WorldWideScience

Sample records for two-body scattering length

  1. Two body scattering length of Yukawa model on a lattice

    CERN Document Server

    De Soto, F; Roiesnel, C; Boucaud, P; Leroy, J P; Pène, O; Boucaud, Ph.

    2007-01-01

    The extraction of scattering parameters from Euclidean simulations of a Yukawa model in a finite volume with periodic boundary conditions is analyzed both in non relativistic quantum mechanics and in quantum field theory.

  2. Two-body bound state problem and nonsingular scattering equations

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, E.A.; Haberzettl, H.; Sandhas, W.

    1986-11-01

    We present a new momentum space approach to the two-body problem in partial waves. In contrast to the usual momentum space approaches, we treat the bound state case with the help of an inhomogeneous integral equation which possesses solutions for all (negative) energies. The bound state energies and corresponding wave functions are identified by an additional condition. This procedure straightforwardly leads to a nonsingular formulation of the scattering problem in terms of essentially the same equation and thus unifies the descriptions of both energy regimes. We show that the properties of our momentum-space approach can be understood in terms of the so-called regular solution of the Schroedinger equation in position space. The unified description of the bound state and scattering energy regimes in terms of one single, real, and manifestly nonsingular equation allows us to construct an exact representation of the two-body off-shell T matrix in which all the bound state pole and scattering cut information is contained in one single separable term, the remainder being real, nonsingular, and vanishing half on-shell. Such a representation may be of considerable advantage as input in three-body Faddeev-type integral equations. We demonstrate the applicability of our method by calculating bound state and scattering data for the two-nucleon system with the s-wave Malfliet--Tjon III potential.

  3. Separable approximation method for two-body relativistic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tandy, P.C.; Thaler, R.M.

    1988-03-01

    A method for defining a separable approximation to a given interaction within a two-body relativistic equation, such as the Bethe-Salpeter equation, is presented. The rank-N separable representation given here permits exact reproduction of the T matrix on the mass shell and half off the mass shell at N selected bound state and/or continuum values of the invariant mass. The method employed is a four-space generalization of the separable representation developed for Schroedinger interactions by Ernst, Shakin, and Thaler, supplemented by procedures for dealing with the relativistic spin structure in the case of Dirac particles.

  4. Separable approximation method for two-body relativistic scattering

    Science.gov (United States)

    Tandy, P. C.; Thaler, R. M.

    1988-03-01

    A method for defining a separable approximation to a given interaction within a two-body relativistic equation, such as the Bethe-Salpeter equation, is presented. The rank-N separable representation given here permits exact reproduction of the T matrix on the mass shell and half off the mass shell at N selected bound state and/or continuum values of the invariant mass. The method employed is a four-space generalization of the separable representation developed for Schrödinger interactions by Ernst, Shakin, and Thaler, supplemented by procedures for dealing with the relativistic spin structure in the case of Dirac particles.

  5. Renormalized two-body low-energy scattering

    DEFF Research Database (Denmark)

    Skibsted, Erik

    For a class of long-range potentials, including ultra-strong perturbations of the attractive Coulomb potential in dimension d≥3, we introduce a stationary scattering theory for Schrödinger operators which is regular at zero energy. In particular it is well defined at this energy, and we use it to...

  6. Two-body wave functions and compositeness from scattering amplitudes. I. General properties with schematic models

    CERN Document Server

    Sekihara, Takayasu

    2016-01-01

    For a general two-body bound state in quantum mechanics, both in the stable and decaying cases, we establish a way to extract its two-body wave function in momentum space from the scattering amplitude of the constituent two particles. For this purpose, we first show that the two-body wave function of the bound state corresponds to the residue of the off-shell scattering amplitude at the bound state pole. Then, we examine our scheme to extract the two-body wave function from the scattering amplitude in several schematic models. As a result, the two-body wave functions from the Lippmann--Schwinger equation coincides with that from the Schr\\"{o}dinger equation for an energy-independent interaction. Of special interest is that the two-body wave function from the scattering amplitude is automatically scaled; the norm of the two-body wave function, to which we refer as the compositeness, is unity for an energy-independent interaction, while the compositeness deviates from unity for an energy-dependent interaction, ...

  7. One dimensional scattering of a two body interacting system by an infinite wall

    CERN Document Server

    Moro, A M; Gomez-Camacho, J

    2010-01-01

    The one-dimensional scattering of a two body interacting system by an infinite wall is studied in a quantum-mechanical framework. This problem contains some of the dynamical features present in the collision of atomic, molecular and nuclear systems. The scattering problem is solved exactly, for the case of a harmonic interaction between the fragments. The exact result is used to assess the validity of two different approximations to the scattering process. The adiabatic approximation, which considers that the relative co-ordinate is frozen during the scattering process, is found to be inadequate for this problem. The uncorrelated scattering approximation, which neglects the correlation between the fragments, gives results in accordance with the exact calculations when the scattering energy is high compared to the oscillator parameter.

  8. Neutral weak-current two-body contributions in inclusive scattering from {sup 12}C

    Energy Technology Data Exchange (ETDEWEB)

    Lovato, Alessandro [ANL; Gandolfi, Stefano [LANL; Carlson, Joseph [LANL; Pieper, S. C. [ANL; Schiavilla, Rocco [JLAB, ODU

    2014-05-01

    An {\\it ab initio} calculation of the sum rules of the neutral weak response functions in $^{12}$C is reported, based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic currents, consisting of one- and two-body terms. We find that the sum rules of the response functions associated with the longitudinal and transverse components of the (space-like) neutral current are largest and that a significant portion ($\\simeq 30$\\%) of the calculated strength is due to two-body terms. This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data on nuclei.

  9. Neutron-deuteron scattering calculations with W-matrix representation of the two-body input

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, E.A.; Haberzettl, H.; Januschke, T.; Kerwath, U.; Sandhas, W.

    1987-11-01

    Employing the W-matrix representation of the partial-wave T matrix introduced by Bartnik, Haberzettl, and Sandhas, we show for the example of the Malfliet-Tjon potentials I and III that the single-term separable part of the W-matrix representation, when used as input in three-nucleon neutron-deuteron scattering calculations, is fully capable of reproducing the exact results obtained by Kloet and Tjon. This approximate two-body input not only satisfies the two-body off-shell unitarity relation but, moreover, it also contains a parameter which may be used in optimizing the three-body data. We present numerical evidence that there exists a variational (minimum) principle for the determination of the three-body binding energy which allows one to choose this parameter also in the absence of an exact reference calculation. Our results for neutron-deuteron scattering show that it is precisely this choice of the parameter which provides optimal scattering data. We conclude that the W-matrix approach, despite its simplicity, is a remarkably efficient tool for high-quality three-nucleon calculations.

  10. Neutron-deuteron scattering calculations with W-matrix representation of the two-body input

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, E.A.; Haberzettl, H.; Januschke, T.; Kerwath, U.; Sandhas, W.

    1987-05-01

    Employing the W-matrix representation of the partial-wave T matrix introduced by Bartnik, Haberzettl, and Sandhas, we show for the example of the Malfliet-Tjon potentials I and III that the single-term separable part of the W-matrix representation, when used as input in three-nucleon neutron-deuteron scattering calculations, is fully capable of reproducing the exact results obtained by Kloet and Tjon. This approximate two-body input not only satisfies the two-body off-shell unitarity relation but, moreover, it also contains a parameter which may be used in optimizing the three-body data. We present numerical evidence that there exists a variational (minimum) principle for the determination of the three-body binding energy which allows one to choose this parameter also in the absence of an exact reference calculation. Our results for neutron-deuteron scattering show that it is precisely this choice of the parameter which provides optimal scattering data. We conclude that the W-matrix approach, despite its simplicity, is a remarkably efficient tool for high-quality three-nucleon calculations.

  11. Decay of boson systems with large scattering length

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, O; Fedorov, D V; Jensen, A S [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2003-06-01

    We investigate systems of identical bosons with the focus on two-body correlations. We apply a Faddeev type of decomposition of the wavefunction. At large scattering length a series of spatially extended many-body bound states appears, analogously to the three-body Efimov states. We discuss a recombination process with these many-body Efimov states as intermediate states.

  12. Induced two-body scattering resonances from a square-well potential with oscillating depth

    Science.gov (United States)

    Hudson Smith, D.

    2016-03-01

    In systems of ultracold atoms, pairwise interactions can be resonantly enhanced by a new mechanism which does not rely upon a magnetic Feshbach resonance. In this mechanism, interactions are controlled by tuning the frequency of an oscillating parallel component of the magnetic field close to the Bohr frequency for the transition to a two-atom bound state. The real part of the s-wave scattering length a has a resonance as a function of the oscillation frequency near the Bohr frequency. The resonance parameters can be controlled by varying the amplitude of the oscillating field. The amplitude also controls the imaginary part of a which arises predominantly because the oscillating field converts atom pairs into molecules. For the case of a shallow bound state in the scattering channel, the dimensionless resonance parameters are universal functions of the dimensionless oscillation amplitude.

  13. Correlated N-boson systems for arbitrary scattering length

    Science.gov (United States)

    Sørensen, O.; Fedorov, D. V.; Jensen, A. S.

    2003-12-01

    We investigate systems of identical bosons with the focus on two-body correlations and attractive finite-range potentials. We use a hyperspherical adiabatic method and apply a Faddeev type of decomposition of the wave function. We discuss the structure of a condensate as a function of particle number and scattering length. We establish universal scaling relations for the critical effective radial potentials for distances where the average distance between particle pairs is larger than the interaction range. The correlations in the wave function restore the large-distance mean-field behavior with the correct two-body interaction. We discuss various processes limiting the stability of condensates. With correlations we confirm that macroscopic tunneling dominates when the trap length is about half of the particle number times the scattering length.

  14. Structure Function Sum rules for Systems with Large Scattering Lengths

    CERN Document Server

    Goldberger, Walter D

    2010-01-01

    We use a dispersion relation in conjunction with the operator product expansion (OPE) to derive model independent sum rules for the dynamic structure functions of systems with large scattering lengths. We present an explicit sum rule for the structure functions that control the density and spin response of the many-body ground state. Our methods are general, and apply to either fermions or bosons which interact through two-body contact interactions with large scattering lengths. By employing a Borel transform of the OPE, the relevant integrals are weighted towards infrared frequencies, thus allowing for greater overlap low energy data. Similar sum rules can be derived for other response functions. The sum rules can be used to extract the contact parameter introduced by Tan, including universality violating corrections at finite scattering lengths.

  15. New fixed points of the renormalisation group for two-body scattering

    Energy Technology Data Exchange (ETDEWEB)

    Birse, M.C. [The University of Manchester, Theoretical Physics Division, School of Physics and Astronomy, Manchester (United Kingdom); Epelbaum, E. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Fakultaet fuer Physik und Astronomie, Bochum (Germany); Gegelia, J. [Juelich Center for Hadron Physics, Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia)

    2016-02-15

    We outline a separable matrix ansatz for the potentials in effective field theories of non-relativistic two-body systems with short-range interactions. We use this ansatz to construct new fixed points of the renormalisation-group equation for these potentials. New fixed points indicate a much richer structure than previously recognized in the RG flows of simple short-range potentials. (orig.)

  16. Generalized contour deformation method in momentum space two-body spectral structures and scattering amplitudes

    CERN Document Server

    Hagen, G; Vaagen, J S

    2003-01-01

    A generalized contour deformation method (GCDM) which combines complex rotation and translation in momentum space, is discussed. GCDM gives accurate results for bound, virtual (antibound), resonant and scattering states starting with a realistic nucleon-nucleon interaction. It provides a basis for full off-shell $t$-matrix calculations both for real and complex input energies. Results for both spectral structures and scattering amplitudes compare perfectly well with exact values for the separable Yamaguchi potential. Accurate calculation of virtual states in the Malfliet-Tjon and the realistic CD-Bonn nucleon-nucleon interactions are presented. GCDM is also a promising method for the computation of in-medium properties such as the resummation of particle-particle and particle-hole diagrams in infinite nuclear matter. Implications for in-medium scattering are discussed.

  17. Scattering lengths of calcium and barium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dammalapati, U.; Willmann, L.; Knoop, S. [Kernfysisch Versneller Instituut (KVI), University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); LaserLaB Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)

    2011-11-15

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba) in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed {sup 40}Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that the even isotopes cover a broad range of scattering lengths, opening the possibility of BEC for at least one of the isotopes.

  18. Effective potential and off-shell two-body scattering amplitudes in the eikonal approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, E.A.; Rek, Z.

    1973-12-31

    An effective potential is computed for 2-body elastic scattering with the experimental on-shell t-matrices as an input. Nonrelativistic elkonal approximation and locality together with spherical ial are assumed. The explicit form of potential for pp, pi /sup +/p, and pi /sup -/p in the energy range from 5 to 20 GeV is investigated. The half off-shell scattering amplitude is calculated in the potential model. In the position representation this amplitude is found to be asymmetric along the eikonal direction, and an interesting absorption interpretation of this fact is given. (auth)

  19. Isospin odd pi K scattering length

    CERN Document Server

    Schweizer, J

    2005-01-01

    We make use of the chiral two-loop representation of the pi K scattering amplitude [J. Bijnens, P. Dhonte and P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU(3) expansion. This scattering length is protected against contributions of m_s in the chiral expansion, in the sense that the corrections to the current algebra result are of order M_pi^2. In view of the planned lifetime measurement on pi K atoms at CERN it is important to understand the size of these corrections.

  20. Isospin odd {pi}K scattering length

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, J. [Institut fuer Theoretische Physik, University of Vienna, A-1090 Vienna (Austria)]. E-mail: julia.schweizer@univie.ac.at

    2005-10-13

    We make use of the chiral two-loop representation of the {pi}K scattering amplitude [J. Bijnens, P. Dhonte, P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU(3) expansion. This scattering length is protected against contributions of m{sub s} in the chiral expansion, in the sense that the corrections to the current algebra result are of order M{sub {pi}}{sup 2}. In view of the planned lifetime measurement on {pi}K atoms at CERN it is important to understand the size of these corrections.

  1. Metastable neon collisions: anisotropy and scattering length

    CERN Document Server

    Mogendorff, V P; Verhaar, B J; Beijerinck, H C W

    2003-01-01

    In this paper we investigate the effective scattering length $a$ of spin-polarized Ne*. Due to its anisotropic electrostatic interaction, its scattering length is determined by five interaction potentials instead of one, even in the spin-polarized case, a unique property among the Bose condensed species and candidates. Because the interaction potentials of Ne* are not known accurately enough to predict the value of the scattering length, we investigate the behavior of $a$ as a function of the five phase integrals corresponding to the five interaction potentials. We find that the scattering length has five resonances instead of only one and cannot be described by a simple gas-kinetic approach or the DIS approximation. However, the probability for finding a positive or large value of the scattering length is not enhanced compared to the single potential case. The complex behavior of $a$ is studied by comparing a quantum mechanical five-channel numerical calculation to simpler two-channel models. We find that th...

  2. Scattering lengths of calcium and barium isotopes

    NARCIS (Netherlands)

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba) in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca

  3. Measuring scattering lengths of gaseous samples

    Science.gov (United States)

    Huber, M. G.; Black, T. C.; Haun, R.; Pushin, D. A.; Shahi, C. B.; Weitfeldt, F. E.

    2016-03-01

    Neutron interferometry represents one of the most precise techniques for measuring the coherent scattering lengths (bc) of particular nuclear isotopes. Currently bc for helium-4 is known only to 1% relative uncertainty; a factor of ten higher than precision measurements of other light isotopes. Scattering lengths are measured using a neutron interferometer and by comparing the phase shift a neutron acquires as it passes through a gaseous sample relative to that of a neutron passing through vacuum. The density of the gas is determined by continuous monitoring of the sample's temperature and pressure. Challenges for these types of experiments include achieving the necessary long-term phase stability and accurate determination of the phase shift caused by the aluminum cell used to hold the gas; a phase shift many times greater than that of the sample. The present status on the effort to measure the n-4He scattering length at the NIST center for Neutron Research will be given. Financial support provided by the NSERC `Create' and `Discovery' programs, CERC, NIST and NSF Grant PHY-1205342.

  4. Efimov universality for ultracold atoms with positive scattering lengths

    CERN Document Server

    Mestrom, Paul M A; Greene, Chris H; D'Incao, Jose P

    2016-01-01

    We study the universality of the three-body parameters for systems relevant for ultracold quantum gases with repulsive interactions, i.e., for positive $s$-wave two-body scattering length. Our results account for finite-range effects and their universality is tested by changing the number of deeply bound diatomic states supported by our interaction model. We find that the physics controlling the values of the three-body parameters associated with the ground and excited Efimov states is constrained by a variational principle and can be strongly affected by $d$-wave interactions that prevent both trimer states from merging into the atom-dimer continuum. Our results enable comparisons to current experimental data and they suggest tests of universality for atomic systems with repulsive interactions.

  5. Elastic electron-deuteron scattering and two-body current operators in the Light-Front Hamiltonian Dynamics

    CERN Document Server

    Frederico, Tobias; Pace, Emanuele; Salme`, Giovanni

    2010-01-01

    The electromagnetic properties of the deuteron are investigated within a Light-Front Hamiltonian Dynamics framework, with a current operator that contains both one-body and two-body contributions. In this work, we are considering new two-body contributions, with a dynamical nature generated within a Yukawa model and a structure inspired by a recent analysis of the current operator, that acts on the three-dimensional valence component and fulfills the Ward-Takahashi identity. Preliminary results for the magnetic moment are shown.

  6. Kaon-nucleon scattering lengths from kaonic deuterium experiments revisited

    CERN Document Server

    Döring, M

    2011-01-01

    We analyse the impact of the recent measurement of kaonic hydrogen X rays by the SIDDHARTA collaboration on the allowed ranges for the kaon-deuteron scattering length in the framework of non-relativistic effective field theory. Based on data from KN scattering only, we predict the kaon-deuteron scattering length A_Kd= (-1.46 + i 1.08) fm, with an estimated uncertainty of about 25% in both the real and the imaginary part.

  7. Two-body scattering states in Minkowski space and the Nakanishi integral representation onto the null plane

    CERN Document Server

    Frederico, Tobias; Viviani, Michele

    2011-01-01

    The Nakanishi perturbative integral representation of the four-dimensional T-matrix is investigated in order to get a workable treatment for scattering states, solutions of the inhomogeneous Bethe-Salpeter Equation, in Minkowski space. The projection onto the null-plane of the four-dimensional inhomogeneous Bethe-Salpeter Equation plays a key role for devising an equation for the Nakanishi weight function (a real function), as in the homogeneous case that corresponds to bound states and it has been already studied within different frameworks. In this paper, the whole formal development is illustrated in detail and applied to a system, composed by two massive scalars interacting through the exchange of a massive scalar. The explicit expression of the scattering integral equations are also obtained in ladder approximation, and, as simple applications of our formalism, some limiting cases, like the zero-energy limit and the Wick-Cutkosky model in the continuum, are presented.

  8. Exploiting Universality in Atoms with Large Scattering Lengths

    Energy Technology Data Exchange (ETDEWEB)

    Braaten, Eric

    2012-05-31

    The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.

  9. A new screening length for small angle multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ikegami, Seiji, E-mail: double1892@gmail.com

    2013-09-15

    A new screening length formulation that incorporates the charge state of the projectile is applied to multiple scattering. The present screening length is derived from an interatomic potential that accounts for electron–electron, electron–nuclear, and nuclear–nuclear interactions using the Thomas–Fermi–Moliere potential. We examined the charge state effect on multiple scattering angular distributions. We successfully estimate the charge state effects and predict angular distributions. The present screening length is compared with many low energy ion scattering experiments and with O’Connor–Biersack prediction values.

  10. Isospin breaking in the pion-nucleon scattering lengths

    CERN Document Server

    Hoferichter, Martin; Meißner, Ulf-G

    2009-01-01

    We analyze isospin breaking through quark mass differences and virtual photons in the pion-nucleon scattering lengths in all physical channels in the framework of covariant baryon chiral perturbation theory.

  11. Synthesis of aerogel tiles with high light scattering length

    CERN Document Server

    Danilyuk, A F; Okunev, A G; Onuchin, A P; Shaurman, S A

    1999-01-01

    The possibility of aerogel tiles production for RICH detectors is described. Monolithic blocks of silica aerogel were synthesized by two-step sol-gel processing of tetraethoxysilane Si(OEt) sub 4 followed by high temperature supercritical drying with organic solvent. The important characteristic of aerogel is the light scattering length. In the wide range of refraction indexes the light scattering length exceeds 4 cm at 400 nm.

  12. Convergent variational calculation of positronium-hydrogen-atom scattering lengths

    CERN Document Server

    Adhikari, S K; Adhikari, Sadhan K.; Mandal, Puspajit

    2001-01-01

    We present a convergent variational basis-set calculational scheme for elastic scattering of positronium atom by hydrogen atom in S wave. Highly correlated trial functions with appropriate symmetry are needed for achieving convergence. We report convergent results for scattering lengths in atomic units for both singlet ($=3.49\\pm 0.20$) and triplet ($=2.46\\pm 0.10$) states.

  13. Isospin odd @pK scattering length [rapid communication

    Science.gov (United States)

    Schweizer, J.

    2005-10-01

    We make use of the chiral two-loop representation of the πK scattering amplitude [J. Bijnens, P. Dhonte, P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU (3) expansion. This scattering length is protected against contributions of ms in the chiral expansion, in the sense that the corrections to the current algebra result are of order Mπ2. In view of the planned lifetime measurement on πK atoms at CERN it is important to understand the size of these corrections.

  14. Scattering cross section of unequal length dipole arrays

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a detailed and systematic analytical treatment of scattering by an arbitrary dipole array configuration with unequal-length dipoles, different inter-element spacing and load impedance. It provides a physical interpretation of the scattering phenomena within the phased array system. The antenna radar cross section (RCS) depends on the field scattered by the antenna towards the receiver. It has two components, viz. structural RCS and antenna mode RCS. The latter component dominates the former, especially if the antenna is mounted on a low observable platform. The reduction in the scattering due to the presence of antennas on the surface is one of the concerns towards stealth technology. In order to achieve this objective, a detailed and accurate analysis of antenna mode scattering is required. In practical phased array, one cannot ignore the finite dimensions of antenna elements, coupling effect and the role of feed network while estimating the antenna RCS. This book presents the RCS estimati...

  15. A phenomenological $\\pi^{-}p$ scattering length from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2004-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length a/sup h/ extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order alpha /sup 2/ log alpha using an extended charge distribution. A hadronic pi N scattering length a/sub pi -p//sup h/ = 0.0870(5)m/sub pi //sup -1/ is deduced leading to a pi NN coupling constant from the GMO relation g/sub c //sup 2//(4 pi ) = 14.04(17). (28 refs).

  16. Isospin breaking in pion-deuteron scattering and the pion-nucleon scattering lengths

    CERN Document Server

    Hoferichter, Martin; Hanhart, Christoph; Kubis, Bastian; Nogga, Andreas; Phillips, Daniel R

    2012-01-01

    In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion-nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking corrections both in pion-nucleon and pion-deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion-deuteron system, and discuss the subtleties regarding the definition of the pion-nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon-nucleon scattering. Based on the pi^{+/-} p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a^{1/2}=(170.5 +/- 2.0) x 10^{-3} mpi^{-1} and a^{3/2}=(-86.5 +/- 1.8) x 10^{-3} mpi^{-1}.

  17. Heteronuclear Efimov Scenario with Positive Intraspecies Scattering Length

    Science.gov (United States)

    Ulmanis, Juris; Häfner, Stephan; Pires, Rico; Kuhnle, Eva D.; Wang, Yujun; Greene, Chris H.; Weidemüller, Matthias

    2016-10-01

    We investigate theoretically and experimentally the heteronuclear Efimov scenario for a three-body system that consists of two bosons and one distinguishable particle with positive intraspecies scattering lengths. The three-body parameter at the three-body scattering threshold and the scaling factor between consecutive Efimov resonances are found to be controlled by the scattering length between the two bosons, approximately independent of short-range physics. We observe two excited-state Efimov resonances in the three-body recombination spectra of an ultracold mixture of fermionic 6Li 6 and bosonic 113Cs atoms close to a Li-Cs Feshbach resonance, where the Cs-Cs interaction is positive. Deviation of the obtained scaling factor of 4.0(3) from the universal prediction of 4.9 and the absence of the ground state Efimov resonance shed new light on the interpretation of the universality and the discrete scaling behavior of heteronuclear Efimov physics.

  18. Measurement of neutron scattering lengths using neutron interferometry

    Science.gov (United States)

    Shahi, Chandra B.

    This thesis describes the details on building a new Neutron Interferometry and Optics Facility (NIOFa), the measurement of the incoherent neutron scattering length bi of 3He, and the measurement of the coherent neutron scattering length bc of 4He at National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A new monochromatic beamline and facility has been installed at the NCNR devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. This new facility, NIOFa, is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The measurement of the incoherent neutron scattering length bi of 3He was done using a (220) single silicon crystal skew symmetric interferometer. This experiment requires both a polarized beam and a polarized target. We report bi = -2.35 +/- 0.014 (stat.) +/- 0.014 (syst.). This experiment is a revision of the previous experiment which was done in 2008, and partially explains the non-zero phase shift seen in 2008 experiment even if target cell was completely unpolarized. The measurement of the coherent neutron scattering length b c of the 4He was done using a (111) single silicon crystal interferometer. The neutron interferometry and optics facility at NIST had been used previously to determine the coherent scattering lengths for n- 1H, n-2H, and n-3He to less than 1% relative uncertainty. We report bc of the 4He

  19. Scattering lengths in isotopologues of the RbYb system

    CERN Document Server

    Borkowski, Mateusz; Ciuryło, Roman; Julienne, Paul S; K{\\ke}dziera, Dariusz; Mentel, Łukasz; Tecmer, Paweł; Münchow, Frank; Bruni, Christian; Görlitz, Axel

    2013-01-01

    We model the binding energies of rovibrational levels of the RbYb molecule using experimental data from two-color photoassociation spectroscopy in mixtures of ultracold $^{87}$Rb with various Yb isotopes. The model uses a theoretical potential based on state-of-the-art \\emph{ab initio} potentials, further improved by least-squares fitting to the experimental data. We have fixed the number of bound states supported by the potential curve, so that the model is mass scaled, that is, it accurately describes the bound state energies for all measured isotopic combinations. Such a model enables an accurate prediction of the s-wave scattering lengths of all isotopic combinations of the RbYb system. The reduced mass range is broad enough to cover the full scattering lengths range from $-\\infty$ to $+\\infty$. For example, the $^{87}$Rb$^{174}$Yb system is characterized by a large positive scattering length of $+880(120)$~a.u., while $^{87}$Rb$^{173}$Yb has $a=-626(88)$~a.u.. On the other hand $^{87}$Rb$^{170}$Yb has a ...

  20. Precision Neutron Scattering Length Measurements with Neutron Interferometry

    Science.gov (United States)

    Huber, M. G.; Arif, M.; Jacobson, D. L.; Pushin, D. A.; Abutaleb, M. O.; Shahi, C. B.; Wietfeldt, F. E.; Black, T. C.

    2011-10-01

    Since its inception, single-crystal neutron interferometry has often been utilized for precise neutron scattering length, b, measurements. Scattering length data of light nuclei is particularly important in the study of few nucleon interactions as b can be predicted by two + three nucleon interaction (NI) models. As such they provide a critical test of the accuracy 2+3 NI models. Nuclear effective field theories also make use of light nuclei b in parameterizing mean-field behavior. The NIST neutron interferometer and optics facility has measured b to less than 0.8% relative uncertainty in polarized 3He and to less than 0.1% relative uncertainty in H, D, and unpolarized 3He. A neutron interferometer consists of a perfect silicon crystal machined such that there are three separate blades on a common base. Neutrons are Bragg diffracted in the blades to produce two spatially separate (yet coherent) beam paths much like an optical Mach-Zehnder interferometer. A gas sample placed in one of the beam paths of the interferometer causes a phase difference between the two paths which is proportional to b. This talk will focus on the latest scattering length measurement for n-4He which ran at NIST in Fall/Winter 2010 and is currently being analyzed.

  1. George E. Valley, Jr. Prize Talk: Exact relations for Fermi gases with large scattering length

    Science.gov (United States)

    Tan, Shina

    2011-05-01

    Ultracold two-component atomic Fermi gases near broad Feshbach resonances have both strong interactions and relatively long life times, and the strong attractions between fermions lead to remarkable properties such as superfluidity at large percentages of the Fermi temperature. The interactions can often be described by a single parameter, the two-body s-wave scattering length, which determines how the many-body wave function behaves as two atoms get much closer than the average interparticle spacing. This short-range structure of the wave function leads to a number of exact relations among energy, momentum distribution, pressure, and various high-frequency and short-wave properties. All the relations involve a quantity called contact. The exact relations point to a number of independent determinations of the contact, which have been beautifully demonstrated experimentally as well as numerically. This work was supported, in part, by DOE Grant No. DE-FG02-00ER41132.

  2. Pi pi scattering lengths at O(p^6) revisited

    CERN Document Server

    Guo, Z -H

    2009-01-01

    This article completes a former work where part of the O(p^6) low-energy constants entering in the pi pi scattering were estimated. Some resonance contributions were missed in former calculations and appreciable differences appeared with respect to our outcome. Here, we provide the full results for all the contributing O(p^6) couplings. We also perform a reanalysis of the hadronic inputs used for the estimation (resonance masses, widths...). Their reliability was checked together with the impact of the input uncertainties on the determinations of the chiral couplings and the scattering lengths aIJ. Our outcome is found in agreement with former works though with slightly larger errors. However, the effect in the final values of the aIJ is negligible after combining them with the other uncertainties. Based on this consistency, we conclude that the previous scattering length determinations seem to be rather solid and reliable, with the O(p^6) LECs quite under control. Nevertheless, the uncertainties found in the...

  3. Heteronuclear Efimov scenario with positive intraspecies scattering lengths

    CERN Document Server

    Ulmanis, Juris; Pires, Rico; Kuhnle, Eva D; Wang, Yujun; Greene, Chris H; Weidemüller, Matthias

    2016-01-01

    We investigate theoretically and experimentally the heteronuclear Efimov scenario for a three-body system that consists of two bosons and one distinguishable particle with repulsive intraspecies interactions. The three-body parameter at the three-body scattering threshold and the scaling factor between consecutive Efimov resonances are found to be controlled by the scattering length between the two bosons, approximately independent of short-range physics. We observe two excited-state Efimov resonances in the three-body recombination spectra of an ultracold mixture of fermionic $^6 $Li and bosonic $^{133} $Cs atoms close to a Li-Cs Feshbach resonance, where the Cs-Cs interaction is repulsive. Deviation of the obtained scaling factor of 4.0(3) from the universal prediction of 4.9 and the absence of the ground state Efimov resonance shed new light on the interpretation of the universality and the discrete scaling behavior of heteronuclear Efimov physics.

  4. The K+ K+ scattering length from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Silas Beane; Thomas Luu; Konstantinos Orginos; Assumpta Parreno; Martin Savage; Aaron Torok; Andre Walker-Loud

    2007-09-11

    The K+K+ scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence quarks on the MILC asqtad-improved gauge configurations with fourth-rooted staggered sea quarks. Three-flavor mixed-action chiral perturbation theory at next-to-leading order, which includes the leading effects of the finite lattice spacing, is used to extrapolate the results of the lattice calculation to the physical value of mK + /fK + . We find mK^+ aK^+ K^+ = â~0.352 ± 0.016, where the statistical and systematic errors have been combined in quadrature.

  5. Lattice QCD calculation of $K^+ K^-$ scattering length

    CERN Document Server

    Fu, Ziwen

    2012-01-01

    We deliver ab initio calculation of s-wave $K^+K^-$ scattering length ($a_0^{K^+K^-}$) by L\\"uscher's formula. In the "Asqtad" improved staggered dynamical fermion formulation, we measure $K^+K^-$ four-point correlation function by moving wall sources without gauge fixing, and find $a_0^{K^+K^-} = 0.456 \\pm 0.272$ fm, which is in reasonable agreement with tree-level prediction and comparable with experimental result. An essential ingredient in our calculation is to explicitly include the disconnected diagram.

  6. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  7. On measuring the neutron coherent scattering length with ultrahigh precision

    Indian Academy of Sciences (India)

    Sohrab Abbas; Apoorva G Wagh

    2004-08-01

    We propose an order of magnitude improvement in the present five parts in 105 precision of a nondispersive interferometric measurement of the neutron coherent scattering length c. For this purpose we make a judicious selection of the Bragg angle for the interferometer and the sample thickness. The precision is further improved by an optimal choice of the Bragg reflection (and a consequent neutron wavelength). By performing the experiment in vacuum, errors arising from possible variations in the pressure, composition or humidity of the ambient air can be eliminated. On attaining such precision, we ought to account for the neutron beam refraction at the sample-ambient interfaces, to infer the correct c from the observed phase. The formula for the phase used hitherto is approximate and would significantly overestimate c. The refractive index for neutrons can thus be determined to a phenomenal precision of a few parts in 1012.

  8. The proton–deuteron scattering length in pionless EFT

    Directory of Open Access Journals (Sweden)

    König Sebastian

    2016-01-01

    Full Text Available We present a fully perturbative calculation of the quartet-channel proton–deuteron scattering length (4ap–d up to next-to-next-to-leading order (NNLO in pionless effective field theory. In particular, we use a framework that consistently extracts the Coulomb-modified effective range function for a screened Coulomb potential in momentum space. We find a natural convergence pattern as we go to higher orders in the EFT expansion. Our NNLO result of (10.9 ± 0.4 fm agrees with older experimental determinations but deviates from more recent calculations, which find values around 14 fm. To resolve this discrepancy, we discuss the scheme dependence of Coulomb subtractions in a three-body system.

  9. Precision calculation of threshold pi^- d scattering, pi N scattering lengths, and the GMO sum rule

    CERN Document Server

    Baru, V; Hoferichter, M; Kubis, B; Nogga, A; Phillips, D R

    2011-01-01

    We use chiral perturbation theory (ChPT) to calculate the $\\pi^- d$ scattering length with an accuracy of a few percent, including isospin-violating corrections both in the two- and three-body sector. In particular, we provide the technical details of a recent letter, where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths $a^+$ and $a^-$. We study isospin-breaking contributions to the three-body part of $a_{\\pi^-d}$ due to mass differences, isospin violation in the $\\pi N$ scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in $a_{\\pi^- d}$ due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the p...

  10. Two-Body Relaxation in Cosmological Simulations

    CERN Document Server

    Binney, J; Binney, James; Knebe, Alexander

    2002-01-01

    The importance of two-body relaxation in cosmological simulations is explored with simulations in which there are two species of particles. The cases of mass ratio sqrt(2):1 and 4:1 are investigated. Simulations are run with both a fixed softening length and adaptive softening using the publicly available codes GADGET and MLAPM, respectively. The effects of two-body relaxation are detected in both the density profiles of halos and the mass function of halos. The effects are more pronounced with a fixed softening length, but even in this case they are not so large as to suggest that results obtained with one mass species are significantly affected by two-body relaxation. The simulations that use adaptive softening are slightly less affected by two-body relaxation and produce slightly higher central densities in the largest halos. They run about three times faster than the simulations that use a fixed softening length.

  11. Microscopic calculation of the spin-dependent neutron scattering lengths on 3He

    CERN Document Server

    Hofmann, H M

    2003-01-01

    We report on the spin.dependent neutron scattering length on 3He from a microscopic calculation of p-3H, n-3He, and d-2H scattering employing the Argonne v18 nucleon-nucleon potential with and without additional three-nucleon force. The results and that of a comprehensive R-matrix analysis are compared to a recent measurement. The overall agreement for the scattering lengths is quite good. The imaginary parts of the scattering lengths are very sensitive to the inclusion of three-nucleon forces, whereas the real parts are almost insensitive.

  12. Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2002-01-01

    A low coherence Mach–Zehnder interferometer is developed for path length resolved dynamic light scattering in highly turbid media. The path length distribution of multiply scatteredphotons in Intralipid is changed by the addition of absorbing dyes. Path length distributions obtained for various abso

  13. Determination of the pi Sigma scattering lengths from the weak decays of Lambda_c

    CERN Document Server

    Hyodo, Tetsuo

    2011-01-01

    The scattering lengths of the pi Sigma systems are key quantities in understanding the structure of the Lambda(1405) resonance and the subthreshold extrapolation of the barK N interaction. We demonstrate that the pi Sigma scattering lengths can be extracted from the threshold cusp phenomena in the weak Lambda_c -> pi pi Sigma decays, in analogy with Cabibbo's method for determination of the pi pi scattering length. We show that the substantial cusp effect should be observed in the spectrum, when the pi Sigma interaction in I=0 is strongly attractive so as to generate near threshold singularity, such as a bound state or a virtual state.

  14. Scattering lengths in SU(2) gauge theory with two fundamental fermions

    CERN Document Server

    Arthur, R; Hansen, M; Hietanen, A; Pica, C; Sannino, F

    2014-01-01

    We investigate non perturbatively scattering properties of Goldstone Bosons in an SU(2) gauge theory with two Wilson fermions in the fundamental representation. Such a theory can be used to build extensions of the Standard Model that unifies Technicolor and pseudo Goldstone composite Higgs models. The leading order contribution to the scattering amplitude of Goldstone bosons at low energy is given by the scattering lengths. In the context of technicolor extensions of the Standard Model the scattering lengths are constrained by WW scattering measurements. We first describe our setup and in particular the expected chiral symmetry breaking pattern. We then discuss how to compute them on the lattice and give preliminary results using finite size methods.

  15. Isospin-breaking corrections to the pion-nucleon scattering lengths

    CERN Document Server

    Hoferichter, Martin; Meißner, Ulf-G

    2009-01-01

    We analyze isospin breaking through quark mass differences and virtual photons in the pion-nucleon scattering lengths in all physical channels in the framework of covariant baryon chiral perturbation theory. The so-called triangle relation is found to be violated by about 1.5 %. We encounter a substantial isospin-breaking correction to neutral-pion-nucleon scattering beyond Weinberg's prediction due to a cusp effect. Finally, the application to hadronic atoms is briefly discussed.

  16. Three-body recombination in heteronuclear systems at finite temperature with a large positive scattering length

    Science.gov (United States)

    Emmons, Samuel; Acharya, Bijaya; Platter, Lucas

    2017-01-01

    For an ultracold heteronuclear mixture with a large positive interspecies scattering length and negligible intraspecies scattering length, we determine the three-body recombination rate as a function of collision energy using universal functions of a single scaling variable. We use the zero-range approximation and the Skorniakov -Ter-Martirosian equation to calculate these scaling functions for a range of collision energies. Further, we explore the effects that a nonzero temperature has on three-body recombination, as well as the effects of the formation of deep dimers, for experimentally relevant heteronuclear gases such as the 6Li-133Cs mixture. NSF Grant Nos. PHY-1516077 and PHY-1555030.

  17. A phenomenological determination of the pion-nucleon scattering lengths from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2005-01-01

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon scattering length, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order (alpha)**2 log(alpha) in the limit of a short-range hadronic interaction. We infer a charged pion-proton scattering length of 0.0870(5) in units of inverse pion mass, which gives for the charged pion-proton-neutron coupling, through the GMO relation, a value of 14.04(17).

  18. Determination of the negatively charged pion-proton scattering length from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2003-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to the hadronic scattering length extracted from a hydrogenic atom with an extended charge and in the limit of a short ranged hadronic interaction to terms of order ((alpha)**2)(log(alpha)) in the limit of a non-relativistic approach. A hadronic negatively charged pion-proton scattering length of 0.0870(5), in units of inverse charged pion-mass, is deduced, leading to a pion-nucleon coupling constant from the GMO relation equals to 14.00(19).

  19. Precision calculation of the pi^- deuteron scattering length and its impact on threshold pi-N scattering

    CERN Document Server

    Baru, V; Hoferichter, M; Kubis, B; Nogga, A; Phillips, D R

    2010-01-01

    We present a high-accuracy calculation of the pi^- deuteron scattering length using chiral perturbation theory up to order (M_pi/m_p)^(7/2). For the first time isospin-violating corrections are included consistently. The resulting value of a_{\\pi^- d} has a theoretical uncertainty of a few per cent. We use it, together with data on pionic deuterium and pionic hydrogen atoms, to extract the isoscalar and isovector pion-nucleon scattering lengths from a combined analysis, and obtain a^+=(7.9 +/- 3.2) x 10^{-3} M_pi^{-1} and a^-=(86.3 +/- 1.0) x 10^{-3} M_pi^{-1}. Via the Goldberger-Miyazawa-Oehme sum rule, this leads to a charged-pion-nucleon coupling constant g_c^2/(4 pi) = 13.76 +/- 0.17.

  20. Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule

    Science.gov (United States)

    Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.

    2011-12-01

    We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.

  1. Precision calculation of threshold {pi}{sup -}d scattering, {pi}N scattering lengths, and the GMO sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Baru, V. [Institut fuer Theoretische Physik II, Ruhr-Universitaet Bochum, D-44870 Bochum (Germany); Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Theoretical and Experimental Physics, B. Cheremushinskaya 25, 117218 Moscow (Russian Federation); Hanhart, C. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Hoferichter, M., E-mail: hoferichter@hiskp.uni-bonn.de [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Kubis, B. [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Nogga, A. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2011-12-15

    We use chiral perturbation theory (ChPT) to calculate the {pi}{sup -}d scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) , where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a{sup +} and a{sup -}. We study isospin-breaking contributions to the three-body part of a{sub {pi}}{sup -}{sub d} due to mass differences, isospin violation in the {pi}N scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a{sub {pi}}{sup -}{sub d} due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.

  2. Evaluation of screening length corrections for interaction potentials in impact-collision ion scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Wataru, E-mail: take@sp.ous.ac.jp

    2013-10-15

    Since in impact-collision ion scattering spectroscopy (ICISS) data analysis the interaction potential represented by the screening length as the screening effect is not satisfactorily established up to the present, we introduce commonly the correction factor in the screening length. Previously, Yamamura, Takeuchi and Kawamura (YTK) have suggested the theory taking the shell effect of electron distributions into account for the correction factor to Firsov screening length in the Moliere potential. The application of YTK theory to the evaluation of screening length corrections for the interaction potentials in ICISS manifested that the screening length corrections calculated by the YTK theory agree almost with those determined by simulations or numerical calculations in ICISS and its variants data analyses, being superior to the evaluation of screening length corrections with the O’Connor and Biersack (OB) formula.

  3. Path length distribution of multiple-scattered photons by low coherence Doppler interferometry

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; de Mul, F.F.M.; Tuchin, V.V.; Izatt, J.A.; Fujimoto, J.G.

    2002-01-01

    We report results of measurements by low coherence Doppler interferometry of the path length distribution of photons undergoing multiple scattering in a highly turbid medium. We use a Mach-Zehnder interferometer with multimode graded index fibers and a superluminescent diode as light source. The pat

  4. Precision measurement of the n-4He scattering length using neutron interferometry

    Science.gov (United States)

    Huber, M. G.; Arif, M.; Jacobson, D. L.; Pushin, D. A.; Abutaleb, M. O.; Black, T. C.; Shahi, C. B.; Wietfeldt, F. E.

    2010-11-01

    The NIST neutron interferometer and optics facility (NIOF) is currently performing a precision measurement of the n-4He scattering length to less than 0.3% relative uncertainty. A neutron interferometer consists of a perfect silicon crystal machined such that there are three separate blades on a common base. Neutrons entering the interferometer are Bragg diffracted in the blades to produce two spatially separate yet coherent beam paths much like an optical Mach-Zehnder interferometer. A sample placed in one of the beam paths of the interferometer causes a phase difference between the two paths. This phase difference is directly related to the sample's scattering length. Neutron scattering lengths are one parameter that can be predicted using advanced theoretical models describing two and three nucleon interactions. In an effort to provide tests and/or benchmarks of these theoretical models, the NIOF has already performed precision measurements of neutron scattering lengths to less than 1% relative uncertainty in several low Z gases: H, D, 3He, and polarized 3He. A preliminary result of this work will be given.

  5. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.

    Science.gov (United States)

    Xie, Guofeng; Guo, Yuan; Li, Baohua; Yang, Liwen; Zhang, Kaiwang; Tang, Minghua; Zhang, Gang

    2013-09-21

    We present a kinetic model to investigate the anomalous thermal conductivity in silicon nanowires (SiNWs) by focusing on the mechanism of phonon-boundary scattering. Our theoretical model takes into account the anharmonic phonon-phonon scattering and the angle-dependent phonon scattering from the SiNWs surface. For SiNWs with diameter of 27.2 nm, it is found that in the case of specular reflection at lateral boundaries, the thermal conductivity increases as the length increases, even when the length is up to 10 μm, which is considerably longer than the phonon mean free path (MFP). Thus the phonon-phonon scattering alone is not sufficient for obtaining a normal diffusion in nanowires. However, in the case of purely diffuse reflection at lateral boundaries, the phonons diffuse normally and the thermal conductivity converges to a constant when the length of the nanowire is greater than 100 nm. Our model demonstrates that for observing the length dependence of thermal conductivity experimentally, nanowires with smooth and non-contaminated surfaces, and measuring at low temperature, are preferred.

  6. Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon

    Science.gov (United States)

    Grace, Emily; Butcher, Alistair; Monroe, Jocelyn; Nikkel, James A.

    2017-09-01

    Large liquid argon detectors have become widely used in low rate experiments, including dark matter and neutrino research. However, the optical properties of liquid argon are not well understood at the large scales relevant for current and near-future detectors. The index of refraction of liquid argon at the scintillation wavelength has not been measured, and current Rayleigh scattering length calculations disagree with measurements. Furthermore, the Rayleigh scattering length and index of refraction of solid argon and solid xenon at their scintillation wavelengths have not been previously measured or calculated. We introduce a new calculation using existing data in liquid and solid argon and xenon to extrapolate the optical properties at the scintillation wavelengths using the Sellmeier dispersion relationship.

  7. The pi+ pi+ scattering length from maximally twisted mass lattice QCD

    CERN Document Server

    Feng, Xu; Renner, Dru B

    2009-01-01

    We calculate the s-wave pion-pion scattering length in the isospin I=2 channel in lattice QCD for pion masses ranging from 270 Mev to 485 Mev using two flavors of maximally twisted mass fermions at a lattice spacing of 0.086 fm. Additionally, we check for lattice artifacts with one calculation at a finer lattice spacing of 0.067 fm. We use chiral perturbation theory at next-to-leading order to extrapolate our results. At the physical pion mass, we find m_pi a_pipi(I=2)=-0.04385(28)(38) for the scattering length, where the first error is statistical and the second is our estimate of several systematic effects.

  8. Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon

    CERN Document Server

    Grace, Emily

    2015-01-01

    Like all the noble elements, argon and xenon are scintillators, \\emph{i.e.} they produce light when exposed to radiation. Large liquid argon detectors have become widely used in low background experiments, including dark matter and neutrino research. However, the index of refraction of liquid argon at the scintillation wavelength has not been measured and current Rayleigh scattering length calculations disagree with measurements. Furthermore, the Rayleigh scattering length and index of refraction of solid argon and solid xenon at their scintillation wavelengths have not been previously measured or calculated. We introduce a new calculation using previously measured data in liquid and solid argon and xenon to extrapolate the optical properties at the scintillation wavelengths using the Sellmeier dispersion relationship. As a point of validation, we compare our extrapolated index of refraction for liquid xenon against the measured value and find agreement within the uncertainties. This method results in a Rayle...

  9. Measurement of the $\\pi K$ atom lifetime and the $\\pi K$ scattering length

    CERN Document Server

    Adeva, B.; The PS212 collaboration; Allkofer, Y.; Amsler, C.; Anania, A.; Aogaki, S.; Benelli, A.; Brekhovskikh, V.; Cechak, T.; Chiba, M.; Chliapnikov, P.; Drijard, D.; Dudarev, A.; Dumitriu, D.; Federicova, P.; Fluerasu, D.; Gorin, A.; Gorchakov, O.; Gritsay, K.; Guaraldo, C.; Gugiu, M.; Hansroul, M.; Hons, Z.; Horikawa, S.; Iwashita, Y.; Karpukhin, V.; Kluson, J.; Kobayashi, M.; Kruglov, V.; Kruglova, L.; Kulikov, A.; Kulish, E.; Kuptsov, A.; Lamberto, A.; Lanaro, A.; Lednicky, R.; Marinas, C.; Martincik, J.; Nemenov, L.; Nikitin, M.; Okada, K.; Olchevskii, V.; Pentia, M.; Penzo, A.; Plo, M.; Prusa, P.; Rappazzo, G.; Romero Vidal, A.; Ryazantsev, A.; Rykalin, V.; Saborido, J.; Schacher, J.; Sidorov, A.; Smolik, J.; Takeutchi, F.; Tauscher, L.; Trojek, T.; Trusov, S.; Urban, T.; Vrba, T.; Yazkov, V.; Yoshimura, Y.; Zhabitsky, M.; Zrelov, P.

    2017-09-19

    After having announced the statistically significant observation (5.6~$\\sigma$) of the new exotic $\\pi K$ atom, the DIRAC experiment at the CERN proton synchrotron presents the measurement of the corresponding atom lifetime, based on the full $\\pi K$ data sample: $\\tau = (5.5^{+5.0}_{-2.8}) \\cdot 10^{-15}s$. By means of a precise relation ($<1\\%$) between atom lifetime and scattering length, the following value for the S-wave isospin-odd $\\pi K$ scattering length $a_0^{-}~=~\\frac{1}{3}(a_{1/2}-a_{3/2})$ has been derived: $\\left|a_0^-\\right| = (0.072^{+0.031}_{-0.020}) M_{\\pi}^{-1}$.

  10. Precision determination of the $\\pi N$ scattering lengths and the charged $\\pi NN$ coupling constant

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2000-01-01

    We critically evaluate the isovector GMO sumrule for the charged $\\pi N N$ coupling constant using recent precision data from $\\pi ^-$p and $\\pi^-$d atoms and with careful attention to systematic errors. From the $\\pi ^-$d scattering length we deduce the pion-proton scattering lengths ${1/2}(a_{\\pi ^-p}+a_{\\pi ^-n})=(-20\\pm 6$(statistic)$ \\pm 10$ (systematic))~$\\cdot 10^{-4}m_{\\pi_c}^{-1}$ and ${1/2}(a_{\\pi ^-p}-a_{\\pi ^-n})=(903 \\pm 14)\\cdot 10^{-4}m_{\\pi_c}^{-1}$. From this a direct evaluation gives $g^2_c(GMO) =14.20\\pm 0.07$(statistic)$\\pm 0.13$(systematic) or $f^2_c= 0.0786\\pm 0.0008$.

  11. Dynamics of Periodic Waves in Bose-Einstein Condensate with Time-Dependent Atomic Scattering Length

    Institute of Scientific and Technical Information of China (English)

    LI Hua-Mei

    2007-01-01

    Evolution of periodic waves and solitary waves in Bose-Einstein condensates (BECs) with time-dependent atomic scattering length in an expulsive parabolic potential is studied. Based on the mapping deformation method, we successfully obtain periodic wave solutions and solitary wave solutions, including the bright and dark soliton solutions. The results in this paper include some in the literatures [Plys. Rev. Lett. 94 (2005) 050402 and Chin. Phys. Lett. 22(2005) 1855].

  12. Dynamics of solitons in Bose-Einstein condensate with time-dependent atomic scattering length

    Institute of Scientific and Technical Information of China (English)

    Li Hua-Mei

    2006-01-01

    The evolution of solitons in Bose-Einstein condensates (BECs) with time-dependent atomic scattering length in an expulsive parabolic potential is studied. Based on the extended hyperbolic function method, we successfully obtain the bright and dark soliton solutions. In addition, some new soliton solutions in this model are found. The results in this paper include some in the literature (Phys. Rev. Lett. 94 (2005) 050402 and Chin. Phys. Lett. 22 (2005) 1855).

  13. Determination of $\\pi\\pi$ scattering lengths from measurement of $\\pi^+\\pi^-$ atom lifetime

    CERN Document Server

    Adeva, B; Benayoun, M; Benelli, A; Berka, Z; Brekhovskikh, V; Caragheorgheopol, G; Cechak, T; Chiba, M; Chliapnikov, P V; Ciocarlan, C; Constantinescu, S; Costantini, S; Curceanu, C; Doskarova, P; Dreossi, D; Drijard, D; Dudarev, A; Ferro-Luzzi, M; Fungueiriño Pazos, J L; Gallas Torreira, M; Gerndt, J; Gianotti, P; Goldin, D; Gomez, F; Gorin, A; Gorchakov, O; Guaraldo, C; Gugiu, M; Hansroul, M; Hons, Z; Hosek, R; Iliescu, M; Karpukhin, V; Kluson, J; Kobayashi, M; Kokkas, P; Komarov, V; Kruglov, V; Kruglova, L; Kulikov, A; Kuptsov, A; Kuroda, K I; Lamberto, A; Lanaro, A; Lapshin, V; Lednicky, R; Leruste, P; Levi Sandri, P; Lopez Aguera, A; Lucherini, V; Maki, T; Manuilov, I; Marin, J; Narjoux, J L; Nemenov, L; Nikitin, M; Nunez Pardo, T; Okada, K; Olchevskii, V; Pazos, A; Pentia, M; Penzo, A; Perreau, J M; Plo, M; Ponta, T; Rappazzo, G F; Riazantsev, A; Rodriguez, J M; Rodriguez Fernandez, A; Romero Vidal, A; Ronjin, V.M.; Rykalin, V; Saborido, J; Santamarina, C; Schacher, J; Schuetz, C; Sidorov, A; Smolik, J; Takeutchi, F; Tarasov, A; Tauscher, L; Tobar, M J; Trojek, T; Trusov, S; Utkin, V; Vazquez Doce, O; Vlachos, S; Voskresenskaya, O; Vrba, T; Willmott, C; Yazkov, V; Yoshimura, Y; Zhabitsky, M; Zrelov, P

    2011-01-01

    The DIRAC experiment at CERN has achieved a sizeable production of $\\pi^+\\pi^-$ atoms and has significantly improved the precision on its lifetime determination. From a sample of 21227 atomic pairs, a 4% measurement of the S-wave $\\pi\\pi$ scattering length difference $|a_0-a_2| = (.0.2533^{+0.0080}_{-0.0078}|_\\mathrm{stat}.{}^{+0.0078}_{-0.0073}|_\\mathrm{syst})M_{\\pi^+}^{-1}$ has been attained, providing an important test of Chiral Perturbation Theory.

  14. Determination of the pion-nucleon coupling constant and scattering lengths

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2002-01-01

    We critically evaluate the isovector GMO sum rule for forward pion-nucleon scattering using the recent precision measurements of negatively charged pion-proton and pion-deuteron scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data a pseudoscalar coupling constant of 14.17+-0.05(statistical)+-0.19(systematic) or a pseudovector one of 0.0786(11). This value is intermediate between that of indirect methods and the direct determination from backward neutron-proton differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the negatively charged pion-proton and pion-neutron scattering lengths with high precision. The symmetric sum gives 0.0017+-0.0002(statistical)+-0.0008 (systematic) and the antisymmetric one 0.0900+-0.0003(statistical)+-0.0013(systematic), both in units of inverse charged pi...

  15. Decoherence of trapped bosons by buffer gas scattering: What length scales matter?

    CERN Document Server

    Gilz, Lukas; Anglin, James R

    2014-01-01

    We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be, before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be, before an environment of thermal atoms of a different species (`buffer gas') responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, howev...

  16. Pion-nucleon amplitude near threshold the sigma-term and scattering lengths beyond few loops

    CERN Document Server

    Kondratyuk, S

    2002-01-01

    The pion-nucleon amplitude is considered in the vicinity of the elastic scattering threshold within a relativistic dynamical model dressing the $\\pi N N$ and $\\pi N \\Delta$ vertices self-consistently with an infinite number of meson loops. The dressing is formulated as solution of a system of coupled integral equations incorporating unitarity, crossing symmetry and analyticity constraints. The calculated scattering lengths and the sigma-term agree with recent data analyses. In this model multiple loops are significant both below and at threshold. The contribution of the $\\Delta$ resonance is discussed, including effects of its dressing. A comparison with the approaches of chiral perturbation theory and the Bethe-Salpeter equation is outlined.

  17. Surface Enhanced Raman Scattering Based in Situ Hybridization Strategy for Telomere Length Assessment.

    Science.gov (United States)

    Zong, Shenfei; Chen, Chen; Wang, Zhuyuan; Zhang, Yizhi; Cui, Yiping

    2016-02-23

    Assessing telomere length is of vital importance since telomere length is closely related with several fatal diseases such as atherosclerosis and cancer. Here, we present a strategy to assess/measure telomere length, that is, surface enhanced Raman scattering (SERS) based in situ hybridization (SISH). The SISH method uses two kinds of SERS nanoprobes to hybridize in situ with telomeres and centromeres, respectively. The telomere specific SERS nanoprobe is called the Telo-probe, while the centromere specific SERS nanoprobe is called the Centro-probe. They are composed of metal nanoparticles (NPs), Raman reporter molecules and specially designed DNA strands. With longer telomeres, more Telo-probes will hybridize with them, resulting in a stronger SERS signal. To exclude possible influence of the SERS intensity by external factors (such as the nanoprobe concentration, the cell number or different batches of nanoprobes), centromeres are used as the inner control, which can be recognized by Centro-probes. Telomere length is evaluated using a redefined telomere-to-centromere ratio (T/C ratio). The calculation method for T/C ratio in SISH method is more reliable than that in fluorescent in situ hybridization (FISH). In addition, unlike FISH method, the SISH method is insensitive to autofluorescence. Moreover, SISH method can be used to analyze single telomeres. These features make SISH an excellent alternative strategy for telomere length measurement.

  18. Determination of the $\\eta$'-proton scattering length in free space

    CERN Document Server

    Czerwiński, E; Silarski, M; Bass, S D; Grzonka, D; Kamys, B; Khoukaz, A; Klaja, J; Krzemień, W; Oelert, W; Ritman, J; Sefzick, T; Smyrski, J; Täschner, A; Wolke, M; Zieliński, M

    2014-01-01

    Taking advantage of both the high mass resolution of the COSY--11 detector and the high energy resolution of the low-emittance proton-beam of the Cooler Synchrotron COSY we determine the excitation function for the pp --> pp eta' reaction close-to-threshold. Combining these data with previous results we extract the scattering length for the eta'-proton potential in free space to be Re (a p eta') = 0 +/- 0.43 fm and Im a_(p eta') = 0.37^{+0.40}_{-0.16} fm.

  19. Precise Determination of the I=2 pipi Scattering Length from Mixed-Action Lattice QCD

    CERN Document Server

    Beane, Silas R; Orginos, Kostas; Parreno, Assumpta; Savage, Martin J; Torok, Aaron; Walker-Loud, Andre

    2007-01-01

    The I=2 pipi scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations (with fourth-rooted staggered sea quarks) at four light-quark masses. Two- and three-flavor mixed-action chiral perturbation theory at next-to-leading order is used to perform the chiral and continuum extrapolations. At the physical charged pion mass, we find m_pi a_pipi(I=2) = -0.04330 +- 0.00042, where the error bar combines the statistical and systematic uncertainties in quadrature.

  20. Precise Determination of the I = 2 Scattering Length from Mixed-Action Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Silas Beane; Paulo Bedaque; Thomas Luu; Konstantinos Orginos; Assumpta Parreno; Martin Savage; Aaron Torok; Andre Walker-Loud

    2008-01-01

    The I=2 pipi scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations (with fourth-rooted staggered sea quarks) at four light-quark masses. Two- and three-flavor mixed-action chiral perturbation theory at next-to-leading order is used to perform the chiral and continuum extrapolations. At the physical charged pion mass, we find m_pi a_pipi(I=2) = -0.04330 +- 0.00042, where the error bar combines the statistical and systematic uncertainties in quadrature.

  1. Role of the atom-atom scattering length and of symmetrization in unidimensional ultracold atom-diatom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Quemener, G.; Launay, J.M. [Rennes-1 Univ., Institut de Physique de Rennes, UMR CNRS 6251, 35 (France); Quemener, G. [Nevada Las Vegas niv., Dept. of Chemistry, NV (United States); Honvault, P. [University of Franche-Comte, Institut UTINAM, UMR CNRS 6213, 25 - Besancon (France)

    2008-08-15

    The role of the atom-atom scattering length and of the symmetrization in ultracold atom-diatom collisions in one dimension is presented. For an ultracold atom-diatom collision and for a diatomic molecule in its highest vibrational state, inelastic rate coefficients vanish for a system composed of fermionic atoms as the atom-atom scattering length increases whereas they do not for a system composed of bosonic atoms. The differences come from the symmetrization of the wavefunction of the systems. We explain these differences by comparing the shape of the effective potentials of the atom-diatom approach. For the fermionic system, we use a zero-range interaction to model the adiabatic energies and we give a lower estimate of the atom-diatom scattering length as a function of the atom-atom scattering length. (authors)

  2. Two-body threshold spectral analysis, the critical case

    DEFF Research Database (Denmark)

    Skibsted, Erik; Wang, Xue Ping

    We study in dimension $d\\geq2$ low-energy spectral and scattering asymptotics for two-body $d$-dimensional Schrödinger operators with a radially symmetric potential falling off like $-\\gamma r^{-2},\\;\\gamma>0$. We consider angular momentum sectors, labelled by $l=0,1,\\dots$, for which $\\gamma...

  3. Controlling the s-wave scattering length with non-resonant light: Predictions of an asymptotic model

    CERN Document Server

    Crubellier, Anne; Koch, Christiane P; Luc-Koenig, Eliane

    2016-01-01

    A pair of atoms interacts with non-resonant light via its anisotropic polarizability. This effect can be used to tune the scattering properties of the atoms. Although the light-atom interaction varies with interatomic separation as $1/R^{3}$, the effective s-wave potential decreases more rapidly, as $1/R^{4}$ such that the field-dressed scattering length can be determined without any formal difficulty. The scattering dynamics are essentially governed by the long-range part of the interatomic interaction and can thus be accurately described by an asymptotic model [Crubellier et al., New J. Phys. 17, 045020 (2015)]. Here we use the asymptotic model to determine the field-dressed scattering length from the s-wave radial component of a particular threshold wave function. Applying our theory to the scattering of two strontium isotopes, we calculate the variation of the scattering length with the intensity of the non-resonant light. Moreover, we predict the intensities at which the scattering length becomes infinit...

  4. Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; de Mul, F.F.M.

    2001-01-01

    We report first results of measurements by low-coherence Doppler interferometry of the path-length distribution of photons undergoing multiple scattering in a highly turbid medium. We use a Mach–Zehnder interferometer with multimode graded-index fibers and a superluminescent diode as the light sourc

  5. Dynamics of Bright/Dark Solitons in Bose-Einstein Condensates with Time-Dependent Scattering Length and External Potential

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-Xia; XUE Ju-Kui

    2008-01-01

    We present an analytical study on the dynamics of bright and dark solitons in Bose-Einstein condensates with time-varying atomic scattering length in a time-varying external parabolic potential.A set of exact soliton solutions of the one-dimensional Gross-Pitaevskii equation are obtained,including fundamental bright solitons,higher-order bright solitons,and dark solitons.The results show that the soliton's parameters(amplitude,width,and period)can be changed in a controllable manner by changing the scattering length and external potential.This may be helpful to design experiments.

  6. Effect of Time-Dependent Atomic Scattering Length on Solitons in Bose-Einstein Condensates with a Complex Potential

    Institute of Scientific and Technical Information of China (English)

    WANG Tian-Yuan

    2009-01-01

    We consider the one-dimensional nonlinear SchrSdinger equations that describe the dynamics of a Bose-Einstein Condensates with time-dependent scattering length in a complex potential.Our results show that as long as the integrable relation is satisfied, exact solutions of the one-dimensional nonlinear SchrSdinger equation can be found in a general closed form, and interactions between two solitons are modulated in a complex potential.We find that the changes of the scattering length and trapping potential can be effectively used to control the interaction between two bright soliton.

  7. Review of Indirect Methods Used to Determine the $^1S_0$ Neutron-Neutron Scattering Length

    CERN Document Server

    Howell, C R

    2008-01-01

    We have determined a value for the $^1S_0$ neutron-neutron scattering length ($a_{nn}$) from high-precision measurements of time-of-flight spectra of neutrons from the $^2H(\\pi^-,n \\gamma)n$ capture reaction. The measurements were done at the Los Alamos Meson Physics Facility by the E1286 collaboration. The high spatial resolution of our gamma-ray detector enabled us to make a detailed assessment of the systematic uncertainties in our techniques. The value obtained in the present work is $a_{nn} = -18$.63 $\\pm $0.10 (statistical) $\\pm$ 0.44 (systematic) $\\pm$ 0.30 (theoretical) fm. This result is consistent with previous determinations of $a_{nn}$ from the $\\pi^-d$ capture reaction. We found that the analysis of the data with calculations that use a relativistic phase-space factor gives a more negative value for $a_{nn}$ by 0.33 fm over the analysis done using a nonrelativistic phase-space factor. Combining the present result with the previous ones from $\\pi^-d$ capture gives: $a_{nn} = - 18$.63 $\\pm$ 0.27 (e...

  8. Influence of bond length variation on correlated static exchange potential: A case study in e--N2 scattering

    Science.gov (United States)

    Ghose, Keya Basu; Pal, Sourav

    1994-03-01

    We discuss in this note how the correlated static exchange potential changes with bond length for N2 molecule where the earlier extensive results at equilibrium exist. We have used many-body coupled cluster technique for this study. Its relevance to e--N2 scattering is also discussed.

  9. High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; Leeuwen, van Ton G.; Steenbergen, Wiendelt

    2008-01-01

    We describe an improved method for coherence domain path length resolved measurements of multiply scattered photons in turbid media. An electro-optic phase modulator sinusoidally modulates the phase in the reference arm of a low coherence fiber optic Mach–Zehnder interferometer, at a high phase modu

  10. High-energy two-body photoproduction

    CERN Document Server

    Salin, P

    1974-01-01

    Considers three aspects of two-body photoproduction reactions: vector meson production as a tool to investigate properties of diffractive reactions; the occurrence of a possible J=0 fixed pole in the Compton amplitude; and pseudoscalar meson photoproduction. (73 refs).

  11. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Knoops, Harm C. M., E-mail: H.C.M.Knoops@tue.nl; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kessels, Wilhelmus M. M.; Creatore, Mariadriana, E-mail: M.Creatore@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands)

    2015-03-15

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  12. Sub-pixel correlation length neutron imaging: Spatially resolved scattering information of microstructures on a macroscopic scale

    Science.gov (United States)

    Harti, Ralph P.; Strobl, Markus; Betz, Benedikt; Jefimovs, Konstantins; Kagias, Matias; Grünzweig, Christian

    2017-01-01

    Neutron imaging and scattering give data of significantly different nature and traditional methods leave a gap of accessible structure sizes at around 10 micrometers. Only in recent years overlap in the probed size ranges could be achieved by independent application of high resolution scattering and imaging methods, however without providing full structural information when microstructures vary on a macroscopic scale. In this study we show how quantitative neutron dark-field imaging with a novel experimental approach provides both sub-pixel resolution with respect to microscopic correlation lengths and imaging of macroscopic variations of the microstructure. Thus it provides combined information on multiple length scales. A dispersion of micrometer sized polystyrene colloids was chosen as a model system to study gravity induced crystallisation of microspheres on a macro scale, including the identification of ordered as well as unordered phases. Our results pave the way to study heterogeneous systems locally in a previously impossible manner. PMID:28303923

  13. Soliton Solutions in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length in an Expulsive Parabolic Potential

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie-Fang; YANG Qin

    2005-01-01

    @@ We present both the bright and dark solitons of Bose-Einstein condensates with a time-dependent atomic scattering length in an expulsive parabolic potential. As a discussed example, we select the experimental parameter,i.e. the Feshbach-managed nonlinear coefficient reading a(t) = g0 exp(λt), and obtain the results which can be recovered in the literature [Phys. Rev. Lett. 94 (2005) 050402].

  14. Solitons in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length in a Harmonic Trap

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Fei; ZHANG Pei; YANG Qin

    2008-01-01

    We obtain the integrable relation for the one-dimensional nonlinear Schrodinger equations which describes the dynamics of a Bose-Einstein Condensates with time-dependent scattering length in a harmonic potential. The exact one-and two-soliton solutions are constructed analytically by using the Hirota method. Then we further discuss the dynamics of the one soliton and the interactions between two solitons in currently experimental conditions.

  15. Lattice QCD study of the s-wave $\\pi\\pi $ scattering lengths in the I=0 and 2 channels

    CERN Document Server

    Fu, Ziwen

    2013-01-01

    The s-wave pion-pion ($\\pi\\pi$) scattering lengths are computed below the inelastic threshold by the L\\"uscher technique with pion masses ranging from 240 MeV to 463 MeV. In the Asqtad-improved staggered fermion formulation, we calculate the $\\pi\\pi$ four-point functions for the I=0 and 2 channels with "moving" wall sources without gauge fixing, and analyze them at the next-to-leading order in the continuum three-flavor chiral perturbation theory. At the physical pion mass, we secure the s-wave $\\pi\\pi$ scattering lengths as $m_\\pi a_{\\pi\\pi}^{I=0} = 0.214(4)(7)$ and $m_\\pi a_{\\pi\\pi}^{I=2} = -0.04430(25)(40)$ for the I=0 and 2 channels, respectively, where the first uncertainties are statistical and second ones are our estimates of several systematic effects. Our lattice results for the s-wave $\\pi\\pi$ scattering lengths are in well accordance with available experimental reports and theoretical forecasts at low momentum. A basic ingredient in our study for the I=0 case is properly incorporating disconnected ...

  16. Bunch length measurement at Tsinghua Thomson scattering X-ray source

    Institute of Scientific and Technical Information of China (English)

    DU Ying-Chao; HUA Jian-Fei; YAN Li-Xin; DU Qiang; HUANG Wen-Hui; TANG Chuan-Xiang

    2011-01-01

    The length of electron beam from a photocathode RF gun is determined by a spectrometer, according to the relative energy spread induced by the bunch length during the acceleration in a linac. For a photocathode RF gun, different laser injected phase and beam charge are studied. The compression is changed for the different laser phases, as from 10° to 30°, and the bunch length is lengthened due to the strong longitudinal space charge force, caused by the increased charge.

  17. Bunch length measurement at Tsinghua Thomson scattering X-ray source

    Institute of Scientific and Technical Information of China (English)

    DU Ying-Chao; HUA Jian-Fei; YAN Li-Xin; DU Qiang; HUANG Wcn-Hui; TANG Chuan-Xiang

    2011-01-01

    The length of electron beam from a photocathode RF gun is determined by a spectrometer, according to the relative energy spread induced by the bunch length during the acceleration in a linac. For a photocathode RF gun, different laser injected phase and b

  18. Scattering suppression and wideband tunability of a flexible mantle cloak for finite-length conducting rods

    Science.gov (United States)

    Schofield, R. S.; Soric, J. C.; Rainwater, D.; Kerkhoff, A.; Alù, A.

    2014-06-01

    A simple, thin, flexible mantle cloak for conducting rods based on scattering cancellation is analyzed, designed and experimentally realized. We show strong scattering suppression at all angles of incidence, for both far-field plane-wave and near-field Gaussian excitations. The required effective shunt surface impedance is realized by a subwavelength patch array, targeting the suppression of the dominant omnidirectional scattering contribution of a conductive rod. Full-wave simulations predict a total radar cross-section reduction better than 14 dB in the lossless case and nearly 8 dB when considering a lossy substrate in the cover. Measurements of the realized cloak are consistent and validate these numerical predictions. The proposed geometry is also shown to be an ideal platform for monolithic integration of varactor diodes, allowing real-time tuning of the effective surface capacitance of the cloak. We show with numerical simulations the possibility of tunable scattering suppression over 1 GHz of bandwidth by seamlessly integrating varactor diodes in our mantle cloak design.

  19. Exact two-body solutions and quantum defect theory of two-dimensional dipolar quantum gas

    Science.gov (United States)

    Jie, Jianwen; Qi, Ran

    2016-10-01

    In this paper, we provide the two-body exact solutions of the two-dimensional (2D) Schrödinger equation with isotropic +/- 1/{r}3 interactions. An analytic quantum defect theory is constructed based on these solutions and it is applied to investigate the scattering properties as well as two-body bound states of an ultracold polar molecules confined in a quasi-2D geometry. Interestingly, we find that for the attractive case, the scattering resonance happens simultaneously in all partial waves, which has not been observed in other systems. The effect of this feature on the scattering phase shift across such resonances is also illustrated.

  20. Two-body state with p -wave interaction in a one-dimensional waveguide under transversely anisotropic confinement

    Science.gov (United States)

    Gao, Tian-You; Peng, Shi-Guo; Jiang, Kaijun

    2015-04-01

    We theoretically study two atoms with p -wave interaction in a one-dimensional waveguide, investigating how the transverse anisotropy of the confinement affects the two-body state, especially the properties of the resonance. For a bound-state solution, we find there are a total of three two-body bound states due to the richness of the orbital magnetic quantum number of the p -wave interaction, while only one bound state is supported by the s -wave interaction. Two of them become nondegenerate due to the breaking of the rotation symmetry under a transversely anisotropic confinement. For a scattering solution, the effective one-dimensional scattering amplitude and scattering length are derived. We find the position of the p -wave confinement-induced resonance shifts apparently versus the transverse anisotropy. In addition, a two-channel mechanism for the confinement-induced resonance in a one-dimensional waveguide is generalized to the p -wave interaction, which was previously proposed only for the s -wave interaction. All our calculations are based on the parametrization of the 40K-atom experiments and can thus be confirmed in future experiments.

  1. Scattering lengths in SU(2) gauge theory with two fundamental fermions

    DEFF Research Database (Denmark)

    Arthur, R.; Drach, V.; Hansen, Martin Rasmus Lundquist

    2014-01-01

    We investigate non perturbatively scattering properties of Goldstone Bosons in an SU(2) gauge theory with two Wilson fermions in the fundamental representation. Such a theory can be used to build extensions of the Standard Model that unifies Technicolor and pseudo Goldstone composite Higgs models...... the expected chiral symmetry breaking pattern. We then discuss how to compute them on the lattice and give preliminary results using finite size methods....

  2. Scattering from the Finite-Length, Dielectric Circular Cylinder: Part I - Derivation of an Analytical Solution

    Science.gov (United States)

    2015-07-01

    36) , sins o sk kρ θ= . (37) After much algebraic manipulation, the scattering matrix elements corresponding to a vertically polarized...determination of its region of validity is the subject of Part II of this study. 12 6. References 1. Lang RH, Sidhu JS. Electromagnetic backscattering...J Rem Sens. 1990;11:1223–1253. 7. Chauhan NS, Lang RH, Ranson KJ. Radar modeling of a boreal forest. IEEE Trans Geosci Rem Sens. 1991;29(4):627–638

  3. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2009-02-11

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.

  4. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    Science.gov (United States)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  5. Determination of the scattering lengths of gallium isotopes by neutron interferometry with PNO-apparatus in JRR-3M

    Science.gov (United States)

    Tomimitsu, H.; Hasegawa, Y.; Aizawa, K.; Kikuta, S.

    1999-01-01

    For carrying out experiments in the field of the so-called precise neutron optics (PNO), we have implemented special multi-purpose apparatus called the "PNO-apparatus" at JRR-3M. Making use of an Si triple-Laue (LLL) neutron interferometer with the PNO-apparatus, we successfully determined the coherent neutron scattering lengths of gallium isotopes, 69Ga and 71Ga. The results are 8.053±0.013 fm for 69Ga and 6.170±0.011 fm for 71Ga, respectively.

  6. Neutron interferometric measurement of the scattering length difference between the triplet and singlet states of n-$^3$He

    CERN Document Server

    Huber, M G; Chen, W C; Gentile, T R; Hussey, D S; Black, T C; Pushin, D A; Shahi, C B; Wietfeldt, F E; Yang, L

    2014-01-01

    We report a determination of the n-$^3$He scattering length difference $\\Delta b^{\\prime} = b_{1}^{\\prime}-b_{0}^{\\prime} = $ ($-5.411$ $\\pm$ $0.031$ (statistical) $\\pm$ $0.039$ (systematic)) fm between the triplet and singlet states using a neutron interferometer. This revises our previous result $\\Delta b^{\\prime} = $ (-5.610 $\\pm$ $0.027$ (statistical) $\\pm$ $0.032$ (systematic) fm obtained using the same technique in 2008. This revision is due to a re-analysis of the 2008 experiment that includes a more robust treatment of the phase shift caused by magnetic field gradients near the $^3$He cell. Furthermore, we more than doubled our original data set from 2008 by acquiring six months of additional data in 2013. Both the new data set and a re-analysis of the older data are in good agreement. Scattering lengths of low Z isotopes are valued for use in few-body nuclear effective field theories, provide important tests of modern nuclear potential models and in the case of $^3$He aid in the interpretation of neu...

  7. First observation of $\\pi^{-}K^+$ and $\\pi^{+}K^-$ atoms, their lifetime measurement and $\\pi K$ scattering lengths evaluation

    CERN Document Server

    Afanasyev, Leonid

    2016-01-01

    The Low Energy QCD allows to calculate the ππ and π K scattering lengths with high precision. There are accurate relations between these scattering lengths and π + π − , π − K + , π + K − atoms lifetimes. The experiment on the first observation of π − K + and π + K − atoms is described. The atoms were generated in Nickel and Platinum targets hit by the PS CERN proton beam with momentum of 24 GeV/ c . Moving in the target, part of atoms break up producing characteristic π K pairs (atomic pairs) with small relative momentum Q in their c.m.s. In the experiment, we detected n A = 349 ± 62 (5.6 standard deviations) π − K + and π + K − atomic pairs. The main part of π K pairs are produced in free state. The majority of such particles are generated directly or from short-lived sources as ρ , ω and similar resonances. The electromagnetic interactions in the final state create Coulomb pairs with a known sharp dependence on Q . This effect allows to evaluate the number of these Coulomb pai...

  8. LIGHT SOURCE: RF deflecting cavity for bunch length measurement in Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Shi, Jia-Ru; Chen, Huai-Bi; Tang, Chuan-Xiang; Huang, Wen-Hui; Du, Ying-Chao; Zheng, Shu-Xin; Ren, Li

    2009-06-01

    An RF deflecting cavity used for bunch length measurement has been designed and fabricated at Tsinghua University for the Thomson Scattering X-Ray Source. The cavity is a 2856 MHz, π-mode, 3-cell standing-wave cavity, to diagnose the 3.5 MeV beam produced by photocathode electron gun. With a larger power source, the same cavity will again be used to measure the accelerated beam with energy of 50 MeV before colliding with the laser pulse. The RF design using MAFIA for both the cavity shape and the power coupler is reviewed, followed by presenting the fabrication procedure and bench measurement results of two cavities.

  9. Neutron diffraction and quasielastic neutron scattering studies of films of intermediate-length alkanes adsorbed on a graphite surface

    Science.gov (United States)

    Diama, Armand

    Over the past several years, we have conducted a variety of elastic neutron diffraction and quasielastic neutron scattering experiments to study the structure and the dynamics of films of two intermediate-length alkane molecules (C nH2n+2), adsorbed on a graphite basal-plane surface. The two molecules are the normal alkane n-tetracosane [n-CH 3(CH2)22CH3] and the branched alkane squalane (C30H62 or 2, 6, 10, 15, 19, 23-hexamethyltetracosane) whose carbon backbone is the same length as teteracosane. The temperature dependence of the monolayer structure of tetracosane and squalane was investigated using elastic neutron diffraction and evidence of two phase transitions was observed. Both the low-coverage tetracosane (C 24H50) and squalane (C30H62) monolayers have crystalline-to-"smectic" and "smectic"-to-isotropic fluid phase transitions upon heating. The diffusive motion in the tetracosane and squalane monolayers has been investigated by quasielastic neutron scattering. Two different quasielastic neutron scattering spectrometers at the Center for Neutron Research, National Institute of Standards and Technology (NIST) have been used. The spectrometers differ in both their dynamic range and energy resolution allowing molecular motions to be investigated on time scales in the range 10-13--10 -9 s. On these time scales, we observe evidence of translational, rotational, and intermolecular diffusive motions in the tetracosane and squalane monolayers. We conclude that the molecular diffusive motion in the two monolayers is qualitatively similar. Thus, despite the three methyl sidegroups at each end of the squalane molecule, its monolayer structure, phase transitions, and dynamics are qualitatively similar to that of a monolayer of the unbranched tetracosane molecules. With the higher resolution spectrometer at NIST, we have also investigated the molecular diffusive motion in multilayer tetracosane films. The analysis of our measurements indicates slower diffusive motion in

  10. On gravitational interactions between two bodies

    CERN Document Server

    Szybka, Sebastian J

    2014-01-01

    Many physicists, following Einstein, believe that the ultimate aim of theoretical physics is to find a unified theory of all interactions which would not depend on any free dimensionless constant, i.e., a dimensionless constant that is only empirically determinable. We do not know if such a theory exists. Moreover, if it exists, there seems to be no reason for it to be comprehensible for the human mind. On the other hand, as pointed out in Wigner's famous paper, human mathematics is unbelievably successful in natural science. This seeming paradox may be mitigated by assuming that the mathematical structure of physical reality has many `layers'. As time goes by, physicists discover new theories that correspond to the physical reality on the deeper and deeper level. In this essay, I will take a narrow approach and discuss the mathematical structure behind a single physical phenomenon - gravitational interaction between two bodies. The main aim of this essay is to put some recent developments of this topic in a ...

  11. Energy and structural properties of N -boson clusters attached to three-body Efimov states: Two-body zero-range interactions and the role of the three-body regulator

    Science.gov (United States)

    Yan, Yangqian; Blume, D.

    2015-09-01

    The low-energy spectrum of N -boson clusters with pairwise zero-range interactions is believed to be governed by a three-body parameter. We study the ground state of N -boson clusters with infinite two-body s -wave scattering length by performing ab initio Monte Carlo simulations. To prevent Thomas collapse, different finite-range three-body regulators are used. The energy and structural properties for the three-body Hamiltonian with two-body zero-range interactions and three-body regulator are in much better agreement with the "ideal zero-range Efimov theory" results than those for Hamiltonian with two-body finite-range interactions. For larger clusters we find that the ground-state energy and structural properties of the Hamiltonian with two-body zero-range interactions and finite-range three-body regulators are not universally determined by the three-body parameter, i.e., dependencies on the specific form of the three-body regulator are observed. For comparison, we consider Hamiltonian with two-body van der Waals interactions and no three-body regulator. For the interactions considered, the ground-state energy of the N -body clusters is—if scaled by the three-body ground-state energy—fairly universal, i.e., the dependence on the short-range details of the two-body van der Waals potentials is small. Our results are compared with those in the literature.

  12. Two-body and three-body contacts for identical Bosons near unitarity.

    Science.gov (United States)

    Smith, D Hudson; Braaten, Eric; Kang, Daekyoung; Platter, Lucas

    2014-03-21

    In a recent experiment with ultracold trapped Rb85 atoms, Makotyn et al. studied a quantum-degenerate Bose gas in the unitary limit where its scattering length is infinitely large. We show that the observed momentum distributions are compatible with a universal relation that expresses the high-momentum tail in terms of the two-body contact C2 and the three-body contact C3. We determine the contact densities for the unitary Bose gas with number density n to be C2 ≈ 20 n(4/3) and C3 ≈ 2n(5/3). We also show that the observed atom loss rate is compatible with that from 3-atom inelastic collisions, which gives a contribution proportional to C3, but the loss rate is not compatible with that from 2-atom inelastic collisions, which gives a contribution proportional to C2. We point out that the contacts C2 and C3 could be measured independently by using the virial theorem near and at unitarity, respectively.

  13. Two-body dissipation effects on synthesis of superheavy elements

    CERN Document Server

    Tohyama, M

    2015-01-01

    To investigate the two-body dissipation effects on the synthesis of superheavy elements, we calculate low-energy collisions of the $N=50$ isotones ($^{82}$Ge, $^{84}$Se, $^{86}$Kr and $^{88}$Sr) on $^{208}$Pb using the time-dependent density-matrix theory (TDDM). TDDM is an extension of the time-dependent Hartree-Fock (TDHF) theory and can determine the time evolution of one-body and two-body density matrices. Thus TDDM describes both one-body and two-body dissipation of collective energies. It is shown that the two-body dissipation may increase fusion cross sections and enhance the synthesis of superheavy elements.

  14. Two-body physics in the Su-Schrieffer-Heeger model

    Science.gov (United States)

    Di Liberto, M.; Recati, A.; Carusotto, I.; Menotti, C.

    2016-12-01

    We consider two interacting bosons in a dimerized Su-Schrieffer-Heeger (SSH) lattice. We identify a rich variety of two-body states. In particular, for open boundary conditions and moderate interactions, edge bound states (EBS) are present even for the dimerization that does not sustain single-particle edge states. Moreover, for large values of the interactions, we find a breaking of the standard bulk-boundary correspondence. Based on the mapping of two interacting particles in one dimension onto a single particle in two dimensions, we propose an experimentally realistic coupled optical fibers setup as quantum simulator of the two-body SSH model. This setup is able to highlight the localization properties of the states as well as the presence of a resonant scattering mechanism provided by a bound state that crosses the scattering continuum, revealing the closed-channel population in real time and real space.

  15. The Sharma-Parthasarathy stochastic two-body problem

    Energy Technology Data Exchange (ETDEWEB)

    Cresson, J. [LMAP/Université de Pau, 64013 Pau (France); SYRTE/Observatoire de Paris, 75014 Paris (France); Pierret, F. [SYRTE/Observatoire de Paris, 75014 Paris (France); Puig, B. [IPRA/Université de Pau, 64013 Pau (France)

    2015-03-15

    We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.

  16. The Sharma-Parthasarathy stochastic two-body problem

    Science.gov (United States)

    Cresson, J.; Pierret, F.; Puig, B.

    2015-03-01

    We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in ["Dynamics of a stochastically perturbed two-body problem," Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.

  17. Multinucleon Ejection Model for Two Body Current Neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk, Jan T.; /Fermilab

    2012-06-01

    A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.

  18. The dependence of scattering length on van derWaals interaction and reduced mass of the system in two-atomic collision at cold energies

    Indian Academy of Sciences (India)

    RAY HASI

    2016-07-01

    The static exchange model (SEM) and the modified static exchange model (MSEM) recently introduced by Ray in {\\it Pramana – J. Phys.} 83, 907 (2014) are used to study the elastic collision between two hydrogen-like atoms when both are in ground states by considering the system as a four-body Coulomb system in the centre of mass frame, in which all the Coulomb interaction terms in direct and exchange channels are treated exactly. The SEM includes the non-adiabatic short-range effect due to electron exchange. The MSEM added init, the long-range effect due to induced dynamic dipole polarizabilities between the atoms e.g., the van der Waals interaction. Applying the SEM code in different H-like two-atomic systems, a reduced mass $(\\mu)$ dependence on the scattering length is observed. Again, applying the MSEM code on H(1s)–H(1s) elastic scattering and varying the minimum values of interatomic distance $R_0$, the dependence of scattering length on the effective interatomic potential consistent with the existing physics is observed. Both these basic findings in low and cold energy atomic collision physics are quite useful and are being reported for the first time.

  19. The dependence of scattering length on van der Waals interaction and on the reduced-mass of the system in two-atomic collision at cold energies

    CERN Document Server

    Ray, Hasi

    2015-01-01

    The static-exchange model (SEM) and the modified static-exchange model (MSEM) recently introduced by Ray [1] is applied to study the elastic collision between two hydrogen-like atoms when both are in ground states considering the system as a four-body Coulomb problem in the center of mass frame, in which all the Coulomb interaction terms in direct and exchange channels are treated exactly. The SEM includes the non-adiabatic short-range effect due to electron-exchange. The MSEM added in it, the long-range effect due to induced dynamic dipole polarizabilities between the atoms e.g. the Van der Waals interaction. Applying the SEM code in different H-like two-atomic systems, a reduced mass dependence on scattering length is observed. Again applying the MSEM code on H(1s)-H(1s) elastic scattering and varying the minimum values of interatomic distance, the dependence of scattering length on the effective interatomic potential consistent with the existing physics are observed. Both these basic findings in low and co...

  20. Calculations of scattering lengths in four-nucleon system on the basis of cluster reduction method for Yakubovsky equations

    CERN Document Server

    Yakovlev, S L

    1997-01-01

    The cluster reduction method for the Yakubovsky equations in configuration space is used for calculations of zero-energy scattering in four-nucleon system. The main idea of the method consists in making use of expansions for the Yakubovsky amplitudes onto the basis of the Faddeev components for the two-cluster sub-Hamiltonian eigenfunctions. The expantions reduce the original equations to ones for the functions depending on the relative coordinates between the clusters. On the basis of the resulting equations the N-(NNN) zero-energy scattering problems are solved numerically with the MT I-III model for N-N forces and neglegting the Coulomb interaction between protons.

  1. Hadron-Hadron Interactions from $N_f=2+1+1$ Lattice QCD: isospin-2 $\\pi\\pi$ scattering length

    CERN Document Server

    Helmes, C; Knippschild, B; Liu, C; Liu, J; Liu, L; Urbach, C; Ueding, M; Wang, Z; Werner, M

    2015-01-01

    We present results for the $I=2$ $\\pi\\pi$ scattering length using $N_f=2+1+1$ twisted mass lattice QCD for three values of the lattice spacing and a range of pion mass values. Due to the use of Laplacian Heaviside smearing our statistical errors are reduced compared to previous lattice studies. A detailed investigation of systematic effects such as discretisation effects, volume effects, and pollution of excited and thermal states is performed. After extrapolation to the physical point using chiral perturbation theory at NLO we obtain $M_\\pi a_0=-0.0442(2)_\\mathrm{stat}(^{+4}_{-0})_\\mathrm{sys}$.

  2. A new measurement of K+(e4) decay and the s-wave pi-pi-scattering length a00

    CERN Document Server

    Pislak, S; Atoyan, G S; Bassalleck, B; Bergman, D R; Cheung, N; Dhawan, S K; Do, H; Egger, J; Eilerts, S W; Herold, W D; Issakov, V V; Kaspar, H; Kraus, D E; Lazarus, D M; Lichard, P; Lowe, J; Lozano-Bahilo, J; Ma, H; Majid, W A; Poblaguev, A A; Rehak, P; Sher, A E; Thompson, J A; Truöl, P; Zeller, M E

    2001-01-01

    A sample of 400000 events from the decay K+->pi+pi-e+nu(e)(K(e4)) has been collected in experiment E865 at the Brookhaven AGS. The analysis of these data yields new measurements of the K(e4) branching ratio (4.11+-0.01+-0.11)*10**(-5)), the s-wave pi-pi scattering length a00=0.228+-0.012+-0.003, and the form factors F, G, and H of the hadronic current and their dependence on the invariant pi-pi mass.

  3. Sensitivity analysis of random two-body interactions

    CERN Document Server

    Johnson, Calvin W

    2010-01-01

    The input to the configuration-interaction shell model includes many dozens or hundreds of independent two-body matrix elements. Previous studies have shown that when fitting to experimental low-lying spectra, the greatest sensitivity is to only a few linear combinations of matrix elements. Here we consider interactions drawn from the two-body random ensemble, or TBRE, and find that the low-lying spectra are also most sensitive to only a few linear combinations of two-body matrix elements, in a fashion nearly indistinguishable from an interaction empirically fit to data. We find in particular the spectra for both the random and empirical interactions are sensitive to similar matrix elements, which we analyze using monopole and contact interactions.

  4. Wave Function Structure in Two-Body Random Matrix Ensembles

    CERN Document Server

    Kaplan, L; Kaplan, Lev; Papenbrock, Thomas

    2000-01-01

    We study the structure of eigenstates in two-body interaction random matrix ensembles and find significant deviations from random matrix theory expectations. The deviations are most prominent in the tails of the spectral density and indicate localization of the eigenstates in Fock space. Using ideas related to scar theory we derive an analytical formula that relates fluctuations in wave function intensities to fluctuations of the two-body interaction matrix elements. Numerical results for many-body fermion systems agree well with the theoretical predictions.

  5. Two-body quantum mechanical problem on spheres

    OpenAIRE

    2005-01-01

    The quantum mechanical two-body problem with a central interaction on the sphere ${\\bf S}^{n}$ is considered. Using recent results in representation theory an ordinary differential equation for some energy levels is found. For several interactive potentials these energy levels are calculated in explicit form.

  6. Stochastic perturbation of the two-body problem

    CERN Document Server

    Jacky, Cresson; Bénédicte, Puig

    2014-01-01

    We study the impact of a stochastic perturbation on the classical two-body problem in particular concerning the preservation of first integrals and the Hamiltonian structure. Numerical simulations are performed which illustrate the dynamical behavior of the osculating elements as the semi-major axis, the eccentricity and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.

  7. Stochastic perturbation of the two-body problem

    Science.gov (United States)

    Cresson, J.; Pierret, F.; Puig, B.

    2013-11-01

    We study the impact of a stochastic perturbation on the classical two-body problem in particular concerning the preservation of first integrals and the Hamiltonian structure. Numerical simulations are performed which illustrate the dynamical behavior of the osculating elements as the semi-major axis, the eccentricity and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.

  8. Exact phase space functional for two-body systems

    CERN Document Server

    Gracia-Bondía, José M

    2010-01-01

    The determination of the two-body density functional from its one-body density is achieved for Moshinsky's harmonium model, using a phase-space formulation, thereby resolving its phase dilemma. The corresponding sign rules can equivalently be obtained by minimizing the ground-state energy.

  9. On the change of density of states in two-body interactions

    CERN Document Server

    Gao, Bo

    2016-01-01

    We derive a general relation in two-body scattering theory that more directly relates the change of density of states (DDOS) due to interaction to the shape of the potential. The relation allows us to infer certain global properties of the DDOS from the global properties of the potential. In particular, we show that DDOS is negative at all energies and for all partial waves, for potentials that are more repulsive than $+1/r^2$ everywhere. This behavior represents a different class of global properties of DDOS from that described by the Levinson's theorem.

  10. Separation of Potentials in the Two-Body Problem

    CERN Document Server

    Vasilyev, Andrey

    2012-01-01

    In contrast to the well-known solution of the two-body problem through the use of the concept of reduced mass, a solution is proposed involving separation of potentials. It is shown that each of the two point bodies moves in its own stationary potential well generated by the other body, and the magnitudes of these potentials are calculated. It is shown also that for each body separately the energy and the angular momentum laws are valid. The knowledge of the potentials in which the bodies are moving permits calculation of the trajectories of each body without resorting to the reduced mass. Key words: mechanics, two-body problem, gravitational potential, virial theorem.

  11. Atlas2bgeneral: Two-body resonance calculator

    Science.gov (United States)

    Gallardo, Tabaré

    2016-07-01

    For a massless test particle and given a planetary system, Atlas2bgeneral calculates all resonances in a given range of semimajor axes with all the planets taken one by one. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the two-body resonances is available for use with the Fortran77 source code.

  12. Classical and Quantum Two-Body Problem in General Relativity

    CERN Document Server

    Maheshwari, Amar; Todorov, Ivan

    2016-01-01

    The two-body problem in general relativity is reduced to the problem of an effective particle (with an energy-dependent relativistic reduced mass) in an external field. The effective potential is evaluated from the Born diagram of the linearized quantum theory of gravity. It reduces to a Schwarzschild-like potential with two different `Schwarzschild radii'. The results derived in a weak field approximation are expected to be relevant for relativistic velocities.

  13. Propagation and interaction of matter-wave solitons in Bose-Einstein condensates with time-dependent scattering length and varying potentials

    Energy Technology Data Exchange (ETDEWEB)

    Li Biao; Li Yuqi [Nonlinear Science Center, Ningbo University, Ningbo 315211 (China); Zhang Xiaofei; Liu, W M, E-mail: biaolee2000@yahoo.com.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-09-14

    We present two families of one-soliton solutions and three families of two-soliton solutions for a generalized nonlinear Schroedinger equation, which is characterized by the time-dependent scattering length and varying potentials. Then, we investigate the propagation of one-soliton and interactions of two-soliton by some selected control functions. The results show that the intensities of one- and two-soliton first increase rapidly to a peak value, and then decay very slowly to the background value; thus, the lifetimes of both one-soliton and two-soliton in Bose-Einstein condensates can be extended largely at least to the order of the lifetime of a Bose-Einstein condensate in real experiments. Our results open up new ways of considerable experimental interest for the management of matter-wave solitons in Bose-Einstein condensates.

  14. Hadron-hadron interactions from N{sub f}=2+1+1 lattice QCD: isospin-2 ππ scattering length

    Energy Technology Data Exchange (ETDEWEB)

    Helmes, C.; Jost, C.; Knippschild, B.; Liu, L.; Urbach, C.; Ueding, M.; Werner, M. [Helmholtz Institut für Strahlen- und Kernphysik, University of Bonn,Nussallee 14-16, Bonn (Germany); Liu, C. [Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Haidian, Beijing (China); Collaborative Innovation Center of Quantum Matter,Beijing (China); School of Physics, Peking University,209 Chengfu Rd, Haidian, Beijing (China); Liu, J.; Wang, Z. [School of Physics, Peking University,209 Chengfu Rd, Haidian, Beijing (China); Collaboration: The ETM collaboration

    2015-09-16

    We present results for the I=2ππ scattering length using N{sub f}=2+1+1 twisted mass lattice QCD for three values of the lattice spacing and a range of pion mass values. Due to the use of Laplacian Heaviside smearing our statistical errors are reduced compared to previous lattice studies. A detailed investigation of systematic effects such as discretisation effects, volume effects, and pollution of excited and thermal states is performed. After extrapolation to the physical point using chiral perturbation theory at NLO we obtain M{sub π}a{sub 0}=−0.0442(2){sub stat}({sub −0}{sup +4}){sub sys}.

  15. Determination of the S-Wave Pi Pi Scattering Lengths From a Study of K - to Pi - Pi0 Pi0 Decays

    Energy Technology Data Exchange (ETDEWEB)

    Batley, J.R.; Culling, A.J.; Kalmus, G.; /Cambridge U.; Lazzeroni, C.; /Cambridge U. /Birmingham U.; Munday, D.J.; /Cambridge U.; Slater, M.W.; /Cambridge U. /Birmingham U.; Wotton, S.A.; /Cambridge U.; Arcidiacono, R.; /CERN /Turin U. /INFN, Turin; Bocquet, G.; /CERN; Cabibbo, N.; /CERN /Rome U. /INFN, Rome; Ceccucci, A.; /CERN; Cundy, D.; /CERN /Turin, Cosmo-Geofisica Lab; Falaleev, V.; Fidecaro, M.; Gatignon, L.; Gonidec, A.; Kubischta, W.; /CERN; Norton, A.; /CERN /Ferrara U. /INFN, Ferrara; Maier, A.; Patel, M.; Peters, A.; /CERN /Dubna, JINR /Pisa, Scuola Normale Superiore /Dubna, JINR /Dubna, JINR /Birmingham U. /Dubna, JINR /CERN /Dubna, JINR /Dubna, JINR /Sofiya U. /Dubna, JINR /Dubna, JINR /Dubna, JINR /INFN, Perugia /Dubna, JINR /Dubna, JINR /Northwestern U. /Dubna, JINR /Chicago U., EFI /Marseille, CPPM /Chicago U., EFI /Edinburgh U. /George Mason U. /Edinburgh U. /Ferrara U. /INFN, Ferrara /Florence U. /INFN, Florence /Florence U. /INFN, Florence /Pisa, Scuola Normale Superiore /INFN, Florence /Modena U. /INFN, Florence /INFN, Florence /Urbino U. /INFN, Florence /Mainz U., Inst. Phys. /Bonn U. /Mainz U., Inst. Phys. /Northwestern U. /SLAC /Northwestern U. /Northwestern U. /Royal Holloway, U. of London /Northwestern U. /Northwestern U. /UCLA /Perugia U. /INFN, Perugia /Frascati /Perugia U. /INFN, Perugia /INFN, Perugia /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Barcelona, IFAE /Pisa U. /INFN, Pisa /DSM, DAPNIA, Saclay /DSM, DAPNIA, Saclay /CERN /DSM, DAPNIA, Saclay /Siegen U. /INFN, Turin /Turin U. /INFN, Turin /Bern U. /Turin U. /INFN, Turin /CERN /Turin U. /INFN, Turin /Madrid, CIEMAT /Vienna, OAW

    2012-03-29

    We report the results from a study of the full sample of {approx}6.031 x 10{sup 7} K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} decays recorded by the NA48/2 experiment at the CERN SPS. As first observed in this experiment, the {pi}{sup 0}{pi}{sup 0} invariant mass (M{sub 00}) distribution shows a cusp-like anomaly in the region around M{sub 00} = 2m{sub +}, where m{sub +} is the charged pion mass. This anomaly has been interpreted as an effect due mainly to the final state charge exchange scattering process {pi}{sup +}{pi}{sup -} {yields} {pi}{sup 0}{pi}{sup 0} in K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup +}{pi}{sup -} decay. Fits to the M{sub 00} distribution using two different theoretical formulations provide the presently most precise determination of a{sub 0} - a{sub 2}, the difference between the {pi}{pi} S-wave scattering lengths in the isospin I = 0 and I = 2 states. Higher-order {pi}{pi} rescattering terms, included in the two formulations, allow also an independent, though less precise, determination of a{sub 2}.

  16. Water equivalent path length calculations using scatter-corrected head and neck CBCT images to evaluate patients for adaptive proton therapy

    Science.gov (United States)

    Kim, Jihun; Park, Yang-Kyun; Sharp, Gregory; Busse, Paul; Winey, Brian

    2017-01-01

    Proton therapy has dosimetric advantages due to the well-defined range of the proton beam over photon radiotherapy. When the proton beams, however, are delivered to the patient in fractionated radiation treatment, the treatment outcome is affected by delivery uncertainties such as anatomic change in the patient and daily patient setup error. This study aims at establishing a method to evaluate the dosimetric impact of the anatomic change and patient setup error during head and neck proton therapy. Range variations due to the delivery uncertainties were assessed by calculating water equivalent path length (WEPL) to the distal edge of tumor volume using planning CT and weekly treatment cone-beam CT (CBCT) images. Specifically, mean difference and root mean squared deviation (RMSD) of the distal WEPLs were calculated as the weekly range variations. To accurately calculate the distal WEPLs, an existing CBCT scatter correction algorithm was used. An automatic rigid registration was used to align the planning CT and treatment CBCT images, simulating a six degree-of-freedom couch correction at treatments. The authors conclude that the dosimetric impact of the anatomic change and patient setup error was reasonably captured in the differences of the distal WEPL variation with a range calculation uncertainty of 2%. The proposed method to calculate the distal WEPL using the scatter-corrected CBCT images can be an essential tool to decide the necessity of re-planning in adaptive proton therapy.

  17. Determination of the S-wave $\\pi \\pi$ scattering lengths from a study of $K^{\\pm} \\to \\pi^{\\pm} \\pi^{0} \\pi^{0}$ decays

    CERN Document Server

    Batley, J R; Kalmus, G; Lazzeroni, C; Munday, D J; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Cabibbo, N; Ceccucci, A; Cundy, D; Falaleev, V; Fidecaro, Maria; Gatignon, L; Gonidec, A; Kubischta, W; Norton, A; Maier, A; Patel, M; Peters, A; Balev, S; Frabetti, P L; Goudzovski, E; Khristov, P Z; Kekelidze, V; Kozhuharov, V; Litov, L; Madigozhin, D T; Marinova, E; Molokanova, N; Polenkevich, I; Potrebenikov, Yu; Stoynev, S; Zinchenko, A; Monnier, E; Swallow, E; Winston, R; Rubin, P; Walker, A; Baldini, W; Cotta-Ramusino, A; Dalpiaz, P; Damiani, C; Fiorini, M; Gianoli, A; Martini, M; Petrucci, F; Savrié, M; Scarpa, M; Wahl, H; Calvetti, M; Iacopini, E; Ruggiero, G; Bizzeti, A; Lenti, M; Veltri, M; Behler, M; Eppard, K; Kleinknecht, K; Marouelli, P; Masetti, L; Moosbrugger, U; Morales-Morales, C; Renk, B; Wache, M; Wanke, R; Winhart, A; Coward, D; Dabrowski, A; Fonseca-Martin, T; Shieh, M; Szleper, M; Velasco, M; Wood, M D; Anzivino, G; Imbergamo, E; Nappi, A; Piccini, M; Raggi, M; Valdata-Nappi, M; Cenci, P; Pepé, M; Pettrucci, M C; Cerri, C; Fantechi, R; Collazuol, G; Di Lella, L; Lamanna, G; Mannelli, I; Michetti, A; Costantini, F; Doble, N; Fiorini, L; Giudici, S; Pierazzini, G; Sozzi, M; Venditti, S; Bloch-Devaux, B; Cheshkov, C; Chèze, J B; De Beer, M; Derré, J; Marel, G; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Ziolkowski, M; Bifani, S; Biino, C; Cartiglia, N; Marchetto, F; Bifani, S; Clemencic, M; Goy-Lopez, S; Dibon, H; Jeitler, M; Markytan, M; Mikulec, I; Neuhofer, G; Widhalm, L

    2009-01-01

    We report the results from a study of the full sample of $~6.031 x 10^{7} K^{\\pm} \\to \\pi^{\\pm} \\pi^{0} \\pi^{0}$ decays recorded by the NA48/2 experiment at the CERN SPS. As first observed in this experiment, the $\\pi^{0} \\pi^{0}$ invariant mass (M_00) distribution shows a cusp-like anomaly in the region around $M_{00} = 2m_{+}$, where m_{+} is the charged pion mass. This anomaly has been interpreted as an effect due mainly to the final state charge exchange scattering process $\\pi^{+}\\pi^{-} \\to \\pi^{0} \\pi^{0}$ in $K^{\\pm} \\to \\pi^{\\pm} \\pi^{+} \\pi^{-}$ decay. Fits to the M_{00} distribution using two different theoretical models provide the presently most precise determination of $a_{0}-a_{2}$, the difference between the pi pi S-wave scattering lengths in the isospin I = 0 and I = 2 states. Higher-order pi pi rescattering terms, included in the two models, allow also an independent, though less precise, determination of a_2.

  18. Two-body bound states in quantum electrodynamics. [Rate

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, G.P.

    1978-07-01

    Novel formulations of the two-body bound state problem in quantum field theory are examined. While equal in rigor, these have several calculational advantages over the traditional Bethe-Salpeter formalism. In particular there exist exact solutions of the bound state equations for a Coulomb-like interaction in quantum electrodynamics. The corrections to such zeroth-order solutions can be systematically computed in a simple perturbation theory. These methods are illustrated by computing corrections to the orthopositronium decay rate and to the ground state splittings in positronium and muonium.

  19. Covariant Hamiltonian for the electromagnetic two-body problem

    Science.gov (United States)

    De Luca, Jayme

    2005-09-01

    We give a Hamiltonian formalism for the delay equations of motion of the electromagnetic two-body problem with arbitrary masses and with either repulsive or attractive interaction. This dynamical system based on action-at-a-distance electrodynamics appeared 100 years ago and it was popularized in the 1940s by the Wheeler and Feynman program to quantize it as a means to overcome the divergencies of perturbative QED. Our finite-dimensional implicit Hamiltonian is closed and involves no series expansions. As an application, the Hamiltonian formalism is used to construct a semiclassical canonical quantization based on the numerical trajectories of the attractive problem.

  20. Two-body bound states & the Bethe-Salpeter equation

    Energy Technology Data Exchange (ETDEWEB)

    Pichowsky, M. [Argonne National Lab., IL (United States); Kennedy, M. [Univ. of New Hampshire, Durham, NH (United States). Physics Dept.; Strickland, M. [Duke Univ., Durham, NC (United States)

    1995-01-18

    The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated.

  1. On scattered subword complexity

    CERN Document Server

    Kása, Zoltán

    2011-01-01

    Special scattered subwords, in which the gaps are of length from a given set, are defined. The scattered subword complexity, which is the number of such scattered subwords, is computed for rainbow words.

  2. Crystal structure of monoclinic samarium and cubic europium sesquioxides and bound coherent neutron scattering lengths of the isotopes {sup 154}Sm and {sup 153}Eu

    Energy Technology Data Exchange (ETDEWEB)

    Kohlmann, Holger [Leipzig Univ. (Germany). Inst. of Inorganic Chemistry; Hein, Christina; Kautenburger, Ralf [Saarland Univ., Saarbruecken (Germany). Inorganic Solid State Chemistry; Hansen, Thomas C.; Ritter, Clemens [Institut Laue-Langevin, Grenoble (France); Doyle, Stephen [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Synchrotron Radiation (ISS)

    2016-11-01

    The crystal structures of monoclinic samarium and cubic europium sesquioxide, Sm{sub 2}O{sub 3} and Eu{sub 2}O{sub 3}, were reinvestigated by powder diffraction methods (laboratory X-ray, synchrotron, neutron). Rietveld analysis yields more precise structural parameters than previously known, especially for oxygen atoms. Interatomic distances d(Sm-O) in Sm{sub 2}O{sub 3} range from 226.3(4) to 275.9(2) pm [average 241.6(3) pm] for the monoclinic B type Sm{sub 2}O{sub 3} [space group C2/m, a = 1418.04(3) pm, b = 362.660(7) pm, c = 885.48(2) pm, β = 100.028(1) ], d(Eu-O) in Eu{sub 2}O{sub 3} from 229.9(2) to 238.8(2) pm for the cubic bixbyite (C) type [space group Ia anti 3, a = 1086.87(1) pm]. Neutron diffraction at 50 K and 2 K did not show any sign for magnetic ordering in Sm{sub 2}O{sub 3}. Isotopically enriched {sup 154}Sm{sub 2}O{sub 3} and {sup 153}Eu{sub 2}O{sub 3} were used for the neutron diffraction work because of the enormous absorption cross section of the natural isotopic mixtures for thermal neutrons. The isotopic purity was determined by inductively coupled plasma - mass spectrometry to be 98.9% for {sup 154}Sm and 99.8% for {sup 153}Eu. Advanced analysis of the neutron diffraction data suggest that the bound coherent scattering lengths of {sup 154}Sm and {sup 153}Eu need to be revised. We tentatively propose b{sub c}({sup 154}Sm) = 8.97(6) fm and b{sub c}({sup 153}Eu) = 8.85(3) fm for a neutron wavelength of 186.6 pm to be better values for these isotopes, showing up to 8% deviation from accepted literature values. It is shown that inaccurate scattering lengths may result in severe problems in crystal structure refinements causing erroneous structural details such as occupation parameters, which might be critically linked to physical properties like superconductivity in multinary oxides.

  3. Effective Field Theory Description of Two-Body Resonance States

    Science.gov (United States)

    Balalhabashi, Jaber

    2017-01-01

    The quantum-mechanical scattering of two particles around a resonance state appears in many areas of physics, for example in cold atoms near narrow, low-lying Feshbach resonances. We construct) an EFT that describes such scattering with contact, derivative interactions. We demonstrate that a careful choice of leading- and next-to-leading-order terms in an effective Lagrangian gives rise to a systematic expansion of the T matrix around the resonance, with controlled error estimates. We compare phase shifts and pole positions with those of a toy model. We are extending our EFT to include Coulomb interactions with the goal of describing nuclear resonances, such as those appearing in the scattering of alpha particles. This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-04ER41338.

  4. Nonleptonic two-body Bc-meson decays

    Science.gov (United States)

    Naimuddin, Sk.; Kar, Susmita; Priyadarsini, M.; Barik, N.; Dash, P. C.

    2012-11-01

    We study the exclusive nonleptonic two-body Bc decays within factorization approximation, in the framework of the relativistic independent quark model based on a confining potential in the scalar-vector harmonic form. The relevant weak form factors and branching ratios for different decay modes (Bc→PP,PV,VP) are predicted in reasonable agreement with other quark model predictions. We find that the dominant contribution to the Bc-meson lifetime comes from the Cabibbo-Kobayashi-Masakawa favored c¯→s¯, d¯ decay modes, and the most promising modes are found to be Bc-→B¯s0π-, Bc-→B¯s0ρ- and Bc-→B¯s⋆0π- with predicted branching ratios of 12.01, 9.96, and 8.61%, respectively, which might be easily detected at the hadron collider in the near future.

  5. Two-body Dirac equation approach to the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Galeao, A.P.; Castilho A, J.A.; Ferreira, P. Leal

    1996-06-01

    The two-body Dirac (Breit) equation with potentials associated to one-boson-exchanges with cutoff masses is solved for the deuteron and its observables calculated. The 16-component wave-function for the J{sup {pi}} = 1{sup +} state contains four independent radial functions which satisfy a system of four coupled differential equations of firs order. This system is numerically integrated, from infinity towards the origin, by fixing the value of the deuteron binding energy and imposing appropriate boundary conditions at infinity. For the exchange potential of the pion, a mixture of direct plus derivative couplings to the nucleon is considered. We varied the pion-nucleon coupling constant, and the best results of our calculations agree with the lower values recently determined for this constant. The present treatment differs from the more conventional ones in that non-relativistic reductions up to the order c{sup -2} are not used. (author). 20 refs., 1 fig., 2 tabs.

  6. Visualized kinematics code for two-body nuclear reactions

    Science.gov (United States)

    Lee, E. J.; Chae, K. Y.

    2016-05-01

    The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.

  7. A search for two body muon decay signals

    CERN Document Server

    Bayes, R; Davydov, Yu I; Depommier, P; Faszer, W; Fujiwara, M C; Gagliardi, C A; Gaponenko, A; Gill, D R; Grossheim, A; Gumplinger, P; Hasinoff, M D; Henderson, R S; Hillairet, A; Hu, J; Koetke, D D; MacDonald, R P; Marshall, G M; Mathie, E L; Mischke, R E; Olchanski, K; Olin, A; Openshaw, R; Poutissou, J -M; Poutissou, R; Selivanov, V; Sheffer, G; Shin, B; Stanislaus, T D S; Tacik, R; Tribble, R E

    2014-01-01

    Lepton family number violation is tested by searching for $\\mu^+\\to e^+X^0$ decays among the 5.8$\\times 10^8$ positive muon decay events analyzed by the TWIST collaboration. Limits are set on the production of both massless and massive $X^0$ bosons. The large angular acceptance of this experiment allows limits to be placed on anisotropic $\\mu^+\\to e^+X^0$ decays, which can arise from interactions violating both lepton flavor and parity conservation. Branching ratio limits of order $10^{-5}$\\ are obtained for boson masses of 10 - 80 MeV/c$^2$ and different asymmetries. For lighter bosons the asymmetry dependence is much stronger and the branching ratio limit varies up to $5.8 \\times 10^{-5}$. This is the first study that explicitly evaluates the limits for anisotropic two body muon decays.

  8. Orbit Determination with the two-body Integrals. II

    CERN Document Server

    Gronchi, Giovanni F; Dimare, Linda

    2011-01-01

    The first integrals of the Kepler problem are used to compute preliminary orbits starting from two short observed arcs of a celestial body, which may be obtained either by optical or radar observations. We write polynomial equations for this problem, that we can solve using the powerful tools of computational Algebra. An algorithm to decide if the linkage of two short arcs is successful, i.e. if they belong to the same observed body, is proposed and tested numerically. In this paper we continue the research started in [Gronchi, Dimare, Milani, 'Orbit determination with the two-body intergrals', CMDA (2010) 107/3, 299-318], where the angular momentum and the energy integrals were used. A suitable component of the Laplace-Lenz vector in place of the energy turns out to be convenient, in fact the degree of the resulting system is reduced to less than half.

  9. Loschmidt echoes in two-body random matrix ensembles

    Science.gov (United States)

    Pižorn, Iztok; Prosen, Tomaž; Seligman, Thomas H.

    2007-07-01

    Fidelity decay is studied for quantum many-body systems with a dominant independent particle Hamiltonian resulting, e.g., from a mean field theory with a weak two-body interaction. The diagonal terms of the interaction are included in the unperturbed Hamiltonian, while the off-diagonal terms constitute the perturbation that distorts the echo. We give the linear response solution for this problem in a random matrix framework. While the ensemble average shows no surprising behavior, we find that the typical ensemble member as represented by the median displays a very slow fidelity decay known as “freeze.” Numerical calculations confirm this result and show that the ground state even on average displays the freeze. This may contribute to explanation of the “unreasonable” success of mean field theories.

  10. Micromagnetic simulation of two-body magnetic nanoparticles

    Science.gov (United States)

    Li, Fei; Lu, Jincheng; Yang, Yu; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2017-05-01

    Field-induced magnetization dynamics was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value on nanometer scale in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The same results were observed when varying the radius of particles. The micromagnetic results are consistent with the previous theoretical prediction where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles could be implemented as a composite information bit.

  11. Improving the Volume Dependence of Two-Body Binding Energies Calculated with Lattice QCD

    CERN Document Server

    Davoudi, Zohreh

    2011-01-01

    Volume modifications to the binding of two-body systems in large cubic volumes of extent L depend upon the total momentum and exponentially upon the ratio of L to the size of the boosted system. Recent work by Bour et al determined the momentum dependence of the leading volume modifications to nonrelativistic systems with periodic boundary conditions imposed on the single-particle wavefunctions, enabling them to numerically determine the scattering of such bound states using a low-energy effective field theory and Luschers finite-volume method. The calculation of bound nuclear systems directly from QCD using Lattice QCD has begun, and it is important to reduce the systematic uncertainty introduced into such calculations by the finite spatial extent of the gauge-field configurations. We extend the work of Bour et al from nonrelativistic quantum mechanics to quantum field theory by generalizing the work of Luscher and of Gottlieb and Rummukainen to boosted two-body bound states. The volume modifications to bind...

  12. Exploring the Spin Structure of the Proton with Two-Body Partonic Scattering at RHIC

    CERN Document Server

    Sowinski, J

    2007-01-01

    The STAR collaboration at the Relativistic Heavy Ion Collider is using polarized proton beams at sqrt{s} = 200 GeV to study the spin structure of the proton. The first results for the double spin helicity dependence of inclusive jet production are presented along with projections for additional data taken in 2005 and 2006. When fully analyzed these data sets should place strong constraints on the possible contribution of gluonic spin to the proton spin as expressed by Delta G. Future studies using 2-jet or photon-jet coincidences to map out the gluon spin distribution vs. the gluon's momentum fraction of the proton are discussed.

  13. Effect of Tensor Range in Nuclear Two-Body Problems

    Science.gov (United States)

    Feshbach, H.; Schwinger, J.; Harr, J. A.

    1949-11-01

    The interaction between neutron and proton in the triplet state is investigated, a wide variation in the values of both central and tensor ranges are included; the per cent D state in the deuteron and the effective triplet range have been computed; the results are applied tot he discussion of the magnetic moment of the deuteron, the photoelectric disintegration of the deuteron, and neutron-proton scattering.

  14. Strong Two--Body Decays of Light Mesons

    CERN Document Server

    Ricken, R; Merten, D; Metsch, B C; Ricken, Ralf; Koll, Matthias; Merten, Dirk; Metsch, Bernard C.

    2003-01-01

    In this paper, we present results on strong two-body decay widths of light $q\\bar q$ mesons calculated in a covariant quark model. The model is based on the Bethe-Salpeter equation in its instantaneous approximation and has already been used for computing the complete meson mass spectrum and many electroweak decay observables. Our approach relies on the use of a phenomenological confinement potential with an appropriate spinorial Dirac structure and 't Hooft's instanton--induced interaction as a residual force for pseudoscalar and scalar mesons. The transition matrix element for the decay of one initial meson into two final mesons is evaluated in lowest order by considering conventional decays via quark loops as well as Zweig rule violating instanton--induced decays generated by the six--quark vertex of 't Hooft's interaction; the latter mechanism only contributes if all mesons in the decay have zero total angular momentum. We show that the interference of both decay mechanisms plays an important role in the ...

  15. Material loss in two-body collisions during planet formation

    Science.gov (United States)

    Werner, J.; Schäfer, C.; Maindl, T. I.; Burger, C.; Speith, R.

    2016-02-01

    During the formation process of a terrestrial planet, a planetary embryo does not only accrete smaller dust particles but also suffers collisions with larger planetesimals. When simulating these collisions, most N-body codes treat them as perfect merging events, i.e. the resulting body's mass is the sum of the previous ones. In our work, we aim to determine whether this assumption is a justified simplification, specifically focusing on bodies containing volatile elements, such as water. To analyze this, we have developed a new Smooth Particle Hydrodynamics (SPH) code that includes elasto-plastic dynamics, a damage model for brittle materials and self gravity. It makes use of the Compute Unified Device Architecture (CUDA) and runs on modern GPU architectures which allows for higher resolution in less calculation time. This enables us to take a precise look at two-body collisions and determine the amount of both transferred and ejected mass according to specific parameters such as mass ratio of impactor and target, porosity, impact velocity, impact angle and water distribution.

  16. Two-body relaxation in modified Newtonian dynamics

    CERN Document Server

    Ciotti, L

    2004-01-01

    A naive extension to MOND of the standard computation of the two-body relaxation time Tb implies that Tb is comparable to the crossing time regardless of the number N of stars in the system. This computation is questionable in view of the non-linearity of MOND's field equation. A non-standard approach to the calculation of Tb is developed that can be extended to MOND whenever discreteness noise generates force fluctuations that are small compared to the mean-field force. It is shown that this approach yields standard Newtonian results for systems in which the mean density profile is either plane-parallel or spherical. In the plane-parallel case we find that in the deep-MOND regime Tbb scales with N as in the Newtonian case, but is shorter by the square of the factor by which MOND enhances the gravitational force over its Newtonian value for the same system. Application of these results to dwarf galaxies and groups and clusters of galaxies reveals that in MOND luminosity segregation should be far advanced in g...

  17. Two-Body Reactions at Large Transverse Momentum

    CERN Multimedia

    2002-01-01

    Large-angle exclusive reactions are studied, in particular elastic scattering and @*p annihilations into @p|+@p|- and K|+K|-. In a previous geometry, the 90|0 c.m. region was covered. The present geometry covers the -t range from about 1 to 8 (GeV/c)|2. The aim is to tie these two regions together and attem understading of large-angle scattering up to our highest energies. \\\\ \\\\ The experiment uses a 1 m liquid H^2 target surrounded by scintillator and lead sandwiches for vetoing neutral and charged particles missing the acceptance. An aerogel Cerenkov counter in the recoil arm can be used to veto charged pions above 0.8 GeV/c. Otherwise the events are selected as previously with fast coincidence matrices using pulses from arrays of scintillator counters. Identification of particles is carried out with threshold Cerenkov counters and iron calorimeters. MWPC's are used to establish the trajectories of the particles.

  18. Observation of a cusp-like structure in the $\\pi^{0}\\pi^{0}$ invariant mass distribution from $K^{+-} \\to \\pi^{+-}\\pi^{0}\\pi^{0}$ decay and determination of the $\\pi\\pi$ scattering lengths

    CERN Document Server

    Batley, J Richard; Arcidiacono, R; Baldini, W; Balev, S; Behler, M; Biino, C; Bizzeti, A; Bloch-Devaux, B; Bocquet, G; Cabibbo, Nicola; Calvetti, M; Cartiglia, N; Ceccucci, A; Celeghini, E; Cenci, P; Cerri, C; Cheshkov, C; Chèze, J B; Clemencic, M; Collazuol, G; Costantini, F; Cotta-Ramusino, A; Coward, D; Cundy, Donald C; Dabrowski, A; Dalpiaz, P; Damiani, C; De Beer, M; Derré, J; Di Lella, Luigi; Dibon, Heinz; Doble, Niels T; Eppard, K; Falaleev, V; Fantechi, R; Fidecaro, Maria; Fiorini, L; Fiorini, M; Fonseca-Martin, T; Frabetti, P L; Gatignon, L; Gianoli, A; Giudici, Sergio; Gonidec, A; Goudzovski, E; Goy-Lopez, S; Holder, M; Iacopini, E; Imbergamo, E; Jeitler, Manfred; Kekelidze, V D; Khristov, P Z; Kleinknecht, K; Kozhuharov, V; Kubischta, Werner; Lamanna, G; Lazzeroni, Cristina; Lenti, M; Litov, L; Madigozhin, D T; Maier, A; Mannelli, I; Marchetto, F; Marel, Gérard; Marinova, E; Markytan, Manfred; Marouelli, P; Martelli, F; Martini, M; Masetti, L; Mazzucato, E; Michetti, A; Mikulec, I; Molokanova, N A; Monnier, E; Moosbrugger, U; Morales-Morales, C; Munday, D J; Neuhofer, G; Norton, A; Patel, M; Pepé, M; Peters, A; Petrucci, F; Petrucci, M C; Peyaud, B; Piccini, M; Pierazzini, G M; Polenkevich, I; Potrebenikov, Yu K; Raggi, M; Renk, B; Rubin, P; Ruggiero, G; Savrié, M; Scarpa, M; Shieh, M; Slater, M W; Sozzi, M; Stoynev, S; Swallow, E; Szleper, M; Valdata-Nappi, M; Vallage, B; Velasco, M; Veltri, M; Wache, M; Wahl, H; Walker, A; Wanke, R; Widhalm, L; Winhart, A; Winston, R; Wood, M D; Wotton, S A; Zinchenko, A I; Ziolkowski, M

    2006-01-01

    We report the results from a study of ~23 Million K+- ==> pi+- pizero pizero decays recorded by the NA48/2 experiment at the CERN SPS, showing an anomaly in the pizero pizero invariant mass distribution in the region around 2m+, where m+ is the charged pion mass. This anomaly, never observed in previous experiments, can be interpreted as an effect due mainly to the final state charge exchange scattering process pi+ pi- ==> pizero pizero in K+- ==> pi+- pi+ pi- decay. It provides a precise determination of a0 - a2, the difference between the pi-pi scattering lengths in the isospin I=0 and I=2 states.

  19. Charmless hadronic two-body decays of Bs mesons

    Science.gov (United States)

    Chen, Yaw-Hwang; Cheng, Hai-Yang; Tseng, B.

    1999-04-01

    Two-body charmless nonleptonic decays of the Bs meson are studied within the framework of generalized factorization in which factorization is applied to the tree level matrix elements while the effective Wilson coefficients are μ and renormalization scheme independent, and nonfactorizable effects are parametrized in terms of Neffc(LL) and Neffc(LR), the effective numbers of colors arising from (V-A)(V-A) and (V-A)(V+A) four-quark operators, respectively. Branching ratios of Bs-->PP,PV,VV decays (P: pseudoscalar meson, V: vector meson) are calculated as a function of Neffc(LR) with two different considerations for Neffc(LL): (a) Neffc(LL) being fixed at the value of 2 and (b) Neffc(LL)=Neffc(LR). Tree and penguin transitions are classified into six different classes. We find the following. (i) The electroweak penguin contributions account for about 85% [for Neffc(LL)=2] of the decay rates of Bs-->ηπ, η'π, ηρ, η'ρ, φπ, φρ, which receive contributions only from tree and electroweak penguin diagrams; a measurement of them will provide a clean determination of the electroweak penguin coefficient a9. (ii) Electroweak penguin corrections to Bs-->ωη('),φη,ωφ,K(*)φ,φφ are in general as significant as QCD penguin effects and even play a dominant role; their decay rates depend strongly on Neffc(LR). (iii) The branching ratio of Bs-->ηη', the analogue of Bd-->η'K, is of order 2×10-5, which is only slightly larger than that of η'η',K*+ρ-,K+K-,K0K¯0 decay modes. (iv) The contribution from the η' charm content is important for Bs-->η'η', but less significant for Bs-->ηη'. (v) The decay rates for the final states K+(*)K-(*) follow the pattern Γ(B¯s-->K+K-)>Γ(B¯s-->K+K*-)>~Γ(B¯s-->K*+K*-)>Γ(B¯s-->K+*K-) and likewise for K0(*)K¯0(*), as a consequence of various interference effects between the penguin amplitudes governed by the effective QCD penguin coefficients a4 and a6.

  20. Relation between the change of density of states and the shape of the potential in two-body interactions

    Science.gov (United States)

    Gao, Bo

    2017-04-01

    We derive a general relation in two-body scattering theory that more directly relates the change of density of states (DDOS) due to interaction to the shape of the potential. The relation allows us to infer certain global properties of the DDOS from the global properties of the potential. In particular, we show that DDOS is negative at all energies and for all partial waves, for potentials that are more repulsive than +1 /r2 everywhere. This behavior represents a different class of global properties of DDOS from that described by the Levinson's theorem.

  1. Complete Angular Distribution Measurements of Two-Body Deuteron Photodisintegration between 0.5 and 3 GeV

    CERN Document Server

    Mirazita, M; Rossi, P; De Sanctis, E; Adams, G; Ambrozewicz, P; Anciant, E; Anghinolfi, M; Asavapibhop, B; Audit, G; Avakian, H; Bagdasaryan, H; Ball, J P; Barrow, S; Battaglieri, M; Beard, K; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Bertozzi, W; Bianchi, N; Biselli, A S; Boiarinov, S; Bonner, B E; Bouchigny, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Carman, D S; Carnahan, B; Chen, S; Cole, P L; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J P; De Vita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Deppman, A; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D C; Dragovitsch, P; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Eugenio, P; Fatemi, R; Feuerbach, R J; Ficenec, J; Forest, T A; Funsten, H; Gai, M; Gavalian, G; Gilad, S; Gilfoyle, G P; Giovanetti, K L; Gordon, C I O; Griffioen, K; Guidal, M; Guillo, M R; Guo, L; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hardie, J; Heddle, D; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hu, J; Hyde-Wright, C E; Ilieva, Y; Ito, M M; Jenkins, D; Joo, K; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Klusman, M; Kossov, M; Kramer, L H; Kühn, J; Kuhn, S E; Lachniet, J; Laget, J M; Lawrence, D; Ji Li; Lima, A C S; Livingston, K; Lukashin, K; Manak, J J; Marchand, C; McAleer, S; McCarthy, J; McNabb, J W C; Mecking, B A; Mehrabyan, S S; Melone, J J; Mestayer, M D; Meyer, C A; Mikhailov, K; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Muccifora, V; Müller, J; Mutchler, G S; Napolitano, J; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Brien, J T; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E A; Peterson, G; Philips, S A; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Rosner, G; Rowntree, D; Rubin, P D; Sabatie, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Shaw, J; Simionatto, S; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Spraker, M; Stavinsky, A V; Stepanyan, S; Stokes, B; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Tkabladze, A; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weller, H; Weygand, D P; Whisnant, C S; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zhang, B; Zhou, Z

    2004-01-01

    Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CLAS detector and the tagged photon beam at JLab. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10-160 degrees. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well-described by the non-perturbative Quark Gluon String Model.

  2. Complete angular distribution measurements of two-body deuteron photodisintegration between 0.5 and 3 GeV

    Science.gov (United States)

    Mirazita, M.; Ronchetti, F.; Rossi, P.; de Sanctis, E.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bertozzi, W.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Vita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deppman, A.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gai, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuhn, J.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Lima, A. C.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McCarthy, J.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stokes, B.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhou, Z.

    2004-07-01

    Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CEBAF Large Acceptance Spectrometer detector and the tagged photon beam at the Thomas Jefferson National Accelerator Facility. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10° 160° . The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well described by the nonperturbative quark gluon string model.

  3. Combining single-molecule optical trapping and small-angle x-ray scattering measurements to compute the persistence length of a protein ER/K alpha-helix.

    Science.gov (United States)

    Sivaramakrishnan, S; Sung, J; Ali, M; Doniach, S; Flyvbjerg, H; Spudich, J A

    2009-12-02

    A relatively unknown protein structure motif forms stable isolated single alpha-helices, termed ER/K alpha-helices, in a wide variety of proteins and has been shown to be essential for the function of some molecular motors. The flexibility of the ER/K alpha-helix determines whether it behaves as a force transducer, rigid spacer, or flexible linker in proteins. In this study, we quantify this flexibility in terms of persistence length, namely the length scale over which it is rigid. We use single-molecule optical trapping and small-angle x-ray scattering, combined with Monte Carlo simulations to demonstrate that the Kelch ER/K alpha-helix behaves as a wormlike chain with a persistence length of approximately 15 nm or approximately 28 turns of alpha-helix. The ER/K alpha-helix length in proteins varies from 3 to 60 nm, with a median length of approximately 5 nm. Knowledge of its persistence length enables us to define its function as a rigid spacer in a translation initiation factor, as a force transducer in the mechanoenzyme myosin VI, and as a flexible spacer in the Kelch-motif-containing protein.

  4. Combining Single-Molecule Optical Trapping and Small-Angle X-Ray Scattering Measurements to Compute the Persistence Length of a Protein ER/K alpha-Helix

    DEFF Research Database (Denmark)

    Sivaramakrishnan, S.; Sung, J.; Ali, M.

    2009-01-01

    A relatively unknown protein structure motif forms stable isolated single alpha-helices, termed ER/K alpha-helices, in a wide variety of proteins and has been shown to be essential for the function of some molecular motors. The flexibility of the ER/K alpha-helix determines whether it behaves...... as a force transducer, rigid spacer, or flexible linker in proteins. In this study, we quantity this flexibility in terms of persistence length, namely the length scale over which it is rigid. We use single-molecule optical trapping and small-angle x-ray scattering, combined with Monte Carlo simulations...... to demonstrate that the Kelch ER/K alpha-helix behaves as a wormlike chain with a persistence length of similar to 15 nm or similar to 28 turns of alpha-helix. The ER/K alpha-helix length in proteins varies from 3 to 60 nm, with a median length of similar to 5 nm. Knowledge of its persistence length enables us...

  5. Influence of length and conformation of saccharide head groups on the mechanics of glycolipid membranes: Unraveled by off-specular neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akihisa, E-mail: ayamamoto@icems.kyoto-u.ac.jp, E-mail: tanaka@uni-heidelberg.de; Tanaka, Motomu, E-mail: ayamamoto@icems.kyoto-u.ac.jp, E-mail: tanaka@uni-heidelberg.de [Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg (Germany); Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501 (Japan); Abuillan, Wasim; Körner, Alexander [Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg (Germany); Burk, Alexandra S. [Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg (Germany); Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Ries, Annika [Institute of Organic and Biomolecular Chemistry, University of Göttingen, 37077 Göttingen (Germany); Werz, Daniel B. [Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig (Germany); Demé, Bruno [Institut Laue-Langevin, 38042 Grenoble Cedex 9, Grenoble (France)

    2015-04-21

    The mechanical properties of multilayer stacks of Gb3 glycolipid that play key roles in metabolic disorders (Fabry disease) were determined quantitatively by using specular and off-specular neutron scattering. Because of the geometry of membrane stacks deposited on planar substrates, the scattered intensity profile was analyzed in a 2D reciprocal space map as a function of in-plane and out-of-plane scattering vector components. The two principal mechanical parameters of the membranes, namely, bending rigidity and compression modulus, can be quantified by full calculation of scattering functions with the aid of an effective cut-off radius that takes the finite sample size into consideration. The bulkier “bent” Gb3 trisaccharide group makes the membrane mechanics distinctly different from cylindrical disaccharide (lactose) head groups and shorter “bent” disaccharide (gentiobiose) head groups. The mechanical characterization of membranes enriched with complex glycolipids has high importance in understanding the mechanisms of diseases such as sphingolipidoses caused by the accumulation of non-degenerated glycosphingolipids in lysosomes or inhibition of protein synthesis triggered by the specific binding of Shiga toxin to Gb3.

  6. Influence of length and conformation of saccharide head groups on the mechanics of glycolipid membranes: Unraveled by off-specular neutron scattering

    Science.gov (United States)

    Yamamoto, Akihisa; Abuillan, Wasim; Burk, Alexandra S.; Körner, Alexander; Ries, Annika; Werz, Daniel B.; Demé, Bruno; Tanaka, Motomu

    2015-04-01

    The mechanical properties of multilayer stacks of Gb3 glycolipid that play key roles in metabolic disorders (Fabry disease) were determined quantitatively by using specular and off-specular neutron scattering. Because of the geometry of membrane stacks deposited on planar substrates, the scattered intensity profile was analyzed in a 2D reciprocal space map as a function of in-plane and out-of-plane scattering vector components. The two principal mechanical parameters of the membranes, namely, bending rigidity and compression modulus, can be quantified by full calculation of scattering functions with the aid of an effective cut-off radius that takes the finite sample size into consideration. The bulkier "bent" Gb3 trisaccharide group makes the membrane mechanics distinctly different from cylindrical disaccharide (lactose) head groups and shorter "bent" disaccharide (gentiobiose) head groups. The mechanical characterization of membranes enriched with complex glycolipids has high importance in understanding the mechanisms of diseases such as sphingolipidoses caused by the accumulation of non-degenerated glycosphingolipids in lysosomes or inhibition of protein synthesis triggered by the specific binding of Shiga toxin to Gb3.

  7. The relative diffusive transport rate of SrI2 in water changes over the nanometer length scale as measured by coherent quasielastic neutron scattering.

    Science.gov (United States)

    Rubinson, Kenneth A; Faraone, Antonio

    2016-05-14

    X-ray and neutron scattering have been used to provide insight into the structures of ionic solutions for over a century, but the probes have covered distances shorter than 8 Å. For the non-hydrolyzing salt SrI2 in aqueous solution, a locally ordered lattice of ions exists that scatters slow neutrons coherently down to at least 0.1 mol L(-1) concentration, where the measured average distance between scatterers is over 18 Å. To investigate the motions of these scatterers, coherent quasielastic neutron scattering (CQENS) data on D2O solutions with SrI2 at 1, 0.8, 0.6, and 0.4 mol L(-1) concentrations was obtained to provide an experimental measure of the diffusive transport rate for the motion between pairs of ions relative to each other. Because CQENS measures the motion of one ion relative to another, the frame of reference is centered on an ion, which is unique among all diffusion measurement methods. We call the measured quantity the pairwise diffusive transport rate Dp. In addition to this ion centered frame of reference, the diffusive transport rate can be measured as a function of the momentum transfer q, where q = (4π/λ)sin θ with a scattering angle of 2θ. Since q is related to the interion distance (d = 2π/q), for the experimental range 0.2 Å(-1)≤q≤ 1.0 Å(-1), Dp is, then, measured over interion distances from 40 Å to ≈6 Å. We find the measured diffusional transport rates increase with increasing distance between scatterers over the entire range covered and interpret this behavior to be caused by dynamic coupling among the ions. Within the model of Fickian diffusion, at the longer interionic distances Dp is greater than the Nernst-Hartley value for an infinitely dilute solution. For these nm-distance diffusional transport rates to conform with the lower, macroscopically measured diffusion coefficients, we propose that local, coordinated counter motion of at least pairs of ions is part of the transport process.

  8. Some Features of Scattering Problem in a $\\kappa$-Deformed Minkowski Spacetime

    CERN Document Server

    Khodadi, Mohsen

    2016-01-01

    The doubly special relativity (DSR) theories are suggested in order to incorporate an observer-independent length scale in special theory of relativity. The Magueijo-Smolin proposal of DSR is realizable through a particular form of the noncommutative (NC) spacetime (known as $\\kappa$-Minkowski spacetime) in which the Lorentz symmetry is preserved. In this framework, the NC parameter $\\kappa$ provides the origin of natural cutoff energy scale. Using a nonlinear deformed relativistic dispersion relation along with the Lorentz transformations, we investigate some phenomenological facets of two-body collision problem (without creation of new particles) in a $\\kappa$-Minkowski spacetime. By treating an elastic scattering problem, we study effects of the Planck scale energy cutoff on some relativistic kinematical properties of this scattering problem. The results are challenging in the sense that as soon as one turns on the $\\kappa$-spacetime extension, the nature of the two-body collision alters from elastic to in...

  9. Quantum state-resolved molecular scattering of NO (2Π1 /2) at the gas-[Cnmim][Tf2N] room temperature ionic liquid interface: Dependence on alkyl chain length, collision energy, and temperature

    Science.gov (United States)

    Zutz, Amelia; Nesbitt, David J.

    2016-10-01

    Room temperature ionic liquids (RTILs) represent a promising class of chemically tunable, low vapor pressure solvents with myriad kinetic applications that depend sensitively on the nature of gas-molecule interactions at the liquid surface. This paper reports on rovibronically inelastic dynamics at the gas-RTIL interface, colliding supersonically cooled hyperthermal molecular beams of NO (1/2 2Π, N = 0) from 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (or [Cnmim][Tf2N]) and probing the scattered NO molecules via laser induced fluorescence (LIF) from the A(2Σ ) state. Specifically, inelastic energy transfer into NO rovibrational and electronic degrees of freedom is explored as a function of RTIL alkyl chain length (n), incident collision energy (Einc) and surface temperature (Ts). At low collision energies (Einc = 2.7(9) kcal/mol), the scattered NO molecules exhibit a rotational temperature (Trot) systematically colder than Ts for all chain lengths, which signals the presence of non-equilibrium dynamics in the desorption channel. At high collision energies (Einc = 20(2) kcal/mol), microscopic branching into trapping/desorption (TD) and impulsive scattering (IS) pathways is clearly evident, with the TD fraction (α ) exhibiting a step-like increase between short (n = 2, 4) and long (n = 8, 12, 16) alkyl chains consistent with theoretical predictions. For all hydrocarbon chain lengths and RTIL temperature conditions, NO rotational excitation in the IS channel yields hyperthermal albeit Boltzmann-like distributions well described by a "temperature" (TIS = 900 -1200 K) that decreases systematically with increasing n. Non-adiabatic, collision induced hopping between ground and excited spin-orbit states is found to be independent of RTIL alkyl chain length and yet increase with collision energy. The scattering data confirm previous experimental reports of an enhanced presence of the alkyl tail at the gas-RTIL interface with increasing n, as well as

  10. Quantum state-resolved molecular scattering of NO (2Π1/2 at the gas-[Cnmim][Tf2N] room temperature ionic liquid interface: Dependence on alkyl chain length, collision energy, and temperature

    Directory of Open Access Journals (Sweden)

    Amelia Zutz

    2016-10-01

    Full Text Available Room temperature ionic liquids (RTILs represent a promising class of chemically tunable, low vapor pressure solvents with myriad kinetic applications that depend sensitively on the nature of gas-molecule interactions at the liquid surface. This paper reports on rovibronically inelastic dynamics at the gas-RTIL interface, colliding supersonically cooled hyperthermal molecular beams of NO (Π1/22, N = 0 from 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonylimide (or [Cnmim][Tf2N] and probing the scattered NO molecules via laser induced fluorescence (LIF from the A(2Σ state. Specifically, inelastic energy transfer into NO rovibrational and electronic degrees of freedom is explored as a function of RTIL alkyl chain length (n, incident collision energy (Einc and surface temperature (Ts. At low collision energies (Einc = 2.7(9 kcal/mol, the scattered NO molecules exhibit a rotational temperature (Trot systematically colder than Ts for all chain lengths, which signals the presence of non-equilibrium dynamics in the desorption channel. At high collision energies (Einc = 20(2 kcal/mol, microscopic branching into trapping/desorption (TD and impulsive scattering (IS pathways is clearly evident, with the TD fraction (α exhibiting a step-like increase between short (n = 2, 4 and long (n = 8, 12, 16 alkyl chains consistent with theoretical predictions. For all hydrocarbon chain lengths and RTIL temperature conditions, NO rotational excitation in the IS channel yields hyperthermal albeit Boltzmann-like distributions well described by a “temperature” (TIS = 900 -1200 K that decreases systematically with increasing n. Non-adiabatic, collision induced hopping between ground and excited spin-orbit states is found to be independent of RTIL alkyl chain length and yet increase with collision energy. The scattering data confirm previous experimental reports of an enhanced presence of the alkyl tail at the gas-RTIL interface with increasing n, as well as

  11. Low-resolution structure of the full-length barley (Hordeum vulgare SGT1 protein in solution, obtained using small-angle X-ray scattering.

    Directory of Open Access Journals (Sweden)

    Michał Taube

    Full Text Available SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR, the CHORD- and SGT1-containing domain (CS, and the SGT1-specific domain (SGS, and two less conserved variable regions (VR1 and VR2. In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed.

  12. Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (II) - Application

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong; PAN Feng

    2001-01-01

    Simple analytical expressions for one- and two-body matrix elements in the unitary group approach to the configuration interaction problems of many-electron systems are obtained based on the previous results for general Un irreps.

  13. Pion-nucleon scattering in the P11 channel

    Science.gov (United States)

    Morioka, S.; Afnan, I. R.

    1982-09-01

    We present a parametrization of the π-N interaction in the P11 channel in which the amplitude is the sum of a pole part and a non-pole part (t=tpole+tnp) and satisfies two-body unitarity. Here tpole has both the nucleon propagator and the πNN vertex dressed. The final amplitude fits the scattering length and low energy π-N phase shifts (Tlabπ<300 MeV). We study the effect of a resonance in tnp on the phase shifts, πNN coupling constant, and the off-shell behavior of the amplitude. NUCLEAR REACTIONS πN scattering in P11 channel, renormalization, resonance effect.

  14. On The Dynamics and Design of a Two-body Wave Energy Converter

    Science.gov (United States)

    Liang, Changwei; Zuo, Lei

    2016-09-01

    A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.

  15. A combined method of small-angle neutron scattering and neutron radiography to visualize water in an operating fuel cell over a wide length scale from nano to millimeter

    Science.gov (United States)

    Iwase, H.; Koizumi, S.; Iikura, H.; Matsubayashi, M.; Yamaguchi, D.; Maekawa, Y.; Hashimoto, T.

    2009-06-01

    In order to visualize water generated in an operating polymer electrolyte fuel cell (PEFC), a neutron radiography (NR) apparatus, composed of a scintillator, optical mirrors and a CCD camera, was installed at a sample position of the focusing and polarized neutron small-angle scattering (SANS) spectrometer (SANS-J-II) at research reactor JRR-3 at Japan Atomic Energy Agency, Tokai, Japan. By combining SANS and NR, we aim to cover a wide length scale from nanometer to millimeter. The new method succeeded in detecting a spatial distribution of the water generated in individual cell elements; NR detected the water in a gas diffusion layer and a flow field, whereas SANS quantitatively determines the water content in a membrane electrode assembly (MEA).

  16. Relativistic two-body bound states in scalar QFT: variational basis-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Emami-Razavi, Mohsen [Centre for Research in Earth and Space Science, York University, Toronto, Ontario, M3J 1P3 (Canada); Darewych, Jurij W [Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3 (Canada)

    2006-08-15

    We use the Hamiltonian formalism of quantum field theory and the variational basis-state method to derive relativistic coupled-state wave equations for scalar particles interacting via a massive or massless mediating scalar field (the scalar Yukawa model). A variational trial state comprised of two and four Fock-space states is used to derive coupled wave equations for a relativistic two (and four) body system. Approximate, variational two-body ground-state solutions of the relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields. The results show that the inclusion of virtual pairs has a large effect on the two-body binding energy at strong coupling. A comparison of the two-body binding energies with other calculations is presented.

  17. Analytical treatment of the two-body problem with slowly varying mass

    Science.gov (United States)

    Rahoma, W. A.; Abd El-Salam, F. A.; Ahmed, M. K.

    2009-12-01

    The present work is concerned with the two-body problem with varying mass in case of isotropic mass loss from both components of the binary systems. The law of mass variation used gives rise to a perturbed Keplerian problem depending on two small parameters. The problem is treated analytically in the Hamiltonian frame-work and the equations of motion are integrated using the Lie series developed and applied, separately by Delva (1984) and Hanslmeier (1984). A second order theory of the two bodies eject mass is constructed, returning the terms of the rate of change of mass up to second order in the small parameters of the problem.

  18. Spin Structure of Many-Body Systems with Two-Body Random Interactions

    CERN Document Server

    Kaplan, L; Johnson, C W; Kaplan, Lev; Papenbrock, Thomas; Johnson, Calvin W.

    2001-01-01

    We investigate the spin structure of many-fermion systems with a spin-conserving two-body random interaction. We find a strong dominance of spin-0 ground states and considerable correlations between energies and wave functions of low-lying states with different spin, but no indication of pairing. The spectral densities exhibit spin-dependent shapes and widths, and depend on the relative strengths of the spin-0 and spin-1 couplings in the two-body random matrix. The spin structure of low-lying states can largely be explained analytically.

  19. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    Science.gov (United States)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  20. Analytical Treatment of the Two-Body Problem with Slowly Varying Mass

    Indian Academy of Sciences (India)

    W. A. Rahoma; F. A. Abd El-Salam; M. K. Ahmed

    2009-09-01

    The present work is concerned with the two-body problem with varying mass in case of isotropic mass loss from both components of the binary systems. The law of mass variation used gives rise to a perturbed Keplerian problem depending on two small parameters. The problem is treated analytically in the Hamiltonian frame-work and the equations of motion are integrated using the Lie series developed and applied, separately by Delva (1984) and Hanslmeier (1984). A second order theory of the two bodies eject mass is constructed, returning the terms of the rate of change of mass up to second order in the small parameters of the problem.

  1. RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.; Li, Y.

    2011-03-01

    A preliminary study on a two-body floating wave absorbers is presented in this paper. A Reynolds-Averaged Navier-Stokes computational method is applied for analyzing the hydrodynamic heave response of the absorber in operational wave conditions. The two-body floating wave absorber contains a float section and a submerged reaction section. For validation purposes, our model is first assumed to be locked. The two sections are forced to move together with each other. The locked single body model is used in a heave decay test, where the RANS result is validated with the experimental measurement. For the two-body floating point absorber simulation, the two sections are connected through a mass-spring-damper system, which is applied to simulate the power take-off mechanism under design wave conditions. Overall, the details of the flow around the absorber and its nonlinear interaction with waves are investigated, and the power absorption efficiency of the two-body floating wave absorber in waves with a constant value spring-damper system is examined.

  2. Realization of the Fredkin gate using a series of one- and two-body operators

    CERN Document Server

    Chau, H F; Chau, Hoi Fung; Wilczek, F

    1995-01-01

    The Fredkin 3-bit gate is universal for computational logic, and is reversible. Classically, it is impossible to do universal computation using reversible 2-bit gates only. Here we construct the Fredkin gate using a combination of two one-body and seven two-body reversible (quantum) operators.

  3. Computation of Two-Body Matrix Elements From the Argonne $v_{18}$ Potential

    CERN Document Server

    Mihaila, B; Mihaila, Bogdan; Heisenberg, Jochen H.

    1998-01-01

    We discuss the computation of two-body matrix elements from the Argonne $v_{18}$ interaction. The matrix elements calculation is presented both in particle-particle and in particle-hole angular momentum coupling. The procedures developed here can be applied to the case of other NN potentials, provided that they have a similar operator format.

  4. Two-body depolarized cils spectra of krypton and xenon at 295 K

    Science.gov (United States)

    Zoppi, M.; Moraldi, M.; Barocchi, F.; Magli, R.; Bafile, U.

    1981-10-01

    We have experimentally determined the two-body depolarized CILS spectra of krypton and xenon at room temperature between 2 and 120 cm-1. Comparison of the first three even experimental moments of the spectra with theoretical calculations shows, as in argon, the necessity of introducing a short-range negative contribution to the induced pair polarizability.

  5. 78 FR 54756 - Extension of Expiration Dates for Two Body System Listings

    Science.gov (United States)

    2013-09-06

    ... ADMINISTRATION 20 CFR Part 404 RIN 0960-AH60 Extension of Expiration Dates for Two Body System Listings AGENCY: Social Security Administration. ACTION: Final rule. SUMMARY: We are extending the expiration dates of the... claims and continuing disability reviews. DATES: This final rule is effective on September 6, 2013....

  6. Searching for new physics in two-body decays: Ideas and pitfalls

    CERN Document Server

    Arrieta Diaz, E; Büchler, A; Cieri, L J; Florez, A; Garces-Garcia, E; Gonçalves, B; Koetsveld, F; Leney, K J C; Marquez Falcon, H; Moncada, M; Quintero, P; Romero, D; Shaw, K; Swain, J; Zurita, M P

    2010-01-01

    Many new physics processes, and indeed many Standard Model interactions involve two-body decays. Although the kinematics are relatively simple, mistakes can easily be made when applying cuts to data in order to separate the signal from backgrounds. We present a short, but relevant list of possible sources of errors, and discuss the consequences of these.

  7. Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards

    Science.gov (United States)

    Street, Kenneth W., Jr.; Kobrick, Ryan L.; Klaus, David M.

    2013-01-01

    Abrasion of mechanical components and fabrics by soil on Earth is typically minimized by the effects of atmosphere and water. Potentially abrasive particles lose sharp and pointed geometrical features through erosion. In environments where such erosion does not exist, such as the vacuum of the Moon, particles retain sharp geometries associated with fracturing of their parent particles by micrometeorite impacts. The relationship between hardness of the abrasive and that of the material being abraded is well understood, such that the abrasive ability of a material can be estimated as a function of the ratio of the hardness of the two interacting materials. Knowing the abrasive nature of an environment (abrasive)/construction material is crucial to designing durable equipment for use in such surroundings. The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width. The ZOI has been found to be at least twice the size of a standard width measurement; in some cases, considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for de tailed analysis. Documenting additional changes to various surface roughness par ameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Further - more, by investigating the use of custom scratch tips for specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized

  8. Distribution of level spacing ratios using one- plus two-body random matrix ensembles

    Indian Academy of Sciences (India)

    N D Chavda

    2015-02-01

    Probability distribution (()) of the level spacing ratios has been introduced recently and is used to investigate many-body localization as well as to quantify the distance from integrability on finite size lattices. In this paper, we study the distribution of the ratio of consecutive level spacings using one-body plus two-body random matrix ensembles for finite interacting many-fermion and many-boson systems. () for these ensembles move steadily from the Poisson to the Gaussian orthogonal ensemble (GOE) form as the two-body interaction strength is varied. Other related quantities are also used in the analysis to obtain critical strength c for the transition. The c values deduced using the () analysis are in good agreement with the results obtained using the nearest neighbour spacing distribution (NNSD) analysis.

  9. The two-body problem of a pseudo-rigid body and a rigid sphere

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.;

    2012-01-01

    n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....

  10. CP Violating Polarization Asymmetry in Charmless Two-Body Decays of Beauty Baryons

    CERN Document Server

    He, Min; Li, Guan-Nan

    2015-01-01

    Several baryons containing a heavy b-quark, the b-baryons, have been discovered. The charmless two-body decays of b-baryons can provide a new platform for CP violating studies in a similar way as charmless two-body decays of B-meson. In b-baryon decays there are new CP violating observable related to baryon polarization. We show that in the flavor $SU(3)$ limit there exist relations involve different combinations of the decay amplitudes compared with those in CP violating rate asymmetry. These new relations therefore provide interesting tests for the mechanism of CP in the standard model (SM) and flavor $SU(3)$ symmetry. Future data from LHCb can test these relations.

  11. Energy Centroids of Spin $I$ States by Random Two-body Interactions

    CERN Document Server

    Zhao, Y M; Ogawa, K

    2005-01-01

    In this paper we study the behavior of energy centroids (denoted as $\\bar{E_I}$) of spin $I$ states in the presence of random two-body interactions, for systems ranging from very simple systems (e.g. single-$j$ shell for very small $j$) to very complicated systems (e.g., many-$j$ shells with different parities and with isospin degree of freedom). Regularities of $\\bar{E_I}$'s discussed in terms of the so-called geometric chaoticity (or quasi-randomness of two-body coefficients of fractional parentage) in earlier works are found to hold even for very simple systems in which one cannot assume the geometric chaoticity. It is shown that the inclusion of isospin and parity does not "break" the regularities of $\\bar{E_I}$'s.

  12. A Tale of Three Equations Breit, Eddington-Guant, and Two-Body Dirac

    CERN Document Server

    Van Alstine, P; Alstine, Peter Van; Crater, Horace W.

    1997-01-01

    G.Breit's original paper of 1929 postulates the Breit equation as a correction to an earlier defective equation due to Eddington and Gaunt, containing a form of interaction suggested by Heisenberg and Pauli. We observe that manifestly covariant electromagnetic Two-Body Dirac equations previously obtained by us in the framework of Relativistic Constraint Mechanics reproduce the spectral results of the Breit equation but through an interaction structure that contains that of Eddington and Gaunt. By repeating for our equation the analysis that Breit used to demonstrate the superiority of his equation to that of Eddington and Gaunt, we show that the historically unfamiliar interaction structures of Two-Body Dirac equations (in Breit-like form) are just what is needed to correct the covariant Eddington Gaunt equation without resorting to Breit's version of retardation.

  13. Large-j Expansion Method for Two-Body Dirac Equation

    Directory of Open Access Journals (Sweden)

    Askold Duviryak

    2006-02-01

    Full Text Available By using symmetry properties, the two-body Dirac equation in coordinate representation is reduced to the coupled pair of radial second-order differential equations. Then the large-j expansion technique is used to solve a bound state problem. Linear-plus-Coulomb potentials of different spin structure are examined in order to describe the asymptotic degeneracy and fine splitting of light meson spectra.

  14. Two bodies gravitational system with variable mass and damping-antidamping effect due to star wind

    CERN Document Server

    López, G V

    2009-01-01

    We study two-bodies gravitational problem where the mass of one of the bodies varies and suffers a damping-antidamping effect due to star wind during its motion. A constant of motion, a Lagrangian and a Hamiltonian are given for the radial motion of the system, and the period of the body is studied using the constant of motion of the system. An application to the comet motion is given, using the comet Halley as an example.

  15. Kinematics of τ two-body decay near τ threshold at BESⅢ

    Institute of Scientific and Technical Information of China (English)

    莫晓虎

    2010-01-01

    The kinematic properties of two-body decay near τ threshold are studied according to the special capacity of the BEPC accelerator and the BESⅢ detector.Explicitly presented are the transformations of energy and momentum of hadronic particles between different reference frames,and the corresponding distributions.A brand new method is proposed to obtain the energy spread of the accelerator by fitting the energy distribution of hadron from τ semi-leptonic decays.

  16. Regularities of many-body systems interacting by a two-body random ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.M. [Department of Physics, Shanghai Jiao-Tong University, Shanghai 200030 (China) and Cyclotron Center, Institute of Physical and Chemical Research - RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198 (Japan) and Department of Physics, Southeast University, Nanjing 210018 (China)]. E-mail: ymzhao@riken.jp; Arima, A. [Science Museum, Japan Science Foundation, 2-1 Kitanomaru-Koen, Chiyodaku, Tokyo 102-0091 (Japan); Yoshinaga, N. [Department of Physics, Saitama University, Saitama 338-0625 (Japan)

    2004-10-01

    The ground states of all even-even nuclei have angular momentum, I, equal to zero, I=0, and positive parity, {pi}=+. This feature was believed to be a consequence of the attractive short-range interaction between nucleons. However, in the presence of two-body random interactions, the predominance of I{pi}=0+ ground states (0 g.s.) was found to be robust both for bosons and for an even number of fermions. For simple systems, such as d bosons, sp bosons, sd bosons, and a few fermions in single-j shells for small j, there are a few approaches to predict and/or explain spin I ground state (I g.s.) probabilities. An empirical approach to predict I g.s. probabilities is available for general cases, such as fermions in a single-j (j>72) or many-j shells and various boson systems, but a more fundamental understanding of the robustness of 0 g.s. dominance is still out of reach. Further interesting results are also reviewed concerning other robust phenomena of many-body systems in the presence of random two-body interactions, such as the odd-even staggering of binding energies, generic collectivity, the behavior of average energies, correlations, and regularities of many-body systems interacting by a displaced two-body random ensemble.

  17. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  18. The post-Keplerian orbital representations of the relativistic two-body problem

    Science.gov (United States)

    Klioner, S. A.; Kopeikin, S. M.

    1994-06-01

    Orbital parameterizations of the relativstic two-body problem due to Brumberg, Damour-Deruelle, Epstein-Haugan, and Blandford-Teukolsky as well as osculating elements are compared. Exact relations between constants describing the orbit in the parameterizations are derived. It is shown that all the parameterizations in question are valid not only in general relativity, but in a generic class of relatvistic theories of gravity. The obtained results provide us with an additional check of consistency of different models used in timing of binary pulsars.

  19. Probing SUSY CP Violation in Two-Body Stop Decays at the LHC

    CERN Document Server

    Deppisch, Frank

    2009-01-01

    We study CP asymmetries in two-body decays of top squarks into neutralinos and sleptons at the LHC. These asymmetries are used to probe the CP phases possibly present in the stop and neutralino sector of the Minimal Supersymmetric Standard Model. Taking into account bounds from experimental electric dipole moment searches, we identify areas in the mSUGRA parameter space where CP asymmetries can be sizeable and discuss the feasibility of their observation at the LHC. As a result, potentially detectable CP asymmetries in stop decays at the LHC are found, motivating further detailed experimental studies for probing SUSY CP phases.

  20. The two-body random spin ensemble and a new type of quantum phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Pizorn, Iztok; Prosen, Tomaz [Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Mossmann, Stefan; Seligman, Thomas H [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, CP 62132 Cuernavaca, Morelos (Mexico)], E-mail: tomaz.prosen@fmf.uni-lj.si

    2008-02-15

    We study in this paper the properties of a two-body random matrix ensemble for distinguishable spins. We require the ensemble to be invariant under the group of local transformations and analyze a parametrization in terms of the group parameters and the remaining parameters associated with the 'entangling' part of the interaction. We then specialize to a spin chain with nearest-neighbour interactions and numerically find a new type of quantum-phase transition related to the strength of a random external field, i.e. the time-reversal-breaking one-body interaction term.

  1. The two-body random spin ensemble and a new type of quantum phase transition

    Science.gov (United States)

    Pižorn, Iztok; Prosen, Tomaž; Mossmann, Stefan; Seligman, Thomas H.

    2008-02-01

    We study in this paper the properties of a two-body random matrix ensemble for distinguishable spins. We require the ensemble to be invariant under the group of local transformations and analyze a parametrization in terms of the group parameters and the remaining parameters associated with the 'entangling' part of the interaction. We then specialize to a spin chain with nearest-neighbour interactions and numerically find a new type of quantum-phase transition related to the strength of a random external field, i.e. the time-reversal-breaking one-body interaction term.

  2. Probing SUSY CP violation in two-body stop decays at the LHC

    Science.gov (United States)

    Deppisch, Frank F.; Kittel, Olaf

    2009-09-01

    We study CP asymmetries in two-body decays of top squarks into neutralinos and sleptons at the LHC. These asymmetries are used to probe the CP phases possibly present in the stop and neutralino sector of the Minimal Supersymmetric Standard Model. Taking into account bounds from experimental electric dipole moment searches, we identify areas in the mSUGRA parameter space where CP asymmetries can be sizeable and discuss the feasibility of their observation at the LHC. As a result, potentially detectable CP asymmetries in stop decays at the LHC are found, motivating further detailed experimental studies for probing SUSY CP phases.

  3. A detailed study of nonperturbative solutions of two-body Dirac equations

    Energy Technology Data Exchange (ETDEWEB)

    Crater, H.W.; Becker, R.L.; Wong, C.Y.; Van Alstine, P.

    1992-12-01

    In quark model calculations of the meson spectrums fully covariant two-body Dirac equations dictated by Dirac's relativistic constraint mechanics gave a good fit to the entire meson mass spectrum for light quark mesons as well as heavy quark mesons with constituent world scalar and vector potentials depending on just one or two parameters. In this paper, we investigate the properties of these equations that made them work so well by solving them numerically for quantum electrodynamics (QED) and related field theories. The constraint formalism generates a relativistic quantum mechanics defined by two coupled Dirac equations on a sixteen component wave function which contain Lorentz covariant constituent potentials that are initially undetermined. An exact Pauli reduction leads to a second order relativistic Schroedinger-like equation for a reduced eight component wave function determined by an effective interaction -- the quasipotential. We first determine perturbatively to lowest order the relativistic quasipotential for the Schroedinger-like equation by comparing that form with one derived from the Bethe-Salpeter equation. Insertion of this perturbative information into the minimal interaction structures of the two-body Dirac equations then completely determines their interaction structures. Then we give a procedure for constructing the full sixteen component solution to our coupled first-order Dirac equations from a solution of the second order equation for the reduced wave function. Next, we show that a perturbative treatment of these equations yields the standard spectral results for QED and related interactions.

  4. One plus two-body random matrix ensembles with parity: Density of states and parity ratios

    CERN Document Server

    Vyas, Manan; Srivastava, P C

    2011-01-01

    One plus two-body embedded Gaussian orthogonal ensemble of random matrices with parity [EGOE(1+2)-$\\pi$] generated by a chaos producing two-body interaction in the presence of a mean-field, for spinless identical fermion systems, is defined in terms of two mixing parameters and a gap between the positive $(\\pi=+)$ and negative $(\\pi=-)$ parity single particle (sp) states. Numerical calculations are used to demonstrate, using realistic values of the mixing parameters appropriate for some nuclei, that this ensemble generates Gaussian form (with corrections) for fixed parity eigenvalue densities (i.e. state densities). The random matrix model also generates many features in parity ratios of state densities that are similar to those predicted by a method based on the Fermi-gas model for nuclei. We have also obtained a simple formula for the spectral variances defined over fixed-$(m_1,m_2)$ spaces, where $m_1$ is the number of fermions in the $+$ve parity sp states and $m_2$ is the number of fermions in the $-$ve ...

  5. Global solutions to the electrodynamic two-body problem on a straight line

    Science.gov (United States)

    Bauer, G.; Deckert, D.-A.; Dürr, D.; Hinrichs, G.

    2017-06-01

    The classical electrodynamic two-body problem has been a long standing open problem in mathematics. For motion constrained to the straight line, the interaction is similar to that of the two-body problem of classical gravitation. The additional complication is the presence of unbounded state-dependent delays in the Coulomb forces due to the finiteness of the speed of light. This circumstance renders the notion of local solutions meaningless, and therefore, straightforward ODE techniques cannot be applied. Here, we study the time-symmetric case, i.e., the Fokker-Schwarzschild-Tetrode (FST) equations, comprising both advanced and retarded delays. We extend the technique developed in Deckert and Hinrichs (J Differ Equ 260:6900-6929, 2016), where existence of FST solutions was proven on the half line, to ensure global existence—a result that had been obtained by Bauer (Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik, Herbert Utz Verlag, München, 1997). Due to the novel technique, the presented proof is shorter and more transparent but also relies on the idea to employ asymptotic data to characterize solutions.

  6. Energy spectra of massive two-body decay products and mass measurement

    CERN Document Server

    Agashe, Kaustubh; Hong, Sungwoo; Kim, Doojin

    2016-01-01

    We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a massless product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the SM particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial b...

  7. Why the length of a quantum string cannot be Lorentz contracted

    CERN Document Server

    Aurilia, Antonio

    2013-01-01

    We propose a quantum gravity-extended form of the classical length contraction law obtained in Special Relativity. More specifically, the framework of our discussion is the UV self-complete theory of quantum gravity. Against this background, we show how our results are consistent with, i) the generalised form of the Uncertainty Principle (GUP), ii) the so called hoop-conjecture which we interpret, presently, as the saturation of a Lorentz boost by the formation of a black hole in a two-body scattering, and iii) the intriguing notion of "classicalization" of trans-Planckian physics. Pushing these ideas to their logical conclusion, we argue that there is a physical limit to the Lorentz contraction rule in the form of some minimal universal length determined by quantum gravity, say the Planck Length, or any of its current embodiments such as the string length, or the TeV quantum gravity length scale. In the latter case, we determine the \\emph{critical boost} that separates the ordinary "particle phase," characte...

  8. Scattering in Relativistic Particle Mechanics.

    Science.gov (United States)

    de Bievre, Stephan

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from

  9. Hydrodynamic interactions between two bodies in waves in 3D time domain

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-fang; LI Ji-de; CAI Xin-gong; TIAN Ming-qi; Hao Jin-feng

    2005-01-01

    In this paper, a 3D time domain technique is adopted to calculate the coupled hydrodynamic interaction between two bodies without flare in waves. For verifying the code, two same cylinders are selected to calculate coupled hydrodynamic effects by comparison with the results obtained by 3D frequency method which has been proved to be efficient for solving such problems. In order to improve efficiency of calculation, the effect of history time has been discussed, and an improved method is presented. Moreover, the effect of lateral separation distance is also discussed in detail. The technique developed here may serve as a more rigorous tool to analyze the related transient problems of two ships doing underway replenishment in waves.

  10. One-body and Two-body Fractional Parentage Coefficients for Spinor Bose-Einstein Condensation

    Institute of Scientific and Technical Information of China (English)

    BAO Cheng-guang

    2006-01-01

    A very effective tool,namely,the analytical expression of the fractional parentage coefficients (FPC),is introduced in this paper to deal with the total spin states of N-body spinor bosonic systems,where N is supposed to be large and the spin of each boson is one.In particular,the analytical forms of the one-body and two-body FPC for the total spin states with {N} and {N-1,1} permutation symmetries have been derived.These coefficients facilitate greatly the calculation of related matrix elements,and they can be used even in the case of N →∞.Theyappear as a powerful tool for the establishment of an improved theory of spinor Bose-Einstein condensation,where the eigenstates have the total spin S and its Z-component being both conserved.

  11. Charmless Hadronic Two-body Decays of $B_{u}$ and $B_{d}$ Mesons

    CERN Document Server

    Chen, Y H; Tseng, B; Yang, K C; Chen, Yaw-Hwang; Cheng, Hai-Yang; Yang, Kwei-Chou

    1999-01-01

    Two-body charmless nonleptonic decays of B_u and B_d mesons are studied within the framework of generalized factorization in which the effective Wilson coefficients $c^{eff}_i$ are renormalization-scale and -scheme independent while factorization is applied to the tree-level hadronic matrix elements. Contrary to previous studies, our $c_i^{eff}$ do not suffer from gauge and infrared problems. Nonfactorizable effects are parametrized in terms of N_c(LL) and N_c(LR), the effective numbers of colors arising from (V-A)(V-A) and (V-A)(V+A) four-quark operators, respectively. Tree and penguin transitions are classified into six different classes. The data of $B^-\\to\\rho^0\\pi^-$ and $B^-\\to\\phi K^-$ clearly indicate that $N_c(LR)\

  12. An exactly solvable two-body problem with retarded interactions and radiation reaction in classical electrodynamics

    Science.gov (United States)

    Rivera, R.; Villarroel, D.

    1997-11-01

    An exactly solvable two-body problem dealing with the Lorentz-Dirac equation is constructed in this paper. It corresponds to the motion of two identical charges rotating at opposite ends of a diameter, in a fixed circle, at constant angular velocity. The external electromagnetic field that allows this motion consists of a tangential time-independent electric field with a fixed value over the orbit circle, and a homogeneous time-independent magnetic field that points orthogonally to the orbit plane. Because of the geometrical symmetries of the charges' motion, in this case it is possible to obtain the rate of radiation emitted by the charges directly from the equation of motion. The rate of radiation is also calculated by studying the energy flux across a sphere of a very large radius, using the far retarded fields of the charges. Both calculations lead to the same result, in agreement with energy conservation.

  13. Parametric Study of Two-Body Floating-Point Wave Absorber

    Institute of Scientific and Technical Information of China (English)

    Atena Amiri; Roozbeh Panahi; Soheil Radfar

    2016-01-01

    In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter’s efficiency when considering specific conditions.

  14. Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem

    Science.gov (United States)

    Oltean, Marius; Bonetti, Luca; Spallicci, Alessandro D. A. M.; Sopuerta, Carlos F.

    2016-09-01

    In classical Hamiltonian theories, entropy may be understood either as a statistical property of canonical systems or as a mechanical property, that is, as a monotonic function of the phase space along trajectories. In classical mechanics, there are theorems which have been proposed for proving the nonexistence of entropy in the latter sense. We explicate, clarify, and extend the proofs of these theorems to some standard matter (scalar and electromagnetic) field theories in curved spacetime, and then we show why these proofs fail in general relativity; due to properties of the gravitational Hamiltonian and phase space measures, the second law of thermodynamics holds. As a concrete application, we focus on the consequences of these results for the gravitational two-body problem, and in particular, we prove the noncompactness of the phase space of perturbed Schwarzschild-Droste spacetimes. We thus identify the lack of recurring orbits in phase space as a distinct sign of dissipation and hence entropy production.

  15. Non-Collision Singularities in the Planar Two-Center-Two-Body Problem

    Science.gov (United States)

    Xue, Jinxin; Dolgopyat, Dmitry

    2016-08-01

    In this paper, we study a restricted four-body problem called the planar two-center-two-body problem. In the plane, we have two fixed centers Q 1 and Q 2 of masses 1, and two moving bodies Q 3 and Q 4 of masses {μ≪ 1}. They interact via Newtonian potential. Q 3 is captured by Q 2, and Q 4 travels back and forth between two centers. Based on a model of Gerver, we prove that there is a Cantor set of initial conditions that lead to solutions of the Hamiltonian system whose velocities are accelerated to infinity within finite time avoiding all earlier collisions. This problem is a simplified model for the planar four-body problem case of the Painlevé conjecture.

  16. Low-Thrust Orbital Transfers in the Two-Body Problem

    Directory of Open Access Journals (Sweden)

    A. A. Sukhanov

    2012-01-01

    Full Text Available Low-thrust transfers between given orbits within the two-body problem are considered; the thrust is assumed power limited. A simple method for obtaining the transfer trajectories based on the linearization of the motion near reference orbits is suggested. Required calculation accuracy can be reached by means of use of a proper number of the reference orbits. The method may be used in the case of a large number of the orbits around the attracting center; no averaging is necessary in this case. The suggested method also is applicable to the cases of partly given final orbit and if there are constraints on the thrust direction. The method gives an optimal solution to the linearized problem which is not optimal for the original nonlinear problem; the difference between the optimal solutions to the original and linearized problems is estimated using a numerical example. Also examples illustrating the method capacities are given.

  17. Calculation of the Two-body T-matrix in Configuration Space

    CERN Document Server

    Rawitscher, George

    2007-01-01

    A spectral integral method (IEM) for solving the two-body Schroedinger equation in configuration space is generalized to the calculation of the corresponding T-matrix. It is found that the desirable features of the IEM, such as the economy of mesh-points for a given required accuracy, are carried over also to the solution of the T-matrix. However the algorithm is considerably more complex, because the T-matrix is a function of two variables r and r', rather than only one variable r, and has a slope discontinuity at r=r'. For a simple exponential potential an accuracy of 7 significant figures is achieved, with the number N of Chebyshev support points in each partition equal to 17. For a potential with a large repulsive core, such as the potential between two He atoms, the accuracy decreases to 4 significant figures, but is restored to 7 if N is increased to 65.

  18. Regularization of the collision in the electromagnetic two-body problem

    Science.gov (United States)

    Hollander, Efrain Buksman; De Luca, Jayme

    2004-12-01

    We derive a differential equation that is regular at the collision of two equal-mass bodies with attractive interaction in the relativistic action-at-a-distance electrodynamics. We use the energy constant related to the Poincaré invariance of the theory to define finite variables with finite derivatives at the collision. The collision orbits are calculated numerically using the regular equation adapted in a self-consistent minimization method (a stable numerical method that chooses only nonrunaway solutions). This dynamical system appeared 100 years ago as an example of covariant time-symmetric two-body dynamics and acquired the status of electrodynamics in the 1940s by the works of Dirac, Wheeler, and Feynman. We outline the method with an emphasis on the physics of this complex conservative dynamical system.

  19. Branching ratios for pbarp annihilation at rest into two-body final states

    CERN Document Server

    Abele, A; Amsler, Claude; Baker, C A; Barnett, B M; Batty, C J; Benayoun, M; Bischoff, S; Blüm, P; Braune, K; Bugg, D V; Case, T; Crowe, K M; Degener, T; Doser, Michael; Dünnweber, W; Engelhardt, D; Faessler, M A; Giarritta, P; Haddock, R P; Heinsius, F H; Heinzelmann, M; Herbstrith, A; Herz, M; Hessey, N P; Hidas, P; Hodd, C; Holtzhaussen, C; Jamnik, D; Kalinowsky, H; Kammel, P; Kisiel, J; Klempt, E; Koch, H; Kunze, M; Kurilla, U; Lakata, M; Landua, Rolf; Matthäy, H; McCrady, R; Meier, J; Meyer, C A; Montanet, Lucien; Ouared, R; Peters, K; Pick, B; Ratajczak, M; Regenfus, C; Röthel, W; Spanier, S; Stöck, H; Strassburger, C; Strohbusch, U; Suffert, Martin; Suh, J S; Thoma, U; Tischhäuser, M; Uman, I; Völcker, C; Wallis-Plachner, S; Walther, D; Wiedner, U; Wittmack, K; Zou, B S

    2001-01-01

    Measurements of two-body branching ratios for pbarp annihilations at rest in liquid and gaseous (12 rho sub S sub T sub P) hydrogen are reported. Channels studied are pbarp-> pi sup 0 pi sup 0 ,pi sup 0 eta, K sup 0 sub S K sup 0 sub L , K sup + K sup -. The branching ratio for the pi sup 0 pi sup 0 channel in liquid H sub 2 is measured to be (6.14+-0.40)x10 sup - sup 4. The results are compared with those from other experiments. The fraction of P-state annihilation for a range of target densities from 0.002 rho sub S sub T sub P to liquid H sub 2 is determined. Values obtained include 0.11+-0.02 in liquid H sub 2 and 0.48+-0.04 in 12 rho sub S sub T sub P H sub 2 gas.

  20. a Study of the Charged Two-Body Decays of the Neutral D Mesons

    Science.gov (United States)

    Peng, Kuang-Chung (K. C.).

    1995-01-01

    The charged two-body decays of D^0 mesons produced by 500 GeV/c pi -incident on platium and carbon foil targets at the Fermilab Tagged Particle Laboratory have been analyzed. Three measurements are presented in this thesis: (1) Branching Ratios of Charged Two-body Decays: {Gamma(D^0to K^+K^-)overGamma(D^0to K^-pi^+)}= 0.107+/-0.003 +/-0.003, {Gamma(D^0to pi^+pi^-)over Gamma(D ^0to K^-pi^+)} =0.040 +/-0.002+/-0.002, {Gamma(D^0 to K^+K^-)overGamma(D^0 topi^+pi^-)}=2.65+/-0.14 +/-0.13, and {Gamma(D^0 to K^-pi^-pi^+pi ^+)overGamma(D^0to K^ -pi^+)} =2.19+/-.0.3+/-.0.08; (2) Lifetime Difference: tau_ {KK}=0.414+/-0.012+/-0.014, tau _{Kpi}=0.409+/-0.003+/-0.004, with Deltagamma= {-}0.06 +/-0.15+/-0.15, or the upper limit of Mixing rate as {cal R}_sp {rm mix}{it y}<0.00079 (due to lifetime difference only) at mix 90% confidence level; and (3) CP Asymmetry Parameters: A_sp{CP}{BR}(K^+/- K^mp) = {-}0.018+/-0.054+/-0.012, A_sp{CP}{BR}( pi^+/-pi^mp) = { -}0.053+/-0.093+/-0.029, and A _sp{CP}{BR}(K3pi) - {-}0.018+/-0.023+/-0.002.. All measurements are consistent with most theoretical predictions and world average experimental values.

  1. Two-body wear of dental porcelain and substructure oxide ceramics.

    Science.gov (United States)

    Rosentritt, Martin; Preis, Verena; Behr, Michael; Hahnel, Sebastian; Handel, Gerhard; Kolbeck, Carola

    2012-06-01

    The aim of this in vitro study was to investigate the two-body wear of different ceramics. Two-body wear tests were performed in a chewing simulator with steatite and enamel antagonists, respectively. Specimens were loaded in a pin-on-block design with a vertical load of 50 N for 1.2 × 10(5) cycles; (f = 1.6 Hz; lateral movement, 1 mm; mouth opening: 2 mm). Human enamel was used as a reference. Three zirconia ceramics, three veneering porcelains, two glass-infiltrated and one lithium disilicate ceramic were investigated. Veneering and lithium disilicate ceramics were glazed before testing. Surface roughness Ra (SP6, Perthen-Feinprüf, G) and wear depth were determined using a 3D scanner (Laserscan 3D, Willytec, G). SEM (Quanta FEG 400, FEI, USA) pictures of the worn specimens and antagonists were made for evaluating wear performance. Veneering porcelain provided wear traces between 71.2 and 124.1 μm (enamel antagonist) and 117.4 and 274.1 μm (steatite). Wear of the steatite antagonists varied between 0.618 and 2.85 mm². No wear was found for zirconia and glass-infiltrated substructure ceramics. Also, no wear was found for the corresponding antagonists. Wear of specimens and antagonists was strongly material dependent. No visible wear was found on zirconia and glass-infiltrated ceramics. Porcelain and lithium disilicate ceramic showed a comparable or lower wear than the enamel reference. Antagonist wear was found to be lower when specimens were made of substructure oxide ceramics instead of veneering porcelain. From the point of wear testing, zirconia may be used for the fabrication of fixed dental prosthesis without veneering.

  2. Standardization of a Volumetric Displacement Measurement for Two-Body Abrasion Scratch Test Data Analysis

    Science.gov (United States)

    Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.

    2011-01-01

    A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ

  3. Implications of two-body fragment decay for the interpretation of emission chronology from velocity-gated correlation functions

    CERN Document Server

    Helgesson, J; Ekman, J; Helgesson, Johan; Ghetti, Roberta; Jorgen Ekman

    2006-01-01

    From velocity-gated small-angle correlation functions the emission chronology can be deduced for non-identical particles, if the emission is independent. This is not the case for non-identical particles that originate from two-body decay of fragments. Experimental results may contain contributions from both independent emission and two-body decay, so care is needed in interpreting the velocity-gated correlation functions. It is shown that in some special cases, it is still possible to deduce the emission chronology, even if there is a contribution from two-body decay.

  4. Elastic Scattering Properties of Ultracold Strontium Atoms

    Institute of Scientific and Technical Information of China (English)

    张计才; 朱遵略; 刘玉芳; 孙金锋

    2011-01-01

    We investigate the elastic scattering properties of strontium atoms at ultracold temperatures.The scattering parameters,such as s-wave scattering lengths,effective ranges and p-wave scattering lengths,are calculated for all stable isotope combinations of Sr atoms by the quantal method and semiclassical method,respectively.Good agreements are obtained.The scattering parameters are very sensitive to small changes of the reduced mass.Due to the repulsive interisotope and intraisotope s-wave scattering length and large elastic cross sections,84Sr-86Srmixture is a good candidate to realize Bose-Bose quantum degenerate atomic gases.%We investigate the elastic scattering properties of strontium atoms at ultracold temperatures. The scattering parameters, such as s-wave scattering lengths, effective ranges and p-wave scattering lengths, are calculated for all stable isotope combinations of Sr atoms by the quantal method and semiclassical method, respectively. Good agreements are obtained. The scattering parameters are very sensitive to small changes of the reduced mass. Due to the repulsive interisotope and intraisotope s-wave scattering length and large elastic cross sections, MSr-s(iSr mixture is a good candidate to realize Bose-Bose quantum degenerate atomic gases.

  5. Free path lengths in quasi crystals

    CERN Document Server

    Wennberg, Bernt

    2012-01-01

    The Lorentz gas is a model for a cloud of point particles (electrons) in a distribution of scatterers in space. The scatterers are often assumed to be spherical with a fixed diameter $d$, and the point particles move with constant velocity between the scatterers, and are specularly reflected when hitting a scatterer. There is no interaction between point particles. An interesting question concerns the distribution of free path lengths, i.e. the distance a point particle moves between the scattering events, and how this distribution scales with scatterer diameter, scatterer density and the distribution of the scatterers. It is by now well known that in the so-called Boltzmann-Grad limit, a Poisson distribution of scatters leads to an exponential distribution of free path lengths, whereas if the scatterer distribution is periodic, the distribution of free path behaves asymptotically like a Cauchy distribution. This paper considers the case when the scatters are distributed on a quasi crystal, i.e. non periodica...

  6. Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anneke

    2011-02-02

    calculate the {sup 4}He ground-state energy. As they are of direct interest for nuclear astrophysics collective excitation modes, namely giant resonances, are investigated in the framework of the Random Phase Approximation. Including the full three-body interaction would be very time-demanding. Therefore, a density-dependent two-body interaction is used instead. This simple interaction leads to a significant improvement in the description of the isovector dipole and isoscalar quadrupole resonances while the isoscalar monopole resonances remain in good agreement with experimental data compared to the results obtained with pure unitarily transformed two-body interactions. (orig.)

  7. Regularities in Many-body Systems Interacting by a Two-body Random Ensemble

    CERN Document Server

    Zhao, Y M; Yoshinaga, N

    2003-01-01

    The even-even nuclei always have zero ground state angular momenta $I$ and positive parities $\\pi$. This feature was believed to be just a consequence of the attractive short-range interactions between nucleons. However, in the presence of two-body random interactions, the predominance of $I^{\\pi}=0^+$ ground states (0 g.s.) was found to be robust both for bosons and for an even number of fermions. For simple systems, such as $d$ bosons, $sp$ bosons, $sd$ bosons, and a few fermions in single-$j$ shells for small $j$, there are a few approaches to predict and/or explain the distribution of angular momentum $I$ ground state probabilities. An empirical recipe to predict the $I$ g.s. probabilities is available for general cases, but a more fundamental understanding of the robustness of 0 g.s. dominance is still out of reach. Other interesting results are also reviewed concerning other robust phenomena of many-body systems in the presence of random interactions, such as odd-even staggering of binding energies, gen...

  8. Analysis of charmless two-body B decays in factorization-assisted topological-amplitude approach

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Si-Hong; Zhang, Qi-An; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physics, Beijing (China); Lyu, Wei-Ran [Renmin University of China, Physics Department, Beijing (China)

    2017-02-15

    We analyze charmless two-body non-leptonic B decays B → PP, PV under the framework of a factorization-assisted topological-amplitude approach, where P(V) denotes a light pseudoscalar (vector) meson. Compared with the conventional flavor diagram approach, we consider the flavor SU(3) breaking effect assisted by a factorization hypothesis for topological diagram amplitudes of different decay modes, factorizing out the corresponding decay constants and form factors. The non-perturbative parameters of topology diagram magnitudes χ and the strong phase φ are universal; they can be extracted by χ{sup 2} fit from current abundant experimental data of charmless B decays. The number of free parameters and the χ{sup 2} per degree of freedom are both reduced compared with previous analyses. With these best fitted parameters, we predict branching fractions and CP asymmetry parameters of nearly 100 B{sub u,d} and B{sub s} decay modes. The long-standing ππ and πK-CP puzzles are solved simultaneously. (orig.)

  9. Smallness of tree-dominated charmless two-body baryonic B decay rates

    Science.gov (United States)

    Cheng, Hai-Yang; Chua, Chun-Khiang

    2015-02-01

    The long-awaited baryonic B decay B¯0→p p ¯ was recently observed by LHCb with a branching fraction of order 1 0-8. All the earlier model predictions are too large compared with experiment. In this work, we point out that for a given tree operator Oi, the contribution from its Fiertz transformed operator, an effect often missed in the literature, tends to cancel the internal W -emission amplitude induced from Oi. The wave function of low-lying baryons is symmetric in momenta and the quark flavor with the same chirality but antisymmetric in color indices. Using these symmetry properties and the chiral structure of weak interactions, we find that half of the Feynman diagrams responsible for internal W emission cancel. Since this feature holds in the charmless modes but not in the charmful ones, we advocate that the partial cancellation accounts for the smallness of the tree-dominated charmless two-body baryonic B decays. This also explains why most previous model calculations predicted too large rates as the above consideration was not taken into account. Finally, we emphasize that, contrary to the claim in the literature, the internal W -emission tree amplitude should be proportional to the Wilson coefficient c1+c2 rather than c1-c2.

  10. Charmless Hadronic Two-body Decays of the $B_s$ Mesons

    CERN Document Server

    Chen, Y H; Tseng, B; Chen, Yaw-Hwang; Cheng, Hai-Yang

    1999-01-01

    Two-body charmless nonleptonic decays of the B_s meson are studied within the framework of generalized factorization in which factorization is applied to the tree level matrix elements while the effective Wilson coefficients are $\\mu$ and renormalization scheme independent, and nonfactorizable effects are parametrized in terms of N_c(LL) and N_c(LR), the effective numbers of colors arising from (V-A)(V-A) and (V-A)(V+A) four-quark operators, respectively. Branching ratios of $B_s\\to PP,PV,VV$ decays are calculated as a function of N_c(LR) with two different considerations for N_c(LL). We find that (i) the electroweak penguin contributions account for about 85% (for N_c(LL)=2) of the decay rates of $B_s\\to \\eta\\pi,\\eta'\\pi,\\eta\\rho,\\eta'\\rho,\\phi\\pi,\\phi\\rho$, which receive contributions only from tree and electroweak penguin diagrams; a measurement of them will provide a clean determination of the electroweak penguin coefficient a_9, (ii) electroweak penguin corrections to $B_s\\to\\omega as QCD penguin effects...

  11. On the smallness of Tree-dominated Charmless Two-body Baryonic $B$ Decay Rates

    CERN Document Server

    Cheng, Hai-Yang

    2014-01-01

    The long awaited baryonic $B$ decay $\\bar B{}^0\\to p\\bar p$ was recently observed by LHCb with a branching fraction of order $10^{-8}$. All the earlier model predictions are too large compared with experiment. In this work, we point out that for a given tree operator $O_i$, the contribution from its Fiertz transformed operator, an effect often missed in the literature, tends to cancel the internal $W$-emission amplitude induced from $O_i$. The wave function of low-lying baryons are symmetric in momenta and the quark flavor with the same chirality, but antisymmetric in color indices. Using these symmetry properties and the chiral structure of weak interactions, we find that half of the Feynman diagrams responsible for internal $W$-emission cancel. Since this feature holds in the charmless modes but not in the charmful ones, we advocate that the partial cancellation accounts for the smallness of the tree-dominated charmless two-body baryonic $B$ decays. This also explains why most previous model calculations pr...

  12. Electromagnetic two-body problem: recurrent dynamics in the presence of state-dependent delay

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, Jayme [Departamento de Fisica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos, Sao Paulo 13565-905 (Brazil); Guglielmi, Nicola [Dipartimento di Matematica Pura ed Applicata, Universita degli Studi di L' Aquila, I-67010, L' Aquila (Italy); Humphries, Tony [Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 2K6 (Canada); Politi, Antonio, E-mail: deluca@df.ufscar.b [Istituto dei Sistemi Complessi, CNR Via Madonna del Piano 10-Sesto, Fiorentino I-50019 (Italy)

    2010-05-21

    We study the electromagnetic two-body problem of classical electrodynamics as a prototype dynamical system with state-dependent delays. The equations of motion are analysed with reference to motion along a straight line in the presence of an electrostatic field. We consider the general electromagnetic equations of motion for point charges with advanced and retarded interactions and study two limits, (a) retarded-only interactions (Dirac electrodynamics) and (b) half-retarded plus half-advanced interactions (Wheeler-Feynman electrodynamics). A fixed point is created where the electrostatic field balances the Coulombian attraction, and we use local analysis near this fixed point to derive necessary conditions for a Hopf bifurcation. In case (a), we study a Hopf bifurcation about an unphysical fixed point and find that it is subcritical. In case (b), there is a Hopf bifurcation about a physical fixed point and we study several families of periodic orbits near this point. The bifurcating periodic orbits are illustrated and simulated numerically, by introducing a surrogate dynamical system into the numerical analysis which transforms future data into past data by exploiting the periodicity, thus obtaining systems with only delays.

  13. Electromagnetic two-body problem: recurrent dynamics in the presence of state-dependent delay

    Science.gov (United States)

    De Luca, Jayme; Guglielmi, Nicola; Humphries, Tony; Politi, Antonio

    2010-05-01

    We study the electromagnetic two-body problem of classical electrodynamics as a prototype dynamical system with state-dependent delays. The equations of motion are analysed with reference to motion along a straight line in the presence of an electrostatic field. We consider the general electromagnetic equations of motion for point charges with advanced and retarded interactions and study two limits, (a) retarded-only interactions (Dirac electrodynamics) and (b) half-retarded plus half-advanced interactions (Wheeler-Feynman electrodynamics). A fixed point is created where the electrostatic field balances the Coulombian attraction, and we use local analysis near this fixed point to derive necessary conditions for a Hopf bifurcation. In case (a), we study a Hopf bifurcation about an unphysical fixed point and find that it is subcritical. In case (b), there is a Hopf bifurcation about a physical fixed point and we study several families of periodic orbits near this point. The bifurcating periodic orbits are illustrated and simulated numerically, by introducing a surrogate dynamical system into the numerical analysis which transforms future data into past data by exploiting the periodicity, thus obtaining systems with only delays.

  14. Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem

    CERN Document Server

    Oltean, Marius; Spallicci, Alessandro D A M; Sopuerta, Carlos F

    2016-01-01

    In classical Hamiltonian theories, entropy may be understood either as a statistical property of canonical systems, or as a mechanical property, that is, as a monotonic function of the phase space along trajectories. In classical mechanics, there are theorems which have been proposed for proving the non-existence of entropy in the latter sense. We explicate, clarify and extend the proofs of these theorems to some standard matter (scalar and electromagnetic) field theories in curved spacetime, and then we show why these proofs fail in general relativity; due to properties of the gravitational Hamiltonian and phase space measures, the second law of thermodynamics holds. As a concrete application, we focus on the consequences of these results for the gravitational two-body problem, and in particular, we prove the non-compactness of the phase space of perturbed Schwarzschild-Droste spacetimes. We thus identify the lack of recurring orbits in phase space as a distinct sign of dissipation and hence entropy producti...

  15. Quartet correlations in N = Z nuclei induced by realistic two-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sambataro, M. [Istituto Nazionale di Fisica Nucleare - Sezione di Catania, Catania (Italy); Sandulescu, N. [National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2017-03-15

    Two variational quartet models previously employed in a treatment of pairing forces are extended to the case of a general two-body interaction. One model approximates the nuclear states as a condensate of identical quartets with angular momentum J = 0 and isospin T = 0 while the other let these quartets to be all different from each other. With these models we investigate the role of alpha-like quartet correlations both in the ground state and in the lowest J = 0, T = 0 excited states of even-even N = Z nuclei in the sd -shell. We show that the ground-state correlations of these nuclei can be described to a good extent in terms of a condensate of alpha-like quartets. This turns out to be especially the case for the nucleus {sup 32}S for which the overlap between this condensate and the shell model wave function is found close to one. In the same nucleus, a similar overlap is found also in the case of the first excited 0{sup +} state. No clear correspondence is observed instead between the second excited states of the quartet models and the shell model eigenstates in all the cases examined. (orig.)

  16. Reactive two-body and three-body collisions of Ba$^+$ in an ultracold Rb gas

    CERN Document Server

    Krükow, Artjom; Härter, Arne; Denschlag, Johannes Hecker

    2016-01-01

    We analyze reactive collisions of a single Ba$^+$ ion in contact with an ultracold gas of Rb atoms at mK$\\times k_{\\mathrm{B}}$ collision energies. Mapping out the Ba$^+$ loss rate dependence on the Rb atom density we can discern two-body reactive collisions from three-body ones and for the first time determine both rate coefficients which are $k_2=3.1(6)(6)\\times 10^{-13}\\textrm{cm}^{3}\\textrm{s}^{-1}$ and $k_3=1.04(4)(45)\\times 10^{-24}\\textrm{cm}^{6}\\textrm{s}^{-1}$, respectively (statistical and systematic errors in parenthesis). Thus, the measured ternary recombination dominates over binary reactions even at moderate atom densities of $n\\approx 10^{12}\\: \\textrm{cm}^{-3}$. The results for Ba$^+$ and Rb are representative for a wide range of cold ion-atom systems and can serve as a guidance for the future development of the field of hybrid atom-ion research.

  17. Effect of the band structure in a rigorous two-body model with long-range interactions in 1D optical lattices

    Science.gov (United States)

    Kristensen, Tom; Simoni, Andrea; Launay, Jean-Michel

    2016-05-01

    We compute scattering and bound state properties for two ultracold molecules in a pure 1D optical lattice. We introduce reference functions with complex quasi-momentum that naturally account for the effect of excited energy bands. Our exact results for a short-range interaction are first compared with the simplest version of the standard Bose-Hubbard (BH) model. Such comparison allows us to highlight the effect of the excited bands, of the non-on-site interaction and of tunneling with distant neighbor, that are not taken into account in the BH model. The effective interaction can depend strongly on the particle quasi-momenta and can present a resonant behavior even in a deep lattice. As a second step, we study scattering of two polar particles in the optical lattice. Peculiar Wigner threshold laws stem from the interplay of the long range dipolar interaction and the presence of the energy bands. We finally assess the validity of an extended Bose-Hubbard model for dipolar gases based on our exact two-body calculations. This work was supported by the Agence Nationale de la Recherche (Contract No. ANR-12-BS04-0020-01).

  18. Analysis of two-body nonleptonic B decays involving light mesons in the standard model

    Science.gov (United States)

    Ali, A.; Greub, C.

    1998-03-01

    We report a theoretical analysis of the exclusive nonleptonic decays of the B+/- and B0 mesons into two light mesons, some of which have been measured recently by the CLEO Collaboration. Our analysis is carried out in the context of an effective Hamiltonian based on the standard model (SM), using next-to-leading order perturbative QCD calculations. We explicitly take into account the O(αs) penguin-loop diagrams of all four-Fermi operators and the O(αs) tree-level diagram of the chromomagnetic dipole operator, and give a prescription for including their effects in nonleptonic two-body decays. Using a factorization ansatz for the hadronic matrix elements, we show that existing data, in particular, the branching ratios B(B+/--->η'K+/-), B(B+/--->π+/-K0), B(B0(B0¯)-->π-/+K+/-), and B(B+/--->ωh+/-)(h+/-=π+/-,K+/-), can be accounted for in this approach. Thus, theoretical scenarios with a substantially enhanced Wilson coefficient of the chromomagnetic dipole operator (as compared to the SM) and/or those with a substantial color-singlet cc¯ component in the wave function of η' are not required by these data. We predict, among other decay rates, the branching ratios for the decays B0(B0¯)-->π+/-π-/+ and B+/--->π0π+/-, which are close to the present experimental limits. Implications of some of these measurements for the parameters of the CKM matrix are presented.

  19. Nonlocality in many-body quantum systems detected with two-body correlators

    Energy Technology Data Exchange (ETDEWEB)

    Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)

    2015-11-15

    Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.

  20. Positivity of the real part of the forward scattering amplitude arXiv

    CERN Document Server

    Martin, André

    We prove the general theorem that the real part of the forward two-body scattering amplitude is positive at sufficiently high energies if, above a certain energy, the total cross section increases monotonically to infinity at infinite energy.

  1. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  2. Multiple scattering Model in GEANT4

    CERN Document Server

    Urbàn, L

    2002-01-01

    We present a new multiple scattering (MSC) model to simulate the multiple scattering of charged particles in matter. This model does not use the Moliere formalism, it is based on the more complete Lewis theory. The model simulates the scattering of the particle after a given step, computes the path length correction and the lateral displacement as well.

  3. Heterodyne Near-Field Scattering

    CERN Document Server

    Brogioli, D; Giglio, M; Giglio, Marzio

    2002-01-01

    We describe an optical technique based on the statistical analysis of the random intensity distribution due to the interference of the near-field scattered light with the strong transmitted beam. It is shown that, from the study of the two-dimensional power spectrum of the intensity, one derives the scattered intensity as a function of the scattering wave vector. Near-field conditions are specified and discussed. The substantial advantages over traditional scattering technique are pointed out, and is indicated that the technique could be of interest for wave lengths other than visible light.

  4. Modified two-body potential approach to the peripheral direct capture astrophysical a+A->B+{gamma} reaction and asymptotic normalization coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Igamov, S.B. [Institute of Nuclear Physics, Uzbekistan Academy of Sciences, 702132 Tashkent (Uzbekistan); Yarmukhamedov, R. [Institute of Nuclear Physics, Uzbekistan Academy of Sciences, 702132 Tashkent (Uzbekistan)]. E-mail: rakhim@inp.uz

    2007-01-01

    A modified two-body potential approach is proposed for determination of both the asymptotic normalization coefficient (ANC) (or the respective nuclear vertex constant (NVC)) for the A+a->B (for the virtual decay B->A+a) from an analysis of the experimental S-factor for the peripheral direct capture a+A->B+{gamma} reaction and the astrophysical S-factor, S(E), at low experimentally inaccessible energy regions. The approach proposed involves two additional conditions which verify the peripheral character of the considered reaction and expresses S(E) in terms of the ANC. The connection between NVC (ANC) and the effective range parameters for Aa-scattering is derived. To test this approach we reanalyse the precise experimental astrophysical S-factors for t+{alpha}->Li7+{gamma} reaction at energies E=<1200 keV [C.R. Brune et al., Phys. Rev. C 50 (1994) 2205]. The same Wood-Saxon potential form both for the bound (t+{alpha})-state wave function and for the {alpha}t-scattering wave function is used to guarantee selfconsistency. New estimates have been obtained for the values of the ANC's (the NVC's) for the {alpha}+t->Li7(g.s.), {alpha}+t->Li7(0.478 MeV) and of S(E) at E=<50 keV. These ANC values have been used for getting information about the ''indirect'' measured values of the effective range parameters and the p-wave phase shift for {alpha}t-scattering in the energy range of 100-bar E-bar 180 keV.

  5. Insensitivity of the Yrast Spectra of Even-Even Nuclei to the T=0 two-body interaction matrix elements

    CERN Document Server

    Robinson, S J Q; Robinson, Shadow J.Q.; Zamick, Larry

    2002-01-01

    Calculations of the spectra of various even-even nuclei in the fp shell ($^{44}$Ti, $^{46}$Ti, $^{48}$Cr, and $^{50}$Cr) are performed with two sets of two-body interaction matrix elements. The first set consists of the matrix elements of the FPD6 interaction. The second set have the same T=1 two-body matrix elements as the FPD6 interaction, but all the T=0 two-body matrix elements are set equal to zero. Despite the drastic differences between the two interactions, the spectra they yield are very similar and indeed it is difficult to say which set gives a better fit to experiment. That the results for the yrast spectra are insensitive to the presence or absence of T=0 two-body matrix elements is surprising because the only bound two nucleon system has T=0, namely the deuteron. Also there is the general folklore that T=0 matrix elements are responsible for nuclear collectivity. Electric quadrupole transition rates are also examined. It is found that the reintroduction of T=0 matrix elements leads to an enhance...

  6. Two-body non-leptonic heavy-to-heavy decays at NNLO in QCD factorization

    CERN Document Server

    Huber, Tobias; Li, Xin-Qiang

    2016-01-01

    We evaluate in the framework of QCD factorization the two-loop vertex corrections to the decays $\\bar{B}_{(s)}\\to D_{(s)}^{(\\ast)+} \\, L^-$ and $\\Lambda_b \\to \\Lambda_c^+ \\, L^-$, where $L$ is a light meson from the set $\\{\\pi,\\rho,K^{(\\ast)},a_1\\}$. These decays are paradigms of the QCD factorization approach since only the colour-allowed tree amplitude contributes at leading power. Hence they are sensitive to the size of power corrections once their leading-power perturbative expansion is under control. Here we compute the two-loop ${\\cal O}(\\alpha_s^2)$ correction to the leading-power hard scattering kernels, and give the results for the convoluted kernels almost completely analytically. Our newly computed contribution amounts to a positive shift of the magnitude of the tree amplitude by $\\sim 2$\\%. We then perform an extensive phenomenological analysis to NNLO in QCD factorization, using the most recent values for non-perturbative input parameters. Given the fact that the NNLO perturbative correction and ...

  7. Pion-nucleon scattering in the P/sub 11/ channel

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, S.; Afnan, I.R.

    1982-09-01

    We present a parametrization of the ..pi..-N interaction in the P/sub 11/ channel in which the amplitude is the sum of a pole part and a non-pole part (t = t/sub pole/+t/sub np/) and satisfies two-body unitarity. Here t/sub pole/ has both the nucleon propagator and the ..pi..NN vertex dressed. The final amplitude fits the scattering length and low energy ..pi..-N phase shifts (T/sub ..pi..//sup lab/<300 MeV). We study the effect of a resonance in t/sub np/ on the phase shifts, ..pi..NN coupling constant and the off-shell behavior of the amplitude.

  8. Development of asymptotic methods for the study of interactions between cold atoms: determination of scattering lengths of sodium and cesium; Developpement de methodes asymptotiques pour l'etude des interactions entre atomes froids: determination de longueurs de diffusion du sodium et du cesium

    Energy Technology Data Exchange (ETDEWEB)

    T' Jampens, B

    2002-12-15

    Precise knowledge of cold-atom collision properties is essential for the studies of Bose-Einstein condensation or cold molecule formation. In such experiments, the interaction mainly occurs at rather large interatomic distance, in the so-called asymptotic region. We have developed a purely asymptotic method which allows us to fully describe the collision properties of cold alkali atoms without using the inner part of the molecular potentials, which is often known with a poor precision. The key point of the method is the setting of nodal lines, which are the lines connecting the nodes of successive radial wavefunctions near the ground state threshold. Within the framework of Born-Oppenheimer approximation, computing such nodal lines, by numerical integration of the radial Schroedinger equation in the asymptotic region only, provides a very simple way to derive scattering lengths from observed bound level positions. The method has been extended to the multichannel case and appears now as a genuine parametric method, in which a few parameters (some chosen nodal lines) replace the inner part of the potentials. These nodal lines are used as fitting parameters, which are adjusted on experimental results. Once these parameters have been determined, any collision property such as scattering lengths, clock shifts or magnetic field induced Feshbach resonances can be deduced in principle. This method has been applied to obtain the collision properties of ultracold sodium and cesium atoms. (author)

  9. Analytic, group-theoretic wave functions for confined, correlated N-body systems with general two-body interactions

    Science.gov (United States)

    Dunn, M.; Watson, D. K.; Loeser, J. G.

    2006-08-01

    In this paper, we develop an analytic N-body wave function for identical particles under quantum confinement with a general two-body interaction. A systematic approach to correlation is developed by combining three theoretical methods: dimensional perturbation theory, the FG method of Wilson et. al., and the group theory of the symmetric group. Analytic results are achieved for a completely general interaction potential. Unlike conventional perturbation methods which are applicable only for weakly interacting systems, this analytic approach is applicable to both weakly and strongly interacting systems. This method directly accounts for each two-body interaction, rather than an average interaction so even lowest-order results include beyond-mean-field effects. One major advantage is that N appears as a parameter in the analytical expressions for the energy so results for different N are easy to obtain.

  10. Evidence for the two-body nature of the E1 transition operator in the sdf-interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Barfield, A.F.; Brentano, P. von; Dewald, A.; Zell, K.O.; Zamfir, N.V.; Bucurescu, D.; Ivascu, M.; Scholten, O.

    1989-01-01

    Two new a absolute transition rates are reported for the nucleus /sup 144/Sm following an (..cap alpha.., ..cap alpha..') Coulomb excitation study. They are B(E3;3/sup -/ -> 0/sup +/)=(38+-3)W.u. and B(E1;3/sup -/ -> 2/sup +/)=2.8+-0.4)x10/sup -3/W.u. This large E1 matrix element, along with the previously known B(E1;1/sup -/ -> 0/sup +/) value support the interpretation of the 1/sup -/ state in this nucleus as 2-phonon 2/sup +/x3/sup -/ excitation. In the frame of the IBM-1+f-boson model we show the need for a two-body term in the E1 transition operator. Estimates for the strenghts of the one and two-body parts of the E1 transition operator are obtained from these experimental data.

  11. Two-body coordinate system generation using body-fitted coordinate system and complex variable transformation. M.S. Thesis

    Science.gov (United States)

    Long, W. S.

    1977-01-01

    Attempts are made to generate acceptable coordinate systems for two-body configurations. The first method to be tried was to use the body-fitted coordinate system technique to obtain the best system. This technique alone did not produce very good results, so another approach was investigated. This new approach involved using a combination of the body fitted coordinate system procedure and a complex variable transformation method that was used successfully in conformal mapping.

  12. Two-body problem in general relativity: A heuristic guide for the Einstein-Rosen bridge and EPR paradox

    OpenAIRE

    Weinstein, Galina

    2015-01-01

    Between 1935 and 1936, Einstein was occupied with the Schwarzschild solution and the singularity within it while working in Princeton on the unified field theory and with his assistant Nathan Rosen, on the theory of the Einstein-Rosen bridges. He was also occupied with quantum theory. He believed that quantum theory was an incomplete representation of real things. Together with Rosen and Boris Podolsky he invented the EPR paradox. I demonstrate that the two-body problem in general relativity ...

  13. Measurement of branching fractions and CP violation for charmless charged two-body B decays at LHCb

    CERN Document Server

    Perazzini, Stefano

    Charmless charged two-body B decays are sensitive probes of the CKM matrix, that parameterize CP violation in the Standard Model (SM), and have the potential to reveal the presence of New Physics. The framework of CP violation within the SM, the role of the CKM matrix, with its basic formalism, and the current experimental status are presented. The theoretical tools commonly used to deal with hadronic B decays and an overview of the phenomenology of charmless two-body B decays are outlined. LHCb is one of the four main experiments operating at the Large Hadron Collider (LHC), devoted to the measurement of CP violation and rare decays of charm and beauty hadrons. The LHCb detector is described, focusing on the technologies adopted for each sub-detector and summarizing their performances. The status-of-the-art of the LHCb measurements with charmless two-body B decays is then presented. Using the 37/pb of integrated luminosity collected at sqrt(s) = 7 TeV by LHCb during 2010, the direct CP asymmetries ACP(B0 -> ...

  14. Critical scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics

    1996-12-31

    We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.

  15. Bound and scattering properties in waveguides around free-space Feshbach resonance

    Science.gov (United States)

    Wang, Gaoren; Giannakeas, Panogiotis; Schmelcher, Peter

    2016-05-01

    The two-body bound and scattering properties in an one-dimensional (1D) harmonic waveguide in the vicinity of free-space magnetic Feshbach resonances are investigated based on the local frame transformation approach. The multichannel characteristics of the interatomic interaction is taken into account. We examine the crossing between the bound state in the waveguide and the ground level of the transverse confinement, i.e. when the bound state crosses the scattering threshold in the waveguide and turns into a continuum state. For s-wave collision, the crossing occurs at the magnetic field where the effective 1D interaction strength g1 D vanishes, and the effective 1D scattering length a1 D diverges. This observation indicates that the molecular formation or atom loss signal in a harmonic waveguide is expected at the magnetic field where a1 D is infinite. Molecule formation is absent at position of the confinement induced resonance which is characterized by the divergence of g1 D . Financial support from Alexander von Humboldt Foundation is acknowledged.

  16. Estimation of genome length

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genome length is a fundamental feature of a species. This note outlined the general concept and estimation method of the physical and genetic length. Some formulae for estimating the genetic length were derived in detail. As examples, the genome genetic length of Pinus pinaster Ait. and the genetic length of chromosome Ⅵ of Oryza sativa L. were estimated from partial linkage data.

  17. Path length enhancement in disordered media for increased absorption

    CERN Document Server

    Mupparapu, Rajeshkumar; Svensson, Tomas; Burresi, Matteo; Wiersma, Diederik S

    2015-01-01

    We theoretically and numerically investigate the capability of disordered media to enhance the optical path length in dielectric slabs and augment their light absorption efficiency due to scattering. We first perform a series of Monte Carlo simulations of random walks to determine the path length distribution in weakly to strongly (single to multiple) scattering, non-absorbing dielectric slabs under normally incident light and derive analytical expressions for the path length enhancement in these two limits. Quite interestingly, while multiple scattering is expected to produce long optical paths, we find that media containing a vanishingly small amount of scatterers can still provide high path length enhancements due to the very long trajectories sustained by total internal reflection at the slab interfaces. The path length distributions are then used to calculate the light absorption efficiency of media with varying absorption coefficients. We find that maximum absorption enhancement is obtained at an optima...

  18. Derived length for arbitrary topological spaces

    Directory of Open Access Journals (Sweden)

    A. J. Jayanthan

    1992-01-01

    Full Text Available The notion of derived length is as old as that of ordinal numbers itself. It is also known as the Cantor-Bendixon length. It is defined only for dispersed (that is scattered spaces. In this paper this notion has been extended in a natural way for all topological spaces such that all its pleasing properties are retained. In this process we solve a problem posed by V. Kannan. ([1] Page 158.

  19. Two-body problem in general relativity: A heuristic guide for the Einstein-Rosen bridge and EPR paradox

    CERN Document Server

    Weinstein, Galina

    2015-01-01

    Between 1935 and 1936, Einstein was occupied with the Schwarzschild solution and the singularity within it while working in Princeton on the unified field theory and with his assistant Nathan Rosen, on the theory of the Einstein-Rosen bridges. He was also occupied with quantum theory. He believed that quantum theory was an incomplete representation of real things. Together with Rosen and Boris Podolsky he invented the EPR paradox. I demonstrate that the two-body problem in general relativity was a heuristic guide in Einstein's and collaborators' 1935 work on the Einstein-Rosen bridge and EPR paradox.

  20. Exchanged naturality contributions from high-energy polarization measurements in two-body inclusive and exclusive reactions

    CERN Document Server

    Ader, J P

    1974-01-01

    In the paper, dealing with high-energy quasi-two-body or multiparticle production, the authors focus on what can be learned about exchanged naturality amplitudes from final polarization measurements with polarized or unpolarized beam amd/or target. The separation of t- channel (boson exchange) and u-channel (baryon exchange) exchanges into components of natural and unnatural parity and the measure of naturality interferences are extensively studied in all cases which are now or will be soon available with present experimental techniques. Special attention is paid to the transversity amplitudes which are shown to be always naturality conserving. (19 refs).

  1. Ground State Properties of Many-Body Systems in the Two-Body Random Ensemble and Random Matrix Theory

    CERN Document Server

    Santos, L F; Jacquod, P; Kusnezov, Dimitri; Jacquod, Ph.

    2002-01-01

    We explore generic ground-state and low-energy statistical properties of many-body bosonic and fermionic one- and two-body random ensembles (TBRE) in the dense limit, and contrast them with Random Matrix Theory (RMT). Weak differences in distribution tails can be attributed to the regularity or chaoticity of the corresponding Hamiltonians rather than the particle statistics. We finally show the universality of the distribution of the angular momentum gap between the lowest energy levels in consecutive J-sectors for the four models considered.

  2. Scattering problems in elastodynamics

    Science.gov (United States)

    Diatta, Andre; Kadic, Muamer; Wegener, Martin; Guenneau, Sebastien

    2016-09-01

    In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this Rapid Communication, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasistatic regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof.

  3. Scattering problems in elastodynamics

    CERN Document Server

    Diatta, Andre; Wegener, Martin; Guenneau, Sebastien

    2016-01-01

    In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this paper, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasi-static regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof.

  4. First evidence for the two-body charmless baryonic decay $B^0 \\to p \\bar{p}$

    CERN Document Server

    INSPIRE-00258707; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Cowie, E; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The results of a search for the rare two-body charmless baryonic decays $B^0 \\to p \\bar{p}$ and $B_s^0 \\to p \\bar{p}$ are reported. The analysis uses a data sample, corresponding to an integrated luminosity of 0.9 fb$^{-1}$, of $pp$ collision data collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. An excess of $B^0 \\to p \\bar{p}$ candidates with respect to background expectations is seen with a statistical significance of 3.3 standard deviations. This is the first evidence for a two-body charmless baryonic $B^0$ decay. No significant $B_s^0 \\to p \\bar{p}$ signal is observed, leading to an improvement of three orders of magnitude over previous bounds. If the excess events are interpreted as signal, the 68.3\\% confidence level intervals on the branching fractions are \\begin{eqnarray} \\cal{B}(\\rm{B}^0 \\to p \\bar{p}) & = & ( 1.47 \\,^{+0.62}_{-0.51} \\,^{+0.35}_{-0.14} ) \\times 10^{-8} \\,, \

  5. Program in C for studying characteristic properties of two-body interactions in the framework of spectral distribution theory

    CERN Document Server

    Launey, K D; Dytrych, T; Draayer, J P

    2014-01-01

    We present a program in C that employs spectral distribution theory for studies of characteristic properties of a many-particle quantum-mechanical system and the underlying few-body interaction. In particular, the program focuses on two-body nuclear interactions given in a JT-coupled harmonic oscillator basis and calculates correlation coefficients, a measure of similarity of any two interactions, as well as Hilbert-Schmidt norms specifying interaction strengths. An important feature of the program is its ability to identify the monopole part (centroid) of a 2-body interaction, as well as its 'density-dependent' one-body and two-body part, thereby providing key information on the evolution of shell gaps and binding energies for larger nuclear systems. As additional features, we provide statistical measures for 'density-dependent' interactions, as well as a mechanism to express an interaction in terms of two other interactions. This, in turn, allows one to identify, e.g., established features of the nuclear in...

  6. Many-body Systems Interacting via a Two-body Random Ensemble; 1, Angular Momentum distribution in the ground states

    CERN Document Server

    Zhao, Y M; Yoshinaga, N

    2002-01-01

    In this paper, we discuss the angular momentum distribution in the ground states of many-body systems interacting via a two-body random ensemble. Beginning with a few simple examples, a simple approach to predict P(I)'s, angular momenta I ground state (g.s.) probabilities, of a few solvable cases, such as fermions in a small single-j shell and d boson systems, is given. This method is generalized to predict P(I)'s of more complicated cases, such as even or odd number of fermions in a large single-j shell or a many-j shell, d-boson, sd-boson or sdg-boson systems, etc. By this method we are able to tell which interactions are essential to produce a sizable P(I) in a many-body system. The g.s. probability of maximum angular momentum $I_{max}$ is discussed. An argument on the microscopic foundation of our approach, and certain matrix elements which are useful to understand the observed regularities, are also given or addressed in detail. The low seniority chain of 0 g.s. by using the same set of two-body interact...

  7. Quasi-two-body decays $B\\to K\\rho\\to K\\pi\\pi$ in perturbative QCD approach

    CERN Document Server

    Wang, Wen-Fei

    2016-01-01

    We analyze the quasi-two-body decays $B\\to K\\rho\\to K\\pi\\pi$ in the perturbative QCD (PQCD) approach, in which final-state interactions between the pions in the resonant regions associated with the $P$-wave states $\\rho(770)$ and $\\rho^\\prime(1450)$ are factorized into two-pion distribution amplitudes. Adopting experimental inputs for the time-like pion form factors involved in two-pion distribution amplitudes, we calculate branching ratios and direct $CP$ asymmetries of the $B\\to K\\rho(770),K\\rho^\\prime(1450)\\to K\\pi\\pi$ modes. It is shown that agreement of theoretical results with data can be achieved, through which Gegenbauer moments of the $P$-wave two-pion distribution amplitudes are determined. The consistency between the three-body and two-body analyses of the $B\\to K\\rho(770)\\to K\\pi\\pi$ decays supports the PQCD factorization framework for exclusive hadronic $B$ meson decays.

  8. Two- and quasi-two-body strange particle final state production in. pi. /sup +/p interactions at low to intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.

    1982-10-01

    The two and quasi-two body final states ..sigma../sup +/K/sup +/, ..sigma../sup +/K* (892)/sup +/, ..sigma..*(1385)/sup +/K/sup +/, ..sigma..(1385)/sup +/K*(892)/sup +/ produced by neutral strangeness exchange in ..pi../sup +/p interactions are studied using our own 1-3 GeV/c data, comprising the 14 incident momenta of a two million picture bubble chamber experiment, in combination with the world data on the same and related channels. Because low energy resonance formation is not strongly coupled to the ..sigma..,..sigma..* production channels, at very modest incident momenta their dominant features are seen to be understandable in terms of high energy hypercharge exchange phenomenology. We find that Regge models fitted to data in the 10 to 20 GeV/c range adequately describe the ..sigma.. and ..sigma..* channels down to within a few hundred MeV/c of threshold and out to large center of mass scattering angles, and that over the range of the available world data weak exchange degeneracy expectations for these reactions are at least qualitatively successful. We observe that the SU(2), SU(3) flavor symmetries successfully describe these hypercharge exchange processes and relate them to charge exchange via sum rules and equalities expressing flavor independence of the strong interaction; in particular, we derive and test on the available world data a mass broken SU(3) sum rule for ..pi../sup +/p ..-->.. K/sup +/..sigma../sup +/, ..pi../sup -/p ..-->.. K/sup 0/..lambda.., K/sup -/p ..-->.. anti K/sup 0/n and test over a wider range of momenta than before an earlier expression relating ..sigma..* and ..delta.. production. We also find at least qualitative agreement between quark model predictions for forward hypercharge exchange and the data, and we find that 90/sup 0/ hypercharge exchange cross sections also conform to the expectations of the quark constituent picture for hadrons.

  9. Scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2013-08-01

    Written by the author of the widely acclaimed textbook. Theoretical Atomic Physics Includes sections on quantum reflection, tunable Feshbach resonances and Efimov states. Useful for advanced students and researchers. This book presents a concise and modern coverage of scattering theory. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. The level of abstraction is kept as low as at all possible, and deeper questions related to mathematical foundations of scattering theory are passed by. The book should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. It is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.

  10. Scattering theory

    CERN Document Server

    Friedrich, Harald

    2016-01-01

    This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...

  11. Path length enhancement in disordered media for increased absorption.

    Science.gov (United States)

    Mupparapu, Rajeshkumar; Vynck, Kevin; Svensson, Tomas; Burresi, Matteo; Wiersma, Diederik S

    2015-11-30

    We theoretically and numerically investigate the capability of disordered media to enhance the optical path length in dielectric slabs and augment their light absorption efficiency due to scattering. We first perform a series of Monte Carlo simulations of random walks to determine the path length distribution in weakly to strongly (single to multiple) scattering, non-absorbing dielectric slabs under normally incident light and derive analytical expressions for the path length enhancement in these two limits. Quite interestingly, while multiple scattering is expected to produce long optical paths, we find that media containing a vanishingly small amount of scatterers can still provide high path length enhancements due to the very long trajectories sustained by total internal reflection at the slab interfaces. The path length distributions are then used to calculate the light absorption efficiency of media with varying absorption coefficients. We find that maximum absorption enhancement is obtained at an optimal scattering strength, in-between the single-scattering and the diffusive (strong multiple-scattering) regimes. This study can guide experimentalists towards more efficient and potentially low-cost solutions in photovoltaic technologies.

  12. Analytical determination of the two-body gravitational interaction potential at the 4th post-Newtonian approximation

    CERN Document Server

    Bini, Donato

    2013-01-01

    We complete the analytical determination, at the 4th post-Newtonian approximation, of the main radial potential describing the gravitational interaction of two bodies within the effective one-body formalism. The (non logarithmic) coefficient a_5 (nu) measuring this 4th post-Newtonian interaction potential is found to be linear in the symmetric mass ratio nu. Its nu-independent part a_5 (0) is obtained by an analytical gravitational self-force calculation that unambiguously resolves the formal infrared divergencies which currently impede its direct post-Newtonian calculation. Its nu-linear part a_5 (nu) - a_5 (0) is deduced from recent results of Jaranowski and Sch\\"afer, and is found to be significantly negative.

  13. Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potential: 1D and 2D Case

    CERN Document Server

    Shapeev, Alexander V

    2010-01-01

    This paper concerns the problem of consistent energy-based coupling of atomistic and continuum models of materials, limited to zero-temperature statics of simple crystalline materials. It has been widely recognized that the most practical coupled methods exhibit finite errors on the atomistic/continuum interface (which are often attributed to spurious forces called "ghost forces"). There are only few existing works that propose a coupling which is sufficiently accurate near the interface under certain limitations. In this paper a novel coupling that is free from "ghost forces" is proposed for a two-body interaction potential under the assumptions of either (i) one spatial dimension, or (ii) two spatial dimensions and piecewise affine finite elements for describing the continuum deformation. The computational efficiency of the proposed coupling is demonstrated with numerical experiments. The coupling strategy is based on judiciously defining the contributions of the atomistic bonds to the discrete and the cont...

  14. Visual capture and the experience of having two bodies – Evidence from two different virtual reality techniques

    Directory of Open Access Journals (Sweden)

    Lukas eHeydrich

    2013-12-01

    Full Text Available In neurology and psychiatry the detailed study of illusory own body perceptions has suggested close links between bodily processing and self-consciousness. One such illusory own body perception is heautoscopy where patients have the sensation of being reduplicated and to exist at two or even more locations. In previous experiments, using a video head-mounted display, self-location and self-identification were manipulated by applying conflicting visuo-tactile information. Yet the experienced singularity of the self was not affected, i.e. participants did not experience having multiple bodies or selves. In two experiments presented in this paper, we investigated self-location and self-identification while participants saw two virtual bodies (video-generated in study 1 and 3D computer generated in study 2 that were stroked either synchronously or asynchronously with their own body. In both experiments, we report that self-identification with two virtual bodies was stronger during synchronous stroking. Furthermore, in the video generated setup with synchronous stroking participants reported a greater feeling of having multiple bodies than in the control conditions. In study 1, but not in study 2, we report that self-location – measured by anterior posterior drift – was significantly shifted towards the two bodies in the synchronous condition only. Self-identification with two bodies, the sensation of having multiple bodies, and the changes in self-location show that the experienced singularity of the self can be studied experimentally. We discuss our data with respect to ownership for supernumerary hands and heautoscopy. We finally compare the effects of the video and 3D computer generated head-mounted display technology and discuss the possible benefits of using either technology to induce changes in illusory self-identification with a virtual body.

  15. Visual capture and the experience of having two bodies – Evidence from two different virtual reality techniques

    Science.gov (United States)

    Heydrich, Lukas; Dodds, Trevor J.; Aspell, Jane E.; Herbelin, Bruno; Bülthoff, Heinrich H.; Mohler, Betty J.; Blanke, Olaf

    2013-01-01

    In neurology and psychiatry the detailed study of illusory own body perceptions has suggested close links between bodily processing and self-consciousness. One such illusory own body perception is heautoscopy where patients have the sensation of being reduplicated and to exist at two or even more locations. In previous experiments, using a video head-mounted display, self-location and self-identification were manipulated by applying conflicting visuo-tactile information. Yet the experienced singularity of the self was not affected, i.e., participants did not experience having multiple bodies or selves. In two experiments presented in this paper, we investigated self-location and self-identification while participants saw two virtual bodies (video-generated in study 1 and 3D computer generated in study 2) that were stroked either synchronously or asynchronously with their own body. In both experiments, we report that self-identification with two virtual bodies was stronger during synchronous stroking. Furthermore, in the video generated setup with synchronous stroking participants reported a greater feeling of having multiple bodies than in the control conditions. In study 1, but not in study 2, we report that self-location – measured by anterior posterior drift – was significantly shifted towards the two bodies in the synchronous condition only. Self-identification with two bodies, the sensation of having multiple bodies, and the changes in self-location show that the experienced singularity of the self can be studied experimentally. We discuss our data with respect to ownership for supernumerary hands and heautoscopy. We finally compare the effects of the video and 3D computer generated head-mounted display technology and discuss the possible benefits of using either technology to induce changes in illusory self-identification with a virtual body. PMID:24385970

  16. HFOLD - A program package for calculating two-body MSSM Higgs decays at full one-loop level.

    Science.gov (United States)

    Frisch, W; Eberl, H; Hluchá, H

    2011-10-01

    HFOLD (Higgs Full One Loop Decays) is a Fortran program package for calculating all MSSM Higgs two-body decay widths and the corresponding branching ratios at full one-loop level. The package is done in the SUSY Parameter Analysis convention and supports the SUSY Les Houches Accord input and output format. PROGRAM SUMMARY: Program title: HFOLD Catalogue identifier: AEJG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 340 621 No. of bytes in distributed program, including test data, etc.: 1 760 051 Distribution format: tar.gz Programming language: Fortran 77 Computer: Workstation, PC Operating system: Linux RAM: 524 288 000 Bytes Classification: 11.1 External routines: LoopTools 2.2 (http://www.feynarts.de/looptools/), SLHALib 2.2 (http://www.feynarts.de/slha/). The LoopTools code is included in the distribution package. Nature of problem: A future high-energy e+e- linear collider will be the best environment for the precise measurements of masses, cross sections, branching ratios, etc. Experimental accuracies are expected at the per-cent down to the per-mile level. These must be matched from the theoretical side. Therefore higher order calculations are mandatory. Solution method: This program package calculates all MSSM Higgs two-body decay widths and the corresponding branching ratios at full one-loop level. The renormalization is done in the DR scheme following the SUSY Parameter Analysis convention. The program supports the SUSY Les Houches Accord input and output format. Running time: The example provided takes only a few seconds to run.

  17. Recoil corrections in antikaon-deuteron scattering

    Directory of Open Access Journals (Sweden)

    Mai Maxim

    2016-01-01

    Full Text Available Using the non-relativistic effective field theory approach for K−d scattering, it is demonstrated that a systematic perturbative expansion of the recoil corrections in the parameter ξ = MK/mN is possible in spite of the fact that K−d scattering at low energies is inherently non-perturbative due to the large values of the K̄N scattering lengths. The first order correction to the K−d scattering length due to single insertion of the retardation term in the multiple-scattering series is calculated. The recoil effect turns out to be reasonably small even at the physical value of MK/mN ≃ 0:5.

  18. Shaped beam scattering by an anisotropic particle

    Science.gov (United States)

    Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang

    2017-03-01

    An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.

  19. Measuring Thermodynamic Length

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, Gavin E

    2007-09-07

    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interestin understanding matter out of equilibrium. In this Letter, we will consider how to denethermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.

  20. Superradiant Forward Scattering in Multiple Scattering

    CERN Document Server

    Chabe, Julien; Bienaime, Tom; Bachelard, Romain; Piovella, Nicola; Kaiser, Robin

    2012-01-01

    We report on an interference effect in multiple scattering by resonant scatterers resulting in enhanced forward scattering, violating Ohm's law for photons. The underlying mechanism of this wave effect is superradiance, which we have investigated using cold atoms as a toy model. We present numerical and experimental evidences for this superradiant forward scattering, which is robust against disorder and configuration averaging.

  1. Methods of Numerical Analysis of One-Dimensional Two-Body Problem in Wheeler-Feynman Electrodynamics

    Science.gov (United States)

    Klimenko, S. V.; Nikitin, I. N.; Urazmetov, W. F.

    Numerical methods for solutions of differential equations with deviating arguments describing one-dimensional ultra-relativistic scattering of two identical charged particles in Wheeler-Feynman electrodynamics with half-retarded/half-advanced interaction are developed. Utilization of the methods for the physical problem analysis leads to the discovery of a bifurcation of solutions and breaking of their reflectional symmetry for particles asymptotic velocity v>0.937c in their center-of-mass frame.

  2. Two-body decays of gluino at full one-loop level in the quark-flavour violating MSSM.

    Science.gov (United States)

    Eberl, Helmut; Ginina, Elena; Hidaka, Keisho

    2017-01-01

    We study the two-body decays of the gluino at full one-loop level in the Minimal Supersymmetric Standard Model with quark-flavour violation (QFV) in the squark sector. The renormalisation is done in the [Formula: see text] scheme. The gluon and photon radiations are included by adding the corresponding three-body decay widths. We discuss the dependence of the gluino decay widths on the QFV parameters. The main dependence stems from the [Formula: see text]-[Formula: see text] mixing in the decays to up-type squarks, and from the [Formula: see text]-[Formula: see text] mixing in the decays to down-type squarks due to the strong constraints from B-physics on the other quark-flavour-mixing parameters. The full one-loop corrections to the gluino decay widths are mostly negative and of the order of about -10%. The QFV part stays small in the total width but can vary up to -8% for the decay width into the lightest [Formula: see text] squark. For the corresponding branching ratio the effect is somehow washed out by at least a factor of two. The electroweak corrections can be as large as 35% of the SUSY QCD corrections.

  3. Many-body Systems Interacting via a Two-body Random Ensemble average energy of each angular momentum

    CERN Document Server

    Zhao, Y M; Yoshinaga, N

    2002-01-01

    In this paper, we discuss the regularities of energy of each angular momentum $I$ averaged over all the states for a fixed angular momentum (denoted as $\\bar{E}_I$'s) in many-body systems interacting via a two-body random ensemble. It is found that $\\bar{E}_I$'s with $I \\sim I_{min}$ (minimum of $I$) or $I_{max}$ have large probabilities (denoted as ${\\cal P}(I)$) to be the lowest, and that ${\\cal P}(I)$ is close to zero elsewhere. A simple argument based on the randomness of the two-particle cfp's is given. A compact trajectory of the energy $\\bar{E}_I$ vs. $I(I+1)$ is found to be robust. Regular fluctuations of the $P(I)$ (the probability of finding $I$ to be the ground state) and ${\\cal P}(I)$ of even fermions in a single-$j$ shell and boson systems are found to be reverse, and argued by the dimension fluctuation of the model space. Other regularities, such as why there are 2 or 3 sizable ${\\cal P}(I)$'s with $I\\sim I_{min}$ and ${\\cal P}(I) \\ll {\\cal P}(I_{max})$'s with $I\\sim I_{max}$, why the coefficien...

  4. A global analysis of two-body D to VP decays within the framework of flavor symmetry

    CERN Document Server

    Cheng, Hai-Yang; Kuo, An-Li

    2016-01-01

    Two-body charmed meson decays $D\\to VP$ are studied within the framework of the diagrammatic approach. Under flavor SU(3) symmetry, all the flavor amplitude sizes and their associated strong phases are extracted by performing a $\\chi^2$ fit. Thanks to the recent measurement of $D_s^+\\to\\pi^+\\rho^0$, the magnitudes and the strong phases of the $W$-annihilation amplitudes $A_{P,V}$ have been extracted for the first time. As a consequence, the branching fractions of all the $D\\to VP$ decays are predicted, especially those modes that could not be predicted previously due to the unknown $A_{P,V}$. Our working assumption, the flavor SU(3) symmetry, is tested by comparing our predictions with experiment for the singly and doubly Cabibbo-suppressed decay modes based on the flavor amplitudes extracted from the Cabibbo-favored decays using the current data. The predictions for the doubly Cabibbo-suppressed channels are in good agreement with the data, while those for the singly Cabibbo-suppressed decay modes are seen t...

  5. Measurement of Branching Fractions for Two-Body Charmless B Decays to Charged Pions and Kaons at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-08-28

    The authors present preliminary results of a search for charmless two-body B decays to charged pions and kaons using data collected by the BaBar detector at the Stanford Linear Accelerator Center's PEP-II Storage ring. In a sample of 8.8 million produced B anti-B pairs the authors measure the branching fractions beta(B{sup 0} --> pi{sup +}pi{sup {minus}}) = (9.3{sub {minus}2.3{minus}1.4}{sup +2.6+1.2}) x 10{sup {minus}6} and beta(B{sup 0} --> K{sup +}pi{sup {minus}}) = (12.5{sub {minus}2.6{minus}1.7}{sup +3.0+1.3}) x 10{sup {minus}6}, where the first uncertainty is statistical and the second is systematic. For the decay B{sup 0} --> K{sup +}K{sup {minus}} they find no significant signal and set an upper limit of beta(B{sup 0} --> K{sup +}K{sup {minus}}) < 6.6 x 10{sup {minus}6} at the 90% confidence level.

  6. Dental materials for primary dentition: are they suitable for occlusal restorations? A two-body wear study.

    Science.gov (United States)

    Lazaridou, D; Belli, R; Krämer, N; Petschelt, A; Lohbauer, U

    2015-04-01

    This was to evaluate the wear resistance of different materials, compomers, resin-modified glass ionomer cements (RMGICs), glass ionomer cements (GICs), used for posterior restorations in primary teeth and to compare the results with the reference material, amalgam. Eight specimens of each material were subjected to two-body wear test, using a chewing simulator. The wear region of each material was examined under a profilometer, measuring the vertical loss (μm) and the volume loss (mm(3)) of the materials. The results showed significant differences of vertical loss and volume loss of the test materials (p < 0.001). Amalgam had the highest wear resistance. Twinky Star (compomer) had the lowest vertical loss and volume loss. There was no significant difference of vertical loss among compomers, Dyract Extra, Dyract Flow and Dyract Posterior. Riva Self Cure (GIC) had no statistically significant difference compared with the compomers (except Twinky Star). No statistically significant difference was found also between Equia (GIC) and Ketac Moral (GIC) with Dyract Extra (Compomer). RMGICs were found to have the lowest wear resistance. For the statistical analysis, the PASW 20.0 (SPSS Statistics, IBM, Chicago) package was used. Means and standard deviations were measured with descriptive statistics and analyzed using one-way ANOVA. Compomers and some GICs, that have moderate wear resistance, may be sufficient for occlusal restorations in primary dentitions.

  7. Towards numerically robust multireference theories: The driven similarity renormalization group truncated to one- and two-body operators

    CERN Document Server

    Li, Chenyang

    2016-01-01

    The first nonperturbative version of the multireference driven similarity renormalization group (MR-DSRG) theory [C. Li and F. A. Evangelista, J. Chem. Theory Comput. $\\mathbf{11}$, 2097 (2015)] is introduced. The renormalization group structure of the MR-DSRG equations ensures numerical robustness and avoidance of the intruder state problem, while the connected nature of the amplitude and energy equations guarantees size consistency and extensivity. We approximate the MR-DSRG equations by keeping only one- and two-body operators and using a linearized recursive commutator approximation of the Baker--Campbell--Hausdorff expansion [T. Yanai and G. K.-L. Chan, J. Chem. Phys. $\\mathbf{124}$, 194106 (2006)]. The resulting MR-LDSRG(2) equations contain only 39 terms and scales as ${\\cal O}(N^2 N_{\\rm P}^2 N_{\\rm H}^2)$ where $N_{\\rm H}$, $N_{\\rm P}$, and $N$ correspond to the number of hole, particle, and total orbitals, respectively. Benchmark MR-LDSRG(2) computations on the hydrogen fluoride and molecular nitrog...

  8. Two-body decays of gluino at full one-loop level in the quark-flavour violating MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Eberl, Helmut; Ginina, Elena [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Vienna (Austria); Hidaka, Keisho [Tokyo Gakugei University, Department of Physics, Tokyo (Japan)

    2017-03-15

    We study the two-body decays of the gluino at full one-loop level in the Minimal Supersymmetric Standard Model with quark-flavour violation (QFV) in the squark sector. The renormalisation is done in the DR scheme. The gluon and photon radiations are included by adding the corresponding three-body decay widths. We discuss the dependence of the gluino decay widths on the QFV parameters. The main dependence stems from the c{sub R}-t{sub R} mixing in the decays to up-type squarks, and from the s{sub R}-b{sub R} mixing in the decays to down-type squarks due to the strong constraints from B-physics on the other quark-flavour-mixing parameters. The full one-loop corrections to the gluino decay widths are mostly negative and of the order of about -10%. The QFV part stays small in the total width but can vary up to -8% for the decay width into the lightest u squark. For the corresponding branching ratio the effect is somehow washed out by at least a factor of two. The electroweak corrections can be as large as 35% of the SUSY QCD corrections. (orig.)

  9. Measurement of time dependent CP asymmetries in charged charmless hadronic two-body B decays at LHCb

    CERN Document Server

    Pennazzi, S

    2008-01-01

    The LHCb experiment is one of the four experiments that are installed at the protonproton Large Hadron Collider (LHC) at CERN, Geneva. The experiment is at the latest stage of its setting-up. The first collisions at high energy in LHC are planned to mid-2008, with the first results on the experiments soon after. The LHCb detector is a single-arm spectrometer conceived to pursue an extensive study of CP violation in the B meson system, over-constraining the Standard Model predictions and looking for any possible effect beyond this theory, and to look for rare phenomena in the b quark sector with very high precision. The subject of the present work is the study of the non-leptonic B meson decays into charged charmless two-body final states. This class of decays has been extensively studied and it is still matter of great interest at the B-factories and at Tevatron. In fact the current knowledge of this class of decays in the Bd/Bu sector starts to be quite constrained, but the Bs still remains a field where a r...

  10. Two-body orbit expansion due to time-dependent relative acceleration rate of the cosmological scale factor

    CERN Document Server

    Iorio, Lorenzo

    2013-01-01

    By phenomenologically assuming a slow temporal variation of the percent acceleration rate $\\ddot S S^{-1}$ of the cosmic scale factor $S(t)$, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of $\\ddot S S^{-1}$ around the present epoch $t_0$, a non-vanishing shift per orbit $\\left\\langle\\Delta r\\right\\rangle$ of the two-body relative distance $r$ occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter $H_0$ at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period $P_{\\rm b}\\approx 31$ Myr, the general relativistic distance shift per orbit turns out to be of the order of $\\left\\langle\\Delta r\\right\\rangle\\approx 70$ km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of $\\left\\langle\\Delta r\\right\\rangl...

  11. Covariant Spectator Theory of np scattering: Isoscalar interaction currents

    CERN Document Server

    Gross, Franz

    2014-01-01

    Using the Covariant Spectator Theory (CST), one boson exchange (OBE) models have been found that give precision fits to low energy np scattering and the deuteron binding energy. The boson-nucleon vertices used in these models contain a momentum dependence that requires a new class of interaction currents for use with electromagnetic interactions. Current conservation requires that these new interaction currents satisfy a two-body Ward-Takahashi identity, and using principals of simplicity and picture independence, these currents can be uniquely determined. The results lead to general formulae for a two-body current that can be expressed in terms of relativistic np wave functions, Psi, and two convenient truncated wave functions, ${\\it \\Psi}^{(2)}$ and $\\widehat {\\it \\Psi}$, which contain all of the information needed for the explicit evaluation of the contributions from the interaction current. These three wave functions can be calculated from the CST bound or scattering state equations (and their off-shell e...

  12. Scattering Solar Thermal Concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel C. [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  13. Two-Body Orbit Expansion Due to Time-Dependent Relative Acceleration Rate of the Cosmological Scale Factor

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2014-01-01

    Full Text Available By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr ≈ 2–4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t. More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose “elastic” parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t can be preliminarily constrained in a model-independent way down to a κ1 ≲ 2 x 10-13 year-3 level from latest Solar System’s planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≲ 10-8 year-3.

  14. Two-Body Orbit Expansion Due to Time-Dependent Relative Acceleration Rate of the Cosmological Scale Factor

    Science.gov (United States)

    Iorio, Lorenzo

    2014-01-01

    By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t), it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr) of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr) ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr) ≈ 2-4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t). More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose "elastic" parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t) can be preliminarily constrained in a model-independent way down to a κ1 ≤ 2 x 10-13 year-3 level from latest Solar System's planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≤ 10-8 year-3.

  15. Radiation and scattering from thin wires in chiral media

    Science.gov (United States)

    Jaggard, Dwight L.; Liu, John C.; Grot, Annette; Pelet, Philippe

    1992-11-01

    The effect of chirality on thin win antennas and scatterers in unbounded chiral material is examined through the application of fundamental principles and the examination of several canonical examples. In particular, the interplay between normalized chirality and wire length is investigated to classify radiation and scattering patterns. Chirality induces rapid decay in the currents on such wires, resulting in mountain-peak-shaped current distributions characteristic of wire antennas and bow-tie-shaped current distributions characteristic of wire scatterers of sufficient length. These current distributions, in turn, cause radiation and scattering patterns which exhibit a chirality-dependent forbidden zone for both antennas and scatterers. In this zone, the fields are greatly reduced. These distinctive results lead naturally to the classification of wire scattering and radiation into subchiral, chiral, and superchiral regimes. All results are understood from the underlying physical principles of electromagnetic chirality, and are related to values of a dimensionless parameter involving normalized chirality and normalized wire length.

  16. Renormalization of the Spin-dependent WIMP scattering off nuclei

    CERN Document Server

    Divari, P C

    2013-01-01

    We study the amplitude for the spin-dependent WIMP scattering off nuclei by including the leading long-range two-body currents in the most important isovector contribution. We show that such effects are essentially independent of the target nucleus and, as a result, they can be treated as a mere renormalization of the effective nucleon cross section or, equivalently, of the corresponding effective coupling with values around 25%.

  17. Universal dimer-dimer scattering in lattice effective field theory

    CERN Document Server

    Elhatisari, Serdar; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam

    2016-01-01

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in many different fields including atomic, nuclear and particle physics. In the limit of large fermion-fermion scattering length $a_\\mathrm{ff}$ and zero range interaction, all properties of the system scale proportionally with the only length scale $a_\\mathrm{ff}$. We consider the case where there are bound dimers and calculate the scattering phase shifts for the two-dimer system near threshold using lattice effective field theory. From the scattering phase shifts, we extract the universal dimer-dimer scattering length $a_\\mathrm{dd}/a_\\mathrm{ff}=0.645(89)$ and effective range $r_\\mathrm{dd}/a_\\mathrm{ff}=-0.413(79)$.

  18. Zero energy scattering calculation in Euclidean space

    CERN Document Server

    Carbonell, J

    2016-01-01

    We show that the Bethe-Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe-Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe-Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.

  19. Zero energy scattering calculation in Euclidean space

    Directory of Open Access Journals (Sweden)

    J. Carbonell

    2016-03-01

    Full Text Available We show that the Bethe–Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe–Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe–Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.

  20. Zero energy scattering calculation in Euclidean space

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, J. [Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France); Karmanov, V.A., E-mail: karmanov@sci.lebedev.ru [Lebedev Physical Institute, Leninsky Prospekt 53, 119991 Moscow (Russian Federation)

    2016-03-10

    We show that the Bethe–Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe–Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe–Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.

  1. Zero energy scattering calculation in Euclidean space

    Science.gov (United States)

    Carbonell, J.; Karmanov, V. A.

    2016-03-01

    We show that the Bethe-Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe-Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe-Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.

  2. Minimum Length - Maximum Velocity

    CERN Document Server

    Panes, Boris

    2011-01-01

    We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example we can predict the ratio between the minimum lengths in space and time using the results from OPERA about superluminal neutrinos.

  3. Quasi-three body systems - properties and scattering

    CERN Document Server

    Amusia, M Ya

    2016-01-01

    We investigate systems of three mutually interacting particles with masses of which the inner is much bigger than the intermediate and the latter is much bigger than the outer. Then the three-body problem reduces to the two-body scattering or structure of the light one in the field of the pseudo-nucleus formed by two others. We calculate analytically the properties of considered systems, such as the scattering cross-sections, hyperfine splitting, Auger decay of exited states and Lamb shits, presenting them as expansions in powers of the ratio of light to intermediate particle masses. This ratio is the small parameter of the studied problems.

  4. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2016-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  5. Myofilament length dependent activation

    Energy Technology Data Exchange (ETDEWEB)

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C. (IIT); (Loyola)

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  6. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  7. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI) The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from...

  8. A Characteristic Particle Length

    CERN Document Server

    Roberts, Mark D

    2015-01-01

    It is argued that there are characteristic intervals associated with any particle that can be derived without reference to the speed of light $c$. Such intervals are inferred from zeros of wavefunctions which are solutions to the Schr\\"odinger equation. The characteristic length is $\\ell=\\beta^2\\hbar^2/(8Gm^3)$, where $\\beta=3.8\\dots$; this length might lead to observational effects on objects the size of a virus.

  9. Equilibrium CO bond lengths

    Science.gov (United States)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  10. Observations on oesophageal length.

    Science.gov (United States)

    Kalloor, G J; Deshpande, A H; Collis, J L

    1976-01-01

    The subject of oesophageal length is discussed. The great variations in the length of the oesophagus in individual patients is noted, and the practical use of its recognition in oesophageal surgery is stressed. An apprasial of the various methods available for this measurement is made; this includes the use of external chest measurement, endoscopic measurement, and the measurement of the level of the electrical mucosal potential change. Correlative studies of these various methods are made, and these show a very high degree of significance. These studies involved simultaneous measurement of external and internal oesophageal length in 26 patients without a hiatal hernia or gastro-oesophageal length in 26 patients without a hiatal hernia or gastro-oesophageal reflux symptoms, 42 patients with sliding type hiatal hernia, and 17 patients with a peptic stricture in association with hiatal hernia. The method of measuring oesophageal length by the use of the external chest measurement, that is, the distance between the lower incisor teeth and the xiphisternum, measured with the neck fully extended and the patient lying supine, is described in detail, its practical application in oesophageal surgery is illustrated, and its validity tested by internal measurements. The findings of this study demonstrate that the external chest measurement provides a mean of assessing the true static length of the oesophagus, corrected for the size of the individual. Images PMID:941114

  11. The Impact of Retained Austenite Characteristics on the Two-Body Abrasive Wear Behavior of Ultrahigh Strength Bainitic Steels

    Science.gov (United States)

    Narayanaswamy, Balaji; Hodgson, Peter; Timokhina, Ilana; Beladi, Hossein

    2016-10-01

    the two-body abrasion.

  12. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  13. Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths

    Science.gov (United States)

    Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.

    2016-01-01

    This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.

  14. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  15. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  16. Mappability and Read Length

    Directory of Open Access Journals (Sweden)

    Wentian eLi

    2014-11-01

    Full Text Available Power-law distributions are the main functional form forthe distribution of repeat size and repeat copy number in the human genome. When the genome is broken into fragments for sequencing, the limited size offragments and reads may prevent an unique alignment of repeatsequences to the reference sequence. Repeats in the human genome canbe as long as $10^4$ bases, or $10^5-10^6$ bases when allowing for mismatches between repeat units. Sequence reads from these regions are therefore unmappable when the read length is in the range of $10^3$ bases.With the read length of exactly 1000 bases, slightly more than 1% of theassembled genome, and slightly less than 1% of the 1kbreads, are unmappable, excluding the unassembled portion of the humangenome (8% in GRCh37. The slow decay (long tail ofthe power-law function implies a diminishing return in convertingunmappable regions/reads to become mappable with the increase of theread length, with the understanding that increasing read length willalways move towards the direction of 100% mappability.

  17. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than......Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... analysis in 548 same-sex Danish twins (274 pairs) aged 73-94 years, of whom 204 pairs experienced the death of one or both co-twins during 9-10 years of follow-up (1997-2007). From the terminal restriction fragment length (TRFL) distribution, the authors obtained the mean TRFL (mTRFL) and the mean values...

  18. Plane-wave scattering from half-wave dipole arrays

    DEFF Research Database (Denmark)

    Jensen, Niels E.

    1970-01-01

    A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....

  19. Asymptotic Safety, Emergence and Minimal Length

    CERN Document Server

    Percacci, R

    2010-01-01

    There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that 1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and 2) there is a precise sense in which asymptotic safety implies a minimal length. In so doing we also discuss possible signatures of asymptotic safety in scattering experiments.

  20. A model for multiple scattering in GEANT4

    CERN Document Server

    Urbán, László

    2006-01-01

    We present a model to simulate the multiple scattering of charged particles in matter. The model is based on Lewis theory; it does not use the Moliere formalism. It simulates the scattering of a charged particle after a given step, computes the path length correction and the lateral displacement as well. This model is used in GEANT4.

  1. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  2. Three-particle scattering amplitudes from a finite volume formalism

    CERN Document Server

    Briceno, Raul A

    2012-01-01

    We present a quantization condition for the spectrum of a system composed of three identical bosons in a finite volume with periodic boundary conditions. This condition gives a relation between the finite volume spectrum and infinite volume scattering amplitudes. The quantization condition presented is an integral equation that in general must be solved numerically. However, for systems with an attractive two-body force that supports a two-body bound-state, a diboson, and for energies below the diboson breakup, the quantization condition reduces to the well-known Luscher formula with exponential corrections in volume that scale with the diboson binding momentum. To accurately determine infinite volume phase shifts, it is necessary to extrapolate the phase shifts obtained from the Luscher formula for the boson-diboson system to the infinite volume limit. For energies above the breakup threshold, or for systems with no two-body bound-state (with only scattering states and resonances) the Luscher formula gets po...

  3. Ground Wood Fiber Length Distributions

    OpenAIRE

    Lauri Ilmari Salminen; Sari Liukkonen; Alava, Mikko J.

    2014-01-01

    This study considers ground wood fiber length distributions arising from pilot grindings. The empirical fiber length distributions appear to be independent of wood fiber length as well as feeding velocity. In terms of mathematics the fiber fragment distributions of ground wood pulp combine an exponential distribution for high-length fragments and a power-law distribution for smaller lengths. This implies that the fiber length distribution is influenced by the stone surface. A fragmentation-ba...

  4. About the Constant of Motion, Lagrangian and Hamiltonian of the Gravitational Attraction of Two Bodies with Variable Mass (Gylden-Meshcherskii problem)

    CERN Document Server

    López, G

    2007-01-01

    The Lagrangian, the Hamiltonian and the constant of motion of the gravitational attraction of two bodies when one of them has variable mass is considered. This is done by choosing the reference system in one of the bodies which allows to reduce the system of equations to 1-D problem. The trajectories found in the space position-velocity,(x,v), are qualitatively different from those on the space position-momentum,(x,p).

  5. Multiple scattering and energy loss in semi-inclusive deeply inelastic eA scattering

    CERN Document Server

    Guo, Xiaofeng

    2007-01-01

    We calculate the multiple scattering effect on single hadron production in semi-inclusive lepton-nucleus deeply inelastic scattering. We show that the quantum interference of multiple scattering amplitudes leads to suppression in hadron productions. At the leading power in medium length, the suppression can be approximately expressed in terms of a shift in $z$ of the fragmentation function $D(z)$, and could be therefore interpreted as the collisional energy loss. We compare our calculation with existing experimental data. We also discuss the effect of quark mass on the suppression. Our approach can be extended to other observables in hadronic collisions.

  6. Nanostructures: Scattering beyond the Born approximation

    Science.gov (United States)

    Grigoriev, S. V.; Syromyatnikov, A. V.; Chumakov, A. P.; Grigoryeva, N. A.; Napolskii, K. S.; Roslyakov, I. V.; Eliseev, A. A.; Petukhov, A. V.; Eckerlebe, H.

    2010-03-01

    The neutron scattering on a two-dimensional ordered nanostructure with the third nonperiodic dimension can go beyond the Born approximation. In our model supported by the exact theoretical solution a well-correlated hexagonal porous structure of anodic aluminum oxide films acts as a peculiar two-dimensional grating for the coherent neutron wave. The thickness of the film L (length of pores) plays important role in the transition from the weak to the strong scattering regimes. It is shown that the coherency of the standard small-angle neutron scattering setups suits to the geometry of the studied objects and often affects the intensity of scattering. The proposed theoretical solution can be applied in the small-angle neutron diffraction experiments with flux lines in superconductors, periodic arrays of magnetic or superconducting nanowires, as well as in small-angle diffraction experiments on synchrotron radiation.

  7. Distorted Coulomb field of the scattered electron

    CERN Document Server

    Thomsen, H D; Andersen, K K; Lund, M D; Knudsen, H; Uggerhøj, E; Uggerhøj1, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Ballestrero, S; Connell, S H

    2010-01-01

    Experimental results for the radiation emission from ultrarelativistic electrons in targets of 0.03%–5% radiation length is presented. For the thinnest targets, the radiation emission is in accordance with the Bethe-Heitler formulation of bremsstrahlung, the target acting as a single scatterer. In this regime, the radiation intensity is proportional to the thickness. As the thickness increases, the distorted Coulomb field of the electron that is the result of the first scattering events, leads to a suppressed radiation emission per interaction, upon subsequent scattering events. In that case, the radiation intensity becomes proportional to a logarithmic function of the thickness, due to the suppression. Eventually, once the target becomes sufficiently thick, the entire radiation process becomes influenced by multiple scattering and the radiation intensity is again proportional to the thickness, but with a different constant of proportionality. The observed logarithmic thickness dependence of radiation inten...

  8. Optics as Scattering

    Science.gov (United States)

    di Francia, Giuliano Toraldo

    1973-01-01

    The art of deriving information about an object from the radiation it scatters was once limited to visible light. Now due to new techniques, much of the modern physical science research utilizes radiation scattering. (DF)

  9. Neutron scattering from fractals

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Freltoft, T.; Richter, D.

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...

  10. Compositeness of the Delta(1232) resonance in pi N scattering

    CERN Document Server

    Sekihara, Takayasu; Yamagata-Sekihara, Junko; Yasui, Shigehiro

    2015-01-01

    We evaluate the $\\pi N$ compositeness of the $\\Delta (1232)$ resonance so as to clarify the internal structure of $\\Delta (1232)$ in terms of the $\\pi N$ component. Here the compositeness is defined as contributions from two-body wave functions to the normalization of the total wave function and is extracted from the $\\pi N$ scattering amplitude. In this study we employ the chiral unitary approach with the interaction up to the next-to-leading order plus a bare $\\Delta$ term in chiral perturbation theory and describe $\\Delta (1232)$ in an elastic $\\pi N$ scattering. Fitting the $\\pi N$ scattering amplitude to the solution of the partial wave analysis, we obtain a large real part of the $\\pi N$ compositeness for $\\Delta (1232)$ comparable to unity and non-negligible imaginary part as well, with which we reconfirm the result in the previous study on the $\\pi N$ compositeness for $\\Delta (1232)$.

  11. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  12. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  13. Electronic effects in the length distribution of atom chains.

    Science.gov (United States)

    Crain, J N; Stiles, M D; Stroscio, J A; Pierce, D T

    2006-04-21

    Gold deposited on Si(553) leads to self-assembly of atomic chains, which are broken into finite segments by defects. Scanning tunneling microscopy is used to investigate the distribution of chain lengths and the correlation between defects separating the chains. The length distribution reveals oscillations that indicate changes in the cohesive energy as a function of chain length. We present a possible interpretation in terms of the electronic scattering vectors at the Fermi surface of the surface states. The pairwise correlation function between defects shows long-range correlations that extend beyond nearest-neighbor defects, indicating coupling between chains.

  14. Ginsparg-Wilson Pions Scattering on a Staggered Sea

    CERN Document Server

    Chen, J W; De van Water, R S; Walker-Loud, A; Chen, Jiunn-Wei; Connell, Donal O'; Water, Ruth S. Van de; Walker-Loud, Andre

    2006-01-01

    In this article, we calculate isospin 2 (I=2) pion-pion scattering in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We determine the scattering length at threshold for both 2 sea quarks and 2+1 sea quarks in the isospin limit. The scattering length, expressed in terms of the pion mass and the decay constant measured on the lattice, has no contributions from mixed valence-sea mesons. Thus, it does not depend upon the parameter, C_Mix, that appears in the chiral Lagrangian of the mixed theory. This result holds for both 2 and 2+1 flavors of sea quarks. Finally, we take the continuum limit of our mixed action results and give expressions for the scattering length in continuum 2 and 2+1 flavor partially quenched chiral perturbation theory.

  15. Scattering of arbitrarily shaped beam by a chiral object

    Science.gov (United States)

    Wang, Wenjie; Sun, Yufa; Zhang, Huayong

    2017-02-01

    An exact semi-analytical solution to the arbitrarily shaped beam scattering by a chiral object is proposed through expanding the scattered and internal fields in terms of appropriate spherical vector wave functions. By using the boundary conditions and the method of moments technique, the unknown expansion coefficients are determined. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a chiral spheroid and a chiral circular cylinder of finite length, and the scattering characteristics are discussed concisely.

  16. Hot electron attenuation of direct and scattered carriers across an epitaxial Schottky interface

    Science.gov (United States)

    Parui, S.; Klandermans, P. S.; Venkatesan, S.; Scheu, C.; Banerjee, T.

    2013-11-01

    Hot electron transport of direct and scattered carriers across an epitaxial NiSi2/n-Si(111) interface, for different NiSi2 thickness, is studied using ballistic electron emission microscopy (BEEM). We find the BEEM transmission for the scattered hot electrons in NiSi2 to be significantly lower than that for the direct hot electrons, for all thicknesses. Interestingly, the attenuation length of the scattered hot electrons is found to be twice as large as that of the direct hot electrons. The lower BEEM transmission for the scattered hot electrons is due to inelastic scattering of the injected hot holes while the larger attenuation length of the scattered hot electrons is a consequence of the differences in the energy distribution of the injected and scattered hot electrons and the increasing attenuation length, at lower energies, of the direct hot electrons in NiSi2.

  17. Prediction of electric field frequency correlations for randomly scattering slabs in the nondiffusive regime with the scalar Bethe-Salpeter equation.

    Science.gov (United States)

    Gaind, Vaibhav; San, Aung K; Lin, Dergan; Webb, Kevin J

    2014-01-01

    We show that a scalar Bethe-Salpeter equation model captures the measured copolarized electric field frequency correlation magnitude for randomly scattering slabs in the weakly scattering, nondiffusive regime. Consequently, the model could be used to form images of tissue on the millimeter and submillimeter length scale, and for environmental sensing with comparable scatter, as dictated by the optical scattering length in relation to the scattering domain size.

  18. Ground Wood Fiber Length Distributions

    Directory of Open Access Journals (Sweden)

    Lauri Ilmari Salminen

    2014-01-01

    Full Text Available This study considers ground wood fiber length distributions arising from pilot grindings. The empirical fiber length distributions appear to be independent of wood fiber length as well as feeding velocity. In terms of mathematics the fiber fragment distributions of ground wood pulp combine an exponential distribution for high-length fragments and a power-law distribution for smaller lengths. This implies that the fiber length distribution is influenced by the stone surface. A fragmentation-based model is presented that allows reproduction of the empirical results.

  19. Simple Riemannian surfaces are scattering rigid

    OpenAIRE

    Wen, Haomin

    2015-01-01

    Scattering rigidity of a Riemannian manifold allows one to tell the metric of a manifold with boundary by looking at the directions of geodesics at the boundary. Lens rigidity allows one to tell the metric of a manifold with boundary from the same information plus the length of geodesics. There are a variety of results about lens rigidity but very little is known for scattering rigidity. We will discuss the subtle difference between these two types of rigidities and prove that they are equiva...

  20. Positron scattering from noble gases future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A C L; Caradonna, P; Makochekanwa, C; Slaughter, D S; Sullivan, J P; Buckman, S J [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); Mitroy, J, E-mail: acj107@rsphysse.anu.edu.a [Faculty of Education Health and Science, Charles Darwin University, NT (Australia)

    2009-11-01

    Recent results for positron scattering from noble gases over an energy range from 0.5 to 60eV are presented. Measurements include the grand total ({sigma}{sub GT}), Ps formation ({sigma}{sub Ps}) and Grand total - Ps formation (({sigma}{sub GT}-P{sub s}) cross sections. Some preliminary DCS results will also be presented. Work on a formulation of modified effective range theory (MERT) is being undertaken to determine the value of the scattering length which may be useful for identifying a bound state. Plans for experiments on metal atoms will be outlined.

  1. About Galilean transformation on a mass variable system and two bodies gravitational system with variable mass and damping-anti damping effect due to star wind

    CERN Document Server

    Lopez, G V

    2012-01-01

    We make an observation about Galilean transformation on a 1-D mass variable systems which leads us to the right way to deal with these systems. Then using this observation, we study two-bodies gravitational problem where the mass of one of the bodies varies and suffers a damping-anti damping effect due to star wind during its motion. for this system, a constant of motion, a Lagrangian and a Hamiltonian are given for the radial motion, and the period of the body is studied using the constant of motion of the system. An application to the comet motion is given, using the comet Halley as an example.

  2. Dissociative Recombination of BH2+: The Dominance of Two-Body Breakup and an Understanding of the Fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhaunerchyk, Vitali [Stockholm University, Stockholm, Sweden; Vigren, E. [Stockholm University, Stockholm, Sweden; Geppert, W. [Stockholm University, Stockholm, Sweden; Hamberg, M. [Stockholm University, Stockholm, Sweden; Danielsson, M. [Stockholm University, Stockholm, Sweden; Kaminska, M. [Stockholm University, Stockholm, Sweden; Larsson, Mats [Stockholm University, Stockholm, Sweden; Thomas, R. D. [Stockholm University, Stockholm, Sweden; Bahati Musafiri, Eric [ORNL; Vane, C Randy [ORNL

    2008-08-01

    The dissociative recombination of BH{sub 2}{sup +} has been studied at the storage ring CRYRING. The branching fraction analysis shows that dissociative recombination is dominated by the two-body BH+H channel constituting 56% of the total reactivity with the B+H+H and B+H2 channels being 35 and 9%, respectively. Both the measured reaction rate and fragmentation behavior are different than for previously studied XH{sub 2}{sup +} ions, which react both faster and predominantly dissociate through the full fragmentation channel. Explanations for such observations are discussed.

  3. Scattering anomaly in optics

    CERN Document Server

    Silveirinha, Mario G

    2016-01-01

    In time-reversal invariant electronic systems the scattering matrix is anti-symmetric. This property enables an effect, designated here as "scattering anomaly", such that the electron transport does not suffer from back reflections, independent of the specific geometry of the propagation path or the presence of time-reversal invariant defects. In contrast, for a generic time-reversal invariant photonic system the scattering matrix is symmetric and there is no similar anomaly. Here, it is theoretically proven that despite these fundamental differences there is a wide class of photonic platforms - in some cases formed only by time-reversal invariant media - in which the scattering anomaly can occur. It is shown that an optical system invariant under the action of the composition of the time-reversal, parity and duality operators is characterized by an anti-symmetric scattering matrix. Specific examples of photonic platforms wherein the scattering anomaly occurs are given, and it is demonstrated with full wave n...

  4. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  5. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  6. Elastic scattering phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Mackintosh, R.S. [The Open University, School of Physical Sciences, Milton Keynes (United Kingdom)

    2017-04-15

    We argue that, in many situations, fits to elastic scattering data that were historically, and frequently still are, considered ''good'', are not justifiably so describable. Information about the dynamics of nucleon-nucleus and nucleus-nucleus scattering is lost when elastic scattering phenomenology is insufficiently ambitious. It is argued that in many situations, an alternative approach is appropriate for the phenomenology of nuclear elastic scattering of nucleons and other light nuclei. The approach affords an appropriate means of evaluating folding models, one that fully exploits available empirical data. It is particularly applicable for nucleons and other light ions. (orig.)

  7. Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons

    Science.gov (United States)

    Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.

    2017-01-01

    We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7 ) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6 . We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.

  8. The Work-Energy Relation and Application of Two-Body System%两体问题的功能关系及其应用

    Institute of Scientific and Technical Information of China (English)

    余嵘华; 肖苏

    2011-01-01

    两体系统的功能原理与机械能守恒是正确理解和解决某些实际力学问题的基础.文中分析了惯性参照系、质心参照系及相对参照系中两体系统的功能原理与机械能守恒,并结合具体的应用给出结论.%The principle of work-energy and the law of conservation of mechanical energy in two-body system is the base of understanding and solving some practical problems.The paper gives some analysis and useful discussion about theorem of kinetic energy and law of conservation of mechanical energy in two-body system in inertial system or center-of-mass system or relative reference system.At last,this paper gives some samples and some conclusions.

  9. HYDRODYNAMIC INTERACTIONS BETWEEN TWO BODIES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of model tests, potential flow theory, and viscous Computational Fluid Dynamics (CFD) method, the hydrodynamic interactions between two underwater bodies were investigated to determine the influencing factors, changing rule, interaction mechanism, and appropriate methods describing them. Some special phenomena were discovered in two series of near-wall interaction experiments. The mathematical model and predicting methods were presented for interacting forces near wall, and the calculation results agreed well with the experimental ones. From the comparisons among numerical results with respect to nonviscosity, numerical results with respect to viscosity, and measured results, data on the influence of viscosity on hydrodynamic interactions were obtained. For hydrodynamic interaction related to multi-body unsteady motions with six degrees of freedom that is difficult to simulate in tests, numerical predictions of unsteady interacting forces were given.

  10. Characterization of porous materials by small-angle scattering

    Indian Academy of Sciences (India)

    S Mazumder; D Sen; A K Patra

    2004-07-01

    Characterization of porous materials by small-angle scattering has been extensively pursued for several years now as the pores are often of mesoscopic size and compatible with the length scale accessible by the technique using both neutrons and X-rays as probing radiation. With the availability of ultra small-angle scattering instruments, one can investigate porous materials in the sub-micron length scale. Because of the increased accessible length scale vis-a-vis the multiple scattering effect, conventional data analysis procedures based on single scattering approximation quite often fail. The limitation of conventional data analysis procedures is also pronounced in the case of thick samples and long wavelength of the probing radiation. Effect of multiple scattering is manifested by broadening the scattering profile. Sample thickness for some technologically important materials is often significantly high, as the experimental samples have to replicate all its essential properties in the bulk material. Larger wavelength of the probing radiation is used in some cases to access large length scale and also to minimize the effect of double Bragg reflections.

  11. Optical scatter: an overview

    Science.gov (United States)

    Stover, John C.

    1991-12-01

    Optical scatter is a bothersome source of optical noise, limits resolution and reduces system throughput. However, it is also an extremely sensitive metrology tool. It is employed in a wide variety of applications in the optics industry (where direct scatter measurement is of concern) and is becoming a popular indirect measurement in other industries where its measurement in some form is an indicator of another component property - like roughness, contamination or position. This paper presents a brief review of the current state of this technology as it emerges from university and government laboratories into more general industry use. The bidirectional scatter distribution function (or BSDF) has become the common format for expressing scatter data and is now used almost universally. Measurements made at dozens of laboratories around the country cover the spectrum from the uv to the mid- IR. Data analysis of optical component scatter has progressed to the point where a variety of analysis tools are becoming available for discriminating between the various sources of scatter. Work has progressed on the analysis of rough surface scatter and the application of these techniques to some challenging problems outside the optical industry. Scatter metrology is acquiring standards and formal test procedures. The available scatter data base is rapidly expanding as the number and sophistication of measurement facilities increases. Scatter from contaminants is continuing to be a major area of work as scatterometers appear in vacuum chambers at various laboratories across the country. Another area of research driven by space applications is understanding the non-topographic sources of mid-IR scatter that are associated with Beryllium and other materials. The current flurry of work in this growing area of metrology can be expected to continue for several more years and to further expand to applications in other industries.

  12. Sound scattering in dense granular media

    Institute of Scientific and Technical Information of China (English)

    JIA XiaoPing; LAURENT J; KHIDAS Y; LANGLOIS V

    2009-01-01

    The sound propagation in a dense granular medium is basically characterized by the ratio of wave-length to the grain size. Two types of wave transport are distinguished: one corresponds to coherent waves in the long wavelength limit, the other to short-wavelength scattered waves by the inhomoge-neous contact force networks. These multiply scattered elastic waves are shown to exhibit a diffusive characteristics of transport over long distances of propagation. Determination of the transport mean free path l* and the inelastic absorption (Q~(-1)) allows the inference of the structural properties of the material such as the heterogeneity and internal dissipation. The relevance of our experiments for seismological applications is discussed. Moreover, we apply the correlation technique of the configu-ration-specific sound scattering to monitoring the dynamic behaviour of the granular medium (irre-versible rearrangements) under strong vibration, shearing and thermal cycling, respectively.

  13. Scattering by a draining bathtub vortex

    Science.gov (United States)

    Dolan, Sam R.; Oliveira, Ednilton S.

    2013-06-01

    We present an analysis of scattering by a fluid-mechanical “black hole analogue,” known as the draining bathtub vortex: a two-dimensional flow that possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular “orbiting” oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulas for both effects and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex and highlight the prospects for experimental investigation.

  14. Scattering by a draining bathtub vortex

    CERN Document Server

    Dolan, Sam R

    2013-01-01

    We present an analysis of scattering by a fluid-mechanical `black hole analogue', known as the draining bathtub (DBT) vortex: a two-dimensional flow which possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular `orbiting' oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulae for both effects, and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex, and highlight the prospects for experimental investigation.

  15. Scattering and interference in epitaxial graphene.

    Science.gov (United States)

    Rutter, G M; Crain, J N; Guisinger, N P; Li, T; First, P N; Stroscio, J A

    2007-07-13

    A single sheet of carbon, graphene, exhibits unexpected electronic properties that arise from quantum state symmetries, which restrict the scattering of its charge carriers. Understanding the role of defects in the transport properties of graphene is central to realizing future electronics based on carbon. Scanning tunneling spectroscopy was used to measure quasiparticle interference patterns in epitaxial graphene grown on SiC(0001). Energy-resolved maps of the local density of states reveal modulations on two different length scales, reflecting both intravalley and intervalley scattering. Although such scattering in graphene can be suppressed because of the symmetries of the Dirac quasiparticles, we show that, when its source is atomic-scale lattice defects, wave functions of different symmetries can mix.

  16. Semi-Empirical Effective Interactions for Inelastic Scattering Derived from the Reid Potential

    Science.gov (United States)

    Fiase, J. O.; Sharma, L. K.; Winkoun, D. P.; Hosaka, A.

    2001-09-01

    An effective local interaction suitable for inelastic scattering is constructed from the Reid soft - core potential. We proceed in two stages: We first calculated a set of relative two - body matrix elements in a variational approach using the Reid soft-core potential folded with two-body correlation functions. In the second stage we constructed a potential for inelastic scattering by fitting the matrix elements to a sum of Yukawa central, tensor and spin-orbit terms to the set of relative two - body matrix elements obtained in the first stage by a least squares fitting procedure. The ranges of the new potential were selected to ensure the OPEP tails in the relevant channels as well as the short - range part of the interaction. It is found that the results of our variational techniques are very similar to the G - matrix calculations of Bertsch and co - workers in the singlet - even, triplet - even, tensor - even and spin-orbit odd channels thus putting our calculations of two - body matrix elements of nuclear forces in these channels on a sound footing. However, there exist major differences in the singlet - odd, triplet - odd, tensor - odd and spin - orbit even channels which casts some doubt on our understanding of nuclear forces in these channels.

  17. Biographies of Stone and Landscape: Lithic Scatters

    Directory of Open Access Journals (Sweden)

    Clive Jonathon Bond

    2009-09-01

    Full Text Available Lithic scatters are complex palimpsests. Cores, waste and tools, when interpreted in their landscape context often appear to constitute multiple episodes of activity. These seasonal and cyclical episodes represent different lengths of duration and/or function. This article deals with assemblages from central Somerset, UK, containing artefacts of flint and others of greenstone and sandstone and argues that discarded/deposited artefacts sometimes served as a resource for cultural memory.

  18. Light scattering measurement of sodium polyacrylate products

    Science.gov (United States)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  19. Inelastic Light Scattering Processes

    Science.gov (United States)

    Fouche, Daniel G.; Chang, Richard K.

    1973-01-01

    Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.

  20. The screening length of interatomic potential in atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Y.; Takeuchi, W.; Kawamura, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1998-03-01

    In computer studies on the interaction of charged particle with solids, many authors treat the nuclear collision by the Thomas-Fermi screened Coulomb potential. For better agreement with experiment, the screening length is modified sometimes. We investigate the theoretical background for the correction factor of the screening length in the interatomic potential which can be deduced from two steps. The first step is to select the correction factor of an isolated atom so as to match the average radius of the Thomas-Fermi electron distribution with that of the Hartree-Fock electron distribution, where we use the Clementi and Roetti`s table. The second step is to determine the correction factor of the screening length of the interatomic potential by using a combination rule. The correction factors obtained for the screening length are in good agreement with those determined by the computer analysis of the Impact Collision Ion Scattering Spectroscopy (ICISS) data. (author)

  1. FETAL FOOT LENGTH AND HAND LENGTH: RELATIONSHIP WITH CROWN RUMP LENGTH AND GESTATIONAL AGE

    Directory of Open Access Journals (Sweden)

    Garima

    2015-12-01

    Full Text Available BACKGROUND Estimation of gestational age of fetus is of great medicolegal importance. Multiple parameters of the fetal anatomical measurements are in use. However, gestational age assessment may be difficult in fetus with anencephaly, hydrocephalus, short limb dysplasia, post mortem destruction or in mutilated case. Study of literature suggests that fetal foot has a characteristic pattern of normal growth and the fetal foot shows gradual increase in length relative to the length of the embryo and could be used to estimate gestational age. The purpose of the present study is to determine the accuracy in estimating gestational age using fetal foot and hand length by studying its relation with crown rump length in the foetuses of Manipuri origin. AIMS AND OBJECTIVES 1 To study the relationship between fetal crown rump length and fetal hand and foot length, thereby determining the accuracy in estimating gestational age by a cross-sectional study. MATERIALS AND METHODS A total of 100 formalin fixed fetuses of Manipuri origin, obtained from the Department of Obstetrics and Gynaecology, Regional Institute of Medical Sciences, Imphal, were included in the study, carried out in the Department of Anatomy, from February 2015 to July 2015. The parameters studied were crown rump length, foot length and hand length of fetuses. The data was analysed using SPSS software by regression analysis. Graphs were also plotted to determine pattern of growth and their correlation with crown rump length if any. RESULTS A total of 100 fetuses were studied, of which 43 were females and 57 were males. The mean foot length and hand length progressively increased with increase in crown rump length. Measurements were not significantly different in right or left side or among male and female fetuses. A statistically significant linear relationship was seen between foot length and crown rump length of the fetus (r=0.980, p<0.0001 and hand length and crown rump length of the fetus

  2. Role of three-body unitarity in. pi. -N scattering

    Energy Technology Data Exchange (ETDEWEB)

    Afnan, I.R.; Pearce, B.C.

    1987-02-01

    We consider the amplitude for ..pi..-N scattering within the framework of a Lagrangian of the form suggested by the cloudy bag model with volume coupling. By first exposing two-body, and then three-body unitarity, we derive a set of integral equations that couple the ..pi..N to the ..pi pi..N channel. These equations satisfy two- and three-body unitarity, and can be used to describe ..pi..-N scattering both below and above the threshold for pion production. Below this threshold, the equations have the form of the Lippmann-Schwinger equation with the new feature that in the potential, the vertices in the pole diagram are undressed, while those in the crossed diagram are dressed. This feature allows for the proper description of the P/sub 11/ amplitude.

  3. A first-order secular theory for the post-Newtonian two-body problem with spin -- I: The restricted case

    CERN Document Server

    Biscani, Francesco; 10.1093/mnras/sts198

    2013-01-01

    We revisit the relativistic restricted two-body problem with spin employing a perturbation scheme based on Lie series. Starting from a post-Newtonian expansion of the field equations, we develop a first-order secular theory that reproduces well-known relativistic effects such as the precession of the pericentre and the Lense-Thirring and geodetic effects. Additionally, our theory takes into full account the complex interplay between the various relativistic effects, and provides a new explicit solution of the averaged equations of motion in terms of elliptic functions. Our analysis reveals the presence of particular configurations for which non-periodical behaviour can arise. The application of our results to real astrodynamical systems (such as Mercury-like and pulsar planets) highlights the contribution of relativistic effects to the long-term evolution of the spin and orbit of the secondary body.

  4. Two-Fermion Scattering on Momentum-Representation in a Trap and Their Periodic Phenomena

    Institute of Scientific and Technical Information of China (English)

    FANG Yi-Zhong; HE Yan-Zhang

    2011-01-01

    @@ Under the control of the prepared initial state, two-body scattering of trapped neutral fermions is studied theoreti-cally, Since the fermions collide inside the trap frequently, the effect of atom-atom interaction can be accumulated.On the momentum-representation, we find the presence of periodic probability density, which is much longer than that of bosons.The measurement and details of this periodic phenomenon might be valid information about weak interactions among neutral particles.

  5. Calculation of Spin Observables for Proton-Proton Elastic Scattering in the Bethe-Salpeter Equation

    CERN Document Server

    Kinpara, Susumu

    2015-01-01

    Bethe-Salpeter equation is applied to $p$-$p$ elastic scattering. The observables of spin are calculated in the framework of the M matrix using the two-body interaction potential. The parameter of the pseudovector coupling constant is adjusted so as to reproduce the spin singlet part. It is shown that the spin rotation $R(\\theta)$ and $A(\\theta)$ are improved by the resonance effect for ${}^{\\rm 1}S_{\\rm 0}$.

  6. Comparison of two-body and three-body decomposition of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene

    Science.gov (United States)

    Chin, Chih-Hao; Lee, Shih-Huang

    2012-01-01

    We investigated two-body (binary) and three-body (triple) dissociations of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene on the ground potential-energy surfaces using quantum-chemical and Rice-Ramsperger-Kassel-Marcus calculations; most attention is paid on the triple dissociation mechanisms. The triple dissociation includes elimination of a hydrogen molecule from a combination of two separate terminal hydrogen atoms; meanwhile, the rest part simultaneously decomposes to two stable fragments, e.g., C2H4, C2H2, or CO. Transition structures corresponding to the concerted triple dissociation were identified using the B3LYP/6-311G(d,p) level of theory and total energies were computed using the method CCSD(T)/6-311+G(3df, 2p). The forward barrier height of triple dissociation has a trend of ethanedial reaction enthalpy. Ratios of translational energies of three separate fragments could be estimated from the transition structure of triple dissociation. The synchronous concerted dissociation of propanal, propenal, and 1-butene leading to three different types of molecular fragments by breaking nonequivalent chemical bonds is rare. The triple dissociation of propanal, n-butane, 1-butene, and 1,3-butadiene were investigated for the first time. To outline a whole picture of dissociation mechanisms, some significant two-body dissociation channels were investigated for the calculations of product branching ratios. The triple dissociation plays an important role in the three carbonyl compounds, but plays a minor or negligible role in the three hydrocarbons.

  7. IMPEDANCE OF FINITE LENGTH RESISTOR

    Energy Technology Data Exchange (ETDEWEB)

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  8. Strength-length scaling of elementary hemp fibers

    Science.gov (United States)

    Poriķe, E.; Andersons, J.

    2013-03-01

    The application of hemp fibers as a reinforcement of composite materials necessitates the characterization of fiber strength scatter and the effect of fiber length on its strength. With this aim, elementary hemp fibers were tested in tension at two different gage lengths. Due to the similar morphology of hemp and flax fibers, the probabilistic strength models derived and verified for the latter were applied to the former. The fiber strength was found to agree with the modified Weibull distribution. The modeling approaches developed for describing the variability of the strength and failure strain of elementary flax fibers are shown to be also applicable to hemp fibers.

  9. Polarization gating enables sarcomere length measurements by laser diffraction in fibrotic muscle

    Science.gov (United States)

    Young, Kevin W.; Dayanidhi, Sudarshan; Lieber, Richard L.

    2014-11-01

    Sarcomere length is a key parameter commonly measured in muscle physiology since it dictates striated muscle active force. Laser diffraction (LD)-based measurements of sarcomere length are time-efficient and sample a greater number of sarcomeres compared with traditional microscopy-based techniques. However, a limitation to LD techniques is that signal quality is severely degraded by scattering events as photons propagate through tissue. Consequently, sarcomere length measurements are unattainable when the number of scattering events is sufficiently large in muscle tissue with a high scattering probability. This occurs in fibrotic skeletal muscle seen in muscular dystrophies and secondary to tissue trauma, thus eliminating the use of LD to study these skeletal muscle ailments. Here, we utilize polarization gating to extract diffracted signals that are buried in noise created by scattering. Importantly, we demonstrate that polarization-gated laser diffraction (PGLD) enables sarcomere length measurements in muscles from chronically immobilized mice hind limbs; these muscles have a substantial increase of intramuscular connective tissue that scatter light and disable sarcomere length measurements by traditional LD. Further, we compare PGLD sarcomere lengths to those measured by bright field (BF) and confocal microscopy as positive controls and reveal a significant bias of BF but not of confocal microscopy.

  10. Polyketide chain length control by chain length factor.

    Science.gov (United States)

    Tang, Yi; Tsai, Shiou-Chuan; Khosla, Chaitan

    2003-10-22

    Bacterial aromatic polyketides are pharmacologically important natural products. A critical parameter that dictates product structure is the carbon chain length of the polyketide backbone. Systematic manipulation of polyketide chain length represents a major unmet challenge in natural product biosynthesis. Polyketide chain elongation is catalyzed by a heterodimeric ketosynthase. In contrast to homodimeric ketosynthases found in fatty acid synthases, the active site cysteine is absent from the one subunit of this heterodimer. The precise role of this catalytically silent subunit has been debated over the past decade. We demonstrate here that this subunit is the primary determinant of polyketide chain length, thereby validating its designation as chain length factor. Using structure-based mutagenesis, we identified key residues in the chain length factor that could be manipulated to convert an octaketide synthase into a decaketide synthase and vice versa. These results should lead to novel strategies for the engineered biosynthesis of hitherto unidentified polyketide scaffolds.

  11. Curve Length Estimation using Vertix Chain Code Curve Length Estimation

    Directory of Open Access Journals (Sweden)

    Habibollah Haron

    2010-09-01

    Full Text Available Most of the applications in image analysis are based on Freeman chain code. In this paper, for the first time, vertex chain code (VCC proposed by Bribiesca is applied to improve length estimation of the 2D digitized curve. The chain code has some preferences such as stable in shifting, turning, mirroring movement of image and has normalized starting point. Due to the variety of length estimator methods, we focused on the three specific techniques. First, the way Bribiesca proposed which is based on counting links between vertices; second, based on maximum length digital straight segments (DSSs and lastly local metrics. The results of these length estimators with the real perimeter are compared. Results thus obtained exhibits thatlength estimation using VCC is nearest to the actual length.

  12. Nonlinear X-ray Compton Scattering

    CERN Document Server

    Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

    2015-01-01

    X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

  13. Scattering in an environment

    CERN Document Server

    Polonyi, Janos

    2011-01-01

    The cross section of elastic electron-proton scattering taking place in an electron gas is calculated within the Closed Time Path method. It is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. The other term is due to the scattering particles-electron gas entanglement. This term dominates the usual one when the exchange energy is in the vicinity of the Fermi energy. Furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime.

  14. Manipulating scattering features by metamaterials

    Directory of Open Access Journals (Sweden)

    Lu Cui

    2016-01-01

    Full Text Available We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, mantle cloaks based on scattering cancellation, “skin” cloaks using phase compensation, scattering controls with coding/programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted.

  15. Manipulating scattering features by metamaterials

    Directory of Open Access Journals (Sweden)

    Lu Cui

    2016-01-01

    Full Text Available We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, mantle cloaks based on scattering cancellation, “skin” cloaks using phase compensation, scattering controls with coding/programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted.

  16. A Model for High Energy Scattering in Quantum Gravity

    CERN Document Server

    Banks, T; Banks, Tom; Fischler, Willy

    1999-01-01

    We present a model for high energy two body scattering in a quantum theory of gravity. The model is applicable for center of mass energies higher than the relevant Planck scale. At impact parameters smaller than the Schwarzchild radius appropriate to the center of mass energy and total charge of the initial state, the cross section is dominated by an inelastic process in which a single large black hole is formed. The black hole then decays by Hawking radiation. The elastic cross section is highly suppressed at these impact parameters because of the small phase space for thermal decay into a high energy two body state. For very large impact parameter the amplitude is dominated by eikonalized single graviton exchange. At intermediate impact parameters the scattering is more complicated, but since the Schwarzchild radius grows with energy, we speculate that a more sophisticated eikonal calculation which uses the nonlinear classical solutions of the field equations may provide a good approximation at all larger i...

  17. Covariant Spectator Theory of np scattering: Isoscalar interaction currents

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz L. [JLAB

    2014-06-01

    Using the Covariant Spectator Theory (CST), one boson exchange (OBE) models have been found that give precision fits to low energy $np$ scattering and the deuteron binding energy. The boson-nucleon vertices used in these models contain a momentum dependence that requires a new class of interaction currents for use with electromagnetic interactions. Current conservation requires that these new interaction currents satisfy a two-body Ward-Takahashi (WT), and using principals of {\\it simplicity\\/} and {\\it picture independence\\/}, these currents can be uniquely determined. The results lead to general formulae for a two-body current that can be expressed in terms of relativistic $np$ wave functions, ${\\it \\Psi}$, and two convenient truncated wave functions, ${\\it \\Psi}^{(2)}$ and $\\widehat {\\it \\Psi}$, which contain all of the information needed for the explicit evaluation of the contributions from the interaction current. These three wave functions can be calculated from the CST bound or scattering state equations (and their off-shell extrapolations). A companion paper uses this formalism to evaluate the deuteron magnetic moment.

  18. Synchrotron x-ray-scattering study of the normal-incommensurate phase transition in Rb2ZnCl4

    DEFF Research Database (Denmark)

    Zinkin, M.P.; McMorrow, D.F.; Hill, J.P.;

    1996-01-01

    predictions for the n=2, D=3 (SD-XY) universality class. The scattering observed above T-c corrresponds to critical fluctuations on two distinct length scales: the critical exponents for the short length scale component of the scattering agree with those expected for the 3D-XY universality class. The value...... explanations of the two length scale behavior are discussed....

  19. Impedance of Finite Length Resistor

    CERN Document Server

    Krinsky, Samuel; Podobedov, Boris

    2005-01-01

    We determine the impedance of a cylindrical metal tube (resistor) of radius a and length g, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the behavior of the impedance at high frequency (k>>1/a). In the equilibrium regime, ka2

  20. Line Lengths and Starch Scores.

    Science.gov (United States)

    Moriarty, Sandra E.

    1986-01-01

    Investigates readability of different line lengths in advertising body copy, hypothesizing a normal curve with lower scores for shorter and longer lines, and scores above the mean for lines in the middle of the distribution. Finds support for lower scores for short lines and some evidence of two optimum line lengths rather than one. (SKC)

  1. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  2. Modelling Hyperboloid Sound Scattering

    DEFF Research Database (Denmark)

    Burry, Jane; Davis, Daniel; Peters, Brady;

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...

  3. Elastic scattering of hadrons

    CERN Document Server

    Dremin, I M

    2012-01-01

    When colliding, the high energy hadrons can either produce new particles or scatter elastically without change of their quantum num- bers and other particles produced. Namely elastic scattering of hadrons is considered in this review paper. Even though the inelastic processes dominate at high energies, the elastic scattering constitutes the notice- able part of the total cross section ranging between 18 and 25% with some increase at higher energies. The scattering proceeds mostly at small angles and reveals peculiar dependences at larger angles disclos- ing the geometrical structure of the colliding particles and di?erent dynamical mechanisms. The fast decreasing Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoul- ders and dips and then by the power-like decrease. Results of various theoretical approaches are compared with exper- imental data. Phenomenological models pretending to describe this process are reviewed. The unitarity condition requires the exponen- tial re...

  4. Environment scattering in GADRAS.

    Energy Technology Data Exchange (ETDEWEB)

    Thoreson, Gregory G.; Mitchell, Dean J; Theisen, Lisa Anne; Harding, Lee T.

    2013-09-01

    Radiation transport calculations were performed to compute the angular tallies for scattered gamma-rays as a function of distance, height, and environment. Greens Functions were then used to encapsulate the results a reusable transformation function. The calculations represent the transport of photons throughout scattering surfaces that surround sources and detectors, such as the ground and walls. Utilization of these calculations in GADRAS (Gamma Detector Response and Analysis Software) enables accurate computation of environmental scattering for a variety of environments and source configurations. This capability, which agrees well with numerous experimental benchmark measurements, is now deployed with GADRAS Version 18.2 as the basis for the computation of scattered radiation.

  5. Gestation length in farmed reindeer.

    Science.gov (United States)

    Shipka, M P; Rowell, J E

    2010-01-01

    Reindeer (Rangifer tarandus tarundus) are the only cervids indigenous to the arctic environment. In Alaska, reindeer are a recognized agricultural species and an economic mainstay for many native populations. Traditionally raised in extensive free-ranging systems, a recent trend toward intensive farming requires a more in-depth knowledge of reproductive management. Reported gestation length in reindeer varies, ranging from 198 to 229 d in studies performed at the University of Alaska Fairbanks. A switchback study that manipulated only breeding date demonstrated a mean increase in gestation length of 8.5 d among females bred early in the season. The negative correlation between conception date and gestation length is consistent with reindeer research at other locations and reports of variable gestation length in a growing number of domestic and non-domestic species. This paper reviews the phenomenon in reindeer and discusses some of the factors known to affect gestation length as well as possible areas for future research.

  6. Reserved-Length Prefix Coding

    CERN Document Server

    Baer, Michael B

    2008-01-01

    Huffman coding finds an optimal prefix code for a given probability mass function. Consider situations in which one wishes to find an optimal code with the restriction that all codewords have lengths that lie in a user-specified set of lengths (or, equivalently, no codewords have lengths that lie in a complementary set). This paper introduces a polynomial-time dynamic programming algorithm that finds optimal codes for this reserved-length prefix coding problem. This has applications to quickly encoding and decoding lossless codes. In addition, one modification of the approach solves any quasiarithmetic prefix coding problem, while another finds optimal codes restricted to the set of codes with g codeword lengths for user-specified g (e.g., g=2).

  7. Weak Measurement and Two-State-Vector Formalism: Deficit of Momentum Transfer in Scattering Processes

    CERN Document Server

    Chatzidimitriou-Dreismann, C A

    2016-01-01

    The notions of weak measurement, weak value, and two-state-vector formalism provide a new quantum-theoretical frame for extracting additional information from a system in the limit of small disturbances to its state. Here, we provide an application to the case of two-body scattering with one body weakly interacting with an environment. The direct connection to real scattering experiments is pointed out by making contact with the field of impulsive incoherent neutron scattering from molecules and condensed systems. In particular, we predict a new quantum effect in neutron-atom collisions, namely an observable momentum transfer deficit; or equivalently, a reduction of effective mass below that of the free scattering atom. Two corroborative experimental findings are shortly presented. Implications for current and further experiments are mentioned. An interpretation of this effect and the associated experimental results within conventional theory is currently unavailable.

  8. Neutron scattering in dimers

    DEFF Research Database (Denmark)

    Gudel, H. U.; Furrer, A.; Kjems, Jørgen

    1986-01-01

    Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer excitati......Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer...

  9. Elastic scattering of hadrons

    Science.gov (United States)

    Dremin, I. M.

    2013-01-01

    Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.

  10. A discrete variable representation for electron-hydrogen atom scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gaucher, L.F.

    1994-08-01

    A discrete variable representation (DVR) suitable for treating the quantum scattering of a low energy electron from a hydrogen atom is presented. The benefits of DVR techniques (e.g. the removal of the requirement of calculating multidimensional potential energy matrix elements and the availability of iterative sparse matrix diagonalization/inversion algorithms) have for many years been applied successfully to studies of quantum molecular scattering. Unfortunately, the presence of a Coulomb singularity at the electrically unshielded center of a hydrogen atom requires high radial grid point densities in this region of the scattering coordinate, while the presence of finite kinetic energy in the asymptotic scattering electron also requires a sufficiently large radial grid point density at moderate distances from the nucleus. The constraints imposed by these two length scales have made application of current DVR methods to this scattering event difficult.

  11. Non-line-of-sight active imaging of scattered photons

    Science.gov (United States)

    Laurenzis, Martin; Velten, Andreas

    2013-10-01

    Laser Gated Viewing is a prominent sensing technology for optical imaging in harsh environments and can be applied to the vision through fog, smoke and other degraded environmental conditions as well as to the vision through sea water in submarine operation. A direct imaging of non-scattered photons (or ballistic photons) is limited in range and performance by the free optical path length i.e. the length in which a photon can propagate without interaction with scattering particles or object surfaces. The imaging and analysis of scattered photons can overcome these classical limitations and it is possible to realize a non-line-of-sight imaging. The spatial and temporal distribution of scattered photons can be analyzed by means of computational optics and their information of the scenario can be restored. In the case of Lambertian scattering sources the scattered photons carry information of the complete environment. Especial the information outside the line of sight or outside the visibility range is of high interest. Here, we discuss approaches for non line of sight active imaging with different indirect and direct illumination concepts (point, surface and volume scattering sources).

  12. Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2014-09-01

    Full Text Available We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector kˆ nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω,Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.

  13. Minimum length-maximum velocity

    Science.gov (United States)

    Panes, Boris

    2012-03-01

    We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example, we can predict the ratio between the minimum lengths in space and time using the results from OPERA on superluminal neutrinos.

  14. Analytic determination of the eight-and-a-half post-Newtonian self-force contributions to the two-body gravitational interaction potential

    CERN Document Server

    Bini, Donato

    2014-01-01

    We {\\it analytically} compute, to the eight-and-a-half post-Newtonian order, and to linear order in the mass ratio, the radial potential describing (within the effective one-body formalism) the gravitational interaction of two bodies, thereby extending previous analytic results. These results are obtained by applying analytical gravitational self-force theory (for a particle in circular orbit around a Schwarzschild black hole) to Detweiler's gauge-invariant redshift variable. We emphasize the increase in \\lq\\lq transcendentality" of the numbers entering the post-Newtonian expansion coefficients as the order increases, in particular we note the appearance of $\\zeta(3)$ (as well as the square of Euler's constant $\\gamma$) starting at the seventh post-Newtonian order. We study the convergence of the post-Newtonian expansion as the expansion parameter $u=GM/(c^2r)$ leaves the weak-field domain $u\\ll 1$ to enter the strong field domain $u=O(1)$.

  15. Predictive $CP$ Violating Relations for Charmless Two-body Decays of Beauty Baryons $\\Xi^{-,\\;0}_b$ and $\\Lambda_b^0$

    CERN Document Server

    He, Xiao-Gang

    2015-01-01

    Several baryons containing a heavy b-quark have been discovered. The decays of these states provide new platform for testing the standard model (SM). We study $CP$ violation in SM for charmless two-body decays of the flavor $SU(3)$ anti-triplet beauty baryon (b-baryon) ${\\cal B} = (\\Xi^-_b,\\;\\Xi^0_b,\\;\\Lambda_b^0)$ in a model independent way. We found, in the flavor $SU(3)$ symmetry limit, a set of new predictive relations among the branching ratio $Br$ and $CP$ asymmetry $A_{CP}$ for $\\cal B$ decays. Neglecting small annihilation contributions, we find additional relations. In particular we find that $A_{CP}(\\Lambda_b^0\\to \\pi^- p)/A_{CP}(\\Lambda_b^0\\to K^- p) = - Br(\\Lambda_b^0 \\to K^- p)/Br(\\Lambda_b^0 \\to \\pi^- p)$ holds to a good approximation. This relation is consistent with recent data from CDF in signs and in values within 1$\\sigma$ error bars, but the central value is off. Future data from LHCb can test this relation and also other relations found.

  16. Measurement of branching fractions and search for CP-violating charge asymmetries in charmless two-body B decays into pions and kaons.

    Science.gov (United States)

    Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Fan, Q; Gill, M S; Gowdy, S J; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Kirk, A; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; Mass, A; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Camanzi, B; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Dubrovin, M S; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Bloom, P; Fahey, S; Ford, W T; Gaede, F; Johnson, D R; Michael, A K; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; LePeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljevic, V; Fackler, O; Fujino, D; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Martin, R; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Lin, C S; Moore, T B; Staengle, H; Willocq, S; Wittlin, J; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Britton, D I; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L

    2001-10-08

    We present measurements, based on a sample of approximately 23x10(6) BB pairs, of the branching fractions and a search for CP-violating charge asymmetries in charmless hadronic decays of B mesons into two-body final states of kaons and pions. We find the branching fractions B(B0-->pi(+)pi(-)) = (4.1+/-1.0+/-0.7)x10(-6), B(B0-->K+pi(-)) = (16.7+/-1.6+/-1.3)x10(-6), B(B+-->K+pi(0)) = (10.8(+2.1)(-1.9)+/-1.0)x10(-6), B(B+-->K0pi(+)) = (18.2(+3.3)(-3.0)+/-2.0)x10(-6), B(B0-->K0pi(0)) = (8.2(+3.1)(-2.7)+/-1.2)x10(-6). We also report 90% confidence level upper limits for B meson decays to the pi(+)pi(0), K+K-, and K0K+ final states. In addition, charge asymmetries have been found to be consistent with zero, where the statistical precision is in the range of +/-0.10 to +/-0.18, depending on the decay mode.

  17. Evidence for the two-body charmless baryonic decay $B^+ \\to p \\kern 0.1em\\overline{\\kern -0.1em\\Lambda}$

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Bordyuzhin, Igor; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hatch, Mark; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, P H; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kosmyntseva, Alena; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Tenglin; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Toriello, Francis; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vernet, Maxime; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zucchelli, Stefano

    2016-01-01

    A search for the rare two-body charmless baryonic decay $B^+ \\to p \\kern 0.1em\\overline{\\kern -0.1em\\Lambda}$ is performed with $pp$ collision data, corresponding to an integrated luminosity of $3\\mbox{fb}^{-1}$, collected by the LHCb experiment at centre-of-mass energies of $7$ and $8\\mathrm{\\,Te\\kern -0.1em V}$. An excess of $B^+ \\to p \\kern 0.1em\\overline{\\kern -0.1em\\Lambda}$ candidates with respect to background expectations is seen with a statistical significance of 4.1 standard deviations, and constitutes the first evidence for this decay. The branching fraction, measured using the $B^+ \\to K^0_{\\mathrm S} \\pi^+$ decay for normalisation, is \\begin{eqnarray} \\mathcal{B}(B^+ \\to p \\kern 0.1em\\overline{\\kern -0.1em\\Lambda}) & = & ( 2.4 \\,^{+1.0}_{-0.8} \\pm 0.3 ) \\times 10^{-7} \\,, \

  18. Measurement of Branching Fractions and Search for CP-Violating Charge Asymmetries in Charmless Two-Body B Decays into Pions and Kaons

    CERN Document Server

    Aubert, Bernard; Gaillard, Jean-Marc; Hicheur, A; Karyotakis, Yu; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Fan, Q; Gill, M S; Gowdy, S J; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Yu G; Kral, J F; Le Clerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, Michael T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Kirk, A; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmücker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; Mass, A; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Camanzi, B; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Dubrovin, M S; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Yu I; Telnov, V I; Yushkov, A N; Lankford, A J; Mandelkern, M A; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kröger, W; Lockman, W S; Pulliam, T; Sadrozinski, H F W; Schalk, T L; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S C; Geld, T L; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Bloom, P; Fahey, S; Ford, W T; Gaede, F; Johnson, D R; Michael, A K; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; Van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, Klaus R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; Le Peltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, Andrea; Wormser, G; Bionta, R M; Brigljevic, V; Fackler, O; Fujino, D; Lange, D J; Mugge, M; Shi, X; Van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, Erwin; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J W; Martin, R; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J L; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Lin, C S; Moore, T B; Stängle, H; Willocq, S; Wittlin, J; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Britton, D I; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L M; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De, G; Nardo; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R G; Gabriel, T A; Handler, T; Brau, J E; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; Le Diberder, F R; Leruste, P; Lory, J; Roos, L; Stark, J; Versille, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martínez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M J; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Lü, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J S; Tumanov, A; Varnes, E W; Cavoto, G; Del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Jacques, P F; Kalelkar, M; Plano, R J; Adye, T; Franek, B J; Geddes, N I; Gopal, Gian P; Xella, S M; Aleksan, Roy; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, Witold; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yéche, C; Zito, M; Copty, N K; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K G; Bloom, Elliott D; Boyarski, A M; Bulos, F; Calderini, G; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Doser, Michael; Dunwoodie, W M; Field, R C; Glanzman, T; Godfrey, G L; Grosso, P; Himel, Thomas M; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Lüth, V; Lynch, H L; Manzin, G; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Müller, D R; O'Grady, C P; Petrak, S; Quinn, Helen R; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Serbo, V V; Snyder, A; Soha, A; Spanier, S M; Stahl, A; Stelzer, J; Su, D; Sullivan, M K; Talby, M; Tanaka, H A; Trunov, A G; Vavra, J; Wagner, S R; Weinstein, A J; Wisniewski, W J; Young, C C; Burchat, Patricia R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Hart, E; Weidemann, A W; Benninger, T; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bóna, M; Di Girolamo, B; Gamba, D; Smol, A V; Zanin, D; Bosisio, L; Della Ricca, G; Lanceri, L; Pompili, A; Poropat, P; Prest, M; Vallazza, E; Vuagnin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R V; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Elmer, P; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Orejudos, W; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Yu, Z; Zobernig, H; Kordich, T M B; Neal, H; Ollaboration, BABAR C

    2001-01-01

    We present measurements of the branching fractions and a search for CP-violating charge asymmetries in charmless hadronic decays of B mesons into two-body final states of kaons and pions. The results are based on a data sample of approximately 23 million BB(bar) pairs collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. We find the following branching fractions: BF(B0-->pi+pi-)= (4.1+/-1.0+/-0.7) x 10^{-6}, BF(B0-->K+pi-)=(16.7+/-1.6+/-1.3) x 10^{-6}, BF(B+-->K+pi0)=(10.8^{ +2.1}_{-1.9}+/-1.0) x 10^{-6}, BF(B+-->K0pi+)=(18.2^{+3.3}_{-3.0}+/-2. 0) x 10^{-6}, BF(B0-->K0pi0)=(8.2^{+3.1}_{-2.7}+/-1.2) x 10^{-6}. We also report the 90% confidence level upper limits BF(B0-->K+K-) pi+pi0) anti-K0K+) < 2.4 x 10^{-6}. In addition, charge asymmetries have been measured and found to be consistent with zero, where the statistical precision is in the range of +/-0.10 to +/-0.18, depending on the decay mode.

  19. Measurements of Branching Fractions and CP-Violating Asymmetries in B Meson Decays to Charmless Two-Body States Containing a K0

    CERN Document Server

    Aubert, Bernard; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Le Clerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, Michael T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmücker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; MacKay, C; Wilson, F F; Abe, K; Çuhadar-Dönszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, Witold; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, C; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Dubitzky, R S; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Biasini, M; Pioppi, M; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le, F; Diberder; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljevic, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, Erwin; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Cormack, C M; Harrison, P F; Shorthouse, H W; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Raven, G; Cartaro, C; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Jessop, C P; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Cavoto, G; Danielson, N; Elmer, P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Bellini, F; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Convery, M R; Cristinziani, M; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Von Wimmersperg-Töller, J H; Wu, J; Wu Sau Lan; Yu, Z; Neal, H

    2003-01-01

    We present measurements of branching fractions and \\CP-violating asymmetries in decays of $B$ mesons to two-body final states containing a \\Kz. The results are based on a data sample of approximately 88 million \\upsbb decays collected with the \\babar detector at the \\pep2 asymmetric-energy $B$ Factory at SLAC. We measure $\\BR(\\Bp\\to\\Kz\\pip) = (22.3 \\pm 1.7 \\pm 1.1)\\times 10^{-6}$, $\\BR(\\Bz\\to\\Kz\\piz) = (11.4\\pm 1.7\\pm 0.8)\\times 10^{-6}$, $\\BR(\\Bp\\to\\Kzb\\Kp) < 2.5\\times 10^{-6}$, and $\\BR(\\Bz\\to\\KzKzb) < 1.8\\times 10^{-6}$, where the first uncertainty is statistical and the second is systematic, and the upper limits are at the 90% confidence level. In addition, the following \\CP-violating asymmetries have been measured: ${\\cal A}_{CP}(\\Bp\\to\\Kz\\pip) = -0.05 \\pm 0.08 \\pm 0.01$ and ${\\cal A}_{CP}(\\Bz\\to\\Kz\\piz) = 0.03 \\pm 0.36\\pm 0.11$.

  20. The Calculation of Single-Nucleon Energies of Nuclei by Considering Two-Body Effective Interaction, n(k,ρ, and a Hartree-Fock Inspired Scheme

    Directory of Open Access Journals (Sweden)

    H. Mariji

    2016-01-01

    Full Text Available The nucleon single-particle energies (SPEs of the selected nuclei, that is, O16, Ca40, and Ni56, are obtained by using the diagonal matrix elements of two-body effective interaction, which generated through the lowest-order constrained variational (LOCV calculations for the symmetric nuclear matter with the Aυ18 phenomenological nucleon-nucleon potential. The SPEs at the major levels of nuclei are calculated by employing a Hartree-Fock inspired scheme in the spherical harmonic oscillator basis. In the scheme, the correlation influences are taken into account by imposing the nucleon effective mass factor on the radial wave functions of the major levels. Replacing the density-dependent one-body momentum distribution functions of nucleons, n(k,ρ, with the Heaviside functions, the role of n(k,ρ in the nucleon SPEs at the major levels of the selected closed shell nuclei is investigated. The best fit of spin-orbit splitting is taken into account when correcting the major levels of the nuclei by using the parameterized Wood-Saxon potential and the Aυ18 density-dependent mean field potential which is constructed by the LOCV method. Considering the point-like protons in the spherical Coulomb potential well, the single-proton energies are corrected. The results show the importance of including n(k,ρ, instead of the Heaviside functions, in the calculation of nucleon SPEs at the different levels, particularly the valence levels, of the closed shell nuclei.

  1. Two-degree-of-freedom Hamiltonian for the time-symmetric two-body problem of the relativistic action-at-a-distance electrodynamics

    Science.gov (United States)

    Buksman Hollander, Efrain; de Luca, Jayme

    2003-02-01

    We find a two-degree-of-freedom Hamiltonian for the time-symmetric problem of straight line motion of two electrons in direct relativistic interaction. This time-symmetric dynamical system appeared 100 years ago and it was popularized in the 1940s by the work of Wheeler and Feynman in electrodynamics, which was left incomplete due to the lack of a Hamiltonian description. The form of our Hamiltonian is such that the action of a Lorentz transformation is explicitly described by a canonical transformation (with rescaling of the evolution parameter). The method is closed and defines the Hamitonian in implicit form without power expansions. We outline the method with an emphasis on the physics of this complex conservative dynamical system. The Hamiltonian orbits are calculated numerically at low energies using a self-consistent steepest-descent method (a stable numerical method that chooses only the nonrunaway solution). The two-degree-of-freedom Hamiltonian suggests a simple prescription for the canonical quantization of the relativistic two-body problem.

  2. Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; L.M. Hensena, Jan; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings and heating, ventilation and airconditioning (HVAC) systems can help reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers suffcient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation to integrate different BPS tools. Co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This article analyzes how co-simulation influences consistency, stability and accuracy of the numerical approximation to the solution. Consistency and zero-stability are studied for a general class of the problem, while a detailed consistency and absolute stability analysis is given for a simple two-body problem. Since the accuracy of the numerical approximation to the solution is reduced in co-simulation, the article concludes by discussing ways for how to improve accuracy.

  3. Quasi-two-body decays B(s )→P ρ →P π π in the perturbative QCD approach

    Science.gov (United States)

    Li, Ya; Ma, Ai-Jun; Wang, Wen-Fei; Xiao, Zhen-Jun

    2017-03-01

    In this work, we calculate the C P -averaged branching ratios and the direct C P -violating asymmetries of the quasi-two-body decays B(s )→P (ρ →)π π by employing the perturbative QCD (PQCD) approach (here P stands for a light pseudoscalar meson π , K , η or η'). The vector current timelike form factor Fπ, which contains the final-state interactions between the pion pair in the resonant region associated with the P -wave states ρ (770 ) along with the two-pion distribution amplitudes, is employed to describe the interactions between the ρ and the pion pair under the hypothesis of the conserved vector current. We found that (a) the PQCD predictions for the branching ratios and the direct C P -violating asymmetries for most considered B(s )→P (ρ →)π π decays agree with currently available data within errors, (b) for B (B →π0ρ0→π0(π+π-) , the PQCD prediction is much smaller than the measured one, and (c) for the B+→π+(ρ0→)π+π- decay mode, there is a negative C P asymmetry (-27.5-3.7+3.0)% , which agrees with other theoretical predictions but is different in sign from those reported by the BABAR and LHCb Collaborations.

  4. Measurement of CP asymmetries and branching fractions in two-body neutral B meson decays to charged pions and kaons with the BABAR detector

    Science.gov (United States)

    Farbin, Amir

    This dissertation presents a measurement of CP asymmetries and branching fractions for neutral B meson decays to two-body final states of charged pions and kaons. The results are obtained from a data sample of about 88 million Upsilon(4S) → BB¯ decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B factory located at the Stanford Linear Accelerator Center. A fit to kinematic, topological, and particle identification information measures the charge-averaged branching fractions B (B0 → pi+pi -) = (4.7 +/- 0.6 +/- 0.2) x 10-6 and B (B0 → K+pi -) = (17.9 +/- 0.9 +/- 0.7) x 10-6 ; the 90% confidence level upper limit B (B0 → K+ K-) b-flavor tagging information measures the CP-violating parameters for B0 → pi +pi- decays Spipi = 0.02 +/- 0.34 +/- 0.05 [-0.54, +0.58] and Cpipi = -0.30 +/- 0.25 +/- 0.04 [-0.72, +0.12].

  5. Pairing versus quarteting coherence length

    CERN Document Server

    Delion, Doru S

    2015-01-01

    We systematically analyse the coherence length in even-even nuclei. The pairing coherence length in the spin-singlet channel for the effective density dependent delta (DDD) and Gaussian interaction is estimated. We consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the nuclear radius. The correlations induced by the pairing interaction have in all considered cases a long range character inside the nucleus and decrease towards the surface. The mean coherence length is larger than the geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature and states in continuum is investigated. Strong shell effects are evidenced, especially for protons. We generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The quartet coherence length has a similar...

  6. Length Invisibilization of Tachyonic Neutrinos

    Science.gov (United States)

    Estakhr, Ahmad Reza

    2016-09-01

    Faster than the speed of light particle such as tachyonic neutrino due to its superluminal nature disapper and is undetectable. L = iΩ-1Lo where, i =√{ - 1 } is imaginary Number, Ω = 1 /√{βs2 - 1 } is Estakhr's Omega factor, L is the Superluminal Length, Lo is the proper length, βs =Vs / c > 1 is superluminal speed parameter, Vs is Superluminal velocity and c is speed of light.

  7. Scatter in cargo radiography.

    Science.gov (United States)

    Miller, Erin A; Caggiano, Joseph A; Runkle, Robert C; White, Timothy A; Bevill, Aaron M

    2011-03-01

    As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beam in the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast. Here, we estimate the extent to which scatter plays a role in radiographic imaging of cargo containers. Stochastic transport simulations were performed to determine the details of the radiography equipment and surrounding environment, which are important in reproducing measured data and to investigate scatter magnitudes for typical cargo. We find that scatter plays a stronger role in cargo radiography than in typical medical imaging scenarios, even for low-density cargo, with scatter-to-primary ratios ranging from 0.14 for very low density cargo, to between 0.20 and 0.40 for typical cargo, and higher yet for dense cargo.

  8. A schlieren method for ultra-low angle light scattering measurements

    CERN Document Server

    Brogioli, D; Giglio, M; Giglio, Marzio

    2003-01-01

    We describe a self calibrating optical technique that allows to perform absolute measurements of scattering cross sections for the light scattered at extremely small angles. Very good performances are obtained by using a very simple optical layout similar to that used for the schlieren method, a technique traditionally used for mapping local refraction index changes. The scattered intensity distribution is recovered by a statistical analysis of the random interference of the light scattered in a half-plane of the scattering wave vectors and the main transmitted beam. High quality data can be obtained by proper statistical accumulation of scattered intensity frames, and the static stray light contributions can be eliminated rigorously. The potentialities of the method are tested in a scattering experiment from non equilibrium fluctuations during a free diffusion experiment. Contributions of light scattered from length scales as long as Lambda=1 mm can be accurately determined.

  9. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  10. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  11. Invariant Scattering Convolution Networks

    CERN Document Server

    Bruna, Joan

    2012-01-01

    A wavelet scattering network computes a translation invariant image representation, which is stable to deformations and preserves high frequency information for classification. It cascades wavelet transform convolutions with non-linear modulus and averaging operators. The first network layer outputs SIFT-type descriptors whereas the next layers provide complementary invariant information which improves classification. The mathematical analysis of wavelet scattering networks explains important properties of deep convolution networks for classification. A scattering representation of stationary processes incorporates higher order moments and can thus discriminate textures having the same Fourier power spectrum. State of the art classification results are obtained for handwritten digits and texture discrimination, using a Gaussian kernel SVM and a generative PCA classifier.

  12. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  13. Scattering Of Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  14. $\\Lambda$ Scattering Equations

    CERN Document Server

    Gomez, Humberto

    2016-01-01

    The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter $\\Lambda$ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting $\\Lambda$ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the $\\Lambda$ algorithm.

  15. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  16. Light scattering studies of an electrorheological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.E.; Odinek, J.

    1993-08-01

    We report real-time, two-dimensional light scattering studies of the evolution of structure in an electrorheological fluid in the quiescent state and under shear. We find that when an electric field is applied to the quiescent fluid, particles chain along the electric field lines and cause strong light scattering lobes to appear at a finite scattering wavevector q orthogonal to the field lines. These lobes then brighten as they move to q=O, indicating the existence of an unstable concentration fluctuation that signifies the segregation of chains into columns. In fact, the observed power law growth kinetics of the characteristic length, as well as the form of the structure factor, are qualitatively similar to two-dimensional spinodal decomposition in a system with a conserved order parameter. When the sample is subjected to shear, we find that the scattering pattern approaches a steady state, with lobes that are rotated in the direction of fluid vorticity. The angle of rotation is found to increase as the cube root of the shear rate, in agreement with a theoretical prediction of the steady state structure of fragmenting particle chains.

  17. Surface roughness scattering in multisubband accumulation layers

    Science.gov (United States)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-06-01

    Accumulation layers with very large concentrations of electrons where many subbands are filled became recently available due to ionic liquid and other new methods of gating. The low-temperature mobility in such layers is limited by the surface roughness scattering. However, theories of roughness scattering so far dealt only with the small-density single subband two-dimensional electron gas (2DEG). Here we develop a theory of roughness-scattering limited mobility for the multisubband large concentration case. We show that with growing 2D electron concentration n the surface dimensionless conductivity σ /(2 e2/h ) first decreases as ∝n-6 /5 and then saturates as ˜(d aB/Δ2)≫1 , where d and Δ are the characteristic length and height of the surface roughness and aB is the effective Bohr radius. This means that in spite of the shrinkage of the 2DEG thickness and the related increase of the scattering rate the 2DEG remains a good metal.

  18. Neutron scattering applications in hydrocarbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min Y.; Peiffer, Dennis G. [ExxonMobil Research and Engineering Company, Annandale, NJ (United States); Zhang, Yimin; Rafailovich, Miriam [Dept. of Materials Sci. and Eng., State University of New York, NY (United States)

    2001-03-01

    Neutron scattering methods are a powerful probe to complex fluids, soft matters as well as solid materials of nano- and micro-structures and their related dynamic properties. They complement other microstructural probing tools, such as microscopes, x-ray and light scattering techniques. Because neutron does not carry charges, it interacts only with nuclei of the matter, therefore not only can it penetrate a longer length into matters, it can also see' many features other methods can't due to their lack of proper contrast or heavy absorption. One of the largest contrasts in neutron methods is from hydrogen/deuterium (H/D) difference. Therefore, hydrocarbons can be easily studied by neutrons when H/D isotope substitution is applied. Here at National Institute of Standards and Technology's Center for Neutron Research (NCNR) in Gaithersburg, Maryland, one of the USA's premier neutron scattering facilities, we have been using neutron scattering techniques to study microstructures of asphaltenes, waxes, gas hydrates, porous media, surfactant solutions, engine oils, polymers, nanocomposites, fuel cell element and other hydrocarbon materials. With the completion of a new Neutron Spin Echo instrument, we can also look at the dynamics of the above mentioned systems. (author)

  19. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  20. Inversion assuming weak scattering

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2013-01-01

    The study of weak scattering from inhomogeneous media or interface roughness has long been of interest in sonar applications. In an acoustic backscattering model of a stationary field of volume inhomogeneities, a stochastic description of the field is more useful than a deterministic description...... due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...

  1. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  2. Neutron scattering on partially deuterated polybutadiene

    CERN Document Server

    Kahle, S; Monkenbusch, M; Richter, D; Arbe, A; Colmenero, J; Frick, B

    2002-01-01

    The molecular nature of the secondary relaxation (Johari-Goldstein relaxation) and its relationship with the alpha relaxation is in most cases still unknown. In order to access these processes on a molecular level, it is necessary to obtain spatial information of the relaxation. Through the momentum-transfer dependence of the dynamic structure factor S(Q,t), this information can be provided by quasielastic neutron scattering techniques. The large difference in scattering lengths between hydrogen and deuterium allows us to accentuate specific correlations between atoms in a polymer melt. Here, we report on recent results on a polybutadiene melt, where the double bond was hydrogeneous, while the methylene groups carried deuterons (d4h2-PB). In this way the correlations between the double bonds are emphasised. We will show that the double bond/double bond correlation function, generated in this way, shows the same temperature dependence as the viscosity at higher temperatures at the structure factor peak maximum...

  3. Two-body D sub s sup + decays to. eta. pi. sup + ,. eta. prime. pi. sup + ,. eta. rho. sup + ,. eta. prime. rho. sup + , and. phi. rho. sup +

    Energy Technology Data Exchange (ETDEWEB)

    Daoudi, M.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.; Bebek, C.; Berkelman, K.; Besson, D.; Browder, T.E.; Cassel, D.G.; Cheu, E.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Honscheid, K.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Lewis, J.D.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Nandi, S.; Ng, C.R.; Nordberg, E.; O' Grady, C.; Patterson, J.R.; Peterson, D.; Pisharody, M.; Riley, D.; Sapper, M.; Selen, M.; Worden, H.; Worris, M.; Avery, P.; Freyberger, A.; Rodriguez, J.; Yelton, J.; Henderson, S.; Kinoshita, K.; Pipkin, F.; Saulnier, M.; Wilson, R.; Wolinski, J.; Xiao, D.; Yamamoto, H.; Sadoff, A.J.; Ammar, R.; Baringer, P.; Coppage, D.; Davis, R.; Kelly, M.; Kwak, N.; Lam, H.; Ro, S.; Kubota, Y.; Nelson, J.K.; Poling, R.; Schrenk, S.; Alam, M.S.; Kim, I.J.; Nemati, B.; Romero, V.; Sun, C.R.; Wang, P.; Zoell; (CLEO Collaboration)

    1992-06-01

    We have made measurements of several {ital D}{sub {ital s}} branching ratios, relative to the {phi}{pi}{sup +} mode. We have observed two previously unseen two-body hadronic decays of the {ital D}{sub {ital s}}{sup +}, namely {eta}{rho}{sup +} and {eta}{prime}{rho}{sup +}, and measured relative branching ratios of 2.86{plus minus}0.38{sub {minus}0.38}{sup +0.36} and 3.44{plus minus}0.62{sub {minus}0.46}{sup +0.44}, respectively. We have determined the relative branching ratio for the decay into {phi}{rho}{sup +} to be 1.86{plus minus}0.26{sub {minus}0.40}{sup +0.29}. In addition, we have measured relative branching ratios for the {eta}{pi}{sup +} and {eta}{prime}{pi}{sup +} states, for which there had previously been conflicting measurements; our results are 0.54{plus minus}0.09{plus minus}0.06 and 1.20{plus minus}0.15{plus minus}0.11, respectively. Combining these new measurements with previous results and using (3.7{plus minus}1.2)% for the value of {ital scrB}({ital D}{sub {ital s}}{r arrow}{phi}{pi}{sup +}), we can account for {approx}(79{plus minus}26)% of all {ital D}{sub {ital s}}{sup +} decays. In addition we have also measured relative branching ratios or set upper limits on {ital D}{sup +} decays to all of the above-mentioned final states.

  4. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    Science.gov (United States)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  5. Persistence Length of Stable Microtubules

    Science.gov (United States)

    Hawkins, Taviare; Mirigian, Matthew; Yasar, M. Selcuk; Ross, Jennifer

    2011-03-01

    Microtubules are a vital component of the cytoskeleton. As the most rigid of the cytoskeleton filaments, they give shape and support to the cell. They are also essential for intracellular traffic by providing the roadways onto which organelles are transported, and they are required to reorganize during cellular division. To perform its function in the cell, the microtubule must be rigid yet dynamic. We are interested in how the mechanical properties of stable microtubules change over time. Some ``stable'' microtubules of the cell are recycled after days, such as in the axons of neurons or the cilia and flagella. We measured the persistence length of freely fluctuating taxol-stabilized microtubules over the span of a week and analyzed them via Fourier decomposition. As measured on a daily basis, the persistence length is independent of the contour length. Although measured over the span of the week, the accuracy of the measurement and the persistence length varies. We also studied how fluorescently-labeling the microtubule affects the persistence length and observed that a higher labeling ratio corresponded to greater flexibility. National Science Foundation Grant No: 0928540 to JLR.

  6. IMF Length Scales and Predictability: The Two Length Scale Medium

    Science.gov (United States)

    Collier, Michael R.; Szabo, Adam; Slavin, James A.; Lepping, R. P.; Kokubun, S.

    1999-01-01

    We present preliminary results from a systematic study using simultaneous data from three spacecraft, Wind, IMP 8 (Interplanetary Monitoring Platform) and Geotail to examine interplanetary length scales and their implications on predictability for magnetic field parcels in the typical solar wind. Time periods were selected when the plane formed by the three spacecraft included the GSE (Ground Support Equipment) x-direction so that if the parcel fronts were strictly planar, the two adjacent spacecraft pairs would determine the same phase front angles. After correcting for the motion of the Earth relative to the interplanetary medium and deviations in the solar wind flow from radial, we used differences in the measured front angle between the two spacecraft pairs to determine structure radius of curvature. Results indicate that the typical radius of curvature for these IMF parcels is of the order of 100 R (Sub E). This implies that there are two important IMF (Interplanetary Magnetic Field) scale lengths relevant to predictability: (1) the well-established scale length over which correlations observed by two spacecraft decay along a given IMF parcel, of the order of a few tens of Earth radii and (2) the scale length over which two spacecraft are unlikely to even observe the same parcel because of its curvature, of the order of a hundred Earth radii.

  7. CEBAF Upgrade Bunch Length Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.

  8. Keeping disease at arm's length

    DEFF Research Database (Denmark)

    Lassen, Aske Juul

    2015-01-01

    active ageing change everyday life with chronic disease, and how do older people combine an active life with a range of chronic diseases? The participants in the study use activities to keep their diseases at arm’s length, and this distancing of disease at the same time enables them to engage in social...... and physical activities at the activity centre. In this way, keeping disease at arm’s length is analysed as an ambiguous health strategy. The article shows the importance of looking into how active ageing is practised, as active ageing seems to work well in the everyday life of the older people by not giving...... emphasis to disease. The article is based on ethnographic fieldwork and uses vignettes of four participants to show how they each keep diseases at arm’s length....

  9. Spreading lengths of Hermite polynomials

    CERN Document Server

    Sánchez-Moreno, P; Manzano, D; Yáñez, R; 10.1016/j.cam.2009.09.043

    2009-01-01

    The Renyi, Shannon and Fisher spreading lengths of the classical or hypergeometric orthogonal polynomials, which are quantifiers of their distribution all over the orthogonality interval, are defined and investigated. These information-theoretic measures of the associated Rakhmanov probability density, which are direct measures of the polynomial spreading in the sense of having the same units as the variable, share interesting properties: invariance under translations and reflections, linear scaling and vanishing in the limit that the variable tends towards a given definite value. The expressions of the Renyi and Fisher lengths for the Hermite polynomials are computed in terms of the polynomial degree. The combinatorial multivariable Bell polynomials, which are shown to characterize the finite power of an arbitrary polynomial, play a relevant role for the computation of these information-theoretic lengths. Indeed these polynomials allow us to design an error-free computing approach for the entropic moments (w...

  10. Numerical Computational Technique for Scattering from Underwater Objects

    Directory of Open Access Journals (Sweden)

    T. Ratna Mani

    2013-01-01

    Full Text Available This paper presents a computational technique for mono-static and bi-static scattering from underwater objects of different shape such as submarines. The scatter has been computed using finite element time domain (FETD method, based on the superposition of reflections ,from the different elements reaching the receiver at a particular instant in time. The results calculated by this method has been verified with the published results based on ramp response technique. An in-depth parametric study has been carried out, by considering different pulse frequency, pulse length, pulse type (CW, LFM , SFM, sampling frequency, as well as different size , shape of the scattering body and grid size. It has been observed that increasing the pulse frequency, sampling frequency and number of elements leads to improved results. However, good amount of accuracy has been achieved with element size less than one third of wave length. The experimental result of the underwater object has been found very close to the `simulated result. This technique is useful for computing forward scatter for inverse scattering applications and as well as to generate forward scatter of very narrow and wide band signals of any pulse type and shape of body.

  11. Inelastic magnon scattering

    Directory of Open Access Journals (Sweden)

    Robert de Mello Koch

    2017-05-01

    Full Text Available We study the worldsheet S-matrix of a string attached to a D-brane in AdS5×S5. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the su(2|3 sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter and inelastic (when magnons at the endpoint of an open string participate scattering. Both of these S-matrices are determined (up to an overall phase by the su(2|22 global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the su(2 sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a unique solution to the crossing equation is to be selected.

  12. Inelastic Magnon Scattering

    CERN Document Server

    Koch, Robert de Mello

    2016-01-01

    We study the worldsheet S-matrix of a string attached to a D-brane in AdS$_5\\times$S$^5$. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the $su(2|3)$ sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter) and inelastic (when magnons at the endpoint of an open string participate) scattering. Both of these $S$-matrices are determined (up to an overall phase) by the $su(2|2)^2$ global symmetry of the theory. In this note we study the $S$-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the $su(2)$ sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a uniq...

  13. Scattering theory. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2016-07-01

    This corrected and updated second edition of ''Scattering Theory'' presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.

  14. Pi-Pi Scattering with Nf=2+1+1 Twisted Mass Fermions

    CERN Document Server

    Helmes, Christopher; Knippschild, Bastian; Liu, Liuming; Urbach, Carsten; Werner, Markus

    2014-01-01

    Pi-Pi scattering is investigated for the first time for Nf=2+1+1 dynamical quark flavours using Wilson twisted mass fermions. L\\"uscher's finite size method is used to relate energy shifts in finite volume to scattering quantities like the scattering length in the I=2 channel. The computation is performed at several pion masses and lattice spacings utilising the stochastic LapH method.

  15. Controlling the scattering properties of thin, particle-doped coatings

    Science.gov (United States)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  16. Modelling of classical ghost images obtained using scattered light

    Science.gov (United States)

    Crosby, S.; Castelletto, S.; Aruldoss, C.; Scholten, R. E.; Roberts, A.

    2007-08-01

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.

  17. Low energy scattering phase shifts for meson-baryon systems

    CERN Document Server

    Detmold, William

    2015-01-01

    In this work, we calculate meson-baryon scattering phase shifts in four channels using lattice QCD methods. From a set of calculations at four volumes, corresponding to spatial sizes of 2, 2.5, 3, and 4 fm, and a pion mass of m_pi ~ 390 MeV, we determine the scattering lengths and effective ranges for these systems at the corresponding quark masses. We also perform the calculation at a lighter quark mass, m_pi ~ 230 MeV, on the largest volume. Using these determinations, along with those in previous work, we perform a chiral extrapolation of the scattering lengths to the physical point after correcting for the effective range contributions using the multi-volume calculations performed at m_pi ~ 390 MeV.

  18. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  19. Overview of bunch length measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.

    1999-02-19

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed.

  20. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  1. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  2. Length Normalization in XML Retrieval

    NARCIS (Netherlands)

    Kamps, Jaap; Rijke, Maarten de; Sigurbjörnsson, Börkur

    2005-01-01

    The full paper appeared as: J. Kamps, M. de Rijke, and B. Sigurbj¨ornsson, “Length Normalization in XML Retrieval,” In: Proceedings 27th Annual International ACM SIGIR Conference (SIGIR 2004), pages 80-87, 2004.

  3. Finite length Taylor Couette flow

    Science.gov (United States)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.

  4. 7 Length-weight relationship

    African Journals Online (AJOL)

    Administrator

    from which stomachs were extracted for the analysis of the food contents, using frequency of occurrence, numerical and ... both fish species showed strong correlation between the weight and length with correlation coefficient (r) and ..... Basic data on the assessment of Sphyraena ... review of methods and their application.

  5. Persistence length of dendronized polymers

    NARCIS (Netherlands)

    Mikhailov, I.V.; Darinskii, A.A.; Zhulina, E.B.; Borisov, O.V.; Leermakers, F.A.M.

    2015-01-01

    We present numerical results for the thermodynamic rigidity and induced persistence length of dendronized polymers with systematically varied topology of their grafts obtained by the Scheutjens-Fleer self-consistent field method. The results were compared to predictions of an analytical mean-fiel

  6. Fractional baud-length coding

    Directory of Open Access Journals (Sweden)

    J. Vierinen

    2011-06-01

    Full Text Available We present a novel approach for modulating radar transmissions in order to improve target range and Doppler estimation accuracy. This is achieved by using non-uniform baud lengths. With this method it is possible to increase sub-baud range-resolution of phase coded radar measurements while maintaining a narrow transmission bandwidth. We first derive target backscatter amplitude estimation error covariance matrix for arbitrary targets when estimating backscatter in amplitude domain. We define target optimality and discuss different search strategies that can be used to find well performing transmission envelopes. We give several simulated examples of the method showing that fractional baud-length coding results in smaller estimation errors than conventional uniform baud length transmission codes when estimating the target backscatter amplitude at sub-baud range resolution. We also demonstrate the method in practice by analyzing the range resolved power of a low-altitude meteor trail echo that was measured using a fractional baud-length experiment with the EISCAT UHF system.

  7. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  8. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    WU JianHua; RUAN ShiPing

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavitation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator, which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emergence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects, of both model and prototype, on the basis of error theory. A method to calculate the cavity length below aerators was suggested, which considers overall effects of the above mentioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  9. Cyclic Codes of Length 2

    Indian Academy of Sciences (India)

    Manju Pruthi

    2001-11-01

    In this paper explicit expressions of + 1 idempotents in the ring $R = F_q[X]/\\langle X^{2^m}-1\\rangle$ are given. Cyclic codes of length 2 over the finite field , of odd characteristic, are defined in terms of their generator polynomials. The exact minimum distance and the dimension of the codes are obtained.

  10. Imaging an event horizon: mitigation of scattering toward Sagittarius A*

    Energy Technology Data Exchange (ETDEWEB)

    Fish, Vincent L.; Lu, Ru-Sen; Doeleman, Sheperd S.; Pankratius, Victor [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Johnson, Michael D.; Narayan, Ramesh; Vertatschitsch, Laura E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bouman, Katherine L.; Zoran, Daniel; Freeman, William T. [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States); Psaltis, Dimitrios [Astronomy and Physics Departments, University of Arizona, 933 North Cherry Street, Tucson, AZ 85721 (United States); Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Gwinn, Carl R., E-mail: vfish@haystack.mit.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-11-10

    The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ∼50 μas. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry. However, strong-field GR features of interest will be blurred at λ ≥ 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.

  11. Imaging an Event Horizon: Mitigation of Scattering Toward Sagittarius A*

    CERN Document Server

    Fish, Vincent L; Lu, Ru-Sen; Doeleman, Sheperd S; Bouman, Katherine L; Zoran, Daniel; Freeman, William T; Psaltis, Dimitrios; Narayan, Ramesh; Pankratius, Victor; Broderick, Avery E; Gwinn, Carl R; Vertatschitsch, Laura E

    2014-01-01

    The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ~50 microarcseconds. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry (VLBI). However, strong-field GR features of interest will be blurred at lambda >= 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.

  12. Bi-Spectrum Scattering Model for Conducting Randomly Rough Surface

    Institute of Scientific and Technical Information of China (English)

    刘宁; 李宗谦

    2002-01-01

    A scattering model is developed to predict the scattering coefficient of a conducting randomly rough surface by analyzing the randomly rough surface in the spectral domain using the bi-spectrum method. For common randomly rough surfaces without obvious two-scale characteristics, a scale-compression filter can divide the auto-correlation spectrum into two parts with different correlation lengths. The Kirchhoff approximation and the small perturbation method are used to obtain the surface field, then a bistatic scattering model, the bi-spectrum model (BSM), is used to derive an explicit expression from the surface field. Examples using the integral equation model (IEM), finite difference of the time domain (FDTD) method, and BSM show that the BSM accuracy is acceptable and its range of validity is similar to IEM. BSM can also be extended to a scattering model for dielectric randomly rough surfaces.

  13. Momentum-space treatment of Coulomb distortions in a multiple-scattering expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, C.R. (Physics Department, Lawrence Livermore National Laboratory, Livermore, California (USA)); Elster, C. (Department of Physics, Ohio State University, Columbus, Ohio (USA)); Thaler, R.M. (Los Alamos National Laboratory, Los Alamos, New Mexico (USA) Department of Physics, Case Western Reserve University, Cleveland, Ohio (USA))

    1991-10-01

    The momentum-space treatment of the Coulomb interaction within the framework of the Watson multiple-scattering expansion is derived and tested numerically. By neglecting virtual Coulomb excitations and higher-order terms, the lowest-order optical potential for proton-nucleus scattering is shown to be the sum of the convolutions of a two-body nucleon-nucleon {ital t} matrix with the nuclear density and the point Coulomb interaction with the nuclear charge density. The calculation of the optical potential, as well as the treatment of the Coulomb interaction, is performed entirely in momentum space in an exact and numerically stable procedure. Elastic-scattering observables are presented for {sup 16}O, {sup 40}Ca, and {sup 208}Pb at energies up to 500 MeV. Comparisons are made with approximate treatments of the Coulomb interaction. The interference of nonlocality effects in the nuclear optical potential with different treatments of the Coulomb interaction is investigated.

  14. Momentum-space treatment of Coulomb distortions in a multiple-scattering expansion

    Science.gov (United States)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.

    1991-10-01

    The momentum-space treatment of the Coulomb interaction within the framework of the Watson multiple-scattering expansion is derived and tested numerically. By neglecting virtual Coulomb excitations and higher-order terms, the lowest-order optical potential for proton-nucleus scattering is shown to be the sum of the convolutions of a two-body nucleon-nucleon t matrix with the nuclear density and the point Coulomb interaction with the nuclear charge density. The calculation of the optical potential, as well as the treatment of the Coulomb interaction, is performed entirely in momentum space in an exact and numerically stable procedure. Elastic-scattering observables are presented for 16O, 40Ca, and 208Pb at energies up to 500 MeV. Comparisons are made with approximate treatments of the Coulomb interaction. The interference of nonlocality effects in the nuclear optical potential with different treatments of the Coulomb interaction is investigated.

  15. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    Toshimi Suda

    2014-11-01

    A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.

  16. Generalized Levinson theorem: Applications to electron-atom scattering

    Science.gov (United States)

    Rosenberg, Leonard; Spruch, Larry

    1996-12-01

    A recent formulation provides an absolute definition of the zero-energy phase shift δ for multiparticle single-channel scattering of a particle by a neutral compound target in a given partial wave l. This formulation, along with the minimum principle for the scattering length, leads to a determination of δ that represents a generalization of Levinson's theorem. In its original form that theorem is applicable only to potential scattering of a particle and relates δ/π to the number of bound states of that l. The generalized Levinson theorem relates δ/π for scattering in a state of given angular momentum to the number of composite bound states of that angular momentum plus a calculable number that, for a system described in the Hartree-Fock approximation, is the number of states of that angular momentum excluded by the Pauli principle. Thus, for example, for electron scattering by Na, with its (1s)2(2s)2(2p)63s configuration and with one L=0 singlet composite bound state, δ would be π+2π for s-wave singlet scattering, 0+3π for s-wave triplet scattering, and 0+π for both triplet and singlet p-wave scattering; the Pauli contribution has been listed first. The method is applicable to a number of e+/--atom and nucleon-nucleus scattering processes, but only applications of the former type are described here. We obtain the absolute zero-energy phase shifts for e--H and e--He scattering and, in the Hartree-Fock approximation for the target, for atoms that include the noble gases, the alkali-metal atoms, and, as examples, B, C, N, O, and F, which have one, two, three, four, and five p electrons, respectively, outside of closed shells. In all cases, the applications provide results in agreement with expectations.

  17. Nitrogen Scattering at Ru Surfaces

    NARCIS (Netherlands)

    Zaharia, T.; Ueta, H.; Kleyn, A. W.; Gleeson, M. A.

    2013-01-01

    Results on the scattering of hyperthermal N2 molecules from bare and N-covered Ru(0001) surfaces are presented. These are compared with Ar scattering from the same surfaces as a reference non-reactive system. In the case of bare Ru(0001) the measured angular distributions are consistent with scatter

  18. Low energy + scattering on = nuclei

    Indian Academy of Sciences (India)

    Swapan Das; Arun K Jain

    2003-11-01

    The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.

  19. Scattering with partial information

    CERN Document Server

    Carney, Daniel; Semenoff, Gordon

    2016-01-01

    We study relativistic scattering when one only has access to a subset of the particles, using the language of quantum measurement theory. We give an exact, non-perturbative formula for the von Neumann entanglement entropy of an apparatus particle scattered off an arbitrary set of system particles, in either the elastic or inelastic regime, and show how to evaluate it perturbatively. We give general formulas for the late-time expectation values of apparatus observables. Some simple example applications are included: in particular, a protocol to verify preparation of coherent superpositions of spatially localized system states using position-space information in the outgoing apparatus state, at lowest order in perturbation theory in a weak apparatus-system coupling.

  20. Protostring Scattering Amplitudes

    CERN Document Server

    Thorn, Charles B

    2016-01-01

    We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...

  1. Scattering fidelity in elastodynamics

    Science.gov (United States)

    Gorin, T.; Seligman, T. H.; Weaver, R. L.

    2006-01-01

    The recent introduction of the concept of scattering fidelity causes us to revisit the experiment by Lobkis and Weaver [Phys. Rev. Lett. 90, 254302 (2003)]. There, the “distortion” of the coda of an acoustic signal is measured under temperature changes. This quantity is, in fact, the negative logarithm of scattering fidelity. We reanalyze their experimental data for two samples, and we find good agreement with random matrix predictions for the standard fidelity. Usually, one may expect such an agreement for chaotic systems, only. While the first sample may indeed be assumed chaotic, for the second sample, a perfect cuboid, such an agreement is surprising. For the first sample, the random matrix analysis yields perturbation strengths compatible with semiclassical predictions. For the cuboid, the measured perturbation strengths are by a common factor of (5)/(3) too large. Apart from that, the experimental curves for the distortion are well reproduced.

  2. Coherent Scatter Imaging Measurements

    Science.gov (United States)

    Ur Rehman, Mahboob

    In conventional radiography, anatomical information of the patients can be obtained, distinguishing different tissue types, e.g. bone and soft tissue. However, it is difficult to obtain appreciable contrast between two different types of soft tissues. Instead, coherent x-ray scattering can be utilized to obtain images which can differentiate between normal and cancerous cells of breast. An x-ray system using a conventional source and simple slot apertures was tested. Materials with scatter signatures that mimic breast cancer were buried in layers of fat of increasing thickness and imaged. The result showed that the contrast and signal to noise ratio (SNR) remained high even with added fat layers and short scan times.

  3. pH-dependent phase behavior of carbohydrate-based gemini surfactants. Effect of the length of the hydrophobic spacer

    NARCIS (Netherlands)

    Klijn, Jaap E.; Stuart, Marc C. A.; Scarzello, Marco; Wagenaar, Anno; Engberts, Jan B. F. N.

    2006-01-01

    The phase behavior of a series of carbohydrate-based gemini surfactants with varying spacer lengths was studied using static and dynamic light scattering between pH 2 and 12. Cryo-electron microscopy pictures provide evidence for the different morphologies present in solution. The spacer length of

  4. Molecular-beam scattering

    Science.gov (United States)

    Vernon, M. F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HC1 (FEMALE) NAC1 + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2(2)P/sub 3/2/) and Na(3(2)P/sub 3/2) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  5. Molecular-beam scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  6. Modern Electromagnetic Scattering

    Science.gov (United States)

    2013-08-10

    Section 4.3) of the cylindrical annulus is properly accounted for, and if the cylindrical void is sufficiently small . We refer to this approximation as...tempered distributions . . . . . . . . . . . . . 59 CHAPTER 4 MEASURING THE VOID: THEORETICAL STUDY OF SCATTERING BY A CYLINDRICAL ANNULUS ...and phase of the far-field pattern in the forward direction for a Teflon cylindrical annulus in vacuum, with an outer radius of 10 cm at 100 GHz, is

  7. Scattering in ABJ theories

    CERN Document Server

    Bianchi, Marco S; Mauri, Andrea; Penati, Silvia; Santambrogio, Alberto

    2011-01-01

    We study the correspondence between scattering amplitudes and Wilson loops in three-dimensional Chern-Simons matter theories. In particular, using N=2 superspace formalism, we compute at one loop the whole spectrum of four-point superamplitudes for generic N>=2 supersymmetric theories and find a vanishing result for N=6 ABJ(M) and N=8 BLG models. This restricts the possible range of theories for which Wilson loops/scattering amplitudes duality might work. At two loops, we present the computation of the four-point ABJ scattering amplitude for external chiral superfields. Extending the known result for the ABJM Wilson loop to the ABJ case we find perfect agreement. We also discuss the dual conformal invariance of our results and the relationship between the Feynman diagram computation and unitarity methods. While for the ABJM theory dual conformally invariant integrals exactly reproduce the amplitude, for the ABJ case this happens only up to a residual constant depending on the parity-violating parameter. Final...

  8. Neutron scattering in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  9. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  10. INTERPOLATION WITH RESTRICTED ARC LENGTH

    Institute of Scientific and Technical Information of China (English)

    Petar Petrov

    2003-01-01

    For given data (ti,yi), I= 0,1,…,n,0 = t0 <t1 <…<tn = 1we study constrained interpolation problem of Favard type inf{‖f"‖∞|f∈W2∞[0,1],f(ti)=yi,i=0,…,n,l(f;[0,1])≤l0}, wherel(f";[0,1])=∫1 0 / 1+f'2(x)dx is the arc length off in [0,1]. We prove the existence of a solution f* of the above problem, that is a quadratic spline with a second derivative f"* , which coincides with one of the constants - ‖f"*‖∞,0,‖f"*‖∞ between every two consecutive knots. Thus, we extend a result ofKarlin concerning Favard problem, to the case of restricted length interpolation.

  11. Isospin violation in low-energy charged pion-kaon scattering

    CERN Document Server

    Kubis, B; Kubis, Bastian; Mei{\\ss}ner, Ulf-G.

    2002-01-01

    We evaluate the isospin breaking corrections to the scattering amplitude \\pi^- K^+ -> \\pi^- K^+ at threshold in the framework of chiral perturbation theory. This channel is of particular interest for the strong 2S-2P energy level shift in pion-kaon bound states. While a prediction of this level shift is hampered by a large uncertainty in the isoscalar scattering length, we find only a moderate uncertainty of about 3% in the electromagnetic corrections which are relevant for the extraction of the scattering lengths from experiment

  12. Minimal Length, Measurability and Gravity

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2016-03-01

    Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.

  13. Diffuse scattering and partial disorder in complex structures

    Directory of Open Access Journals (Sweden)

    T. R. Welberry

    2014-11-01

    Full Text Available The study of single-crystal diffuse scattering (SCDS goes back almost to the beginnings of X-ray crystallography. Because SCDS arises from two-body correlations, it contains information about local (short-range ordering in the sample, information which is often crucial in the attempt to relate structure to function. This review discusses the state of the field, including detectors and data collection and the modelling of SCDS using Monte Carlo and ab initio techniques. High-quality, three-dimensional volumes of SCDS data can now be collected at synchrotron light sources, allowing ever more detailed and quantitative analyses to be undertaken, and opening the way to approaches such as three-dimensional pair distribution function studies (3D-PDF and automated refinement of a disorder model, powerful techniques that require large volumes of low-noise data.

  14. Gamow shell model description of proton scattering on $^{18}$Ne

    CERN Document Server

    Jaganathen, Y; Płoszajczak, M

    2014-01-01

    We formulate the GSM in coupled-channel (GSM-CC) representation to describe low-energy elastic and inelastic scattering of protons on $^{18}$Ne. The GSM-CC formalism is applied to a translationally-invariant Hamiltonian with an effective finite-range two-body interaction. We discuss in details the GSM-CC formalism in coordinate space and give the description of the novel equivalent potential method for solving the GSM-CC system of integro-differential equations. We present the first application of the GSM-CC formalism for the calculation of excited states of $^{18}$Ne and $^{19}$Na, excitation function and the elastic/inelastic differential cross-sections in the $^{18}$Ne$(p,p')$ reaction at different energies.

  15. Solving Potential Scattering Equations without Partial Wave Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Caia, George; Pascalutsa, Vladimir; Wright, Louis E

    2004-03-01

    Considering two-body integral equations we show how they can be dimensionally reduced by integrating exactly over the azimuthal angle of the intermediate momentum. Numerical solution of the resulting equation is feasible without employing a partial-wave expansion. We illustrate this procedure for the Bethe-Salpeter equation for pion-nucleon scattering and give explicit details for the one-nucleon-exchange term in the potential. Finally, we show how this method can be applied to pion photoproduction from the nucleon with {pi}N rescattering being treated so as to maintain unitarity to first order in the electromagnetic coupling. The procedure for removing the azimuthal angle dependence becomes increasingly complex as the spin of the particles involved increases.

  16. Plasma scattering of electromagnetic radiation

    CERN Document Server

    Sheffield, John

    1975-01-01

    Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge

  17. Neutron scattering from equilibrium-swollen networks.

    Science.gov (United States)

    Sukumaran, S K; Beaucage, G; Mark, J E; Viers, B

    2005-09-01

    Small-angle neutron scattering measurements were performed on end-linked poly (dimethylsiloxane) (PDMS) networks swollen to equilibrium with d-benzene. Comparison was made with equivalent concentration PDMS solutions. Equilibrium-swollen networks consistently displayed a linear scattering regime at low q followed by a good-solvent-like scaling regime at high q in agreement with the predictions of the Gel Tensile Blob (GTB) model. Data are fit using the unified function modified for the GTB model (3-parameter fit). Equilibrium-swollen networks display a base structural size, the gel tensile-blob size, xi, that was found to be independent of the molecular weight between crosslinks for the series of molecular weights studied, consistent with the predictions of the model. The length of the extended tensile structure, L, can be larger than the length of the fully extended network strand. The predicted scaling relationship for L, L approximately Q(1/2)N(avg), where N(avg) = (1/fN(c)(2) + 1/4N(e)(2), Q is the equilibrium swelling ratio, N(c) is the molecular weight between crosslinks, N(e) is the entanglement molecular weight and f is the crosslink functionality is in agreement with experimental results for the networks studied.

  18. Inclusive deep-inelastic muon scattering

    CERN Multimedia

    This experiment aims at measuring deep-inelastic inclusive muon scattering to the highest energy and Q$^{2}$ made available by the high intensity muon beam M$^{2}$ and at investigating events in which several muons are simultaneously produced. The momentum of the incident beam is measured with momentum hodoscopes, its time and space coordinates at several positions along the target with additional hodoscopes. The beam halo is detected by an array of anticounters. The target has a length of 40 m of either graphite or liquid hydrogen or liquid deuterium and is surrounded by a magnetized torus which acts as a spectrometer for scattered muons. \\\\ \\\\This magnet has a diameter of 2.75 m and is divided into 10 separate supermodules, 8 of which are presently in use. Each supermodule consists of 8 modules (each module contains 0.44 m of steel), 8 planes of (3m x 3m) MWPC, and 2 planes of circular trigger counters subdivided in rings. The first 6 supermodules are equipped each with a 5 m long target. Muons scattered i...

  19. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  20. Computational modeling of single particle scattering over large distances

    Science.gov (United States)

    Rapp, Rebecca; Plumley, Rajan; McCracken, Michael

    2016-09-01

    We present a Monte Carlo simulation of the propagation of a single particle through a large three-dimensional volume under the influence of individual scattering events. In such systems, short paths can be quickly and accurately simulated using random walks defined by individual scattering parameters, but the simulation time greatly increases as the size of the space grows. We present a method for reducing the overall simulation time by restricting the simulation to a cube of unit length; each `cell' is characterized by a set of parameters which dictate the distributions of allowable step lengths and polar scattering angles. We model propagation over large distances by constructing a lattice of cells with physical parameters that depend on position, such that the full set would represent a space within the entire volume available to the particle. With these, we propose the use of Markov chains to determine a probable path for the particle, thereby removing the need to simulate every step in the particle's path. For a single particle with constant velocity, we can use the step statistics to determine the travel time of the particle. We investigate the effect of scattering parameters such as average step distance and possible scattering angles on the probabilities of a cell.

  1. Shape-dependent light scattering properties of subwavelength silicon nanoblocks.

    Science.gov (United States)

    Ee, Ho-Seok; Kang, Ju-Hyung; Brongersma, Mark L; Seo, Min-Kyo

    2015-03-11

    We explore the shape-dependent light scattering properties of silicon (Si) nanoblocks and their physical origin. These high-refractive-index nanostructures are easily fabricated using planar fabrication technologies and support strong, leaky-mode resonances that enable light manipulation beyond the optical diffraction limit. Dark-field microscopy and a numerical modal analysis show that the nanoblocks can be viewed as truncated Si waveguides, and the waveguide dispersion strongly controls the resonant properties. This explains why the lowest-order transverse magnetic (TM01) mode resonance can be widely tuned over the entire visible wavelength range depending on the nanoblock length, whereas the wavelength-scale TM11 mode resonance does not change greatly. For sufficiently short lengths, the TM01 and TM11 modes can be made to spectrally overlap, and a substantial scattering efficiency, which is defined as the ratio of the scattering cross section to the physical cross section of the nanoblock, of ∼9.95, approaching the theoretical lowest-order single-channel scattering limit, is achievable. Control over the subwavelength-scale leaky-mode resonance allows Si nanoblocks to generate vivid structural color, manipulate forward and backward scattering, and act as excellent photonic artificial atoms for metasurfaces.

  2. Numerical Computational Technique for Scattering from Underwater Objects

    Directory of Open Access Journals (Sweden)

    T. Ratna Mani

    2013-01-01

    Full Text Available Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4 This paper presents a computational technique for mono-static and bi-static scattering from underwater objects of different shape such as submarines. The scatter has been computed using finite element time domain (FETD method, based on the superposition of reflections, from the different elements reaching the receiver at a particular instant in time. The results calculated by this method has been verified with the published results based on ramp response technique. An in-depth parametric study has been carried out, by considering different pulse frequency, pulse length, pulse type (CW, LFM , SFM, sampling frequency, as well as different size , shape of the scatteringbody and grid size. It has been observed that increasing the pulse frequency, sampling frequency and number of elements leads to improved results. However, good amount of accuracy has been achieved with element size less than one third of wave length. The experimental result of the underwater object has been found very close to the`simulated result. This technique is useful for computing forward scatter for inverse scattering applications and as well as to generate forward scatter of very narrow and wide band signals of any pulse type and shape of body.Defence Science Journal, 2013, 63(1, pp.119-126, DOI:http://dx.doi.org/10.14429/dsj.63.779

  3. Scattering of near-zero-energy electrons and positrons by H2

    KAUST Repository

    Zhang, J.-Y.

    2014-04-15

    The parameters for S-wave elastic scattering of near-zero-energy electrons and positrons by H2 molecules are calculated using the stabilization method with explicitly correlated Gaussians. The confined variational method is applied to optimize the Gaussians to describe the short-range interaction of incident e± with H2 in the fixed-nuclei approximation. For e+-H2 scattering the scattering length of previous work [Phys. Rev. Lett. 103, 223202 (2009)] is substantially improved. More importantly, for e−-H2 scattering, from first principles, the scattering length is computed as a function of the internuclear distance. In the case that the two nuclei are at the equilibrium distance the results are in a good agreement with values derived from fitting experimental total and diffusion cross sections to the modified effective range theory.

  4. Inexpensive Mie scattering experiment for the classroom manufactured by 3D printing

    Science.gov (United States)

    Scholz, Christian; Sack, Achim; Heckel, Michael; Pöschel, Thorsten

    2016-09-01

    Scattering experiments are fundamental for structure analysis of matter on molecular, atomic and sub-atomic length scales. In contrast, it is not standard to demonstrate optical scattering experiments on the undergraduate level beyond simple diffraction gratings. We present an inexpensive Mie scattering setup manufactured with 3D printing and open hardware. The experiment can be used to determine the particle size in dilute monodisperse colloidal suspensions with surprisingly high accuracy and is, thus, suitable to demonstrate relations between scattering measurements and microscopic properties of particles within undergraduate lab course projects.

  5. Coulomb scattering in a 2D interacting electron gas and production of EPR pairs.

    Science.gov (United States)

    Saraga, D S; Altshuler, B L; Loss, Daniel; Westervelt, R M

    2004-06-18

    We propose a setup to generate nonlocal spin Einstein-Podolsky-Rosen pairs via pair collisions in a 2D interacting electron gas, based on constructive two-particle interference in the spin-singlet channel at the pi/2 scattering angle. We calculate the scattering amplitude via the Bethe-Salpeter equation in the ladder approximation and small r(s) limit and find that the Fermi sea leads to a substantial renormalization of the bare scattering process. From the scattering length, we estimate the current of spin-entangled electrons and show that it is within experimental reach.

  6. On the scattering power of radiotherapy protons.

    Science.gov (United States)

    Gottschalk, Bernard

    2010-01-01

    First, to show that accurate formulas for scattering power T must take into account the competition between the Gaussian core and the single scattering tail of the angular distribution, which affects the rate of change in the Gaussian width and leads to the single scattering correction (SSC). Second, to show that the SSC requires that T(x) be nonlocal: Besides material properties and energy at the point of interest, it must depend in some fashion on how much multiple scattering has already taken place. Third, after reviewing five previous formulas (three local and two nonlocal), to derive an improved "differential Molière" formula T(dM). Last, to investigate, by studying some practical cases, when an accurate formula for T is actually needed. We first take the numerical derivative of the Molière/Fano/Hanson (theta2) in order to find the true SSC. We simplify the formula for T(IC) (ICRU Report 35) for protons, introducing a new material dependent property, the "scattering length" X(s), analogous to radiation length X(0). We then use T(IC) as a basis for T(dM) by including a nonlocal correction factor fdM which, by virtue of the Øverås approximation, parametrizes the single scattering correction. The improved scattering power is T(dM)[triple band]f(dM)(pv,p1v1) x (E(s)/pv)(2)1/X(s) where fdM 0.5244+0.1975 lg(1-(pv/p1v1)2)+0.2320 lg(pv)-0.0098 lg(pv)lg(1-(pv/p1v1)2), P1v1 (MeV) is the initial product of proton momentum and speed, pv is the same at the point of interest, and E(s) = 15.0 MeV. T(dM) is easily computed and generalizes readily to mixed slabs because fdM is not material dependent. Whether an accurate formula for T is required depends very much on the problem at hand. For beam spreading in water, five of the six formulas for T give almost identical results, suggesting that patient dose calculations are insensitive to T. That is not true, however, of beam spreading in Pb. At the opposite extreme, the projected rms beam width at the end of a Pb

  7. Raman scattering in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.F.

    1988-09-30

    A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.

  8. Pharmacologically induced erect penile length and stretched penile length are both good predictors of post-inflatable prosthesis penile length.

    Science.gov (United States)

    Osterberg, E C; Maganty, A; Ramasamy, R; Eid, J F

    2014-01-01

    Inflatable penile prosthesis (IPP) remains the gold standard for the surgical treatment of refractory erectile dysfunction; however, current literature to aid surgeons on how best to counsel patients on their postoperative inflated penile length is lacking. The aim of this study was to identify preoperative parameters that could better predict postoperative penile length following insertion of an IPP. Twenty men were enrolled in a prospective study examining penile lengths before and after IPP surgery. Patients with Peyronie's disease were excluded from this analysis. Baseline preoperative characteristics, including body mass index, history of hypertension, diabetes, Sexual Health Inventory for Men scores and/or prior radical prostatectomy were recorded. All patients underwent implantation with a three-piece inflatable Coloplast penile prosthesis. We compared stretched penile length to pharmacologically induced erect lengths. Postoperatively, we measured inflated penile lengths at 6 weeks and assessed patients' perception of penile size at 12 weeks. The median (±interquartile range) stretched penile length and pharmacologically induced erect penile length was 15 (±3) and 14.25 (±2) cm, respectively (P=0.5). Median post-prosthesis penile length (13.5±2.13 cm) was smaller than preoperative pharmacologically induced length (P=0.02) and preoperative stretched penile length (P=0.01). The majority of patients (70%) had a decrease in penile length (median loss 0.5±1.5 cm); however, this loss was perceptible by 43% of men. Stretched penile length and pharmacologically induced erect penile length were equally good predictors of postoperative inflated length (Spearman's correlation 0.8 and 0.9, respectively). Pharmacologically induced erect penile length and stretched penile lengths are equal predictors of post-prosthesis penile length. The majority of men will experience some decrease in penile length following prosthesis implantation; however <50% report a

  9. Testing of Cotton Fiber Length

    Institute of Scientific and Technical Information of China (English)

    刘若华; 李汝勤

    2001-01-01

    To understand the influences of actual sampling conditions on cotton fiber length testing, this article presents a theoretic study on the distributions and fibrogram of the sample taken out by sampler from ideal sliver at a certain angle. From the distributions expression it can be found that the size of the sampler and the sampling angle are important factors which affect sampling, but if the sampling width is narrow enough, the influence of the sampling angle on the distributions and fibrogram is small enough to be omitted. This is an important conclusion for sampling, in light of this, some suggestions for designing new type sampler are put forward.

  10. Long Focal Length Large Mirror Fabrication System

    Science.gov (United States)

    Bennett, H. E.

    2003-01-01

    The goals of this ambitious program are (1) to develop systems to make large superpolished optical mirrors, (2) to develop low scatter polishing techniques using centrifugal elutriation, (3) to develop a means of measuring scatter at any point on the mirror, (4) to polish a Hindle sphere to measure the optical figure of a one meter diameter convex mandrel, and (5) to fabricate low scatter, large adaptive optic graphite filled, cyanate ester replica transfer mirrors using these mandrels. Deliverables are a 30 cm diameter superpolished composite AO mirror. We fabricated a 1/3rd meter superpolished zerodur flat mandrel and with the support of our major subcontractor, Composite Mirror Applications Inc (CMA) we have demonstrated a 30 cm lightweight cyanate ester mirror with an rms microroughness between 0.6 and 0.8 nm and 8 faceplate influence function of 5 cm. The influence function was chosen to be comparable to the atmospheric correlation coefficient r(sub 0) which is about 5 cm at sea level. There was no print-thru of the graphite fibers in the cyanate ester surface (the bane of many previous efforts to use cyanate ester mirrors). Our subcontractor has devised a means for developing a 30-50 nm thick layer of graphite free pure ester resin on the surface of the mirrors. This graphite fiber filled material has a thermal expansion coefficient in the 10(exp -8) centimeter per Kelvin range (the same range of expansion coefficient as Zerodur and ULE glasses) and does not take up water and swell, so it is a nearly ideal mirror material in these areas. Unfortunately for these 0.8mm thick faceplates, the number of plies is not enough to result in isometric coverage. Isolated figure irregularities can appear, making it necessary to go to thicker faceplates. The influence function will then only approximate the length of r(sub 0), at higher altitudes or longer wavelengths. The influence function goes as the cube of the thickness, so we are now making a faceplate optimized for

  11. pipi scattering in three flavour ChPT

    Science.gov (United States)

    Bijnens, Johan; Dhonte, Pierre; Talavera, Pere

    2004-01-01

    We present the scattering lengths for the pipi processes in the three flavour Chiral Perturbation Theory (ChPT) framework at next-to-next-to-leading order. We then combine this calculation with the determination of the parameters from Ke4, the meson masses and decay constants and compare with the results of a dispersive analysis of pipi scattering. The comparison indicates a small but nonzero value for the 1/Nc suppressed NLO low energy constants L4r and L6r.

  12. $\\pi\\pi$ Scattering in Three Flavour ChPT

    CERN Document Server

    Bijnens, J; Talavera, P; Bijnens, Johan; Dhonte, Pierre; Talavera, Pere

    2004-01-01

    We present the scattering lengths for the $\\pi\\pi$ processes in the three flavour Chiral Perturbation Theory (ChPT) framework at next-to-next-to-leading order. We then combine this calculation with the determination of the parameters from $K_{e4}$ and the masses and decay constants and compare with the results of a dispersive analysis of $\\pi\\pi$ scattering. The comparison indicates a small but nonzero value for the $1/N_c$ suppressed NLO low energy constants $L_4^r$ and $L_6^r$.

  13. Progress report on neutron scattering at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    Progress in neutron scattering experiments at Japan Atomic Energy Research Institute for the year 1997-1998 is reported in brief. The superconducting gap was discovered in the spin excitation spectra of a heavy fermion superconductor UPd{sub 2}Al{sub 3}, which proved the superconductivity of this compound to be due to magnetic origin. The magnetic and superconducting order parameter was found in UPd{sub 2}Al{sub 3}, UNi{sub 2}Al{sub 3}, UPt{sub 3} and URu{sub 2}Si{sub 2}. It was concluded from this result that the coupling of the order parameter would be a characteristic property in heavy fermion superconductors. The correlation between strong magnetic interaction and the superconducting transition under high pressure was indicated from spin excitation in the strongly correlated electron system of a ladder material (Sr,Ca){sub 14}Cu{sub 24}O{sub 41}. The magnetic flux structure in a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} superconductor was examined by SANS (small angle neutron scattering) to observe the decomposition of the flux lines. A liquid-He-free dilution refrigerator was developed for neutron scattering experiments at ultralow temperature. The coherent scattering length of the {sup 69}Ga and {sup 71}Ga was evaluated by use of the apparatus for precise neutron optics. The structure of hen egg-white Lysozyne was investigated in detail. Detailed research report for the year 1997-1998 was published in the JAERI-Review 99-003. (Y. Kazumata)

  14. A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from Trees

    Science.gov (United States)

    2016-09-01

    random seed and an input parameter file defining the physical characteristics of a tree (e.g., tree and trunk shape, number of branch levels, branch...elements. In most realistic scenarios, the individual scatterers of a trunk are not expected to be shadowed by other scatterers belonging to the same...trunk—in other words, a trunk cannot shadow itself. As such, in calculating the transmissivity matrices for the scatterers of a particular tree trunk

  15. Generalizations of Brandl's theorem on Engel length

    Science.gov (United States)

    Quek, S. G.; Wong, K. B.; Wong, P. C.

    2013-04-01

    Let n Engel cycle generated by g and h. The length of the Engel cycle is m-n. A group G is said to have Engel length r, if all the length of the Engel cycles in G divides r. In this paper we discuss the Brandl's theorem on Engel length and give some of its generalizations.

  16. Protostring scattering amplitudes

    Science.gov (United States)

    Thorn, Charles B.

    2016-11-01

    We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.

  17. The Wilson Renormalisation Group Applied to the Potential in NN Scattering

    CERN Document Server

    Birse, M C; Richardson, K G; Birse, Michael C.; Govern, Judith A. Mc; Richardson, Keith G.

    1998-01-01

    Nonrelativistic two-body scattering by a short-ranged potential is studied using the renormalisation group. Two fixed points are identified: a trivial one and one describing systems with a bound state at zero energy. The eigenvalues of the linearised renormalisation group are used to assign a systematic power-counting to terms in the potential near each of these fixed points. The expansion around the nontrivial fixed point defines a power counting scheme which is equivalent to the effective-range expansion.

  18. Scattering phases for meson and baryon resonances on general moving-frame lattices

    CERN Document Server

    Göckeler, M; Lage, M; Meissner, U -G; Rakow, P E L; Rusetsky, A; Schierholz, G; Zanotti, J M

    2012-01-01

    A proposal by L\\"uscher enables one to compute the scattering phases of elastic two-body systems from the energy levels of the lattice Hamiltonian in a finite volume. In this work we generalize the formalism to S--, P-- and D--wave meson and baryon resonances, and general total momenta. Employing nonvanishing momenta has several advantages, among them making a wider range of energy levels accessible on a single lattice volume and shifting the level crossing to smaller values of $m_\\pi L$.

  19. Scattering and coherence in EUVL

    Science.gov (United States)

    Milster, Tomas D.; Beaudry, Neil A.

    1998-06-01

    We illustrate the importance of considering scattering from the illuminator in extreme UV lithography systems. Our results indicate that a significant amount of amplitude modulation noise is present in the aerial image if scatter is present in a Koehler illuminator. The effect depends on the spatial frequency of the pattern on the mask, the numerical aperture of the projection camera, the coherence factor, and placement of the plane in the illuminator where the scattering occurs.

  20. Light scattering by small particles

    CERN Document Server

    Hulst, H C van de

    1981-01-01

    ""A must for researchers using the techniques of light scattering."" ? S. C. Snowdon, Journal of the Franklin InstituteThe measurement of light scattering of independent, homogeneous particles has many useful applications in physical chemistry, meteorology and astronomy. There is, however, a sizeable gap between the abstract formulae related to electromagnetic-wave-scattering phenomena, and the computation of reliable figures and curves. Dr. van de Hulst's book enables researchers to bridge that gap. The product of twelve years of work, it is an exhaustive study of light-scattering properties