Exact phase space functional for two-body systems
Gracia-Bondía, José M
2010-01-01
The determination of the two-body density functional from its one-body density is achieved for Moshinsky's harmonium model, using a phase-space formulation, thereby resolving its phase dilemma. The corresponding sign rules can equivalently be obtained by minimizing the ground-state energy.
Spin Structure of Many-Body Systems with Two-Body Random Interactions
Kaplan, L; Johnson, C W; Kaplan, Lev; Papenbrock, Thomas; Johnson, Calvin W.
2001-01-01
We investigate the spin structure of many-fermion systems with a spin-conserving two-body random interaction. We find a strong dominance of spin-0 ground states and considerable correlations between energies and wave functions of low-lying states with different spin, but no indication of pairing. The spectral densities exhibit spin-dependent shapes and widths, and depend on the relative strengths of the spin-0 and spin-1 couplings in the two-body random matrix. The spin structure of low-lying states can largely be explained analytically.
78 FR 54756 - Extension of Expiration Dates for Two Body System Listings
2013-09-06
... ADMINISTRATION 20 CFR Part 404 RIN 0960-AH60 Extension of Expiration Dates for Two Body System Listings AGENCY: Social Security Administration. ACTION: Final rule. SUMMARY: We are extending the expiration dates of the... claims and continuing disability reviews. DATES: This final rule is effective on September 6, 2013....
Two bodies gravitational system with variable mass and damping-antidamping effect due to star wind
López, G V
2009-01-01
We study two-bodies gravitational problem where the mass of one of the bodies varies and suffers a damping-antidamping effect due to star wind during its motion. A constant of motion, a Lagrangian and a Hamiltonian are given for the radial motion of the system, and the period of the body is studied using the constant of motion of the system. An application to the comet motion is given, using the comet Halley as an example.
Keesman, K.J.
2011-01-01
Summary System Identification Introduction.- Part I: Data-based Identification.- System Response Methods.- Frequency Response Methods.- Correlation Methods.- Part II: Time-invariant Systems Identification.- Static Systems Identification.- Dynamic Systems Identification.- Part III: Time-varying
Regularities of many-body systems interacting by a two-body random ensemble
Energy Technology Data Exchange (ETDEWEB)
Zhao, Y.M. [Department of Physics, Shanghai Jiao-Tong University, Shanghai 200030 (China) and Cyclotron Center, Institute of Physical and Chemical Research - RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198 (Japan) and Department of Physics, Southeast University, Nanjing 210018 (China)]. E-mail: ymzhao@riken.jp; Arima, A. [Science Museum, Japan Science Foundation, 2-1 Kitanomaru-Koen, Chiyodaku, Tokyo 102-0091 (Japan); Yoshinaga, N. [Department of Physics, Saitama University, Saitama 338-0625 (Japan)
2004-10-01
The ground states of all even-even nuclei have angular momentum, I, equal to zero, I=0, and positive parity, {pi}=+. This feature was believed to be a consequence of the attractive short-range interaction between nucleons. However, in the presence of two-body random interactions, the predominance of I{pi}=0+ ground states (0 g.s.) was found to be robust both for bosons and for an even number of fermions. For simple systems, such as d bosons, sp bosons, sd bosons, and a few fermions in single-j shells for small j, there are a few approaches to predict and/or explain spin I ground state (I g.s.) probabilities. An empirical approach to predict I g.s. probabilities is available for general cases, such as fermions in a single-j (j>72) or many-j shells and various boson systems, but a more fundamental understanding of the robustness of 0 g.s. dominance is still out of reach. Further interesting results are also reviewed concerning other robust phenomena of many-body systems in the presence of random two-body interactions, such as the odd-even staggering of binding energies, generic collectivity, the behavior of average energies, correlations, and regularities of many-body systems interacting by a displaced two-body random ensemble.
One dimensional scattering of a two body interacting system by an infinite wall
Moro, A M; Gomez-Camacho, J
2010-01-01
The one-dimensional scattering of a two body interacting system by an infinite wall is studied in a quantum-mechanical framework. This problem contains some of the dynamical features present in the collision of atomic, molecular and nuclear systems. The scattering problem is solved exactly, for the case of a harmonic interaction between the fragments. The exact result is used to assess the validity of two different approximations to the scattering process. The adiabatic approximation, which considers that the relative co-ordinate is frozen during the scattering process, is found to be inadequate for this problem. The uncorrelated scattering approximation, which neglects the correlation between the fragments, gives results in accordance with the exact calculations when the scattering energy is high compared to the oscillator parameter.
Long, W. S.
1977-01-01
Attempts are made to generate acceptable coordinate systems for two-body configurations. The first method to be tried was to use the body-fitted coordinate system technique to obtain the best system. This technique alone did not produce very good results, so another approach was investigated. This new approach involved using a combination of the body fitted coordinate system procedure and a complex variable transformation method that was used successfully in conformal mapping.
Regularities in Many-body Systems Interacting by a Two-body Random Ensemble
Zhao, Y M; Yoshinaga, N
2003-01-01
The even-even nuclei always have zero ground state angular momenta $I$ and positive parities $\\pi$. This feature was believed to be just a consequence of the attractive short-range interactions between nucleons. However, in the presence of two-body random interactions, the predominance of $I^{\\pi}=0^+$ ground states (0 g.s.) was found to be robust both for bosons and for an even number of fermions. For simple systems, such as $d$ bosons, $sp$ bosons, $sd$ bosons, and a few fermions in single-$j$ shells for small $j$, there are a few approaches to predict and/or explain the distribution of angular momentum $I$ ground state probabilities. An empirical recipe to predict the $I$ g.s. probabilities is available for general cases, but a more fundamental understanding of the robustness of 0 g.s. dominance is still out of reach. Other interesting results are also reviewed concerning other robust phenomena of many-body systems in the presence of random interactions, such as odd-even staggering of binding energies, gen...
Nonlocality in many-body quantum systems detected with two-body correlators
Energy Technology Data Exchange (ETDEWEB)
Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)
2015-11-15
Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.
Dunn, M.; Watson, D. K.; Loeser, J. G.
2006-08-01
In this paper, we develop an analytic N-body wave function for identical particles under quantum confinement with a general two-body interaction. A systematic approach to correlation is developed by combining three theoretical methods: dimensional perturbation theory, the FG method of Wilson et. al., and the group theory of the symmetric group. Analytic results are achieved for a completely general interaction potential. Unlike conventional perturbation methods which are applicable only for weakly interacting systems, this analytic approach is applicable to both weakly and strongly interacting systems. This method directly accounts for each two-body interaction, rather than an average interaction so even lowest-order results include beyond-mean-field effects. One major advantage is that N appears as a parameter in the analytical expressions for the energy so results for different N are easy to obtain.
Zhao, Y M; Yoshinaga, N
2002-01-01
In this paper, we discuss the angular momentum distribution in the ground states of many-body systems interacting via a two-body random ensemble. Beginning with a few simple examples, a simple approach to predict P(I)'s, angular momenta I ground state (g.s.) probabilities, of a few solvable cases, such as fermions in a small single-j shell and d boson systems, is given. This method is generalized to predict P(I)'s of more complicated cases, such as even or odd number of fermions in a large single-j shell or a many-j shell, d-boson, sd-boson or sdg-boson systems, etc. By this method we are able to tell which interactions are essential to produce a sizable P(I) in a many-body system. The g.s. probability of maximum angular momentum $I_{max}$ is discussed. An argument on the microscopic foundation of our approach, and certain matrix elements which are useful to understand the observed regularities, are also given or addressed in detail. The low seniority chain of 0 g.s. by using the same set of two-body interact...
A covariant model of the electromagnetic current for the study of two-body scalar systems
Acero, M A; Sandoval, C E; Sanctis, Maurizio De; Sandoval, Carlos E.
2005-01-01
We present a procedure to derive a covariant electromagnetic current operator for a system made up by two scalars constituents. Using different wave functions we fitted their parameters to the experimental data of the pion form factor, obtainig great discrepancy at low momentum transfer. Introducing the Vector Meson Dominance corrective factor, we obtained a better fit to the data.
Many-body Systems Interacting via a Two-body Random Ensemble average energy of each angular momentum
Zhao, Y M; Yoshinaga, N
2002-01-01
In this paper, we discuss the regularities of energy of each angular momentum $I$ averaged over all the states for a fixed angular momentum (denoted as $\\bar{E}_I$'s) in many-body systems interacting via a two-body random ensemble. It is found that $\\bar{E}_I$'s with $I \\sim I_{min}$ (minimum of $I$) or $I_{max}$ have large probabilities (denoted as ${\\cal P}(I)$) to be the lowest, and that ${\\cal P}(I)$ is close to zero elsewhere. A simple argument based on the randomness of the two-particle cfp's is given. A compact trajectory of the energy $\\bar{E}_I$ vs. $I(I+1)$ is found to be robust. Regular fluctuations of the $P(I)$ (the probability of finding $I$ to be the ground state) and ${\\cal P}(I)$ of even fermions in a single-$j$ shell and boson systems are found to be reverse, and argued by the dimension fluctuation of the model space. Other regularities, such as why there are 2 or 3 sizable ${\\cal P}(I)$'s with $I\\sim I_{min}$ and ${\\cal P}(I) \\ll {\\cal P}(I_{max})$'s with $I\\sim I_{max}$, why the coefficien...
Lopez, G V
2012-01-01
We make an observation about Galilean transformation on a 1-D mass variable systems which leads us to the right way to deal with these systems. Then using this observation, we study two-bodies gravitational problem where the mass of one of the bodies varies and suffers a damping-anti damping effect due to star wind during its motion. for this system, a constant of motion, a Lagrangian and a Hamiltonian are given for the radial motion, and the period of the body is studied using the constant of motion of the system. An application to the comet motion is given, using the comet Halley as an example.
Santos, L F; Jacquod, P; Kusnezov, Dimitri; Jacquod, Ph.
2002-01-01
We explore generic ground-state and low-energy statistical properties of many-body bosonic and fermionic one- and two-body random ensembles (TBRE) in the dense limit, and contrast them with Random Matrix Theory (RMT). Weak differences in distribution tails can be attributed to the regularity or chaoticity of the corresponding Hamiltonians rather than the particle statistics. We finally show the universality of the distribution of the angular momentum gap between the lowest energy levels in consecutive J-sectors for the four models considered.
Energy Technology Data Exchange (ETDEWEB)
Trcka, Marija; L.M. Hensena, Jan; Wetter, Michael
2010-06-21
Integrated performance simulation of buildings and heating, ventilation and airconditioning (HVAC) systems can help reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers suffcient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation to integrate different BPS tools. Co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This article analyzes how co-simulation influences consistency, stability and accuracy of the numerical approximation to the solution. Consistency and zero-stability are studied for a general class of the problem, while a detailed consistency and absolute stability analysis is given for a simple two-body problem. Since the accuracy of the numerical approximation to the solution is reduced in co-simulation, the article concludes by discussing ways for how to improve accuracy.
The Work-Energy Relation and Application of Two-Body System%两体问题的功能关系及其应用
Institute of Scientific and Technical Information of China (English)
余嵘华; 肖苏
2011-01-01
两体系统的功能原理与机械能守恒是正确理解和解决某些实际力学问题的基础.文中分析了惯性参照系、质心参照系及相对参照系中两体系统的功能原理与机械能守恒,并结合具体的应用给出结论.%The principle of work-energy and the law of conservation of mechanical energy in two-body system is the base of understanding and solving some practical problems.The paper gives some analysis and useful discussion about theorem of kinetic energy and law of conservation of mechanical energy in two-body system in inertial system or center-of-mass system or relative reference system.At last,this paper gives some samples and some conclusions.
Energy Technology Data Exchange (ETDEWEB)
Sviratcheva, K.D.; Draayer, J.P.; /Louisiana State U. /Iowa State U. /LLNL, Livermore /SLAC
2006-06-27
In the framework of the theory of spectral distributions we perform an overall comparison of three modern realistic interactions, CD-Bonn, CD-Bonn+3terms, and GXPF1 in a broad range of nuclei in the upper fp shell and study their ability to account for the development of isovector pairing correlations and collective rotational motion in many-particle nuclear systems. Our findings reveal a close similarity between CD-Bonn and CD-Bonn+3terms, while both interactions possess features different from the ones of GXPF1. The GXPF1 interaction is used to determine the strength parameter of a quadrupole term that augments an isovector-pairing model interaction with Sp(4) dynamical symmetry, which in turn is shown to yield a reasonable agreement with the experimental low-lying energy spectra of {sup 58}Ni and {sup 58}Cu.
Chiao, Raymond Y
2007-01-01
The 2-body system of a superconducting sphere levitated in the magnetic field generated by a persistent current in a superconducting ring, can possibly convert gravitational waves into electromagnetic waves, and vice versa. Faraday's law of induction implies that the time-varying distance between the sphere and the ring caused by the tidal force of an incident gravitational wave induces time-varying electrical currents, which are the source of an electromagnetic wave at the same frequency as the incident gravitational wave. At sufficiently low temperatures, the internal degrees of freedom of the superconductors are frozen out because of the superconducting energy gap, and only external degrees of freedom, which are coupled to the radiation fields, remain. Hence this wave-conversion process is loss-free and therefore efficient, and by time-reversal symmetry, so is the reverse process. A Hertz-like experiment at microwave frequencies should therefore be practical to perform. This would open up observations of t...
Burgarth, Daniel; Yuasa, Kazuya
2011-01-01
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. Prior knowledge on some elements of the black box helps the system identification...
Dusek, Miloslav; Haderka, Ondrej; Hendrych, Martin; Myska, Robert
1998-01-01
A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and new sequences are ``refuelled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of ...
RECURSIVE SYSTEM IDENTIFICATION
Institute of Scientific and Technical Information of China (English)
Han-Fu Chen
2009-01-01
Most of existing methods in system identification with possible exception of those for linear systems are off-line in nature, and hence are nonrecursive.This paper demonstrates the recent progress in recursive system identification.The recursive identifi-cation algorithms are presented not only for linear systems (multivariate ARMAX systems) but also for nonlinear systems such as the Hammerstein and Wiener systems, and the non-linear ARX systems.The estimates generated by the algorithms are online updated and converge a.s.to the true values as time tends to infinity.
Control Oriented System Identification
1993-08-01
The research goals for this grant were to obtain algorithms for control oriented system identification is to construct dynamical models of systems...and measured information. Algorithms for this type of nonlinear system identification have been given that produce models suitable for gain scheduled
Directory of Open Access Journals (Sweden)
Lorenzo Iorio
2014-09-01
Full Text Available We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector kˆ nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω,Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.
Quantum system identification.
Burgarth, Daniel; Yuasa, Kazuya
2012-02-24
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. We show that controllable closed quantum systems can be estimated up to unitary conjugation. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.
Burgarth, Daniel
2011-01-01
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.
Optimized System Identification
Juang, Jer-Nan; Longman, Richard W.
1999-01-01
In system identification, one usually cares most about finding a model whose outputs are as close as possible to the true system outputs when the same input is applied to both. However, most system identification algorithms do not minimize this output error. Often they minimize model equation error instead, as in typical least-squares fits using a finite-difference model, and it is seen here that this distinction is significant. Here, we develop a set of system identification algorithms that minimize output error for multi-input/multi-output and multi-input/single-output systems. This is done with sequential quadratic programming iterations on the nonlinear least-squares problems, with an eigendecomposition to handle indefinite second partials. This optimization minimizes a nonlinear function of many variables, and hence can converge to local minima. To handle this problem, we start the iterations from the OKID (Observer/Kalman Identification) algorithm result. Not only has OKID proved very effective in practice, it minimizes an output error of an observer which has the property that as the data set gets large, it converges to minimizing the criterion of interest here. Hence, it is a particularly good starting point for the nonlinear iterations here. Examples show that the methods developed here eliminate the bias that is often observed using any system identification methods of either over-estimating or under-estimating the damping of vibration modes in lightly damped structures.
Computer system identification
Lesjak, Borut
2008-01-01
The concept of computer system identity in computer science bears just as much importance as does the identity of an individual in a human society. Nevertheless, the identity of a computer system is incomparably harder to determine, because there is no standard system of identification we could use and, moreover, a computer system during its life-time is quite indefinite, since all of its regular and necessary hardware and software upgrades soon make it almost unrecognizable: after a number o...
Optimal Inputs for System Identification.
1995-09-01
The derivation of the power spectral density of the optimal input for system identification is addressed in this research. Optimality is defined in...identification potential of general System Identification algorithms, a new and efficient System Identification algorithm that employs Iterated Weighted Least
Abed-Meriam, Karim; Qui, Wanzhi; Hua, Yingbo
1997-01-01
Blind system identification (BSI) is a fundamental signal processing technology aimed at retrieving a system's unknown information from its output only. This technology has a wide range of possible applications such as mobile communications, speech reverberation cancellation, and blind image restoration. This paper reviews a number of recently developed concepts and techniques for BSI, which include the concept of blind system identifiability in a deterministic framework, the blind techniques...
Raginsky, M
2003-01-01
We formulate and study, in general terms, the problem of quantum system identification, i.e., the determination (or estimation) of unknown quantum channels through their action on suitably chosen input density operators. We also present a quantitative analysis of the worst-case performance of these schemes.
System for tamper identification
Energy Technology Data Exchange (ETDEWEB)
Bobbitt, III, John Thomas; Weeks, George E.
2017-09-05
A system for tamper identification. A fastener has a tamper identification surface with a unique grain structure that is altered if the fastener is removed or otherwise exposed to sufficient torque. After a period of time such as e.g., shipment and/or storage of the sealed container, a determination of whether tampering has occurred can be undertaken by examining the grain structure to determine if it has changed since the fastener was used to seal the container or secure the device.
Heat Transfer Parametric System Identification
1993-06-01
Transfer Parametric System Identification 6. AUTHOR(S Parker, Gregory K. 7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING ORGANIZATION...distribution is unlimited. Heat Transfer Parametric System Identification by Gregory K. Parker Lieutenant, United States Navy BS., DeVry Institute of...Modeling Concept ........ ........... 3 2. Lumped Parameter Approach ...... ......... 4 3. Parametric System Identification ....... 4 B. BASIC MODELING
Identification for automotive systems
Hjalmarsson, Håkan; Re, Luigi
2012-01-01
Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles.
Improved Palmprint Identification System
Harshala C. Salave; Dr. Sachin D. Pable
2015-01-01
Abstract Generally private information is provided by using passwords or Personal Identification Numbers which is easy to implement but it is very easily stolen or forgotten or hack. In Biometrics for individuals identification uses human physiological which are constant throughout life like palm face DNA iris etc. or behavioral characteristicswhich is not constant in life like voice signature keystroke etc.. But mostly gain more attention to palmprint identification and is becoming more popu...
High-energy two-body photoproduction
Salin, P
1974-01-01
Considers three aspects of two-body photoproduction reactions: vector meson production as a tool to investigate properties of diffractive reactions; the occurrence of a possible J=0 fixed pole in the Compton amplitude; and pseudoscalar meson photoproduction. (73 refs).
Two-Body Relaxation in Cosmological Simulations
Binney, J; Binney, James; Knebe, Alexander
2002-01-01
The importance of two-body relaxation in cosmological simulations is explored with simulations in which there are two species of particles. The cases of mass ratio sqrt(2):1 and 4:1 are investigated. Simulations are run with both a fixed softening length and adaptive softening using the publicly available codes GADGET and MLAPM, respectively. The effects of two-body relaxation are detected in both the density profiles of halos and the mass function of halos. The effects are more pronounced with a fixed softening length, but even in this case they are not so large as to suggest that results obtained with one mass species are significantly affected by two-body relaxation. The simulations that use adaptive softening are slightly less affected by two-body relaxation and produce slightly higher central densities in the largest halos. They run about three times faster than the simulations that use a fixed softening length.
Improved Palmprint Identification System
Directory of Open Access Journals (Sweden)
Harshala C. Salave
2015-03-01
Full Text Available Abstract Generally private information is provided by using passwords or Personal Identification Numbers which is easy to implement but it is very easily stolen or forgotten or hack. In Biometrics for individuals identification uses human physiological which are constant throughout life like palm face DNA iris etc. or behavioral characteristicswhich is not constant in life like voice signature keystroke etc.. But mostly gain more attention to palmprint identification and is becoming more popular technique using for identification and promising alternatives to the traditional password or PIN based authentication techniques. In this paper propose palmprint identification using veins on the palm and fingers. Here use fusion of techniques such as Discrete Wavelet transformDWT Canny Edge Detector Gaussian Filter Principle Component AnalysisPCA.
System Identification with Quantized Observations
Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong
2010-01-01
This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,
Wave Function Structure in Two-Body Random Matrix Ensembles
Kaplan, L; Kaplan, Lev; Papenbrock, Thomas
2000-01-01
We study the structure of eigenstates in two-body interaction random matrix ensembles and find significant deviations from random matrix theory expectations. The deviations are most prominent in the tails of the spectral density and indicate localization of the eigenstates in Fock space. Using ideas related to scar theory we derive an analytical formula that relates fluctuations in wave function intensities to fluctuations of the two-body interaction matrix elements. Numerical results for many-body fermion systems agree well with the theoretical predictions.
System identification. [of space structures
Juang, Jer-Nan
1993-01-01
Major issues in system identification are summarized and recent advances are reviewed. Modal testing and system identification used in control theory are examined, and the mathematical relationships and conversions of the models appropriate to modal testing and those appropriate to modern control design methods are discussed. The importance of obtaining input and output matrices in modal testing is emphasized, and the changes that may be needed in modal testing procedures to meet the needs of the control system designer are addressed. Directions for future research are considered.
Open quantum system identification
Schirmer, Sophie G; Zhou, Weiwei; Gong, Erling; Zhang, Ming
2012-01-01
Engineering quantum systems offers great opportunities both technologically and scientifically for communication, computation, and simulation. The construction and operation of large scale quantum information devices presents a grand challenge and a major issue is the effective control of coherent dynamics. This is often in the presence of decoherence which further complicates the task of determining the behaviour of the system. Here, we show how to determine open system Markovian dynamics of a quantum system with restricted initialisation and partial output state information.
Constrained and regularized system identification
Directory of Open Access Journals (Sweden)
Tor A. Johansen
1998-04-01
Full Text Available Prior knowledge can be introduced into system identification problems in terms of constraints on the parameter space, or regularizing penalty functions in a prediction error criterion. The contribution of this work is mainly an extension of the well known FPE (Final Production Error statistic to the case when the system identification problem is constrained and contains a regularization penalty. The FPECR statistic (Final Production Error with Constraints and Regularization is of potential interest as a criterion for selection of both regularization parameters and structural parameters such as order.
QUASILINEARIZATION, SYSTEM IDENTIFICATION, AND PREDICTION
regime in an effort to improve the quality of the control exerted. A mathematical formulation and computational solution of the problems of system ... identification and the determination of unmeasurable state variables on the basis of observations of a process, two topics of central importance in the
System identification in experimental data
Energy Technology Data Exchange (ETDEWEB)
Hammel, S.; Bo Hammer, P.W. [Nonlinear Dynamics and Wavelets Group, B44, Naval Surface Warfare Center, White Oak, Maryland 20903-5640 (United States)
1996-06-01
A technique to identify the state of a dynamical system is proposed. The technique is based upon an identification of all period-one orbits present in the system. These orbits can then be classified in a way that permits an organization into a hierarchical ordering. The scheme is applied to time-series data gathered from a carefully constructed damped driven pendulum. {copyright} {ital 1996 American Institute of Physics.}
Atlas2bgeneral: Two-body resonance calculator
Gallardo, Tabaré
2016-07-01
For a massless test particle and given a planetary system, Atlas2bgeneral calculates all resonances in a given range of semimajor axes with all the planets taken one by one. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the two-body resonances is available for use with the Fortran77 source code.
MICE Particle Identification System
Bogomilov, M
2010-01-01
The Muon Ionization Cooling Experiment, MICE, at the ISIS accelerator lo- cated at the Rutherford Appleton Laboratory, UK, will be the first experiment to study muon cooling at high precision. Demonstration of muon ionization cooling is an essential step towards the construction of a neutrino factory or a muon collider. Muons are produced by pion decay in a superconducting solenoid and reach MICE with a range of emittances and momenta. The purity of the muon beam is ensured by a system of particle detectors we will briefly describe here.
Structural Aspects of System Identification
Glover, Keith
1973-01-01
The problem of identifying linear dynamical systems is studied by considering structural and deterministic properties of linear systems that have an impact on stochastic identification algorithms. In particular considered is parametrization of linear systems so that there is a unique solution and all systems in appropriate class can be represented. It is assumed that a parametrization of system matrices has been established from a priori knowledge of the system, and the question is considered of when the unknown parameters of this system can be identified from input/output observations. It is assumed that the transfer function can be asymptotically identified, and the conditions are derived for the local, global and partial identifiability of the parametrization. Then it is shown that, with the right formulation, identifiability in the presence of feedback can be treated in the same way. Similarly the identifiability of parametrizations of systems driven by unobserved white noise is considered using the results from the theory of spectral factorization.
System parameter identification information criteria and algorithms
Chen, Badong; Hu, Jinchun; Principe, Jose C
2013-01-01
Recently, criterion functions based on information theoretic measures (entropy, mutual information, information divergence) have attracted attention and become an emerging area of study in signal processing and system identification domain. This book presents a systematic framework for system identification and information processing, investigating system identification from an information theory point of view. The book is divided into six chapters, which cover the information needed to understand the theory and application of system parameter identification. The authors' research pr
In-Flight System Identification
Morelli, Eugene A.
1998-01-01
A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.
System identification of jet engines
Energy Technology Data Exchange (ETDEWEB)
Sugiyama, N.
2000-01-01
System identification plays an important role in advanced control systems for jet engines, in which controls are performed adaptively using data from the actual engine and the identified engine. An identification technique for jet engine using the Constant Gain Extended Kalman Filter (CGEKF) is described. The filter is constructed for a two-spool turbofan engine. The CGEKF filter developed here can recognize parameter change in engine components and estimate unmeasurable variables over whole flight conditions. These capabilities are useful for an advanced Full Authority Digital Electric Control (FADEC). Effects of measurement noise and bias, effects of operating point and unpredicted performance change are discussed. Some experimental results using the actual engine are shown to evaluate the effectiveness of CGEKF filter.
On gravitational interactions between two bodies
Szybka, Sebastian J
2014-01-01
Many physicists, following Einstein, believe that the ultimate aim of theoretical physics is to find a unified theory of all interactions which would not depend on any free dimensionless constant, i.e., a dimensionless constant that is only empirically determinable. We do not know if such a theory exists. Moreover, if it exists, there seems to be no reason for it to be comprehensible for the human mind. On the other hand, as pointed out in Wigner's famous paper, human mathematics is unbelievably successful in natural science. This seeming paradox may be mitigated by assuming that the mathematical structure of physical reality has many `layers'. As time goes by, physicists discover new theories that correspond to the physical reality on the deeper and deeper level. In this essay, I will take a narrow approach and discuss the mathematical structure behind a single physical phenomenon - gravitational interaction between two bodies. The main aim of this essay is to put some recent developments of this topic in a ...
System Identification Tools for Control Structure Interaction
1990-01-01
DT! FILE COPY AL-TR-89-054 AD: 00 Final Report System Identification Tools for O for the period - September 1988 to Control Structure Interaction May...Classification) System Identification Tools for Control Structure Interaction (U) 12. PERSONAL AUTHOR(S) Kosut, Robert L.; Kabuli, Guntekin M. 13a. TYPE OF...identification, dynamics, 22 01 system identification , robustness, dynamic modeling, robust 22 02 control design, control design procedure 19. ABSTRACT
Visualized kinematics code for two-body nuclear reactions
Lee, E. J.; Chae, K. Y.
2016-05-01
The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.
78 FR 58785 - Unique Device Identification System
2013-09-24
... 16, 801, 803, et al. Unique Device Identification System; Final Rule #0;#0;Federal Register / Vol. 78... 0910-AG31 Unique Device Identification System AGENCY: Food and Drug Administration, HHS. ACTION: Final... will substantially reduce existing obstacles to the adequate identification of medical devices used in...
77 FR 69393 - Unique Device Identification System
2012-11-19
... HUMAN SERVICES Food and Drug Administration 21 CFR Part 801 RIN 0910-AG31 Unique Device Identification... unique device identification system as required by recent amendments to the Federal Food, Drug, and..., FDA published a proposed rule to establish a unique device identification system, as required by...
Identification and Modelling of Linear Dynamic Systems
Directory of Open Access Journals (Sweden)
Stanislav Kocur
2006-01-01
Full Text Available System identification and modelling are very important parts of system control theory. System control is only as good as good is created model of system. So this article deals with identification and modelling problems. There are simple classification and evolution of identification methods, and then the modelling problem is described. Rest of paper is devoted to two most known and used models of linear dynamic systems.
Schmutzer, E
2005-01-01
In a previous paper we treated within the framework of our Projective Unified Field Theory (Schmutzer 2004, Schmutzer 2005a) the 2-body system (e.g. earth-moon system) with a rotating central body in a rather abstract manner. Here a concrete model of the transfer of angular momentum from the rotating central body to the orbital motion of the whole 2-body system is presented, where particularly the transfer is caused by the inhomogeneous gravitational force of the moon acting on the oceanic waters of the earth, being modeled by a spherical shell around the solid earth. The theory is numerically tested. Key words: transfer of angular momentum from earth to moon, action of the gravitational force of the moon on the waters of the earth.
Covariant Hamiltonian for the electromagnetic two-body problem
De Luca, Jayme
2005-09-01
We give a Hamiltonian formalism for the delay equations of motion of the electromagnetic two-body problem with arbitrary masses and with either repulsive or attractive interaction. This dynamical system based on action-at-a-distance electrodynamics appeared 100 years ago and it was popularized in the 1940s by the Wheeler and Feynman program to quantize it as a means to overcome the divergencies of perturbative QED. Our finite-dimensional implicit Hamiltonian is closed and involves no series expansions. As an application, the Hamiltonian formalism is used to construct a semiclassical canonical quantization based on the numerical trajectories of the attractive problem.
Mastering system identification in 100 exercises
Schoukens, J; Rolain, Yves
2012-01-01
"This book enables readers to understand system identification and linear system modeling through 100 practical exercises without requiring complex theoretical knowledge. The contents encompass state-of-the-art system identification methods, with both time and frequency domain system identification methods covered, including the pros and cons of each. Each chapter features MATLAB exercises, discussions of the exercises, accompanying MATLAB downloads, and larger projects that serve as potential assignments in this learn-by-doing resource"--
Remote Intelligent Identification System of Structural Damage
Institute of Scientific and Technical Information of China (English)
RAO Wenbi; ZHANG Xiang; Bostrm Henrik
2004-01-01
The focus of this paper is to build the damage identify system, which performs "system identification" to detect the positions and extents of structural damages.The identification of structural damage can be characterized as a nonlinear process which linear prediction models such as linear regression are not suitable.However, neural network techniques may provide an effective tool for system identification.The method of damage identification using the radial basis function neural network (RBFNN) is presented in this paper.Using this method, a simple reinforced concrete structure has been tested both in the absence and presence of noise.The results show that the RBFNN identification technology can be used with related success for the solution of dynamic damage identification problems, even in the presence of a noisy identify data.Furthermore, a remote identification system based on that is set up with Java Technologies.
Model Updating Nonlinear System Identification Toolbox Project
National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...
SYSTEM IDENTIFICATION OF SURFACE SHIP DYNAMICS.
The feasibility of applying a Newtonian system identification technique to a nonlinear three degree of freedom system of equations describing the...steering and maneuvering of a surface ship is investigated. The input to the system identification program is provided by both analog and digital
Nonlinear System Identification and Behavioral Modeling
Huq, Kazi Mohammed Saidul; Kabir, A F M Sultanul
2010-01-01
The problem of determining a mathematical model for an unknown system by observing its input-output data pair is generally referred to as system identification. A behavioral model reproduces the required behavior of the original analyzed system, such as there is a one-to-one correspondence between the behavior of the original system and the simulated system. This paper presents nonlinear system identification and behavioral modeling using a work assignment.
Two-body bound state problem and nonsingular scattering equations
Energy Technology Data Exchange (ETDEWEB)
Bartnik, E.A.; Haberzettl, H.; Sandhas, W.
1986-11-01
We present a new momentum space approach to the two-body problem in partial waves. In contrast to the usual momentum space approaches, we treat the bound state case with the help of an inhomogeneous integral equation which possesses solutions for all (negative) energies. The bound state energies and corresponding wave functions are identified by an additional condition. This procedure straightforwardly leads to a nonsingular formulation of the scattering problem in terms of essentially the same equation and thus unifies the descriptions of both energy regimes. We show that the properties of our momentum-space approach can be understood in terms of the so-called regular solution of the Schroedinger equation in position space. The unified description of the bound state and scattering energy regimes in terms of one single, real, and manifestly nonsingular equation allows us to construct an exact representation of the two-body off-shell T matrix in which all the bound state pole and scattering cut information is contained in one single separable term, the remainder being real, nonsingular, and vanishing half on-shell. Such a representation may be of considerable advantage as input in three-body Faddeev-type integral equations. We demonstrate the applicability of our method by calculating bound state and scattering data for the two-nucleon system with the s-wave Malfliet--Tjon III potential.
Trends and progress in system identification
Eykhoff, Pieter
1981-01-01
Trends and Progress in System Identification is a three-part book that focuses on model considerations, identification methods, and experimental conditions involved in system identification. Organized into 10 chapters, this book begins with a discussion of model method in system identification, citing four examples differing on the nature of the models involved, the nature of the fields, and their goals. Subsequent chapters describe the most important aspects of model theory; the """"classical"""" methods and time series estimation; application of least squares and related techniques for the e
Two-body Dirac equation approach to the deuteron
Energy Technology Data Exchange (ETDEWEB)
Galeao, A.P.; Castilho A, J.A.; Ferreira, P. Leal
1996-06-01
The two-body Dirac (Breit) equation with potentials associated to one-boson-exchanges with cutoff masses is solved for the deuteron and its observables calculated. The 16-component wave-function for the J{sup {pi}} = 1{sup +} state contains four independent radial functions which satisfy a system of four coupled differential equations of firs order. This system is numerically integrated, from infinity towards the origin, by fixing the value of the deuteron binding energy and imposing appropriate boundary conditions at infinity. For the exchange potential of the pion, a mixture of direct plus derivative couplings to the nucleon is considered. We varied the pion-nucleon coupling constant, and the best results of our calculations agree with the lower values recently determined for this constant. The present treatment differs from the more conventional ones in that non-relativistic reductions up to the order c{sup -2} are not used. (author). 20 refs., 1 fig., 2 tabs.
Optimized Experiment Design for Marine Systems Identification
DEFF Research Database (Denmark)
Blanke, M.; Knudsen, Morten
1999-01-01
Simulation of maneuvring and design of motion controls for marine systems require non-linear mathematical models, which often have more than one-hundred parameters. Model identification is hence an extremely difficult task. This paper discusses experiment design for marine systems identification...
CONTROL SYSTEM IDENTIFICATION THROUGH MODEL MODULATION METHODS
identification has been achieved by using model modulation techniques to drive dynamic models into correspondence with operating control systems. The system ... identification then proceeded from examination of the model and the adaptive loop. The model modulation techniques applied to adaptive control
Identification and Damage Detection on Structural Systems
DEFF Research Database (Denmark)
Brincker, Rune; Kirkegaard, Poul Henning; Andersen, Palle
1994-01-01
A short introduction is given to system identification and damage assessment in civil engineering structures. The most commonly used FFT-based techniques for system identification are mentioned, and the Random decrement technique and parametric methods based on ARMA models are introduced. Speed...
Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (II) - Application
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong; PAN Feng
2001-01-01
Simple analytical expressions for one- and two-body matrix elements in the unitary group approach to the configuration interaction problems of many-electron systems are obtained based on the previous results for general Un irreps.
Two-body dissipation effects on synthesis of superheavy elements
Tohyama, M
2015-01-01
To investigate the two-body dissipation effects on the synthesis of superheavy elements, we calculate low-energy collisions of the $N=50$ isotones ($^{82}$Ge, $^{84}$Se, $^{86}$Kr and $^{88}$Sr) on $^{208}$Pb using the time-dependent density-matrix theory (TDDM). TDDM is an extension of the time-dependent Hartree-Fock (TDHF) theory and can determine the time evolution of one-body and two-body density matrices. Thus TDDM describes both one-body and two-body dissipation of collective energies. It is shown that the two-body dissipation may increase fusion cross sections and enhance the synthesis of superheavy elements.
[Deterministic and stochastic identification of neurophysiologic systems].
Piatigorskiĭ, B Ia; Kostiukov, A I; Chinarov, V A; Cherkasskiĭ, V L
1984-01-01
The paper deals with deterministic and stochastic identification methods applied to the concrete neurophysiological systems. The deterministic identification was carried out for the system: efferent fibres-muscle. The obtained transition characteristics demonstrated dynamic nonlinearity of the system. Identification of the neuronal model and the "afferent fibres-synapses-neuron" system in mollusc Planorbis corneus was carried out using the stochastic methods. For these purpose the Wiener method of stochastic identification was expanded for the case of pulse trains as input and output signals. The weight of the nonlinear component in the Wiener model and accuracy of the model prediction were quantitatively estimated. The results obtained proves the possibility of using these identification methods for various neurophysiological systems.
System Identification for Indoor Climate Control
M., A W; H., P W M; Steskens,
2012-01-01
The study focuses on the applicability of system identification to identify building and system dynamics for climate control design. The main problem regarding the simulation of the dynamic response of a building using building simulation software is that (1) the simulation of a large complex building is time consuming, and (2) simulation results often lack information regarding fast dynamic behaviour (in the order of seconds), since most software uses a discrete time step, usually fixed to one hour. The first objective is to study the applicability of system identification to reduce computing time for the simulation of large complex buildings. The second objective is to research the applicability of system identification to identify building dynamics based on discrete time data (one hour) for climate control design. The study illustrates that system identification is applicable for the identification of building dynamics with a frequency that is smaller as the maximum sample frequency as used for identificat...
Stochastic system identification in structural dynamics
Safak, Erdal
1988-01-01
Recently, new identification methods have been developed by using the concept of optimal-recursive filtering and stochastic approximation. These methods, known as stochastic identification, are based on the statistical properties of the signal and noise, and do not require the assumptions of current methods. The criterion for stochastic system identification is that the difference between the recorded output and the output from the identified system (i.e., the residual of the identification) should be equal to white noise. In this paper, first a brief review of the theory is given. Then, an application of the method is presented by using ambient vibration data from a nine-story building.
On The Dynamics and Design of a Two-body Wave Energy Converter
Liang, Changwei; Zuo, Lei
2016-09-01
A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.
Process Identification through Test on Cryogenic System
Pezzetti, M; Chadli, M; Coppier, H
2008-01-01
UNICOS (UNified Industrial Control System) is the CERN object-based control standard for the cryogenics of the LHC and its experiments. It includes a variety of embedded functions, dedicated to the specific cryogenic processes. To enlarge the capabilities of the standard it is proposed to integrate the parametrical identification step in the control system of large scale cryogenic plants. Different methods of parametrical identification have been tested and the results were combined to obtain a better model. The main objective of the work is to find a compromise between an easy-to-use solution and a good level of process identification model. The study focuses on identification protocol for large delayed system, the measurement consistency and correlation between different inputs and outputs. Furthermore the paper describes in details, the results and the tests carried out on parametrical identification investigations with large scale systems.
System identification for robust control design
Energy Technology Data Exchange (ETDEWEB)
Dohner, J.L.
1995-04-01
System identification for the purpose of robust control design involves estimating a nominal model of a physical system and the uncertainty bounds of that nominal model via the use of experimentally measured input/output data. Although many algorithms have been developed to identify nominal models, little effort has been directed towards identifying uncertainty bounds. Therefore, in this document, a discussion of both nominal model identification and bounded output multiplicative uncertainty identification will be presented. This document is divided into several sections. Background information relevant to system identification and control design will be presented. A derivation of eigensystem realization type algorithms will be presented. An algorithm will be developed for calculating the maximum singular value of output multiplicative uncertainty from measured data. An application will be given involving the identification of a complex system with aliased dynamics, feedback control, and exogenous noise disturbances. And, finally, a short discussion of results will be presented.
Orbit Determination with the two-body Integrals. II
Gronchi, Giovanni F; Dimare, Linda
2011-01-01
The first integrals of the Kepler problem are used to compute preliminary orbits starting from two short observed arcs of a celestial body, which may be obtained either by optical or radar observations. We write polynomial equations for this problem, that we can solve using the powerful tools of computational Algebra. An algorithm to decide if the linkage of two short arcs is successful, i.e. if they belong to the same observed body, is proposed and tested numerically. In this paper we continue the research started in [Gronchi, Dimare, Milani, 'Orbit determination with the two-body intergrals', CMDA (2010) 107/3, 299-318], where the angular momentum and the energy integrals were used. A suitable component of the Laplace-Lenz vector in place of the energy turns out to be convenient, in fact the degree of the resulting system is reduced to less than half.
Loschmidt echoes in two-body random matrix ensembles
Pižorn, Iztok; Prosen, Tomaž; Seligman, Thomas H.
2007-07-01
Fidelity decay is studied for quantum many-body systems with a dominant independent particle Hamiltonian resulting, e.g., from a mean field theory with a weak two-body interaction. The diagonal terms of the interaction are included in the unperturbed Hamiltonian, while the off-diagonal terms constitute the perturbation that distorts the echo. We give the linear response solution for this problem in a random matrix framework. While the ensemble average shows no surprising behavior, we find that the typical ensemble member as represented by the median displays a very slow fidelity decay known as “freeze.” Numerical calculations confirm this result and show that the ground state even on average displays the freeze. This may contribute to explanation of the “unreasonable” success of mean field theories.
Micromagnetic simulation of two-body magnetic nanoparticles
Li, Fei; Lu, Jincheng; Yang, Yu; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.
2017-05-01
Field-induced magnetization dynamics was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value on nanometer scale in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The same results were observed when varying the radius of particles. The micromagnetic results are consistent with the previous theoretical prediction where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles could be implemented as a composite information bit.
Dental orthopantomogram biometrics system for human identification.
Singh, Sandeep; Bhargava, Darpan; Deshpande, Ashwini
2013-07-01
Fingerprinting is the most widely accepted method of identification of people. But in cases of disfigured, decomposed, burnt or fragmented bodies, it is of limited value. Teeth and dental restorations on the other hand are extremely resistant to destruction by fire. They retain a number of their original characteristics, which are often unique and hence offer a possibility of rather accurate and legally acceptable identification of such remains. This study was undertaken to evaluate the utility of orthopantomography for human identification and propose a coding system for orthopantomogram (OPG), which can be utilized as an identification tool in forensic sciences.
Modeling and Identification of Multirate Systems
Institute of Scientific and Technical Information of China (English)
Feng DING; Tongwen CHEN
2005-01-01
Multirate systems are abundant in industry; for example, many soft-sensor design problems are related to modeling, parameter identification, or state estimation involving multirate systems. The study of multirate systems goes back to the early 1950's, and has become an active research area in systems and control. This paper briefly surveys the history of development in the area of multirate systems, and introduces some basic concepts and latest results on multirate systems, including a polynomial transformation technique and the lifting technique as tools for handling multirate systems, lifted state space models, parameter identification of dual-rate systems, how to determine fast single-rate models from dual-rate models and directly from dual-rate data, and a hierarchical identification method for general multirate systems. Finally, some further research topics for multirate systems are given.
On System Identification of Wind Turbines
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Perisic, Nevena; Pedersen, B.J.
Recently several methods have been proposed for the system identification of wind turbines which can be considered as a linear time-varying system due to the operating conditions. For the identification of linear wind turbine models, either black-box or grey-box identification can be used....... The operational model analysis (OMA) methodology can provide accurate estimates of the natural frequencies, damping ratios and mode shapes of the systems as long as the measurements have a low noise to signal ratio. However, in order to take information about the wind turbine into account a grey...
Identification of Nonlinear Systems Using Neurofuzzy Networks
Institute of Scientific and Technical Information of China (English)
LI Ying; JIAO Licheng
2001-01-01
This paper presents a compound neu-ral network model, I.e., adaptive neurofuzzy network(ANFN), which can be used for identifying the com-plicated nonlinear system. The proposed ANFN has asimple structure and exploits a hybrid algorithm com-bining supervised learning and unsupervised learning.In addition, ANFN is capable of overcoming the errorof system identification due to the existence of somechanging points and improving the accuracy of identi-fication of the whole system. The effectiveness of themodel and its algorithm are tested on the identifica-tion results of missile attacking area.
On System Identification of Wind Turbines
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Perisic, Nevena; Pedersen, B.J.
. The operational model analysis (OMA) methodology can provide accurate estimates of the natural frequencies, damping ratios and mode shapes of the systems as long as the measurements have a low noise to signal ratio. However, in order to take information about the wind turbine into account a grey......Recently several methods have been proposed for the system identification of wind turbines which can be considered as a linear time-varying system due to the operating conditions. For the identification of linear wind turbine models, either black-box or grey-box identification can be used...
Access control and personal identification systems
Bowers, Dan M
1988-01-01
Access Control and Personal Identification Systems provides an education in the field of access control and personal identification systems, which is essential in selecting the appropriate equipment, dealing intelligently with vendors in purchases of the equipment, and integrating the equipment into a total effective system. Access control devices and systems comprise an important part of almost every security system, but are seldom the sole source of security. In order for the goals of the total system to be met, the other portions of the security system must also be well planned and executed
Inverse Problems for Matrix Exponential in System Identification: System Aliasing
Yue, Zuogong; Thunberg, Johan; Goncalves, Jorge
2016-01-01
This note addresses identification of the $A$-matrix in continuous time linear dynamical systems on state-space form. If this matrix is partially known or known to have a sparse structure, such knowledge can be used to simplify the identification. We begin by introducing some general conditions for solvability of the inverse problems for matrix exponential. Next, we introduce "system aliasing" as an issue in the identification of slow sampled systems. Such aliasing give rise to non-unique mat...
Model Updating Nonlinear System Identification Toolbox Project
National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...
2010 United States Automatic Identification System Database
National Oceanic and Atmospheric Administration, Department of Commerce — The 2010 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...
Advanced 3D Object Identification System Project
National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...
2014 United States Automatic Identification System Database
National Oceanic and Atmospheric Administration, Department of Commerce — The 2014 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...
2009 United States Automatic Identification System Database
National Oceanic and Atmospheric Administration, Department of Commerce — The 2009 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...
2011 United States Automatic Identification System Database
National Oceanic and Atmospheric Administration, Department of Commerce — The 2011 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...
2012 United States Automatic Identification System Database
National Oceanic and Atmospheric Administration, Department of Commerce — The 2012 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...
The Sharma-Parthasarathy stochastic two-body problem
Energy Technology Data Exchange (ETDEWEB)
Cresson, J. [LMAP/Université de Pau, 64013 Pau (France); SYRTE/Observatoire de Paris, 75014 Paris (France); Pierret, F. [SYRTE/Observatoire de Paris, 75014 Paris (France); Puig, B. [IPRA/Université de Pau, 64013 Pau (France)
2015-03-15
We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.
The Sharma-Parthasarathy stochastic two-body problem
Cresson, J.; Pierret, F.; Puig, B.
2015-03-01
We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in ["Dynamics of a stochastically perturbed two-body problem," Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.
Two-body relaxation in modified Newtonian dynamics
Ciotti, L
2004-01-01
A naive extension to MOND of the standard computation of the two-body relaxation time Tb implies that Tb is comparable to the crossing time regardless of the number N of stars in the system. This computation is questionable in view of the non-linearity of MOND's field equation. A non-standard approach to the calculation of Tb is developed that can be extended to MOND whenever discreteness noise generates force fluctuations that are small compared to the mean-field force. It is shown that this approach yields standard Newtonian results for systems in which the mean density profile is either plane-parallel or spherical. In the plane-parallel case we find that in the deep-MOND regime Tbb scales with N as in the Newtonian case, but is shorter by the square of the factor by which MOND enhances the gravitational force over its Newtonian value for the same system. Application of these results to dwarf galaxies and groups and clusters of galaxies reveals that in MOND luminosity segregation should be far advanced in g...
Intelligent Storage System Based on Automatic Identification
Directory of Open Access Journals (Sweden)
Kolarovszki Peter
2014-09-01
Full Text Available This article describes RFID technology in conjunction with warehouse management systems. Article also deals with automatic identification and data capture technologies and each processes, which are used in warehouse management system. It describes processes from entering goods into production to identification of goods and also palletizing, storing, bin transferring and removing goods from warehouse. Article focuses on utilizing AMP middleware in WMS processes in Nowadays, the identification of goods in most warehouses is carried through barcodes. In this article we want to specify, how can be processes described above identified through RFID technology. All results are verified by measurement in our AIDC laboratory, which is located at the University of Žilina, and also in Laboratory of Automatic Identification Goods and Services located in GS1 Slovakia. The results of our research bring the new point of view and indicate the ways using of RFID technology in warehouse management system.
The odontology victim identification skill assessment system.
Zohn, Harry K; Dashkow, Sheila; Aschheim, Kenneth W; Dobrin, Lawrence A; Glazer, Howard S; Kirschbaum, Mitchell; Levitt, Daniel; Feldman, Cecile A
2010-05-01
Mass fatality identification efforts involving forensic odontology can involve hundreds of dental volunteers. A literature review was conducted and forensic odontologists and dental educators consulted to identify lessons learned from past mass fatality identification efforts. As a result, the authors propose a skill assessment system, the Odontology Victim Identification Skill Assessment System (OVID-SAS), which details qualifications required to participate on the Antemortem, Postmortem, Ante/Postmortem Comparison, Field, and Shift Leader/Initial Response Teams. For each qualification, specific skills have been identified along with suggested educational pedagogy and skill assessment methods. Courses and assessments can be developed by dental schools, professional associations, or forensic organizations to teach and test for the skills required for dental volunteers to participate on each team. By implementing a system, such as OVID-SAS, forensic odontologists responsible for organizing and managing a forensic odontology mass fatality identification effort will be able to optimally utilize individuals presenting with proven skills.
Multinucleon Ejection Model for Two Body Current Neutrino Interactions
Energy Technology Data Exchange (ETDEWEB)
Sobczyk, Jan T.; /Fermilab
2012-06-01
A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.
Nuclear Materials Identification System Operational Manual
Energy Technology Data Exchange (ETDEWEB)
Chiang, L.G.
2001-04-10
This report describes the operation and setup of the Nuclear Materials Identification System (NMIS) with a {sup 252}Cf neutron source at the Oak Ridge Y-12 Plant. The components of the system are described with a description of the setup of the system along with an overview of the NMIS measurements for scanning, calibration, and confirmation of inventory items.
LPV Identification of a Heat Distribution System
DEFF Research Database (Denmark)
Trangbæk, K; Bendtsen, Jan Dimon
2010-01-01
This paper deals with incremental system identification of district heating systems to improve control performance. As long as various parameters, e.g. valve settings, are kept fixed, the dynamics of district heating systems can be approximated well by linear models; however, the dynamics change ...
Identification of fractional chaotic system parameters
Energy Technology Data Exchange (ETDEWEB)
Al-Assaf, Yousef E-mail: yassaf@aus.ac.ae; El-Khazali, Reyad E-mail: khazali@ece.ac.ae; Ahmad, Wajdi E-mail: wajdi@sharjah.ac.ae
2004-11-01
In this work, a technique is introduced for parameter identification of fractional order chaotic systems. Features are extracted, from chaotic system outputs obtained for different system parameters, using discrete Fourier transform (DFT), power spectral density (PSD), and wavelets transform (WT). Artificial neural networks (ANN) are then trained on these features to predict the fractional chaotic system parameters. A fractional chaotic oscillator model is used through this work to demonstrate the developed technique. Numerical results show that recurrent Jordan-Elman neural networks with features obtained by the PSD estimate via Welch functions give adequate identification accuracy compared to other techniques.
On Markov parameters in system identification
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.
Gaussian process based recursive system identification
Prüher, Jakub; Šimandl, Miroslav
2014-12-01
This paper is concerned with the problem of recursive system identification using nonparametric Gaussian process model. Non-linear stochastic system in consideration is affine in control and given in the input-output form. The use of recursive Gaussian process algorithm for non-linear system identification is proposed to alleviate the computational burden of full Gaussian process. The problem of an online hyper-parameter estimation is handled using proposed ad-hoc procedure. The approach to system identification using recursive Gaussian process is compared with full Gaussian process in terms of model error and uncertainty as well as computational demands. Using Monte Carlo simulations it is shown, that the use of recursive Gaussian process with an ad-hoc learning procedure offers converging estimates of hyper-parameters and constant computational demands.
System Identification A Frequency Domain Approach
Pintelon, Rik
2012-01-01
System identification is a general term used to describe mathematical tools and algorithms that build dynamical models from measured data. Used for prediction, control, physical interpretation, and the designing of any electrical systems, they are vital in the fields of electrical, mechanical, civil, and chemical engineering. Focusing mainly on frequency domain techniques, System Identification: A Frequency Domain Approach, Second Edition also studies in detail the similarities and differences with the classical time domain approach. It high??lights many of the important steps in the identi
Nonlinear identification of power electronic systems
Chau, KT; Chan, CC
1995-01-01
This paper presents a new approach to modelling power electronic systems using nonlinear system identification. By employing the nonlinear autoregressive moving average with exogenous input (NARMAX) technique, the parametric model of power electronic systems can be derived from the time-domain data. This approach possesses some advantages over available circuit-oriented modelling approaches, such as no small-signal approximation, no circuit idealization and no detailed knowledge of system ope...
Sensitivity analysis of random two-body interactions
Johnson, Calvin W
2010-01-01
The input to the configuration-interaction shell model includes many dozens or hundreds of independent two-body matrix elements. Previous studies have shown that when fitting to experimental low-lying spectra, the greatest sensitivity is to only a few linear combinations of matrix elements. Here we consider interactions drawn from the two-body random ensemble, or TBRE, and find that the low-lying spectra are also most sensitive to only a few linear combinations of two-body matrix elements, in a fashion nearly indistinguishable from an interaction empirically fit to data. We find in particular the spectra for both the random and empirical interactions are sensitive to similar matrix elements, which we analyze using monopole and contact interactions.
System Identification and Simulation of a Triaxial Shaker System,
1996-01-01
methods. Results of the system identification process are discussed. Certain methods are found to produce models that are in good agreement with measured response data from the actual shaker system....implemented in the simulation. The first is a physically-based model derived from a finite element analysis together with a model-updating system ... identification scheme; the second is a parametric model without direct physical significance. The advantages and disadvantages of each model for this
New HVAC control by system identification
Energy Technology Data Exchange (ETDEWEB)
So, A.T.P.; Chan, W.L.; Chow, T.T.; Tse, W.L. [City University of Hong Kong, Kowloon (Hong Kong)
1995-12-01
Modern air-conditioning systems for commercial buildings commonly employ the concept of a ``Central All-Air System`` and the VAV system in particular is widely used in Hong Kong, and other places around the world for energy conservation. In the lengthy wet summer season of Hong Kong centralised air-handling units (AHUs) dehumidify and cool down the appropriate mixture of return air and outdoor fresh air to feed a ducting network to various Variable Air Volume Boxes. A good controller for the AHUs is extremely desirable from both human comfort and energy saving points of view. In this paper, a simulation model for a practical air-handling system is presented. Its behaviour under a conventional system of PID controllers is studied. A new controller based on system identification is developed where input and actuating variables are incorporated into a system identification model which can predict the new system status based on past records and suggest the optimal control actions. Computer simulation has proved that such a system identification based controller is superior to the conventional PID controller from at least the following three aspects: adaptation to system change, response rate and energy conservation. (author)
Bounding approaches to system identification
Norton, John; Piet-Lahanier, Hélène; Walter, Éric
1996-01-01
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
Continuous-Time Bilinear System Identification
Juang, Jer-Nan
2003-01-01
The objective of this paper is to describe a new method for identification of a continuous-time multi-input and multi-output bilinear system. The approach is to make judicious use of the linear-model properties of the bilinear system when subjected to a constant input. Two steps are required in the identification process. The first step is to use a set of pulse responses resulting from a constant input of one sample period to identify the state matrix, the output matrix, and the direct transmission matrix. The second step is to use another set of pulse responses with the same constant input over multiple sample periods to identify the input matrix and the coefficient matrices associated with the coupling terms between the state and the inputs. Numerical examples are given to illustrate the concept and the computational algorithm for the identification method.
Qualitative System Identification from Imperfect Data
Coghill, George M; Srinivasan, Ashwin; 10.1613/jair.2374
2011-01-01
Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best when the structure of the model (i.e., the form of the equations) is known; and the primary concern is one of estimating the values of the parameters in the model. For complex biological systems, the model-structure is rarely known and the modeler has to deal with both model-identification and parameter-estimation. In this paper we are concerned with providing automated assistance to the first of these problems. Specifically, we examine the identification by machine of the structural relationships between experimentally observed variables. These relationship will be expressed in the form of qualitative abstractions of a quantitative model. Such qualitative models may not only provide clues to the precise quantitative ...
Learning theory and system identification; Gakushu riron to system dotei
Energy Technology Data Exchange (ETDEWEB)
Adachi, S. [Utsunomiya Univ. (Japan). Faculty of Engineering
1998-04-10
The relationship between learning theory and system identification theory is described. The learning theory is mainly being studied by neural network community, while the system identification theory is mainly being discussed in the community of control system design and failure detection. The relation between the two theories has been studied. In this paper, the relation is explained by focusing on the following two points: (1) The relationship between learning method such as error reverse propagation method and on-line system identification is discussed from the viewpoint of robust estimation. (2) The relationship between PAC (probably approximately correct) learning which is recently attracting the attention among many learning theories and system identification theories is investigated. 33 refs.
Rotorcraft System Identification (Identification des Systemes de Voilures Tournantes)
1991-10-01
139, 1985. DuVal, R.W., Wang , .C. and Demiroz, M.Y.: A Practtcal Approach to Rotorcraft Systems Padfield, G.D., Thorne, R., Murray-Smith, D...an experimentel verification of the Kalman filter iRA)YOUG, PETER, (AB)PATTOn, ROALD J implementation, sod an experimental evaluation of filter...The estimation of the measurements wlth the RSRA compound helicopter parameter values in this model (the stability and control derivatives) (AA) WANG
Parametric uncertain identification of a robotic system
Angel, L.; Viola, J.; Hernández, C.
2016-07-01
This paper presents the parametric uncertainties identification of a robotic system of one degree of freedom. A MSC-ADAMS / MATLAB co-simulation model was built to simulate the uncertainties that affect the robotic system. For a desired trajectory, a set of dynamic models of the system was identified in presence of variations in the mass, length and friction of the system employing least squares method. Using the input-output linearization technique a linearized model plant was defined. Finally, the maximum multiplicative uncertainty of the system was modelled giving the controller desired design conditions to achieve a robust stability and performance of the closed loop system.
Two-body quantum mechanical problem on spheres
2005-01-01
The quantum mechanical two-body problem with a central interaction on the sphere ${\\bf S}^{n}$ is considered. Using recent results in representation theory an ordinary differential equation for some energy levels is found. For several interactive potentials these energy levels are calculated in explicit form.
Stochastic perturbation of the two-body problem
Jacky, Cresson; Bénédicte, Puig
2014-01-01
We study the impact of a stochastic perturbation on the classical two-body problem in particular concerning the preservation of first integrals and the Hamiltonian structure. Numerical simulations are performed which illustrate the dynamical behavior of the osculating elements as the semi-major axis, the eccentricity and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.
Stochastic perturbation of the two-body problem
Cresson, J.; Pierret, F.; Puig, B.
2013-11-01
We study the impact of a stochastic perturbation on the classical two-body problem in particular concerning the preservation of first integrals and the Hamiltonian structure. Numerical simulations are performed which illustrate the dynamical behavior of the osculating elements as the semi-major axis, the eccentricity and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.
Two-body threshold spectral analysis, the critical case
DEFF Research Database (Denmark)
Skibsted, Erik; Wang, Xue Ping
We study in dimension $d\\geq2$ low-energy spectral and scattering asymptotics for two-body $d$-dimensional Schrödinger operators with a radially symmetric potential falling off like $-\\gamma r^{-2},\\;\\gamma>0$. We consider angular momentum sectors, labelled by $l=0,1,\\dots$, for which $\\gamma...
Ultra-Wideband Radio Frequency Identification Systems
Nekoogar, Faranak
2012-01-01
Ultra-Wideband Radio Frequency Identification Systems describes the essentials of radio frequency identification systems as well as their target markets. The authors provide a study of commercially available RFID systems and characterizes their performance in terms of read range and reliability in the presence of conductive and dielectric materials. The capabilities and limitations of some commercial RFID systems are reported followed by comprehensive discussions of the advantages and challenges of using ultra-wideband technology for tag/reader communications. The book presents practical aspects of UWB RFID system such as: pulse generation, remote powering, tag and reader antenna design, as well as special applications of UWB RFIDs in a simple and easy-to-understand language.
Authentication Without Identification using Anonymous Credential System
Damodaram, A
2009-01-01
Privacy and security are often intertwined. For example, identity theft is rampant because we have become accustomed to authentication by identification. To obtain some service, we provide enough information about our identity for an unscrupulous person to steal it (for example, we give our credit card number to Amazon.com). One of the consequences is that many people avoid e-commerce entirely due to privacy and security concerns. The solution is to perform authentication without identification. In fact, all on-line actions should be as anonymous as possible, for this is the only way to guarantee security for the overall system. A credential system is a system in which users can obtain credentials from organizations and demonstrate possession of these credentials. Such a system is anonymous when transactions carried out by the same user cannot be linked. An anonymous credential system is of significant practical relevance because it is the best means of providing privacy for users.
Smart system for gesture identification
Pérez Obiols, Eduard
2014-01-01
A new interface system for control and input of data for automotive applications will be developed. The technology will be based on capacitive sensors. This thesis project is centered on developing and integrating a contactless system based on automatic recognition of gestures to allow interaction between car driver/passenger and some selected car functions in the automotive environment. Este proyecto se centra en el desarrollo y la integración de un sistema contactless (sin contacto) b...
Cost Optimal System Identification Experiment Design
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning
the experiment design are not based on obtained experimental data. Instead the decisions are based on the expected experimental data assumed to be obtained from the measurements, estimated based on prior information and engineering judgement. The design method provides a system identification experiment design...
Information, Consistent Estimation and Dynamic System Identification.
1976-11-01
the chesis . The rest of Chapter 4 4 is believed to be of theoretical interest and also of practical value, I which is demonstrated in sections 6.1...in the mean of the identification procedures at a certain rate. The condition in (6.3) also involves the system’s coefficients and thus, the selected
Improved system identification with Renormalization Group.
Wang, Qing-Guo; Yu, Chao; Zhang, Yong
2014-09-01
This paper proposes an improved system identification method with Renormalization Group. Renormalization Group is applied to a fine data set to obtain a coarse data set. The least squares algorithm is performed on the coarse data set. The theoretical analysis under certain conditions shows that the parameter estimation error could be reduced. The proposed method is illustrated with examples.
System Identification in a MIC perspective
Directory of Open Access Journals (Sweden)
Lennart Ljung
1994-07-01
Full Text Available The paper describes some sibjective aspects on some current research topics in system identification. A 'classical' standpoint is taken regarding complexity models. The need for specific tools for 'semi-physical-modeling' is also pointed out, and a discussion on different disturbance models is also included.
DIRC, the Particle Identification System for BABAR
Schwiening, J; Aleksan, Roy; Aston, D; Benkebil, M; Bernard, D; Bonneaud, G R; Brochard, F; Brown, D N; Bourgeois, P; Chauveau, J; Cohen-Tanugi, J; Convery, M; De Domenico, G; de Lesquen, A; Emery, S; Ferrag, S; Gaidot, A; Geld, T L; Hamel de Monchenault, G; Hast, C; Höcker, A; Kadel, R W; Kadyk, J A; Lacker, H M; London, G W; Lu, A; Lutz, A M; Lynch, G; Mancinelli, G; Martínez-Vidal, F; Mayer, N; Meadows, B T; Müller, D; Plaszczynski, S; Pripstein, M; Ratcliff, B N; Roos, L; Roussot, E; Schune, M H; Shelkov, V; Sokoloff, M D; Spanier, S M; Stark, J; Telnov, A V; Thiebaux, C; Vasileiadis, G; Vasseur, G; Vavra, J; Verderi, M; Wenzel, W A; Wilson, R J; Wormser, G; Yéche, C; Yellin, S; Zito, M; Schwiening, Jochen
2001-01-01
The DIRC, a novel type of Cherenkov ring imaging device, is the primary hadronic particle identification system for the BABAR detector at the asymmetric B-factory, PEP-II at SLAC. BABAR began taking data with colliding beams mode in late spring 1999. This paper describes the performance of the DIRC during the first 16 months of operation.
Relativistic two-body bound states in scalar QFT: variational basis-state approach
Energy Technology Data Exchange (ETDEWEB)
Emami-Razavi, Mohsen [Centre for Research in Earth and Space Science, York University, Toronto, Ontario, M3J 1P3 (Canada); Darewych, Jurij W [Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3 (Canada)
2006-08-15
We use the Hamiltonian formalism of quantum field theory and the variational basis-state method to derive relativistic coupled-state wave equations for scalar particles interacting via a massive or massless mediating scalar field (the scalar Yukawa model). A variational trial state comprised of two and four Fock-space states is used to derive coupled wave equations for a relativistic two (and four) body system. Approximate, variational two-body ground-state solutions of the relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields. The results show that the inclusion of virtual pairs has a large effect on the two-body binding energy at strong coupling. A comparison of the two-body binding energies with other calculations is presented.
Analytical treatment of the two-body problem with slowly varying mass
Rahoma, W. A.; Abd El-Salam, F. A.; Ahmed, M. K.
2009-12-01
The present work is concerned with the two-body problem with varying mass in case of isotropic mass loss from both components of the binary systems. The law of mass variation used gives rise to a perturbed Keplerian problem depending on two small parameters. The problem is treated analytically in the Hamiltonian frame-work and the equations of motion are integrated using the Lie series developed and applied, separately by Delva (1984) and Hanslmeier (1984). A second order theory of the two bodies eject mass is constructed, returning the terms of the rate of change of mass up to second order in the small parameters of the problem.
Exact two-body solutions and quantum defect theory of two-dimensional dipolar quantum gas
Jie, Jianwen; Qi, Ran
2016-10-01
In this paper, we provide the two-body exact solutions of the two-dimensional (2D) Schrödinger equation with isotropic +/- 1/{r}3 interactions. An analytic quantum defect theory is constructed based on these solutions and it is applied to investigate the scattering properties as well as two-body bound states of an ultracold polar molecules confined in a quasi-2D geometry. Interestingly, we find that for the attractive case, the scattering resonance happens simultaneously in all partial waves, which has not been observed in other systems. The effect of this feature on the scattering phase shift across such resonances is also illustrated.
Analytical Treatment of the Two-Body Problem with Slowly Varying Mass
Indian Academy of Sciences (India)
W. A. Rahoma; F. A. Abd El-Salam; M. K. Ahmed
2009-09-01
The present work is concerned with the two-body problem with varying mass in case of isotropic mass loss from both components of the binary systems. The law of mass variation used gives rise to a perturbed Keplerian problem depending on two small parameters. The problem is treated analytically in the Hamiltonian frame-work and the equations of motion are integrated using the Lie series developed and applied, separately by Delva (1984) and Hanslmeier (1984). A second order theory of the two bodies eject mass is constructed, returning the terms of the rate of change of mass up to second order in the small parameters of the problem.
Identification of Metabolic Pathway Systems
Directory of Open Access Journals (Sweden)
Sepideh eDolatshahi
2016-02-01
Full Text Available The estimation of parameters in even moderately large biological systems is a significant challenge. This challenge is greatly exacerbated if the mathematical formats of appropriate process descriptions are unknown. To address this challenge, the method of dynamic flux estimation (DFE was proposed for the analysis of metabolic time series data. Under ideal conditions, the first phase of DFE yields numerical representations of all fluxes within a metabolic pathway system, either as values at each time point or as plots against their substrates and modulators. However, this numerical result does not reveal the mathematical format of each flux. Thus, the second phase of DFE selects functional formats that are consistent with the numerical trends obtained from the first phase. While greatly facilitating metabolic data analysis, DFE is only directly applicable if the pathway system contains as many dependent variables as fluxes. Because most actual systems contain more fluxes than metabolite pools, this requirement is seldom satisfied. Auxiliary methods have been proposed to alleviate this issue, but they are not general. Here we propose strategies that extend DFE toward general, slightly underdetermined pathway systems.
Identification of Metabolic Pathway Systems.
Dolatshahi, Sepideh; Voit, Eberhard O
2016-01-01
The estimation of parameters in even moderately large biological systems is a significant challenge. This challenge is greatly exacerbated if the mathematical formats of appropriate process descriptions are unknown. To address this challenge, the method of dynamic flux estimation (DFE) was proposed for the analysis of metabolic time series data. Under ideal conditions, the first phase of DFE yields numerical representations of all fluxes within a metabolic pathway system, either as values at each time point or as plots against their substrates and modulators. However, this numerical result does not reveal the mathematical format of each flux. Thus, the second phase of DFE selects functional formats that are consistent with the numerical trends obtained from the first phase. While greatly facilitating metabolic data analysis, DFE is only directly applicable if the pathway system contains as many dependent variables as fluxes. Because most actual systems contain more fluxes than metabolite pools, this requirement is seldom satisfied. Auxiliary methods have been proposed to alleviate this issue, but they are not general. Here we propose strategies that extend DFE toward general, slightly underdetermined pathway systems.
Improved System Identification Approach Using Wavelet Networks
Institute of Scientific and Technical Information of China (English)
石宏理; 蔡远利; 邱祖廉
2005-01-01
A new approach is proposed to improve the general identification algorithm of multidimensional systems using wavelet networks. The general algorithm involves mapping vector input into its norm to avoid problem of dimensionality in construction multidimensional wavelet basis functions. Thus, the basis functions are spherically symmetric without direction selectivity. In order to restore the direction selectivity, the improved approach weights the input variables before mapping it into a scalar form. The weights can be obtained using universal optimization algorithms. Generally, only local optimal weights are obtained. Even so, performance of identification can be improved.
Frameworks in Problems of Structural Identification Systems
Directory of Open Access Journals (Sweden)
Nikolay Karabutov
2017-01-01
Full Text Available The new approach to structural identification of nonlinear dynamic systems under uncertainty is proposed. It is based on the analysis of virtual frameworks (VF, reflecting a state of a nonlinear part system. Construction VF is based on obtaining special an informational set describing a steady state of a nonlinear dynamic system. Introduction VF demands an estimation of structural identifiability of a system. This concept is associated with nonlinearity of system and properties VF. The method of an estimation of structural identifiability is proposed. The appearance of the insignificant virtual frameworks, not satisfying to the condition of structural identifiability, is considered. Algorithms for an estimation of a nonlinearity class on the basis of the analysis of sector sets are proposed. Methods and procedures of the estimation of framework single-valued and multiple -valued nonlinearities are proposed. The method of the structurally-frequency analysis is proposed and applied to validate the obtained solutions. VF is proposed for identification of an order and a spectrum of eigenvalues of a linear dynamic system. The possibility of application VF for the problem solving of identification static systems is shown
An efficient automatic firearm identification system
Chuan, Zun Liang; Liong, Choong-Yeun; Jemain, Abdul Aziz; Ghani, Nor Azura Md.
2014-06-01
Automatic firearm identification system (AFIS) is highly demanded in forensic ballistics to replace the traditional approach which uses comparison microscope and is relatively complex and time consuming. Thus, several AFIS have been developed for commercial and testing purposes. However, those AFIS are still unable to overcome some of the drawbacks of the traditional firearm identification approach. The goal of this study is to introduce another efficient and effective AFIS. A total of 747 firing pin impression images captured from five different pistols of same make and model are used to evaluate the proposed AFIS. It was demonstrated that the proposed AFIS is capable of producing firearm identification accuracy rate of over 95.0% with an execution time of less than 0.35 seconds per image.
Analysis of modeling errors in system identification
Hadaegh, F. Y.; Bekey, G. A.
1986-01-01
This paper is concerned with the identification of a system in the presence of several error sources. Following some basic definitions, the notion of 'near-equivalence in probability' is introduced using the concept of near-equivalence between a model and process. Necessary and sufficient conditions for the identifiability of system parameters are given. The effect of structural error on the parameter estimates for both deterministic and stochastic cases are considered.
A New Autom ated Fingerprint Identification System
Institute of Scientific and Technical Information of China (English)
沈学宁; 程民德; 等
1989-01-01
A new automated fingerpring identification system is proposed.In this system,based on some local properties of digital image,the shape and minutiae features of fingerprint can be extracted from the grey level image without binarizing and thinning.In query,a latent fingerprint can be matched with the filed fingerprints by shape and/or minutiae features.Matching by shape features is much faster than by minutiae.
An Adaptive Nonlinear Filter for System Identification
Directory of Open Access Journals (Sweden)
Tokunbo Ogunfunmi
2009-01-01
Full Text Available The primary difficulty in the identification of Hammerstein nonlinear systems (a static memoryless nonlinear system in series with a dynamic linear system is that the output of the nonlinear system (input to the linear system is unknown. By employing the theory of affine projection, we propose a gradient-based adaptive Hammerstein algorithm with variable step-size which estimates the Hammerstein nonlinear system parameters. The adaptive Hammerstein nonlinear system parameter estimation algorithm proposed is accomplished without linearizing the systems nonlinearity. To reduce the effects of eigenvalue spread as a result of the Hammerstein system nonlinearity, a new criterion that provides a measure of how close the Hammerstein filter is to optimum performance was used to update the step-size. Experimental results are presented to validate our proposed variable step-size adaptive Hammerstein algorithm given a real life system and a hypothetical case.
Structural system identification: Structural dynamics model validation
Energy Technology Data Exchange (ETDEWEB)
Red-Horse, J.R.
1997-04-01
Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.
Separation of Potentials in the Two-Body Problem
Vasilyev, Andrey
2012-01-01
In contrast to the well-known solution of the two-body problem through the use of the concept of reduced mass, a solution is proposed involving separation of potentials. It is shown that each of the two point bodies moves in its own stationary potential well generated by the other body, and the magnitudes of these potentials are calculated. It is shown also that for each body separately the energy and the angular momentum laws are valid. The knowledge of the potentials in which the bodies are moving permits calculation of the trajectories of each body without resorting to the reduced mass. Key words: mechanics, two-body problem, gravitational potential, virial theorem.
Model Identification and Validation for a Heating System using MATLAB System Identification Toolbox
Junaid Rabbani, Muhammad; Hussain, Kashan; khan, Asim-ur-Rehman; Ali, Abdullah
2013-12-01
This paper proposed a systematic approach to select a mathematical model for an industrial heating system by adopting system identification techniques with the aim of fulfilling the design requirement for the controller. The model identification process will begin by collecting real measurement data samples with the aid of MATLAB system identification toolbox. The criteria for selecting the model that could validate model output with actual data will based upon: parametric identification technique, picking the best model structure with low order among ARX, ARMAX and BJ, and then applying model estimation and validation tests. Simulated results have shown that the BJ model has been best in providing good estimation and validation based upon performance criteria such as: final prediction error, loss function, best percentage of model fit, and co-relation analysis of residual for output.
Classical and Quantum Two-Body Problem in General Relativity
Maheshwari, Amar; Todorov, Ivan
2016-01-01
The two-body problem in general relativity is reduced to the problem of an effective particle (with an energy-dependent relativistic reduced mass) in an external field. The effective potential is evaluated from the Born diagram of the linearized quantum theory of gravity. It reduces to a Schwarzschild-like potential with two different `Schwarzschild radii'. The results derived in a weak field approximation are expected to be relevant for relativistic velocities.
Nonlinear vibrating system identification via Hilbert decomposition
Feldman, Michael; Braun, Simon
2017-02-01
This paper deals with the identification of nonlinear vibration systems, based on measured signals for free and forced vibration regimes. Two categories of time domain signal are analyzed, one of a fast inter-modulation signal and a second as composed of several mono-components. To some extent, this attempts to imitate analytic studies of such systems, with its two major analysis groups - the perturbation and the harmonic balance methods. Two appropriate signal processing methods are then investigated, one based on demodulation and the other on signal decomposition. The Hilbert Transform (HT) has been shown to enable effective and simple methods of analysis. We show that precise identification of the nonlinear parameters can be obtained, contrary to other average HT based methods where only approximation parameters are obtained. The effectiveness of the proposed methods is demonstrated for the precise nonlinear system identification, using both the signal demodulation and the signal decomposition methods. Following the exposition of the tools used, both the signal demodulation as well as decomposition are applied to classical examples of nonlinear systems. Cases of nonlinear stiffness and damping forces are analyzed. These include, among other, an asymmetric Helmholtz oscillator, a backlash with nonlinear turbulent square friction, and a Duffing oscillator with dry friction.
RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber: Preprint
Energy Technology Data Exchange (ETDEWEB)
Yu, Y.; Li, Y.
2011-03-01
A preliminary study on a two-body floating wave absorbers is presented in this paper. A Reynolds-Averaged Navier-Stokes computational method is applied for analyzing the hydrodynamic heave response of the absorber in operational wave conditions. The two-body floating wave absorber contains a float section and a submerged reaction section. For validation purposes, our model is first assumed to be locked. The two sections are forced to move together with each other. The locked single body model is used in a heave decay test, where the RANS result is validated with the experimental measurement. For the two-body floating point absorber simulation, the two sections are connected through a mass-spring-damper system, which is applied to simulate the power take-off mechanism under design wave conditions. Overall, the details of the flow around the absorber and its nonlinear interaction with waves are investigated, and the power absorption efficiency of the two-body floating wave absorber in waves with a constant value spring-damper system is examined.
ADAPTIVE CONTROL AND IDENTIFICATION OF CHAOTIC SYSTEMS
Institute of Scientific and Technical Information of China (English)
LI ZHI; HAN CHONG-ZHAO
2001-01-01
A novel adaptive control and identification on-line method is proposed for a class of chaotic system with uncertain parameters. We prove that, using the presented method, a controller and identifier is developed which can remove chaos in nonlinear systems and make the system asymptotically stabilizing to an arbitrarily desired smooth orbit. And at the same time, estimates to uncertain parameters converge to their true values. The advantage of our method over the existing result is that the controller and identifier is directly constructed by analytic formula without knowing unknown bounds about uncertain parameters in advance. A computer simulation example is given to validate the proposed approach.
Unique device identification system. Final rule.
2013-09-24
The Food and Drug Administration (FDA) is issuing a final rule to establish a system to adequately identify devices through distribution and use. This rule requires the label of medical devices to include a unique device identifier (UDI), except where the rule provides for an exception or alternative placement. The labeler must submit product information concerning devices to FDA's Global Unique Device Identification Database (GUDID), unless subject to an exception or alternative. The system established by this rule requires the label and device package of each medical device to include a UDI and requires that each UDI be provided in a plain-text version and in a form that uses automatic identification and data capture (AIDC) technology. The UDI will be required to be directly marked on the device itself if the device is intended to be used more than once and intended to be reprocessed before each use.
System identification of the brompton bicycle
Hladun, Monique Victoria Teresa
The Brompton (a European folding design) bicycle was instrumented with a variety of sensors including acceleration, angular rate, speed, and steering sensors. A bicycle state estimator was designed to obtain additional information from this data including heading, turn rate, lean angle, steer rate, and positions of the wheels during a trajectory. The first part of the thesis describes the model setup for system identification including the Steer-to-Lean dynamics and Lean-to-Steer dynamics reduced models. CIFER software was used in the system identification process of these models. The second part describes the validation of the Empirical model by using the Rider Control model ([1]) and the Complete Rider/Vehicle model ([1]) to determine the feedback gains. The Theoretical model feedback gains were also determined by using the Rider Control model ([1]) and the Complete Rider/Vehicle model ([1]).
IDENTIFICATION FOR WIENER SYSTEMS WITH INTERNAL NOISE
Institute of Scientific and Technical Information of China (English)
Qijiang SONG; Hanfu CHEN
2008-01-01
This paper considers identification of Wiener systems for which the internal variables and output are corrupted by noises. When the internal noise is a sequence of independent and identically distributed (iid) Gaussian random variables, by the Weierstrass transformation (WT) the system under consideration turns to be a Wiener system without internal noise. The nonlinear part of the latter is nothing else than the WT of the nonlinear function of the original system, while the linear subsystem is the same for both systems before and after WT. Under reasonable conditions, the recursive identification algorithms are proposed for the transformed Wiener system, and strong consistency for the estimates is established. By using the inverse WT the nonparametric estimates for the nonlinearity of the original system are derived, and they are strongly consistent if the nonlinearity in the original system is a polynomial. Similar results also hold in the case where the internal noise is non-Gaussian. Simulation results are fully consistent with the theoretical analysis.
Online Palmprint Identification System for Civil Applications
Institute of Scientific and Technical Information of China (English)
David Zhang; Guang-Ming Lu; Adams Wai-Kin Kong; Michael Wong
2005-01-01
In this paper, a novel biontetric identification system is presented to identify a person's identity by his/her palmprint. In contrast to existing palmprint systems for criminal applications, the proposed system targets at the civil applications, which require identifying a person in a large database with high accuracy in real-time. The system is constituted by four major components: User Interface Module, Acquisition Module, Recognition Module and External Module. More than 7,000 palmprint images have been collected to test the performance of the system. The system can identify 400 palms with a low false acceptance rate, 0.02%, and a high genuine acceptance rate, 98.83%. For verification, the system can operate at a false acceptance rate, 0.017% and a false rejection rate, 0.86%. The execution time for the whole process including image collection, preprocessing, feature extraction and matching is less than 1 second.
Identification of dynamic systems, theory and formulation
Maine, R. E.; Iliff, K. W.
1985-01-01
The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.
Ladder Forms in Estimation and System Identification.
1977-01-01
system identification . Many record applications, such as in geophysical signal processing, high resolution (’maximum entropy’) spectral estimation and speech encoding, justify the interest in these forms. They appear in many contexts, such as scattering and network theory and the theory of orthogonal polynomials. The state-space model ladder realizations are very closely related in (block) Schwarz matrix canonical forms, which generally appear in the context of stability analysis. In fact they are the natural ’stability canonical form’ for
System identification application using Hammerstein model
Indian Academy of Sciences (India)
SABAN OZER; HASAN ZORLU; SELCUK METE
2016-06-01
Generally, memoryless polynomial nonlinear model for nonlinear part and finite impulse response (FIR) model or infinite impulse response model for linear part are preferred in Hammerstein models in literature. In this paper, system identification applications of Hammerstein model that is cascade of nonlinear second order volterra and linear FIR model are studied. Recursive least square algorithm is used to identify the proposed Hammerstein model parameters. Furthermore, the results are compared to identify the success of proposed Hammerstein model and different types of models
System identification of Drosophila olfactory sensory neurons.
Kim, Anmo J; Lazar, Aurel A; Slutskiy, Yevgeniy B
2011-02-01
The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation for further processing in the spike domain by Drosophila OSNs. In order to apply system identification techniques, we built a novel low-turbulence odor delivery system that allowed us to deliver airborne stimuli in a precise and reproducible fashion. The system provides a 1% tolerance in stimulus reproducibility and an exact control of odor concentration and concentration gradient on a millisecond time scale. Using this novel setup, we recorded and analyzed the in-vivo response of OSNs to a wide range of time-varying odor waveforms. We report for the first time that across trials the response of OR59b OSNs is very precise and reproducible. Further, we empirically show that the response of an OSN depends not only on the concentration, but also on the rate of change of the odor concentration. Moreover, we demonstrate that a two-dimensional (2D) Encoding Manifold in a concentration-concentration gradient space provides a quantitative description of the neuron's response. We then use the white noise system identification methodology to construct one-dimensional (1D) and two-dimensional (2D) Linear-Nonlinear-Poisson (LNP) cascade models of the sensory neuron for a fixed mean odor concentration and fixed contrast. We show that in terms of predicting the intensity rate of the spike train, the 2D LNP model performs on par with the 1D LNP model, with a root mean-square error (RMSE) increase of about 5 to 10%. Surprisingly, we find that for a fixed contrast of the white noise odor waveforms, the nonlinear block of each of the two models changes with the mean input concentration. The shape of the nonlinearities of both the 1D and the 2D LNP model appears to be
Energy Centroids of Spin $I$ States by Random Two-body Interactions
Zhao, Y M; Ogawa, K
2005-01-01
In this paper we study the behavior of energy centroids (denoted as $\\bar{E_I}$) of spin $I$ states in the presence of random two-body interactions, for systems ranging from very simple systems (e.g. single-$j$ shell for very small $j$) to very complicated systems (e.g., many-$j$ shells with different parities and with isospin degree of freedom). Regularities of $\\bar{E_I}$'s discussed in terms of the so-called geometric chaoticity (or quasi-randomness of two-body coefficients of fractional parentage) in earlier works are found to hold even for very simple systems in which one cannot assume the geometric chaoticity. It is shown that the inclusion of isospin and parity does not "break" the regularities of $\\bar{E_I}$'s.
Power system identification toolbox: Phase two progress
Energy Technology Data Exchange (ETDEWEB)
Trudnowski, D.J.
1994-08-01
This report describes current progress on a project funded by the Bonneville Power Administration (BPA) to develop a set of state-of-the-art analysis software (termed the Power System Identification [PSI] Toolbox) for fitting dynamic models to measured data. The project is being conducted as a three-phase effort. The first phase, completed in late 1992, involved investigating the characteristics of the analysis techniques by evaluating existing software and developing guidelines for best use. Phase Two includes extending current software, developing new analysis algorithms and software, and demonstrating and developing applications. The final phase will focus on reorganizing the software into a modular collection of documented computer programs and developing user manuals with instruction and application guidelines. Phase Two is approximately 50% complete; progress to date and a vision for the final product of the PSI Toolbox are described. The needs of the power industry for specialized system identification methods are particularly acute. The industry is currently pushing to operate transmission systems much closer to theoretical limits by using real-time, large-scale control systems to dictate power flows and maintain dynamic stability. Reliably maintaining stability requires extensive system-dynamic modeling and analysis capability, including measurement-based methods. To serve this need, the BPA has developed specialized system-identification computer codes through in-house efforts and university contract research over the last several years. To make full integrated use of the codes, as well as other techniques, the BPA has commissioned Pacific Northwest Laboratory (PNL) to further develop the codes and techniques into the PSI Toolbox.
Realization-Based System Identification with Applications
Miller, Daniel N.
The identification of dynamic system behavior from experimentally measured or computationally simulated data is fundamental to the fields of control system design, modal analysis, and defect detection. In this dissertation, methods for system identification are developed based on classical linear system realization theory. The common methods of state-space realization from a measured, discrete-time impulse response are generalized to the following additional types of experiments: measured step responses, arbitrary sets of input-output data, and estimated cross-covariance functions of input-output data. The methods are particularly well suited to systems with large input and/or output dimension, for which classical system identification methods based on maximum likelihood estimation may fail due to their reliance on non-convex optimizations. The realization-based methods by themselves require a finite number of linear algebraic operations. Because these methods implicitly optimize cost functions that are linear in state-space parameters, they may be augmented with convex constraints to form convex optimization problems. Several common behavioral constraints are translated into eigenvalue constraints stated as linear matrix inequalities, and the realization-based methods are converted into semidefinite programming problems. Some additional constraints on transient and steady-state behavior are derived and incorporated into a quadratic program, which is solved following the semidefinite program. The newly developed realization-based methods are applied to two experiments: the aeroelastic response of a fighter aircraft and the transient thermal behavior of a light-emitting diode. The algorithms for each experiment are implemented in two freely available software packages.
Subspace System Identification of the Kalman Filter
Directory of Open Access Journals (Sweden)
David Di Ruscio
2003-07-01
Full Text Available Some proofs concerning a subspace identification algorithm are presented. It is proved that the Kalman filter gain and the noise innovations process can be identified directly from known input and output data without explicitly solving the Riccati equation. Furthermore, it is in general and for colored inputs, proved that the subspace identification of the states only is possible if the deterministic part of the system is known or identified beforehand. However, if the inputs are white, then, it is proved that the states can be identified directly. Some alternative projection matrices which can be used to compute the extended observability matrix directly from the data are presented. Furthermore, an efficient method for computing the deterministic part of the system is presented. The closed loop subspace identification problem is also addressed and it is shown that this problem is solved and unbiased estimates are obtained by simply including a filter in the feedback. Furthermore, an algorithm for consistent closed loop subspace estimation is presented. This algorithm is using the controller parameters in order to overcome the bias problem.
On closed loop transient response system identification
Directory of Open Access Journals (Sweden)
Christer Dalen
2016-10-01
Full Text Available Some methods for transient closed loop step response system identification presented in the literature are reviewed. Interestingly some errors in a method published in the early 80's where propagated into a recently published method. These methods are reviewed and some improved methods are suggested and presented. The methods are compared against each other on some closed loop system examples, e.g. a well pipeline-riser severe-slugging flow regime example, using Monte Carlo simulations for comparison of the methods.
Separable approximation method for two-body relativistic scattering
Energy Technology Data Exchange (ETDEWEB)
Tandy, P.C.; Thaler, R.M.
1988-03-01
A method for defining a separable approximation to a given interaction within a two-body relativistic equation, such as the Bethe-Salpeter equation, is presented. The rank-N separable representation given here permits exact reproduction of the T matrix on the mass shell and half off the mass shell at N selected bound state and/or continuum values of the invariant mass. The method employed is a four-space generalization of the separable representation developed for Schroedinger interactions by Ernst, Shakin, and Thaler, supplemented by procedures for dealing with the relativistic spin structure in the case of Dirac particles.
Separable approximation method for two-body relativistic scattering
Tandy, P. C.; Thaler, R. M.
1988-03-01
A method for defining a separable approximation to a given interaction within a two-body relativistic equation, such as the Bethe-Salpeter equation, is presented. The rank-N separable representation given here permits exact reproduction of the T matrix on the mass shell and half off the mass shell at N selected bound state and/or continuum values of the invariant mass. The method employed is a four-space generalization of the separable representation developed for Schrödinger interactions by Ernst, Shakin, and Thaler, supplemented by procedures for dealing with the relativistic spin structure in the case of Dirac particles.
Two-body bound states in quantum electrodynamics. [Rate
Energy Technology Data Exchange (ETDEWEB)
Lepage, G.P.
1978-07-01
Novel formulations of the two-body bound state problem in quantum field theory are examined. While equal in rigor, these have several calculational advantages over the traditional Bethe-Salpeter formalism. In particular there exist exact solutions of the bound state equations for a Coulomb-like interaction in quantum electrodynamics. The corrections to such zeroth-order solutions can be systematically computed in a simple perturbation theory. These methods are illustrated by computing corrections to the orthopositronium decay rate and to the ground state splittings in positronium and muonium.
Two-body bound states & the Bethe-Salpeter equation
Energy Technology Data Exchange (ETDEWEB)
Pichowsky, M. [Argonne National Lab., IL (United States); Kennedy, M. [Univ. of New Hampshire, Durham, NH (United States). Physics Dept.; Strickland, M. [Duke Univ., Durham, NC (United States)
1995-01-18
The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated.
INFORMATION CHARACTERIZATION OF COMMUNICATION CHANNELS FOR SYSTEM IDENTIFICATION
Institute of Scientific and Technical Information of China (English)
Le Yi WANG; G. George YIN
2007-01-01
This paper studies identification of systems in which the system output is quantized,transmitted through a digital communication channel, and observed afterwards. The concept of the CR Ratio is introduced to characterize impact of communication channels on identification. The relationship between the CR Ratio and Shannon channel capacity is discussed. Identification algorithms are further developed when the channel error probability is unknown.
A computerised system for the identification of lactic acid bacteria.
Wijtzes, T.; Bruggeman, M.R.; Nout, M.J.R.; Zwietering, M.H.
1997-01-01
A generic computerised system for the identification of bacteria was developed. The system is equipped with a key to the identification of lactic acid bacteria. The identification is carried out in two steps. The first step distinguishes groups of bacteria by following a decision tree with general i
Persistent excitation in adaptive parameter identification of uncertain chaotic system
Institute of Scientific and Technical Information of China (English)
Zhao Jun-chan; Zhang Qun-Jiao; Lu Jun-An
2011-01-01
This paper studies the parameter identification problem of chaotic systems. Adaptive identification laws are proposed to estimate the parameters of uncertain chaotic systems. It proves that the asymptotical identification is ensured by a persistently exciting condition. Additionally, the method can be applied to identify the uncertain parameters with any number. Numerical simulations are given to validate the theoretical analysis.
System Identification, Environmental Modelling, and Control System Design
Garnier, Hugues
2012-01-01
System Identification, Environmetric Modelling, and Control Systems Design is dedicated to Professor Peter Young on the occasion of his seventieth birthday. Professor Young has been a pioneer in systems and control, and over the past 45 years he has influenced many developments in this field. This volume is comprised of a collection of contributions by leading experts in system identification, time-series analysis, environmetric modelling and control system design – modern research in topics that reflect important areas of interest in Professor Young’s research career. Recent theoretical developments in and relevant applications of these areas are explored treating the various subjects broadly and in depth. The authoritative and up-to-date research presented here will be of interest to academic researcher in control and disciplines related to environmental research, particularly those to with water systems. The tutorial style in which many of the contributions are composed also makes the book suitable as ...
Linear System Identification via Atomic Norm Regularization
Shah, Parikshit; Tang, Gongguo; Recht, Benjamin
2012-01-01
This paper proposes a new algorithm for linear system identification from noisy measurements. The proposed algorithm balances a data fidelity term with a norm induced by the set of single pole filters. We pose a convex optimization problem that approximately solves the atomic norm minimization problem and identifies the unknown system from noisy linear measurements. This problem can be solved efficiently with standard, freely available software. We provide rigorous statistical guarantees that explicitly bound the estimation error (in the H_2-norm) in terms of the stability radius, the Hankel singular values of the true system and the number of measurements. These results in turn yield complexity bounds and asymptotic consistency. We provide numerical experiments demonstrating the efficacy of our method for estimating linear systems from a variety of linear measurements.
Evaluation of fungichrom 1: A new yeast identification system
Umabala P; Satheeshkumar T; Lakshmi V
2002-01-01
Advances in anti-fungal therapy necessitate the need for accurate identification of fungi especially yeasts to their species level for more effective management. Unlike the time consuming conventional methods of yeast identification using fermentation and assimilation patterns of various carbohydrates, the new commercialized yeast identification systems are simpler, rapid and are particularly easy to interpret. In our study, a new colorimetric yeast identification system-Fungichrom 1(Internat...
Comparative Study between ARX and ARMAX System Identification
Farzin Piltan; Shahnaz TayebiHaghighi; Nasri B. Sulaiman
2017-01-01
System Identification is used to build mathematical models of a dynamic system based on measured data. To design the best controllers for linear or nonlinear systems, mathematical modeling is the main challenge. To solve this challenge conventional and intelligent identification are recommended. System identification is divided into different algorithms. In this research, two important types algorithm are compared to identifying the highly nonlinear systems, namely: Au...
The two-body problem of a pseudo-rigid body and a rigid sphere
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.;
2012-01-01
n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....
Identification methods for nonlinear stochastic systems.
Fullana, Jose-Maria; Rossi, Maurice
2002-03-01
Model identifications based on orbit tracking methods are here extended to stochastic differential equations. In the present approach, deterministic and statistical features are introduced via the time evolution of ensemble averages and variances. The aforementioned quantities are shown to follow deterministic equations, which are explicitly written within a linear as well as a weakly nonlinear approximation. Based on such equations and the observed time series, a cost function is defined. Its minimization by simulated annealing or backpropagation algorithms then yields a set of best-fit parameters. This procedure is successfully applied for various sampling time intervals, on a stochastic Lorenz system.
A secure identification system using coherent states
Institute of Scientific and Technical Information of China (English)
He Guang-Qiang; Zeng Gui-Hua
2006-01-01
A quantum identification system based on the transformation of polarization of a mesoscopic coherent state is proposed. Physically, an initial polarization state which carries the identity information is transformed into an arbitrary elliptical polarization state. To verify the identity of a communicator, a reverse procedure is performed by the receiver. For simply describing the transformation procedure, the analytical methods of Poincare sphere and quaternion are adopted. Since quantum noise provides such a measurement uncertainty for the eavesdropping that the identity information cannot be retrieved from the elliptical polarization state, the proposed scheme is secure.
A recent case study in system identification
Hasselman, T. K.; Chrostowski, J. D.
1991-01-01
Results of a recent study of a ten-bay truss structure at the NASA Langley Research Center are reported. First, the conditioning of complex eigenvectors derived by the ERA method is discussed. Results of parameter estimation using the SSID (Structural System Identification) code are then presented. Based on the results of the study, it is concluded that (1) parameter estimation based on modal data should include eigenvectors as well as eigenvalues; (2) the eigenvectors should be orthogonalized when orthogonality is poor due to closely spaced modes; and (3) the parameters used in the estimation should enable the model to match the data.
New fixed points of the renormalisation group for two-body scattering
Energy Technology Data Exchange (ETDEWEB)
Birse, M.C. [The University of Manchester, Theoretical Physics Division, School of Physics and Astronomy, Manchester (United Kingdom); Epelbaum, E. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Fakultaet fuer Physik und Astronomie, Bochum (Germany); Gegelia, J. [Juelich Center for Hadron Physics, Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia)
2016-02-15
We outline a separable matrix ansatz for the potentials in effective field theories of non-relativistic two-body systems with short-range interactions. We use this ansatz to construct new fixed points of the renormalisation-group equation for these potentials. New fixed points indicate a much richer structure than previously recognized in the RG flows of simple short-range potentials. (orig.)
TIME DOMAIN PARAMETERS IDENTIFICATION OF FOUNDATION-STRUCTURE INTERACTION SYSTEM
Institute of Scientific and Technical Information of China (English)
HUANG Yi; LIU Zeng-rong
2005-01-01
The time domain parameter identification method of the foundation-structure interaction system is presented. On the basis of building the computation mode and the motion equation of the foundation-structure interaction system, the system parameter identification method was established by using the extended Kalman filter (EKF)technique and taking the unknown parameters in the system as the augment state variables. And the time parameter identification process of the foundation-structure interaction system was implemented by using the data of the layer foundation-storehouse interaction system model test on the large vibration platform. The computation result shows that the established parameter identification method can induce good parameter estmation.
Nonleptonic two-body Bc-meson decays
Naimuddin, Sk.; Kar, Susmita; Priyadarsini, M.; Barik, N.; Dash, P. C.
2012-11-01
We study the exclusive nonleptonic two-body Bc decays within factorization approximation, in the framework of the relativistic independent quark model based on a confining potential in the scalar-vector harmonic form. The relevant weak form factors and branching ratios for different decay modes (Bc→PP,PV,VP) are predicted in reasonable agreement with other quark model predictions. We find that the dominant contribution to the Bc-meson lifetime comes from the Cabibbo-Kobayashi-Masakawa favored c¯→s¯, d¯ decay modes, and the most promising modes are found to be Bc-→B¯s0π-, Bc-→B¯s0ρ- and Bc-→B¯s⋆0π- with predicted branching ratios of 12.01, 9.96, and 8.61%, respectively, which might be easily detected at the hadron collider in the near future.
A search for two body muon decay signals
Bayes, R; Davydov, Yu I; Depommier, P; Faszer, W; Fujiwara, M C; Gagliardi, C A; Gaponenko, A; Gill, D R; Grossheim, A; Gumplinger, P; Hasinoff, M D; Henderson, R S; Hillairet, A; Hu, J; Koetke, D D; MacDonald, R P; Marshall, G M; Mathie, E L; Mischke, R E; Olchanski, K; Olin, A; Openshaw, R; Poutissou, J -M; Poutissou, R; Selivanov, V; Sheffer, G; Shin, B; Stanislaus, T D S; Tacik, R; Tribble, R E
2014-01-01
Lepton family number violation is tested by searching for $\\mu^+\\to e^+X^0$ decays among the 5.8$\\times 10^8$ positive muon decay events analyzed by the TWIST collaboration. Limits are set on the production of both massless and massive $X^0$ bosons. The large angular acceptance of this experiment allows limits to be placed on anisotropic $\\mu^+\\to e^+X^0$ decays, which can arise from interactions violating both lepton flavor and parity conservation. Branching ratio limits of order $10^{-5}$\\ are obtained for boson masses of 10 - 80 MeV/c$^2$ and different asymmetries. For lighter bosons the asymmetry dependence is much stronger and the branching ratio limit varies up to $5.8 \\times 10^{-5}$. This is the first study that explicitly evaluates the limits for anisotropic two body muon decays.
Direction Identification System of Garlic Clove Based on Machine Vision
Directory of Open Access Journals (Sweden)
Gao Chi
2013-05-01
Full Text Available In order to fulfill the requirements of seeding direction of garlic cloves, the paper proposed a research method of garlic clove direction identification based on machine vision, it expounded the theory of garlic clove direction identification, stated the arithmetic of it, designed the direction identification device of it, then developed the control system of garlic clove direction identification based on machine vision, at last tested the garlic clove direction identification, and the result of the experiment certificated that the rate of garlic clove direction identification could reach to more than 97%, and it demonstrated that the research is of high feasibility and technological values.
Multi-Output System Identification Using Evolutionary Programming
1991-11-04
Evolutionary programming (EP) has been demonstrated to be an effective method of system identification of single-input-single-output (SISO) systems...This paper investigates the use of EP in system identification of single-input-multioutput (SIMO) systems. EP is used to identify parameters of a
Research of internet worm warning system based on system identification
Institute of Scientific and Technical Information of China (English)
Tao ZHOU; Guanzhong DAI; Huimin YE
2006-01-01
The frequent explosion of Internet worms has been one of the most serious problems in cyberspace security.In this paper, by analyzing the worm's propagation model, we propose a new worm warning system based on the method of system identification, and use recursive least squares algorithm to estimate the worm's infection rate. The simulation result shows the method we adopted is an efficient way to conduct Internet worm warning.
Distribution of level spacing ratios using one- plus two-body random matrix ensembles
Indian Academy of Sciences (India)
N D Chavda
2015-02-01
Probability distribution (()) of the level spacing ratios has been introduced recently and is used to investigate many-body localization as well as to quantify the distance from integrability on finite size lattices. In this paper, we study the distribution of the ratio of consecutive level spacings using one-body plus two-body random matrix ensembles for finite interacting many-fermion and many-boson systems. () for these ensembles move steadily from the Poisson to the Gaussian orthogonal ensemble (GOE) form as the two-body interaction strength is varied. Other related quantities are also used in the analysis to obtain critical strength c for the transition. The c values deduced using the () analysis are in good agreement with the results obtained using the nearest neighbour spacing distribution (NNSD) analysis.
System Identification of X-33 Neural Network
Aggarwal, Shiv
2003-01-01
Modern flight control research has improved spacecraft survivability as its goal. To this end we need to have a failure detection system on board. In case the spacecraft is performing imperfectly, reconfiguration of control is needed. For that purpose we need to have parameter identification of spacecraft dynamics. Parameter identification of a system is called system identification. We treat the system as a black box which receives some inputs that lead to some outputs. The question is: what kind of parameters for a particular black box can correlate the observed inputs and outputs? Can these parameters help us to predict the outputs for a new given set of inputs? This is the basic problem of system identification. The X33 was supposed to have the onboard capability of evaluating the current performance and if needed to take the corrective measures to adapt to desired performance. The X33 is comprised of both rocket and aircraft vehicle design characteristics and requires, in general, analytical methods for evaluating its flight performance. Its flight consists of four phases: ascent, transition, entry and TAEM (Terminal Area Energy Management). It spends about 200 seconds in ascent phase, reaching an altitude of about 180,000 feet and a speed of about 10 to 15 Mach. During the transition phase which lasts only about 30 seconds, its altitude may increase to about 190,000 feet but its speed is reduced to about 9 Mach. At the beginning of this phase, the Main Engine is Cut Off (MECO) and the control is reconfigured with the help of aerosurfaces (four elevons, two flaps and two rudders) and reaction control system (RCS). The entry phase brings down the altitude of X33 to about 90,000 feet and its speed to about Mach 3. It spends about 250 seconds in this phase. Main engine is still cut off and the vehicle is controlled by complex maneuvers of aerosurfaces. The last phase TAEM lasts for about 450 seconds and the altitude and speed, both are reduced to zero. The
Time Synchronization Module for Automatic Identification System
Institute of Scientific and Technical Information of China (English)
Choi Il-heung; Oh Sang-heon; Choi Dae-soo; Park Chan-sik; Hwang Dong-hwan; Lee Sang-jeong
2003-01-01
This paper proposed a design and implementation procedure of the Time Synchronization Module (TSM) for the Automatic Identification System (AIS). The proposed TSM module uses a Temperature Compensated Crystal Oscillator (TCXO) as a local reference clock, and consists of a Digitally Controlled Oscillator (DCO), a divider, a phase discriminator, and register blocks. The TSM measures time difference between the 1 PPS from the Global Navigation Satellite System (GNSS) receiver and the generated transmitter clock. The measured time difference is compensated by controlling the DCO and the transmit clock is synchronized to the Universal Time Coordinated (UTC). The designed TSM can also be synchronized to the reference time derived from the received message. The proposed module is tested using the experimental AIS transponder set. The experimental results show that the proposed module satisfies the functional and timing specification of the AIS technical standard, ITU-R M.1371.
Identification and Control of a Cylindrical Tank Based on System Identification Models
Directory of Open Access Journals (Sweden)
Mary Mol Paul
2013-06-01
Full Text Available Advancements in the process control industry has made difficulties in controlling processes which are highly complex in nature. System identification provides a better solution for this problem with the help of identification models. In this paper ARX,ARMAX,BJ and OE models were used for the identification of a cylindrical tank and Ziegler Nichols tuning method to develop the controller for controlling the level of the tank. The proposed method provides simple and accurate models and thereby improving the efficency of identification process. MATLAB and LABView softwares were used here for identification and controlling.
System Identification of a Vortex Lattice Aerodynamic Model
Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.
2001-01-01
The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.
MOVING PERSON IDENTIFICATION IN VIDEO SURVEILLANCE SYSTEMS
Directory of Open Access Journals (Sweden)
A. Y. Solomatin
2014-07-01
Full Text Available The paper deals with an approach for a moving person identifying in video surveillance systems. The proposed solution consists of two successive stages. Selecting of a moving human from all other moving objects in a video stream takes place at the first stage. Human identification based on facial image takes place at the second stage. Detection of a human’s movement is performed via representation of the original video stream in a form of time series. Mathematical apparatus of a singular spectrum is applied for that purpose. The presence of motion is determined by analyzing the periodic components of time series constructed from color and brightness data of the original components of initial video stream. Identification of a person based on his facial image is done through representation of a facial image via two-dimensional matrix with the subsequent application of immune computing mathematical apparatus. Then the binding energy is calculated which shows similarity between the input facial image and faces stored in the training set. The proposed solution for a problem of a moving person’s identifying gives the opportunity to work with low quality video stream having a high level of noise or compression artifacts after encoding. The advantage of the method is implementation simplicity. Unlike traditional methods of computer vision, the proposed method does not require significant computational burden due to simple numerical operations. This method does not require pre-filtering of video images, therefore its performance speed is significantly increased.
Probing Signal Design for Power System Identification
Energy Technology Data Exchange (ETDEWEB)
Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William
2010-05-31
This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.
Nonlinear system identification in offshore structural reliability
Energy Technology Data Exchange (ETDEWEB)
Spanos, P.D. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corporation, Houston, TX (United States)
1995-08-01
Nonlinear forces acting on offshore structures are examined from a system identification perspective. The nonlinearities are induced by ocean waves and may become significant in many situations. They are not necessarily in the form of Morison`s equation. Various wave force models are examined. The force function is either decomposed into a set of base functions or it is expanded in terms of the wave and structural kinematics. The resulting nonlinear system is decomposed into a number of parallel no-memory nonlinear systems, each followed by a finite-memory linear system. A conditioning procedure is applied to decouple these linear sub-systems; a frequency domain technique involving autospectra and cross-spectra is employed to identify the linear transfer functions. The structural properties and those force transfer parameters are determine with the aid of the coherence functions. The method is verified using simulated data. It provides a versatile and noniterative approach for dealing with nonlinear interaction problems encountered in offshore structural analysis and design.
System Identification of Wind Turbines for Structural Health Monitoring
DEFF Research Database (Denmark)
Perisic, Nevena
. Thanks to the advanced system identification methods, the majority of these signals can be indirectly measured by assuming a realistic sensor scenario. This thesis addresses the problem of using system identification techniques on monitoring time-varying signals that direct measuring is prevented due...... techniques for time-varying system identification. The test case chosen hereto concerns blade bearing friction estimation. Different nonlinear system identification algorithms are considered and their performances are benchmarked on problems of time-varying parameter estimation in a blade bearing friction...
Fractional System Identification: An Approach Using Continuous Order-Distributions
Hartley, Tom T.; Lorenzo, Carl F.
1999-01-01
This paper discusses the identification of fractional- and integer-order systems using the concept of continuous order-distribution. Based on the ability to define systems using continuous order-distributions, it is shown that frequency domain system identification can be performed using least squares techniques after discretizing the order-distribution.
System identification of physiological systems using short data segments.
Ludvig, Daniel; Perreault, Eric J
2012-12-01
System identification of physiological systems poses unique challenges, especially when the structure of the system under study is uncertain. Nonparametric techniques can be useful for identifying system structure, but these typically assume stationarity and require large amounts of data. Both of these requirements are often not easily obtained in the study of physiological systems. Ensemble methods for time-varying nonparametric estimation have been developed to address the issue of stationarity, but these require an amount of data that can be prohibitive for many experimental systems. To address this issue, we developed a novel algorithm that uses multiple short data segments. Using simulation studies, we showed that this algorithm produces system estimates with lower variability than previous methods when limited data are present. Furthermore, we showed that the new algorithm generates time-varying system estimates with lower total error than an ensemble method. Thus, this algorithm is well suited for the identification of physiological systems that vary with time or from which only short segments of stationary data can be collected.
Strong Two--Body Decays of Light Mesons
Ricken, R; Merten, D; Metsch, B C; Ricken, Ralf; Koll, Matthias; Merten, Dirk; Metsch, Bernard C.
2003-01-01
In this paper, we present results on strong two-body decay widths of light $q\\bar q$ mesons calculated in a covariant quark model. The model is based on the Bethe-Salpeter equation in its instantaneous approximation and has already been used for computing the complete meson mass spectrum and many electroweak decay observables. Our approach relies on the use of a phenomenological confinement potential with an appropriate spinorial Dirac structure and 't Hooft's instanton--induced interaction as a residual force for pseudoscalar and scalar mesons. The transition matrix element for the decay of one initial meson into two final mesons is evaluated in lowest order by considering conventional decays via quark loops as well as Zweig rule violating instanton--induced decays generated by the six--quark vertex of 't Hooft's interaction; the latter mechanism only contributes if all mesons in the decay have zero total angular momentum. We show that the interference of both decay mechanisms plays an important role in the ...
Material loss in two-body collisions during planet formation
Werner, J.; Schäfer, C.; Maindl, T. I.; Burger, C.; Speith, R.
2016-02-01
During the formation process of a terrestrial planet, a planetary embryo does not only accrete smaller dust particles but also suffers collisions with larger planetesimals. When simulating these collisions, most N-body codes treat them as perfect merging events, i.e. the resulting body's mass is the sum of the previous ones. In our work, we aim to determine whether this assumption is a justified simplification, specifically focusing on bodies containing volatile elements, such as water. To analyze this, we have developed a new Smooth Particle Hydrodynamics (SPH) code that includes elasto-plastic dynamics, a damage model for brittle materials and self gravity. It makes use of the Compute Unified Device Architecture (CUDA) and runs on modern GPU architectures which allows for higher resolution in less calculation time. This enables us to take a precise look at two-body collisions and determine the amount of both transferred and ejected mass according to specific parameters such as mass ratio of impactor and target, porosity, impact velocity, impact angle and water distribution.
Thermal Signature Identification System (TheSIS)
Merritt, Scott; Bean, Brian
2015-01-01
We characterize both nonlinear and high order linear responses of fiber-optic and optoelectronic components using spread spectrum temperature cycling methods. This Thermal Signature Identification System (TheSIS) provides much more detail than conventional narrowband or quasi-static temperature profiling methods. This detail allows us to match components more thoroughly, detect subtle reversible shifts in performance, and investigate the cause of instabilities or irreversible changes. In particular, we create parameterized models of athermal fiber Bragg gratings (FBGs), delay line interferometers (DLIs), and distributed feedback (DFB) lasers, then subject the alternative models to selection via the Akaike Information Criterion (AIC). Detailed pairing of components, e.g. FBGs, is accomplished by means of weighted distance metrics or norms, rather than on the basis of a single parameter, such as center wavelength.
Practical Modeling and Comprehensive System Identification of a BLDC Motor
Directory of Open Access Journals (Sweden)
Changle Xiang
2015-01-01
Full Text Available The aim of this paper is to outline all the steps in a rigorous and simple procedure for system identification of BLDC motor. A practical mathematical model for identification is derived. Frequency domain identification techniques and time domain estimation method are combined to obtain the unknown parameters. The methods in time domain are founded on the least squares approximation method and a disturbance observer. Only the availability of experimental data for rotor speed and armature current are required for identification. The proposed identification method is systematically investigated, and the final identified model is validated by experimental results performed on a typical BLDC motor in UAV.
IBCIS:Intelligent blood cell identification system
Institute of Scientific and Technical Information of China (English)
Adnan Khashman
2008-01-01
The analysis of blood cells in microscope images can provide useful information concerning the health of patients.There are three major blood cell types,namely,erythrocytes (red),leukocytes (white),and platelets.Manual classification is time consuming and susceptible to error due to the different morphological features of the cells.This paper presents an intelligent system that simulates a human visual inspection and classification of the three blood cell types.The proposed system comprises two phases:The image preprocessing phase where blood cell features are extracted via global pattern averaging,and the neural network arbitration phase where training is the first and then classification is carried out.Experimental results suggest that the proposed method performs well in identifying blood cell types regardless of their irregular shapes,sizes and orientation,thus providing a fast,simple and efficient rotational and scale invariant blood cell identification system which can be used in automating laboratory reporting.
Lightweight autonomous chemical identification system (LACIS)
Lozos, George; Lin, Hai; Burch, Timothy
2012-06-01
Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.
Advanced 3D Object Identification System Project
National Aeronautics and Space Administration — During the Phase I effort, OPTRA developed object detection, tracking, and identification algorithms and successfully tested these algorithms on computer-generated...
Time-Delay System Identification Using Genetic Algorithm
DEFF Research Database (Denmark)
Yang, Zhenyu; Seested, Glen Thane
2013-01-01
Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique...
NNSYSID - toolbox for system identification with neural networks
DEFF Research Database (Denmark)
Norgaard, M.; Ravn, Ole; Poulsen, Niels Kjølstad
2002-01-01
The NNSYSID toolset for System Identification has been developed as an add on to MATLAB(R). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains a number of nonlinear model structures based on neural networks, effective training algorithms...
NNSYSID - toolbox for system identification with neural networks
DEFF Research Database (Denmark)
Norgaard, M.; Ravn, Ole; Poulsen, Niels Kjølstad
2002-01-01
The NNSYSID toolset for System Identification has been developed as an add on to MATLAB(R). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains a number of nonlinear model structures based on neural networks, effective training algorithms...
Particle Identification with the LHCb RICH System
Harnew, Neville
2005-01-01
The LHCb experiment uses a Ring Imaging Cherenkov (RICH) system to provide particle identification over the momentum range 2-100 GeV/c. Two RICH detectors are employed. The upstream detector, RICH1, utilizes both aerogel and C$_4$F$_{10}$ gas radiators whilst the downstream RICH2 uses a CF$_4$ gas radiator. The RICH2 detector has been fabricated and is installed in the LHCb interaction region; RICH1 has a programme of phased design and construction. Novel Hybrid Photon Detectors (HPDs) have been developed in collaboration with industry to detect the Cherenkov photons in the wavelength range 200-600 nm. The HPDs are enclosed in iron shielding and Mumetal cylinders to allow operation in magnetic fields up to 50mT. The performance of pre-series HPDs and the results obtained from a particle test beam using the full LHCb readout chain is presented. The production of a total of 484 HPDs required for the two RICH detectors has recently commenced. The expected performance of the LHCb RICH system, obtained from real...
Evaluation of fungichrom 1: A new yeast identification system
Directory of Open Access Journals (Sweden)
Umabala P
2002-01-01
Full Text Available Advances in anti-fungal therapy necessitate the need for accurate identification of fungi especially yeasts to their species level for more effective management. Unlike the time consuming conventional methods of yeast identification using fermentation and assimilation patterns of various carbohydrates, the new commercialized yeast identification systems are simpler, rapid and are particularly easy to interpret. In our study, a new colorimetric yeast identification system-Fungichrom 1(International microbio, Signes, France was evaluated against the conventional method to identify 50 clinical isolates of yeasts belonging to the genera -Candida, Cryptococcus, Geotrichum. 96% agreement was found between the two methods.
Evaluation of Fungichrom 1: a new yeast identification system.
Umabala, P; Satheeshkumar, T; Lakshmi, V
2002-01-01
Advances in anti-fungal therapy necessitate the need for accurate identification of fungi especially yeasts to their species level for more effective management. Unlike the time consuming conventional methods of yeast identification using fermentation and assimilation patterns of various carbohydrates, the new commercialized yeast identification systems are simpler, rapid and are particularly easy to interpret. In our study, a new colorimetric yeast identification system-Fungichrom 1(International microbio, Signes, France) was evaluated against the conventional method to identify 50 clinical isolates of yeasts belonging to the genera -Candida, Cryptococcus, Geotrichum. 96% agreement was found between the two methods.
Comparative Study between ARX and ARMAX System Identification
Directory of Open Access Journals (Sweden)
Farzin Piltan
2017-02-01
Full Text Available System Identification is used to build mathematical models of a dynamic system based on measured data. To design the best controllers for linear or nonlinear systems, mathematical modeling is the main challenge. To solve this challenge conventional and intelligent identification are recommended. System identification is divided into different algorithms. In this research, two important types algorithm are compared to identifying the highly nonlinear systems, namely: AutoRegressive with eXternal model input (ARX and Auto Regressive moving Average with eXternal model input (Armax Theory. These two methods are applied to the highly nonlinear industrial motor.
49 CFR 1542.211 - Identification systems.
2010-10-01
... secured area or SIDA continuously displays the identification medium issued to that individual on the... individual who has authorized unescorted access to secured areas and SIDA's to ascertain the authority of any... approved identification media. The procedure must— (1) Apply uniformly in secured areas, SIDAs, and...
Charmless hadronic two-body decays of Bs mesons
Chen, Yaw-Hwang; Cheng, Hai-Yang; Tseng, B.
1999-04-01
Two-body charmless nonleptonic decays of the Bs meson are studied within the framework of generalized factorization in which factorization is applied to the tree level matrix elements while the effective Wilson coefficients are μ and renormalization scheme independent, and nonfactorizable effects are parametrized in terms of Neffc(LL) and Neffc(LR), the effective numbers of colors arising from (V-A)(V-A) and (V-A)(V+A) four-quark operators, respectively. Branching ratios of Bs-->PP,PV,VV decays (P: pseudoscalar meson, V: vector meson) are calculated as a function of Neffc(LR) with two different considerations for Neffc(LL): (a) Neffc(LL) being fixed at the value of 2 and (b) Neffc(LL)=Neffc(LR). Tree and penguin transitions are classified into six different classes. We find the following. (i) The electroweak penguin contributions account for about 85% [for Neffc(LL)=2] of the decay rates of Bs-->ηπ, η'π, ηρ, η'ρ, φπ, φρ, which receive contributions only from tree and electroweak penguin diagrams; a measurement of them will provide a clean determination of the electroweak penguin coefficient a9. (ii) Electroweak penguin corrections to Bs-->ωη('),φη,ωφ,K(*)φ,φφ are in general as significant as QCD penguin effects and even play a dominant role; their decay rates depend strongly on Neffc(LR). (iii) The branching ratio of Bs-->ηη', the analogue of Bd-->η'K, is of order 2×10-5, which is only slightly larger than that of η'η',K*+ρ-,K+K-,K0K¯0 decay modes. (iv) The contribution from the η' charm content is important for Bs-->η'η', but less significant for Bs-->ηη'. (v) The decay rates for the final states K+(*)K-(*) follow the pattern Γ(B¯s-->K+K-)>Γ(B¯s-->K+K*-)>~Γ(B¯s-->K*+K*-)>Γ(B¯s-->K+*K-) and likewise for K0(*)K¯0(*), as a consequence of various interference effects between the penguin amplitudes governed by the effective QCD penguin coefficients a4 and a6.
Improving the Volume Dependence of Two-Body Binding Energies Calculated with Lattice QCD
Davoudi, Zohreh
2011-01-01
Volume modifications to the binding of two-body systems in large cubic volumes of extent L depend upon the total momentum and exponentially upon the ratio of L to the size of the boosted system. Recent work by Bour et al determined the momentum dependence of the leading volume modifications to nonrelativistic systems with periodic boundary conditions imposed on the single-particle wavefunctions, enabling them to numerically determine the scattering of such bound states using a low-energy effective field theory and Luschers finite-volume method. The calculation of bound nuclear systems directly from QCD using Lattice QCD has begun, and it is important to reduce the systematic uncertainty introduced into such calculations by the finite spatial extent of the gauge-field configurations. We extend the work of Bour et al from nonrelativistic quantum mechanics to quantum field theory by generalizing the work of Luscher and of Gottlieb and Rummukainen to boosted two-body bound states. The volume modifications to bind...
Nonlinear system identification based on internal recurrent neural networks.
Puscasu, Gheorghe; Codres, Bogdan; Stancu, Alexandru; Murariu, Gabriel
2009-04-01
A novel approach for nonlinear complex system identification based on internal recurrent neural networks (IRNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This approach employs internal state estimation when no measurements coming from the sensors are available for the system states. A modified backpropagation algorithm is introduced in order to train the IRNN for nonlinear system identification. The performance of the proposed design approach is proven on a car simulator case study.
Performance Test of System Identification Methods for a Nuclear Reactor
Energy Technology Data Exchange (ETDEWEB)
Yu, Keuk Jong; Kim, Han Gon [KHNP, Daejeon (Korea, Republic of)
2011-05-15
An automatic controller that uses the model predictive control (MPC) method is being developed for automatic load follow operation. As described in Ref. a system identification method is important in the MPC method because MPC is based on a system model produced by system identification. There are many models and methods of system identification. In this study, AutoRegressive eXogenous (ARX) model was selected from among them, and the recursive least square (RLS) method and least square (LS) method associated with this model are used in a comparative performance analysis
Cho, Soojin; Park, Jong-Woong; Sim, Sung-Han
2015-04-08
Wireless sensor networks (WSNs) facilitate a new paradigm to structural identification and monitoring for civil infrastructure. Conventional structural monitoring systems based on wired sensors and centralized data acquisition systems are costly for installation as well as maintenance. WSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. In this paper, the stochastic subspace identification (SSI) technique is selected for system identification, and SSI-based decentralized system identification (SDSI) is proposed to be implemented in a WSN composed of Imote2 wireless sensors that measure acceleration. The SDSI is tightly scheduled in the hierarchical WSN, and its performance is experimentally verified in a laboratory test using a 5-story shear building model.
Offline synchronization of data acquisition systems using system identification
Maes, K.; Reynders, E.; Rezayat, A.; Roeck, G. De; Lombaert, G.
2016-10-01
This paper presents a technique for offline time synchronization of data acquisition systems. The technique can be applied when real-time synchronization of data acquisition systems is impossible or not sufficiently accurate. It allows for accurate synchronization based on the acquired dynamic response of the structure only, without requiring a common response or the use of a trigger signal. The synchronization is performed using the results obtained from system identification, and assumes linear dynamic behavior of the structure and proportional damping of the structural modes. A demonstration for a laboratory experiment on a cantilever steel beam shows that the proposed methodology can be used for accurate time synchronization, resulting in a significant improvement of the accuracy of the identified mode shapes.
Dynamic system multivariate calibration by system identification methods
Directory of Open Access Journals (Sweden)
Rolf Ergon
1998-04-01
Full Text Available In the first part of the paper, the optimal estimator for normally nonmeasured primary outputs from a linear and time invariant dynamic system is developed. The estimator is based on an underlying Kalman filter, utilizing all available information in known inputs and measured secondary outputs. Assuming sufficient experimental data, the optimal estimator can be identified by specifying an output error model in a standard prediction error identification method. It is further shown that static estimators found by the ordinary least squares method or multivariate calibration by means of principal component regression (PCR or partial least squares regression (PLSR can be seen as special cases of the optimal dynamic estimator. Finally, it is shown that dynamic system PCR and PLSR solutions can be developed as special cases of the general estimator for dynamic systems.
Non-linear system identification in flow-induced vibration
Energy Technology Data Exchange (ETDEWEB)
Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)
1996-12-31
The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.
State-space system identification of robot manipulator dynamics
Johansson, Rolf; Robertsson, Anders; Nilsson, Klas; Verhaegen, Michel
2000-01-01
We have applied and evaluated system identification methods using both commercial software and dedicated subspace model identification software (MOESP). Results using the different software tools have been similar (but not identical) in accuracy and predictive power, the main differences being the t
Substructure System Identification for Finite Element Model Updating
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
Autonomous system for pathogen detection and identification
Energy Technology Data Exchange (ETDEWEB)
Belgrader, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benett, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Langlois, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mariella, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Milanovich, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Miles, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Venkateswaran, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Long, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
1998-09-24
This purpose of this project is to build a prototype instrument that will, running unattended, detect, identify, and quantify BW agents. In order to accomplish this, we have chosen to start with the world' s leading, proven, assays for pathogens: surface-molecular recognition assays, such as antibody-based assays, implemented on a high-performance, identification (ID)-capable flow cytometer, and the polymerase chain reaction (PCR) for nucleic-acid based assays. With these assays, we must integrate the capability to: l collect samples from aerosols, water, or surfaces; l perform sample preparation prior to the assays; l incubate the prepared samples, if necessary, for a period of time; l transport the prepared, incubated samples to the assays; l perform the assays; l interpret and report the results of the assays. Issues such as reliability, sensitivity and accuracy, quantity of consumables, maintenance schedule, etc. must be addressed satisfactorily to the end user. The highest possible sensitivity and specificity of the assay must be combined with no false alarms. Today, we have assays that can, in under 30 minutes, detect and identify simulants for BW agents at concentrations of a few hundred colony-forming units per ml of solution. If the bio-aerosol sampler of this system collects 1000 Ymin and concentrates the respirable particles into 1 ml of solution with 70% processing efficiency over a period of 5 minutes, then this translates to a detection/ID capability of under 0.1 agent-containing particle/liter of air.
Two-Body Reactions at Large Transverse Momentum
2002-01-01
Large-angle exclusive reactions are studied, in particular elastic scattering and @*p annihilations into @p|+@p|- and K|+K|-. In a previous geometry, the 90|0 c.m. region was covered. The present geometry covers the -t range from about 1 to 8 (GeV/c)|2. The aim is to tie these two regions together and attem understading of large-angle scattering up to our highest energies. \\\\ \\\\ The experiment uses a 1 m liquid H^2 target surrounded by scintillator and lead sandwiches for vetoing neutral and charged particles missing the acceptance. An aerogel Cerenkov counter in the recoil arm can be used to veto charged pions above 0.8 GeV/c. Otherwise the events are selected as previously with fast coincidence matrices using pulses from arrays of scintillator counters. Identification of particles is carried out with threshold Cerenkov counters and iron calorimeters. MWPC's are used to establish the trajectories of the particles.
Device identification of mechanical properties of electromagnetic systems
Directory of Open Access Journals (Sweden)
Ю.Т. Гуз
2008-01-01
Full Text Available It’s developed a method that structural the scheme of the identification device the mechanical characteristic of the relay of a direct current with no saturated magnetic system.
Frequency weighted system identification and linear quadratic controller design
Horta, Lucas G.; Phan, Minh; Juang, Jer-Nan; Longman, Richard W.; Sulla, Jeffrey L.
1991-01-01
Application of filters for frequency weighting of Markov parameters (pulse response functions) is described in relation to system/observer identification. The time domain identification approach recovers a model which has a pulse response weighted according to frequency. The identified model is composed of the original system and filters. The augmented system is in a form which can be used directly for frequency weighted linear quadratic controller design. Data from either single or multiple experiments can be used to recover the Markov parameters. Measured acceleration signals from a truss structure are used for system identification and the model obtained is used for frequency weighted controller design. The procedure makes the identification and controler design complementary problems.
Biologically-motivated system identification: application to microbial growth modeling.
Yan, Jinyao; Deller, J R
2014-01-01
This paper presents a new method for identification of system models that are linear in parametric structure, but arbitrarily nonlinear in signal operations. The strategy blends traditional system identification methods with three modeling strategies that are not commonly employed in signal processing: linear-time-invariant-in-parameters models, set-based parameter identification, and evolutionary selection of the model structure. This paper reports recent advances in the theoretical foundation of the methods, then focuses on the operation and performance of the approach, particularly the evolutionary model determination. The method is applied to the modeling of microbial growth by Monod Kinetics.
System identification with belief calculus; Systemidentifikation mittels Glaubenskalkuel
Energy Technology Data Exchange (ETDEWEB)
Duerrbaum, A.; Sommer, H. [Kassel Univ. (Germany). Fachgebiet Mess- und Regelungstechnik; Scherm, W. [Kassel Univ. (Germany). Inst. fuer Produktionstechnik und Logistik
2008-07-01
Belief theory provides a very powerful tool for system identification. In this paper the principal method is presented and compared with probability-theory based identification methods. The new method allows to transfer all user requests into optimisable parameters and makes a priori assumptions superfluous. The efficiency of the method is demonstrated in a practical application: the design of a systems which forecasts the damage of drill-bits. (orig.)
One plus two-body random matrix ensembles with parity: Density of states and parity ratios
Vyas, Manan; Srivastava, P C
2011-01-01
One plus two-body embedded Gaussian orthogonal ensemble of random matrices with parity [EGOE(1+2)-$\\pi$] generated by a chaos producing two-body interaction in the presence of a mean-field, for spinless identical fermion systems, is defined in terms of two mixing parameters and a gap between the positive $(\\pi=+)$ and negative $(\\pi=-)$ parity single particle (sp) states. Numerical calculations are used to demonstrate, using realistic values of the mixing parameters appropriate for some nuclei, that this ensemble generates Gaussian form (with corrections) for fixed parity eigenvalue densities (i.e. state densities). The random matrix model also generates many features in parity ratios of state densities that are similar to those predicted by a method based on the Fermi-gas model for nuclei. We have also obtained a simple formula for the spectral variances defined over fixed-$(m_1,m_2)$ spaces, where $m_1$ is the number of fermions in the $+$ve parity sp states and $m_2$ is the number of fermions in the $-$ve ...
Online contact impedance identification for robotic systems
Haddadi, Amir; Hashtrudi-Zaad, Keyvan
2008-01-01
In this paper, we study the performance of various algorithms for fast online identification of environment impedance during robotic contact tasks. In particular, we evaluate and compare algorithms with regard to their convergence rate, computational complexity and sensitivity to noise for different
System identification of the Arabidopsis plant circadian system
Foo, Mathias; Somers, David E.; Kim, Pan-Jun
2015-02-01
The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.
Closed-loop System Identification with New Sensors
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob
2008-01-01
This paper deals with system identification of new system dynamics revealed by online introduction of new sensors in existing multi-variable linear control systems. The so-called "Hansen Scheme" utilises the dual Youla-Kucera parameterisation of all systems stabilised by a given linear controller...... to transform closed-loop system identification problems into open-loop-like problems. We show that this scheme can be formally extended to accomodate extra sensors in a nice way. The approach is illustrated on a simple simulation example....
Nonlinear system identification with global and local soft computing methods
Energy Technology Data Exchange (ETDEWEB)
Runkler, T.A. [Siemens AG, Muenchen (Germany). Zentralabt. Technik Information und Kommunikation
2000-10-01
An important step in the design of control systems is system identification. Data driven system identification finds functional models for the system's input output behavior. Regression methods are simple and effective, but may cause overshoots for complicated characteristics. Neural network approaches such as the multilayer perceptron yield very accurate models, but are black box approaches which leads to problems in system and stability analysis. In contrast to these global modeling methods crisp and fuzzy rule bases represent local models that can be extracted from data by clustering methods. Depending on the type and number of models different degrees of model accuracy can be achieved. (orig.)
Identification of the nonlinear vibration system of power transformers
Jing, Zheng; Hai, Huang; Pan, Jie; Yanni, Zhang
2017-01-01
This paper focuses on the identification of the nonlinear vibration system of power transformers. A Hammerstein model is used to identify the system with electrical inputs and the vibration of the transformer tank as the output. The nonlinear property of the system is modelled using a Fourier neural network consisting of a nonlinear element and a linear dynamic block. The order and weights of the network are determined based on the Lipschitz criterion and the back-propagation algorithm. This system identification method is tested on several power transformers. Promising results for predicting the transformer vibration and extracting system parameters are presented and discussed.
Regularization of the collision in the electromagnetic two-body problem
Hollander, Efrain Buksman; De Luca, Jayme
2004-12-01
We derive a differential equation that is regular at the collision of two equal-mass bodies with attractive interaction in the relativistic action-at-a-distance electrodynamics. We use the energy constant related to the Poincaré invariance of the theory to define finite variables with finite derivatives at the collision. The collision orbits are calculated numerically using the regular equation adapted in a self-consistent minimization method (a stable numerical method that chooses only nonrunaway solutions). This dynamical system appeared 100 years ago as an example of covariant time-symmetric two-body dynamics and acquired the status of electrodynamics in the 1940s by the works of Dirac, Wheeler, and Feynman. We outline the method with an emphasis on the physics of this complex conservative dynamical system.
Input-output identification of controlled discrete manufacturing systems
Estrada-Vargas, Ana Paula; López-Mellado, Ernesto; Lesage, Jean-Jacques
2014-03-01
The automated construction of discrete event models from observations of external system's behaviour is addressed. This problem, often referred to as system identification, allows obtaining models of ill-known (or even unknown) systems. In this article, an identification method for discrete event systems (DESs) controlled by a programmable logic controller is presented. The method allows processing a large quantity of observed long sequences of input/output signals generated by the controller and yields an interpreted Petri net model describing the closed-loop behaviour of the automated DESs. The proposed technique allows the identification of actual complex systems because it is sufficiently efficient and well adapted to cope with both the technological characteristics of industrial controllers and data collection requirements. Based on polynomial-time algorithms, the method is implemented as an efficient software tool which constructs and draws the model automatically; an overview of this tool is given through a case study dealing with an automated manufacturing system.
A portable air jet actuator device for mechanical system identification.
Belden, Jesse; Staats, Wayne L; Mazumdar, Anirban; Hunter, Ian W
2011-03-01
System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon--the Coandă effect--is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.
System identification methods for aircraft flight control development and validation
Tischler, Mark B.
1995-01-01
System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.
Directory of Open Access Journals (Sweden)
Lukas eHeydrich
2013-12-01
Full Text Available In neurology and psychiatry the detailed study of illusory own body perceptions has suggested close links between bodily processing and self-consciousness. One such illusory own body perception is heautoscopy where patients have the sensation of being reduplicated and to exist at two or even more locations. In previous experiments, using a video head-mounted display, self-location and self-identification were manipulated by applying conflicting visuo-tactile information. Yet the experienced singularity of the self was not affected, i.e. participants did not experience having multiple bodies or selves. In two experiments presented in this paper, we investigated self-location and self-identification while participants saw two virtual bodies (video-generated in study 1 and 3D computer generated in study 2 that were stroked either synchronously or asynchronously with their own body. In both experiments, we report that self-identification with two virtual bodies was stronger during synchronous stroking. Furthermore, in the video generated setup with synchronous stroking participants reported a greater feeling of having multiple bodies than in the control conditions. In study 1, but not in study 2, we report that self-location – measured by anterior posterior drift – was significantly shifted towards the two bodies in the synchronous condition only. Self-identification with two bodies, the sensation of having multiple bodies, and the changes in self-location show that the experienced singularity of the self can be studied experimentally. We discuss our data with respect to ownership for supernumerary hands and heautoscopy. We finally compare the effects of the video and 3D computer generated head-mounted display technology and discuss the possible benefits of using either technology to induce changes in illusory self-identification with a virtual body.
Heydrich, Lukas; Dodds, Trevor J.; Aspell, Jane E.; Herbelin, Bruno; Bülthoff, Heinrich H.; Mohler, Betty J.; Blanke, Olaf
2013-01-01
In neurology and psychiatry the detailed study of illusory own body perceptions has suggested close links between bodily processing and self-consciousness. One such illusory own body perception is heautoscopy where patients have the sensation of being reduplicated and to exist at two or even more locations. In previous experiments, using a video head-mounted display, self-location and self-identification were manipulated by applying conflicting visuo-tactile information. Yet the experienced singularity of the self was not affected, i.e., participants did not experience having multiple bodies or selves. In two experiments presented in this paper, we investigated self-location and self-identification while participants saw two virtual bodies (video-generated in study 1 and 3D computer generated in study 2) that were stroked either synchronously or asynchronously with their own body. In both experiments, we report that self-identification with two virtual bodies was stronger during synchronous stroking. Furthermore, in the video generated setup with synchronous stroking participants reported a greater feeling of having multiple bodies than in the control conditions. In study 1, but not in study 2, we report that self-location – measured by anterior posterior drift – was significantly shifted towards the two bodies in the synchronous condition only. Self-identification with two bodies, the sensation of having multiple bodies, and the changes in self-location show that the experienced singularity of the self can be studied experimentally. We discuss our data with respect to ownership for supernumerary hands and heautoscopy. We finally compare the effects of the video and 3D computer generated head-mounted display technology and discuss the possible benefits of using either technology to induce changes in illusory self-identification with a virtual body. PMID:24385970
Incremental Closed-loop Identification of Linear Parameter Varying Systems
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, Klaus
2011-01-01
This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately, cl...
Dynamic Modeling and Parameter Identification of Power Systems
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
@@ The generator, the excitation system, the steam turbine and speed governor, and the load are the so called four key models of power systems. Mathematical modeling and parameter identification for the four key models are of great importance as the basis for designing, operating, and analyzing power systems.
Reconstruction of two-body B decays in LHCb
AUTHOR|(CDS)2068023
2007-01-01
The observed dominance of matter over antimatter in the Universe leads to the hypothesis of the Sakharov conditions for the laws of nature. One of them implies the breaking of the charge-parity (CP) symmetry. The violation of the CP symmetry has been observed in several decays of kaons and B mesons and is incorporated in the Standard Model via the CKM matrix, describing the quark transitions in the charged current weak interactions. The Large Hadron Collider (LHC) provides a copious source of bb quark pairs, offering an excellent facility to study CP violation in the B meson system. The LHC is a powerful pp collider, which will accelerate proton bunches in opposite directions in a ring of 27 km circumference. Protons will collide every 25 ns at a center-of-mass energy of 14 TeV. It is foreseen to start operation in 2008. LHCb, one of the four experiments along the LHC ring, is dedicated to the study of CP violation and rare decays in the B meson system. Since bb pairs are mostly produced in a forward cone alo...
Reconstruction of two-body B decays in LHCb
AUTHOR|(CDS)2068023
2007-01-01
The observed dominance of matter over antimatter in the Universe leads to the hypothesis of the Sakharov conditions for the laws of nature. One of them implies the breaking of the charge-parity (CP) symmetry. The violation of the CP symmetry has been observed in several decays of kaons and B mesons and is incorporated in the Standard Model via the CKM matrix, describing the quark transitions in the charged current weak interactions. The Large Hadron Collider (LHC) provides a copious source of bb quark pairs, offering an excellent facility to study CP violation in the B meson system. The LHC is a powerful pp collider, which will accelerate proton bunches in opposite directions in a ring of 27 km circumference. Protons will collide every 25 ns at a center-of-mass energy of 14 TeV. It is foreseen to start operation in 2008. LHCb, one of the four experiments along the LHC ring, is dedicated to the study of CP violation and rare decays in the B meson system. Since bb pairs are mostly produced in a forward cone alo...
Gain Scheduling Control based on Closed-Loop System Identification
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, Klaus
This paper deals with system identification and gain scheduling control of multi-variable nonlinear systems. We propose a novel scheme where a linear approximation of the system model is obtained in an operating point; then, a Youla-Kucera (YJBK) parameter specifying the difference between...... the first and a second operating point is identified in closed-loop using system identification methods with open-loop properties. Next, a linear controller is designed for this linearised model, and gain scheduling control can subsequently be achieved by interpolating between each controller...
Identification of System Parameters by the Random Decrement Technique
DEFF Research Database (Denmark)
Brincker, Rune; Kirkegaard, Poul Henning; Rytter, Anders
1991-01-01
The aim of this paper is to investigate and illustrate the possibilities of using correlation functions estimated by the Random Decrement Technique as a basis for parameter identification. A two-stage system identification system is used: first, the correlation functions are estimated by the Rand......-Walker equations and finally, least-square fitting of the theoretical correlation function. The results are compared to the results of fitting an Auto Regressive Moving Average (ARMA) model directly to the system output from a single-degree-of-freedom system loaded by white noise....
MAC, A System for Automatically IPR Identification, Collection and Distribution
Serrão, Carlos
Controlling Intellectual Property Rights (IPR) in the Digital World is a very hard challenge. The facility to create multiple bit-by-bit identical copies from original IPR works creates the opportunities for digital piracy. One of the most affected industries by this fact is the Music Industry. The Music Industry has supported huge losses during the last few years due to this fact. Moreover, this fact is also affecting the way that music rights collecting and distributing societies are operating to assure a correct music IPR identification, collection and distribution. In this article a system for automating this IPR identification, collection and distribution is presented and described. This system makes usage of advanced automatic audio identification system based on audio fingerprinting technology. This paper will present the details of the system and present a use-case scenario where this system is being used.
Robinson, S J Q; Robinson, Shadow J.Q.; Zamick, Larry
2002-01-01
Calculations of the spectra of various even-even nuclei in the fp shell ($^{44}$Ti, $^{46}$Ti, $^{48}$Cr, and $^{50}$Cr) are performed with two sets of two-body interaction matrix elements. The first set consists of the matrix elements of the FPD6 interaction. The second set have the same T=1 two-body matrix elements as the FPD6 interaction, but all the T=0 two-body matrix elements are set equal to zero. Despite the drastic differences between the two interactions, the spectra they yield are very similar and indeed it is difficult to say which set gives a better fit to experiment. That the results for the yrast spectra are insensitive to the presence or absence of T=0 two-body matrix elements is surprising because the only bound two nucleon system has T=0, namely the deuteron. Also there is the general folklore that T=0 matrix elements are responsible for nuclear collectivity. Electric quadrupole transition rates are also examined. It is found that the reintroduction of T=0 matrix elements leads to an enhance...
Searches for CP violation in two-body charm decays
AUTHOR|(CDS)2073698
2015-01-01
The LHCb experiment recorded data corresponding to an integrated luminosity of 3.0 $fb^{-1}$ during its first run of data taking. These data yield the largest samples of charmed hadrons in the world and are used to search for CP violation in the $D^0$ system. Among the many measurements performed at LHCb, a measurement of the direct CP asymmetry in $D^0 \\rightarrow K_S^0 K_S^0$ decays is presented and is found to be $A_{CP}(D^0 \\rightarrow K_S^0 K_S^0) = (-2.9 \\pm 5.2 \\pm 2.2)\\, \\%, $ where the first uncertainty is statistical and the second systematic. This represents a significant improvement in precision over the previous measurement of this parameter. Measurements of the parameter $A^\\Gamma$, defined as the CP asymmetry of the $D^0$ effective lifetime when decaying to a CP eigenstate, are also presented. Using semi-leptonic b-hadron decays to tag the flavour of the $D^0$ meson at production with the $K^+K^-$ and $\\pi^+\\pi^-$ final states yields $A^\\Gamma(K^+K^-) = (-0.134 \\pm 0.077^{+0.026}_{-0.034})\\, \\%...
Evidence for Two-Body Hadronic Decays of the Upsilon
Dytman, S A; Müller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S R; Dambasuren, E; Dorjkhaidav, O; Mountain, R; Muramatsu, H; Nandakumar, R; Skwarnicki, T; Stone, S; Wang, J C; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Richichi, S J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Wilksen, T; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stöck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R A; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z V; Seth, K K; Tomaradze, A G; Zweber, P; Ernst, J; Severini, H; Skubic, P L
2003-01-01
We describe a search for hadronic decays of the Y(1S), Y(2S), and Y(3S) resonances to the exclusive final states rho pi, K*(892) Kbar, rho a2(1320), omega f2(1270), phi f2'(1525), K*(892) K2*(1430)bar, b1(1235) pi, K1(1270) Kbar, and K1(1400) Kbar. Upper limits at 90% CL are set for all these decays from all three resonances below 33x10**-6; in particular, B(Y(1S)--> rho pi) phi f2'(1525)) = (7 +3-2(stat) +-1(syst)) x 10**-6 and B(Y(1S) --> K1(1400) Kbar) = (14 +4-3(stat) +-2(syst)) x 10**-6. Production of K1(1270) Kbar in Y(1S) decay is suppressed relative to that of K1(1400) Kbar. These results add another piece to the challenging ``rho-pi puzzle'' of the charmonium system, placing constraints on models of how quantum chromodynamics should be applied to heavy quarkonia. All results are preliminary.
Improved Stochastic Subspace System Identification for Structural Health Monitoring
Chang, Chia-Ming; Loh, Chin-Hsiung
2015-07-01
Structural health monitoring acquires structural information through numerous sensor measurements. Vibrational measurement data render the dynamic characteristics of structures to be extracted, in particular of the modal properties such as natural frequencies, damping, and mode shapes. The stochastic subspace system identification has been recognized as a power tool which can present a structure in the modal coordinates. To obtain qualitative identified data, this tool needs to spend computational expense on a large set of measurements. In study, a stochastic system identification framework is proposed to improve the efficiency and quality of the conventional stochastic subspace system identification. This framework includes 1) measured signal processing, 2) efficient space projection, 3) system order selection, and 4) modal property derivation. The measured signal processing employs the singular spectrum analysis algorithm to lower the noise components as well as to present a data set in a reduced dimension. The subspace is subsequently derived from the data set presented in a delayed coordinate. With the proposed order selection criteria, the number of structural modes is determined, resulting in the modal properties. This system identification framework is applied to a real-world bridge for exploring the feasibility in real-time applications. The results show that this improved system identification method significantly decreases computational time, while qualitative modal parameters are still attained.
Online identification of nonlinear spatiotemporal systems using kernel learning approach.
Ning, Hanwen; Jing, Xingjian; Cheng, Li
2011-09-01
The identification of nonlinear spatiotemporal systems is of significance to engineering practice, since it can always provide useful insight into the underlying nonlinear mechanism and physical characteristics under study. In this paper, nonlinear spatiotemporal system models are transformed into a class of multi-input-multi-output (MIMO) partially linear systems (PLSs), and an effective online identification algorithm is therefore proposed by using a pruning error minimization principle and least square support vector machines. It is shown that many benchmark physical and engineering systems can be transformed into MIMO-PLSs which keep some important physical spatiotemporal relationships and are very helpful in the identification and analysis of the underlying system. Compared with several existing methods, the advantages of the proposed method are that it can make full use of some prior structural information about system physical models, can realize online estimation of the system dynamics, and achieve accurate characterization of some important nonlinear physical characteristics of the system. This would provide an important basis for state estimation, control, optimal analysis, and design of nonlinear distributed parameter systems. The proposed algorithm can also be applied to identification problems of stochastic spatiotemporal dynamical systems. Numeral examples and comparisons are given to demonstrate our results.
One-body and Two-body Fractional Parentage Coefficients for Spinor Bose-Einstein Condensation
Institute of Scientific and Technical Information of China (English)
BAO Cheng-guang
2006-01-01
A very effective tool,namely,the analytical expression of the fractional parentage coefficients (FPC),is introduced in this paper to deal with the total spin states of N-body spinor bosonic systems,where N is supposed to be large and the spin of each boson is one.In particular,the analytical forms of the one-body and two-body FPC for the total spin states with {N} and {N-1,1} permutation symmetries have been derived.These coefficients facilitate greatly the calculation of related matrix elements,and they can be used even in the case of N →∞.Theyappear as a powerful tool for the establishment of an improved theory of spinor Bose-Einstein condensation,where the eigenstates have the total spin S and its Z-component being both conserved.
Parametric Study of Two-Body Floating-Point Wave Absorber
Institute of Scientific and Technical Information of China (English)
Atena Amiri; Roozbeh Panahi; Soheil Radfar
2016-01-01
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter’s efficiency when considering specific conditions.
Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem
Oltean, Marius; Bonetti, Luca; Spallicci, Alessandro D. A. M.; Sopuerta, Carlos F.
2016-09-01
In classical Hamiltonian theories, entropy may be understood either as a statistical property of canonical systems or as a mechanical property, that is, as a monotonic function of the phase space along trajectories. In classical mechanics, there are theorems which have been proposed for proving the nonexistence of entropy in the latter sense. We explicate, clarify, and extend the proofs of these theorems to some standard matter (scalar and electromagnetic) field theories in curved spacetime, and then we show why these proofs fail in general relativity; due to properties of the gravitational Hamiltonian and phase space measures, the second law of thermodynamics holds. As a concrete application, we focus on the consequences of these results for the gravitational two-body problem, and in particular, we prove the noncompactness of the phase space of perturbed Schwarzschild-Droste spacetimes. We thus identify the lack of recurring orbits in phase space as a distinct sign of dissipation and hence entropy production.
Non-Collision Singularities in the Planar Two-Center-Two-Body Problem
Xue, Jinxin; Dolgopyat, Dmitry
2016-08-01
In this paper, we study a restricted four-body problem called the planar two-center-two-body problem. In the plane, we have two fixed centers Q 1 and Q 2 of masses 1, and two moving bodies Q 3 and Q 4 of masses {μ≪ 1}. They interact via Newtonian potential. Q 3 is captured by Q 2, and Q 4 travels back and forth between two centers. Based on a model of Gerver, we prove that there is a Cantor set of initial conditions that lead to solutions of the Hamiltonian system whose velocities are accelerated to infinity within finite time avoiding all earlier collisions. This problem is a simplified model for the planar four-body problem case of the Painlevé conjecture.
Performance of Personal Identification System Technique Using Iris Biometrics Technology
Directory of Open Access Journals (Sweden)
V.K. Narendira Kumar
2013-04-01
Full Text Available The Iris identification as one of the significant techniques of biometric identification systems s and iris recognition algorithm is described. Biometric technology advances intellectual properties are wanted by many unauthorized personnel. As a result many researchers have being searching ways for more secure authentication methods for the user access. Iris recognition uses iris patterns for personnel identification. The system steps are capturing iris patterns; determining the location of iris boundaries; converting the iris boundary to the stretched polar coordinate system; extracting iris code based on texture analysis. The system has been implemented and tested using dataset of number of samples of iris data with different contrast quality. The developed algorithm performs satisfactorily on the images, provides 93% accuracy. Experimental results show that the proposed method has an encouraging performance.
An Immunology-inspired Fault Detection and Identification System
Directory of Open Access Journals (Sweden)
Liguo Weng
2012-09-01
Full Text Available This paper presents a fault detection and identification (FDI approach inspired by the immune system. The salient features of the immune system, such as adaptability, robustness, flexibility, archival memory and distributed cognition abilities, have been the valuable source of inspiration for fundamentally new methods for fault detection and identification. This research makes use of immunological concepts to develop a robust fault detection and identification mechanism, capable of detecting and classifying diverse system faults dynamically. Such an FDI mechanism also has the ability to learn and classify overlapping faults using distributed sensing. Moreover, its detection accuracy can be continuously improved during system operation. As tested by numerical simulations in which faults are represented by overlapping banana functions, the proposed algorithms are adaptive to new types of faults and overlapping faults.
Identification of Stochastic Wiener Systems using Indirect Inference
2015-01-01
We study identification of stochastic Wiener dynamic systems using so-called indirect inference. The main idea is to first fit an auxiliary model to the observed data and then in a second step, often by simulation, fit a more structured model to the estimated auxiliary model. This two-step procedure can be used when the direct maximum-likelihood estimate is difficult or intractable to compute. One such example is the identification of stochastic Wiener systems, i.e.,~linear dynamic systems wi...
Nonlinear system identification and control based on modular neural networks.
Puscasu, Gheorghe; Codres, Bogdan
2011-08-01
A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.
Equivalence of the Symbol Grounding and Quantum System Identification Problems
Directory of Open Access Journals (Sweden)
Chris Fields
2014-02-01
Full Text Available The symbol grounding problem is the problem of specifying a semantics for the representations employed by a physical symbol system in a way that is neither circular nor regressive. The quantum system identification problem is the problem of relating observational outcomes to specific collections of physical degrees of freedom, i.e., to specific Hilbert spaces. It is shown that with reasonable physical assumptions these problems are equivalent. As the quantum system identification problem is demonstrably unsolvable by finite means, the symbol grounding problem is similarly unsolvable.
Digital system identification and its application to digital flight control
Kotob, S.; Kaufman, H.
1974-01-01
On-line system identification of linear discrete systems for implementation in a digital adaptive flight controller is considered by the conventional extended Kalman filter and a decoupling process in which the linear state estimation problem and the linear parameter identification problem are each treated separately and alternately. Input requirements for parameter identifiability are established using the standard conditions of observability for a time variant system. Experimental results for simulated linearized lateral aircraft motion are included along with the effect of different initialization and updating procedures for the priming trajectory used by the filter.
Consistency of System Identification by Global Total Least Squares
C. Heij (Christiaan); W. Scherrer
1996-01-01
textabstractGlobal total least squares (GTLS) is a method for the identification of linear systems where no distinction between input and output variables is required. This method has been developed within the deterministic behavioural approach to systems. In this paper we analyse statistical proper
A bias identification and state estimation methodology for nonlinear systems
Caglayan, A. K.; Lancraft, R. E.
1983-01-01
A computational algorithm for the identification of input and output biases in discrete-time nonlinear stochastic systems is derived by extending the separate bias estimation results for linear systems to the extended Kalman filter formulation. The merits of the approach are illustrated by identifying instrument biases using a terminal configured vehicle simulation.
Stokes identification in an atomic ensemble using a filtering system
Institute of Scientific and Technical Information of China (English)
Luo Xiao-Ming; Ning Bo; Chen Li-Qing; Zhou Yue; Zhong Zhi-Ping; Jiang Shuo
2009-01-01
Polarization filtering and atomic cell filtering are applied in the identification of Stokes signals in an atomic ensemble, and reduce the noise to a level of 10~(-5) and 10~(-4) respectively. Good Stokes signals are then obtained. In this article the two filtering systems and the final Stokes output are presented, and the optimization of the polarization filtering system is highlighted.
Combined parametric-nonparametric identification of block-oriented systems
Mzyk, Grzegorz
2014-01-01
This book considers a problem of block-oriented nonlinear dynamic system identification in the presence of random disturbances. This class of systems includes various interconnections of linear dynamic blocks and static nonlinear elements, e.g., Hammerstein system, Wiener system, Wiener-Hammerstein ("sandwich") system and additive NARMAX systems with feedback. Interconnecting signals are not accessible for measurement. The combined parametric-nonparametric algorithms, proposed in the book, can be selected dependently on the prior knowledge of the system and signals. Most of them are based on the decomposition of the complex system identification task into simpler local sub-problems by using non-parametric (kernel or orthogonal) regression estimation. In the parametric stage, the generalized least squares or the instrumental variables technique is commonly applied to cope with correlated excitations. Limit properties of the algorithms have been shown analytically and illustrated in simple experiments.
Directory of Open Access Journals (Sweden)
Soojin Cho
2015-04-01
Full Text Available Wireless sensor networks (WSNs facilitate a new paradigm to structural identification and monitoring for civil infrastructure. Conventional structural monitoring systems based on wired sensors and centralized data acquisition systems are costly for installation as well as maintenance. WSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. In this paper, the stochastic subspace identification (SSI technique is selected for system identification, and SSI-based decentralized system identification (SDSI is proposed to be implemented in a WSN composed of Imote2 wireless sensors that measure acceleration. The SDSI is tightly scheduled in the hierarchical WSN, and its performance is experimentally verified in a laboratory test using a 5-story shear building model.
ADAPTIVE FILTER FOR SYSTEM IDENTIFICATION USING QUANTIZATION SCHEMES
Directory of Open Access Journals (Sweden)
Nitesh Mudgal
2012-03-01
Full Text Available The Least Mean Square (LMS Algorithm finds its application in System identification due to its simplicity.Reduction of the complexity of Adaptive Finite Impulse Response(FIR filter had received attention in the area of adative filter. This paper proposes methods of system identification using adaptive filter which are based on a Quantised version of the LMS, namely the Clipped Least Mean Square (CLMS and Modified Clipped Least Mean Square( QX-LMS algorithms. In both Algorithms coefficients of the adaptive filter are adjusted automatically by an adaptive algorithm based on the input signals. This property makes the adaptive filter has an important application in system identification.the Quantized version of Least Mean Square Algorithm increases covergence property as compared to normal Least Mean Square Algorithm.
Numerical studies of identification in nonlinear distributed parameter systems
Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.
1989-01-01
An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.
System with Distributed Lag: Adaptive Identification and Prediction
Directory of Open Access Journals (Sweden)
Nikolay Karabutov
2016-03-01
Full Text Available Adaptive algorithms of parametric identifica-tion of discrete systems with lag variables are proposed. Adaptive algorithms (AA in the presence of lag input variables are developed. The convergence of the AA and the boundedness of the trajectories the adaptive system is proved. Convergence domain АА depends on operating disturbance. Models with multiplicative parameters (MPM for the decrease of a number estimated parameters are offered. The process for selection of the vector of base parameters MPM was developed. The performance of adaptive system identification for this case is proved. It is shown that parameters of system estimation at the application of multiplicative identification must be chosen from a condition of minimization of the criterion of the prediction error. Transformation of interdependence be-tween the lagged variables is offered, allowing eliminating their effect on system work. In the second part of work, the method of synthesis АА identification of the systems containing lagged output variables is offered. We consider a case of linear correlation between an output of the system and operating disturbance. For a solution of a problem, we suggest fulfilling an estimation of operating disturbance. Corresponding procedures are described and proved their efficiency. Simulation results are presented that confirm the efficiency of the adaptive methods.
Immune System Toxicity and Immunotoxicity Hazard Identification
Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...
Comparison of System Identification Methods using Ambient Bridge Test Data
DEFF Research Database (Denmark)
Andersen, P.; Brincker, Rune; Peeters, B.
1999-01-01
In this paper the performance of four different system identification methods is compared using operational data obtained from an ambient vibration test of the Swiss Z24 highway bridge. The four methods are the frequency domain based peak-picking methods, the polyreference LSCE method, the stocha......In this paper the performance of four different system identification methods is compared using operational data obtained from an ambient vibration test of the Swiss Z24 highway bridge. The four methods are the frequency domain based peak-picking methods, the polyreference LSCE method...
Modeling emotional content of music using system identification.
Korhonen, Mark D; Clausi, David A; Jernigan, M Ed
2006-06-01
Research was conducted to develop a methodology to model the emotional content of music as a function of time and musical features. Emotion is quantified using the dimensions valence and arousal, and system-identification techniques are used to create the models. Results demonstrate that system identification provides a means to generalize the emotional content for a genre of music. The average R2 statistic of a valid linear model structure is 21.9% for valence and 78.4% for arousal. The proposed method of constructing models of emotional content generalizes previous time-series models and removes ambiguity from classifiers of emotion.
System identification based approach to dynamic weighing revisited
Niedźwiecki, Maciej; Meller, Michał; Pietrzak, Przemysław
2016-12-01
Dynamic weighing, i.e., weighing of objects in motion, without stopping them on the weighing platform, allows one to increase the rate of operation of automatic weighing systems, used in industrial production processes, without compromising their accuracy. Since the classical identification-based approach to dynamic weighing, based on the second-order mass-spring-damper model of the weighing system, does not yield satisfactory results when applied to conveyor belt type checkweighers, several extensions of this technique are examined. Experiments confirm that when appropriately modified the identification-based approach becomes a reliable tool for dynamic mass measurement in checkweighers.
Parameter Identifiability of Ship Manoeuvring Modeling Using System Identification
Directory of Open Access Journals (Sweden)
Weilin Luo
2016-01-01
Full Text Available To improve the feasibility of system identification in the prediction of ship manoeuvrability, several measures are presented to deal with the parameter identifiability in the parametric modeling of ship manoeuvring motion based on system identification. Drift of nonlinear hydrodynamic coefficients is explained from the point of view of regression analysis. To diminish the multicollinearity in a complicated manoeuvring model, difference method and additional signal method are employed to reconstruct the samples. Moreover, the structure of manoeuvring model is simplified based on correlation analysis. Manoeuvring simulation is performed to demonstrate the validity of the measures proposed.
Comparison of System Identification Methods using Ambient Bridge Test Data
DEFF Research Database (Denmark)
Andersen, P.; Peeters, B.; Hermans, L.
In this paper the performance of four different system identification methods is compared using operational data obtained from an ambient vibration test of the Swiss Z24 highway bridge. The four methods are the frequency domain based peak-picking methods, the polyreference LSCE method, the stocha......In this paper the performance of four different system identification methods is compared using operational data obtained from an ambient vibration test of the Swiss Z24 highway bridge. The four methods are the frequency domain based peak-picking methods, the polyreference LSCE method...
Identification of determinism in noisy neuronal systems.
Slutzky, Marc W; Cvitanovic, Predrag; Mogul, David J
2002-08-30
Most neuronal ensembles are nonlinear excitable systems. Thus it is becoming common to apply principles derived from nonlinear dynamics to characterize neuronal systems. One important characterization is whether such systems contain deterministic behavior or are purely stochastic. Unfortunately, many methods used to make this distinction do not perform well when both determinism and high-amplitude noise are present which is often the case in physiological systems. Therefore, we propose two novel techniques for identifying determinism in experimental systems. The first, called short-time expansion analysis, examines the expansion rate of small groups of points in state space. The second, called state point forcing, derives from the technique of chaos control. The system state is forced onto a fixed point, and the subsequent behavior is analyzed. This technique can be used to verify the presence of fixed points (or unstable periodic orbits) and to assess stationarity. If these are present, it implies that the system contains determinism. We demonstrate the use and possible limitations of these two techniques in two systems: the Hénon map, a classic example of a chaotic system, and spontaneous epileptiform bursting in the rat hippocampal slice. Identifying the presence of determinism in a physiological system assists in the understanding of the system's dynamics and provides a mechanism for manipulating this behavior.
2015-01-01
Wireless sensor networks (WSNs) facilitate a new paradigm to structural identification and monitoring for civil infrastructure. Conventional structural monitoring systems based on wired sensors and centralized data acquisition systems are costly for installation as well as maintenance. WSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor n...
Sekihara, Takayasu
2016-01-01
For a general two-body bound state in quantum mechanics, both in the stable and decaying cases, we establish a way to extract its two-body wave function in momentum space from the scattering amplitude of the constituent two particles. For this purpose, we first show that the two-body wave function of the bound state corresponds to the residue of the off-shell scattering amplitude at the bound state pole. Then, we examine our scheme to extract the two-body wave function from the scattering amplitude in several schematic models. As a result, the two-body wave functions from the Lippmann--Schwinger equation coincides with that from the Schr\\"{o}dinger equation for an energy-independent interaction. Of special interest is that the two-body wave function from the scattering amplitude is automatically scaled; the norm of the two-body wave function, to which we refer as the compositeness, is unity for an energy-independent interaction, while the compositeness deviates from unity for an energy-dependent interaction, ...
Chaotic control and synchronization for system identification.
Carroll, T L
2004-04-01
Research into applications of synchronized chaotic systems assumes that it will be necessary to build many different drive-response pairs, but little is known in general about designing higher dimensional chaotic flows. In this paper, I do not add any design techniques, but I show that it is possible to create multiple drive-response pairs from one chaotic system by applying chaos control techniques to the drive and response systems. If one can design one chaotic system with the desired properties, then many drive-response pairs can be built from this system, so that it is not necessary to solve the design problem more than once. I show both numerical simulations and experimental work with chaotic circuits. I also test the response systems for ability to overcome noise or other interference.
Deterministic System Identification Using RBF Networks
Directory of Open Access Journals (Sweden)
Joilson Batista de Almeida Rego
2014-01-01
Full Text Available This paper presents an artificial intelligence application using a nonconventional mathematical tool: the radial basis function (RBF networks, aiming to identify the current plant of an induction motor or other nonlinear systems. Here, the objective is to present the RBF response to different nonlinear systems and analyze the obtained results. A RBF network is trained and simulated in order to obtain the dynamical solution with basin of attraction and equilibrium point for known and unknown system and establish a relationship between these dynamical systems and the RBF response. On the basis of several examples, the results indicating the effectiveness of this approach are demonstrated.
Agroforestry Systems In Poland A Preliminary Identification
Borek, Robert
2015-01-01
This paper seeks to use state-of-the-art knowledge to depict the foundations and prospects for agroforestry systems in Poland to develop, in line with political, legal, historical and environmental conditions pertaining in the country. The main legal provisions concerning the presence of trees in agriculture are presented prior to a first-ever defining of key traditional agroforestry systems in Poland.
On System Complexity: Identification, Measurement, and Management
Casti, J.L.
1985-01-01
Attempts to axiomatize and formalize system complexity all leave a feeling of basic incompleteness and a sense of failure to grasp important aspects of the problem. This paper examines some of the root causes of these failures and outlines a framework for the consideration of complexity as an implicate, rather than explicate, property of systems in interaction.
Robust nonlinear system identification using neural-network models.
Lu, S; Basar, T
1998-01-01
We study the problem of identification for nonlinear systems in the presence of unknown driving noise, using both feedforward multilayer neural network and radial basis function network models. Our objective is to resolve the difficulty associated with the persistency of excitation condition inherent to the standard schemes in the neural identification literature. This difficulty is circumvented here by a novel formulation and by using a new class of identification algorithms recently obtained by Didinsky et al. We show how these algorithms can be exploited to successfully identify the nonlinearity in the system using neural-network models. By embedding the original problem in one with noise-perturbed state measurements, we present a class of identifiers (under L1 and L2 cost criteria) which secure a good approximant for the system nonlinearity provided that some global optimization technique is used. In this respect, many available learning algorithms in the current neural-network literature, e.g., the backpropagation scheme and the genetic algorithms-based scheme, with slight modifications, can ensure the identification of the system nonlinearity. Subsequently, we address the same problem under a third, worst case L(infinity) criterion for an RBF modeling. We present a neural-network version of an H(infinity)-based identification algorithm from Didinsky et al and show how, along with an appropriate choice of control input to enhance excitation, under both full-state-derivative information (FSDI) and noise-perturbed full-state-information (NPFSI), it leads to satisfaction of a relevant persistency of excitation condition, and thereby to robust identification of the nonlinearity. Results from several simulation studies have been included to demonstrate the effectiveness of these algorithms.
System identification advances and case studies
Mehra, Raman K
1976-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Compressed Sensing for Denoising in Adaptive System Identification
Hosseini, Seyed Hossein
2012-01-01
We propose a new technique for adaptive identification of sparse systems based on the compressed sensing (CS) theory. We manipulate the transmitted pilot (input signal) and the received signal such that the weights of adaptive filter approach the compressed version of the sparse system instead of the original system. To this end, we use random filter structure at the transmitter to form the measurement matrix according to the CS framework. The original sparse system can be reconstructed by the conventional recovery algorithms. As a result, the denoising property of CS can be deployed in the proposed method at the recovery stage. The experiments indicate significant performance improvement of proposed method compared to the conventional LMS method which directly identifies the sparse system. Furthermore, at low levels of sparsity, our method outperforms a specialized identification algorithm that promotes sparsity.
Electromagnetic two-body problem: recurrent dynamics in the presence of state-dependent delay
Energy Technology Data Exchange (ETDEWEB)
De Luca, Jayme [Departamento de Fisica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos, Sao Paulo 13565-905 (Brazil); Guglielmi, Nicola [Dipartimento di Matematica Pura ed Applicata, Universita degli Studi di L' Aquila, I-67010, L' Aquila (Italy); Humphries, Tony [Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 2K6 (Canada); Politi, Antonio, E-mail: deluca@df.ufscar.b [Istituto dei Sistemi Complessi, CNR Via Madonna del Piano 10-Sesto, Fiorentino I-50019 (Italy)
2010-05-21
We study the electromagnetic two-body problem of classical electrodynamics as a prototype dynamical system with state-dependent delays. The equations of motion are analysed with reference to motion along a straight line in the presence of an electrostatic field. We consider the general electromagnetic equations of motion for point charges with advanced and retarded interactions and study two limits, (a) retarded-only interactions (Dirac electrodynamics) and (b) half-retarded plus half-advanced interactions (Wheeler-Feynman electrodynamics). A fixed point is created where the electrostatic field balances the Coulombian attraction, and we use local analysis near this fixed point to derive necessary conditions for a Hopf bifurcation. In case (a), we study a Hopf bifurcation about an unphysical fixed point and find that it is subcritical. In case (b), there is a Hopf bifurcation about a physical fixed point and we study several families of periodic orbits near this point. The bifurcating periodic orbits are illustrated and simulated numerically, by introducing a surrogate dynamical system into the numerical analysis which transforms future data into past data by exploiting the periodicity, thus obtaining systems with only delays.
Electromagnetic two-body problem: recurrent dynamics in the presence of state-dependent delay
De Luca, Jayme; Guglielmi, Nicola; Humphries, Tony; Politi, Antonio
2010-05-01
We study the electromagnetic two-body problem of classical electrodynamics as a prototype dynamical system with state-dependent delays. The equations of motion are analysed with reference to motion along a straight line in the presence of an electrostatic field. We consider the general electromagnetic equations of motion for point charges with advanced and retarded interactions and study two limits, (a) retarded-only interactions (Dirac electrodynamics) and (b) half-retarded plus half-advanced interactions (Wheeler-Feynman electrodynamics). A fixed point is created where the electrostatic field balances the Coulombian attraction, and we use local analysis near this fixed point to derive necessary conditions for a Hopf bifurcation. In case (a), we study a Hopf bifurcation about an unphysical fixed point and find that it is subcritical. In case (b), there is a Hopf bifurcation about a physical fixed point and we study several families of periodic orbits near this point. The bifurcating periodic orbits are illustrated and simulated numerically, by introducing a surrogate dynamical system into the numerical analysis which transforms future data into past data by exploiting the periodicity, thus obtaining systems with only delays.
Recursive identification for EIV ARMAX systems
Institute of Scientific and Technical Information of China (English)
CHEN HanFu
2009-01-01
The input ukand output yk of the multivariate ARMAX system A(z)y_k = B(z)u_k+C(z)w_k are observed with noises:u_k~(ob)(△=)+εu_k and y_k~(ob)(△=)+εy_k,where ε_k~u and ε_k~y denote the observation noises.Such kind of systems are called errors-in-variables (EIV) systems.In the paper,recursive algorithms based on observations are proposed for estimating coefficients of A(z),B(z),C(z),and the covariance matrix Rw of w_k without requiring higher than the second order statistics.The algorithms are convenient for computation and are proved to converge to the system coefficients under reasonable conditions.An Illustrative example is provided,and the simulation results are shown to be consistent with the theoretical analysis.
Estimation and Identification for Modeling Dynamic Systems.
1980-02-01
IEEE Transactions on Automatic Control , Vol. AC-20, pp. 775- 782, December 1975. [2] J.M. Mendel...Diego, California, Septer 1975. [3) J.M. Mendel, "Extension of Friedland’s Bias Filtering Technique to a Class of Nonlinear Systems," IEEE Transactions on Automatic Control , Vol...Time Linear Systems," IEEE Transactions on Automatic Control , April 1980. [8] M.S. Grewal and K. Glover, "Relationships
Identification of Parameters in Active Magnetic Bearing Systems
DEFF Research Database (Denmark)
Lauridsen, Jonas Skjødt; Voigt, Andreas Jauernik; Mandrup-Poulsen, Christian
2016-01-01
A method for identifying uncertain parameters in Active Magnetic Bearing (AMB) based rotordynamic systems is introduced and adapted for experimental application. The Closed Loop Identification (CLI) method is utilised to estimate the current/force factors Ki and the displacement/force factors Ks...
Identification of Parameters in Active Magnetic Bearing Systems
DEFF Research Database (Denmark)
Lauridsen, Jonas Skjødt; Voigt, Andreas Jauernik; Mandrup-Poulsen, Christian
2016-01-01
A method for identifying uncertain parameters in Active Magnetic Bearing (AMB) based rotordynamic systems is introduced and adapted for experimental application. The Closed Loop Identification (CLI) method is utilised to estimate the current/force factors Ki and the displacement/force factors Ks...
Parameter identification of stochastic diffusion systems with unknown boundary conditions
Aihara, Shin Ichi; Bagchi, Arunabha
2013-01-01
This paper treats the filtering and parameter identification for the stochastic diffusion systems with unknown boundary conditions. The physical situation of the unknown boundary conditions can be found in many industrial problems,i.g., the salt concentration model of the river Rhine is a typical ex
Consistency of global total least squares in stochastic system identification
C. Heij (Christiaan); W. Scherrer
1995-01-01
textabstractGlobal total least squares has been introduced as a method for the identification of deterministic system behaviours. We analyse this method within a stochastic framework, where the observed data are generated by a stationary stochastic process. Conditions are formulated so that the meth
Quadrotor system identification using the multivariate multiplex b-spline
Visser, T.; De Visser, C.C.; Van Kampen, E.J.
2015-01-01
A novel method for aircraft system identification is presented that is based on a new multivariate spline type; the multivariate multiplex B-spline. The multivariate multiplex B-spline is a generalization of the recently introduced tensor-simplex B-spline. Multivariate multiplex splines obtain simil
Time-Varying FOPDT System Identification with Unknown Disturbance Input
DEFF Research Database (Denmark)
Sun, Zhen; Yang, Zhenyu
2012-01-01
The Time-Varying First Order Plus Dead Time (TV-FOPDT) model is an extension of the conventional FOPDT by allowing the system parameters, which are primarily defined on the transfer function description, i.e., the DC-gain, time constant and time delay, to be time dependent. The TV-FOPDT identific...
Identification of uncertain nonlinear systems for robust fuzzy control.
Senthilkumar, D; Mahanta, Chitralekha
2010-01-01
In this paper, we consider fuzzy identification of uncertain nonlinear systems in Takagi-Sugeno (T-S) form for the purpose of robust fuzzy control design. The uncertain nonlinear system is represented using a fuzzy function having constant matrices and time varying uncertain matrices that describe the nominal model and the uncertainty in the nonlinear system respectively. The suggested method is based on linear programming approach and it comprises the identification of the nominal model and the bounds of the uncertain matrices and then expressing the uncertain matrices into uncertain norm bounded matrices accompanied by constant matrices. It has been observed that our method yields less conservative results than the other existing method proposed by Skrjanc et al. (2005). With the obtained fuzzy model, we showed the robust stability condition which provides a basis for different robust fuzzy control design. Finally, different simulation examples are presented for identification and control of uncertain nonlinear systems to illustrate the utility of our proposed identification method for robust fuzzy control.
Time-Delay System Identification Using Genetic Algorithm
DEFF Research Database (Denmark)
Yang, Zhenyu; Seested, Glen Thane
2013-01-01
problem through an identification approach using the real coded Genetic Algorithm (GA). The desired FOPDT/SOPDT model is directly identified based on the measured system's input and output data. In order to evaluate the quality and performance of this GA-based approach, the proposed method is compared...
Friction ridge skin - Automated Fingerprint Identification System (AFIS)
Meuwly, Didier
2009-01-01
This contribution describes the development and the forensic use of automated fingerprint identification systems (AFISs). AFISs were initially developed in order to overcome the limitations of the paper-based fingerprint collections, by digitizing the ten-print cards in computerized databases and to
Developing a Speaker Identification System for the DARPA RATS Project
DEFF Research Database (Denmark)
Plchot, O; Matsoukas, S; Matejka, P
2013-01-01
This paper describes the speaker identification (SID) system developed by the Patrol team for the first phase of the DARPA RATS (Robust Automatic Transcription of Speech) program, which seeks to advance state of the art detection capabilities on audio from highly degraded communication channels. ...
Real-time Algorithms for Sparse Neuronal System Identification.
Sheikhattar, Alireza; Babadi, Behtash
2016-08-01
We consider the problem of sparse adaptive neuronal system identification, where the goal is to estimate the sparse time-varying neuronal model parameters in an online fashion from neural spiking observations. We develop two adaptive filters based on greedy estimation techniques and regularized log-likelihood maximization. We apply the proposed algorithms to simulated spiking data as well as experimentally recorded data from the ferret's primary auditory cortex during performance of auditory tasks. Our results reveal significant performance gains achieved by the proposed algorithms in terms of sparse identification and trackability, compared to existing algorithms.
Hydrogenerator system identification using a simple genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Wrate, C.A.; Wozniak, L. [Univ. of Illinois, Urbana, IL (United States)
1997-03-01
This paper investigates an identification procedure for a hydrogenerator plant using an adaptive technique. The procedure operates on field data consisting of sampled gate position and electrical frequency. The field data was recorded while the plant was operating under various load conditions. The procedure adapted to ongoing plant changes by continuously updating the identification results. It is shown that the adaptive technique, in this case genetic algorithm based, was capable of identifying the hydrogenerator system and following plant parameter changes while the plant operated under conditions of sufficient frequency excursions. These conditions include off-line and isolated network operation where effective control is critical.
Identification of protective antigens for vaccination against systemic salmonellosis
Directory of Open Access Journals (Sweden)
Dirk eBumann
2014-08-01
Full Text Available There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50-200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.
Biometric identification systems: the science of transaction facilitation
Rogers, Robert R.
1994-10-01
The future ofthe "secure transaction" and the success ofall undertakings that depend on absolute certainty that the individuals involved really are who and what they represent themselves to be is dependent upon the successful development of absolutely accurate, low-cost and easy-to-operate Biometric Identification Systems. Whether these transactions are political, military, financial or administrative (e.g. health cards, drivers licenses, welfare entitlement, national identification cards, credit card transactions, etc.), the need for such secure and positive identification has never been greater -and yet we are only at the beginning ofan era in which we will see the emergence and proliferation of Biometric Identification Systems in nearly every field ofhuman endeavor. Proper application ofthese systems will change the way the world operates, and that is precisely the goal ofComparator Systems Corporation. Just as with the photo-copier 40 years ago and the personal computer 20 years ago, the potential applications for positive personal identification are going to make the Biometric Identification System a commonplace component in the standard practice ofbusiness, and in interhuman relationships ofall kinds. The development of new and specific application hardware, as well as the necessary algorithms and related software required for integration into existing operating procedures and newly developed systems alike, has been a more-than-a-decade-long process at Comparator -and we are now on the verge of delivering these systems to the world markets so urgently in need of them. An individual could feel extremely confident and satisfied ifhe could present his credit, debit, or ATM card at any point of sale and, after inserting his card, could simply place his finger on a glass panel and in less than a second be positively accepted as being the person that the card purported him to be; not to mention the security and satisfaction of the vendor involved in knowing that
HOC Based Blind Identification of Hydroturbine Shaft Volterra System
Directory of Open Access Journals (Sweden)
Bing Bai
2017-01-01
Full Text Available In order to identify the quadratic Volterra system simplified from the hydroturbine shaft system, a blind identification method based on the third-order cumulants and a reversely recursive method are proposed. The input sequence of the system under consideration is an unobservable independent identically distributed (i.i.d., zero-mean and non-Gaussian stationary signal, and the observed signals are the superposition of the system output signal and Gaussian noise. To calculate the third-order moment of the output signal, a computer loop judgment method is put forward to determine the coefficient. When using optimization method to identify the time domain kernels, we combined the traditional optimization algorithm (direct search method with genetic algorithm (GA and constituted the hybrid genetic algorithm (HGA. Finally, according to the prototype observation signal and the time domain kernel parameters obtained from identification, the input signal of the system can be gained recursively. To test the proposed method, three numerical experiments and engineering application have been carried out. The results show that the method is applicable to the blind identification of the hydroturbine shaft system and has strong universality; the input signal obtained by the reversely recursive method can be approximately taken as the random excitation acted on the runner of the hydroturbine shaft system.
Neural-Fuzzy Approach for System Identification.
Tien, B.T.
1997-01-01
Most real-world processes have nonlinear and complex dynamics. Conventional methods of constructing nonlinear models from first principles are time consuming and require a level of knowledge about the internal functioning of the system that is often not available. Consequently, in such cases a nonli
Mathematical Techniques for System Realization and Identification.
1986-02-26
IEEE Transactions on Automatic Control , AC-27: 196-198. J...and P. P. KHARGONEKAR- (1982] "Regulation of split linear systems over rings: coefficient assignment and observers", IEEE Transactions on Automatic Control , AC...Journal on Control and Optimization, 20: 497-505. (1983a] "Linear dynamic output feedback: invariants and stability", .%.. 0 IEEE Transactions on Automatic Control ,
Parameter Identification of Weakly Nonlinear Vibration System in Frequency Domain
Directory of Open Access Journals (Sweden)
Jiehua Peng
2004-01-01
Full Text Available A new method of identifying parameters of nonlinearly vibrating system in frequency domain is presented in this paper. The problems of parameter identification of the nonlinear dynamic system with nonlinear elastic force or nonlinear damping force are discussed. In the method, the mathematic model of parameter identification is frequency response function. Firstly, by means of perturbation method the frequency response function of weakly nonlinear vibration system is derived. Next, a parameter transformation is made and the frequency response function becomes a linear function of the new parameters. Then, based on this function and with the least square method, physical parameters of the system are identified. Finally, the applicability of the proposed technique is confirmed by numerical simulation.
Vortex Tube Modeling Using the System Identification Method
Energy Technology Data Exchange (ETDEWEB)
Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)
2017-05-15
In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.
Person Identification System using Static-dynamic signatures fusion
Directory of Open Access Journals (Sweden)
S.A Daramola
2010-09-01
Full Text Available Off-line signature verification systems rely on static image of signature for person identification. Imposter can easily imitate the static image of signature of the genuine user due to lack of dynamic features. This paper proposes person identity verification system using fused static-dynamic signature features. Computational efficient technique is developed to extract and fuse static and dynamic features extracted from offline and online signatures of the same person. The training stage used the fused features to generate couple reference data and classification stage compared the couple test signatures with the reference data based on the set threshold values. The system performance is encouraging against imposter attacker in comparison with previous single sensor offline signature identification systems.
Identification for a class of distributed parameter systems
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper discusses the identification for the distributed parameter system of gas reservoirs with het erogeneous carbonate matrices. Based on the relationship between the ad hoc function and the geological feature, we set up a general model with double porous structure, clarify its effect and significance, and present a series of results of sys tem identifications, including the basic content and methods, stabilizing functional and parameter identifiability etc. Us ing the perturbation of spectra of self-adjoint operators, the identifiability of the porosities and the ad hoc coefficient is demonstrated for the general structure model. This project indicates that the identification of a distributed parameter sys tem involves parameters, boundary position and structure.
System Identification and Control of a Joint-Actuated Buoy
2014-05-09
Washington University, 2012, 299 pages; 3502913. [6] Nise , Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: Wiley, 2004. 27...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 05-09-2014 2. REPORT TYPE 3...DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER System Identification and Control of a Joint-Actuated
Model Identification of Linear Parameter Varying Aircraft Systems
Fujimore, Atsushi; Ljung, Lennart
2007-01-01
This article presents a parameter estimation of continuous-time polytopic models for a linear parameter varying (LPV) system. The prediction error method of linear time invariant (LTI) models is modified for polytopic models. The modified prediction error method is applied to an LPV aircraft system whose varying parameter is the flight velocity and model parameters are the stability and control derivatives (SCDs). In an identification simulation, the polytopic model is more suitable for expre...
Person Identification System using Static-dynamic signatures fusion
S.A Daramola; T.S Ibiyemi
2010-01-01
Off-line signature verification systems rely on static image of signature for person identification. Imposter can easily imitate the static image of signature of the genuine user due to lack of dynamic features. This paper proposes person identity verification system using fused static-dynamic signature features. Computational efficient technique is developed to extract and fuse static and dynamic features extracted from offline and online signatures of the same person. The training stage use...
System Identification of MEMS Vibratory Gyroscope Sensor
Juntao Fei; Yuzheng Yang
2011-01-01
Fabrication defects and perturbations affect the behavior of a vibratory MEMS gyroscope sensor, which makes it difficult to measure the rotation angular rate. This paper presents a novel adaptive approach that can identify, in an online fashion, angular rate and other system parameters. The proposed approach develops an online identifier scheme, by rewriting the dynamic model of MEMS gyroscope sensor, that can update the estimator of angular rate adaptively and converge to its true value asy...
Closed Loop System Identification with Genetic Algorithms
Whorton, Mark S.
2004-01-01
High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.
A Reliable Identification System for Red Palm Weevil
Directory of Open Access Journals (Sweden)
Saleh Mufleh Al-Saqer
2012-01-01
Full Text Available Problem statement: Red Palm Weevil (RPW is a widely found pest among palm trees and is known to cause significant losses every year to palm growers. Existing identification techniques for RPW comprise of using traps with pheromones to detect these pests. However, these traditional methods are labor-intensive, expensive to implement and unreliable for early detection of RPW infestation. Early detection of these pests would provide the best opportunity to eradicate them and minimize the potential losses of palm trees. Approach: In this study, a reliable identification system is developed to identify RPW by using only a small number of image descriptors in combination with neural network models. The neural networks were developed by using between three to nine image descriptors as inputs and a large database of insectsâ images was used for training. Three different training ratios ranging from 25-75% were used and the network was trained by two different algorithms. Further, several scenarios were formulated to test the efficacy and reliability of the newly developed identification system. Results: The results indicate that the identification system developed in this study is capable of 100% recognition of RPW and 93% recognition of other insects in the database by taking as input only three easily-calculable image descriptors. Further, the average training times for these networks was 13 sec and the testing time for a single image was only 0.015 sec. Conclusion: The new system developed in this study provided reliable identification for RPW and was found to be up to 14 times faster in training and three times faster in testing of insectsâ images.
System Identification of MEMS Vibratory Gyroscope Sensor
Directory of Open Access Journals (Sweden)
Juntao Fei
2011-01-01
Full Text Available Fabrication defects and perturbations affect the behavior of a vibratory MEMS gyroscope sensor, which makes it difficult to measure the rotation angular rate. This paper presents a novel adaptive approach that can identify, in an online fashion, angular rate and other system parameters. The proposed approach develops an online identifier scheme, by rewriting the dynamic model of MEMS gyroscope sensor, that can update the estimator of angular rate adaptively and converge to its true value asymptotically. The feasibility of the proposed approach is analyzed and proved by Lyapunov's direct method. Simulation results show the validity and effectiveness of the online identifier.
Modeling and identification of a PEM fuel cell humidification system
Institute of Scientific and Technical Information of China (English)
Xianrui DENG; Guoping LIU; George WANG; Min TAN
2009-01-01
A theoretical model of a humidifier of proton exchange membrane (PEM) fuel cell systems is developed and analyzed first in this paper. The model shows that there exists a strong nonlinearity in the system. Then, the system is identified using a wavelet networks method. To avoid the curse-of-dimensionality problem, a class of wavelet networks proposed by Billings is employed. The experimental data acquired from the test bench are used for identification. The one-step-ahead predictions and the five-step-ahead predictions are compared with the real measurements, respectively. It shows that the identified model can effectively describe the real system.
State-Space Modeling, System Identification and Control of a 4th Order Rotational Mechanical System
2009-12-01
state-space form. Identification of the state-space parameters was accomplished using the parameter estimation function in Matlab’s System ... Identification Toolbox utilizing experimental input/output data. The identified model was then constructed in Simulink and the accuracy of the identified model
Comparison of System Identification Methods using Ambient Bridge Test Data
DEFF Research Database (Denmark)
Andersen, P.; Peeters, B.; Hermans, L.
In this paper the performance of four different system identification methods is compared using operational data obtained from an ambient vibration test of the Swiss Z24 highway bridge. The four methods are the frequency domain based peak-picking methods, the polyreference LSCE method, the stocha......In this paper the performance of four different system identification methods is compared using operational data obtained from an ambient vibration test of the Swiss Z24 highway bridge. The four methods are the frequency domain based peak-picking methods, the polyreference LSCE method......, the stochastic subspace method for estimation of state space systems and the prediction error method for estimation of Auto-Regressive Moving Average Vector models. It is not the entention to elect a winner among the four methods, but more to emphasize the different advantages of each of the methods....
Reduced Complexity Volterra Models for Nonlinear System Identification
Directory of Open Access Journals (Sweden)
Hacıoğlu Rıfat
2001-01-01
Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.
Asymptotic inference in system identification for the atom maser.
Catana, Catalin; van Horssen, Merlijn; Guta, Madalin
2012-11-28
System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.
Asymptotic inference in system identification for the atom maser
Catana, Catalin; Guta, Madalin
2011-01-01
System identification is an integrant part of control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However for quantum dynamical systems like quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input which may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators and the connection to large deviations is briefly discussed.
Nonlinear system identification and control using state transition algorithm
Yang, Chunhua; Gui, Weihua
2012-01-01
This paper presents a novel optimization method named state transition algorithm (STA) to solve the problem of identification and control for nonlinear system. In the proposed algorithm, a solution to optimization problem is considered as a state, and the updating of a solution equates to the process of state transition, which makes the STA easy to understand and convenient to be implemented. First, the STA is applied to identify the optimal parameters of the estimated system with previously known structure. With the accurate estimated model, an off-line PID controller is then designed optimally by using the STA as well. Experimental results demonstrate the validity of the methodology, and comparison to STA with other optimization algorithms confirms that STA is a promising alternative method for system identification and control due to its stronger search ability, faster convergence speed and more stable performance.
Identification of integrating and critically damped systems with time delay
Institute of Scientific and Technical Information of China (English)
BAJARANGBALI; Somanath MAJHI
2015-01-01
This paper presents identification of second order plus dead time (SOPDT) integrating and critically damped systems based on relay feedback testing. Relay with hysteresis is applied to the unknown system to get the sustained oscillations also called as limit cycle. The limit cycle parameters are utilized in mathematical expressions which are derived using state space technique so that exact process model parameters are estimated. As the relay with hysteresis helps in generating sustained oscillations and also reduces effect of measurement noise which is an important issue in system identification. Different types of processes in the form of transfer function models are considered to show the efficacy of the proposed method and results are compared with available methods in the literature with and without noise effect.
Rapid Color Test Identification System for Screening of Counterfeit Fluoroquinolone
Directory of Open Access Journals (Sweden)
B. K. Singh
2009-01-01
Full Text Available The protocol of rapid identification system consists of three chemical color reactions; two group tests for fluoroquinolone class and a compound specific test each for norfloxacin, ciprofloxacin, gatifloxacin, ofloxacin, levofloxacin and sparfloxacin. The group color reactions are based on (a Oxidizing behavior of quinolone and (b Fluorine functional groups, both of which are characteristic of fluoroquinolone class. The compound specific color reactions are developed taking into consideration unique chemical behavior of each compound. The proposed chemical color tests have high selectivity⁄specificity, are ideal for screening purpose. The color of each test was defined by two standard color systems namely CIE lab and Munsell color. A suspected counterfeit tablet of any of the above mentioned drugs can be identified within 10-15 min using this rapid identification system.
Identification of Critical Points in the Quality Management System
Directory of Open Access Journals (Sweden)
Tünde SZABÓ
2011-10-01
Full Text Available Creating a quality management system can help organizations and other stakeholders in satisfying customer needs and expectations. Moreover, a well-implemented quality management ensures the organization a capable structure to make continuous improvement actions. Thus, after the evaluation of the quality management system elements, the identification of critical points is a very important element. There are several ways of assessing and identifying these critical points; in this case, identification will be done by questionnaire survey carried out at the Székely National Museum in Saint George. The questionnaire aimed to assess the whole system of management and staff attitudes towards some considerations established by international standard ISO 9001:2008.
Online System Identification Method Using Modified Regularized Exponential Forgetting
Directory of Open Access Journals (Sweden)
Ján VACHÁLEK
2013-12-01
Full Text Available The paper deals with the use of regularized exponential forgetting (REF in the process of online system identification. The deployment of this type of forgetting strategy is advantageous for very long runs with small changes in the identified input parameters (in the range of 100 000 steps. In these cases, the classical methods of forgetting, such as an exponential (EF or directional forgetting (DF lack the required quality and reach the limit of numerical stability of the calculations of system parameters, which may lead to the early termination of system identification procedure. To avoid this undesirable effect and maintain sufficient primary information about the identified system, a modified REF method is used that employs alternative covariance matrix (ACM formulation to store the primary information of the identified system (REFACM and prevents the numerical destabilization of the identification process. The quality of the modified REFACM forgetting method —along with its validation and comparison with REZ to verify its properties—is performed using standard tests.
Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem
Oltean, Marius; Spallicci, Alessandro D A M; Sopuerta, Carlos F
2016-01-01
In classical Hamiltonian theories, entropy may be understood either as a statistical property of canonical systems, or as a mechanical property, that is, as a monotonic function of the phase space along trajectories. In classical mechanics, there are theorems which have been proposed for proving the non-existence of entropy in the latter sense. We explicate, clarify and extend the proofs of these theorems to some standard matter (scalar and electromagnetic) field theories in curved spacetime, and then we show why these proofs fail in general relativity; due to properties of the gravitational Hamiltonian and phase space measures, the second law of thermodynamics holds. As a concrete application, we focus on the consequences of these results for the gravitational two-body problem, and in particular, we prove the non-compactness of the phase space of perturbed Schwarzschild-Droste spacetimes. We thus identify the lack of recurring orbits in phase space as a distinct sign of dissipation and hence entropy producti...
Reactive two-body and three-body collisions of Ba$^+$ in an ultracold Rb gas
Krükow, Artjom; Härter, Arne; Denschlag, Johannes Hecker
2016-01-01
We analyze reactive collisions of a single Ba$^+$ ion in contact with an ultracold gas of Rb atoms at mK$\\times k_{\\mathrm{B}}$ collision energies. Mapping out the Ba$^+$ loss rate dependence on the Rb atom density we can discern two-body reactive collisions from three-body ones and for the first time determine both rate coefficients which are $k_2=3.1(6)(6)\\times 10^{-13}\\textrm{cm}^{3}\\textrm{s}^{-1}$ and $k_3=1.04(4)(45)\\times 10^{-24}\\textrm{cm}^{6}\\textrm{s}^{-1}$, respectively (statistical and systematic errors in parenthesis). Thus, the measured ternary recombination dominates over binary reactions even at moderate atom densities of $n\\approx 10^{12}\\: \\textrm{cm}^{-3}$. The results for Ba$^+$ and Rb are representative for a wide range of cold ion-atom systems and can serve as a guidance for the future development of the field of hybrid atom-ion research.
Keesman, K.J.
2006-01-01
In this short paper for the panel discussion on ¿Experience and challenges in identification of non-linear systems¿ some major issues with respect to identification of non-linear biochemical and environmental systems are presented.
System Identification in Presence of Outliers.
Yu, Chao; Wang, Qing-Guo; Zhang, Dan; Wang, Lei; Huang, Jiangshuai
2016-05-01
The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low rank and sparse matrices, and further recast as a semidefinite programming problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low-rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers, and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered "clean" data from the proposed method can give much better parameter estimation compared with that based on the raw data.
Data-Driven Photovoltaic System Modeling Based on Nonlinear System Identification
Directory of Open Access Journals (Sweden)
Ayedh Alqahtani
2016-01-01
Full Text Available Solar photovoltaic (PV energy sources are rapidly gaining potential growth and popularity compared to conventional fossil fuel sources. As the merging of PV systems with existing power sources increases, reliable and accurate PV system identification is essential, to address the highly nonlinear change in PV system dynamic and operational characteristics. This paper deals with the identification of a PV system characteristic with a switch-mode power converter. Measured input-output data are collected from a real PV panel to be used for the identification. The data are divided into estimation and validation sets. The identification methodology is discussed. A Hammerstein-Wiener model is identified and selected due to its suitability to best capture the PV system dynamics, and results and discussion are provided to demonstrate the accuracy of the selected model structure.
An overview of the essential differences and similarities of system identification techniques
Mehra, Raman K.
1991-01-01
Information is given in the form of outlines, graphs, tables and charts. Topics include system identification, Bayesian statistical decision theory, Maximum Likelihood Estimation, identification methods, structural mode identification using a stochastic realization algorithm, and identification results regarding membrane simulations and X-29 flutter flight test data.
Subspace-based identification of discrete time-delay system
Institute of Scientific and Technical Information of China (English)
Qiang LIU; Jia-chen MA
2016-01-01
We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single delay in the state vector. We first derive an equivalent linear time-invariant (LTI) system for the time-delay system using a state augmentation technique. Then a conventional subspace identification method is used to estimate augmented system matrices and Kalman state sequences up to a similarity transformation. To obtain a state-space model for the time-delay system, an alternate convex search (ACS) algorithm is presented to find a similarity transformation that takes the identified augmented system back to a form so that the time-delay system can be recovered. Finally, we reconstruct the Kalman state sequences based on the similarity transformation. The time-delay system matrices under the same state-space basis can be recovered from the Kalman state sequences and input-output data by solving two least squares problems. Numerical examples are to show the effectiveness of the proposed method.
Worden, K.; Manson, G.
2012-05-01
Fairly recent work has shown that evolutionary optimisation schemes (genetic algorithms and differential evolution) offer an effective means of identifying nonlinear dynamical systems, even when the parameter estimation problem is complicated by nonlinearity in the parameters and/or the presence of unmeasured states. In particular, an evolutionary approach to the parameter estimation problem for hysteretic systems has shown promise. The current paper considers aspects of the parameter estimation problem for systems of Bouc-Wen type. In the first place, an investigation into the nature of the objective or cost function for the optimisation is made with the aim of better understanding the performance of the identification scheme. The first part of the paper also discusses the issue of setting initial estimates or ranges for the system parameters. The data on which the analysis is based are generated by computer simulation; the specific evolutionary algorithm considered is Differential Evolution (DE). Although the DE algorithm has proved to be very effective in the identification context, a minor disadvantage manifests itself in the need to set algorithm hyperparameters for the optimisation. This observation leads to the second main objective of the current paper which is to present a recently developed variant of the DE algorithm - the Self-Adaptive Differential Evolution (SADE) algorithm - which learns and adapts a subset of its own hyperparameters throughout the optimisation process. The use of the algorithm for the hysteretic system identification problem is illustrated using the simulated data and it is shown that the algorithm can provide several orders-of-magnitude improvement on the minimisation of the problem objective function.
System Identification and POD Method Applied to Unsteady Aerodynamics
Tang, Deman; Kholodar, Denis; Juang, Jer-Nan; Dowell, Earl H.
2001-01-01
The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes has proven to be a useful method for reducing the size of the aerodynamic model over those representations that use local variables at discrete grid points in the flow field. Eigenmodes and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with good effect. This suggests that system identification models may also be used to represent the aerodynamic flow field. Implicit in the use of a systems identification technique is the notion that a relative small state space model can be useful in describing a dynamical system. The POD model is first used to show that indeed a reduced order model can be obtained from a much larger numerical aerodynamical model (the vortex lattice method is used for illustrative purposes) and the results from the POD and the system identification methods are then compared. For the example considered, the two methods are shown to give comparable results in terms of accuracy and reduced model size. The advantages and limitations of each approach are briefly discussed. Both appear promising and complementary in their characteristics.
Applications of nonlinear system identification to structural health monitoring.
Energy Technology Data Exchange (ETDEWEB)
Farrar, C. R. (Charles R.); Sohn, H. (Hoon); Robertson, A. N. (Amy N.)
2004-01-01
The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). In many cases damage causes a structure that initially behaves in a predominantly linear manner to exhibit nonlinear response when subject to its operating environment. The formation of cracks that subsequently open and close under operating loads is an example of such damage. The damage detection process can be significantly enhanced if one takes advantage of these nonlinear effects when extracting damage-sensitive features from measured data. This paper will provide an overview of nonlinear system identification techniques that are used for the feature extraction process. Specifically, three general approaches that apply nonlinear system identification techniques to the damage detection process are discussed. The first two approaches attempt to quantify the deviation of the system from its initial linear characteristics that is a direct result of damage. The third approach is to extract features from the data that are directly related to the specific nonlinearity associated with the damaged condition. To conclude this discussion, a summary of outstanding issues associated with the application of nonlinear system identification techniques to the SHM problem is presented.
An Automatic Identification System of Human Skin Irritation
Directory of Open Access Journals (Sweden)
Abdul Fadlil
2010-12-01
Full Text Available Quantitative characterization of human skin irritation is an important but difficult task. Recently, identification of human skin is still doing manually. Furthermore, manual identification of the human skin irritation sample can be very subjective. The skin irritation analysis could conducted using biochemical test, but not simple. In this research, a new approach an automatic human skin identification system base on image recognition have been developed. Skin image processed using pattern recognition methods to obtain decision of skin sample test is skin irritation or not. System design is implementation of Gray Level Histogram (GLH feature or texture Gray Level Co-occurrence Matrices (GLCM features using classifier distance metric: Manhattan distance and Euclidean distance, or Learning Vector Quantization (LVQ neural network. Combination between feature extrator and classifier methods proposed to evaluate of performance system. The experimental results show that the best accuracy namely 83.33% obtained when design system is implementation of GLH or GLCM features using LVQ neural network classifier.
Decentralized system identification for electric power system; Denryoku keito no bunsan system dotei
Energy Technology Data Exchange (ETDEWEB)
Kawamoto, S.; Kanetaka, I. [University of Osaka Prefecture, Osaka (Japan)
1995-12-20
The research on decentralized control of electric power system, which has become more complex, is an important subject for tile stabilizing control. In particular since electric power system is a large scale nonlinear control ones, decentralized (not divided) systems with cooperation should be constructed. The purpose of this paper is to present an approach for constructing decentralized systems of electric ponder system. In Chapter 2, swing datas of a three-machine model system are obtained, and in Chapter 3, coefficient parameters of tile model equation based on one-machine infinite bus system with AVR and GOV are estimated by tile least square method. In Chapter 4, the equivalence calculated by using tile estimated values is discussed and also the effect of conditions for the fault is considered. Finally Chapter 5 is devoted to summarizing tile result for the decentralized system identification. 14 refs., 5 figs., 2 tabs.
Identification of linear stochastic systems through projection filters
Chen, Chung-Wen; Huang, Jen-Kuang; Juang, Jer-Nan
1992-01-01
A novel method is presented for identifying a state-space model and a state estimator for linear stochastic systems from input and output data. The method is primarily based on the relationship between the state-space model and the finite-difference model of linear stochastic systems derived through projection filters. It is proved that least-squares identification of a finite difference model converges to the model derived from the projection filters. System pulse response samples are computed from the coefficients of the finite difference model.
Optimal policies for identification of stochastic linear systems
Lopez-Toledo, A. A.; Athans, M.
1975-01-01
The problem of designing closed-loop policies for identification of multiinput-multioutput linear discrete-time systems with random time-varying parameters is considered in this paper using a Bayesian approach. A sensitivity index gives a measure of performance for the closed-loop laws. The computation of the optimal laws is shown to be nontrivial, an exercise in stochastic control, but open-loop, affine, and open-loop feedback optimal inputs are shown to yield tractable problems. Numerical examples are given. For time-invariant systems, the criterion considered is shown to be related to the trace of the information matrix associated with the system.
Evaluation of the Quantum II yeast identification system.
Kiehn, T E; Edwards, F F; Tom, D; LIEBERMAN, G; Bernard, E M; Armstrong, D.
1985-01-01
We compared three methods for identifying clinical yeast isolates: Abbott Quantum II, API 20C, and a modified BBL Minitek system. The API 20C and modified Minitek systems agreed on the identification of 243 of 245 yeasts (99.2%). The Quantum II system correctly identified 197 (80.4%), incorrectly identified 19 (7.8%), and did not identify 29 (11.8%) of the yeasts. Most of the misidentifications with the Quantum II occurred because assimilation or biochemical results were false-positive. Sixte...
Parameter identification of linear discrete stochastic systems with time delays
Wong, E. C.
1980-01-01
An identification algorithm that uses the maximum likelihood technique to identify the unknown time delays, plant parameters, and noise covariances of linear discrete stochastic systems is presented. Cases of additive white noise and colored measurement noises are considered. The likelihood function is evaluated using either a minimum-variance (Kalman) filter or a minimal-order observer. The Kalman filter is used in the identification algorithm to provide minimum-variance estimates. The minimal-order observer is a lower-dimensional and computationally simpler filter, and is advantageous especially for systems with long delays. It provides a less optimal solution to the minimum-mean-square state estimation problem. The colored-noise observer algorithm has the disadvantage of having to compute an extra error covariance matrix of lower order.
Continuous-Time System Identification of a Smoking Cessation Intervention.
Timms, Kevin P; Rivera, Daniel E; Collins, Linda M; Piper, Megan E
2014-01-01
Cigarette smoking is a major global public health issue and the leading cause of preventable death in the United States. Toward a goal of designing better smoking cessation treatments, system identification techniques are applied to intervention data to describe smoking cessation as a process of behavior change. System identification problems that draw from two modeling paradigms in quantitative psychology (statistical mediation and self-regulation) are considered, consisting of a series of continuous-time estimation problems. A continuous-time dynamic modeling approach is employed to describe the response of craving and smoking rates during a quit attempt, as captured in data from a smoking cessation clinical trial. The use of continuous-time models provide benefits of parsimony, ease of interpretation, and the opportunity to work with uneven or missing data.
Time domain system identification of unknown initial conditions
Institute of Scientific and Technical Information of China (English)
SUNGWen-pei; MATZENVernonC.; SHIHMing-hsiang
2004-01-01
System identification is a method for using measured data to create or improve a mathematical model of the object being tested. From the measured data however, noise is noticed at the beginning of the response. One solution to avoid this noise problem is to skip the noisy data and then use the initial conditions as active parameters, to be found by using the system identification process. This paper describes the development of the equations for setting up the initial conditions as active parameters. The simulated data and response data from actual shear buildings were used to prove the accuracy of both the algorithm and the computer program, which include the initial conditions as active parameters. The numerical and experimental model analysis showed that the value of mass, stiffness and frequency were very reasonable and that the computed acceleration and measured acceleration matched very well.
Thruster Modelling for Underwater Vehicle Using System Identification Method
Directory of Open Access Journals (Sweden)
Mohd Shahrieel Mohd Aras
2013-05-01
Full Text Available This paper describes a study of thruster modelling for a remotely operated underwater vehicle (ROV by system identification using Microbox 2000/2000C. Microbox 2000/2000C is an XPC target machine device to interface between an ROV thruster with the MATLAB 2009 software. In this project, a model of the thruster will be developed first so that the system identification toolbox in MATLAB can be used. This project also presents a comparison of mathematical and empirical modelling. The experiments were carried out by using a mini compressor as a dummy depth pressure applied to a pressure sensor. The thruster model will thrust and submerge until it reaches a set point and maintain the set point depth. The depth was based on pressure sensor measurement. A conventional proportional controller was used in this project and the results gathered justified its selection.
SSNN toolbox for non-linear system identification
Luzar, Marcel; Czajkowski, Andrzej
2015-11-01
The aim of this paper is to develop and design a State Space Neural Network toolbox for a non-linear system identification with an artificial state-space neural networks, which can be used in a model-based robust fault diagnosis and control. Such toolbox is implemented in the MATLAB environment and it uses some of its predefined functions. It is designed in the way that any non-linear multi-input multi-output system is identified and represented in the classical state-space form. The novelty of the proposed approach is that the final result of the identification process is the state, input and output matrices, not only the neural network parameters. Moreover, the toolbox is equipped with the graphical user interface, which makes it useful for the users not familiar with the neural networks theory.
FRACTIONAL ORDER SYSTEM IDENTIFICATION BASED ON GENETIC ALGORITHMS
Directory of Open Access Journals (Sweden)
MAZIN Z. OTHMAN
2013-12-01
Full Text Available System identification deals with estimating the plant parameters under control using input-output measuring data. Most of practical plants have fractional order dynamic properties which are based on integration and differentiation of noninteger order. In this work the structure and the parameters of fractional order unknown transfer function are estimated using input-output data. Integer order Least Squares identification is used first to confirm the structure (order of the unknown transfer function. Then, Genetic Algorithms (GAs is followed to find the most accurate fractional order estimate that represents the system. Illustrative examples are presented in which fractional order transfer functions are identified in a way that faithfully estimates the dynamics of the unknown plants.
A Study of Thermal Contact using Nonlinear System Identification Models
Directory of Open Access Journals (Sweden)
M. H. Shojaeefard
2008-01-01
Full Text Available One interesting application of system identification method is to identify and control the heat transfer from the exhaust valve to the seat to keep away the valve from being damaged. In this study, two co-axial cylindrical specimens are used as exhaust valve and its seat. Using the measured temperatures at different locations of the specimens and with a semi-analytical method, the temperature distribution of the specimens is calculated and consequently, the thermal contact conductance is calculated. By applying the system identification method and having the temperatures at both sides of the contact surface, the temperature transfer function is calculated. With regard to the fact that the thermal contact has nonlinear behavior, two nonlinear black-box models called nonlinear ARX and NLN Hammerstein-Wiener models are taken for accurate estimation. Results show that the NLN Hammerstein-Wiener models with wavelet network nonlinear estimator is the best.
Time-delay identification for vibration systems with multiple feedback
Sun, Yi-Qiang; Jin, Meng-Shi; Song, Han-Wen; Xu, Jian
2016-12-01
An approach for time-delay identification is proposed in multiple-degree-of-freedom (MDOF) linear systems with multiple feedback. The applicability of the approach is discussed in detail. Based on the characteristics of frequency domain in feedback controlled system with multiple time-delays, this paper proposes a time-delay identification approach, which is based on the pseudo impedance function of reference point. Treating feedback time-delays as the "frequencies" of the oscillation curve, the time-delays can be obtained from the "frequencies" of the curve. Numerical simulation is conducted to validate the proposed approach. The application scope of the approach is discussed with regard to different forms of feedback.
Time-delay identification for vibration systems with multiple feedback
Institute of Scientific and Technical Information of China (English)
Yi-Qiang Sun; Meng-Shi Jin; Han-Wen Song; Jian Xu
2016-01-01
An approach for time-delay identification is pro-posed in multiple-degree-of-freedom (MDOF) linear sys-tems with multiple feedback. The applicability of the approach is discussed in detail. Based on the characteris-tics of frequency domain in feedback controlled system with multiple time-delays, this paper proposes a time-delay iden-tification approach, which is based on the pseudo impedance function of reference point. Treating feedback time-delays as the“frequencies”of the oscillation curve, the time-delays can be obtained from the“frequencies”of the curve. Numerical simulation is conducted to validate the proposed approach. The application scope of the approach is discussed with regard to different forms of feedback.
Stability Analysis of Neural Networks-Based System Identification
Directory of Open Access Journals (Sweden)
Talel Korkobi
2008-01-01
Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.
Continuous-time system identification of a smoking cessation intervention
Timms, Kevin P.; Rivera, Daniel E.; Collins, Linda M.; Piper, Megan E.
2014-07-01
Cigarette smoking is a major global public health issue and the leading cause of preventable death in the United States. Toward a goal of designing better smoking cessation treatments, system identification techniques are applied to intervention data to describe smoking cessation as a process of behaviour change. System identification problems that draw from two modelling paradigms in quantitative psychology (statistical mediation and self-regulation) are considered, consisting of a series of continuous-time estimation problems. A continuous-time dynamic modelling approach is employed to describe the response of craving and smoking rates during a quit attempt, as captured in data from a smoking cessation clinical trial. The use of continuous-time models provide benefits of parsimony, ease of interpretation, and the opportunity to work with uneven or missing data.
Application of dynamic recurrent neural networks in nonlinear system identification
Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang
2006-11-01
An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.
Thruster Modelling for Underwater Vehicle Using System Identification Method
Directory of Open Access Journals (Sweden)
Mohd Shahrieel Mohd Aras
2013-05-01
Full Text Available Abstract This paper describes a study of thruster modelling for a remotely operated underwater vehicle (ROV by system identification using Microbox 2000/2000C. Microbox 2000/2000C is an XPC target machine device to interface between an ROV thruster with the MATLAB 2009 software. In this project, a model of the thruster will be developed first so that the system identification toolbox in MATLAB can be used. This project also presents a comparison of mathematical and empirical modelling. The experiments were carried out by using a mini compressor as a dummy depth pressure applied to a pressure sensor. The thruster model will thrust and submerge until it reaches a set point and maintain the set point depth. The depth was based on pressure sensor measurement. A conventional proportional controller was used in this project and the results gathered justified its selection.
Automated dental identification system: An aid to forensic odontology
Directory of Open Access Journals (Sweden)
Parvathi Devi
2011-01-01
Full Text Available Automated dental identification system is computer-aided software for the postmortem identification of deceased individuals based on dental characteristics specifically radiographs. This system is receiving increased attention because of the large number of victims encountered in the mass disasters and it is 90% more time saving and accurate than the conventional radiographic methods. This technique is based on the intensity of the overall region of tooth image and therefore it does not necessitate the presence of sharp boundary between the teeth. It provides automated search and matching capabilities for digitized radiographs and photographic dental images and compares the teeth present in multiple digitized dental records in order to access their similarity. This paper highlights the functionality of its components and techniques used in realizing these components.
2011-10-12
...: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... Hazardous and Solid Waste Management System: Identification and Listing of Special......
System Identification using Measurements Subject to Stochastic Time Jitter
2004-01-01
When the sensors readings are perturbed by an unknown stochastic time jitter, classical system identification algorithms based on additive amplitude perturbations will give biased estimates. We here outline the maximum likelihood procedure, for the case of both time and amplitude noise, in the frequency domain, based on the measurement DFT. The method directly applies to output error continuous time models, while a simple sinusoid in noise example is used to illustrate the bias removal of the...
Support Vector Machine for Behavior-Based Driver Identification System
Huihuan Qian; Yongsheng Ou; Xinyu Wu; Xiaoning Meng; Yangsheng Xu
2010-01-01
We present an intelligent driver identification system to handle vehicle theft based on modeling dynamic human behaviors. We propose to recognize illegitimate drivers through their driving behaviors. Since human driving behaviors belong to a dynamic biometrical feature which is complex and difficult to imitate compared with static features such as passwords and fingerprints, we find that this novel idea of utilizing human dynamic features for enhanced security applicat...
TLM modeling and system identification of optimized antenna structures
Directory of Open Access Journals (Sweden)
N. Fichtner
2008-05-01
Full Text Available The transmission line matrix (TLM method in conjunction with the genetic algorithm (GA is presented for the bandwidth optimization of a low profile patch antenna. The optimization routine is supplemented by a system identification (SI procedure. By the SI the model parameters of the structure are estimated which is used for a reduction of the total TLM simulation time. The SI utilizes a new stability criterion of the physical poles for the parameter extraction.
Robust uncertainty evaluation for system identification on distributed wireless platforms
Crinière, Antoine; Döhler, Michael; Le Cam, Vincent; Mevel, Laurent
2016-04-01
Health monitoring of civil structures by system identification procedures from automatic control is now accepted as a valid approach. These methods provide frequencies and modeshapes from the structure over time. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. The underlying algorithms are usually running under Matlab under the assumption of large memory pool and considerable computational power. Even under these premises, computational and memory usage are heavy and not realistic for being embedded in on-site sensor platforms such as the PEGASE platform. Moreover, the current push for distributed wireless systems calls for algorithmic adaptation for lowering data exchanges and maximizing local processing. Finally, the recent breakthrough in system identification allows us to process both frequency information and its related uncertainty together from one and only one data sequence, at the expense of computational and memory explosion that require even more careful attention than before. The current approach will focus on presenting a system identification procedure called multi-setup subspace identification that allows to process both frequencies and their related variances from a set of interconnected wireless systems with all computation running locally within the limited memory pool of each system before being merged on a host supervisor. Careful attention will be given to data exchanges and I/O satisfying OGC standards, as well as minimizing memory footprints and maximizing computational efficiency. Those systems are built in a way of autonomous operations on field and could be later included in a wide distributed architecture such as the Cloud2SM project. The usefulness of these strategies is illustrated on
System IDentification Programs for AirCraft (SIDPAC)
Morelli, Eugene A.
2002-01-01
A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.
Proportionate Minimum Error Entropy Algorithm for Sparse System Identification
Directory of Open Access Journals (Sweden)
Zongze Wu
2015-08-01
Full Text Available Sparse system identification has received a great deal of attention due to its broad applicability. The proportionate normalized least mean square (PNLMS algorithm, as a popular tool, achieves excellent performance for sparse system identification. In previous studies, most of the cost functions used in proportionate-type sparse adaptive algorithms are based on the mean square error (MSE criterion, which is optimal only when the measurement noise is Gaussian. However, this condition does not hold in most real-world environments. In this work, we use the minimum error entropy (MEE criterion, an alternative to the conventional MSE criterion, to develop the proportionate minimum error entropy (PMEE algorithm for sparse system identification, which may achieve much better performance than the MSE based methods especially in heavy-tailed non-Gaussian situations. Moreover, we analyze the convergence of the proposed algorithm and derive a sufficient condition that ensures the mean square convergence. Simulation results confirm the excellent performance of the new algorithm.
Computational requirements for on-orbit identification of space systems
Hadaegh, Fred Y.
1988-01-01
For the future space systems, on-orbit identification (ID) capability will be required to complement on-orbit control, due to the fact that the dynamics of large space structures, spacecrafts, and antennas will not be known sufficiently from ground modeling and testing. The computational requirements for ID of flexible structures such as the space station (SS) or the large deployable reflectors (LDR) are however, extensive due to the large number of modes, sensors, and actuators. For these systems the ID algorithm operations need not be computed in real-time, only in near real-time, or an appropriate mission time. Consequently the space systems will need advanced processors and efficient parallel processing algorithm design and architectures to implement the identification algorithms in near real-time. The MAX computer currently being developed may handle such computational requirements. The purpose is to specify the on-board computational requirements for dynamic and static identification for large space structures. The computational requirements for six ID algorithms are presented in the context of three examples: the JPL/AFAL ground antenna facility, the space station (SS), and the large deployable reflector (LDR).
2012-03-28
..., Federal, State, and local law enforcement personnel use SNS information from the States' numbering systems... enforcement personnel use SNS information from the States' numbering systems for enforcement of boating laws... Standard Numbering System (SNS), the Vessel Identification System, and accident reporting; require...
Methods that rapidly confirm the identification of foodborne pathogens are highly desired. The Micro Imaging Technology (MIT) 1000 Rapid Microbial Identification (RMID) System is a benchtop instrument that detects laser light scattered from individual bacterial cells in solution with an array of 35 ...
Identification and Analysis of National Airspace System Resource Constraints
Smith, Jeremy C.; Marien, Ty V.; Viken, Jeffery K.; Neitzke, Kurt W.; Kwa, Tech-Seng; Dollyhigh, Samuel M.; Fenbert, James W.; Hinze, Nicolas K.
2015-01-01
This analysis is the deliverable for the Airspace Systems Program, Systems Analysis Integration and Evaluation Project Milestone for the Systems and Portfolio Analysis (SPA) focus area SPA.4.06 Identification and Analysis of National Airspace System (NAS) Resource Constraints and Mitigation Strategies. "Identify choke points in the current and future NAS. Choke points refer to any areas in the en route, terminal, oceanic, airport, and surface operations that constrain actual demand in current and projected future operations. Use the Common Scenarios based on Transportation Systems Analysis Model (TSAM) projections of future demand developed under SPA.4.04 Tools, Methods and Scenarios Development. Analyze causes, including operational and physical constraints." The NASA analysis is complementary to a NASA Research Announcement (NRA) "Development of Tools and Analysis to Evaluate Choke Points in the National Airspace System" Contract # NNA3AB95C awarded to Logistics Management Institute, Sept 2013.
Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy
Kharchenko, V. F.
2016-11-01
Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.
Neutral weak-current two-body contributions in inclusive scattering from {sup 12}C
Energy Technology Data Exchange (ETDEWEB)
Lovato, Alessandro [ANL; Gandolfi, Stefano [LANL; Carlson, Joseph [LANL; Pieper, S. C. [ANL; Schiavilla, Rocco [JLAB, ODU
2014-05-01
An {\\it ab initio} calculation of the sum rules of the neutral weak response functions in $^{12}$C is reported, based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic currents, consisting of one- and two-body terms. We find that the sum rules of the response functions associated with the longitudinal and transverse components of the (space-like) neutral current are largest and that a significant portion ($\\simeq 30$\\%) of the calculated strength is due to two-body terms. This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data on nuclei.
Identification of fractional order systems using modulating functions method
Liu, Dayan
2013-06-01
The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the Riemann-Liouville fractional derivatives. First, a new fractional integration by parts formula involving the fractional derivative of a modulating function is given. Then, we apply this formula to a fractional order system, for which the fractional derivatives of the input and the output can be transferred into the ones of the modulating functions. By choosing a set of modulating functions, a linear system of algebraic equations is obtained. Hence, the unknown parameters of a fractional order system can be estimated by solving a linear system. Using this method, we do not need any initial values which are usually unknown and not equal to zero. Also we do not need to estimate the fractional derivatives of noisy output. Moreover, it is shown that the proposed estimators are robust against high frequency sinusoidal noises and the ones due to a class of stochastic processes. Finally, the efficiency and the stability of the proposed method is confirmed by some numerical simulations.
An Efficient Human Identification through MultiModal Biometric System
Directory of Open Access Journals (Sweden)
K. Meena
Full Text Available ABSTRACT Human identification is essential for proper functioning of society. Human identification through multimodal biometrics is becoming an emerging trend, and one of the reasons is to improve recognition accuracy. Unimodal biometric systems are affected by various problemssuch as noisy sensor data,non-universality, lack of individuality, lack of invariant representation and susceptibility to circumvention.A unimodal system has limited accuracy. Hence, Multimodal biometric systems by combining more than one biometric feature in different levels are proposed in order to enhance the performance of the system. A supervisor module combines the different opinions or decisions delivered by each subsystem and then make a final decision. In this paper, a multimodal biometrics authentication is proposed by combining face, iris and finger features. Biometric features are extracted by Local Derivative Ternary Pattern (LDTP in Contourlet domain and an extensive evaluation of LDTP is done using Support Vector Machine and Nearest Neighborhood Classifier. The experimental evaluations are performed on a public dataset demonstrating the accuracy of the proposed system compared with the existing systems. It is observed that, the combination of face, fingerprint and iris gives better performance in terms of accuracy, False Acceptance Rate, False Rejection Rate with minimum computation time.
Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA
2011-02-01
Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.
[Groundwater organic pollution source identification technology system research and application].
Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan
2013-02-01
Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.
Experimental Identification of Concentrated Nonlinearity in Aeroelastic System
Directory of Open Access Journals (Sweden)
Nayfeh Ali H
2012-07-01
Full Text Available Identification of concentrated nonlinearity in the torsional spring of an aeroelastic system is performed. This system consists of a rigid airfoil that is supported by a linear spring in the plunge motion and a nonlinear spring in the pitch motion. Quadratic and cubic nonlinearities in the pitch moment are introduced to model the concentrated nonlinearity. The representation of the aerodynamic loads by the Duhamel formulation yielded accurate values for the flutter speed and frequency. The results show that the use of the Duhamel formulation to represent the aerodynamic loads yields excellent agreement between the experimental data and the numerical predictions.
Person Identification System Using Fusion of Matching Score of Iris
Directory of Open Access Journals (Sweden)
Yogeshwari Borse
2012-05-01
Full Text Available Human iris provides a unique structure suitable for non-invasive biometric assessment. In particular the irises are as distinct as fingerprints even for twins. In this paper a system for person identification is presented that uses a technique of localization, alignment, feature extraction, matching the features of irises and finally the decision regarding the degree of match based on hamming distance. A CASIA iris database of iris images has been used in the implementation of the iris recognition system. The results show that proposed method is quite effective
INTEGRATING RADIO FREQUENCY IDENTIFICATION TECHNOLOGY IN ACADEMIC MANAGEMENT SYSTEM
Directory of Open Access Journals (Sweden)
Zainab Rasheed Mirza
2014-01-01
Full Text Available The purpose of this study is building a web and windows based intelligent system using web technologies, biometric and Radio Frequency Identification technologies (RFID to strengthen an Academic Management System (AMS in a campus for monitoring and improving academic performance of teachers and students. A campus mobile phone application will allow guardians to monitor student’s movement history at campus, e-payments and food choices at canteen, class attendance, exam attendance and academic performance on daily basis. Mobile application for students will allow students to view their class schedules, teacher appointments, e-payment statement, warnings or announcements, locate their exam halls and search for classrooms.
System for identification of microorganism and detection of infectious disorder
DEFF Research Database (Denmark)
2013-01-01
Methods for the identification of microorganisms or infectious disorders are disclosed, comprising obtaining a suitable sample from sources such as persons, animals, plants, food, water or soil. The methods also comprise providing tailored nucleic acid substrate(s) designed to react with a type 1...... topoisomerase from one or more microorganism(s) or infectious agent(s), and incubating said substrate with said sample, or extracts or preparations from the sample, so that the substrate is processed by said topoisomerase if said microorganism(s) or infectious agent(s) is present in the sample. Finally......, processed substrates are identified and potentially quantified by one or more of a range of standard molecular biology methods and read-out systems. The identification and potential quantification of microorganisms and infectious agents, including but not limited to Plasmodium falciparum and Mycobacterium...
System for identification of microorganism and detection of infectious disorder
DEFF Research Database (Denmark)
2013-01-01
Methods for the identification of microorganisms or infectious disorders are disclosed, comprising obtaining a suitable sample from sources such as persons, animals, plants, food, water or soil. The methods also comprise providing tailored nucleic acid substrate(s) designed to react with a type 1......, processed substrates are identified and potentially quantified by one or more of a range of standard molecular biology methods and read-out systems. The identification and potential quantification of microorganisms and infectious agents, including but not limited to Plasmodium falciparum and Mycobacterium...... the technology enables the testing of medical or chemical treatments designed to cure or prevent diseases based upon drugs targeting type 1 topoisomerases. Finally, the reagents and platforms needed for said purposes can be compiled from loose parts or provided as user-friendly kits, potentially enabling home...
The electronic identification, signature and security of information systems
Directory of Open Access Journals (Sweden)
Horovèák Pavel
2002-12-01
Full Text Available The contribution deals with the actual methods and technologies of information and communication systems security. It introduces the overview of electronic identification elements such as static password, dynamic password and single sign-on. Into this category belong also biometric and dynamic characteristics of verified person. Widespread is authentication based on identification elements ownership, such as various cards and authentication calculators. In the next part is specified a definition and characterization of electronic signature, its basic functions and certificate categories. Practical utilization of electronic signature consists of electronic signature acquirement, signature of outgoing email message, receiving of electronic signature and verification of electronic signature. The use of electronic signature is continuously growing and in connection with legislation development it exercises in all resorts.
Sensor network based vehicle classification and license plate identification system
Energy Technology Data Exchange (ETDEWEB)
Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.
2009-01-01
Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.
The MeSsI (Merging Systems Identification) Algorithm & Catalogue
Rios, Martín de los; Paz, Dante; Merchán, Manuel
2015-01-01
Merging galaxy systems provides observational evidence of the existence of dark matter and constraints on its properties. Therefore, statistical uniform samples of merging systems would be a powerful tool for several studies. In this work we presents a new methodology for merging systems identification and the results of its application to galaxy redshift surveys. We use as starting point a mock catalogue of galaxy systems, identified using traditional FoF algorithms, which experienced a major merger as indicated by its merger tree. Applying machine learning techniques in this training sample, and using several features computed from the observable properties of galaxy members, it is possible to select galaxy groups with a high probability of have been experienced a major merger. Next we apply clustering techniques on galaxy members in order to reconstruct the properties of the haloes involved in such merger. This methodology provides a highly reliable sample of merging systems with low contamination and prec...
Nonlinear stochastic system identification of skin using volterra kernels.
Chen, Yi; Hunter, Ian W
2013-04-01
Volterra kernel stochastic system identification is a technique that can be used to capture and model nonlinear dynamics in biological systems, including the nonlinear properties of skin during indentation. A high bandwidth and high stroke Lorentz force linear actuator system was developed and used to test the mechanical properties of bulk skin and underlying tissue in vivo using a non-white input force and measuring an output position. These short tests (5 s) were conducted in an indentation configuration normal to the skin surface and in an extension configuration tangent to the skin surface. Volterra kernel solution methods were used including a fast least squares procedure and an orthogonalization solution method. The practical modifications, such as frequency domain filtering, necessary for working with low-pass filtered inputs are also described. A simple linear stochastic system identification technique had a variance accounted for (VAF) of less than 75%. Representations using the first and second Volterra kernels had a much higher VAF (90-97%) as well as a lower Akaike information criteria (AICc) indicating that the Volterra kernel models were more efficient. The experimental second Volterra kernel matches well with results from a dynamic-parameter nonlinearity model with fixed mass as a function of depth as well as stiffness and damping that increase with depth into the skin. A study with 16 subjects showed that the kernel peak values have mean coefficients of variation (CV) that ranged from 3 to 8% and showed that the kernel principal components were correlated with location on the body, subject mass, body mass index (BMI), and gender. These fast and robust methods for Volterra kernel stochastic system identification can be applied to the characterization of biological tissues, diagnosis of skin diseases, and determination of consumer product efficacy.
Dragos, Kosmas; Smarsly, Kay
2016-04-01
System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.
Deak, R.; Bodia, L.; Aarts, H.J.M.; Maraz, A.
2004-01-01
Identification of clinical yeast isolates causing candidiasis is routinely performed by commercial yeast identification systems based on biochemical, morphological and physiological tests. These systems require 3-5 days and the proportion of identifications that are incorrect is high. Our novel and
System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements
Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.
2003-01-01
A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.
Realization of the Fredkin gate using a series of one- and two-body operators
Chau, H F; Chau, Hoi Fung; Wilczek, F
1995-01-01
The Fredkin 3-bit gate is universal for computational logic, and is reversible. Classically, it is impossible to do universal computation using reversible 2-bit gates only. Here we construct the Fredkin gate using a combination of two one-body and seven two-body reversible (quantum) operators.
Computation of Two-Body Matrix Elements From the Argonne $v_{18}$ Potential
Mihaila, B; Mihaila, Bogdan; Heisenberg, Jochen H.
1998-01-01
We discuss the computation of two-body matrix elements from the Argonne $v_{18}$ interaction. The matrix elements calculation is presented both in particle-particle and in particle-hole angular momentum coupling. The procedures developed here can be applied to the case of other NN potentials, provided that they have a similar operator format.
Two-body depolarized cils spectra of krypton and xenon at 295 K
Zoppi, M.; Moraldi, M.; Barocchi, F.; Magli, R.; Bafile, U.
1981-10-01
We have experimentally determined the two-body depolarized CILS spectra of krypton and xenon at room temperature between 2 and 120 cm-1. Comparison of the first three even experimental moments of the spectra with theoretical calculations shows, as in argon, the necessity of introducing a short-range negative contribution to the induced pair polarizability.
Searching for new physics in two-body decays: Ideas and pitfalls
Arrieta Diaz, E; Büchler, A; Cieri, L J; Florez, A; Garces-Garcia, E; Gonçalves, B; Koetsveld, F; Leney, K J C; Marquez Falcon, H; Moncada, M; Quintero, P; Romero, D; Shaw, K; Swain, J; Zurita, M P
2010-01-01
Many new physics processes, and indeed many Standard Model interactions involve two-body decays. Although the kinematics are relatively simple, mistakes can easily be made when applying cuts to data in order to separate the signal from backgrounds. We present a short, but relevant list of possible sources of errors, and discuss the consequences of these.
Toward Mending Two Nation-Scale Brokered Identification Systems
Directory of Open Access Journals (Sweden)
Brandão Luís T. A. N.
2015-06-01
Full Text Available Available online public/governmental services requiring authentication by citizens have considerably expanded in recent years. This has hindered the usability and security associated with credential management by users and service providers. To address the problem, some countries have proposed nation-scale identification/authentication systems that intend to greatly reduce the burden of credential management, while seemingly offering desirable privacy benefits. In this paper we analyze two such systems: the Federal Cloud Credential Exchange (FCCX in the United States and GOV.UK Verify in the United Kingdom, which altogether aim at serving more than a hundred million citizens. Both systems propose a brokered identification architecture, where an online central hub mediates user authentications between identity providers and service providers. We show that both FCCX and GOV.UK Verify suffer from serious privacy and security shortcomings, fail to comply with privacy-preserving guidelines they are meant to follow, and may actually degrade user privacy. Notably, the hub can link interactions of the same user across different service providers and has visibility over private identifiable information of citizens. In case of malicious compromise it is also able to undetectably impersonate users. Within the structural design constraints placed on these nation-scale brokered identification systems, we propose feasible technical solutions to the privacy and security issues we identified. We conclude with a strong recommendation that FCCX and GOV.UK Verify be subject to a more in-depth technical and public review, based on a defined and comprehensive threat model, and adopt adequate structural adjustments.
Resetting AUDI Algorithm Used in Rapid Time-varying MIMO System Identification
Institute of Scientific and Technical Information of China (English)
Xu Chao(许超); Chen Zhigang; Shao Huihe
2004-01-01
Augmented UD identification (AUDI) technique is derived from the traditional recursive least-squares (RLS) algorithm and has been developed rapidly during the last decade. AUDI is a cluster of identification algorithms based on matrix factorization methods (such as QR and LDL) and thus shows its stable performance in system identification applications. An AUDI algorithm with resetting strategy (RAUDI) has much ability in rapid time-varying SISO system identification. In this paper, an endeavor to expand the RAUDI in MIMO system identification is made and a comparative experiement is done to exhibit its good ability in rapidly changing parameter estimate in MIMO system.
Bayesian robot system identification with input and output noise.
Ting, Jo-Anne; D'Souza, Aaron; Schaal, Stefan
2011-01-01
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods.
Automatic Identification System modular receiver for academic purposes
Cabrera, F.; Molina, N.; Tichavska, M.; Araña, V.
2016-07-01
The Automatic Identification System (AIS) standard is encompassed within the Global Maritime Distress and Safety System (GMDSS), in force since 1999. The GMDSS is a set of procedures, equipment, and communication protocols designed with the aim of increasing the safety of sea crossings, facilitating navigation, and the rescue of vessels in danger. The use of this system not only is increasingly attractive to security issues but also potentially creates intelligence products throughout the added-value information that this network can transmit from ships on real time (identification, position, course, speed, dimensions, flag, among others). Within the marine electronics market, commercial receivers implement this standard and allow users to access vessel-broadcasted information if in the range of coverage. In addition to satellite services, users may request actionable information from private or public AIS terrestrial networks where real-time feed or historical data can be accessed from its nodes. This paper describes the configuration of an AIS receiver based on a modular design. This modular design facilitates the evaluation of specific modules and also a better understanding of the standard and the possibility of changing hardware modules to improve the performance of the prototype. Thus, the aim of this paper is to describe the system's specifications, its main hardware components, and to present educational didactics on the setup and use of a modular and terrestrial AIS receiver. The latter is for academic purposes and in undergraduate studies such as electrical engineering, telecommunications, and maritime studies.
Nonlinear identification of MDOF systems using Volterra series approximation
Prawin, J.; Rao, A. Rama Mohan
2017-02-01
Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material properties. Meanwhile, the presence of non-linearity in the system can lead to a wide range of structural behavior, for example, jumps, limit cycles, internal resonances, modal coupling, super and sub-harmonic resonances, etc. In this paper, we present a Volterra series approximation approach based on the adaptive filter concept for nonlinear identification of multi-degree of freedom systems, without sacrificing the benefits associated with the traditional Volterra series approach. The effectiveness of the proposed approach is demonstrated using two classical single degrees of freedom systems (breathing crack problem and Duffing Holmes oscillator) and later we extend to multi-degree of freedom systems.
On the design of optimal input signals in system identification
Lopez-Toledo, A. A.; Athans, M.
1974-01-01
The problem of designing optimal inputs in the identification of multi-input multi-output linear systems with unknown time-varying parameters is considered using a Bayesian approach. A sensitivity index gives a measure of performance for the closed-loop system inputs. The computation of the optimal closed-loop mappings is shown to be a nontrivial exercise in stochastic control with no analytic solution, but optimal open-loop and affine laws yield much more tractable problems. For time-invariant systems, the sensitivity index considered is shown to be equivalent to the trace of the (strictly positive definite) information matrix associated with the system. Numerical examples are given. A Kalman filter is used to estimate the parameters. A necessary condition for the Kalman filter not to diverge when applying linear feedback is also given.
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
Identification of linear systems by an asymptotically stable observer
Phan, Minh Q.; Horta, Lucas G.; Juang, Jer-Nan; Longman, Richard W.
1992-01-01
A formulation is presented for the identification of a linear multivariable system from single or multiple sets of input-output data. The system input-output relationship is expressed in terms of an observer, which is made asymptotically stable by an embedded eigenvalue assignment procedure. The prescribed eigenvalues for the observer may be real, complex, mixed real and complex, or zero. In this formulation, the Markov parameters of the observer are identified from input-output data. The Markov parameters of the actual system are then recovered from those of the observer and used to obtain a state space model of the system by standard realization techniques. The basic mathematical formulation is derived, and extensive numerical examples using simulated noise-free data are presented to illustrate the proposed method.
Nonlinear dynamical system identification using unscented Kalman filter
Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan
2016-11-01
Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.
Spatiotemporal System Identification With Continuous Spatial Maps and Sparse Estimation.
Aram, Parham; Kadirkamanathan, Visakan; Anderson, Sean R
2015-11-01
We present a framework for the identification of spatiotemporal linear dynamical systems. We use a state-space model representation that has the following attributes: 1) the number of spatial observation locations are decoupled from the model order; 2) the model allows for spatial heterogeneity; 3) the model representation is continuous over space; and 4) the model parameters can be identified in a simple and sparse estimation procedure. The model identification procedure we propose has four steps: 1) decomposition of the continuous spatial field using a finite set of basis functions where spatial frequency analysis is used to determine basis function width and spacing, such that the main spatial frequency contents of the underlying field can be captured; 2) initialization of states in closed form; 3) initialization of state-transition and input matrix model parameters using sparse regression-the least absolute shrinkage and selection operator method; and 4) joint state and parameter estimation using an iterative Kalman-filter/sparse-regression algorithm. To investigate the performance of the proposed algorithm we use data generated by the Kuramoto model of spatiotemporal cortical dynamics. The identification algorithm performs successfully, predicting the spatiotemporal field with high accuracy, whilst the sparse regression leads to a compact model.
Theory analysis and system identification methods on thermal dynamics characteristics of ballscrews
Institute of Scientific and Technical Information of China (English)
Junyong XIA; Youmin HU; Bo WU; Tielin SHI
2008-01-01
Empirical model of machine tools on thermal error has been widely researched, which can compensate for thermal error to some extent but not suitable for ther-mal dynamic errors produced by dynamic heat sources. The thermoelastic phenomenon of unidimensional heat transfer of ballscrews influenced by changeable heat sources is analyzed based on the theory of heat transfer. Two methods for system identification (the least square system identification and BP artificial neural network (ANN) system identification) are put forward to establish a dynamic characteristic model of thermal deformation of ballscrews. The model of thermal error of the X axis in a feed system of DM4600 vertical miller is established with a fine identification effect. Comparing the results of the two identification methods, the BP ANN system identification is more precise than the least square system identification.
Modeling and identification of a fly-by-wire control system.
Fabio Luciano Demarchi
2005-01-01
This work investigates the system identification and modeling techniques applied to a fly-by-wire system for pitch control of a commercial jet aircraft. The objective of the work is to build a model based on system identification techniques and generic modeling of the system, therefore using the "grey box" approach. The identification data was obtained from experimental tests performed at Embraer "Iron Bird" laboratory. An overview on flight controls systems is presented, focusing on fly-by-...
Launey, K D; Dytrych, T; Draayer, J P
2014-01-01
We present a program in C that employs spectral distribution theory for studies of characteristic properties of a many-particle quantum-mechanical system and the underlying few-body interaction. In particular, the program focuses on two-body nuclear interactions given in a JT-coupled harmonic oscillator basis and calculates correlation coefficients, a measure of similarity of any two interactions, as well as Hilbert-Schmidt norms specifying interaction strengths. An important feature of the program is its ability to identify the monopole part (centroid) of a 2-body interaction, as well as its 'density-dependent' one-body and two-body part, thereby providing key information on the evolution of shell gaps and binding energies for larger nuclear systems. As additional features, we provide statistical measures for 'density-dependent' interactions, as well as a mechanism to express an interaction in terms of two other interactions. This, in turn, allows one to identify, e.g., established features of the nuclear in...
Highly sensitive passive radio frequency identification based sensor systems.
Wissenwasser, J; Vellekoop, M; Heer, R
2010-02-01
A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.
Reproducing wavelet kernel method in nonlinear system identification
Institute of Scientific and Technical Information of China (English)
WEN Xiang-jun; XU Xiao-ming; CAI Yun-ze
2008-01-01
By combining the wavelet decomposition with kernel method, a practical approach of universal multi-scale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identifica-tion scheme using wavelet support vector machines ( WSVM ) estimator is proposed for nonlinear dynamic sys-tems. The good approximating properties of wavelet kernel function enhance the generalization ability of the pro-posed method, and the comparison of some numerical experimental results between the novel approach and some existing methods is encouraging.
Highly sensitive passive radio frequency identification based sensor systems
Wissenwasser, J.; Vellekoop, M.; Heer, R.
2010-02-01
A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.
Blind adaptive identification of FIR channel in chaotic communication systems
Institute of Scientific and Technical Information of China (English)
Wang Bao-Yun; Tommy W.S.Chow; K.T.Ng
2004-01-01
In this paper we study the problem of blind channel identification in chaotic communications. An adaptive algorithm is proposed, which exploits the boundness property of chaotic signals. Compared with the EKF-based approach, the proposed algorithm achieves a great complexity gain but at the expense of a slight accuracy degradation.However, our approach enjoys the important advantage that it does not require the a priori information such as nonlinearity of chaotic dynamics and the variances of measurement noise and the coefficient model noise. In addition,our approach is applicable to the ARMA system.
Identification and robust control of linear parameter-varying systems
Lee, Lawton Hubert
This dissertation deals with linear parameter-varying (LPV) systems: linear dynamic systems that depend on time-varying parameters. These systems appear in gain scheduling problems, and much recent research has been devoted to their prospective usefulness for systematic gain scheduling. We primarily focus on robust control of uncertain LPV systems and identification of LPV systems that are modelable as linear-fractional transformations (LFTs). Using parameter-dependent quadratic Lyapunov functions, linear matrix inequalities (LMIs), and scaled small-gain arguments, we define notions of stability and induced-{cal L}sb2 performance for uncertain LPV systems whose parameters and rates of parameter variation satisfy given bounds. The performance criterion involves integral quadratic constraints and implies naturally parameter-dependent induced-{cal L}sb2 norm bounds. We formulate and solve an {cal H}sb{infty}-like control problem for an LPV plant with measurable parameters and an "Output/State Feedback" structure: the feedback outputs include some noiselessly measured states. Necessary and sufficient solvability conditions reduce to LMIs that can be solved approximately using finite-dimensional convex programming. Reduced-order LPV controllers are constructed from the LMI solutions. A D-K iteration-like procedure provides robustness to structured, time-varying, parametric uncertainty. The design method is applied to a motivating example: flight control for the F-16 VISTA throughout its subsonic flight envelope. Parameter-dependent weights and {cal H}sb{infty} design principles describe the performance objectives. Closed-loop responses exhibited by nonlinear simulations indicate satisfactory flying qualities. Identification of linear-fractional LPV systems is treated using maximum-likelihood parameter estimation. Computing the gradient and Hessian of a maximum-likelihood cost function reduces to simulating one LPV filter per identified parameter. We use nonlinear
A multi-algorithm-based automatic person identification system
Monwar, Md. Maruf; Gavrilova, Marina
2010-04-01
Multimodal biometric is an emerging area of research that aims at increasing the reliability of biometric systems through utilizing more than one biometric in decision-making process. In this work, we develop a multi-algorithm based multimodal biometric system utilizing face and ear features and rank and decision fusion approach. We use multilayer perceptron network and fisherimage approaches for individual face and ear recognition. After face and ear recognition, we integrate the results of the two face matchers using rank level fusion approach. We experiment with highest rank method, Borda count method, logistic regression method and Markov chain method of rank level fusion approach. Due to the better recognition performance we employ Markov chain approach to combine face decisions. Similarly, we get combined ear decision. These two decisions are combined for final identification decision. We try with 'AND'/'OR' rule, majority voting rule and weighted majority voting rule of decision fusion approach. From the experiment results, we observed that weighted majority voting rule works better than any other decision fusion approaches and hence, we incorporate this fusion approach for the final identification decision. The final results indicate that using multi algorithm based can certainly improve the recognition performance of multibiometric systems.
A forward model-based validation of cardiovascular system identification
Mukkamala, R.; Cohen, R. J.
2001-01-01
We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.
System for autonomous identification and nowcasting of space weather events
Nagatsuma, T.; Akioka, M.; Ishibashi, H.
Using near-real time space environment data obtained from GOES and ACE satellites, we have developed algorithm for autonomous identification of space weather events, such as solar flares, proton events, and geomagnetic storms, and a procedure for nowcasting of these events which satisfy criteria of alert level. At first, we have introduced NOAA/SEC's definition of X-ray flare as the prototype algorithm. However, we have found that this algorithm sometimes misses the occurrence of LDE-type flare. So we tried to imporove the algorithm for detecting LDE-type flare. Nowcasting information is provided by e-mail message written in Japanese. This information can be received by a cellular phone. This system provides us an opportunity of monitoring space weather environment 24 hours a day without using human resources. This system is now in test operating phase. In this summer, we will start nowcasting of severe space weather events as a new domestic service of Regional Warning Center of Tokyo, which belongs to International Space Environment Service (ISES). Detailed descriptions of this system, algorithm of event identification, and the results of our test operation will be presented.
An Improved Differential Evolution Trained Neural Network Scheme for Nonlinear System Identification
Institute of Scientific and Technical Information of China (English)
Bidyadhar Subudhi; Debashisha Jena
2009-01-01
This paper prescnts an improved nonlinear system identification scheme using differential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of NN weights optimization during the training, the DE and LM are used in a combined framework to train the NN. We present the convergence analysis of the DE and demonstrate the efficacy of the proposed improved system identification algorithm by exploiting the combined DE and LM training of the NN and suitably implementing it together with other system identification methods, namely NN and DE+NN on a numbcr of examples including a practical case study. The identification rcsults obtained through a series of simulation studies of these methods on different nonlinear systems demonstrate that the proposed DE and LM trained NN approach to nonlinear system identification can yield better identification results in terms of time of convergence and less identification error.
Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod
2009-11-01
Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.
A new, challenging benchmark for nonlinear system identification
Tiso, Paolo; Noël, Jean-Philippe
2017-02-01
The progress accomplished during the past decade in nonlinear system identification in structural dynamics is considerable. The objective of the present paper is to consolidate this progress by challenging the community through a new benchmark structure exhibiting complex nonlinear dynamics. The proposed structure consists of two offset cantilevered beams connected by a highly flexible element. For increasing forcing amplitudes, the system sequentially features linear behaviour, localised nonlinearity associated with the buckling of the connecting element, and distributed nonlinearity resulting from large elastic deformations across the structure. A finite element-based code with time integration capabilities is made available at https://sem.org/nonlinear-systems-imac-focus-group/. This code permits the numerical simulation of the benchmark dynamics in response to arbitrary excitation signals.
Part identification in robotic assembly using vision system
Balabantaray, Bunil Kumar; Biswal, Bibhuti Bhusan
2013-12-01
Machine vision system acts an important role in making robotic assembly system autonomous. Identification of the correct part is an important task which needs to be carefully done by a vision system to feed the robot with correct information for further processing. This process consists of many sub-processes wherein, the image capturing, digitizing and enhancing, etc. do account for reconstructive the part for subsequent operations. Interest point detection of the grabbed image, therefore, plays an important role in the entire image processing activity. Thus it needs to choose the correct tool for the process with respect to the given environment. In this paper analysis of three major corner detection algorithms is performed on the basis of their accuracy, speed and robustness to noise. The work is performed on the Matlab R2012a. An attempt has been made to find the best algorithm for the problem.
A TWO-PHASE APPROACH TO FUZZY SYSTEM IDENTIFICATION
Institute of Scientific and Technical Information of China (English)
Ta-Wei HUNG; Shu-Cherng FANG; Henry L.W.NUTTLE
2003-01-01
A two-phase approach to fuzzy system identification is proposed. The first phase produces a baseline design to identify a prototype fuzzy system for a target system from a coIlection of input-output data pairs. It uses two easily implemented clustering techniques: the subtractive clustering method and the fuzzy c-means (FCM) clustering algorithm. The second phase (fine tuning)is executed to adjust the parameters identified in the baseline design. This phase uses the steepest descent and recursive least-squares estimation methods. The proposed approach is validated by applying it to both a function approximation type of problem and a classification type of problem. An analysis of the learning behavior of the proposed approach for the two test problems is conducted for further confirmation.
Modeling and identification of HAGC system of temper rolling mill
Institute of Scientific and Technical Information of China (English)
HE Shang-hong; ZHONG Jue
2005-01-01
Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. The order of the model is 4/4, and can be reduced to 2/2. Based on modulating functions method, utilizing numerical integration, we constructed the equivalent identification model of HAGC, and the least square estimation algorithm was established. The input and output data were acquired on line at temper rolling mill in Shangshai Baosteel Group Corporation, and the continuous time model of HAGC system was estimated with the proposed method. At different modulating window intervals, the estimated parameters changed remarkably. When the frequency bandwidth of modulating filter matches that of estimated system, the parameters can be estimated accurately. Finally, the dynamic model of the HAGC was obtained and validated based on the spectral analysis result.
Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data
Kukreja, Sunil L.
2008-01-01
Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data
Kukreja, Sunil L.
2008-01-01
Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
FINGERPRINT IDENTIFICATION SYSTEM combined with "CRYPTOGRAPHY" for Authentication.
Directory of Open Access Journals (Sweden)
G.Prasanna Lakshmi
2010-07-01
Full Text Available Biometrics technology, which uses physical or behavioral characteristics to identify users, has come to attract increased attention as a means of reliable personal authentication that helps the identity of an actual user. Among various modalities of Biometrics, Fingerprints are known to have the longest history of actual use in law enforcement applications with proven performance. This project surveys the state of the art in fingerprint identification technology. In this project, a design schema of a security authentication system combined with fingerprint identification and public key cryptography is explored, and its specific security mechanism is discussed in detail. In our schema, fingerprint is added into user's private key and served a security parameter, such that user’s secret key is separated into secret key parameters and fingerprint, by secret splitting mechanism, which makes the secret key to be bounded with user's information. This will increase the security of secret key ultimately. In such an uthentication system, the diplex authentication technologies --- fingerprint and smart card --- are adopted, and the user fingerprint needn’t to be transmitted during the authentication process, whichcan protect user's privacy effectively.
All-optical automatic pollen identification: Towards an operational system
Crouzy, Benoît; Stella, Michelle; Konzelmann, Thomas; Calpini, Bertrand; Clot, Bernard
2016-09-01
We present results from the development and validation campaign of an optical pollen monitoring method based on time-resolved scattering and fluorescence. Focus is first set on supervised learning algorithms for pollen-taxa identification and on the determination of aerosol properties (particle size and shape). The identification capability provides a basis for a pre-operational automatic pollen season monitoring performed in parallel to manual reference measurements (Hirst-type volumetric samplers). Airborne concentrations obtained from the automatic system are compatible with those from the manual method regarding total pollen and the automatic device provides real-time data reliably (one week interruption over five months). In addition, although the calibration dataset still needs to be completed, we are able to follow the grass pollen season. The high sampling from the automatic device allows to go beyond the commonly-presented daily values and we obtain statistically significant hourly concentrations. Finally, we discuss remaining challenges for obtaining an operational automatic monitoring system and how the generic validation environment developed for the present campaign could be used for further tests of automatic pollen monitoring devices.
CSM Temper Mill System Identification and Modeling of Mobarake Steel Complex
Directory of Open Access Journals (Sweden)
Ehsan Tahmasebi
2008-03-01
Full Text Available System identification is defined as modeling a system, using the input-output data. In this paper, CSM temper mill line was studied and parametric system identification was explained. Using ARX method, the experimental system was modeled and identified. Good agreement was obtained when comparing extracted model outputs with the experimental data.
Two-body physics in the Su-Schrieffer-Heeger model
Di Liberto, M.; Recati, A.; Carusotto, I.; Menotti, C.
2016-12-01
We consider two interacting bosons in a dimerized Su-Schrieffer-Heeger (SSH) lattice. We identify a rich variety of two-body states. In particular, for open boundary conditions and moderate interactions, edge bound states (EBS) are present even for the dimerization that does not sustain single-particle edge states. Moreover, for large values of the interactions, we find a breaking of the standard bulk-boundary correspondence. Based on the mapping of two interacting particles in one dimension onto a single particle in two dimensions, we propose an experimentally realistic coupled optical fibers setup as quantum simulator of the two-body SSH model. This setup is able to highlight the localization properties of the states as well as the presence of a resonant scattering mechanism provided by a bound state that crosses the scattering continuum, revealing the closed-channel population in real time and real space.
CP Violating Polarization Asymmetry in Charmless Two-Body Decays of Beauty Baryons
He, Min; Li, Guan-Nan
2015-01-01
Several baryons containing a heavy b-quark, the b-baryons, have been discovered. The charmless two-body decays of b-baryons can provide a new platform for CP violating studies in a similar way as charmless two-body decays of B-meson. In b-baryon decays there are new CP violating observable related to baryon polarization. We show that in the flavor $SU(3)$ limit there exist relations involve different combinations of the decay amplitudes compared with those in CP violating rate asymmetry. These new relations therefore provide interesting tests for the mechanism of CP in the standard model (SM) and flavor $SU(3)$ symmetry. Future data from LHCb can test these relations.
A Tale of Three Equations Breit, Eddington-Guant, and Two-Body Dirac
Van Alstine, P; Alstine, Peter Van; Crater, Horace W.
1997-01-01
G.Breit's original paper of 1929 postulates the Breit equation as a correction to an earlier defective equation due to Eddington and Gaunt, containing a form of interaction suggested by Heisenberg and Pauli. We observe that manifestly covariant electromagnetic Two-Body Dirac equations previously obtained by us in the framework of Relativistic Constraint Mechanics reproduce the spectral results of the Breit equation but through an interaction structure that contains that of Eddington and Gaunt. By repeating for our equation the analysis that Breit used to demonstrate the superiority of his equation to that of Eddington and Gaunt, we show that the historically unfamiliar interaction structures of Two-Body Dirac equations (in Breit-like form) are just what is needed to correct the covariant Eddington Gaunt equation without resorting to Breit's version of retardation.
Yu, Minli; Hahn, Eric J.; Liu, Jike; Lu, Zhongrong
2016-11-01
This paper introduced a modal parameter based identification procedure to identify the equivalent system of structures under harmonic excitations. The developed identification technique assumed non-proportional hysteretic damping in the equivalent system, which would be applicable in identifying more general structures. By introducing quasi-modal parameter, modal analysis equation was decoupled under physical coordinate; hence, the modal parameters of each vibration mode are identified independently. Double iteration algorithm was developed to solve the derived non-linear identification equation with complex unknowns. The developed identification procedure was applied to identify the equivalent system of a numerical model in order to evaluate the feasibility of the technique in practice. The identification procedure was also applied to identify an experimental mass and bar rig for validation purpose. Identification results showed that the identification procedure could identify accurately and robustly the equivalent system with non-proportional hysteretic damping assumption; hence, it is likely to be applicable in the field.
Large-j Expansion Method for Two-Body Dirac Equation
Directory of Open Access Journals (Sweden)
Askold Duviryak
2006-02-01
Full Text Available By using symmetry properties, the two-body Dirac equation in coordinate representation is reduced to the coupled pair of radial second-order differential equations. Then the large-j expansion technique is used to solve a bound state problem. Linear-plus-Coulomb potentials of different spin structure are examined in order to describe the asymptotic degeneracy and fine splitting of light meson spectra.
Kinematics of τ two-body decay near τ threshold at BESⅢ
Institute of Scientific and Technical Information of China (English)
莫晓虎
2010-01-01
The kinematic properties of two-body decay near τ threshold are studied according to the special capacity of the BEPC accelerator and the BESⅢ detector.Explicitly presented are the transformations of energy and momentum of hadronic particles between different reference frames,and the corresponding distributions.A brand new method is proposed to obtain the energy spread of the accelerator by fitting the energy distribution of hadron from τ semi-leptonic decays.
Synchronization based system identification of an extended excitable system.
Berg, S; Luther, S; Parlitz, U
2011-09-01
A basic state and parameter estimation scheme for an extended excitable system is presented, where time series from a spatial grid of sampling points are used to drive and synchronize corresponding model equations. Model parameters are estimated by minimizing the synchronization error. This estimation scheme is demonstrated using data from generic models of excitable media exhibiting spiral wave dynamics and chaotic spiral break-up that are implemented on a graphics processing unit.
Damage detection in structures through nonlinear excitation and system identification
Hajj, Muhammad R.; Bordonaro, Giancarlo G.; Nayfeh, Ali H.; Duke, John C., Jr.
2008-03-01
Variations in parameters representing natural frequency, damping and effective nonlinearities before and after damage initiation in a beam carrying a lumped mass are assessed. The identification of these parameters is performed by exploiting and modeling nonlinear behavior of the beam-mass system and matching an approximate solution of the representative model with quantities obtained from spectral analysis of measured vibrations. The representative model and identified coefficients are validated through comparison of measured and predicted responses. Percentage variations of the identified parameters before and after damage initiation are determined to establish their sensitivities to the state of damage of the beam. The results show that damping and effective nonlinearity parameters are more sensitive to damage initiation than the system's natural frequency. Moreover, the sensitivity of nonlinear parameters to damage is better established using a physically-derived parameter rather than spectral amplitudes of harmonic components.
Fuzzy-Rule-Based Object Identification Methodology for NAVI System
Directory of Open Access Journals (Sweden)
Rosalyn R. Porle
2005-08-01
Full Text Available We present an object identification methodology applied in a navigation assistance for visually impaired (NAVI system. The NAVI has a single board processing system (SBPS, a digital video camera mounted headgear, and a pair of stereo earphones. The captured image from the camera is processed by the SBPS to generate a specially structured stereo sound suitable for vision impaired people in understanding the presence of objects/obstacles in front of them. The image processing stage is designed to identify the objects in the captured image. Edge detection and edge-linking procedures are applied in the processing of image. A concept of object preference is included in the image processing scheme and this concept is realized using a fuzzy-rule base. The blind users are trained with the stereo sound produced by NAVI for achieving a collision-free autonomous navigation.
Wiener-Hammerstein system identification - an evolutionary approach
Naitali, Abdessamad; Giri, Fouad
2016-01-01
The problem of identifying parametric Wiener-Hammerstein (WH) systems is addressed within the evolutionary optimisation context. Specifically, a hybrid culture identification method is developed that involves model structure adaptation using genetic recombination and model parameter learning using particle swarm optimisation. The method enjoys three interesting features: (1) the risk of premature convergence of model parameter estimates to local optima is significantly reduced, due to the constantly maintained diversity of model candidates; (2) no prior knowledge is needed except for upper bounds on the system structure indices; (3) the method is fully autonomous as no interaction is needed with the user during the optimum search process. The performances of the proposed method will be illustrated and compared to alternative methods using a well-established WH benchmark.
Development of Identification System for Check-Weigher
Hashimoto, Tatsuaki; Umemoto, Toshitaka; Maeda, Atsushi
Our identification system for the natural frequency consisted of control computer, D/A-A/D conversion interface boards, motor driver, vibrator and eddy current displacement sensor. The RealTime application interface for Linux was used as the computer OS. First the sensing analog data were converted to the digital data. Then the count values were re-converted to the voltage data by our software. Here we used the enhanced signal compression method using the time stretched pulse signal. In the experiment using the system, the weight of products was confirmed to bear a proportionate relationship to the natural frequency. This indicates that our method is available to identify the natural frequency.
Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems
Patan, Maciej
2012-01-01
Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...
Approximation Problems in System Identification With Neural Networks
Institute of Scientific and Technical Information of China (English)
陈天平
1994-01-01
In this paper, the capability of neural networks and some approximation problens in system identification with neural networks are investigated. Some results are given: (i) For any function g ∈Llocp (R1) ∩S’ (R1) to be an Lp-Tauber-Wiener function, it is necessary and sufficient that g is not apolynomial; (ii) If g∈(Lp TW), then the set of is dense in Lp(K)’ (iii) It is proved that bycompositions of some functions of one variable, one can approximate continuous functional defined on compact Lp(K) and continuous operators from compact Lp1(K1) to LP2(K2). These results confirm the capability of neural networks in identifying dynamic systems.
Task Characterisation and Cross-Platform Programming Through System Identification
Directory of Open Access Journals (Sweden)
Roberto Iglesias
2008-11-01
Full Text Available Developing robust and reliable control code for autonomous mobile robots is difficult, because the interaction between a physical robot and the environment is highly complex, it is subject to noise and variation, and therefore partly unpredictable. This means that to date it is not possible to predict robot behaviour, based on theoretical models. Instead, current methods to develop robot control code still require a substantial trial-and-error component to the software design process. Such iterative refinement could be reduced, we argue, if a more profound theoretical understanding of robot-environment interaction existed. In this paper, we therefore present a modelling method that generates a faithful model of a robot's interaction with its environment, based on data logged while observing a physical robot's behaviour. Because this modelling method - nonlinear modelling using polynomials - is commonly used in the engineering discipline of system identification, we refer to it here as "robot identification". We show in this paper that using robot identification to obtain a computer model of robot environment interaction offers several distinct advantages:
1. Very compact representations (one-line programs of the robot control program are generated
2.The model can be analysed, for example through sensitivity analysis, leading to a better understanding of the essential parameters underlying the robot's behaviour, and
3. The generated, compact robot code can be used for cross-platform robot programming, allowing fast transfer of robot code from one type of robot to another.
We demonstrate these points through experiments with a Magellan Pro and a Nomad 200 mobile robot.
System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator
2006-08-01
System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing
2012-05-01
BIOAEROSOL DETECTION AND IDENTIFICATION SYSTEMS ECBC-TR-964 Jana Kesavan Deborah R. Schepers Jerold R. Bottiger RESEARCH AND TECHNOLOGY...Testing Of Bioaerosol Detection And Identification Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Medical Metered Dose Inhalers for Functionality Testing of Bioaerosol Detection and Identification Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Encryption and validation of multiple signals for optical identification systems
Energy Technology Data Exchange (ETDEWEB)
Perez-Cabre, E [Universitat PoliteGcnica de Catalunya, Department Optica i Optometria, Violinista Vellsola 37, 08222 Terrassa (Spain); Millan, M S [Universitat PoliteGcnica de Catalunya, Department Optica i Optometria, Violinista Vellsola 37, 08222 Terrassa (Spain); Javidi, B [University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, CT 06269 Storrs (United States)
2007-07-15
Multifactor encryption-authentication technique reinforces optical security by allowing the simultaneous A N D-verification of more than one primary image. Instead of basing the identification on a unique signature or piece of information, our goal is to authenticate a given person, object, vehicle by the simultaneous recognition of several factors. Some of them are intrinsic to the person and object or vehicle under control. Other factors, act as keys of the authentication step. Such a system is proposed for situations such as the access control to restricted areas, where the demand of security is high. The multifactor identification method involves double random-phase encoding, fully phase-based encryption and a combined nonlinear joint transform correlator and a classical 4f-correlator for simultaneous recognition and authentication of multiple images. The encoded signal fulfils the general requirements of invisible content, extreme difficulty in counterfeiting and real-time automatic verification. Four reference double-phase encoded images are compared with the retrieved input images obtained in situ from the person or the vehicle whose authentication is wanted and from a database. A recognition step based on the correlation between the signatures and the stored references determines the authentication or rejection of the person and object under surveillance.
Algorithms for Digital Micro-Wave Receivers and Optimal System Identification.
1994-02-28
estimation, Frequency estimation, Digital receiver design, Improved AR and ARMA modeling, Electronic Warfare (EW) signal detection, Optimal system identification from input/output and frequency domain data.
Anti-collision radio-frequency identification system using passive SAW tags
Sorokin, A. V.; Shepeta, A. P.
2017-06-01
Modern multi sensor systems should have high operating speed and resistance to climate impacts. Radiofrequency systems use passive SAW tags for identification items and vehicles. These tags find application in industry, traffic remote control systems, and railway remote traffic control systems for identification and speed measuring. However, collision of the passive SAW RFID tags hinders development passive RFID SAW technology in Industry. The collision problem for passive SAW tags leads for incorrect identification and encoding each tag. In our researching, we suggest approach for identification of several passive SAW tags in collision case.
Institute of Scientific and Technical Information of China (English)
陈士华; 赵立民; 刘杰
2002-01-01
A systematic design process of adaptive synchronization and parameter identification of an uncertain Chen chaotic system is provided. With this new and effective method, parameter identification and synchronization of the Chen system, with all the system parameters unknown, can be achieved simultaneously. Theoretical proof and numerical simulation demonstrate the effectiveness and feasibility of the proposed method.
Study on flow stability margin by method of system identification
Energy Technology Data Exchange (ETDEWEB)
Zhang Youjie; Jiang Shengyao [Tsinghua Univ., Beijing, BJ (China). Inst. of Nuclear Energy Technology
1999-11-01
The main objective of the investigation is to develop a practical technology and method in engineering, based on general control theory, for distinguishing two-phase flow stability and identifying the safety margin by using the system identification method. By combining the two-phase flow stability theory in the thermo-physics field with the system stability theory and the system identification method in the field of information science, a thermo-hydraulic experiment technology with a new concept was developed. The experiment was carried out on the thermo-hydraulic test system HRTL-5 which serves as simulator to the primary circulation of the nuclear heating reactor NHR-5 and was used for investigation on its thermo-physical behavior. Reverse repeat pseudo-random sequences which were added to the steady heat flux as input signal sources and measured flow rates as response function were used in the test. The two-phase flow stability and the stability margin of the natural circulation system were investigated by analyzing the system pulse response function, the decay ratio and the stability boundary under different operational conditions. The results are compared with those obtained by using conventional methods. The test method and typical results obtained are presented in this paper. (orig.) [German] Das Hauptziel der Untersuchung ist die Entwicklung einer Technik und eines Verfahrens um - basierend auf allgemeiner Regelungstheorie - die Stabilitaet einer Zweiphasenstroemung zu bestimmen und unter Verwendung von Methoden zur Systemidentifikation Sicherheitsreserven zu ermitteln. Durch Kombination der Theorie der Zweiphasenstroemungsstabilitaet im Bereich der Thermophysik mit der Systemstabilitaetstheorie und der informationstheoretischen Systemidentifikationsmethode wurde eine thermohydraulische Experimentiertechnik neuartigen Konzepts entwickelt. Die Versuche wurden auf dem Thermohydraulikteststand HRTL-5 ausgefuehrt, der dem Primaeranlauf des Heizreaktors HHR-5
Identification of systems containing nonlinear stiffnesses using backbone curves
Londoño, Julián M.; Cooper, Jonathan E.; Neild, Simon A.
2017-02-01
This paper presents a method for the dynamic identification of structures containing discrete nonlinear stiffnesses. The approach requires the structure to be excited at a single resonant frequency, enabling measurements to be made in regimes of large displacements where nonlinearities are more likely to be significant. Measured resonant decay data is used to estimate the system backbone curves. Linear natural frequencies and nonlinear parameters are identified using these backbone curves assuming a form for the nonlinear behaviour. Numerical and experimental examples, inspired by an aerospace industry test case study, are considered to illustrate how the method can be applied. Results from these models demonstrate that the method can successfully deliver nonlinear models able to predict the response of the test structure nonlinear dynamics.
A Study on System Identification Using Wavelet Transformation
Energy Technology Data Exchange (ETDEWEB)
Baek, Wook Jin; Han, Jeong Woo; Kang, Sung Ju [Department of Chemical Engineering, Chonnam National University, Kwangju (Korea); Chung, Chang Bock [Faculty of Applied Chemical Engineering, Chonnam National University, Kwangju (Korea)
2001-04-01
The wavelet transformation, which was developed in order to overcome the defects of traditional Fourier transformation, is applied to many fields of study in various ways-for example, de-noising, data compression and mathematic applications such as solving partial differential equations, etc. De-noising is one of the wavelet transformation and has been studied by many researchers. The effect of de-noising depends upon the shrinkage function and the method of choosing the threshold value for the function. The objective of this work is to analyze the results of applying various threshold algorithms according to characteristics for signals and noise level. By applying the de-noising to the system identification, we compared the performances of signals which went through the de-noising process with those of signals with out de-noising. 28 refs., 12 figs., 10 tabs.
Improving Performance of Speaker Identification System Using Complementary Information Fusion
Sahidullah, Md; Saha, Goutam
2011-01-01
Feature extraction plays an important role as a front-end processing block in speaker identification (SI) process. Most of the SI systems utilize like Mel-Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), Linear Predictive Cepstral Coefficients (LPCC), as a feature for representing speech signal. Their derivations are based on short term processing of speech signal and they try to capture the vocal tract information ignoring the contribution from the vocal cord. Vocal cord cues are equally important in SI context, as the information like pitch frequency, phase in the residual signal, etc could convey important speaker specific attributes and are complementary to the information contained in spectral feature sets. In this paper we propose a novel feature set extracted from the residual signal of LP modeling. Higher-order statistical moments are used here to find the nonlinear relationship in residual signal. To get the advantages of complementarity vocal cord based decision score is f...
Compressive System Identification in the Linear Time-Invariant framework
Toth, Roland
2011-12-01
Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization (variance increase of the estimates). There exists many approaches to this widely studied problem in terms of statistical regularization methods and information criteria. In this paper, an alternative ℓ 1 regularization scheme is proposed for estimation of sparse linear-regression models based on recent results in compressive sensing. It is shown that the proposed scheme provides consistent estimation of sparse models in terms of the so-called oracle property, it is computationally attractive for large-scale over-parameterized models and it is applicable in case of small data sets, i.e., underdetermined estimation problems. The performance of the approach w.r.t. other regularization schemes is demonstrated in an extensive Monte Carlo study. © 2011 IEEE.
Multitarget Identification and Localization Using Bistatic MIMO Radar Systems
Directory of Open Access Journals (Sweden)
Guisheng Liao
2007-12-01
Full Text Available A scheme for multitarget identification and localization using bistatic MIMO radar systems is proposed. Multitarget can be distinguished by Capon method, as well as the targets angles with respect to transmitter and receiver can be synthesized using the received signals. Thus, the locations of the multiple targets are obtained and spatial synchronization problem in traditional bistatic radars is avoided. The maximum number of targets that can be uniquely identified by proposed method is also analyzed. It is indicated that the product of the numbers of receive and transmit elements minus-one targets can be identified by exploiting the fluctuating of the radar cross section (RCS of the targets. Cramer-Rao bounds (CRB are derived to obtain more insights of this scheme. Simulation results demonstrate the performances of the proposed method using Swerling II target model in various scenarios.
Channel Access Algorithm Design for Automatic Identification System
Institute of Scientific and Technical Information of China (English)
Oh Sang-heon; Kim Seung-pum; Hwang Dong-hwan; Park Chan-sik; Lee Sang-jeong
2003-01-01
The Automatic Identification System (AIS) is a maritime equipment to allow an efficient exchange of the navigational data between ships and between ships and shore stations. It utilizes a channel access algorithm which can quickly resolve conflicts without any intervention from control stations. In this paper, a design of channel access algorithm for the AIS is presented. The input/output relationship of each access algorithm module is defined by drawing the state transition diagram, dataflow diagram and flowchart based on the technical standard, ITU-R M.1371. In order to verify the designed channel access algorithm, the simulator was developed using the C/C++ programming language. The results show that the proposed channel access algorithm can properly allocate transmission slots and meet the operational performance requirements specified by the technical standard.
MINLIP for the Identification of Monotone Wiener Systems
Pelckmans, Kristiaan
2010-01-01
This paper studies the MINLIP estimator for the identification of Wiener systems consisting of a sequence of a linear FIR dynamical model, and a monotonically increasing (or decreasing) static function. Given $T$ observations, this algorithm boils down to solving a convex quadratic program with $O(T)$ variables and inequality constraints, implementing an inference technique which is based entirely on model complexity control. The resulting estimates of the linear submodel are found to be almost consistent when no noise is present in the data, under a condition of smoothness of the true nonlinearity and local Persistency of Excitation (local PE) of the data. This result is novel as it does not rely on classical tools as a 'linearization' using a Taylor decomposition, nor exploits stochastic properties of the data. It is indicated how to extend the method to cope with noisy data, and empirical evidence contrasts performance of the estimator against other recently proposed techniques.
A Markov Chain Monte Carlo Based Method for System Identification
Energy Technology Data Exchange (ETDEWEB)
Glaser, R E; Lee, C L; Nitao, J J; Hanley, W G
2002-10-22
This paper describes a novel methodology for the identification of mechanical systems and structures from vibration response measurements. It combines prior information, observational data and predictive finite element models to produce configurations and system parameter values that are most consistent with the available data and model. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The resulting process enables the estimation of distributions of both individual parameters and system-wide states. Attractive features of this approach include its ability to: (1) provide quantitative measures of the uncertainty of a generated estimate; (2) function effectively when exposed to degraded conditions including: noisy data, incomplete data sets and model misspecification; (3) allow alternative estimates to be produced and compared, and (4) incrementally update initial estimates and analysis as more data becomes available. A series of test cases based on a simple fixed-free cantilever beam is presented. These results demonstrate that the algorithm is able to identify the system, based on the stiffness matrix, given applied force and resultant nodal displacements. Moreover, it effectively identifies locations on the beam where damage (represented by a change in elastic modulus) was specified.
Medical isotope identification with large mobile detection systems
Mukhopadhyay, Sanjoy; Maurer, Richard
2012-10-01
The Remote Sensing laboratory (RSL) of National Security Technologies Inc. has built an array of large (5.08 - cm x 10.16 - cm x 40.6 - cm) thallium doped sodium iodide (NaI: Tl) scintillators to locate and screen gamma-ray emitting radioisotopes that are of interests to radiological emergency responders [1]. These vehicle mounted detectors provide the operators with rapid, simple, specific information for radiological threat assessment. Applications include large area inspection, customs inspection, border protection, emergency response, and monitoring of radiological facilities. These RSL mobile units are currently being upgraded to meet the Defense Threat Reduction Agency mission requirements for a next-generation system capable of detecting and identifying nuclear threat materials. One of the challenging problems faced by these gamma-ray detectors is the unambiguous identification of medical isotopes like 131I (364.49 keV [81.7%], 636.99 keV [7.17%]), 99Tcm (140.51 keV [89.1%]) and 67Ga (184.6 keV [19.7%], 300.2 [16.0%], 393.5 [4.5%] that are used in radionuclide therapy and often have overlapping gamma-ray energy regions of interest (ROI). The problem is made worse by short (about 5 seconds) acquisition time of the spectral data necessary for dynamic mobile detectors. This article describes attempts to identify medical isotopes from data collected from this mobile detection system in a short period of time (not exceeding 5 secs) and a large standoff distance (typically ~ 10 meters) The mobile units offer identification capabilities that are based on hardware auto stabilization of the amplifier gain. The 1461 keV gamma-energy line from 40K is tracked. It uses gamma-ray energy windowing along with embedded mobile Gamma Detector Response and Analysis Software (GADRAS) [2] simultaneously to deconvolve any overlapping gamma-energy ROIs. These high sensitivity detectors are capable of resolving complex masking scenarios and exceed all ANSI N42.34 (2006) requirements
System identification and model reduction using modulating function techniques
Shen, Yan
1993-01-01
Weighted least squares (WLS) and adaptive weighted least squares (AWLS) algorithms are initiated for continuous-time system identification using Fourier type modulating function techniques. Two stochastic signal models are examined using the mean square properties of the stochastic calculus: an equation error signal model with white noise residuals, and a more realistic white measurement noise signal model. The covariance matrices in each model are shown to be banded and sparse, and a joint likelihood cost function is developed which links the real and imaginary parts of the modulated quantities. The superior performance of above algorithms is demonstrated by comparing them with the LS/MFT and popular predicting error method (PEM) through 200 Monte Carlo simulations. A model reduction problem is formulated with the AWLS/MFT algorithm, and comparisons are made via six examples with a variety of model reduction techniques, including the well-known balanced realization method. Here the AWLS/MFT algorithm manifests higher accuracy in almost all cases, and exhibits its unique flexibility and versatility. Armed with this model reduction, the AWLS/MFT algorithm is extended into MIMO transfer function system identification problems. The impact due to the discrepancy in bandwidths and gains among subsystem is explored through five examples. Finally, as a comprehensive application, the stability derivatives of the longitudinal and lateral dynamics of an F-18 aircraft are identified using physical flight data provided by NASA. A pole-constrained SIMO and MIMO AWLS/MFT algorithm is devised and analyzed. Monte Carlo simulations illustrate its high-noise rejecting properties. Utilizing the flight data, comparisons among different MFT algorithms are tabulated and the AWLS is found to be strongly favored in almost all facets.
Closed-loop Identification for Control of Linear Parameter Varying Systems
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, Klaus
2014-01-01
, closed- loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can......This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately...... be extended to accommodate linear parameter varying systems as well. We investigate the identified subsystem’s parameter dependency and observe that, under mild assumptions, the identified subsystem is affine in the parameter vector. Various identification methods are compared in direct and Hansen Scheme...
López, G
2007-01-01
The Lagrangian, the Hamiltonian and the constant of motion of the gravitational attraction of two bodies when one of them has variable mass is considered. This is done by choosing the reference system in one of the bodies which allows to reduce the system of equations to 1-D problem. The trajectories found in the space position-velocity,(x,v), are qualitatively different from those on the space position-momentum,(x,p).
Ling-Yuan Hsu; Tsung-Lin Chen
2012-01-01
This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficie...
The post-Keplerian orbital representations of the relativistic two-body problem
Klioner, S. A.; Kopeikin, S. M.
1994-06-01
Orbital parameterizations of the relativstic two-body problem due to Brumberg, Damour-Deruelle, Epstein-Haugan, and Blandford-Teukolsky as well as osculating elements are compared. Exact relations between constants describing the orbit in the parameterizations are derived. It is shown that all the parameterizations in question are valid not only in general relativity, but in a generic class of relatvistic theories of gravity. The obtained results provide us with an additional check of consistency of different models used in timing of binary pulsars.
On the change of density of states in two-body interactions
Gao, Bo
2016-01-01
We derive a general relation in two-body scattering theory that more directly relates the change of density of states (DDOS) due to interaction to the shape of the potential. The relation allows us to infer certain global properties of the DDOS from the global properties of the potential. In particular, we show that DDOS is negative at all energies and for all partial waves, for potentials that are more repulsive than $+1/r^2$ everywhere. This behavior represents a different class of global properties of DDOS from that described by the Levinson's theorem.
Probing SUSY CP Violation in Two-Body Stop Decays at the LHC
Deppisch, Frank
2009-01-01
We study CP asymmetries in two-body decays of top squarks into neutralinos and sleptons at the LHC. These asymmetries are used to probe the CP phases possibly present in the stop and neutralino sector of the Minimal Supersymmetric Standard Model. Taking into account bounds from experimental electric dipole moment searches, we identify areas in the mSUGRA parameter space where CP asymmetries can be sizeable and discuss the feasibility of their observation at the LHC. As a result, potentially detectable CP asymmetries in stop decays at the LHC are found, motivating further detailed experimental studies for probing SUSY CP phases.
The two-body random spin ensemble and a new type of quantum phase transition
Energy Technology Data Exchange (ETDEWEB)
Pizorn, Iztok; Prosen, Tomaz [Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Mossmann, Stefan; Seligman, Thomas H [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, CP 62132 Cuernavaca, Morelos (Mexico)], E-mail: tomaz.prosen@fmf.uni-lj.si
2008-02-15
We study in this paper the properties of a two-body random matrix ensemble for distinguishable spins. We require the ensemble to be invariant under the group of local transformations and analyze a parametrization in terms of the group parameters and the remaining parameters associated with the 'entangling' part of the interaction. We then specialize to a spin chain with nearest-neighbour interactions and numerically find a new type of quantum-phase transition related to the strength of a random external field, i.e. the time-reversal-breaking one-body interaction term.
The two-body random spin ensemble and a new type of quantum phase transition
Pižorn, Iztok; Prosen, Tomaž; Mossmann, Stefan; Seligman, Thomas H.
2008-02-01
We study in this paper the properties of a two-body random matrix ensemble for distinguishable spins. We require the ensemble to be invariant under the group of local transformations and analyze a parametrization in terms of the group parameters and the remaining parameters associated with the 'entangling' part of the interaction. We then specialize to a spin chain with nearest-neighbour interactions and numerically find a new type of quantum-phase transition related to the strength of a random external field, i.e. the time-reversal-breaking one-body interaction term.
Probing SUSY CP violation in two-body stop decays at the LHC
Deppisch, Frank F.; Kittel, Olaf
2009-09-01
We study CP asymmetries in two-body decays of top squarks into neutralinos and sleptons at the LHC. These asymmetries are used to probe the CP phases possibly present in the stop and neutralino sector of the Minimal Supersymmetric Standard Model. Taking into account bounds from experimental electric dipole moment searches, we identify areas in the mSUGRA parameter space where CP asymmetries can be sizeable and discuss the feasibility of their observation at the LHC. As a result, potentially detectable CP asymmetries in stop decays at the LHC are found, motivating further detailed experimental studies for probing SUSY CP phases.
Advanced Techniques for Power System Identification from Measured Data
Energy Technology Data Exchange (ETDEWEB)
Pierre, John W.; Wies, Richard; Trudnowski, Daniel
2008-11-25
Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block
Output-Only Identification of System Parameters from Noisy Measurements by Multiwavelet Denoising
2014-01-01
In this paper we estimate the parameters of a multidimensional system from a record of noisy output measurements by using a multiwavelet denoising technique. In this output-only identification scheme, we extend wavelet denoising methods to the multiwavelet case. After the noise has been removed from the output records by wavelet methods, either full model identification or deterministic subspace identification can be performed. In the former case, full information on the system such as modal ...
Institute of Scientific and Technical Information of China (English)
姚志远; 汪凤泉
2004-01-01
An online method of identification of dynamic characteristics only using measured ambient response of structural dynamic system is widely focused on. The Ibrahim and ARMA (AutoRegressive Moving Average ) methods are basic identification methods. A model on dynamic system suffered by random ambient excitation was researched into, and a subspace decomposition method being different from traditional harmonic retrieval method was introduced. Robustness and effectiveness of this approach on identification of vibration characteristics are demonstrated on numerical experiment.
Bayesian system identification of dynamical systems using highly informative training data
Green, P. L.; Cross, E. J.; Worden, K.
2015-05-01
This paper is concerned with the Bayesian system identification of structural dynamical systems using experimentally obtained training data. It is motivated by situations where, from a large quantity of training data, one must select a subset to infer probabilistic models. To that end, using concepts from information theory, expressions are derived which allow one to approximate the effect that a set of training data will have on parameter uncertainty as well as the plausibility of candidate model structures. The usefulness of this concept is then demonstrated through the system identification of several dynamical systems using both physics-based and emulator models. The result is a rigorous scientific framework which can be used to select 'highly informative' subsets from large quantities of training data.
A Design of Generalized Predictive Control Systems Using a Memory-Based System Identification
Takao, Kenji; Yamamoto, Toru; Hinamoto, Takao
In this paper, a new system identification scheme is proposed based on a memory-based modeling (MBM) method. According to the MBM method, some local models are automatically generated using input/output data pairs of the controlled object stored in the data-base. Especially, it is well known that the MBM method works suitably on nonlinear systems. Therefore, even if the nonlinearities are contained in the controlled object, accuracy identification can be performed by the proposed method. Moreover, since the parameter estimates are easily applied to many existing controllers, the good control result can be obtained for nonlinear systems. In this paper, the generalized predictive control (GPC) is used as the one of existing controllers, because the GPC is designed based on multi-step prediction, and is effective for systems with large, ambiguous and/or time-variant time-delays. Finally, the effectiveness of the newly proposed control scheme is numerically evaluated on some simulation examples.
Nonlinear State Space Modeling and System Identification for Electrohydraulic Control
Directory of Open Access Journals (Sweden)
Jun Yan
2013-01-01
Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.
NeuroControl: system identification approach for clinical benefit.
Directory of Open Access Journals (Sweden)
Carel G.M. Meskers
2015-09-01
Full Text Available Progress in diagnosis and treatment of movement disorders after neurological diseases like stroke, cerebral palsy, dystonia and at old age requires understanding of the altered capacity to adequately respond to physical obstacles in the environment. With posture and movement disorders, the control of muscles is hampered, resulting in aberrant force generation and improper impedance regulation. Understanding of this improper regulation not only requires the understanding of the role of the neural controller, but also attention for the 1 the interaction between the neural controller and the plant, comprising the biomechanical properties of the skeleton including the viscoelastic properties of the contractile (muscle and non-contractile (connective tissues: neuromechanics and 2 the closed loop nature of neural controller and biomechanical system in which cause and effect interact and are hence difficult to separate. Properties of the neural controller and the biomechanical system need to be addressed synchronously by the combination of haptic robotics, (closed loop system identification, and neuro-mechanical modelling. In this paper, we argue that assessment of neuromechanics in response to well defined environmental conditions and tasks may provide for key parameters to understand posture and movement disorders in neurological diseases and as biomarkers to increase accuracy of prediction models for functional outcome and effects of intervention.
System identification and robust control of a portable proton exchange membrane full-cell system
Energy Technology Data Exchange (ETDEWEB)
Wang, Fu-Cheng; Yang, Yee-Pien; Huang, Chi-Wei; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, Taipei (Taiwan); Chang, Hsin-Ping [Chung Shan Institute of Science and Technology (CSIST), Armaments Bureau, M.N.D (Taiwan)
2007-02-10
This paper will discuss the application of system identification techniques and robust control strategies to a proton exchange membrane fuel-cell system. The fuel-cell system's dynamic behaviour is influenced by many factors, such as the reaction mechanism, pressure, flow-rate, composition and temperature change, and is inherently non-linear and time varying. From a system point of view, however, the system can be modelled as a two-input, two-output linear time-invariant system whose inputs are hydrogen and air flow rates, and whose outputs are cell voltage and current. On the other hand, the system's non-linearities and time-varying characteristics can be regarded as system uncertainties and disturbances that are treated by the designed robust controllers. This paper is comprised of three parts. First, system identification techniques were adopted to model the system's transfer functions. Second, the H{sub {infinity}} robust control strategies were applied to stabilise the system. Finally, the system's stability and performance were compromised by introducing weighting functions to the controller's design. From the experimental results, the designed H{sub {infinity}} robust controllers were deemed effective. (author)
Segmental Dynamics of Forward Fall Arrests: System Identification Approach
Kim, Kyu-Jung; Ashton-Miller, James A.
2009-01-01
Background Fall-related injuries are multifaceted problems, necessitating thorough biodynamic simulation to identify critical biomechanical factors. Methods A 2-degree-of-freedom discrete impact model was constructed through system identification and validation processes using the experimental data to understand dynamic interactions of various biomechanical parameters in bimanual forward fall arrests. Findings The bimodal reaction force response from the identified models had small identification errors for the first and second force peaks less than 3.5% and high coherence between the measured and identified model responses (R2=0.95). Model validation with separate experimental data also demonstrated excellent validation accuracy and coherence, less than 7% errors and R2=0.87, respectively. The first force peak was usually greater than the second force peak and strongly correlated with the impact velocity of the upper extremity, while the second force peak was associated with the impact velocity of the body. The impact velocity of the upper extremity relative to the body could be a major risk factor to fall-related injuries as observed from model simulations that a 75% faster arm movement relative to the falling speed of the body alone could double the first force peak from soft landing, thereby readily exceeding the fracture strength of the distal radius. Interpretation Considering that the time-critical nature of falling often calls for a fast arm movement, the use of the upper extremity in forward fall arrests is not biomechanically justified unless sufficient reaction time and coordinated protective motion of the upper extremity are available. PMID:19250726
System identification and trajectory optimization for guided store separation
Carter, Ryan E.
Combat aircraft utilize expendable stores such as missiles, bombs, flares, and external tanks to execute their missions. Safe and acceptable separation of these stores from the parent aircraft is essential for meeting the mission objectives. In many cases, the employed missile or bomb includes an onboard guidance and control system to enable precise engagement of the selected target. Due to potential interference, the guidance and control system is usually not activated until the store is sufficiently far away from the aircraft. This delay may result in large perturbations from the desired flight attitude caused by separation transients, significantly reducing the effectiveness of the store and jeopardizing mission objectives. The purpose of this research is to investigate the use of a transitional control system to guide the store during separation. The transitional control system, or "store separation autopilot", explicitly accounts for the nonuniform flow field through characterization of the spatially variant aerodynamics of the store during separation. This approach can be used to mitigate aircraft-store interference and leverage aerodynamic interaction to improve separation characteristics. This investigation proceeds in three phases. First, system identification is used to determine a parametric model for the spatially variant aerodynamics. Second, the store separation problem is recast into a trajectory optimization problem, and optimal control theory is used to establish a framework for designing a suitable reference trajectory with explicit dependence on the spatially variant aerodynamics. Third, neighboring optimal control is used to construct a linear-optimal feedback controller for correcting deviations from the nominal reference trajectory due varying initial conditions, modeling errors, and flowfield perturbations. An extended case study based on actual wind tunnel and flight test measurements is used throughout to illustrate the effectiveness of the
A detailed study of nonperturbative solutions of two-body Dirac equations
Energy Technology Data Exchange (ETDEWEB)
Crater, H.W.; Becker, R.L.; Wong, C.Y.; Van Alstine, P.
1992-12-01
In quark model calculations of the meson spectrums fully covariant two-body Dirac equations dictated by Dirac's relativistic constraint mechanics gave a good fit to the entire meson mass spectrum for light quark mesons as well as heavy quark mesons with constituent world scalar and vector potentials depending on just one or two parameters. In this paper, we investigate the properties of these equations that made them work so well by solving them numerically for quantum electrodynamics (QED) and related field theories. The constraint formalism generates a relativistic quantum mechanics defined by two coupled Dirac equations on a sixteen component wave function which contain Lorentz covariant constituent potentials that are initially undetermined. An exact Pauli reduction leads to a second order relativistic Schroedinger-like equation for a reduced eight component wave function determined by an effective interaction -- the quasipotential. We first determine perturbatively to lowest order the relativistic quasipotential for the Schroedinger-like equation by comparing that form with one derived from the Bethe-Salpeter equation. Insertion of this perturbative information into the minimal interaction structures of the two-body Dirac equations then completely determines their interaction structures. Then we give a procedure for constructing the full sixteen component solution to our coupled first-order Dirac equations from a solution of the second order equation for the reduced wave function. Next, we show that a perturbative treatment of these equations yields the standard spectral results for QED and related interactions.
Neutron-deuteron scattering calculations with W-matrix representation of the two-body input
Energy Technology Data Exchange (ETDEWEB)
Bartnik, E.A.; Haberzettl, H.; Januschke, T.; Kerwath, U.; Sandhas, W.
1987-11-01
Employing the W-matrix representation of the partial-wave T matrix introduced by Bartnik, Haberzettl, and Sandhas, we show for the example of the Malfliet-Tjon potentials I and III that the single-term separable part of the W-matrix representation, when used as input in three-nucleon neutron-deuteron scattering calculations, is fully capable of reproducing the exact results obtained by Kloet and Tjon. This approximate two-body input not only satisfies the two-body off-shell unitarity relation but, moreover, it also contains a parameter which may be used in optimizing the three-body data. We present numerical evidence that there exists a variational (minimum) principle for the determination of the three-body binding energy which allows one to choose this parameter also in the absence of an exact reference calculation. Our results for neutron-deuteron scattering show that it is precisely this choice of the parameter which provides optimal scattering data. We conclude that the W-matrix approach, despite its simplicity, is a remarkably efficient tool for high-quality three-nucleon calculations.
Neutron-deuteron scattering calculations with W-matrix representation of the two-body input
Energy Technology Data Exchange (ETDEWEB)
Bartnik, E.A.; Haberzettl, H.; Januschke, T.; Kerwath, U.; Sandhas, W.
1987-05-01
Employing the W-matrix representation of the partial-wave T matrix introduced by Bartnik, Haberzettl, and Sandhas, we show for the example of the Malfliet-Tjon potentials I and III that the single-term separable part of the W-matrix representation, when used as input in three-nucleon neutron-deuteron scattering calculations, is fully capable of reproducing the exact results obtained by Kloet and Tjon. This approximate two-body input not only satisfies the two-body off-shell unitarity relation but, moreover, it also contains a parameter which may be used in optimizing the three-body data. We present numerical evidence that there exists a variational (minimum) principle for the determination of the three-body binding energy which allows one to choose this parameter also in the absence of an exact reference calculation. Our results for neutron-deuteron scattering show that it is precisely this choice of the parameter which provides optimal scattering data. We conclude that the W-matrix approach, despite its simplicity, is a remarkably efficient tool for high-quality three-nucleon calculations.
Global solutions to the electrodynamic two-body problem on a straight line
Bauer, G.; Deckert, D.-A.; Dürr, D.; Hinrichs, G.
2017-06-01
The classical electrodynamic two-body problem has been a long standing open problem in mathematics. For motion constrained to the straight line, the interaction is similar to that of the two-body problem of classical gravitation. The additional complication is the presence of unbounded state-dependent delays in the Coulomb forces due to the finiteness of the speed of light. This circumstance renders the notion of local solutions meaningless, and therefore, straightforward ODE techniques cannot be applied. Here, we study the time-symmetric case, i.e., the Fokker-Schwarzschild-Tetrode (FST) equations, comprising both advanced and retarded delays. We extend the technique developed in Deckert and Hinrichs (J Differ Equ 260:6900-6929, 2016), where existence of FST solutions was proven on the half line, to ensure global existence—a result that had been obtained by Bauer (Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik, Herbert Utz Verlag, München, 1997). Due to the novel technique, the presented proof is shorter and more transparent but also relies on the idea to employ asymptotic data to characterize solutions.
Energy spectra of massive two-body decay products and mass measurement
Agashe, Kaustubh; Hong, Sungwoo; Kim, Doojin
2016-01-01
We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a massless product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the SM particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial b...
Manual of spIds, a software package for parameter identification in dynamic systems
Everaars, C.T.H.; Hemker, P.W.; Stortelder, W.J.H.
1995-01-01
This report contains the manual of spIds, version 1.0, a software package for parameter identification in dynamic systems. SpIdslabel{ab:spIds is an acronym of underline{simulation and underline{parameter underline{identification in underline{dynamic underline {systems. It can be applied on wide var
Development of a Low-Order Model of an X-Wing Aircraft by System Identification.
1982-02-01
The original purpose of this contract was to prepare a flight test plan for the proposed X-wing demonstrator using system identification to extract...demonstration of the feasibility of using system identification techniques to extract low-order math models from time history data from a detailed X-wing rotor simulation (REXOR).
1989-10-30
In this Phase I SBIR study, new methods are developed for the system identification and stochastic filtering of nonlinear controlled Markov processes...state space Markov process models and canonical variate analysis (CVA) for obtaining optimal nonlinear procedures for system identification and stochastic
Physics-based mathematical models for quantum devices via experimental system identification
Energy Technology Data Exchange (ETDEWEB)
Schirmer, S G; Oi, D K L; Devitt, S J [Department of Applied Maths and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge, CB3 0WA (United Kingdom); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan)], E-mail: sgs29@cam.ac.uk
2008-03-15
We consider the task of intrinsic control system identification for quantum devices. The problem of experimental determination of subspace confinement is considered, and simple general strategies for full Hamiltonian identification and decoherence characterization of a controlled two-level system are presented.
Tidal analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data
2017-01-01
ER D C/ CH L TR -1 7- 2 Coastal Inlets Research Program Tidal Analysis and Arrival Process Mining Using Automatic Identification System...17-2 January 2017 Tidal Analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data Brandan M. Scully Coastal and...13 Tidal analysis
Beaucage, C M; Onderdonk, A B
1982-09-01
A prereduced, anaerobically sterilized system of tubed media (PRAS II; Scott Laboratories, Fiskeville, R.I.) was evaluated for accuracy in the identification of anerobic microorganisms. PRAS II was found to be a rapid and accurate identification system for obligate anaerobes which does not require the use of gas cannula inoculation or incubation in a special anaerobic environment.
Beaucage, C M; Onderdonk, A B
1982-01-01
A prereduced, anaerobically sterilized system of tubed media (PRAS II; Scott Laboratories, Fiskeville, R.I.) was evaluated for accuracy in the identification of anerobic microorganisms. PRAS II was found to be a rapid and accurate identification system for obligate anaerobes which does not require the use of gas cannula inoculation or incubation in a special anaerobic environment.
BLIND IDENTIFICATION OF A CLASS OF NONLINEAR SYSTEMS WITH CYCLOSTATIONARY INPUT
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
This letter deals with blind identification of nonlinear discrete Hammerstein system under the input signal that is cyclostationary.The first-order moment of the specific input as well as the inverse nonlinear mapping of the Hammerstein model are combined to establish a relationship between the system output and the system parameters,which implies an approach to identifying the system blindly.Simulation results demonstrate the effectiveness of this approach to blind identification of a class of nonUnear systems.
Energy Technology Data Exchange (ETDEWEB)
Jalashgar, A.
1997-05-01
The main subject of this thesis is to identify hidden failures in process control systems by developing and using a function-oriented system analysis method. Qualitative failure analysis and the characteristics of the classical failure analysis methods and function-oriented modelling methods are covered. The general limitations of the methods in connection with the identification and representation of hidden failures are discussed. The discussion has led to the justification of developing and using a function-oriented system analysis method to identify and represent the capabilities of the system components, which realize different sets of functions in connection with different sets of goals that the system must achieve. A terminology is introduced to define the basic aspects of technical systems including goals, functions, capabilities and physical structure. A function-oriented system analysis method using this terminology and a tailored combination of the two function-oriented modelling approaches, is also introduced. It is then explained how the method can be applied in the identification and representation of hidden failures. The building blocks of a knowledge-oriented system to perform the diagnosis on the basis of the developed method are equally described. A prototype of the knowledge-based system is developed to demonstrate the applicability of the function-oriented system analysis method and the knowledge-based system. The prototype is implemented within the object-oriented software environment G2. (au) 65 ills., 32 refs.
Reduced-size kernel models for nonlinear hybrid system identification.
Le, Van Luong; Bloch, Grard; Lauer, Fabien
2011-12-01
This brief paper focuses on the identification of nonlinear hybrid dynamical systems, i.e., systems switching between multiple nonlinear dynamical behaviors. Thus the aim is to learn an ensemble of submodels from a single set of input-output data in a regression setting with no prior knowledge on the grouping of the data points into similar behaviors. To be able to approximate arbitrary nonlinearities, kernel submodels are considered. However, in order to maintain efficiency when applying the method to large data sets, a preprocessing step is required in order to fix the submodel sizes and limit the number of optimization variables. This brief paper proposes four approaches, respectively inspired by the fixed-size least-squares support vector machines, the feature vector selection method, the kernel principal component regression and a modification of the latter, in order to deal with this issue and build sparse kernel submodels. These are compared in numerical experiments, which show that the proposed approach achieves the simultaneous classification of data points and approximation of the nonlinear behaviors in an efficient and accurate manner.
An Automated System for Garment Texture Design Class Identification
Directory of Open Access Journals (Sweden)
Emon Kumar Dey
2015-09-01
Full Text Available Automatic identification of garment design class might play an important role in the garments and fashion industry. To achieve this, essential initial works are found in the literature. For example, construction of a garment database, automatic segmentation of garments from real life images, categorizing them into the type of garments such as shirts, jackets, tops, skirts, etc. It is now essential to find a system such that it will be possible to identify the particular design (printed, striped or single color of garment product for an automated system to recommend the garment trends. In this paper, we have focused on this specific issue and thus propose two new descriptors namely Completed CENTRIST (cCENTRIST and Ternary CENTRIST (tCENTRIST. To test these descriptors, we used two different publically available databases. The experimental results of these databases demonstrate that both cCENTRIST and tCENTRIST achieve nearly about 3% more accuracy than the existing state-of-the art methods.
Wavelet features for failure detection and identification in vibration systems
Deckert, James C.; Rhenals, Alonso E.; Tenney, Robert R.; Willsky, Alan S.
1992-12-01
The result of this effort is an extremely flexible and powerful methodology for failure detection and identification (FDI) in vibrating systems. The essential elements of this methodology are: (1) an off-line set of techniques to identify high-energy, statistically significant features in the continuous wavelet transform (CWT); (2) a CWT-based preprocessor to extract the most useful features from the sensor signal; and (3) simple artificial neural networks (incorporating a mechanism to defer any decision if the current feature sample is determined to be ambiguous) for the subsequent classification task. For the helicopter intermediate gearbox test-stand data and centrifugal and fire pump shipboard (mild operating condition) data used, the algorithms designed using this method achieved perfect detection performance (1.000 probability of detection, and 0.000 false alarm probability), with a probability less than 0.04 that a decision would be deferred-based on only 500 milliseconds of data from each sample case. While this effort shows the exceptional promise of our wavelet-based method for FDI in vibrating systems, more demanding applications, which also have other sources of high-energy vibration, raise additional technical issues that could provide the focus for a Phase 2 effort.
HFOLD - A program package for calculating two-body MSSM Higgs decays at full one-loop level.
Frisch, W; Eberl, H; Hluchá, H
2011-10-01
HFOLD (Higgs Full One Loop Decays) is a Fortran program package for calculating all MSSM Higgs two-body decay widths and the corresponding branching ratios at full one-loop level. The package is done in the SUSY Parameter Analysis convention and supports the SUSY Les Houches Accord input and output format. PROGRAM SUMMARY: Program title: HFOLD Catalogue identifier: AEJG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 340 621 No. of bytes in distributed program, including test data, etc.: 1 760 051 Distribution format: tar.gz Programming language: Fortran 77 Computer: Workstation, PC Operating system: Linux RAM: 524 288 000 Bytes Classification: 11.1 External routines: LoopTools 2.2 (http://www.feynarts.de/looptools/), SLHALib 2.2 (http://www.feynarts.de/slha/). The LoopTools code is included in the distribution package. Nature of problem: A future high-energy e+e- linear collider will be the best environment for the precise measurements of masses, cross sections, branching ratios, etc. Experimental accuracies are expected at the per-cent down to the per-mile level. These must be matched from the theoretical side. Therefore higher order calculations are mandatory. Solution method: This program package calculates all MSSM Higgs two-body decay widths and the corresponding branching ratios at full one-loop level. The renormalization is done in the DR scheme following the SUSY Parameter Analysis convention. The program supports the SUSY Les Houches Accord input and output format. Running time: The example provided takes only a few seconds to run.
System Identification of a Non-Uniformly Sampled Multi-Rate System in Aluminium Electrolysis Cells
Directory of Open Access Journals (Sweden)
Håkon Viumdal
2014-07-01
Full Text Available Standard system identification algorithms are usually designed to generate mathematical models with equidistant sampling instants, that are equal for both input variables and output variables. Unfortunately, real industrial data sets are often disrupted by missing samples, variations of sampling rates in the different variables (also known as multi-rate systems, and intermittent measurements. In industries with varying events based maintenance or manual operational measures, intermittent measurements are performed leading to uneven sampling rates. Such is the case with aluminium smelters, where in addition the materials fed into the cell create even more irregularity in sampling. Both measurements and feeding are mostly manually controlled. A simplified simulation of the metal level in an aluminium electrolysis cell is performed based on mass balance considerations. System identification methods based on Prediction Error Methods (PEM such as Ordinary Least Squares (OLS, and the sub-space method combined Deterministic and Stochastic system identification and Realization (DSR, and its variants are applied to the model of a single electrolysis cell as found in the aluminium smelters. Aliasing phenomena due to large sampling intervals can be crucial in avoiding unsuitable models, but with knowledge about the system dynamics, it is easier to optimize the sampling performance, and hence achieve successful models. The results based on the simulation studies of molten aluminium height in the cells using the various algorithms give results which tally well with the synthetic data sets used. System identification on a smaller data set from a real plant is also implemented in this work. Finally, some concrete suggestions are made for using these models in the smelters.
Optical Verification Laboratory Demonstration System for High Security Identification Cards
Javidi, Bahram
1997-01-01
Document fraud including unauthorized duplication of identification cards and credit cards is a serious problem facing the government, banks, businesses, and consumers. In addition, counterfeit products such as computer chips, and compact discs, are arriving on our shores in great numbers. With the rapid advances in computers, CCD technology, image processing hardware and software, printers, scanners, and copiers, it is becoming increasingly easy to reproduce pictures, logos, symbols, paper currency, or patterns. These problems have stimulated an interest in research, development and publications in security technology. Some ID cards, credit cards and passports currently use holograms as a security measure to thwart copying. The holograms are inspected by the human eye. In theory, the hologram cannot be reproduced by an unauthorized person using commercially-available optical components; in practice, however, technology has advanced to the point where the holographic image can be acquired from a credit card-photographed or captured with by a CCD camera-and a new hologram synthesized using commercially-available optical components or hologram-producing equipment. Therefore, a pattern that can be read by a conventional light source and a CCD camera can be reproduced. An optical security and anti-copying device that provides significant security improvements over existing security technology was demonstrated. The system can be applied for security verification of credit cards, passports, and other IDs so that they cannot easily be reproduced. We have used a new scheme of complex phase/amplitude patterns that cannot be seen and cannot be copied by an intensity-sensitive detector such as a CCD camera. A random phase mask is bonded to a primary identification pattern which could also be phase encoded. The pattern could be a fingerprint, a picture of a face, or a signature. The proposed optical processing device is designed to identify both the random phase mask and the
Identification of fractional-order systems with unknown initial values and structure
Energy Technology Data Exchange (ETDEWEB)
Du, Wei, E-mail: duwei0203@gmail.com [Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Miao, Qingying, E-mail: qymiao@sjtu.edu.cn [School of Continuing Education, Shanghai Jiao Tong University, Shanghai 200030 (China); Tong, Le, E-mail: tongle0328@gmail.com [Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hong Kong (China); Tang, Yang [Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)
2017-06-21
In this paper, the identification problem of fractional-order chaotic systems is proposed and investigated via an evolutionary optimization approach. Different with other studies to date, this research focuses on the identification of fractional-order chaotic systems with not only unknown orders and parameters, but also unknown initial values and structure. A group of fractional-order chaotic systems, i.e., Lorenz, Lü, Chen, Rössler, Arneodo and Volta chaotic systems, are set as the system candidate pool. The identification problem of fractional-order chaotic systems in this research belongs to mixed integer nonlinear optimization in essence. A powerful evolutionary algorithm called composite differential evolution (CoDE) is introduced for the identification problem presented in this paper. Extensive experiments are carried out to show that the fractional-order chaotic systems with unknown initial values and structure can be successfully identified by means of CoDE. - Highlights: • Unknown initial values and structure are introduced in the identification of fractional-order chaotic systems; • Only a series of output is utilized in the identification of fractional-order chaotic systems; • CoDE is used for the identification problem and the results are satisfactory when compared with other DE variants.
Hydrodynamic interactions between two bodies in waves in 3D time domain
Institute of Scientific and Technical Information of China (English)
WANG Jian-fang; LI Ji-de; CAI Xin-gong; TIAN Ming-qi; Hao Jin-feng
2005-01-01
In this paper, a 3D time domain technique is adopted to calculate the coupled hydrodynamic interaction between two bodies without flare in waves. For verifying the code, two same cylinders are selected to calculate coupled hydrodynamic effects by comparison with the results obtained by 3D frequency method which has been proved to be efficient for solving such problems. In order to improve efficiency of calculation, the effect of history time has been discussed, and an improved method is presented. Moreover, the effect of lateral separation distance is also discussed in detail. The technique developed here may serve as a more rigorous tool to analyze the related transient problems of two ships doing underway replenishment in waves.
Charmless Hadronic Two-body Decays of $B_{u}$ and $B_{d}$ Mesons
Chen, Y H; Tseng, B; Yang, K C; Chen, Yaw-Hwang; Cheng, Hai-Yang; Yang, Kwei-Chou
1999-01-01
Two-body charmless nonleptonic decays of B_u and B_d mesons are studied within the framework of generalized factorization in which the effective Wilson coefficients $c^{eff}_i$ are renormalization-scale and -scheme independent while factorization is applied to the tree-level hadronic matrix elements. Contrary to previous studies, our $c_i^{eff}$ do not suffer from gauge and infrared problems. Nonfactorizable effects are parametrized in terms of N_c(LL) and N_c(LR), the effective numbers of colors arising from (V-A)(V-A) and (V-A)(V+A) four-quark operators, respectively. Tree and penguin transitions are classified into six different classes. The data of $B^-\\to\\rho^0\\pi^-$ and $B^-\\to\\phi K^-$ clearly indicate that $N_c(LR)\
Rivera, R.; Villarroel, D.
1997-11-01
An exactly solvable two-body problem dealing with the Lorentz-Dirac equation is constructed in this paper. It corresponds to the motion of two identical charges rotating at opposite ends of a diameter, in a fixed circle, at constant angular velocity. The external electromagnetic field that allows this motion consists of a tangential time-independent electric field with a fixed value over the orbit circle, and a homogeneous time-independent magnetic field that points orthogonally to the orbit plane. Because of the geometrical symmetries of the charges' motion, in this case it is possible to obtain the rate of radiation emitted by the charges directly from the equation of motion. The rate of radiation is also calculated by studying the energy flux across a sphere of a very large radius, using the far retarded fields of the charges. Both calculations lead to the same result, in agreement with energy conservation.
Low-Thrust Orbital Transfers in the Two-Body Problem
Directory of Open Access Journals (Sweden)
A. A. Sukhanov
2012-01-01
Full Text Available Low-thrust transfers between given orbits within the two-body problem are considered; the thrust is assumed power limited. A simple method for obtaining the transfer trajectories based on the linearization of the motion near reference orbits is suggested. Required calculation accuracy can be reached by means of use of a proper number of the reference orbits. The method may be used in the case of a large number of the orbits around the attracting center; no averaging is necessary in this case. The suggested method also is applicable to the cases of partly given final orbit and if there are constraints on the thrust direction. The method gives an optimal solution to the linearized problem which is not optimal for the original nonlinear problem; the difference between the optimal solutions to the original and linearized problems is estimated using a numerical example. Also examples illustrating the method capacities are given.
Calculation of the Two-body T-matrix in Configuration Space
Rawitscher, George
2007-01-01
A spectral integral method (IEM) for solving the two-body Schroedinger equation in configuration space is generalized to the calculation of the corresponding T-matrix. It is found that the desirable features of the IEM, such as the economy of mesh-points for a given required accuracy, are carried over also to the solution of the T-matrix. However the algorithm is considerably more complex, because the T-matrix is a function of two variables r and r', rather than only one variable r, and has a slope discontinuity at r=r'. For a simple exponential potential an accuracy of 7 significant figures is achieved, with the number N of Chebyshev support points in each partition equal to 17. For a potential with a large repulsive core, such as the potential between two He atoms, the accuracy decreases to 4 significant figures, but is restored to 7 if N is increased to 65.
Branching ratios for pbarp annihilation at rest into two-body final states
Abele, A; Amsler, Claude; Baker, C A; Barnett, B M; Batty, C J; Benayoun, M; Bischoff, S; Blüm, P; Braune, K; Bugg, D V; Case, T; Crowe, K M; Degener, T; Doser, Michael; Dünnweber, W; Engelhardt, D; Faessler, M A; Giarritta, P; Haddock, R P; Heinsius, F H; Heinzelmann, M; Herbstrith, A; Herz, M; Hessey, N P; Hidas, P; Hodd, C; Holtzhaussen, C; Jamnik, D; Kalinowsky, H; Kammel, P; Kisiel, J; Klempt, E; Koch, H; Kunze, M; Kurilla, U; Lakata, M; Landua, Rolf; Matthäy, H; McCrady, R; Meier, J; Meyer, C A; Montanet, Lucien; Ouared, R; Peters, K; Pick, B; Ratajczak, M; Regenfus, C; Röthel, W; Spanier, S; Stöck, H; Strassburger, C; Strohbusch, U; Suffert, Martin; Suh, J S; Thoma, U; Tischhäuser, M; Uman, I; Völcker, C; Wallis-Plachner, S; Walther, D; Wiedner, U; Wittmack, K; Zou, B S
2001-01-01
Measurements of two-body branching ratios for pbarp annihilations at rest in liquid and gaseous (12 rho sub S sub T sub P) hydrogen are reported. Channels studied are pbarp-> pi sup 0 pi sup 0 ,pi sup 0 eta, K sup 0 sub S K sup 0 sub L , K sup + K sup -. The branching ratio for the pi sup 0 pi sup 0 channel in liquid H sub 2 is measured to be (6.14+-0.40)x10 sup - sup 4. The results are compared with those from other experiments. The fraction of P-state annihilation for a range of target densities from 0.002 rho sub S sub T sub P to liquid H sub 2 is determined. Values obtained include 0.11+-0.02 in liquid H sub 2 and 0.48+-0.04 in 12 rho sub S sub T sub P H sub 2 gas.
System identification of Wiener systems with B-spline functions using De Boor recursion
Hong, X.; Mitchell, R. J.; Chen, S.
2013-09-01
In this article a simple and effective algorithm is introduced for the system identification of the Wiener system using observational input/output data. The nonlinear static function in the Wiener system is modelled using a B-spline neural network. The Gauss-Newton algorithm is combined with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.
A novel system identification technique for improved wearable hemodynamics assessment.
Wiens, Andrew D; Inan, Omer T
2015-05-01
Recent advances have led to renewed interest in ballistocardiography (BCG), a noninvasive measure of the small movements of the body due to cardiovascular events. A broad range of platforms have been developed and verified for BCG measurement including beds, chairs, and weighing scales: while the body is coupled to such a platform, the cardiogenic movements are measured. Wearable BCG, measured with an accelerometer affixed to the body, may enable continuous, or more regular, monitoring during the day; however, the signals from such wearable BCGs represent local or distal accelerations of skin and tissue rather than the whole body. In this paper, we propose a novel method to reconstruct the BCG measured with a weighing scale (WS BCG) from a wearable sensor via a training step to remove these local effects. Preliminary validation of this method was performed with 15 subjects: the wearable sensor was placed at three locations on the surface of the body while WS BCG measurements were recorded simultaneously. A regularized system identification approach was used to reconstruct the WS BCG from the wearable BCG. Preliminary results suggest that the relationship between local and central disturbances is highly dependent on both the individual and the location where the accelerometer is placed on the body and that these differences can be resolved via calibration to accurately measure changes in cardiac output and contractility from a wearable sensor. Such measurements could be highly effective, for example, for improved monitoring of heart failure patients at home.