsive telomerase-immortalized epithelial cell line of the porcine oviduct (TERT-OPEC).

    Science.gov (United States)

    Hombach-Klonisch, Sabine; Pocar, Paola; Kauffold, Johannes; Klonisch, Thomas

    2006-04-01

    Oviduct epithelial cells are important for the nourishment and survival of ovulated oocytes and early embryos, and they respond to the steroid hormones estrogen and progesterone. Endocrine-disrupting polyhalogenated aromatic hydrocarbons (PHAH) are environmental toxins that act in part through the ligand-activated transcription factor arylhydrocarbon receptor (AhR; dioxin receptor), and exposure to PHAH has been shown to decrease fertility. To investigate effects of PHAHs on the oviduct epithelium as a potential target tissue of dioxin-type endocrine disruptors, we have established a novel telomerase-immortalized oviduct porcine epithelial cell line (TERT-OPEC). TERT-OPEC exhibited active telomerase and the immunoreactive epithelial marker cytokeratin but lacked the stromal marker vimentin. TERT-OPEC contained functional estrogen receptor (ER)-alpha and AhR, as determined by the detection of ER-alpha- and AhR-specific target molecules. Treatment of TERT-OPEC with the AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in a significant increase in the production of the cytochrome P-450 microsomal enzyme CYP1A1. Activated AhR caused a downregulation of ER nuclear protein fraction and significantly decreased ER-signaling in TERT-OPEC as determined by ERE-luciferase transient transfection assays. In summary, the TCDD-induced and AhR-mediated anti-estrogenic responses by TERT-OPEC suggest that PHAH affect the predominantly estrogen-dependent differentiation of the oviduct epithelium within the fallopian tube. This action then alters the local endocrine milieu, potentially resulting in a largely unexplored cause of impaired embryonic development and female infertility.

  8. Peroxidized mineral oil increases the oxidant status of culture media and inhibits in vitro porcine embryo development.

    Science.gov (United States)

    Martinez, C A; Nohalez, A; Ceron, J J; Rubio, C P; Roca, J; Cuello, C; Rodriguez-Martinez, H; Martinez, E A; Gil, M A

    2017-11-01

    The use of oils with undetected alterations is a long-recognized problem for in vitro embryo production systems. Since peroxides in oils have been associated with reduced embryo production outcomes, our goals were (1) to evaluate the effects of a batch of mineral oil (MO) that was suspected to be altered on the in vitro production of pig embryos and (2) to determine oil peroxide values throughout culture and the transfer of oxidant agents from oil to culture media. Sunflower oil, which has a completely different chemical composition than MO but a higher oxidative status, and unaltered MO were used as controls. Oocyte maturation, fertilization and embryo development were affected differently depending on the oil overlay used. While the suspected MO was not able to sustain in vitro maturation and fertilization, the oocytes incubated in the presence of sunflower oil were matured and fertilized similarly to those of the unaltered MO group. Moreover, the cleavage rate of presumed zygotes cultured under the suspected MO was severely reduced compared with those cultured under the other oils, and none of the cleaved embryos developed to the blastocyst stage. Although the cleavage rates in the sunflower oil and unaltered MO groups were similar, embryos cultured under sunflower oil also failed to develop to the blastocyst stage. Our results revealed that the suspected MO and sunflower oil had similar levels of peroxides and that these levels were much higher than those of the unaltered MO. The total oxidant status was higher in media incubated under peroxidized oils than in fresh media or media incubated without an oil overlay or under unaltered MO, indicating that oxidant agents were transferred to the incubation media. However, unlike the sunflower oil group, the culture media incubated under the suspected MO had high levels of total oxidant status and low levels of hydrogen peroxide and reactive oxygen species, suggesting the presence of other unknown oxidant agents in

  9. An investigation into the possibility of bluetongue virus transmission by transfer of infected ovine embryos

    Directory of Open Access Journals (Sweden)

    Estelle H. Venter

    2011-02-01

    Full Text Available Bluetongue (BT, a disease that affects mainly sheep, causes economic losses owing to not only its deleterious effects on animals but also its associated impact on the restriction of movement of livestock and livestock germplasm. The causative agent, bluetongue virus (BTV, can occur in the semen of rams and bulls at the time of peak viraemia and be transferred to a developing foetus. The risk of the transmission of BTV by bovine embryos is negligible if the embryos are washed according to the International Embryo Transfer Society (IETS protocol. Two experiments were undertaken to determine whether this holds for ovine embryos that had been exposed to BTV. Firstly, the oestrus cycles of 12 ewes were synchronised and the 59 embryos that were obtained were exposed in vitro to BTV-2 and BTV-4 at a dilution of 1 x 102.88 and 1 x 103.5 respectively. In the second experiment, embryos were recovered from sheep at the peak of viraemia. A total of 96 embryos were collected from BTV-infected sheep 21 days after infection. In both experiments half the embryos were washed and treated with trypsin according to the IETS protocol while the remaining embryos were neither washed nor treated. All were tested for the presence of BTV using cell culture techniques. The virus was detected after three passages in BHK-21 cells only in one wash bath in the first experiment and two unwashed embryos exposed to BTV-4 at a titre of 1 x 103.5. No embryos or uterine flush fluids obtained from viraemic donors used in the second experiment were positive for BTV after the standard washing procedure had been followed. The washing procedure of the IETS protocol can thus clear sheep embryos infected with BTV either in vitro or in vivo.

  10. New data about the suspensor of succulent angiosperms: Ultrastructure and cytochemical study of the embryo-suspensor of Sempervivum arachnoideum L. and Jovibarba sobolifera (Sims) Opiz.

    Science.gov (United States)

    Kozieradzka-Kiszkurno, Małgorzata; Płachno, Bartosz Jan; Bohdanowicz, Jerzy

    2012-07-01

    The development of the suspensor in two species - Sempervivum arachnoideum and Jovibarba sobolifera - was investigated using cytochemical methods, light and electron microscopy. Cytological processes of differentiation in the embryo-suspensor were compared with the development of embryo-proper. The mature differentiated suspensor consists of a large basal cell and three to four chalazal cells. The basal cell produces haustorial branched invading ovular tissues. The walls of the haustorium and the micropylar part of the basal cell form the wall ingrowths typical for a transfer cells. The ingrowths also partially cover the lateral wall and the chalazal wall separating the basal cell from the other embryo cells. The dense cytoplasm filling the basal cell is rich in: numerous polysomes lying free or covering rough endoplasmic reticulum (RER), active dictyosomes, microtubules, bundles of microfilaments, microbodies, mitochondria, plastids and lipid droplets. Cytochemical tests (including proteins, insoluble polysaccharides and lipids are distributed in the suspensor during different stages of embryo development) showed the presence of high amounts of macromolecules in the suspensor cells, particularly during the globular and heart-shaped phases of embryo development. The protein bodies and lipid droplets are the main storage products in the cells of the embryo-proper. The results of Auramine 0 indicate that a cuticular material is present only on the surface walls of the embryo-proper, but is absent from the suspensor cell wall. The ultrastructural features and cytochemical tests indicate that in the two species - S. arachnoideum and J. sobolifera - the embryo-suspensor is mainly involved in the absorption and transport of metabolites from the ovular tissues to the developing embryo-proper.

  11. A chimera embryo assay reveals a decrease in embryonic cellular proliferation induced by sperm from X-irradiated male mice

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Raabe, O.; Overstreet, J.W.

    1989-01-01

    Male mice were divided into three experimental groups and a control group. Mice in the experimental groups received one of three doses of acute X irradiation (1.73, 0.29, and 0.05 Gy) and together with the control unirradiated mice were then mated weekly to unirradiated female mice for a 9-week experimental period. Embryos were recovered from the weekly matings at the four-cell stage and examined by the chimera assay for proliferative disadvantage. Aggregation chimeras were constructed of embryos from female mice mated to irradiated males (experimental embryos) and embryos from females mated to unexposed males (control embryos) and contained either one experimental embryo and one control embryo (heterologous chimera) or two control embryos (control chimera). The control embryo in heterologous chimeras and either embryo in control chimeras were prelabeled with the vital dye fluorescein isothiocyanate (FITC), and the chimeras were cultured for 40 h and viewed under phase-contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution from the FITC-labeled embryo. Experimental and control embryos that were cultured singly were also examined for embryo cell number at the end of the 40-h culture period. In control chimeras, the mean ratio of the unlabeled cells:total chimera cell number (henceforth referred to as ''mean ratio'') was 0.50 with little or no weekly variation over the 9-week experimental period. During Weeks 4-7, the mean ratios of heterologous chimeras differed significantly from the mean ratio of control chimeras with the greatest differences occurring during Week 7 (0.41 for chimeras of 0.05 Gy dose group, 0.40 for chimeras of the 0.29 Gy dose group, and 0.17 for chimeras of the 1.73 Gy dose group)

  12. Depletion of primordial germ cells (PGCs) by X-irradiation to extraembryonic region of chicken embryos and expression of xenotransplanted quail PGCs

    International Nuclear Information System (INIS)

    Atsumi, Y.; Yazawa, S.; Usui, F.; Nakamura, Y.; Yamamoto, Y.; Tagami, T.; Hiramatsu, K.; Kagami, H.; Ono, T.

    2009-01-01

    The generation of germline chimeras by the transfer of primordial germ cells (PGCs) requires incorporation of the PGCs of the donor into the gonadal tissue of the recipient embryo. We investigated the utility of soft x-irradiation with application of a lead (12 x 3 x 0.25 mm, - 0.1 g) shield to the embryo proper for the production of chicken-quail germline chimeras. Chicken embryos shielded during irradiation for 120s (- 7.2 Gy) at stages 13 to 17 showed a hatchability of 35% (106/301), whereas the hatchability of unshielded embryos was 26% (27/105). The relative population of gonadal PGCs at stage 30 for embryos irradiated at stage 13 with or without shielding was 13 and 5%, respectively, of the value for nonirradiated controls. Chicken embryos irradiated at stages 13 or 14 with or without shielding and transfused with quail embryonic blood containing PGCs each exhibited - 130 relative population of donor PGCs in the left gonad at stage 30. Xenotransplanted hatchlings exhibited donor-derived PGCs as detected by Southern hybridization and PCR. Exposure of chicken embryos to - 7.2 Gy of x-radiation at stage 13 with the application of a lead shield to the embryo proper is thus a feasible approach to depletion of endogenous germ cells and the production of chicken-quail germline chimeras

  13. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells.

    Directory of Open Access Journals (Sweden)

    Allyson E Kennedy

    Full Text Available Since electronic cigarette (ECIG introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.

  14. Stem cells, embryos, and the environment: a context for both science and ethics.

    Science.gov (United States)

    Towns, C R; Jones, D G

    2004-08-01

    Debate on the potential and uses of human stem cells tends to be conducted by two constituencies-ethicists and scientists. On many occasions there is little communication between the two, with the result that ethical debate is not informed as well as it might be by scientific insights. The aim of this paper is to highlight those scientific insights that may be of relevance for ethical debate. Environmental factors play a significant role in identifying stem cells and their various subtypes. Research related to the role of the microenvironment has led to emphasis upon "plasticity", which denotes the ability of one type of stem cell to undergo a transition to cells from other lineages. This could increase the value given to adult stem cells, in comparison with embryonic stem cell research. Any such conclusion should be treated with caution, however, since optimism of this order is not borne out by current research. The role of the environment is also important in distinguishing between the terms totipotency and pluripotency. We argue that blastocysts (early embryos) and embryonic stem cells are only totipotent if they can develop within an appropriate environment. In the absence of this, they are merely pluripotent. Hence, blastocysts in the laboratory are potentially totipotent, in contrast to their counterparts within the human body which are actually totipotent. This may have implications for ethical debate, suggesting as it does that arguments based on potential for life may be of limited relevance.

  15. Comparison of commercial and experimental porcine circovirus type 2 (PCV2) vaccines using a triple challenge with PCV2, porcine reproductive and respiratory syndrome virus (PRRSV), and porcine parvovirus (PPV).

    Science.gov (United States)

    Shen, H G; Beach, N M; Huang, Y W; Halbur, P G; Meng, X J; Opriessnig, T

    2010-08-23

    The efficacies of commercial porcine circovirus type 2 (PCV2) vaccines and a live PCV1-2a chimeric vaccine were compared in conventional, PCV2-positive piglets using a PCV2-porcine reproductive and respiratory syndrome virus (PRRSV)-porcine parvovirus (PPV) coinfection challenge model. Seventy-three, 2-week-old pigs were randomized into seven groups including five vaccinated and two control groups. Pigs in the vaccinated groups were vaccinated at 3 weeks (one dose) or at 3 and 6 weeks (two dose) of age. All vaccine regimens tested were effective in reducing naturally occurring PCV2 viremia at 16 weeks of age and after PCV2 challenge, demonstrating the capability of the products to induce a lasting protective immunity despite the presence of PCV2 viremia at the time of vaccination. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Cryopreservation of peach palm zygotic embryos.

    Science.gov (United States)

    Steinmacher, Douglas A; Saldanha, Cleber W; Clement, Charles R; Guerra, Miguel P

    2007-01-01

    Cryopreservation is a safe and cost-effective option for long-term germplasm conservation of non-orthodox seed species, such as peach palm (Bactris gasipaes). The objective of the present study was to establish a cryopreservation protocol for peach palm zygotic embryos based on the encapsulation-dehydration technique. After excision, zygotic embryos were encapsulated with 3 percent sodium alginate plus 2 M glycerol and 0.4 M sucrose, and pre-treated or not with 1 M sucrose during 24 h, followed by air-drying. Fresh weight water contents of beads decreased from 83 percent and 87 percent to 18 percent and 20 percent for pre-treated or non-pretreated beads, respectively, after 4 h of dehydration. Sucrose pre-treatment at 1 M caused lower zygotic embryo germination and plantlet height in contrast to non-treated beads. All the variables were statistically influenced by dehydration time. Optimal conditions for recovery of cryopreserved zygotic embryos include encapsulation and dehydration for 4 h in a forced air cabinet to 20 percent water content, followed by rapid freezing in liquid nitrogen (-196 degree C) and rapid thawing at 45 degree C. In these conditions 29 percent of the zygotic embryos germinated in vitro. However, plantlets obtained from dehydrated zygotic embryos had stunted haustoria and lower heights. Histological analysis showed that haustorium cells were large, vacuolated, with few protein bodies. In contrast, small cells with high nucleus:cytoplasm ratio formed the shoot apical meristem of the embryos, which were the cell types with favorable characteristics for survival after exposure to liquid nitrogen. Plantlets were successfully acclimatized and showed 41+/-9 percent and 88+/-4 percent survival levels after 12 weeks of acclimatization from cryopreserved and non-cryopreserved treatments, respectively.

  17. Developmental features of porcine haemal nodes: a histological ...

    African Journals Online (AJOL)

    The result demonstrated progressive changes in the structure of porcine haemal nodes. The capsule and trabeculae of piglet haemal nodes exhibited dense irregular connective tissues with reticular cells and smooth muscle cells. The cortex was more central while the medulla was peripheral with poorly defined boundaries ...

  18. Role of microRNAs in embryo implantation

    Directory of Open Access Journals (Sweden)

    Jingjie Liang

    2017-11-01

    Full Text Available Abstract Failure of embryo implantation is a major limiting factor in early pregnancy and assisted reproduction. Determinants of implantation include the embryo viability, the endometrial receptivity, and embryo-maternal interactions. Multiple molecules are involved in the regulation of implantation, but their specific regulatory mechanisms remain unclear. MicroRNA (miRNA, functioning as the transcriptional regulator of gene expression, has been widely reported to be involved in embryo implantation. Recent studies reveal that miRNAs not only act inside the cells, but also can be released by cells into the extracellular environment through multiple packaging forms, facilitating intercellular communication and providing indicative information associated with physiological and pathological conditions. The discovery of extracellular miRNAs shed new light on implantation studies. MiRNAs provide new mechanisms for embryo-maternal communication. Moreover, they may serve as non-invasive biomarkers for embryo selection and assessment of endometrial receptivity in assisted reproduction, which improves the accuracy of evaluation while reducing the mechanical damage to the tissue. In this review, we discuss the involvement of miRNAs in embryo implantation from several aspects, focusing on the role of extracellular miRNAs and their potential applications in assisted reproductive technologies (ART to promote fertility efficiency.

  19. Radiosensitive target in the early mouse embryo exposed to very low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Wiley, Lynn M.; Raabe, Otto G.; Khan, Rakhshi; Straume, Tore

    1994-01-01

    We exposed mouse preimplantation embryos in vitro to either tritiated water (HTO) or tritiated thymidine (TdR) to determine whether the radiosensitive target was nuclear or extranuclear for embryonic cell proliferation disadvantage in the mouse embryo chimera assay. 8-cell embryos were incubated in either HTO or TdR for 2 h and paired with non-irradiated control embryos to form chimeras. Chimeras were cultured for an average of 20.2 h to allow for 2-3 cell cycles and then partially dissociated to obtain the number of progeny cells contributed by the two partner embryos for each chimera. These values were expressed as a 'proliferation ratio' (number of cells from the irradiated embryo: total number of cells in the chimera). A ratio significantly less than 0.50 indicates that the experimental embryo expressed an embryonic cell proliferation disadvantage, which is the endpoint of this assay. The activity concentrations of HTO and TdR were adjusted so that both would deliver comparable mean absorbed nuclear doses during the combined initial 2-h irradiation incubation and subsequent 20.2 h chimera incubation periods. Although nuclear doses were comparable under these conditions, the extranuclear dose delivered by the uniformly distributed HTO was about 100 times greater than the extranuclear dose delivered by TdR for each given nuclear dose. Consequently, obtaining mean TdR proliferation ratios≤mean HTO proliferation ratios would be evidence for a nuclear target while obtaining mean HTO proliferation ratios< mean TdR proliferation ratios would be evidence for an extranuclear target. TdR consistently produced lower mean proliferation ratios over a range of doses from 0.14 Gy to 0.43 Gy. Therefore, we conclude that the radiosensitive target for this endpoint is nuclear

  20. Direct effect of curcumin on porcine ovarian cell functions.

    Science.gov (United States)

    Kádasi, Attila; Maruniaková, Nora; Štochmaľová, Aneta; Bauer, Miroslav; Grossmann, Roland; Harrath, Abdel Halim; Kolesárová, Adriana; Sirotkin, Alexander V

    2017-07-01

    Curcuma longa Linn (L.) is a plant widely used in cooking (in curry powder a.o.) and in folk medicine, but its action on reproductive processes and its possible mechanisms of action remain to be investigated. The objective of this study was to examine the direct effects of curcumin, the major Curcuma longa L. molecule, on basic ovarian cell functions such as proliferation, apoptosis, viability and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without curcumin (at doses of 0, 1, 10 and 100μg/ml of medium). Markers of proliferation (accumulation of PCNA) and apoptosis (accumulation of bax) were analyzed by immunocytochemistry. The expression of mRNA for PCNA and bax was detected by RT-PCR. Cell viability was detected by trypan blue exclusion test. Release of steroid hormones (progesterone and testosterone) was measured by enzyme immunoassay (EIA). It was observed that addition of curcumin reduced ovarian cell proliferation (expression of both PCNA and its mRNA), promoted apoptosis (accumulation of both bax and its mRNA), reduced cell viability, and stimulated both progesterone and testosterone release. These observations demonstrate the direct suppressive effect of Curcuma longa L./curcumin on female gonads via multiple mechanisms of action - suppression of ovarian cell proliferation and viability, promotion of their apoptosis (at the level of mRNA transcription and subsequent accumulation of promoters of genes regulating these activities) and release of anti-proliferative and pro-apoptotic progesterone and androgen. The potential anti-gonadal action of curcumin should be taken into account by consumers of Curcuma longa L.-containing products. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterisation of the porcine eyeball as an in-vitro model for dry eye.

    Science.gov (United States)

    Menduni, Francesco; Davies, Leon N; Madrid-Costa, D; Fratini, Antonio; Wolffsohn, James S

    2018-02-01

    To characterise the anatomical parameters of the porcine eye for potentially using it as a laboratory model of dry eye. Anterior chamber depth and angle, corneal curvature, shortest and longest diameter, endothelial cell density, and pachymetry were measured in sixty freshly enucleated porcine eyeballs. Corneal steepest meridian was 7.85±0.32mm, corneal flattest meridian was 8.28±0.32mm, shortest corneal diameter was 12.69±0.58mm, longest corneal diameter was 14.88±0.66mm and central corneal ultrasonic pachymetry was 1009±1μm. Anterior chamber angle was 28.83±4.16°, anterior chamber depth was 1.77±0.27mm, and central corneal thickness measured using OCT was 1248±144μm. Corneal endothelial cell density was 3250±172 cells/mm 2 . Combining different clinical techniques produced a pool of reproducible data on the porcine eye anatomy, which can be used by researchers to assess the viability of using the porcine eye as an in-vitro/ex-vivo model for dry eye. Due to the similar morphology with the human eye, porcine eyeballs may represent a useful and cost effective model to individually study important key factors in the development of dry eye, such as environmental and mechanical stresses. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  2. The first cell-fate decisions in the mouse embryo: destiny is a matter of both chance and choice.

    Science.gov (United States)

    Zernicka-Goetz, Magdalena

    2006-08-01

    Development of the early mouse embryo has always been classified as regulative, meaning that when parts or blastomeres of the embryo are isolated they change their developmental fate and can even reconstruct the whole. However, regulative development does not mean that, in situ, these parts or blastomeres are equivalent; it does not mean that the early mammalian embryo is a ball of identical cells without any bias. Regulative development simply means that whatever bias the regions of the embryo might have they still remain flexible and can respond to experimental interference by changes of fate. This realization -- that regulative development and patterning can co-exist -- has led to a renaissance of interest in the first days of development of the mouse embryo, and several laboratories have provided evidence for some early bias. Now the challenge is to gain some understanding of the molecular basis of this bias.

  3. Functional analysis of lysosomes during mouse preimplantation embryo development.

    Science.gov (United States)

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Ohta, Yuki; Wada, Ayako; Ishida, Yuka; Kito, Seiji; Nishikawa, Tetsu; Minami, Naojiro; Sato, Ken; Kokubo, Toshiaki

    2013-01-01

    Lysosomes are acidic and highly dynamic organelles that are essential for macromolecule degradation and many other cellular functions. However, little is known about lysosomal function during early embryogenesis. Here, we found that the number of lysosomes increased after fertilization. Lysosomes were abundant during mouse preimplantation development until the morula stage, but their numbers decreased slightly in blastocysts. Consistently, the protein expression level of mature cathepsins B and D was high from the one-cell to morula stages but low in the blastocyst stage. One-cell embryos injected with siRNAs targeted to both lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) were developmentally arrested at the two-cell stage. Pharmacological inhibition of lysosomes also caused developmental retardation, resulting in accumulation of lipofuscin. Our findings highlight the functional changes in lysosomes in mouse preimplantation embryos.

  4. Laboratory techniques for human embryos.

    Science.gov (United States)

    Geber, Selmo; Sales, Liana; Sampaio, Marcos A C

    2002-01-01

    This review is concerned with laboratory techniques needed for assisted conception, particularly the handling of gametes and embryos. Such methods are being increasingly refined. Successive stages of fertilization and embryogenesis require especial care, and often involve the use of micromanipulative methods for intracytoplasmic sperm injection (ICSI) or preimplantation genetic diagnosis. Embryologists must take responsibility for gamete collection and preparation, and for deciding on the means of insemination or ICSI. Embryos must be assessed in culture, during the 1-cell, cleaving and morula/blastocyst stages, and classified according to quality. Co-culture methods may be necessary. The best embryos for transfer must be selected and loaded into the transfer catheter. Embryos not transferred must be cryopreserved, which demands the correct application of current methods of media preparation, seeding and the correct speed for cooling and warming. Before too long, methods of detecting abnormal embryos and avoiding their transfer may become widespread.

  5. Effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Choi, V.W.Y.; Yu, K.N.; Li, V.W.T.; Cheng, S.H.

    2008-01-01

    Full text: Ionizing radiation such as X-ray and alpha particles can damage cellular macromolecules, which can lead to DNA single- and double-strand breaks. In the present work, we studied the effects of alpha particles on dechorionated zebrafish embryos. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 μm were prepared from commercially available PADC films (with thickness of 100 μm) by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 1.25 hours post fertilization (hpf) with various absorbed dose. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed on the embryos at different time stages after irradiation. Marked apoptosis was detected only in embryos at earlier time stages. The results showed that DNA double-strand break during zebrafish embryogenesis can be induced by alpha-particle irradiation, which suggests that zebrafish is a potential model for assessing the effects of alpha-particle radiation

  6. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation.

    Science.gov (United States)

    Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago

    2014-08-01

    The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Embryo biopsy, whole genome amplification and semiconductor sequencing. A rapid (cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (pcost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development

    Directory of Open Access Journals (Sweden)

    Yawei Gao

    2017-12-01

    Full Text Available Pre-implantation embryo development is an intricate and precisely regulated process orchestrated by maternally inherited proteins and newly synthesized proteins following zygotic genome activation. Although genomic and transcriptomic studies have enriched our understanding of the genetic programs underlying this process, the protein expression landscape remains unexplored. Using quantitative mass spectrometry, we identified nearly 5,000 proteins from 8,000 mouse embryos of each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst. We found that protein expression in zygotes, morulas, and blastocysts is distinct from 2- to 8-cell embryos. Analysis of protein phosphorylation identified critical kinases and signal transduction pathways. We highlight key factors and their important roles in embryo development. Combined analysis of transcriptomic and proteomic data reveals coordinated control of RNA degradation, transcription, and translation and identifies previously undefined exon-junction-derived peptides. Our study provides an invaluable resource for further mechanistic studies and suggests core factors regulating pre-implantation embryo development.

  8. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    Directory of Open Access Journals (Sweden)

    Miguel A. Ibeas

    2017-12-01

    Full Text Available Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds.

  9. Cep70 and Cep131 contribute to ciliogenesis in zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Carl Matthias

    2009-03-01

    Full Text Available Abstract Background The centrosome is the cell's microtubule organising centre, an organelle with important roles in cell division, migration and polarity. However, cells can divide and flies can, for a large part of development, develop without them. Many centrosome proteins have been identified but the roles of most are still poorly understood. The centrioles of the centrosome are similar to the basal bodies of cilia, hair-like extensions of many cells that have important roles in cell signalling and development. In a number of human diseases, such Bardet-Biedl syndrome, centrosome/cilium proteins are mutated, leading to polycystic kidney disease, situs inversus, and neurological problems, amongst other symptoms. Results We describe zebrafish (Danio rerio embryos depleted for two uncharacterised, centrosome proteins, Cep70 and Cep131. The phenotype of these embryos resembles that of zebrafish mutants for intraflagellar transport proteins (IFTs, with kidney and ear development affected and left-right asymmetry randomised. These organs and processes are those affected in Bardet-Biedl syndrome and other similar diseases. Like these diseases, the root cause of the phenotype lies, in fact, in dysfunctional cilia, which are shortened but not eliminated in several tissues in the morphants. Centrosomes and basal bodies, on the other hand, are present. Both Cep70 and Cep131 possess a putative HDAC (histone deacetylase interacting domain. However, we could not detect in yeast two-hybrid assays any interaction with the deacetylase that controls cilium length, HDAC6, or any of the IFTs that we tested. Conclusion Cep70 and Cep131 contribute to ciliogenesis in many tissues in the zebrafish embryo: cilia are made in cep70 and cep131 morphant zebrafish embryos but are shortened. We propose that the role of these centrosomal/basal body proteins is in making the cilium and that they are involved in determination of the length of the axoneme.

  10. A comparison of anterior-posterior development in the porcine versus the chicken embryo, using goosecoid expression as a marker

    NARCIS (Netherlands)

    Pavert, van de S.A.; Schipper, H.; Wit, de A.A.C.; Soede, N.M.; Hurk, van den R.; Taverne, M.A.M.; Boerjan, M.L.; Stroband, H.W.J.

    2001-01-01

    During early embryonic development, pig and chicken embryos share striking morphological similarities. In the present study, the timing and location of expression of mRNA for goosecoid (gsc), a gene classically expressed in the nodal region of developing embryos, was examined and compared in

  11. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  12. Functional verification of a porcine myostatin propeptide mutant.

    Science.gov (United States)

    Ma, Dezun; Jiang, Shengwang; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Xiao, Gaojun; Yang, Jinzeng; Cui, Wentao

    2015-10-01

    Myostatin is a member of TGF-β superfamily that acts as a key negative regulator in development and growth of embryonic and postnatal muscles. In this study, the inhibitory activities of recombinant porcine myostatin propeptide and its mutated form (at the cleavage site of metalloproteinases of BMP-1/TLD family) against murine myostatin was evaluated in vivo by intraperitoneal injection into mice. Results showed that both wild type and mutated form of porcine propeptide significantly inhibited myostatin activity in vivo. The average body weight of mice receiving wild type propeptide or its mutated form increased by 12.5 % and 24.14%, respectively, compared to mice injected with PBS, implying that the in vivo efficacy of porcine propeptide mutant is greater than its wild type propeptide. Transgenic mice expressing porcine myostatin propeptide mutant were generated to further verify the results obtained from mice injected with recombinant porcine propeptide mutant. Compared with wild type (non-transgenic) mice, relative weight of gastrocnemius, rectusfemoris, and tibialis anterior increased by 22.14 %, 34.13 %, 25.37%, respectively, in transgenic male mice, and by 19.90 %, 42.47 %, 45.61%, respectively, in transgenic female mice. Our data also demonstrated that the mechanism by which muscle growth enhancement is achieved by these propeptides is due to an increase in fiber sizes, not by an increase in number of fiber cells.

  13. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7.

    Science.gov (United States)

    Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria

    2016-07-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Paracrine effects of oocyte secreted factors and stem cell factor on porcine granulosa and theca cells in vitro

    Directory of Open Access Journals (Sweden)

    Webb Bob

    2003-08-01

    Full Text Available Abstract Oocyte control of granulosa and theca cell function may be mediated by several growth factors via a local feedback loop(s between these cell types. This study examined both the role of oocyte-secreted factors on granulosa and thecal cells, cultured independently and in co-culture, and the effect of stem cell factor (SCF; a granulosa cell derived peptide that appears to have multiple roles in follicle development. Granulosa and theca cells were isolated from 2–6 mm healthy follicles of mature porcine ovaries and cultured under serum-free conditions, supplemented with: 100 ng/ml LR3 IGF-1, 10 ng/ml insulin, 100 ng/ml testosterone, 0–10 ng/ml SCF, 1 ng/ml FSH (granulosa, 0.01 ng/ml LH (theca or 1 ng/ml FSH and 0.01 ng/ml LH (co-culture and with/without oocyte conditioned medium (OCM or 5 oocytes. Cells were cultured in 96 well plates for 144 h, after which viable cell numbers were determined. Medium was replaced every 48 h and spent medium analysed for steroids. Oocyte secreted factors were shown to stimulate both granulosa cell proliferation (P

  15. Neoplastic transformation of hamster embryo cells irradiated in utero and assayed in vitro

    International Nuclear Information System (INIS)

    Borek, C.; Pain, C.; Mason, H.

    1977-01-01

    It is stated that induction of neoplastic transformation in vitro by x-rays and neutrons has been reported, and the authors had previously found that transformation by x-rays could be detected at doses as low as 1 R and the rate of transformation increased with dose, reaching a peak of 1% between 150 and 300 R. This frequency of neoplastic transformation in vitro is much higher than the frequency of radiation induced tumors observed after exposing animals to similar doses of radiation. Studies are here reported showing that malignant transformed cells can be obtained from embryos irradiated in utero and assayed in vitro, and that the frequency of transformation is at least tenfold lower than when the irradiations are performed in vitro, and thus closer to the incidence in animals. Hamster embryo cells were used for the studies. Questions that arise are as follows: does the host mediate in modulating transformation by radiation; is there a repair of transforming events before they can be expressed; and how significant is the state of cells during irradiation in determining the rate of transformation. It is known from in vitro studies that cell replication is required for fixation of the transformation. With the in vitro technique cells are seeded as single cells with ample opportunity to divide. In addition they are not in contact with one another, and constitute a mixture of cell types from many tissues. In utero the situation is quite different; the embryonic cells are irradiated as tissues where there is cell to cell contact in tissue-specific arrangements, and where the rate of cell replication varies with the tissue. It remains to be seen which of these factors, if any, is responsible for the lowered yield of transformed cells characteristic of in utero as opposed to in vitro irradiation. (U.K.)

  16. Trophectoderm DNA fingerprinting by quantitative real-time PCR successfully distinguishes sibling human embryos.

    Science.gov (United States)

    Scott, Richard T; Su, Jing; Tao, Xin; Forman, Eric J; Hong, Kathleen H; Taylor, Deanne; Treff, Nathan R

    2014-11-01

    To validate a novel and more practical system for trophectoderm DNA fingerprinting which reliably distinguishes sibling embryos from each other. In this prospective and blinded study two-cell and 5-cell samples from commercially available sibling cell lines and excess DNA from trophectoderm biopsies of sibling human blastocysts were evaluated for accurate assignment of relationship using qPCR-based allelic discrimination from 40 single nucleotide polymorphisms (SNPs) with low allele frequency variation and high heterozygosity. Cell samples with self relationships averaged 95.1 ± 5.9 % similarity. Sibling relationships averaged 57.2 ± 5.9 % similarity for all 40 SNPs, and 40.8 ± 8.2 % similarity for the 25 informative SNPs. Assignment of relationships was accomplished with 100 % accuracy for cell lines and embryos. These data demonstrate the first trophectoderm qPCR-based DNA fingerprinting technology capable of unequivocal discrimination of sibling human embryos. This methodology will empower research and development of new markers of, and interventions that influence embryonic reproductive potential.

  17. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre...... embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 µM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI...

  18. Treatment of Donor Cells and Reconstructed Embryos with a Combination of Trichostatin-A and 5-aza-2'-Deoxycytidine Improves the Developmental Competence and Quality of Buffalo Embryos Produced by Handmade Cloning and Alters Their Epigenetic Status and Gene Expression.

    Science.gov (United States)

    Saini, Monika; Selokar, Naresh L; Agrawal, Himanshu; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham S; Palta, Prabhat

    2017-06-01

    The application of cloning technology on a large scale is limited by very low offspring rate primarily due to aberrant or incomplete epigenetic reprogramming. Trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2'-deoxycytidine (5-aza-dC), an inhibitor of DNA methyltransferases, are widely used for altering the epigenetic status of cloned embryos. We optimized the doses of these epigenetic modifiers for production of buffalo embryos by handmade cloning and examined whether combined treatment with these epigenetic modifiers offered any advantage over treatment with the individual epigenetic modifier. Irrespective of whether donor cells or reconstructed embryos or both were treated with 50 nM TSA +7.5 nM 5-aza-dC, (1) the blastocyst rate was significantly higher (71.6 ± 3.5, 68.3 ± 2.6, and 71.8 ± 2.4, respectively, vs. 43.1 ± 3.4 for controls, p cells or reconstructed embryos or both with the combination of TSA +5-aza-dC. Therefore, there is no advantage in treating both donor cells and reconstructed embryos when the combination of TSA and 5-aza-dC is used.

  19. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering

    Science.gov (United States)

    Zilic, Leyla; Garner, Philippa E; Yu, Tong; Roman, Sabiniano; Haycock, John W; Wilshaw, Stacy-Paul

    2015-01-01

    Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons. PMID:26200940

  20. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages.

    Science.gov (United States)

    Gao, Jiye; Scheenstra, Maaike R; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P

    2018-06-01

    Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM 3 CSK 4 stimulation. Human monocyte-derived macrophages were used as control. Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Developmental and dysmorphogenic effects of glufosinate ammonium on mouse embryos in culture.

    Science.gov (United States)

    Watanabe, T; Iwase, T

    1996-01-01

    The effects of glufosinate ammonium on embryonic development in mice were examined using whole embryo and micromass cultures of midbrain and limb bud cells. In day 8 embryos cultured for 48 hr, glufosinate caused significant overall embryonic growth retardation and increased embryolethality to 37.5% at 10 micrograms/ml (5.0 x 10(-5) M). All embryos in the treated groups exhibited specific morphological defects including hypoplasia of the prosencephalon (forebrain) (100%) and visceral arches (100%). In day 10 embryos cultured for 24 hr, glufosinate significantly reduced the crown-rump length and the number of somite pairs, and produced a high incidence of morphological defects (84.6%) at 10 micrograms/ml. These embryos were characterized by blister in the lateral head (100%), hypoplasia of prosencephalon (57.1%), and cleft lips (42.9%) at 20 micrograms/ml (10.0 x 10(-5) M). Histological examination of the treated embryos showed numerous cell death (pyknotic debris) present throughout the neuroepithelium in the brain vesicle and neural tube, but did not involve the underlying mesenchyme. In micromass culture, glufosinate inhibited the differentiation of midbrain cells in day 12 embryos with 50% inhibition occurring at 0.55 microgram/ml (2.8 x 10(-6) M). The ratios of 50% inhibition concentration for cell proliferation to cell differentiation in limb bud cells were 0.76 and 1.52 in day 11 and 12 embryos, respectively. These findings indicate that glufosinate ammonium is embryotoxic in vitro. In addition to causing growth retardation, glufosinate specifically affected the neuroepithelium of the brain vesicle and neural tube, leading to neuroepithelial cell death.

  2. Porcine blood mononuclear cell cytokine responses to PAMP molecules: comparison of mRNA and protein production

    DEFF Research Database (Denmark)

    Sørensen, Nanna Skall; Skovgaard, Kerstin; Heegaard, Peter M. H.

    2011-01-01

    Pathogen-associated molecular patterns (PAMPs) are conserved molecules of microorganisms inducing innate immune cells to secrete distinct patterns of cytokines. In veterinary species, due to a lack of specific antibodies, cytokines are often monitored as expressed mRNA only. This study investigated...... the induction of IFN-α, IL-12 p40, IL-1β, TNF-α, IL-6 and IL-10 by PAMP-molecules [CpG oligonucleotide D19 (CpG), peptidoglycan (PGN), lipopolysaccharide (LPS), Pam3Cys and poly-U] in porcine blood mononuclear cells (BMC) within a 24h period. As expected, cytokine responses were PAMP-specific, CpG inducing IFN...

  3. Mouse one-cell embryos undergoing a radiation-induced G2 arrest may re-enter S-phase in the absence of cytokinesis

    International Nuclear Information System (INIS)

    Jacquet, P.; Buset, J.; Vankerkom, J.; Baatout, S.; De Saint-Georges, L.; Schoonjans, W.; Desaintes, C.

    2002-01-01

    PCC (premature chromosome condensation) can be used for visualizing and scoring damage induced by radiation in the chromatin of cells undergoing a G1 or G2 arrest. A method involving the fusion of irradiated single embryonic cells with single MI oocytes was used to induce PCC in mouse zygotes of the BALB/c strain, which suffer a drastic G2 arrest after X-irradiation (dose used 2.5 Gy). Other G2-arrested embryos were exposed in vitro to the phosphatase inhibitor calyculin A. Both methods furnished excellent chromosome preparations of the G2-arrested embryos. The mean number of chromosome fragments did not change significantly during G2 arrest, suggesting that zygotes of this strain are unable to repair DNA damage leading to such aberrations. Forty to fifty percent of the irradiated embryos were unable to cleave after G2 arrest and remained blocked at the one-cell stage for a few days before dying. PCC preparations obtained from such embryos suggested that about 30% of them had undergone a late mitosis not followed by cytokinesis and had entered a new DNA synthesis. These results are discussed in the light of recent observations in irradiated human cells deficient in the p53/14-3-3σ pathway. (author)

  4. Live cell imaging of actin dynamics in dexamethasone-treated porcine trabecular meshwork cells.

    Science.gov (United States)

    Fujimoto, Tomokazu; Inoue, Toshihiro; Inoue-Mochita, Miyuki; Tanihara, Hidenobu

    2016-04-01

    The regulation of the actin cytoskeleton in trabecular meshwork (TM) cells is important for controlling outflow of the aqueous humor. In some reports, dexamethasone (DEX) increased the aqueous humor outflow resistance and induced unusual actin structures, such as cross-linked actin networks (CLAN), in TM cells. However, the functions and dynamics of CLAN in TM cells are not completely known, partly because actin stress fibers have been observed only in fixed cells. We conducted live-cell imaging of the actin dynamics in TM cells with or without DEX treatment. An actin-green fluorescent protein (GFP) fusion construct with a modified insect virus was transfected into porcine TM cells. Time-lapse imaging of live TM cells treated with 25 μM Y-27632 and 100 nM DEX was performed using an inverted fluorescence microscope. Fluorescent images were recorded every 15 s for 30 min after Y-27632 treatment or every 30 min for 72 h after DEX treatment. The GFP-actin was expressed in 22.7 ± 10.9% of the transfected TM cells. In live TM cells, many actin stress fibers were observed before the Y-27632 treatment. Y-27632 changed the cell shape and decreased stress fibers in a time-dependent manner. In fixed cells, CLAN-like structures were seen in 26.5 ± 1.7% of the actin-GFP expressed PTM cells treated with DEX for 72 h. In live imaging, there was 28% CLAN-like structure formation at 72 h after DEX treatment, and the lifetime of CLAN-like structures increased after DEX treatment. The DEX-treated cells with CLAN-like structures showed less migration than DEX-treated cells without CLAN-like structures. Furthermore, the control cells (without DEX treatment) with CLAN-like structures also showed less migration than the control cells without CLAN-like structures. These results suggested that CLAN-like structure formation was correlated with cell migration in TM cells. Live cell imaging of the actin cytoskeleton provides valuable information on the actin dynamics in TM

  5. Characterization and Evaluation of Neuronal Trans-Differentiation with Electrophysiological Properties of Mesenchymal Stem Cells Isolated from Porcine Endometrium

    Directory of Open Access Journals (Sweden)

    Raghavendra Baregundi Subbarao

    2015-05-01

    Full Text Available Endometrial stromal cells (EMSCs obtained from porcine uterus (n = 6 were positive for mesenchymal stem cell markers (CD29, CD44 and CD90, and negative for epithelial marker CD9 and hematopoietic markers CD34, CD45 analyzed by flow cytometry. Further the cells were positive for expression of mesenchymal markers, CD105, CD140b, and CD144 by PCR. Pluripotent markers OCT4, SOX2, and NANOG were positively expressed in EMSCs analyzed by Western blotting and PCR. Further, differentiation into adipocytes and osteocytes was confirmed by cytochemical staining and lineage specific gene expression by quantitative realtime-PCR. Adipocyte (FABP, LPL, AP2 and osteocyte specific genes (ON, BG, RUNX2 in differentiated EMSCs showed significant (p < 0.05 increase in expression compared to undifferentiated control cells. Neurogenic transdifferentiation of EMSCs exhibited distinctive dendritic morphology with axon projections and neuronal specific genes, NFM, NGF, MBP, NES, B3T and MAP2 and proteins, B3T, NFM, NGF, and TRKA were positively expressed in neuronal differentiated cells. Functional analysis of neuronal differentiated EMSCs displayed voltage-dependence and kinetics for transient outward K+ currents (Ito, at holding potential of −80 mV, Na+ currents and during current clamp, neuronal differentiated EMSCs was more negative than that of control EMSCs. Porcine EMSCs is a suitable model for studying molecular mechanism of transdifferentiation, assessment of electrophysiological properties and their efficiency during in vivo transplantation.

  6. Derivation and characterisation of hESC lines from supernumerary embryos, experience from Odense, Denmark

    DEFF Research Database (Denmark)

    Harkness, Linda; Rasmussen, Iben Anne; Erb, Karin

    2010-01-01

    The derivation and characterisation of human embryonic stem cells provides a source of pluripotent stem cells with potential for clinical applications. Utilising locally sourced embryos from two IVF clinics, we derived and characterised five new cell lines for use in a non-clinical setting. Analy...

  7. Correction of β-thalassemia mutant by base editor in human embryos

    Directory of Open Access Journals (Sweden)

    Puping Liang

    2017-09-01

    Full Text Available Abstract β-Thalassemia is a global health issue, caused by mutations in the HBB gene. Among these mutations, HBB −28 (A>G mutations is one of the three most common mutations in China and Southeast Asia patients with β-thalassemia. Correcting this mutation in human embryos may prevent the disease being passed onto future generations and cure anemia. Here we report the first study using base editor (BE system to correct disease mutant in human embryos. Firstly, we produced a 293T cell line with an exogenous HBB −28 (A>G mutant fragment for gRNAs and targeting efficiency evaluation. Then we collected primary skin fibroblast cells from a β-thalassemia patient with HBB −28 (A>G homozygous mutation. Data showed that base editor could precisely correct HBB −28 (A>G mutation in the patient’s primary cells. To model homozygous mutation disease embryos, we constructed nuclear transfer embryos by fusing the lymphocyte or skin fibroblast cells with enucleated in vitro matured (IVM oocytes. Notably, the gene correction efficiency was over 23.0% in these embryos by base editor. Although these embryos were still mosaic, the percentage of repaired blastomeres was over 20.0%. In addition, we found that base editor variants, with narrowed deamination window, could promote G-to-A conversion at HBB −28 site precisely in human embryos. Collectively, this study demonstrated the feasibility of curing genetic disease in human somatic cells and embryos by base editor system.

  8. Effect of localized hypoxia on Drosophila embryo development.

    Directory of Open Access Journals (Sweden)

    Zhinan Wang

    Full Text Available Environmental stress, such as oxygen deprivation, affects various cellular activities and developmental processes. In this study, we directly investigated Drosophila embryo development in vivo while cultured on a microfluidic device, which imposed an oxygen gradient on the developing embryos. The designed microfluidic device enabled both temporal and spatial control of the local oxygen gradient applied to the live embryos. Time-lapse live cell imaging was used to monitor the morphology and cellular migration patterns as embryos were placed in various geometries relative to the oxygen gradient. Results show that pole cell movement and tail retraction during Drosophila embryogenesis are highly sensitive to oxygen concentrations. Through modeling, we also estimated the oxygen permeability across the Drosophila embryonic layers for the first time using parameters measured on our oxygen control device.

  9. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them.

    Science.gov (United States)

    Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat

    2015-01-01

    Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.

  10. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them.

    Directory of Open Access Journals (Sweden)

    Sushil Kumar Mohapatra

    Full Text Available Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT has had a limited applicability due to very low (>1% live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF and Hand-made cloning (TE-HMC, and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.

  11. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them

    Science.gov (United States)

    Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat

    2015-01-01

    Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF. PMID:26053554

  12. Preparation and Characterization of an Antibody Antagonist That Targets the Porcine Growth Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Huanzhong Cui

    2016-10-01

    Full Text Available A series of antagonists specifically targeting growth hormone receptors (GHR in different species, such as humans, rats, bovines, and mice, have been designed; however, there are currently no antagonists that target the porcine growth hormone (GH. Therefore, in this study, we developed and characterized a porcine GHR (pGHR antibody antagonist (denoted by AN98 via the hybridoma technique. The results from enzyme-linked immunosorbent assay, fluorescence activated cell sorter, indirect immunoinfluscent assay, and competitive receptor binding analysis showed that AN98 could specifically recognize pGHR, and further experiments indicated that AN98 could effectively inhibit pGH-induced signalling in CHO-pGHR cells and porcine hepatocytes. In addition, AN98 also inhibited GH-induced insulin-like growth factor-1 (IGF-1 secretion in porcine hepatocytes. In summary, these findings indicated that AN98, as a pGHR-specific antagonist, has potential applications in pGH-pGHR-related research on domestic pigs.

  13. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    International Nuclear Information System (INIS)

    Liu, Qinghao; Qin, Yixian; Zhou, Lei; Kou, Qiuwen; Guo, Xin; Ge, Xinna; Yang, Hanchun; Hu, Hongbo

    2012-01-01

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/β-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome–lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  14. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghao; Qin, Yixian; Zhou, Lei; Kou, Qiuwen; Guo, Xin; Ge, Xinna [Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing (China); Yang, Hanchun, E-mail: yanghanchun1@cau.edu.cn [Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing (China); Hu, Hongbo, E-mail: hongbo@cau.edu.cn [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing (China)

    2012-08-01

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/{beta}-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome-lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  15. Optimal doses of EGF and GDNF act as biological response modifiers to improve porcine oocyte maturation and quality

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Zandi, Nahid Karimi; Rasmussen, Mikkel Aabech

    2017-01-01

    It is well documented that both epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) are critical for porcine oocyte maturation, however, little information is known about their mechanism of action in vitro. To gain insight into the mechanisms of action of the opti......It is well documented that both epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) are critical for porcine oocyte maturation, however, little information is known about their mechanism of action in vitro. To gain insight into the mechanisms of action...... of the optimum doses of EGF and GDNF on porcine oocyte maturation, porcine cumulus-oocyte complexes (COCs) were matured in defined porcine oocyte medium supplemented with EGF, GDNF or a combination of both at varying concentrations (0-100 ng/ml) for 44 h. Nuclear and cytoplasmic maturation were determined...

  16. Pertussis toxin-catalyzed ADP-ribosylation of a G protein in mouse oocytes, eggs, and preimplantation embryos: Developmental changes and possible functional roles

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.; Schultz, R.M. (Univ. of Pennsylvania, Philadelphia (USA))

    1990-06-01

    G proteins, which in many somatic cells serve as mediators of signal transduction, were identified in preimplantation mouse embryos by their capacity to undergo pertussis toxin-catalyzed ADP-ribosylation. Two pertussis toxin (PT) substrates with Mr = 38,000 and 39,000 (alpha 38 and alpha 39) are present in approximately equal amounts. Relative to the amount in freshly isolated germinal vesicle (GV)-intact oocytes, the amount of PT-catalyzed ADP-ribosylation of alpha 38-39 falls during oocyte maturation, rises between the one- and two-cell stages, falls by the eight-cell and morula stages, and increases again by the blastocyst stage. The decrease in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs during oocyte maturation, however, does not require germinal vesicle breakdown (GVBD), since inhibiting GVBD with 3-isobutyl-1-methyl xanthine (IBMX) does not prevent the decrease in the extent of PT-catalyzed ADP-ribosylation. A biologically active phorbol diester (12-O-tetradecanoyl phorbol 13-acetate), but not an inactive one (4 alpha-phorbol 12,13-didecanoate, 4 alpha-PDD), totally inhibits the increase in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs between the one- and two-cell stage; TPA inhibits cleavage, but not transcriptional activation, which occurs in the two-cell embryo. In contrast, cytochalasin D, genistein, or aphidicolin, each of which inhibits cleavage of one-cell embryos, or alpha-amanitin or H8, each of which inhibits transcriptional activation but not cleavage of one-cell embryos, have little or inhibitory effects on the increase in PT-catalyzed ADP-ribosylation of alpha 38-39. Results of immunoblotting experiments using an antibody that is highly specific for alpha il-3 reveal the presence of a cross-reactive species of Mr = 38,000 (alpha 38) in the GV-intact oocyte, metaphase II-arrested egg, and one-, two-cell embryos.

  17. Can Chlamydia abortus be transmitted by embryo transfer in goats?

    Science.gov (United States)

    Oseikria, M; Pellerin, J L; Rodolakis, A; Vorimore, F; Laroucau, K; Bruyas, J F; Roux, C; Michaud, S; Larrat, M; Fieni, F

    2016-10-01

    The objectives of this study were to determine (i) whether Chlamydia abortus would adhere to or penetrate the intact zona pellucida (ZP-intact) of early in vivo-derived caprine embryos, after in vitro infection; and (ii) the efficacy of the International Embryo Transfer Society (IETS) washing protocol for bovine embryos. Fifty-two ZP-intact embryos (8-16 cells), obtained from 14 donors were used in this experiment. The embryos were randomly divided into 12 batches. Nine batches (ZP-intact) of five embryos were incubated in a medium containing 4 × 10(7)Chlamydia/mL of AB7 strain. After incubation for 18 hours at 37 °C in an atmosphere of 5% CO2, the embryos were washed in batches in 10 successive baths of a phosphate buffer saline and 5% fetal calf serum solution in accordance with IETS guidelines. In parallel, three batches of ZP-intact embryos were used as controls by being subjected to similar procedures but without exposure to C. abortus. The 10 wash baths were collected separately and centrifuged for 1 hour at 13,000 × g. The washed embryos and the pellets of the 10 centrifuged wash baths were frozen at -20 °C before examination for evidence of C. abortus using polymerase chain reaction. C. abortus DNA was found in all of the infected batches of ZP-intact embryos (9/9) after 10 successive washes. It was also detected in the 10th wash fluid for seven batches of embryos, whereas for the two other batches, the last positive wash bath was the eighth and the ninth, respectively. In contrast, none of the embryos or their washing fluids in the control batches were DNA positive. These results report that C. abortus adheres to and/or penetrates the ZP of in vivo caprine embryos after in vitro infection, and that the standard washing protocol recommended by the IETS for bovine embryos, failed to remove it. The persistence of these bacteria after washing makes the embryo a potential means of transmission of the bacterium during embryo transfer from

  18. Embryo sac formation and early embryo development in Agave tequilana (Asparagaceae).

    Science.gov (United States)

    González-Gutiérrez, Alejandra G; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín

    2014-01-01

    Agave tequilana is an angiosperm species that belongs to the family Asparagaceae (formerly Agavaceae). Even though there is information regarding to some aspects related to the megagametogenesis of A. tequilana, this is the first report describing the complete process of megasporogenesis, megagametogenesis, the early embryo and endosperm development process in detail. The objective of this work was to study and characterize all the above processes and the distinctive morphological changes of the micropylar and chalazal extremes after fertilization in this species. The agave plant material for the present study was collected from commercial plantations in the state of Jalisco, Mexico. Ovules and immature seeds, previously fixed in FAA and kept in ethanol 70%, were stained based on a tissue clarification technique by using a Mayer's-Hematoxylin solution. The tissue clarification technique was successfully used for the characterization of the megasporogenesis, megagametogenesis, mature embryo sac formation, the early embryo and endosperm development processes by studying intact cells. The embryo sac of A. tequilana was confirmed to be of the monosporic Polygonum-type and an helobial endosperm formation. Also, the time-lapse of the developmental processes studied was recorded.

  19. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification.

    Science.gov (United States)

    Eguiara, Arrate; Holgado, Olaia; Beloqui, Izaskun; Abalde, Leire; Sanchez, Yolanda; Callol, Carles; Martin, Angel G

    2011-11-01

    The cancer stem cell is defined by its capacity to self-renew, the potential to differentiate into all cells of the tumor and the ability to proliferate and drive the expansion of the tumor. Thus, targeting these cells may provide novel anti-cancer treatment strategies. Breast cancer stem cells have been isolated according to surface marker expression, ability to efflux fluorescent dyes, increased activity of aldehyde dehydrogenase or the capacity to form spheres in non-adherent culture conditions. In order to test novel drugs directed towards modulating self-renewal of cancer stem cells, rapid, easy and inexpensive assays must be developed. Using 2 days-post-fertilization (dpf) zebrafish embryos as transplant recipients, we show that cells grown in mammospheres from breast carcinoma cell lines migrate to the tail of the embryo and form masses with a significantly higher frequency than parental monolayer populations. When stem-like self-renewal was targeted in the parental population by the use of the dietary supplement curcumin, cell migration and mass formation were reduced, indicating that these effects were associated with stem-like cell content. This is a proof of principle report that proposes a rapid and inexpensive assay to target in vivo cancer stem-like cells, which may be used to unravel basic cancer stem cell biology and for drug screening.

  20. Correlation of two-dimensional echocardiography and pathologic findings in porcine valve dysfunction.

    Science.gov (United States)

    Forman, M B; Phelan, B K; Robertson, R M; Virmani, R

    1985-02-01

    Two-dimensional echocardiographic findings in porcine valve dysfunction were compared with pathologic findings in 10 patients (12 valves). Three specific echocardiographic findings were identified in patients with regurgitant lesions: prolapse, fracture and flail leaflets. Prolapse was associated pathologically with thinning of the leaflets, longitudinal tears close to the ring margin and acid mucopolysaccharide accumulation. Valve fracture was seen with and without prolapse and was accompanied pathologically by small pinpoint perforations or tears of the leaflet. A flail leaflet was seen with a linear tear of the free margin and was associated with calcific deposits. Mild degrees of fracture seen pathologically were missed on the echocardiographic study in five patients. Thickening or calcification, when present in moderate or severe amounts, was correctly identified by echocardiography. When all abnormal features were considered collectively, two-dimensional echocardiography correctly identified at least one of them in all patients. Therefore, two-dimensional echocardiography may prove useful in assessing the source of valvular regurgitation in patients with bioprosthetic valves.

  1. Endometrial signals improve embryo outcome: functional role of vascular endothelial growth factor isoforms on embryo development and implantation in mice.

    Science.gov (United States)

    Binder, N K; Evans, J; Gardner, D K; Salamonsen, L A; Hannan, N J

    2014-10-10

    Does vascular endothelial growth factor (VEGF) have important roles during early embryo development and implantation? VEGF plays key roles during mouse preimplantation embryo development, with beneficial effects on time to cavitation, blastocyst cell number and outgrowth, as well as implantation rate and fetal limb development. Embryo implantation requires synchronized dialog between maternal cells and those of the conceptus. Following ovulation, secretions from endometrial glands increase and accumulate in the uterine lumen. These secretions contain important mediators that support the conceptus during the peri-implantation phase. Previously, we demonstrated a significant reduction of VEGFA in the uterine cavity of women with unexplained infertility. Functional studies demonstrated that VEGF significantly enhanced endometrial epithelial cell adhesive properties and embryo outgrowth. Human endometrial lavages (n = 6) were obtained from women of proven fertility. Four-week old Swiss mice were superovulated and mated with Swiss males to obtain embryos for treatment with VEGF in vitro. Preimplantation embryo development was assessed prior to embryo transfer (n = 19-30/treatment group/output). Recipient F1 female mice (8-12 weeks of age) were mated with vasectomized males to induce pseudopregnancy and embryos were transferred. On Day 14.5 of pregnancy, uterine horns were collected for analysis of implantation rates as well as placental and fetal development (n = 14-19/treatment). Lavage fluid was assessed by western immunoblot analysis to determine the VEGF isoforms present. Mouse embryos were treated with either recombinant human (rh)VEGF, or VEGF isoforms 121 and 165. Preimplantation embryo development was quantified using time-lapse microscopy. Blastocysts were (i) stained for cell number, (ii) transferred to wells coated with fibronectin to examine trophoblast outgrowth or (iii) transferred to pseudo pregnant recipients to analyze implantation rates, placental and

  2. Deleterious effects of tributyltin on porcine vascular stem cells physiology.

    Science.gov (United States)

    Bernardini, Chiara; Zannoni, Augusta; Bertocchi, Martina; Bianchi, Francesca; Salaroli, Roberta; Botelho, Giuliana; Bacci, Maria Laura; Ventrella, Vittoria; Forni, Monica

    2016-01-01

    The vascular functional and structural integrity is essential for the maintenance of the whole organism and it has been demonstrated that different types of vascular progenitor cells resident in the vessel wall play an important role in this process. The purpose of the present research was to observe the effect of tributyltin (TBT), a risk factor for vascular disorders, on porcine Aortic Vascular Precursor Cells (pAVPCs) in term of cytotoxicity, gene expression profile, functionality and differentiation potential. We have demonstrated that pAVPCs morphology deeply changed following TBT treatment. After 48h a cytotoxic effect has been detected and Annexin binding assay demonstrated that TBT induced apoptosis. The transcriptional profile of characteristic pericyte markers has been altered: TBT 10nM substantially induced alpha-SMA, while, TBT 500nM determined a significant reduction of all pericyte markers. IL-6 protein detected in the medium of pAVPCs treated with TBT at both doses studied and with a dose response. TBT has interfered with normal pAVPC functionality preventing their ability to support a capillary-like network. In addition TBT has determined an increase of pAVPC adipogenic differentiation. In conclusion in the present paper we have demonstrated that TBT alters the vascular stem cells in terms of structure, functionality and differentiating capability, therefore effects of TBT in blood should be deeply explored to understand the potential vascular risk associated with the alteration of vascular stem cell physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Soybean roots retain the seed urease isozyme synthesized during embryo development

    International Nuclear Information System (INIS)

    Torisky, R.S.; Polacco, J.C.

    1990-01-01

    Roots of young soybean (Glycine max [L.] Merr.) plants (up to 25 days old) contain two distinct urease isozymes, which are separable by hydroxyapatite chromatography. These two urease species (URE1 and URE2) differ in: (a) electrophoretic mobility in native gels, (b) pH dependence, and (c) recognition by a monoclonal antibody specific for the seed (embryo-specific) urease. By these parameters root URE1 urease is similar to the abundant embryo-specific urease isozyme, while root URE2 resembles the ubiquitous urease which has previously been found in all soybean tissues examined (leaf, embryo, seed coat, and cultured cells). The embryo-specific and ubiquitous urease isozymes are products of the Eu1 and Eu4 structural genes, respectively. Roots of the eu1-sun/eu1-sun genotype, which lacks the embryo-specific urease (i.e. seed urease-null), contain no URE1 urease activity. Roots of eu4/eu4, which lacks ubiquitous urease, lack the URE2 (leaflike) urease activity. From these genetic and biochemical criteria, then, we conclude that URE1 and URE2 are the embryo-specific and ubiquitous ureases, respectively. Adventitious roots generated from cuttings of any urease genotype lack URE1 activity. In seedling roots the seedlike (URE1) activity declines during development. Roots of 3-week-old plants contain 5% of the total URE1 activity of the radicle of 4-day-old seedlings, which, in turn, has approximately the same urease activity level as the dormant embryonic axis. The embryo-specific urease incorporates label from [ 35 S]methionine during embryo development but not during germination, indicating that there is no de novo synthesis of the embryo-specific (URE1) urease in the germinating root

  4. T cell precursor migration towards beta 2-microglobulin is involved in thymus colonization of chicken embryos

    DEFF Research Database (Denmark)

    Dunon, D; Kaufman, J; Salomonsen, J

    1990-01-01

    beta 2-microglobulin (beta 2m) attracts hemopoietic precursors from chicken bone marrow cells in vitro. The cell population responding to beta 2m increases during the second period of thymus colonization, which takes place at days 12-14 of incubation. The precursors from 13.5 day old embryos were...... isolated after migration towards beta 2m in vitro and shown to be able to colonize a 13 day old thymus in ovo, where they subsequently acquire thymocyte markers. In contrast these beta 2m responsive precursors did not colonize embryonic bursa, i.e. differentiate into B lymphocytes. During chicken...... embryogenesis, peaks of beta 2m transcripts and of free beta 2m synthesis can only be detected in the thymus. The peak of free beta 2m synthesis in the thymus and the increase of beta 2m responding bone marrow cells both occur concomitantly with the second wave of thymus colonization in chicken embryo, facts...

  5. Piglets born from handmade cloning, an innovative cloning method without micromanipulation

    DEFF Research Database (Denmark)

    Du, Y.; Kragh, P.M.; Zhang, Y.

    2007-01-01

    Porcine handmade cloning (HMC), a simplified alternative of micromanipulation based traditional cloning (TC) has been developed in multiple phases during the past years, but the final evidence of its biological value, births of piglets was missing. Here we report the first births of healthy piglets......) of HMC reconstructed embryos developed to blastocysts with an average cell number of 77 ± 3 (n = 26) after 7 days in vitro culture (IVC). According to our knowledge, this is the highest in vitro developmental rate after porcine somatic cell nuclear transfer (SCNT). A total of 416 blastocysts from HMC......, mixed with 150 blastocysts from TC using a cell line from a different breed were transferred surgically to nine synchronized recipients. Out of the four pregnancies (44.4%) two were lost, while two pregnancies went to term and litters of 3 and 10 piglets were delivered by Caesarean section, with live...

  6. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Duch, Mogens; Mygind, Tina

    2006-01-01

    INTRODUCTION: Mesenchymal stem cells (MSCs) provide an excellent source of pluripotent progenitor cells for tissue-engineering applications due to their proliferation capacity and differentiation potential. Genetic modification of MSCs with genes encoding tissue-specific growth factors...... viral and non-viral ex vivo gene delivery systems with respect to gene transfer efficiency, maintenance of transgene expression, and safety issues using primary porcine MSCs as target cells. MATERIALS AND METHODS: MSCs were purified from bone marrow aspirates from the proximal tibiae of four 3-month......-old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno...

  7. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin

    Indian Academy of Sciences (India)

    Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin. Qizhuang Lv Kangkang Guo Tao Wang ... Keywords. Cellular protein; FHC; ORF4 protein; porcine circovirus type 2 (PCV2); yeast two-hybrid ... Journal of Biosciences | News ...

  8. Migration into an in vitro experimental wound: a comparison of porcine aortic endothelial and smooth muscle cells and the effect of culture irradiation

    International Nuclear Information System (INIS)

    Gotlieb, A.I.; Spector, W.

    1981-01-01

    The purpose of this study was to compare the group-cell migration characteristics of endothelial cells (ECs) and smooth muscle cells (SMCs) derived from the same source, the porcine thoracic aorta, as they moved into an experimental in vitro wound. The authors characterized migration by measuring two aspects of the migrating cells: the number of free cells in the wound and the distance of migration of the sheet of cells at the wound edge. The quantitative data showed that ECs migrated into the wound as a sheet of cells, while SMCs migrated as free single cells. In addition, since irradiated cells have been used to study cell migration and since the irradiated cells do undergo some shape changes, the distribution of the cytoskeletal microfilament fibres was compared in migrating irradiated and nonirradiated cells in order to see whether this feature of cell migration was different. Irradiated and nonirradiated migrating ECs showed a strikingly different pattern in the orientation of microfilament bundles when studied by immunofluorescence microscopy with antiserums to myosin and tropomyosin

  9. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.

    Science.gov (United States)

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W

    2015-03-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Evaluation of cell number and DNA content in mouse embryos cultivated with uranium; Evaluacion del numero de celulas y el contenido de DNA en embriones murinos cultivados con uranio

    Energy Technology Data Exchange (ETDEWEB)

    Kundt, Mirian S; Cabrini, Romulo L [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Radiobiologia

    2000-07-01

    The evaluation of the degree of development, the number of cells and the DNA content, were used to evaluate the embryotoxicity of uranium. Embryos at a one cell stage were cultured with uranyl nitrate hexahydrate (UN) at a final concentration of uranium (U) of 26, 52 and 104 {mu}gU/ml. At 24 hs of culture, the embryos at the 2 cell stage, were put in new wells with the same concentrations of U as the previous day, until the end of the period of incubation at 72 hs. At 72 hs of culture, 87% of the original one cell embryos were at morula stage, and in those cultivated with uranium, the percentage decreased significantly to 77; 63.24 and 40.79% respectively for the different U concentrations. Those embryos that exhibited a normal morphology, were selected and fixed on slides. The number of cells per embryo was evaluated in Giemsa stained preparations. The DNA content was evaluated cytophotometrically in Feulgen stained nuclei. The number of cells decreased significantly from 20,3 {+-} 5.6 in the control to 19 {+-} 6; 14 {+-} 3 and 13.9 {+-} 5.6 for the different concentrations. All the embryos evaluated showed one easy recognizable polar body, which was used a haploid indicator (n). The content of DNA was measured in a total of 20 control embryos and 16 embryos cultivated with UN. In control embryos, 92,7% of the nuclei presented a normal ploidy from 2n to 4n, 2,9% nuclei were hypoploid and 4,4% were hyperploid. The percentage of hypoploid nuclei rose in a dose-dependent fashion to 3.45; 44.45 and 50.34% respectively for the embryos cultured at the different U concentrations. The results indicate that U is embryotoxic, that its effects are dose dependent at the concentrations used in this study and that even those embryos that show a normal morphology, can be genetically affected. We show that the model employed is extremely sensitive. It is possible to use the preimplantation embryos, as a model to test the effect of possibly mutagenic agents of the nuclear industry

  11. Protein synthesis in the embryo of Pinus thunbergii seed, 2

    International Nuclear Information System (INIS)

    Yamamoto, Naoaki; Sasaki, Satohiko.

    1977-01-01

    14 C-Amino acid incorporating activity in the absence of exogenous mRNA was found in a cell-free system from embryos of light-germinated Pinus thunbergii seeds, but not in that from dark-imbibed seed embryos. Template activity in the cell-free system from the light-germinated seed embryos was observed in the ribosome fraction, especially the polyribosome fraction, but not in the 100,000 x g supernatant fraction (s100). These facts suggest that the nature of the block in protein synthesis during the imbibition of seeds in the dark is due to the lack or inactivity of mRNA. The s100 from light-germinated seed embryos was found to be less active in amino acid incorporation than that from dark-imbibed seed embryos. (auth.)

  12. Porcine neonatal blood dendritic cells, but not monocytes, are more responsive to TLRs stimulation than their adult counterparts.

    Directory of Open Access Journals (Sweden)

    Gael Auray

    Full Text Available The neonatal immune system is often considered as immature or impaired compared to the adult immune system. This higher susceptibility to infections is partly due to the skewing of the neonatal immune response towards a Th2 response. Activation and maturation of dendritic cells (DCs play an important role in shaping the immune response, therefore, DCs are a target of choice for the development of efficient and protective vaccine formulations able to redirect the neonatal immune response to a protective Th1 response. As pigs are becoming more important for vaccine development studies due to their similarity to the human immune system, we decided to compare the activation and maturation of a subpopulation of porcine DCs in adult and neonatal pigs following stimulation with different TLR ligands, which are promising candidates for adjuvants in vaccine formulations. Porcine blood derived DCs (BDCs were directly isolated from blood and consisted of a mix of conventional and plasmacytoid DCs. Following CpG ODN (TLR9 ligand and imiquimod (TLR7 ligand stimulation, neonatal BDCs showed higher levels of expression of costimulatory molecules and similar (CpG ODN or higher (imiquimod levels of IL-12 compared to adult BDCs. Another interesting feature was that only neonatal BDCs produced IFN-α after TLR7 or TLR9 ligand stimulation. Stimulation with CpG ODN and imiquimod also induced enhanced expression of several chemokines. Moreover, in a mixed leukocyte reaction assay, neonatal BDCs displayed a greater ability to induce lymphoproliferation. These findings suggest that when stimulated via TLR7 or TLR9 porcine DCs display similar if not better response than adult porcine DCs.

  13. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    International Nuclear Information System (INIS)

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-01-01

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent (∼10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT).

  14. Development of space-fertilized eggs and formation of primordial germ cells in the embryos of medaka fish

    Science.gov (United States)

    Ijiri, K.

    In the second International Microgravity Laboratory (IML-2) mission in 1994, four small Japanese killifish (Medaka, Oryzias latipes) made a space travel of 15 days aboard a space shuttle. These four adult Medaka fish successfully mated in space for the first time among vertebrate animals. Moreover, the eggs they laid developed normally, at least in their external appearance, hatching as fry (baby fish) in space. Fish mated and laid eggs every day during the first week. Near the end of the mission most of the eggs had a well-developed body with two pigmented eyes. In total, 43 eggs were laid (detected), out of which 8 fry hatched in space, as truly `space-originated' babies. A further 30 fry hatched within 3 days after landing. This is the normal hatching rate, compared with the ground-based data. Among the 8 space-originated fry, four were killed for histological sections, and germ cells at the gonadal region were counted for each fry. Their numbers were in the range of the germ cells of the normal control fry (ground-kept samples). Thus, as embryos developed normally in their external appearance, inside the embryos the formation of primordial germ cells took place normally in space, and their migration to the genital ridges was not hindered by microgravity. The two of the remaining space-originated fry have grown up and been creating their offspring in the laboratory. This proved that the primordial germ cells formed in space were also normal from a functional point of view. The four space-travelled adult fish re-started mating and laying eggs on the 7th day after landing and continued to do so every day afterward. Fertilization rate and hatchability of these eggs were as high as the eggs laid by the laboratory-kept fish. This fact implies that in gametogenesis of adult fish, there are no specific stages of germ cells extremely susceptible to microgravity.

  15. Effect of embryo density on in vitro developmental characteristics of bovine preimplantative embryos with respect to micro and macroenvironments.

    Science.gov (United States)

    Hoelker, M; Rings, F; Lund, Q; Phatsara, C; Schellander, K; Tesfaye, D

    2010-10-01

    To overcome developmental problems as a consequence of single embryo culture, the Well of the Well (WOW) culture system has been developed. In this study, we aimed to examine the effect of embryo densities with respect to both microenvironment and macroenvironment on developmental rates and embryo quality to get a deeper insight into developmentally important mechanisms. WOW diameter and depth significantly affected developmental rates (p < 0.05). WOWs with diameter of 500 μm reached significantly higher blastocyst rates (32.5 vs 21.1% vs 20.3%) compared to embryos cultured in WOWs of 300 μm diameter or plain cultured controls. Embryos cultured in WOWs with 700 μm depth reached significant higher developmental rates compared with embryos cultured in WOWs of 300 μm depth and control embryos (30.6 vs 22.6% vs 20.3%). Correlation of the embryo per WOW volume with developmental rates was higher (r(2) = 0.92, p = 0.0004) than correlation of WOW diameter or WOW depth with developmental rates. However, the embryo per WOW volume did not affect differential cell counts. An embryo per culture dish volume of 1 : 30 μl was identified to be optimal when the embryo per WOW volume was 1 : 0.27 μl increasing developmental rates up to the level of mass embryo production. Giving the opportunity to track each embryo over the complete culture period while keeping high developmental rates with normal mitotic dynamics, the results of this work will provide benefit for the single culture of embryos in human assisted reproduction, mammalian embryos with high economic interest as well as for scientific purpose. © 2009 Blackwell Verlag GmbH.

  16. Effect of Radiofrequency Radiation Emitted from 2G and 3G Cell Phone on Developing Liver of Chick Embryo - A Comparative Study.

    Science.gov (United States)

    D'Silva, Mary Hydrina; Swer, Rijied Thompson; Anbalagan, J; Rajesh, Bhargavan

    2017-07-01

    The increasing scientific evidence of various health hazards on exposure of Radiofrequency Radiation (RFR) emitted from both the cell phones and base stations have caused significant media attention and public discussion in recent years. The mechanism of interaction of RF fields with developing tissues of children and fetuses may be different from that of adults due to their smaller physical size and variation in tissue electromagnetic properties. The present study may provide an insight into the basic mechanisms by which RF fields interact with developing tissues in an embryo. To evaluate the possible tissue and DNA damage in developing liver of chick embryo following chronic exposure to Ultra-High Frequency/Radiofrequency Radiation (UHF/RFR) emitted from 2G and 3G cell phone. Fertilized chick embryos were incubated in four groups. Group A-experimental group exposed to 2G radiation (60 eggs), Group B- experimental group exposed to 3G radiation (60 eggs), Group C- sham exposed control group (60 eggs) and Group D- control group (48 eggs). On completion of scheduled duration, the embryos were collected and processed for routine histological studies to check structural changes in liver. The nuclear diameter and karyorrhexis changes of hepatocytes were analysed using oculometer and square reticule respectively. The liver procured from one batch of eggs from all the four groups was subjected to alkaline comet assay technique to assess DNA damage. The results were compared using one-way ANOVA test. In our study, the exposure of developing chick embryos to 2G and 3G cell phone radiations caused structural changes in liver in the form of dilated sinusoidal spaces with haemorrhage, increased vacuolations in cytoplasm, increased nuclear diameter and karyorrhexis and significantly increased DNA damage. The chronic exposure of chick embryo liver to RFR emitted from 2G and 3G cell phone resulted in various structural changes and DNA damage. The changes were more pronounced in 3

  17. Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells.

    Science.gov (United States)

    Kanmani, Paulraj; Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Komatsu, Ryoya; Humayun Kober, A K M; Ikeda-Ohtsubo, Wakako; Suda, Yoshihito; Aso, Hisashi; Makino, Seiya; Kano, Hiroshi; Saito, Tadao; Villena, Julio; Kitazawa, Haruki

    2018-01-01

    Previous studies demonstrated that the extracellular polysaccharides (EPSs) produced by Lactobacillus delbrueckii OLL1073R-1 (LDR-1) improve antiviral immunity, especially in the systemic and respiratory compartments. However, it was not studied before whether those EPSs are able to beneficially modulate intestinal antiviral immunity. In addition, LDR-1-host interaction has been evaluated mainly with immune cells while its interaction with intestinal epithelial cells (IECs) was not addressed before. In this work, we investigated the capacity of EPSs from LDR-1 to modulate the response of porcine IECs (PIE cells) to the stimulation with the Toll-like receptor (TLR)-3 agonist poly(I:C) and the role of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effect. We showed that innate immune response triggered by TLR3 activation in porcine IECs was differentially modulated by EPS from LDR-1. EPSs treatment induced an increment in the expression of interferon (IFN)-α and IFN-β in PIE cells after the stimulation with poly(I:C) as well as the expression of the antiviral factors MxA and RNase L. Those effects were related to the reduced expression of A20 in EPS-treated PIE cells. EPS from LDR-1 was also able to reduce the expression of IL-6 and proinflammatory chemokines. Although further in vivo studies are needed, our results suggest that these EPSs or a yogurt fermented with LDR-1 have potential to improve intestinal innate antiviral response and protect against intestinal viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A cutin fluorescence pattern in developing embryos of some angiosperms

    Directory of Open Access Journals (Sweden)

    Ewa Szczuka

    2014-01-01

    Full Text Available A cuticle visualized by auramine O fluorescence appears on the developing embryos of 9 species belonging to Cruciferae, Caryophyllaceae, Plantaginaceae, Linaceae and Papilionaceae. In the investigated species the formation and extent of fluorescing and non-fluorescing embryonic areas follow a similar pattern. At first the cutin fluorescing layer is formed on the apical part of the proembryo without delimited protoderm. This layer extends and at the late globular stage envelops the embryo proper, except for a cell adjoining the suspensor. Fluorescing cutin persists during the heart stage but disappears from the torpedo embryo. During these stages there is no cutine fluorescence on suspensorial cells. Continuous cutin fluorescence appears again on the surface of the whole embryo by the late torpedo stage. Then fluorescence disappears from the radicular part of U-shaped embryos, but persists on the shoot apex, cotyledons and at least on the upper part of hypocotyl. It is assumed that polarization and nutrition of the embryo may be influenced by cuticular changes.

  19. Rat embryo fibroblasts require both the cell-binding and the heparin-binding domains of fibronectin for survival

    DEFF Research Database (Denmark)

    Jeong, J; Han, I; Lim, Y

    2001-01-01

    of the cell-binding domain of FN with integrin is sufficient to rescue rat embryo fibroblasts (REFs) from detachment-induced apoptosis. REFs attached and spread normally after plating on substrates coated with either intact FN or a FN fragment, FN120, that contains the cell-binding domain but lacks the C...

  20. Effects of hydroxyapatite nanostructure on channel surface of porcine acellular dermal matrix scaffold on cell viability and osteogenic differentiation of human periodontal ligament stem cells

    Directory of Open Access Journals (Sweden)

    Ge S

    2013-05-01

    Full Text Available Shaohua Ge,1 Ning Zhao,1 Lu Wang,1 Hong Liu,2 Pishan Yang11Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Periodontology, Shandong University; 2State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, Jinan, People's Republic of ChinaAbstract: A new nanostructured hydroxyapatite-coated porcine acellular dermal matrix (HAp-PADM was fabricated by a biomimetic mineralization method. Human periodontal ligament stem cells were seeded on HAp-PADM and the effects of this scaffold on cell shape, cytoskeleton organization, cell viability, and osteogenic differentiation were examined. Periodontal ligament stem cells cultured on HAp-PADM exhibited different cell shape when compared with those on pure PADM. Moreover, HAp-PADM promoted cell viability and alkaline phosphatase activity significantly. Based on quantitative real-time polymerase chain reaction, the expression of bone-related markers runt-related transcription factor 2 (Runx2, osteopontin (OPN, and osteocalcin (OCN upregulated in the HAp-PADM scaffold. The enhancement of osteogenic differentiation of periodontal ligament stem cells on the HAp-PADM scaffold was proposed based on the research results. The results of this study highlight the micro-nano, two-level, three-dimensional HAp-PADM composite as a promising scaffold for periodontal tissue engineering.Keywords: hydroxyapatite, scaffold, nanostructure, proliferation, differentiation, tissue engineering