$V_{td}$ from Hadronic Two-Body $B$ Decays
Gronau, Michael; Rosner, Jonathan L.
1996-01-01
Certain hadronic two-body decays of $B$ mesons are dominated by penguin diagrams. The ratios of rates for several such decays, including $\\Gamma(B^0 \\to \\overline{K}^{*0} K^0)/\\Gamma(B^0 \\to \\phi K^0)$, $\\Gamma(B^0 \\to \\overline{K}^{*0} K^{*0})/\\Gamma(B^0 \\to \\phi K^{*0})$, $\\Gamma(B^+ \\to \\overline{K}^{*0} K^+)$ $/\\Gamma(B^+ \\to \\phi K^+)$, and $\\Gamma(B^+ \\to \\overline{K}^{*0} K^{*+})/\\Gamma(B^+ \\to \\phi K^{*+})$, can provide information on the ratio of Cabibbo-Kobayashi-Maskawa (CKM) eleme...
International Nuclear Information System (INIS)
Collins, P.D.B.; Martin, A.D.
1982-01-01
The mechanism of hadron scattering at high energies are reviewed in such a way as to combine the ideas of the parton model and quantum chromodynamics (QCD) with Regge theory and phenomenology. After a brief introduction to QCD and the basic features of hadron scattering data, scaling and the dimensional counting rules, the parton structure of hadrons, and the parton model for large momentum transfer processes, including scaling violations are discussed. Hadronic jets and the use of parton ideas in soft scattering processes are examined, attention being paid to Regge theory and its applications in exclusive and inclusive reactions, the relationship to parton exchange being stressed. The mechanisms of hadron production which build up cross sections, and hence the underlying Regge singularities, and the possible overlap of Regge and scaling regions are discussed. It is concluded that the key to understanding hadron reaction mechanisms seems to lie in the marriage of Regge theory with QCD. (author)
Hadron--hadron reactions, high multiplicity
International Nuclear Information System (INIS)
Diebold, R.
1978-09-01
A coverage of results on high energy and high multiplicity hadron reactions, charm searches and related topics, ultrahigh energy events and exotic phenomena (cosmic rays), and the nuclear effects in high energy collisions and related topics is discussed. 67 references
Charm-conserving strangeness-changing two body hadronic decays of charmed baryons
International Nuclear Information System (INIS)
Khanna, M.P.
1993-10-01
The charm-conserving strangeness-changing two body hadronic decays of charmed baryons are examined in the SU(4) symmetry scheme. In addition to the 20''-Hamiltonian, we consider a 15-piece of the weak Hamiltonian which may arise due to SU(4) breaking or due to some non-conventional dynamics. The numerical estimates for decay widths of some of the modes are presented. (author). 15 refs, 3 tabs
CP Violation and Lifetime Measurements of Two-body Charmless Decays of B Hadrons at LHCb
AUTHOR|(INSPIRE)INSPIRE-00453516; Eklund, Lard
This thesis presents lifetime measurements of charmless two-body decays of b hadrons, specifically the decay modes known as $B\\to h^+ h^{'-}$, where $B$ refers to meson or baryon containing a $b$ quark and $h^{(')}$ refers to a proton $p$, pion $\\pi$ or kaon $K$. Using the large data samples collected by the LHCb detector, the $B\\to h^+ h^{'-}$ channels with the largest branching fractions provide an opportunity to perform high-precision measurements of the properties of the decays. The leading-order processes in $B \\rightarrow h^{+}h'^{-}$ decays are tree and penguin topologies, where the loop-dominated channels could be sensitive to non-standard model physics. The $B^0_S \\to K^+ K^{-}$ mode is particularly interesting as it has a $CP$-even final state, as well as being dominated by penguin decay processes. The $B^0_S \\to K^+ K^{-}$ effective lifetime can be used to calculate the $B_{s}^{0}$ decay-rate asymmetry $A_{\\Delta \\Gamma}$, which quantifies the amount of $CP$ violation in the decay. Using LHCb ...
Pontecorvo reactions of two-body antiproton annihilation in deuterium
International Nuclear Information System (INIS)
Kondratyuk, L.A.; Sapozhnikov, M.G.
1988-01-01
Rare annihilation reactions for stopped antiprotons in deuterium, p-bard→π - p; K + Σ - ; K 0 Λ, are considered using the two-step model described by the triangle diagram. It was found that the probabilities, W, of these processes are very sensitive to the behaviour of the deuteron wave function at small distances as well as to the meson form factors. It appears that the ratios R(KX)=W(KX)/W(π - p) are much less model-dependent and are about 10 -2 for R(K 0 λ) and 10 -4 for R(K + Σ - ). 17 refs.; 1 fig.; 3 tabs
Two-Body Reactions at Large Transverse Momentum
2002-01-01
Large-angle exclusive reactions are studied, in particular elastic scattering and @*p annihilations into @p|+@p|- and K|+K|-. In a previous geometry, the 90|0 c.m. region was covered. The present geometry covers the -t range from about 1 to 8 (GeV/c)|2. The aim is to tie these two regions together and attem understading of large-angle scattering up to our highest energies. \\\\ \\\\ The experiment uses a 1 m liquid H^2 target surrounded by scintillator and lead sandwiches for vetoing neutral and charged particles missing the acceptance. An aerogel Cerenkov counter in the recoil arm can be used to veto charged pions above 0.8 GeV/c. Otherwise the events are selected as previously with fast coincidence matrices using pulses from arrays of scintillator counters. Identification of particles is carried out with threshold Cerenkov counters and iron calorimeters. MWPC's are used to establish the trajectories of the particles.
Heavy ion and hadron reactions in emulsion
International Nuclear Information System (INIS)
Otterlund, I.
1979-04-01
Recent results from heavy ion and hadron reactions in emulsion are reviewed. General properties of hadron-reaction multiplicities and their correlation to the production of recoiling protons are given. Properties of pseudo-rapidity distributions of shower-particles especially the particle production in the central region of pseudo-rapidity will be discussed. Non-peripheral heavy ion reactions are compared to recent participant-spectator model calculations. Very energetic cosmic ray events will be examined in the light of recent results from hadron-nucleus reactions. (author)
Measurement of time dependent CP asymmetries in charged charmless hadronic two-body B decays at LHCb
Pennazzi, S
2008-01-01
The LHCb experiment is one of the four experiments that are installed at the protonproton Large Hadron Collider (LHC) at CERN, Geneva. The experiment is at the latest stage of its setting-up. The first collisions at high energy in LHC are planned to mid-2008, with the first results on the experiments soon after. The LHCb detector is a single-arm spectrometer conceived to pursue an extensive study of CP violation in the B meson system, over-constraining the Standard Model predictions and looking for any possible effect beyond this theory, and to look for rare phenomena in the b quark sector with very high precision. The subject of the present work is the study of the non-leptonic B meson decays into charged charmless two-body final states. This class of decays has been extensively studied and it is still matter of great interest at the B-factories and at Tevatron. In fact the current knowledge of this class of decays in the Bd/Bu sector starts to be quite constrained, but the Bs still remains a field where a r...
Measurements of charmless hadronic two-body B meson decays and the ratio B(B→DK)/B(B→Dπ)
Bornheim, A.; Lipeles, E.; Pappas, S. P.; Shapiro, A.; Sun, W. M.; Weinstein, A. J.; Briere, R. A.; Chen, G. P.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Adam, N. E.; Alexander, J. P.; Berkelman, K.; Blanc, F.; Boisvert, V.; Cassel, D. G.; Drell, P. S.; Duboscq, J. E.; Ecklund, K. M.; Ehrlich, R.; Galik, R. S.; Gibbons, L.; Gittelman, B.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hsu, L.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Magerkurth, A.; Mahlke-Krüger, H.; Meyer, T. O.; Mistry, N. B.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Richichi, S. J.; Riley, D.; Sadoff, A. J.; Schwarthoff, H.; Shepherd, M. R.; Thayer, J. G.; Urner, D.; Wilksen, T.; Warburton, A.; Weinberger, M.; Athar, S. B.; Avery, P.; Breva-Newell, L.; Potlia, V.; Stoeck, H.; Yelton, J.; Benslama, K.; Eisenstein, B. I.; Gollin, G. D.; Karliner, I.; Lowrey, N.; Plager, C.; Sedlack, C.; Selen, M.; Thaler, J. J.; Williams, J.; Edwards, K. W.; Besson, D.; Zhao, X.; Anderson, S.; Frolov, V. V.; Gong, D. T.; Kubota, Y.; Li, S. Z.; Poling, R.; Smith, A.; Stepaniak, C. J.; Urheim, J.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Zweber, P.; Ahmed, S.; Alam, M. S.; Ernst, J.; Jian, L.; Saleem, M.; Wappler, F.; Arms, K.; Eckhart, E.; Gan, K. K.; Gwon, C.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Pedlar, T. K.; von Toerne, E.; Zoeller, M. M.; Severini, H.; Skubic, P.; Dytman, S. A.; Mueller, J. A.; Nam, S.; Savinov, V.; Hinson, J. W.; Lee, J.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shibata, E. I.; Shipsey, I. P. J.; Cronin-Hennessy, D.; Lyon, A. L.; Park, C. S.; Park, W.; Thayer, J. B.; Thorndike, E. H.; Coan, T. E.; Gao, Y. S.; Liu, F.; Maravin, Y.; Stroynowski, R.; Artuso, M.; Boulahouache, C.; Blusk, S.; Bukin, K.; Dambasuren, E.; Mountain, R.; Muramatsu, H.; Nandakumar, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Mahmood, A. H.; Csorna, S. E.; Danko, I.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; McGee, S.
2003-09-01
We present final measurements of 13 charmless hadronic B decay modes from the CLEO experiment. The decay modes include the ten ππ, Kπ, and KK final states and new limits on dibaryonic final states, pp¯, pΛ¯, and ΛΛ¯, as well as a new determination of the ratio B(B→DK)/B(B→Dπ). The results are based on the full CLEO II and CLEO III data samples totalling 15.3fb-1 at the Υ(4S), and supercede previously published results.
Measurements of charmless hadronic two-body B meson decays and the ratio B(B→DK)/B(B→Dπ)
International Nuclear Information System (INIS)
Bornheim, A.; Lipeles, E.; Pappas, S.P.
2003-01-01
We present final measurements of 13 charmless hadronic B decay modes from the CLEO experiment. The decay modes include the ten ππ, Kπ, and KK final states and new limits on dibaryonic final states, pp-bar, pΛ-bar, and ΛΛ-bar, as well as a new determination of the ratio B(B→DK)/B(B→Dπ). The results are based on the full CLEO II and CLEO III data samples totalling 15.3 fb -1 at the Υ(4S), and supersede previously published results
Some general features of two body reactions in K-p interactions at 3 GeV/c
International Nuclear Information System (INIS)
Badier, J.; Demoulin, M.; Goldberg, J.
1966-06-01
The differential and total cross sections of two-body reactions produced in 3 GeV/c K - proton collisions are presented. Their variation as a function of the baryonic number, strangeness, and isospin of the t and u cross channels is analyzed, as well as some implications of a baryon exchange mechanism. (authors) [fr
Dual unitarisation - a new approach to hadron reactions
International Nuclear Information System (INIS)
Chan, H.-M.; Tsou, S.T.
1976-09-01
The new approach of dual unitarisation (or topological expansion) to hadron reactions is reviewed with particular emphasis on its aspect as a practical calculational method and the consistent manner in which it has been applied to a wide range of hadronic phenomena. (author)
Towards a parametrization of multiparticle hadronic reactions
International Nuclear Information System (INIS)
Giffon, M.; Hama, Y.; Predazzi, E.
1979-11-01
An explicit parametrization of high energy exclusive production cross-sections is shown to give a reasonable account of inclusive data. This is a first step towards a phenomenological parametrization of multiparticle hadronic amplitudes
Studies of high energy hadron-hadron reactions
International Nuclear Information System (INIS)
Maansson, O.
1982-01-01
The first part of this thesis concerns the possibility of obtaining a quantity that reveals more of the primary scattering of partons, than the single particle spectra for high-p(sub)T reactions. K -K is shown to be such a quantity for 90degree scattering. A p(sub)T-dependence of P(sub)t(sup)-5.4 is data from FNAL and ISR. A model for low-p(sub)T baryon production is presented. This one-dimensional string model gives longitudinal single particle spectra in good agreement with exp. data. A model for polarization of inclusively produced hyperons is presented. A baryon is pictured as a Y-shaped string with quarks at the ends. One of the quarks is kicked out in the reaction, leading to a basically one-dim. string system. The motion of the string junction is shown to be important for the understanding of polarization phenomena. Lowest order QCD is studied with respect to color factors in the production amplitude in order to find final string configurations in high-p(sub)T events. The basis for a Monte Carlo program for complete high-p(sub)T events is discussed. (author)
What are effective a{sub 1} and a{sub 2} in two-body hadronic decays of D and B mesons?
Energy Technology Data Exchange (ETDEWEB)
Ghoddoussi, F.; Kamal, A. N.; Santral, A. B. [Edmonton, Univ. of Alberta (Canada). Theoretical Phisycs Institute, Dept. of Physics
1998-02-01
Through a specific example of two-body color-favored charm decay, D{sub s}{sup +} {yields} {phi}{pi}{sup +}, the authors illustrate how an effective and complex (unitarized) a{sub 1}, denoted by a{sub 1}{sup U,eff}, may be defined such that it includes non factorized, annihilation and inelastic final-state interaction (f.s.i.) effects. The procedure can be generalized to color-suppressed processes to define an effective, and complex a{sub 2}{sup U,eff}. The authors determine a{sub 1}{sup U,eff} and, where relevant, a{sub 2}{sup U,eff} for D {yields} {Kappa}{pi}, {Kappa}{rho}, {Kappa}{sup *}{pi},D{sub s}{sup +} {yields} {eta}{pi}{sup +}, {eta}{sup `}{pi}{sup +}, {eta}{rho}{sup +}, {eta}{sup `}{rho}{sup +}, and for b{sup O}{yields}D{sup -}{pi}{sup +} and D{sup -}{rho}{sup +} from the hadronic and semileptonic decay data.
From magnetized iron bars to amplitude imaging of hadronic reactions
International Nuclear Information System (INIS)
Svec, M.
1989-01-01
Instruments shape research and determine which discoveries are made. Considering spin observables as carriers of information on nonperturbative QCD dynamics in hadronic reactions, we examine the relevance of amplitude analysis for the design goals of high intensity hadron facilities. New instrumental goals emerge: Hadron facility dedicated to continous measurements of spin observables and to cumulative production of computer images of scattering amplitudes over broad kinematic regions. The facility is viewed as a single instrument and termed spinoscope. We stress its connections to frontier developments in computer industries and to studies of nonperturbative states in condensed matter
Probing nuclei with high-energy hadronic reactions
International Nuclear Information System (INIS)
Moss, J.M.
1995-01-01
I review the subject of hadron-nucleus collisions at energies where peturbative theory is applicable. Reactions studied experimentally at the Fermilab Tevatron and CERN's Super Proton Synchrotron include the Drell-Yan Process, direct photon production, quarkonium production, and open charm production. I conclude with an observation about a new era of proton-nucleus and nucleus-nucleus experiments which will be carried out at the hadron colliders, RHIC and LHC
Two-body molecular model for resonances in heavy ion reactions
International Nuclear Information System (INIS)
Abe, Y.
1978-01-01
It is necessary to develop qualitative arguments on resonance mechanisms, which will give an overview on occurrences of resonances in heavy ion reactions, and further to identify typical examples of nuclear molecules among existing experimental data. In section 2, qualitative arguments on resonance mechanisms are given by exemplifying the 12 C + 16 O system with the 3 - excitation of the 16 O nucleus. In section 3 a simple formulation in the coupled channel framework is given. Resonances in the 12 C - 16 O system, which has been observed well above the Coulomb barrier, are investigated in section 4. In section 5 an old, but not yet solved problem on resonances in the 12 C + 12 C system which have been observed at sub-Coulomb energies, is taken up along the nuclear molecular picture. Further discussions are given on a role of the 20 Ne-α channel along the present simple qualitative picture given in section 2, which can be extended to rearrangement channels. (Auth.)
Exclusive hadron production in two photon reactions
International Nuclear Information System (INIS)
Poppe, M.
1986-02-01
This paper summarises experimental results on exclusive hadron production in two photon collisions at electron positron storage rings and attempts some interpretation. Experimental know how is described and new suggestions are made for future analyses. New model calculations on resonance form factors and pair production amplitudes are presented. The two photon vertex is decomposed such that experiments can be parameterised with the minimal number of free parameters. Selection rules for off shell photon collisions are given in addition to Yang's theorems. (orig.)
The two-body electrodisintegration of 4He studied through the (e,e'X) reaction
International Nuclear Information System (INIS)
Brand, F.J.F. van den.
1988-01-01
In this thesis a study of the electrodisintegration of 4/He into a proton and a triton is discussed. The purpose of this investigation is to obtain the proton spectral function which in turn is expected to contain information on the short-range and tensor correlations in the four-nucleon system. The 4 He(e,e'p) 3 H experiment was performed with the electron-scattering facility at NIKHEF-K. A specially designed cryogenic target system was used (ch. 3). From the data precise absolute cross sections were extracted with good missing-energy resolution as a funtion of missing momentum in the range 10 m | 2 and the polarization parameter of the exchanged virtual photon (ch. 5). In PIWA the (e,e'p) cross section factorizes into an off-shell electron-proton cross section and the spectral funtion. In the region where both kinetamics overlap a strong dependence of the extracted spectral-function results on the kinetamic variables was observed whereas such a dependence should not occur in PWIA. In order to understand this apparent breakdown of the PWIA the influence of rescattering of the outgoing proton on the residual nucleus or final-state interactions (ch. 6) and the electron-proton coupling on the spectral function (ch. 7) have been investigated. The spectral-function data for the full missing-moment range have been compared to various theoretical results (ch. 8). It turns out that the data are best described in the microscopic framework starting from a correlated wave function. In ch. 9 the results are presented obtained with the 4 He(e,e' 3 H)p reaction from which information can be obtained about the proton spectral function at momentum values up to 550 MeV/c. At these high proton moments a more direct signature of pair-correlations in the 4 He system can be obtained. 242 refs.; 85 figs.; 24 tabs
International Nuclear Information System (INIS)
Warshaw, S I
2001-01-01
The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity σv is calculated, where σ is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the TDF
International Nuclear Information System (INIS)
Rockmore, R.
1984-01-01
A two-body threshold (π +- ,π +- π -+ ) reaction mechanism is suggested in direct analogy with pion absorption. The mechanism involves boson rescattering via Δ excitation. The relative importance of this mechanism and the ordinary one-body mechanism in nuclei is studied in the particular case of S-wave deuteron targets. The contribution of the two-body mechanism to the threshold reaction cross section is found to be less than 1% of the simple one-body estimate
Hadron Cancer Therapy: Role of Nuclear Reactions
Chadwick, M. B.
2000-06-20
Recently it has become feasible to calculate energy deposition and particle transport in the body by proton and neutron radiotherapy beams, using Monte Carlo transport methods. A number of advances have made this possible, including dramatic increases in computer speeds, a better understanding of the microscopic nuclear reaction cross sections, and the development of methods to model the characteristics of the radiation emerging from the accelerator treatment unit. This paper describes the nuclear reaction mechanisms involved, and how the cross sections have been evaluated from theory and experiment, for use in computer simulations of radiation therapy. The simulations will allow the dose delivered to a tumor to be optimized, whilst minimizing the dos given to nearby organs at risk.
International Nuclear Information System (INIS)
Friebel, W.; Kriegel, U.; Nahnhauer, R.
1979-01-01
Introducing quark transverse momenta and masses it is proposed a 3-dimensional generalization of the quark recombination and the quark fusion model for meson production in low transverse momentum hadron-hadron reactions. A consistent description of vector meson production in proton-proton and proton-antiproton reactions from 12 - 405 GeV/c has been achieved. (author)
Modified two-body potential model to the 3He(α,γ)8B reaction at extremely low energies
International Nuclear Information System (INIS)
Igamov, S.B.; Santullaev, A.; Yarmukhamedov, R.
2005-01-01
Full text: A reliable estimation of rates of different nuclear astrophysical reactions A(α,γ)B responsible for light elements abundance is one of the most actual problem of the modern nuclear astrophysics. Solution of this problem is impossible without obtaining of rather low energy cross sections (or equivalently its astrophysical S-factor (AS) S Aa (E)) for such reactions as 3 He(α,γ) 8 B, 7 Be(p,γ) 8 B, etc. In the present work modified two-body potential approach allowing to determine both the asymptotic normalization constant (ANC) of the overlap integral for the bound wave function f the nucleus B in the (A+α)-channel C Aα;1.j (or respective nuclear vertex constant for the virtual decay B→A+α, where 1(j) is orbital (total) angular momentum of a particle α in the nucleus B=(A+α), and the AS S Aα (E) at the stellar energies (E≤25 keV) from an analysis of the analysis of the S exp (E) for the peripheral direct capture reaction A(α,γ)B is developed. The method involves two additional conditions that verify the peripheral character of the reaction under consideration and on it S(E) is expressed i the terms of ANC C Aα;1.j as Z Aα;1.j =C Aα;1.j 2 /b l +j 2 , where b lj is the single-particle ANC for the wave function of the bound B=(A+α) state calculated within the shell model using the phenomenological Woods-Saxon potential with the geometric parameters (a radius r 0 and a diffuseness a). The value of b lj strongly changes as a function (r 0 ,a)-pair is determined by variation of values of the parameters r 0 , and a in a wide physical acceptable range. The present method allows one to remove the model dependence of the calculated direct on S(E) on the geometric parameters r 0 , and a both for the two-body bound (A+α) state and the Aα-scattering state in minimum. The developed method has been applied to the analysis of the experimental S exp (E) of the direct capture 3 He(α,γ) 7 Be and 7 Be(p,γ) 8 B reactions at extremely low energies. By
Measurement of charmed particle production in hadronic reactions
2002-01-01
The aim of the experiment is to measure the production cross-section for charmed particles in hadronic reactions, study their production mechanism, and search for excited charmed hadrons.\\\\ \\\\ Charmed Mesons and Baryons will be measured in $\\pi$ and $p$ interactions on Beryllium between 100 and 200 GeV/c. The trigger will be on an electron from the leptonic decay of one charmed particle by signals from the Cerenkov counter (Ce), the electron trigger calorimeter (eCal), scintillation counters, and proportional wire chambers. The accompanying charmed particle will be measured via its hadronic decay in a two-stage magnetic spectrometer with drift chambers (arms 2, 3a, 3b, 3c), two large-area multicell Cerenkov counters (C2, C3) and a large-area shower counter ($\\gamma$-CAL). The particles which can be measured and identified include $\\gamma, e, \\pi^{\\pm}, \\pi^{0}, K^{\\pm}, p, \\bar{p}$ so that a large number of hadronic decay modes of charmed particles can be studied. \\\\ \\\\ A silicon counter telescope with 5 $\\m...
Multiple particles production for hadron-hadron reactions with finite hadronization time
International Nuclear Information System (INIS)
Arbex, N.
1991-01-01
Experimental data on multiple particle production for proton-proton reaction are analysed in the context of a very simple analytical model. The model exhibits the essential features of hydrodynamical calculations as, e.g., the formation of an intermediate object, which undergoes expansion. The simultaneous analysis of different types of data allows for the conclusion that such data reflect the dynamics of this intermediate object and have a very deem connection to the elementary processes. (author)
Statistical bootstrap approach to hadronic matter and multiparticle reactions
International Nuclear Information System (INIS)
Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.
1977-01-01
The authors present the main ideas behind the statistical bootstrap model and recent developments within this model related to the description of fireball cascade decay. Mathematical methods developed in this model might be useful in other phenomenological schemes of strong interaction physics; they are described in detail. The present status of applications of the model to various hadronic reactions is discussed. When discussing the relations of the statistical bootstrap model to other models of hadron physics the authors point out possibly fruitful analogies and dynamical mechanisms which are modelled by the bootstrap dynamics under definite conditions. This offers interpretations for the critical temperature typical for the model and indicates futher fields of application. (author)
Energy Technology Data Exchange (ETDEWEB)
Cohen-Tannoudji, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-07-01
A phenomenological model suited for the description of arbitrary two-body reactions at high energies is presented and applied to the analysis of {pi} - nucleon, K - nucleon, et K-bar - nucleon scattering.The idea is that the Regge-pole model does not take into account the whole content of the unitarity relation and has to be modified, as is currently done in one-particle exchange models, so that it may include absorptive corrections.In terms of a rather economical set of free parameters,we obtain a satisfactory agreement with all available data, including the recent evidence for a nonvanishing polarization in {pi}{sup -} p {pi}{sup 0} n reaction. We then reinterpret our parametrization of the amplitudes in terms of poles and branch points in the complex angular-momentum plane for the crossed channel. (author) [French] Un modele phenomenologique adapte a la description des reactions a deux corps a haute energie est presente et applique a l'analyse des diffusions {pi} - nucleon, K - nucleon, et K-bar - nucleon. L'idee essentielle est que le modele d'echange de poles de Regge ne tient pas compte du contenu total de la relation d'unitarite et doit etre modifie, comme cela a ete propose dans le cas de l'echange de particules, de facon a tenir compte de corrections de type absortif. Au moyen d'un ensemble relativement economique de parametres libres nous obtenons un accord satisfaisant avec tous les resultats disponibles, y compris l'existence recemment mise en evidence d'une polarisation non nulle dans la reaction {pi}{sup -} p {pi}{sup 0} n. Nous interpretons notre fa n d'ecrire les amplitudes au moyen de poles et de points de branchement dans le plan complexe du moment angulaire pour la voie croisee. (auteur)
On the role of string-junction in hadron reactions
International Nuclear Information System (INIS)
Imachi, Masahiro; Otsuki, Shoichiro; Toyoda, Fumihiko.
1977-01-01
By taking a model that hadrons are confined composite systems of the urbaryon q linked by the string, possible roles of a three-string junction J in hadron reactions are examined. The junction brings about new patterns to the conventional urbaryon rearrangement diagram. The leading behaviour of anti BB annihilation cross section is naturally explained by the exchange of one junction pair (J anti J). The Regge intercept is related to the number of the exchanged q and J, satisfying the sum rule α sub(P) (0) + α sub(B) (0) = 2α sub(M) (0). The rearrangement diagram of q and J divides exotic exchange amplitude into two classes, one with rather slow s dependence and the other with rapid one, in agreement with experiment. In addition to the pole-pole type duality, a new type of duality (pole-cut) is expected for some components of anti BB amplitude. Both of q and J carrying four momentum lead to a successful counting rule at large momentum transfers. (auth.)
Two-body hypercharge-exchange reactions in K-p and π+p interactions at 10 and 16 GeV/c
International Nuclear Information System (INIS)
Girtler, P.; Otter, G.; Sliwa, K.; Barnham, K.W.J.; Eason, R.M.; Newham, P.; Pollock, B.; Wells, J.; Mandl, F.; Markytan, M.
1979-01-01
Cross section values or upper limits are presented for twenty-five two-body hypercharge-exchange reactions in K - p and π + p interactions at 10 and 16 GeV/c. The 16 GeV/c results are compared with some predictions of line-reversal plus exchange-degenerate Regge poles, of SU(3) and of the additive quark model. Agreement is found in all cases. (author)
Energy Technology Data Exchange (ETDEWEB)
Xing, Yong-Zhong, E-mail: yzxing@tsnu.edu.cn [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zhang, H.F. [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Liu, Xiao-Bin [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zheng, Yu-Ming [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); China Institute of Atomic Energy, P.O. Box 275(18), Beijing 102413 (China)
2017-01-15
The dissipation phenomenon in the heavy-ion reaction at incident energy near Fermi energy is studied by simulating the reactions {sup 129}Xe + {sup 129}Sn and {sup 58}Ni + {sup 58}Ni with isospin-dependent quantum molecular dynamics model (IQMD). The isotropy ratio in terms of transverse and longitudinal energies of the free protons emitted in the final states of these reactions is quantitatively analyzed to explore the in-medium correlation of the binary collisions. Comparison of the calculations with the experimental data recently released by INDRA collaboration exhibits that the ratio is very sensitive to the Pauli blocking effect in two-body collisions and Pauli exclusion principle is indispensable in the theoretical simulations for the heavy-ion reactions near the Fermi energy.
Large transverse momenta in inclusive hadronic reactions and asymptotic scale invariance
International Nuclear Information System (INIS)
Miralles, F.; Sala, C.
1976-01-01
The inclusive reaction among scalar particles in considered, assuming that in the large-transverse momentum limit, scale invariance becomes important. Predictions are made of the asymptotic scale invariance for large four transverse momentum in hadron-hadron interactions, and they are compared with previous predictions. Photoproduction is also studied and the predictions that follow from different assumptions about the compositeness of hadrons are compared
Baryon resonances in pion- and photon-induced hadronic reactions
International Nuclear Information System (INIS)
Roenchen, Deborah
2014-01-01
The aim of the present work is the analysis of the baryon spectrum in the medium-energy regime. At those energies, a perturbative treatment of Quantum Chromodynamics, that is feasible in the high-energy regime, is not possible. Chiral perturbation theory, the low-energy effective theory of the strong interaction, is limited to the lowest excited states and does not allow to analyze the complete resonance region. For the latter purpose, dynamical coupled-channel approaches provide an especially suited framework. In the present study, we apply the Juelich model, a dynamical coupled-channel model developed over the years, to analyze pion- and photon-induced hadronic reactions in a combined approach. In the Juelich model, the interaction of the mesons and baryons is built of t- and u-channel exchange diagrams based on an effective Lagrangian. Genuine resonances are included as s-channel states. The scattering potential is unitarized in a Lippmann-Schwinger-type equation. Analyticity is preserved, which is a prerequisite for a reliable extraction of resonance parameters in terms of pole positions and residues in the complex energy plane. Upon giving an introduction to the subject in Chap. 1 and showing selected results in Chap. 2, we will describe the simultaneous analysis of elastic πN scattering and the reactions π - p → ηn, K 0 Λ, K + Σ - , K 0 Σ 0 and π + p→K + Σ + within the Juelich framework in Chap. 3. The free parameters of the model are adjusted to the GWU/SAID analysis of elastic πN scattering and, in case of the inelastic reactions, to experimental data. Partial waves up to J=9/2 are included and we consider the world data set from threshold up to E∝2.3 GeV. We show our fit results compared to differential and total cross sections, to polarizations and to measurements of the spin-rotation parameter. Finally, we present the results of a pole search in the complex energy plane of the scattering amplitude and discuss the extracted resonance
Measurement of the 12C(e,e‧p)11B two-body breakup reaction at high missing momentum
Monaghan, P.; Shneor, R.; Subedi, R.; Anderson, B. D.; Aniol, K.; Annand, J.; Arrington, J.; Benaoum, H. B.; Benmokhtar, F.; Bertin, P.; Bertozzi, W.; Boeglin, W.; Chen, J. P.; Choi, Seonho; Chudakov, E.; Ciofi degli Atti, C.; Cisbani, E.; Cosyn, W.; Craver, B.; de Jager, C. W.; Feuerbach, R. J.; Folts, E.; Frullani, S.; Garibaldi, F.; Gayou, O.; Gilad, S.; Gilman, R.; Glamazdin, O.; Gomez, J.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Ibrahim, H.; Igarashi, R.; Jans, E.; Jiang, X.; Kaufman, L.; Kelleher, A.; Kolarkar, A.; Kuchina, E.; Kumbartzki, G.; LeRose, J. J.; Lindgren, R.; Liyanage, N.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; Mazouz, M.; Meekins, D.; Michaels, R.; Moffit, B.; Morita, H.; Nanda, S.; Perdrisat, C. F.; Piasetzky, E.; Potokar, M.; Punjabi, V.; Qiang, Y.; Reinhold, J.; Reitz, B.; Ron, G.; Rosner, G.; Ryckebusch, J.; Saha, A.; Sawatzky, B.; Segal, J.; Shahinyan, A.; Širca, S.; Slifer, K.; Solvignon, P.; Sulkosky, V.; Thompson, N.; Ulmer, P. E.; Urciuoli, G. M.; Voutier, E.; Wang, K.; Watson, J. W.; Weinstein, L. B.; Wojtsekhowski, B.; Wood, S.; Yao, H.; Zheng, X.; Zhu, L.
2014-10-01
The five-fold differential cross section for the 12C{{(e,{{e}^{\\prime }}p)}^{11}}B reaction was determined over a missing momentum range of 200-400 MeV\\;{{c}^{-1}}, in a kinematics regime with {{x}_{B}}\\gt 1 and {{Q}^{2}}=2.0 {{(GeV\\;{{c}^{-1}})}^{2}}. A comparison of the results with previous lower missing momentum data and with theoretical models are presented. The extracted distorted momentum distribution is shown to be consistent with previous data and extends the range of available data up to 400 MeV\\;{{c}^{-1}}. The theoretical calculations are from two very different approaches, one mean field and the other short range correlated; yet for this system the two approaches show striking agreement with the data and each other up to a missing momentum value of 325 MeV\\;{{c}^{-1}}. For larger momenta, the calculations diverge which is likely due to the factorization approximation used in the short range approach.
Unitary screening corrections in high energy hadron reactions
Energy Technology Data Exchange (ETDEWEB)
Maor, U
1994-10-01
The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for elastic and diffractive hadron-hadron and photon-hadron scattering in the energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Reggeon model with no such corrections. It is argued that the saturation of cross sections is attained at different scales for different channels. In particular, we point out that whereas the saturation scale for elastic scattering apparently above the Tevatron energy range, the appropriate diffraction scale is considerably lower and can be assessed with presently available data. A review of the relevant data and its implications is presented. (author). 12 refs, 3 figs, 2 tabs.
International Nuclear Information System (INIS)
Igamov, S.B.; Yarmukhamedov, R.
2007-01-01
A modified two-body potential approach is proposed for determination of both the asymptotic normalization coefficient (ANC) (or the respective nuclear vertex constant (NVC)) for the A+a->B (for the virtual decay B->A+a) from an analysis of the experimental S-factor for the peripheral direct capture a+A->B+γ reaction and the astrophysical S-factor, S(E), at low experimentally inaccessible energy regions. The approach proposed involves two additional conditions which verify the peripheral character of the considered reaction and expresses S(E) in terms of the ANC. The connection between NVC (ANC) and the effective range parameters for Aa-scattering is derived. To test this approach we reanalyse the precise experimental astrophysical S-factors for t+α->Li7+γ reaction at energies E= Li7(g.s.), α+t->Li7(0.478 MeV) and of S(E) at E=<50 keV. These ANC values have been used for getting information about the ''indirect'' measured values of the effective range parameters and the p-wave phase shift for αt-scattering in the energy range of 100-bar E-bar 180 keV
Chromodynamics of hadronic and nuclear reactions in the perturbative vacuum
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.; Navelet, H.
1983-09-01
In this report we discuss two topics which can be considered as positive practical tests of QCD: an estimate of the rise of total hadronic cross sections by means of QCD at the leading logarithm approximation and an estimate of the dependence in the atomic number of structure functions of nuclei (the so called EMC effect also by means of QCD)
Connections between lepton-induced and hadron-induced multiparticle reactions
International Nuclear Information System (INIS)
Brodsky, S.J.; Gunion, J.F.
1976-01-01
Jet production is studied as a link between hadron- and lepton-induced reactions and interpreted in terms of models of underlying quark dynamics. We discuss how fragmentation distributions, quantum number flow, the charged-momentum vector, and quark counting rules can discriminate among various possible jet structures. We also review recent work on the possible relationship of the rising hadron multiplicity to quark confinement and color gauge theories. A number of new tests of quark models in hadron, photon, and lepton collisions are discussed. (orig.) [de
International Nuclear Information System (INIS)
Sanetullaev, A.; Igamov, S.B.; Yarmukhamedov, R.
2004-01-01
Full text: Obtaining the extremely low energy cross sections for the reaction 7 Be(p,γ ) 8 B is of great interest for a reliable estimation of the rate of this reaction, which is crucial for an accurate determination of the solar neutrino flux. At present, in current literature, there is a rather wide spread in estimation of this rate (see, for instance, Ref. [1] and references therein). In this work, the modified two-body potential approach for analysis of the astrophysical S- factor S(E) for the peripheral direct radiative capture 7 Be(p,γ ) 8 B reaction of astrophysical interest is applied, in which the additional conditions of verification of the peripheral character of the reaction under consideration are formulated. The method involves the information on the asymptotic normalization coefficient (ANC) for the virtual decay 8 B → 7 Be+p and allows one to exclude the model dependence of the calculated direct astrophysical S-factor S(E) on the geometric parameters (radius r 0 and diffuseness a) of the adopted Woods-Saxon potential, which is usually used for calculations both for the two-body ( 7 Be+p)-bound state and for the 7 Be p -scattering state. The rather precise experimental astrophysical S-factor, S exp (E), in the energy range 100 7 Be(p,γ ) 8 B reaction, measured recently by the authors of Ref. [1] is used for the analysis. It is demonstrated that at extremely low energies this reaction is strongly peripheral and the measured S exp (E) can be used as an independent source of getting the information about the ANC. The new information about values of the ANC is obtained with an estimation of the weighted mean errors for them, which involves both the experimental errors of the S exp (E), and uncertainty of the method not exceeding 4%. The extracted value of the ANC is equal to C 2 =C 2 1/2 +C 2 3/2 =5.68± 0.15 fm -1 , where the indices show the value total angular momentum of the proton in the (p+ 7 Be)-bound state of 8 B. It was also demonstrated
Medium Modifications of Hadrons in Photon Induced Reactions
International Nuclear Information System (INIS)
Schadmand, S.
2004-01-01
Indications for in-medium modifications of hadron properties are reported from photoabsorption and meson production experiments. Strong medium modifications are observed in inclusive photoabsorption experiments and theoretical models investigate the in-medium dynamics of baryon resonances and their coupling to mesons. Recent experiments study the in-medium behavior of scalar and vector mesons where theoretical models expect in-medium modifications of the meson spectral functions that might be connected to partial restoration of chiral symmetry
Three-nucleon hadronic and electromagnetic reactions with Δ-isobar excitation
International Nuclear Information System (INIS)
Deltuva, A.; Adam, J. Jr.; Fonseca, A.C.; Sauer, P.U.
2005-01-01
Three-nucleon hadronic and electromagnetic reactions are described. The description uses the purely nucleonic charge-dependent CD-Bonn potential and its coupled-channel extension CD-Bonn + Δ. Exact solutions of three-particle equations are employed for the initial and final states of the reactions. The Δ-isobar excitation yields an effective three-nucleon force and effective two- and three-nucleon currents beside other Δ-isobar effects; they are mutually consistent
Valence quark annihilation and the total charge in the forward hemisphere of hadron-hadron reactions
International Nuclear Information System (INIS)
Szczekowski, M.
1980-01-01
The consequences of the valence quark annihilation (VQA) mechanism on the energy behaviour of the total net charge for final state particles in the forward c.m.s. hemisphere (Qsub(F)) in K +- p, π + p and pp reactions is examined. The data are in qualitative agreement with VQA model predictions and suggest that at low energies (psub(LAB) approximately 10 GeV/c) the VQA provides the dominating contribution to Qsub(F) in K - p and π +- p interactions. (author)
International Nuclear Information System (INIS)
Strugalski, Z.; Strugalska-Gola, E.
1997-01-01
The mechanisms of the hadron-nucleus collision processes and of the hadron-nucleus collision induced nuclear reactions are described - as experimentally based. The target nuclei are damaged definitely and locally in the collisions and the configurations of the nucleons in them became instable. The configuration must transit into stable stages of the nuclear transition reaction products. The difference between the initial internal energy of the unstable residual nucleus and the total final energy of the stable products of the nuclear transition reaction may be released in some cases
Energy Technology Data Exchange (ETDEWEB)
Badier, J; Demoulin, M; Goldberg, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); and others
1966-06-01
The differential and total cross sections of two-body reactions produced in 3 GeV/c K{sup -} proton collisions are presented. Their variation as a function of the baryonic number, strangeness, and isospin of the t and u cross channels is analyzed, as well as some implications of a baryon exchange mechanism. (authors) [French] Ce travail presente les sections efficaces differentielle et totale des reactions 'deux corps' produites par les interactions K{sup -}p a 3 GeV/c. Nous analysons leurs variations en fonction du nombre baryonique, de l'etrangete et de l'isospin des voies croisees t et u. Quelques consequences de l'hypothese de l'echange d'un baryon sont etudiees. (auteurs)
Final stage of high energy hadron-nucleus nuclear collision reactions
International Nuclear Information System (INIS)
Strugal'ski, Z.; Jedrzejec, H.; Strugalska-Gola, E.; Mulas, E.
1996-01-01
The final or 'slow' stage of the hadron-nucleus collision reactions at high energy is considered on the basis of the collision mechanism prompted experimentally. The transmutation process of the damaged target nucleus into nucleons and stable nuclear fragments is discussed. Relations between intensities or multiplicities n p of the emitted fast protons and the mean intensities or multiplicities b > of the evaporated nucleons and nuclear fragments are presented. 14 refs
Intermediate and high energy nuclear reactions at the hadronic structural level
Energy Technology Data Exchange (ETDEWEB)
Slowinski, B [Institute of Physics, Warsaw, University of Technology, Poland, Institute of Atomic Energy, Swierk, (Poland)
1997-12-31
Form tens of MeV to several hundred of GeV is stretched out quite a large interval of energy when the interaction between hadrons (for instance, pion/nucleon-nucleus and nucleus-nucleus reactions) can be described by the considerably simplified way with still acceptable accuracy. This happens because in this energy region hadrons (i.e. pions, nucleons etc.) remain quasiparticles of nuclear matter mostly without revealing any internal structure, their de Broglie`s wavelength is much shorter as compared to the average intranuclear nucleon`s distance, and the energy transfers in the reaction are, on the average, significantly greater than the binding energy of nucleons inside nuclei. Consequently an approach to the analysis of these phenomena based on simple geometric and probabilistic considerations is justifiable, especially for many practical purposes, in particular, for shielding and dosimetric estimations, material behaviour prediction, as well as for the approximate evaluation of electronuclear breeding effects in different composites of target materials, for nuclear passivation problems and so on. In this work basic physical reasons of such a simplified picture of intermediate and high energy nuclear reactions are presented. The most usual phenomenological models of hadronic multiple emission/production and recent results of the cascade evaporation type models, are also discussed. 2 figs.
Electroproduction of associated two-body final states
International Nuclear Information System (INIS)
Harding, D.J.
1983-01-01
The Large Aperture Magnet Experiment at the Cornell Electron Synchrotron measured electron scattering in the region 2.98 2 and 0.5 2 2 . The 11.5 GeV extracted electron beam struck a liquid hydrogen target in an eight kilogauss magnetic field. The charged particles in the final state were tracked through the field by a multiwire proportional chamber system of 34 planes. A lead-scintillator shower counter triggered the experiment on detection of a scattered electron. Time-of-flight and water Cherenkov counters identified some of the final state hadrons. The data recorded on tape was then passed through computer programs which linked proportional chamber strikes into tracks, fit momenta to the tracks, applied particle identification algorithms, selected interesting events, and plotted histograms of invariant masses. All of this is described here in detail, with special attention to the front-end electronics and the track-finding program. Many specific final states were observed. The analysis presented here concentrates on the reaction γ/sub v/p→pπ + ππ 0 , with the final hadrons resulting from the decay of a two-body state. The states pω 0 and p eta 0 are measured. Limits are set for the production of Δ + + rho - , Δ + rho 0 , and Δp + . The conclusion the author draws is that hadron-like two-body processes are almost completely absent in virtual photon scattering in this kinematic region. Vector meson production, excitation of the nucleons, and the scattering of the photons directly from individual partons are the important processes
Perspectives of Scalar- and Vector- Meson Production in Hadron-Nucleus Reactions
International Nuclear Information System (INIS)
Cassing, W.
2000-01-01
The production and decay of vector mesons (ρ, ω) in pA reactions at COSY energies is studied with particular emphasis on their in-medium spectral functions. It is explored within transport calculations, if hadronic in-medium decays like π + π - or π 0 γ might provide complementary information to their dilepton (e + e - ) decays. Whereas the π + π - signal from the ρ-meson is found to be strongly distorted by pion rescattering, the ω- meson Dalitz decay to π 0 γ appears promising even for more heavy nuclei. The perspectives of scalar meson ( f 0 , a 0 ) production in pp reactions are investigated within a boson-exchange model indicating that the f 0 -meson might hardly be detected in these collisions in the K(anti)K or ππ decay channels whereas the exclusive channel pp→da 0 + looks very promising. (author)
Two-body interactions in the reaction 9Be(n,ααnn) at 14 MeV. 2. Cross-section measurements
International Nuclear Information System (INIS)
Giorni, A.
1966-11-01
We measure with a double time of flight spectrometer the momenta k 1 and k 2 of neutrons from the 9 Be(n,nn)αα reaction at E n = 14 MeV. After the analysis of corrections factors for the measurement of differential cross-sections, we appraise the importance of different interactions (nn, 8 Be(0+): 1,8 ± 0.4 mb/sr 2 , mn 8 Be(2+): 2 ± 0,4 mb/sr 2 , n 9 Be, n 8 Be, α-α) observed. Our results are compared with those In the literature. (author) [fr
International Nuclear Information System (INIS)
Aguilar-Benitez, M.; Salicio, J.
1981-01-01
An analysis of (1385) production in reactions of the type 0 + 1/z 4 +→>-1 + 3+/2 and 0 - + 1/2+→ 0 - + 3*/2 is presented. A determination of the Σ(1385) production parameters Is performed and the results are compared with the predictions from several models. A transversity amplitudes reconstruction describing the processes π p ->K(890) Σ(1385) and K - p → 3→φ(1385), ζ - Σ(1385) is obtained in a model independent way. We observe dominance of unnatural partly exchange in the production mechanisms. Exchanges of exotic quantum numbers are established by the study of πp → K 0 + Σ(1385)s and K - p→>π+Σ(1385)± processes. Additive quark model predictions are reasonable agreement with the experimental data. (Author)
Measurement of the 12C(e,e'p)11B Two-Body Breakup Reaction at High Missing Momentum Values
Energy Technology Data Exchange (ETDEWEB)
Monaghan, P; Shneor, R; Subedi, R; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertin, P; Bertozzi, W; Boeglin, W; Chen, J P; Choi, Seonho; Chudakov, E; Ciofi degli-Atti, C; Cisbani, E; Cosyn, W; Craver, B; de Jager, C W; Feuerbach, R J; Folts, E; Frullani, S; Garibaldi, F; Gayou, O; Gilad, S; Gilman, R; Glamazdin, O; Gomez, J; Hansen, O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; Jans, E; Jiang, X; Jiang, Y; Kaufman, L; Kelleher, A; Kolarkar, A; Kuchina, E; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Morita, H; Nanda, S; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Reitz, B; Ron, G; Rosner, G; Ryckebusch, J; Saha, A; Sawatzky, B; Segal, J; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Thompson, N; Ulmer, P E; Urciuoli, G M; Voutier, E; Wang, K; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Yao, H; Zheng, X; Zhu, L
2014-08-01
The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. The theoretical calculations agree well with the data up to a missing momentum value of 325 MeV/c and then diverge for larger missing momenta. The extracted distorted momentum distribution is shown to be consistent with previous data and extends the range of available data up to 400 MeV/c.
Inelastic hadron reactions using a streamer chamber triggered by a single-arm spectrometer
2002-01-01
This experiment will investigate hard hadron-hadron collisions where a large fraction of the total energy is carried off at large angles with respect to the incident beam direction. The measurements will be done in the energy range of 200-400 GeV and with various hadrons ($\\pi^{\\pm}, K^{\\pm}, p, \\bar{p}$) incident on a liquid-hydrogen target. \\\\ \\\\The following questions will be investigated: \\\\ \\\\i) Is there a scaling law in hard hadron-hadron collisions which is similar to the scaling laws observed in lepton-hadron and $e^{+}e^{-}$ collisions? \\\\ ii) What do the multiparticle final states look like? Are there jets and if so do they reflect the parton structure of hadrons? Do the final states produced in deep inelastic hadron-hadron scattering look similar to those produced in deep inelastic lepton-hadron scattering? \\\\ iii) Are heavy objects and/or new quantum numbers produced in hard hadron-hadron collisions? \\\\ \\\\The apparatus comprises a vertex magnet (1 m gap, 2 m diameter, 15 kG) with a 30 cm long hyd...
Centrality in Hadron-Carbon, Hadron-Lead, and Lead-Lead Reactions at 158 GeV/c
International Nuclear Information System (INIS)
Rybicki, A.
2006-08-01
A study of centrality in p + C, π + C, p + Pb, π + Pb, and Pb + Pb reactions is made. The analysis is performed by means of a simple geometrical model. The mean number of elementary collisions, , is estimated in minimum bias p + C reactions. For the specific case of the carbon nucleus, estimates on appear to depend strongly on assumed nuclear densities. Most realistic of the presented assumptions result in a value of 1.71 ± 0.05. Additional quantities, like predictions for the total inelastic cross-section in p + C reactions, or the number of participants in minimum bias C + C collisions, are given. The analysis is subsequently extended to minimum bias π + C, π + Pb, and p + Pb reactions. Estimates are given for the mean number of elementary collisions as well as for the contribution of single collisions P(1). A comparison with experimental data is made. Finally, the impact parameter dependence of p + Pb and Pb + Pb collisions is discussed. In view of future studies, various aspects of the analysis are discussed in detail; a bibliography of used references is included. (author)
Coulomb two-body problem with internal structure
International Nuclear Information System (INIS)
Kuperin, Yu.A.; Makarov, K.A.; Mel'nikov, Yu.B.
1988-01-01
The methods of the theory of extensions to an enlarged Hilbert space are used to construct a model of the interaction of the external (Coulomb) and internal (quark) channels in the two-body problem. The mutual influence of the spectra of the corresponding channel Hamiltonians is studied: it leads, in particular, to a rearrangement of the spectra of hadronic atoms. An explicit representation is obtained for the S matrix, and its singularities on the energy shell are studied
High energy hadron-hadron collisions. Annual progress report
International Nuclear Information System (INIS)
Chou, T.T.
1979-03-01
Work on high energy hadron-hadron collisions in the geometrical model, performed under the DOE Contract No. EY-76-S-09-0946, is summarized. Specific items studied include the behavior of elastic hadron scatterings at super high energies and the existence of many dips, the computation of meson radii in the geometrical model, and the hadronic matter current effects in inelastic two-body collisions
Hadron dynamics at high energies
International Nuclear Information System (INIS)
Storrow, J.K.
1976-01-01
This lecture covers the following topics: two body phenomenology (two body data; Regge poles; duality; geometrical concepts; applications); multi-particle reactions (exclusive reactions; inclusive reactions). (U.K.)
Intermittency at 91 GeV in the reaction e+e- → hadrons
International Nuclear Information System (INIS)
Raab, V.
1992-07-01
This thesis deals with events of the kind e + e - → hadrons at an c. m. energy of about 91.25 GeV. By means of factorial moments thereby the processes are analyzed on parton and on hadron level as well as the fragmentation, i.e. the transition from partons into hadrons. The analysis method is studied on perturbing influences by the shape of inclusive distributions, cuts, and choice of the coordinate system. It is then extended by many-dimensional procedures and a variable transformation. The importance of the Dalitz decay in many-dimensional analyses is shown. The studies deal intensively with the processes on the parton level. Two different procedures lead to the agreeing result that a many-stage cascade of quarks and gluons leads to the main contributions of the fractal structures. (orig.) [de
Hadron dynamics at high energies
International Nuclear Information System (INIS)
Storrow, J.K.
1977-01-01
The nine lectures give a very brief introduction to hadron dynamics at high energies. They concentrate on basic concepts such as Regge poles, duality and geometrical ideas, and simple applications of these ideas to the problem of understanding data. To some extent two body phenomenology is emphasized at the expense of multiparticle final states and when the latter have been considered they have concentrated on inclusive reactions. One lecture discussed data on 2-2 reactions in order to provide the motivation for Regge pole theory, then two lectures are devoted to basic concepts. Then duality is introduced and shown to provide reasonable restrictions on a pole model. A lecture is then devoted to discussing geometrical ideas i.e. the t-dependence of data is looked at from an s-channel point of view. The section on two-body phenomenology is then concluded by discussing applications of the above ideas to two reactions-pion-nucleon scattering and np charge exchange scattering. The remaining three lectures are devoted to multiparticle reactions. Exclusive reactions are considered briefly and then the remainder of the course is concerned with inclusive reactions. The concepts of scaling and limiting fragmentation are discussed and Mueller's generalised optical theorem introduced and then applied in various kinematic limits. (author)
Structure of hadrons. Proceedings
International Nuclear Information System (INIS)
Feldmeier, H.; Knoll, J.; Noerenberg, W.; Wambach, J.
2001-01-01
The following topics were dealt with: Hadronic reactions and resonances, structure of mesons, baryons, glueballs, and hybrids, physics with strange and charmed quarks, future projects and facilities. (HSI)
International Nuclear Information System (INIS)
Strugalski, Z.
1985-01-01
Shapes and sizes of the regions in target-nuclei in which reactions leading to the nucleon emission, particle production and fragment evaporation occur are determined. The region of nucleon emission is of cylindrical shape, with the diameter as large as two nucleon diameters, centered on the incident hadron course. The reactions leading to the particle production happen predominantly along the incident hadron course in nuclear matter. The fragment evaporation goes from the surface layer of the part of the target-nucleus damaged in nucleon emission process
Firetube model and hadron-hadron collisions
International Nuclear Information System (INIS)
Nazareth, R.A.M.S.; Kodama, T.; Portes Junior, D.A.
1992-01-01
A new version of the fire tube model is developed to describe hadron-hadron collisions at ultrarelativistic energies. Several improvements are introduced in order to include the longitudinal expansion of intermediate fireballs, which remedies the overestimates of the transverse momenta in the previous version. It is found that, within a wide range of incident energies, the model describes well the experimental data for the single particle rapidity distribution, two-body correlations in the pseudo-rapidity, transverse momentum spectra of pions and kaons, the leading particle spectra and the K/π ratio. (author)
Measurement of $b$-hadron branching fractions for two-body decays into charmless charged hadrons
Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A
2012-01-01
Based on data corresponding to an integrated luminosity of 0.37 $\\mathrm{fb}^{-1}$ collected by the LHCb experiment in 2011, the following ratios of branching fractions are measured: \\begin{eqnarray*} \\mathcal{B}\\left(B^{0}\\rightarrow\\pi^{+}\\pi^{-}\\right) /\\,\\mathcal{B}\\left(B^{0}\\rightarrow K^+\\pi^-\\right) & = & 0.262\\pm 0.009\\pm 0.017,\\\\ (f_{s} / f_{d}) \\cdot \\mathcal{B}\\left(B^{0}_{s}\\rightarrow K^{+}K^{-}\\right) /\\, \\mathcal{B}\\left(B^{0}\\rightarrow K^+\\pi^-\\right) & = & 0.316\\pm 0.009\\pm 0.019,\\\\ (f_{s} / f_{d}) \\cdot \\mathcal{B}\\left(B^0_{s}\\rightarrow\\pi^+ K^-\\right) /\\, \\mathcal{B}\\left(B^{0}\\rightarrow K^+\\pi^-\\right) & = & 0.074 \\pm 0.006\\pm 0.006,\\\\ (f_{d} / f_{s}) \\cdot \\mathcal{B}\\left(B^{0} \\rightarrow K^{+}K^{-}\\right) /\\, \\mathcal{B}\\left(B^{0}_s\\rightarrow K^+K^-\\right) & = & 0.018 \\,^{+\\,0.008}_{-\\,0.007} \\pm 0.009,\\\\ (f_{s} / f_{d}) \\cdot \\mathcal{B}\\left(B^{0}_{s}\\rightarrow \\pi^{+}\\pi^{-}\\right) /\\, \\mathcal{B}\\left(B^{0}\\rightarrow \\pi^+\\pi^-\\right) & ...
Partial-wave analyses of hadron scattering below 2 GeV
International Nuclear Information System (INIS)
Arndt, R.A.; Roper, L.D.
1990-01-01
The Center for Analysis of Particle Scattering (CAPS) in the Department of Physics at Virginia Polytechnic Institute and State University has analyzed basic two-body hadron reactions below 2 GeV for the last two decades. Reactions studied were nucleon-nucleon, pion-nucleon, K + -nucleon and pion photoproduction systems. In addition to analyses of these systems, a computer graphics system (SAID) has been developed and disseminated to over 200 research institutions using VAX computers. 8 refs
Directory of Open Access Journals (Sweden)
Veli ÇAPALI
2016-05-01
Full Text Available BeO is one of the most common moderator material for neutron moderation; due to its high density, neutron capture cross section and physical-chemical properties that provides usage at elevated temperatures. As it’s known, for various applications in the field of reactor design and neutron capture, reaction cross–section data are required. The cross–sections of (n,α, (n,2n, (n,t, (n,EL and (n,TOT reactions for 9Be and 16O nuclei have been calculated by using TALYS 1.6 Two Component Exciton model and EMPIRE 3.2 Exciton model in this study. Hadronic interactions of low energetic neutrons and generated isotopes–particles have been investigated for a situation in which BeO was used as a neutron moderator by using GEANT4, which is a powerful simulation software. In addition, energy deposition along BeO material has been obtained. Results from performed calculations were compared with the experimental nuclear reaction data exist in EXFOR.
A bibliography of high energy two-body and inclusive scattering data
International Nuclear Information System (INIS)
Gault, F.D.; Read, B.J.; Roberts, R.G.
1977-09-01
A bibliography is presented of the data on high energy two-body and quasi-two-body final state scattering processes. This updated edition also covers one and two-particle inclusive production. It contains references to those published papers whose main purpose is to provide data on high energy two-body and inclusive hadronic scattering cross-sections rather than just properties of the produced particles. It covers the leading high energy physics journals and the period up to June 1977. The entries are grouped by process in the order indicated in the Table of Contents, and an author index is also provided. (author)
Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions
Giuffrida, L.; Margarone, D.; Cirrone, G. A. P.; Picciotto, A.; Cuttone, G.; Korn, G.
2016-10-01
We propose a series of simulations about the potential use of Boron isotopes to trigger neutron-free (aneutronic) nuclear reactions in cancer cells through the interaction with an incoming energetic proton beam, thus resulting in the emission of characteristic prompt gamma radiation (429 keV, 718 keV and 1435 keV). Furthermore assuming that the Boron isotopes are absorbed in cancer cells, the three alpha-particles produced in each p-11B aneutronic nuclear fusion reactions can potentially result in the enhancement of the biological dose absorbed in the tumor region since these multi-MeV alpha-particles are stopped inside the single cancer cell, thus allowing to spare the surrounding tissues. Although a similar approach based on the use of 11B nuclei has been proposed in [Yoon et al. Applied Physics Letters 105, 223507 (2014)], our work demonstrate, using Monte Carlo simulations, the crucial importance of the use of 10B nuclei (in a solution containing also 11B) for the generation of prompt gamma-rays, which can be applied to medical imaging. In fact, we demonstrate that the use of 10B nuclei can enhance the intensity of the 718 keV gamma-ray peak more than 30 times compared to the solution containing only 11B nuclei. A detailed explanation of the origin of the different prompt gamma-rays, as well as of their application as real-time diagnostics during a potential cancer treatment, is here discussed.
Large Acceptance Hadron Detector for an Investigation of Pb- and p-induced Reactions at the CERN~SPS
Slodkowski, M A; Stock, R; Boimska, B; Grebieszkow, K; Wojtaszek-szwarc, A; Seyboth, P; Mackowiak-pawlowska, M K; Varga, D; Melkumov, G
2002-01-01
%NA49 %title\\\\ \\\\Experiment NA49 measures charged particle and neutral strange particle production over a large part of phase space in Pb and p beam reactions. The main aim is the search for evidence transition predicted by QCD for matter of sufficient energy density. The transient existence of a deconfined phase in the early stage of the collision is expected to modify the particle spectra and composition, the correlations and the space-time evolution of the final state as compared to a scenario of confined hadronic matter. In addition to high precision inclusive measurements of these quantities, the large particle multiplicity in Pb+Pb collisions and the wide acceptance of NA49 allow for the first time to measure the event by event fluctuations of observables like mean transverse momentum or temperature, the K/$\\pi$ ratio, and the multiplicity. In order to study the effects of normal nuclear matter p+p and p+nucleus collisions are measured for comparison. The latter data will provide information on these re...
International Nuclear Information System (INIS)
Bunce, G.
1984-01-01
Is all hadronic physics ultimately describable by QCD. Certainly, many disparate phenomena can be understood within the QCD framework. Also certainly, there are important questions which are open, both theoretically (little guidance, as yet) and experimentally, regarding confinement. Are there dibaryons, baryonium, glueballs. In addition, there are experimental results which at present do not have an explanation. This talk, after a short section on QCD successes and difficulties, will emphasize two experimental topics which have recent results - glueball spectroscopy and exclusive reactions at large momentum transfer. Both are experimentally accessible in the AGS/LAMPF II/AGS II/TRIUMF II/SIN II energy domain
Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings
International Nuclear Information System (INIS)
Nathan, A.M.; Sandorfi, A.M.
1992-01-01
This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of σ(700)-meson exchange in γγ→ππ processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the γΝ-Δ transition; pion photoproduction and the γΝ-Δ amplitudes; effective- lagrangians, Watson's theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p(rvec γ, π o ) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and Ν → Νγ and Δ → γΝ transition form factors; electroproduction studies of the Ν → Δ transition at bates and CEBAF
Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings
Energy Technology Data Exchange (ETDEWEB)
Nathan, A.M.; Sandorfi, A.M. [eds.
1992-10-01
This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of {sigma}(700)-meson exchange in {gamma}{gamma}{yields}{pi}{pi} processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the {gamma}{Nu}-{Delta} transition; pion photoproduction and the {gamma}{Nu}-{Delta} amplitudes; effective- lagrangians, Watson`s theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p({rvec {gamma}}, {pi}{sup o}) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and {Nu} {yields} {Nu}{gamma} and {Delta} {yields} {gamma}{Nu} transition form factors; electroproduction studies of the {Nu} {yields} {Delta} transition at bates and CEBAF.
Temperature-dependent cross sections for meson-meson nonresonant reactions in hadronic matter
International Nuclear Information System (INIS)
Zhang Yiping; Xu Xiaoming; Ge Huijun
2010-01-01
We present a potential of which the short-distance part is given by one gluon exchange plus perturbative one- and two-loop corrections and of which the large-distance part exhibits a temperature-dependent constant value. The Schroedinger equation with this temperature-dependent potential yields a temperature dependence of the mesonic quark-antiquark relative-motion wave function and of meson masses. The temperature dependence of the potential, the wave function and the meson masses brings about temperature dependence of cross sections for the nonresonant reactions ππ→ρρ for I=2, KK→K*K* for I=1, KK*→K*K* for I=1, πK→ρK* for I=3/2, πK*→ρK* for I=3/2, ρK→ρK* for I=3/2 and πK*→ρK for I=3/2. As the temperature increases, the rise or fall of peak cross sections is determined by the increased radii of initial mesons, the loosened bound states of final mesons, and the total-mass difference of the initial and final mesons. The temperature-dependent cross sections and meson masses are parametrized.
Exotic hadron and string junction model
International Nuclear Information System (INIS)
Imachi, Masahiro
1978-01-01
Hadron structure is investigated adopting string junction model as a realization of confinement. Besides exotic hadrons (M 4 , B 5 etc.), unconventional hadrons appear. A mass formula for these hadrons is proposed. New selection rule is introduced which requires the covalence of constituent line at hadron vertex. New duality appears due to the freedom of junction, especially in anti BB→anti BB reaction. A possible assignment of exotic and unconventional hadrons to recently observed narrow meson states is presented. (auth.)
International Nuclear Information System (INIS)
Month, M.; Weng, W.T.
1983-01-01
The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility
International Nuclear Information System (INIS)
Kherbouche, E.F.
1987-09-01
When a quark or a gluon (Partons) are produced in a reaction, they become indirectly observable through their hadron recombination. When the energy of the quark or the gluon is very important with regard to the parton mass, hadrons are produced with a jet structure. This detected and correctly recreated jet allows us to get up to the initial Parton, and thus to the process which created it, in order to study the QCD predictions on the production of this initial parton. We used several methods of jet events analysis (geometrical methods, cluster methods...). We suggest a mathematical method on Shape Recognition, and already used in other fields. This method is based on PEANO-HILBERT scanning. This method applied to jet events generated by high-energy Monte Carlo method in LUND is less efficient than the LUCLUS method. However the jet reconstruction is relatively correct. The poor results of the P-H method are due to: the choice of space where hadrons are to be found, the definition of the surrounding of the scanning hypercubes. Another chosen space of the hadronic state might improve the results by changing the notion of surrounding of the scanning hypercubes. However this method can be applied to other fields in Physics when elements have to be gathered [fr
Constituent rearrangement model and large transverse momentum reactions
International Nuclear Information System (INIS)
Igarashi, Yuji; Imachi, Masahiro; Matsuoka, Takeo; Otsuki, Shoichiro; Sawada, Shoji.
1978-01-01
In this chapter, two models based on the constituent rearrangement picture for large p sub( t) phenomena are summarized. One is the quark-junction model, and the other is the correlating quark rearrangement model. Counting rules of the models apply to both two-body reactions and hadron productions. (author)
Two-body interactions by tachyon exchange
International Nuclear Information System (INIS)
Maccarrone, R.; Recami, E.
1982-01-01
Due to its relevance for the possible applications to particle physics and for causality problems, is analyzed in this paper the kinematic of (classical) tachyon-exchange between two bodies A, B, for all possible relative velocities. In particular, the two cases u.-vector V-vector c 2 are carefully investigated, V are the body B and tachyon speeds relative to A, respectively
Towards a two-body neuroscience
Dumas, Guillaume
2011-01-01
Recent work from our interdisciplinary research group has revealed the emergence of inter-brain synchronization across multiple frequency bands during social interaction.1 Our findings result from the close collaboration between experts who study neural dynamics and developmental psychology. The initial aim of the collaboration was to combine knowledge from these two fields in order to move from a classical one-brain neuroscience towards a novel two-body approach. A new technique called hyper...
Polarization phenomena in two body systems
International Nuclear Information System (INIS)
Thomas, G.H.
1978-01-01
A review is given of strong interactions at very low, low, intermediate, and high energies over the range 6.14 MeV to 150 GeV/c with regard to polarization phenomena in two-body systems. From the one-pion-exchange model to the theory that can possibly relate to all the phenomena, namely, quantum electrodynamics the review pointed to a unified explanation for the interactions under study. 46 references
International Nuclear Information System (INIS)
Strugalski, Z.
1981-01-01
Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei
International Nuclear Information System (INIS)
Fischer, J.; Kolar, P.; Kundrat, V.
1988-01-01
The proceedings contain invited lectures and papers presente at the symposium. Attention was devoted to hadron interactions a high energy in QCD, to the structure and decay of hadrons, the production of hadrons and supersymmetric particles in e + e - and ep collisions, to perturbation theory in quantum field theory, and new supersymmetric extensions of relativistic algebra. (Z.J
Partial-wave analyses of hadron scattering below 2 GeV
International Nuclear Information System (INIS)
Arndt, R.A.; Roper, L.D.
1991-01-01
The Center for Analysis of Particle Scattering (CAPS) in the Department of Physics at Virginia Polytechnic Institute and State University has analyzed basic two-body hadron reactions below 2 GeV for the last two decades. Reactions studied were nucleon-nucleon, pion-nucleon, K + -nucleon and pion photoproduction systems. In addition to analyses of these systems, a computer graphics system (SAID) has been developed and disseminated to over 250 research institutions using VAX computers. The computer-interactive system for disseminating information on basic scattering reactions is also accessible to the physics community through TELNET on the VPI ampersand SU physics department VAX. 6 refs
Relativistic transport theory for hadronic matter
International Nuclear Information System (INIS)
Shun-Jin Wang; Bao-An Li; Bauer, W.; Randrup, J.
1991-01-01
We derive coupled equations of motion for the density matrices for nucleons, Δ resonances, and π mesons, as well as for the pion--baryon interaction vertex function for the description of nuclear reactions at intermediate energies. We start from an effective hadronic Lagrangian density with minimal coupling between baryons and mesons. By truncating at the level of three-body correlations and using the G-matrix method to solve the equations of motion for the two-body correlation functions, a closed equation of motion for the one-body density matrices is obtained. A subsequent Wigner transformation then leads to a tractable set of relativistic transport equations for interacting nucleons, deltas, and pions. copyright 1991 Academic Press, Inc
Hadrons in dense matter. Proceedings
International Nuclear Information System (INIS)
Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.
2000-03-01
The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules
International Nuclear Information System (INIS)
Bugrij, G.; Jenkovsky, L.; Martynov, E.
1994-01-01
These Proceedings contain the contributions to the Workshop HADRONS-94,held in Uzhgorod between September 7-11,1994. They covers the topics: - elastic and diffractive scattering of hadrons and nuclei; -small-x and spin physics; - meson and baryon spectroscopy; - dual and string models; - collective properties of the strongly interacting matter
International Nuclear Information System (INIS)
Oka, Makoto
2012-01-01
Spectra of hadrons show various and complex structures due to the strong coupling constants of the quantum chromodynamics (QCD) constituting its fundamental theory. For their understandings, two parameters, i.e., (1) the quark mass and (2) their excitation energies are playing important roles. In low energies, for example, rather simple structures similar to the positronium appear in the heavy quarks such as charms and bottoms. It has been, however, strongly suggested by the recent experiments that the molecular resonant state shows up when the threshold to decay to mesons is exceeded. On the other hand, chiral symmetry and its breaking play important roles in the dynamics of light quarks. Strange quarks are in between and show special behaviors. In the present lecture, the fundamental concept of the hadron spectroscopy based on the QCD is expounded to illustrate the present understandings and problems of the hadron spectroscopy. Sections are composed of 1. Introduction, 2. Fundamental Concepts (hadrons, quarks and QCD), 3. Quark models and exotic hadrons, 4. Lattice QCD and QCD sum rules. For sections 1 to 3, only outline of the concepts is described because of the limited space. Exotic hadrons, many quark pictures of light hadrons and number of quarks in hadrons are described briefly. (S. Funahashi)
Energy Technology Data Exchange (ETDEWEB)
Bugrij, G; Jenkovsky, L; Martynov, E [eds.
1994-12-31
These Proceedings contain the contributions to the Workshop HADRONS-94,held in Uzhgorod between September 7-11,1994. They covers the topics: - elastic and diffractive scattering of hadrons and nuclei; -small-x and spin physics; - meson and baryon spectroscopy; - dual and string models; - collective properties of the strongly interacting matter.
Observation of charmless hadronic B decays
Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
Four candidates for charmless hadronic B decay are observed in a data sample of four million hadronic Z decays recorded by the {\\sc aleph} detector at {\\sc lep} . The probability that these events come from background sources is estimated to b e less than $10^{-6}$. The average branching ratio of weakly decaying B hadrons (a mixture of $\\bd$, $\\bs$ and $\\lb$ weighted by their production cross sections and lifetimes , here denoted B) into two long-lived charged hadrons (pions, kaons or protons) is measured to be $\\Br(\\btohh) = \\resultBR$. The relative branching fraction $\\rratio$, where $\\rs$ is the ratio of $\\bs$ to $\\bd$ decays in the sample, is measured to be $\\resultR$. %Branching ratio upper limits are also obtained for a variety In addition, branching ratio upper limits are obtained for a variety of exclusive charmless hadronic two-body decays of B hadrons.
International Nuclear Information System (INIS)
Johnson, R.C.
1980-01-01
High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)
Observation of Exclusive Two-Body B Decays to Kaons and Pions
International Nuclear Information System (INIS)
Godang, R.; Kinoshita, K.; Lai, I.C.; Pomianowski, P.; Schrenk, S.; Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J.S.; OGrady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F.; Bliss, D.W.; Masek, G.; Paar, H.P.; Prell, S.; Sharma, V.; Asner, D.M.; Gronberg, J.; Hill, T.S.; Lange, D.J.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Roberts, D.; Ryd, A.; Balest, R.; Behrens, B.H.; Ford, W.T.; Gritsan, A.; Park, H.; Roy, J.; Smith, J.G.; Alexander, J.P.; Baker, R.; Bebek, C.; Berger, B.E.; Berkelman, K.; Bloom, K.; Boisvert, V.; Cassel, D.G.; Crowcroft, D.S.; Dickson, M.; Dombrowski, S. von; Drell, P.S.; Ecklund, K.M.; Ehrlich, R.; Foland, A.D.; Gaidarev, P.; Galik, R.S.; Gibbons, L.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Hopman, P.I.; Kandaswamy, J.; Kim, P.C.; Kreinick, D.L.; Lee, T.; Liu, Y.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Valant-Spaight, B.; Ward, C.; Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Patton, S.; Prescott, C.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R.A.; Ershov, A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Yamamoto, H.; Browder, T.E.; Li, Y.
1998-01-01
We have studied two-body charmless hadronic decays of B mesons into the final states ππ, Kπ, and KK. Using 3.3x10 6 BB pairs collected with the CLEO-II detector, we have made the first observation of the decay B 0 →K + π - , the sum of B + →π + π 0 and B + →K + π 0 decays, and see strong evidence for the decay B + →K 0 π + (an average over charge-conjugate states is always implied). We place upper limits on branching fractions for the remaining decay modes. copyright 1998 The American Physical Society
Three-body vertices with two-body techniques
International Nuclear Information System (INIS)
Mitra, A.N.; Sharma, V.K.
1976-01-01
It has long been recognized that vertex functions for few particle systems provide a convenient medium for the analysis of reactions in the language of Feynman diagrams, analogously to elementary particle processes. The development of three-particle theory during the last decade has provided considerably more impetus for the use of the language of three-body vertex functions through the possibility of their 'exact' evaluations with only two-body input. While three-body vertices are probably superfluous for the description of only three-body processes (for which exact amplitudes are already available) their practical usefulness often extends to reactions involving more than three-particle systems (for which 'exact' amplitudes are still a distant goal), as long as such systems can be meaningfully described in terms of not more than three particles playing the active role. This paper investigates a simplified construction of three-body vertices. This must check against their standard definition as overlap integral. Unfortunately this definition involves a non-trivial normalization of three-body wave functions with realistic NN potentials, and has little practical scope for extension beyond A=3. (Auth.)
On the effects of the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian
International Nuclear Information System (INIS)
Badnell, N.R.
1997-01-01
We have incorporated the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian, namely contact spin-spin, two-body Darwin and orbit-orbit, into the program AUTOSTRUCTURE. Illustrative results are presented, including some for reactions involving the process of autoionization. (author)
International Nuclear Information System (INIS)
Mjahed, M.
1987-06-01
In e + e - annihilation process, the jets are produced by the fragmentation of various partons: the six flavours of quarks (u, d, s, c and the hypothetic top quark) and from the gluon. They form, according to the processus of production (e + e - →, qantiq, qantiqg, qantiqgg, qantiqqantiq) 2, 3, 4... jet events. Those jets are characterized by cinematical variables: sphericity, thrust, aplanarity, transverse momentum, charge, the fastest particle or the direction of jets. The identification of the variety of events or jets, by chosen variables taken one by one is not generally sufficient. The discriminant analysis method we used allows correlation of the greatest set of variables and the finding of the axis or the discriminant function, by which the classes of events or jets are discriminated. With the application of the method to the e + e - → hadrons reactions we can: - identify quark top events - determine the number of jets in u, d, s, c or b events - distinguish between quark jets and gluon jets -recognize the flavours of quark jets. The analysis is done at high energy (LEP) and based on a Monte-Carlo simulation with the Lund code, and for the first two points a simulation with constraint coming from the apparatus of detector ALEPH. The discriminant functions give an excellent separation of the different processes and can be used for real data (LEP...) The method can be used to other reactions: pantip, ep [fr
International Nuclear Information System (INIS)
Juliani, Didier
2013-01-01
The hadron-therapy is a radiotherapy method using ions (carbon ions here) instead of the more conventional X-rays for cancer treatment. Deep radioresistant tumour areas, as brain carcinoma for example, can be treated thanks to the specific dose deposition at the end of the ion path. This is an additional method to older classic ones (surgery, X-rays, chemotherapy). Two hadron-therapy centres for treatment and research are planned in France from 2018 (ARCHADE) in order to benefit from the newest progress and to keep improving this method. Carbon ions energy loss in the matter follows the Bethe-Bloch law. The maximum of energy depth is located in a limited area called 'Bragg peak'. By adjusting the beam position and energy, the whole volume of the tumor can be irradiated. Nevertheless, nuclear reactions of carbon ion in tissues generate the production of lighter fragments (H, He, Li etc.) that deposit their energy beyond the Bragg peak. Models implemented in hadron-therapy simulation codes (FLUKA, GEANT4 etc.) cannot reproduce angular distributions of the lighter fragments and energy distributions at the same time. These poor estimations affect the treatment planning systems accuracy that are clinically used. Indeed, a bad estimation of fragmentation process induces a bias in the dose calculation concerning healthy cells beyond the Bragg peak. In order to better constraint models, two experiments based on fragmentation cross-sections measurements have been performed. The first one in may 2011 with a beam at 95 MeV/u (GANIL) in collaboration with the LPC Caen and the second one in august 2011 with a beam at 400 MeV/u (GSI) with the FIRST collaboration. E600 experiment is devoted to the study of carbon ions fragmentation at 95 MeV/u in several thin targets (Au, C, , Ti etc.) corresponding to the basic building blocks of human body. Five telescopes are designed for the fragments detection. Each one is a three-stage detector (2 silicon detectors and one CsI scintillator
International Nuclear Information System (INIS)
Close, F.E.
1987-09-01
The standard theory of colour forces (Quantum Chromodynamics) suggests that in addition to the familiar hadrons made of quarks, there should exist new states where coloured gluons play an essential dynamical role. The author reviews the theoretical predictions for the properties of these ''glueballs'' and of states containing resonating quarks and gluons. Attempts are made to highlight those features which are common to several models in the literature. Experimental candidates are confronted with the models. No clear cut signal for a gluonic hadron yet exists; consequently what future data are required to determine the constituency of some popular candidates is considered. (author)
International Nuclear Information System (INIS)
Haberzettl, H.; Sandhas, W.
1981-01-01
Noclear reactions: Four-body problem. Effective two-body equations with exact (2+2)-subsystem contributions. Relation to field-theoretical model by Fonseca and Shanley. Three-body propagator with exchange effects. (orig.)
Model for nucleus-nucleus, hadron-nucleus and hadron-proton multiplicity distributions
International Nuclear Information System (INIS)
Singh, C.P.; Shyam, M.; Tuli, S.K.
1986-07-01
A model relating hadron-proton, hadron-nucleus and nucleus-nucleus multiplicity distributions is proposed and some interesting consequences are derived. The values of the parameters are the same for all the processes and are given by the QCD hypothesis of ''universal'' hadronic multiplicities which are found to be asymptotically independent of target and beam in hadronic and current induced reactions in particle physics. (author)
Heavy quarks in hadronic collisions
International Nuclear Information System (INIS)
Brodsky, S.J.; Peterson, C.
1982-03-01
It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data for charm hadron production. The theoretical foundations of the intrinsic charm hypothesis together with its consequences for lepton- and hadron-induced reactions are discussed in some detail. There is no contradiction with the EMC data on F 2 /sup c/ provided the appropriate threshold dependence is taken into account
Measurement of branching fractions and CP violation for charmless charged two-body B decays at LHCb
Perazzini, Stefano
Charmless charged two-body B decays are sensitive probes of the CKM matrix, that parameterize CP violation in the Standard Model (SM), and have the potential to reveal the presence of New Physics. The framework of CP violation within the SM, the role of the CKM matrix, with its basic formalism, and the current experimental status are presented. The theoretical tools commonly used to deal with hadronic B decays and an overview of the phenomenology of charmless two-body B decays are outlined. LHCb is one of the four main experiments operating at the Large Hadron Collider (LHC), devoted to the measurement of CP violation and rare decays of charm and beauty hadrons. The LHCb detector is described, focusing on the technologies adopted for each sub-detector and summarizing their performances. The status-of-the-art of the LHCb measurements with charmless two-body B decays is then presented. Using the 37/pb of integrated luminosity collected at sqrt(s) = 7 TeV by LHCb during 2010, the direct CP asymmetries ACP(B0 -> ...
Heavy flavor production from photons and hadrons
International Nuclear Information System (INIS)
Heusch, C.A.
1982-01-01
The present state of the production and observation of hadrons containing heavy quarks or antiquarks as valence constituents, in reactions initiated by real and (space-like) virtual photon or by hadron beams is discussed. Heavy flavor production in e + e - annihilation, which is well covered in a number of recent review papers is not discussed, and similarly, neutrino production is omitted due to the different (flavor-changing) mechanisms that are involved in those reactions. Heavy flavors from spacelike photons, heavy flavors from real photons, and heavy flavors from hadron-hadron collisions are discussed
Modern hadron spectroscopy: a bridge between nuclear and particle physics.
Szczepaniak, A. P.
2018-05-01
In this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.
International Nuclear Information System (INIS)
Anon.
1986-01-01
The European Hadron Facility (EHF) is a project for particle and nuclear physics in the 1990s which would consist of a fast cycling high intensity proton synchrotron of about 30 GeV primary energy and providing a varied spectrum of intense high quality secondary beams (polarized protons, pions, muons, kaons, antiprotons, neutrinos). The physics case of this project has been studied over the last two years by a European group of particle and nuclear physicists (EHF Study Group), whilst the conceptual design for the accelerator complex was worked out (and is still being worked on) by an international group of machine experts (EHF Design Study Group). Both aspects have been discussed in recent years in a series of working parties, topical seminars, and workshops held in Freiburg, Trieste, Heidelberg, Karlsruhe, Les Rasses and Villigen. This long series of meetings culminated in the International Conference on a European Hadron Facility held in Mainz from 10-14 March
Multinucleon Ejection Model for Two Body Current Neutrino Interactions
Energy Technology Data Exchange (ETDEWEB)
Sobczyk, Jan T.; /Fermilab
2012-06-01
A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.
On the special relativistic two-body problem
International Nuclear Information System (INIS)
Afanas'ev, G.N.; Asanov, R.A.
1979-01-01
The Poincare method is applied to the consideration of the two-body problem within the Special Relativity. The formulation of the theory contains two arbitrary functions of the Lorentz invariants. A specific choice of these functions leads to the correct description of three crucial experiments of the General Relativity. The expansion on the inverse powers of the light velocity being performed, the approximate Lorentz covariant two-body equations without retardation effects are obtained
Energy Technology Data Exchange (ETDEWEB)
Dallapiccola, Carlo
2001-07-25
We present measurements of the branching fractions and a search for CP-violating charge asymmetries in charmless hadronic decays of B mesons into two-body final states of kaons and pions. The results are based on a data sample of approximately 23 million BB(bar) pairs collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC.
Measurements of Charmless Three-Body and Quasi-Two-Body B Decays
Energy Technology Data Exchange (ETDEWEB)
Barrera, Barbara
2000-08-28
The authors present preliminary results of a search for several exclusive charmless hadronic B decays from electron-positron annihilation data collected by the BaBar detector near the Upsilon(4S) resonance. These include three-body decay modes with final states h{+-}h{sup minus-plus}h{+-} and h{+-}h{sup minus-plus}pi{sup 0}, and quasi-two-body decay modes with final states X{sup 0}h and X{sup 0}K{sub S}{sup 0}, where h = pi or K and X{sup 0} = eta-prime or omega. They find beta(B{sup 0} --> rho{sup minus-plus}pi{sup {+-}}) = (49{+-}13{sub {minus}5}{sup +6}) x 10{sup {minus}6} and beta(B{sup +} --> eta-prime-K{sup +}) = (62{+-}18{+-}8) x 10{sup {minus}6} and present upper limits for right other decays.
The Ways of Four-Quark Hadrons
CERN. Geneva
2014-01-01
Ten years after the discovery of the X(3872) we can assert that a number of exotic four-quark hadrons with hidden charm and beauty have been discovered, the most recent, Z(3900), found by BES in 2013, being among the top-striking ones. However, ten years have not been enough to dispel the controversy about their inner structure, with two body hadron molecules and compact multiquark states being the withstanding antipodal models. In this seminar I will review the status of the field, presenting both the experimental facts and the theoretical pictures attempting to interpret them.
Mechanism of rising cross sections in hadron-hadron collisions
International Nuclear Information System (INIS)
Gershtejn, S.S.; Logunov, A.A.
1985-01-01
The interaction of sea constituents with each other and valence quarks, occurring in high-energy hadron collisions, is shown to explain the experimentally observed law for the rise of total cross sections, as well as the energy value at which this rise starts and the difference in these energy values for πN, KN and NN(N-barN) reactions
Energy spectra of massive two-body decay products and mass measurement
Agashe, Kaustubh; Hong, Sungwoo; Kim, Doojin
2016-01-01
We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a massless product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the SM particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial b...
Energy Technology Data Exchange (ETDEWEB)
Anon.
1979-04-15
Ever since the discovery of charmed mesons in electron-positron annihilations at SLAC and DESY, a considerable effort has gone into looking for them in other types of reactions. Both neutrino interactions and photoproduction have provided further data on the production and decay of D mesons, but little has emerged concerning purely hadronic studies.some results from a CERN/Collège de France/Heidelberg/Karlsruhe collaboration using the Split Field Magnet at the CERN Intersecting Storage Rings (ISR) now show definite signs of D meson production in proton-proton collisions.
Two-body quantum mechanical problem on spheres
Shchepetilov, Alexey V.
2005-01-01
The quantum mechanical two-body problem with a central interaction on the sphere ${\\bf S}^{n}$ is considered. Using recent results in representation theory an ordinary differential equation for some energy levels is found. For several interactive potentials these energy levels are calculated in explicit form.
Energy Technology Data Exchange (ETDEWEB)
Moch, S
2008-02-15
We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)
International Nuclear Information System (INIS)
Moch, S.
2008-02-01
We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W ± /Z-boson, Higgs boson or top quark production. (orig.)
Two-body Dirac equations for nucleon-nucleon scattering
International Nuclear Information System (INIS)
Liu Bin; Crater, Horace
2003-01-01
We investigate the nucleon-nucleon interaction by using the meson exchange model and the two-body Dirac equations of constraint dynamics. This approach to the two-body problem has been successfully tested for QED and QCD relativistic bound states. An important question we wish to address is whether or not the two-body nucleon-nucleon scattering problem can be reasonably described in this approach as well. This test involves a number of related problems. First we must reduce our two-body Dirac equations exactly to a Schroedinger-like equation in such a way that allows us to use techniques to solve them already developed for Schroedinger-like systems in nonrelativistic quantum mechanics. Related to this, we present a new derivation of Calogero's variable phase shift differential equation for coupled Schroedinger-like equations. Then we determine if the use of nine meson exchanges in our equations gives a reasonable fit to the experimental scattering phase shifts for n-p scattering. The data involve seven angular momentum states including the singlet states 1 S 0 , 1 P 1 , 1 D 2 and the triplet states 3 P 0 , 3 P 1 , 3 S 1 , 3 D 1 . Two models that we have tested give us a fairly good fit. The parameters obtained by fitting the n-p experimental scattering phase shift give a fairly good prediction for most of the p-p experimental scattering phase shifts examined (for the singlet states 1 S 0 , 1 D 2 and triplet states 3 P 0 , 3 P 1 ). Thus the two-body Dirac equations of constraint dynamics present us with a fit that encourages the exploration of a more realistic model. We outline generalizations of the meson exchange model for invariant potentials that may possibly improve the fit
Quantum chromodynamics and the dynamics of hadrons
International Nuclear Information System (INIS)
Brodsky, S.J.
1979-03-01
The application of perturbative quantum chromodynamics to the dynamics of hadrons at short distance is reviewed, with particular emphasis on the role of the hadronic bound state. A number of new applications are discussed, including the modification to QCD scaling violations in structure functions due to hadronic binding; a discussion of coherence and binding corrections to the gluon and sea-quark distributions; QCD radiative corrections to dimensional counting rules for exclusive processes and hadronic form factors at large momentum transfer; generalized counting rules for inclusive processes; the special role of photon-induced reactions in QCD, especially applications to jet production in photon-photon collisions, and photon production at large transverse momentum. Also presented is a short review of the central problems in large P/sub T/ hadronic reactions and the distinguishing characteristics of gluon and quark jets. 163 references
Exclusive hadronic processes and color transparency
Indian Academy of Sciences (India)
It is known that at asymptotically large momentum transfer certain exclusive hadronic ... indicates that the Brodsky–Lepage factorization scheme fails, independent of ..... A basic feature of *-initiated reactions is that most events are knocked out.
HERWIG for Hadron-Hadron physics
International Nuclear Information System (INIS)
Seymour, M.H.
1993-05-01
HERWIG is a general-purpose particle physics event generator, which includes the simulation of any combination of hard lepton, hadron or photon scattering and soft hadron-hadron collisions in one package. It uses the parton-shower approach for initial-state and final-state QCD radiation, including colour coherence effects and azimuthal correlations both within and between jets. This article describes HERWIG version 5.6, and gives a brief review of the physics underlying HERWIG, with particular emphasis on hadron-hadron collisions. Details are given of the input and control parameters used by the program
Correlations in electron-positron, lepton-hadron and hadron-hadron collisions
International Nuclear Information System (INIS)
Koch, W.
1982-11-01
Recent results on two-particle correlations in rapidity space, forward-backward multiplicity correlations, charge correlations, flavour and baryon number correlations as well as Bose-Einstein correlations of identical particles are reviewed. Particular emphasis is given to the data from e + e - annihilation which serve in many respects as reference point in the interpretation of correlation phenomena observed in hadronic reactions. (orig.)
Summary: Hadron dynamics sessions
International Nuclear Information System (INIS)
Carroll, A.S.; Londergan, J.T.
1993-01-01
Four sessions on Hadron Dynamics were organized at this Workshop. The first topic, QCD Exclusive Reactions and Color Transparency, featured talks by Ralston, Heppelman and Strikman; the second, QCD and Inclusive Reactions had talks by Garvey, Speth and Kisslinger. The third dynamics session, Medium Modification of Elementary Interactions had contributions from Kopeliovich, Alves and Gyulassy; the fourth session Pre-QCD Dynamics and Scattering, had talks by Harris, Myhrer and Brown. An additional joint Spectroscopy/Dynamics session featured talks by Zumbro, Johnson and McClelland. These contributions are reviewed briefly in this summary. Two additional joint sessions between Dynamics and η physics are reviewed by the organizers of the Eta sessions. In such a brief review there is no way the authors can adequately summarize the details of the physics presented here. As a result, they concentrate only on brief impressionistic sketches of the physics topics discussed and their interrelations. They include no bibliography in this summary, but simply refer to the talks given in more detail in the Workshop proceedings. They focus on topics which were common to several presentations in these sessions. First, nuclear and particle descriptions of phenomena are now clearly converging, in both a qualitative and quantitative sense; they show several examples of this convergence. Second, an important issue in hadron dynamics is the extent to which elementary interactions are modified in nuclei at high energies and/or densities, and they illustrate some of these medium effects. Finally, they focus on those dynamical issues where hadron facilities can make an important, or even a unique, contribution to the knowledge of particle and nuclear physics
Hadron excitation of giant resonances
International Nuclear Information System (INIS)
Morsch, H.-P.
1985-01-01
A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)
Observation of charmless hadronic B decays
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Bright-Thomas, P.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1996-02-01
Four candidates for charmless hadronic B decay are observed in a data sample of four million hadronic Z decays recorded by the ALEPH detector at LEP. The probability that these events come from background sources is estimated to be less than 10 -6. The average branching ratio of weakly decaying B hadrons (a mixture of B d0, B s0 and Λb weighted by their production cross sections and lifetimes, here denoted B) into two long-lived charged hadrons (pions, kaons or protons) is measured to be Br(B → h +h -) = (1.7 -0.7+1.0 ± 0.2) × 10 -5. The relative branching fraction {Br( B d(s)0 → π +π -(K -)) }/{Br( B d(s)0 → h +h -) } is measured to be 1.0 -0.3 -0.1+0.0 +0.0. In addition, branching ratio upper limits are obtained for a variety of exclusive charmless hadronic two-body decays of B hadrons.
Quasi two-body decays of D0 meson
International Nuclear Information System (INIS)
Terasaki, K.; Oneda, S.
1985-08-01
Quasi two-body decays of D 0 -meson are studied from an algebraic approach, using a hard meson extrapolation. In this innovation of old current algebra with new perspective, a reasonable unified description of K sub(S) → 2π and D 0 → K-barπ decays has been obtained previously, keeping only the contribution of ground state mesons to the now surviving surface term. In this paper, it is shown that quasi two-body decays can also be accomodated reasonably well in the same scheme. A distinctive feature of our result is that GAMMA(D 0 → phi K-bar 0 ) is sizable, while D 0 → rho 0 K-bar 0 is relatively suppressed. (author)
Orbit determination with the two-body integrals: III
Gronchi, G. F.; Baù, G.; Marò, S.
2015-10-01
We present the results of our investigation on the use of the two-body integrals to compute preliminary orbits by linking too short arcs of observations of celestial bodies. This work introduces a significant improvement with respect to the previous papers on the same subject: Gronchi et al. (2010, 2011). Here we find a univariate polynomial equation of degree 9 in the radial distance ρ of the orbit at the mean epoch of one of the two arcs. This is obtained by a combination of the algebraic integrals of the two-body problem. Moreover, the elimination step, which in Gronchi et al. (2010, 2011) was done by resultant theory coupled with the discrete Fourier transform, is here obtained by elementary calculations. We also show some numerical tests to illustrate the performance of the new algorithm.
On the two-body problem in quantum mechanics
International Nuclear Information System (INIS)
Micu, L.
2008-01-01
Following the representation of a two-body system in classical mechanics, we build up a quantum picture which is free of spurious effects and retains the intrinsic features of the internal bodies. In the coordinate space the system is represented by the real particles, individually bound to a center of forces which in a certain limit coincides with the center of mass and the wave function writes as product of the individual wave functions with correlated arguments. (author)
General method for reducing the two-body Dirac equation
International Nuclear Information System (INIS)
Galeao, A.P.; Ferreira, P.L.
1992-01-01
A semi relativistic two-body Dirac equation with an enlarged set of phenomenological potentials, including Breit-type terms, is investigated for the general case of unequal masses. Solutions corresponding to definite total angular momentum and parity are shown to fall into two classes, each one being obtained by solving a system of four coupled first-order radial differential equations. The reduction of each of these systems to a pair of coupled Schroedinger-type equations is also discussed. (author)
Universal relationship connecting various two-body effective residual interactions
International Nuclear Information System (INIS)
Knuepfer, W.; Huber, M.G.
1976-01-01
Starting from a momentum space analysis of the two-body matrix elements, a relation has been established between the size of the model space actually used in a specific calculation and the relevant properties of the effective residual interaction. It turns out that the two-body transition density acts like a filter function on the Fourier transform of the force; it exhibits a distinct structure which clearly reflects the size and the detailed properties of the configuration space actually used. From an investigation of this filter function an equivalence criterion for different effective residual two-body interactions has been established both for closed and open shell nuclei. This result can be used to construct simple although realistic effective forces. As an example, a model for a separable residual interaction is proposed in which the corresponding parameters are being clearly related to the nuclear radius (i.e., the mass number), to the quantum numbers (i.e., the angular momentum) of the state under consideration and to the size of the configuration space used. For a number of examples this force has been applied successfully for the description of low energy properties of both closed and open shell nuclei
The COMPASS Hadron Spectroscopy Programme
Austregesilo, A
2011-01-01
COMPASS is a fixed-target experiment at the CERN SPS for the investigation of the structure and the dynamics of hadrons. The experimental setup features a large acceptance and high momentum resolution spectrometer including particle identification and calorimetry and is therefore ideal to access a broad range of different final states. Following the promising observation of a spin-exotic resonance during an earlier pilot run, COMPASS focused on light-quark hadron spectroscopy during the years 2008 and 2009. A data set, world leading in terms of statistics and resolution, has been collected with a 190GeV/c hadron beam impinging on either liquid hydrogen or nuclear targets. Spin-exotic meson and glueball candidates formed in both diffractive dissociation and central production are presently studied. Since the beam composition includes protons, the excited baryon spectrum is also accessible. Furthermore, Primakoff reactions have the potential to determine radiative widths of the resonances and to probe chiral pe...
Topological color codes and two-body quantum lattice Hamiltonians
Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.
2010-02-01
Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the
Two-body threshold spectral analysis, the critical case
DEFF Research Database (Denmark)
Skibsted, Erik; Wang, Xue Ping
We study in dimension $d\\geq2$ low-energy spectral and scattering asymptotics for two-body $d$-dimensional Schrödinger operators with a radially symmetric potential falling off like $-\\gamma r^{-2},\\;\\gamma>0$. We consider angular momentum sectors, labelled by $l=0,1,\\dots$, for which $\\gamma......>(l+d/2 -1)^2$. In each such sector the reduced Schrödinger operator has infinitely many negative eigenvalues accumulating at zero. We show that the resolvent has a non-trivial oscillatory behaviour as the spectral parameter approaches zero in cones bounded away from the negative half-axis, and we derive...
Toric codes and quantum doubles from two-body Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Brell, Courtney G; Bartlett, Stephen D; Doherty, Andrew C [Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney (Australia); Flammia, Steven T, E-mail: cbrell@physics.usyd.edu.au [Perimeter Institute for Theoretical Physics, Waterloo (Canada)
2011-05-15
We present here a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the low-energy limits of entirely two-body Hamiltonians. Our construction makes use of a new type of perturbation gadget based on error-detecting subsystem codes. The procedure is motivated by a projected entangled pair states (PEPS) description of the target models, and reproduces the target models' behavior using only couplings that are natural in terms of the original Hamiltonians. This allows our construction to capture the symmetries of the target models.
Two-body non-leptonic decays on the lattice
Ciuchini, M; Martinelli, G; Silvestrini, L
1996-01-01
We show that, under reasonable hypotheses, it is possible to study two-body non-leptonic weak decays in numerical simulations of lattice QCD. By assuming that final-state interactions are dominated by the nearby resonances and that the couplings of the resonances to the final particles are smooth functions of the external momenta, it is possible indeed to overcome the difficulties imposed by the Maiani-Testa no-go theorem and to extract the weak decay amplitudes, including their phases. Under the same assumptions, results can be obtained also for time-like form factors and quasi-elastic processes.
Searches for CP violation in two-body charm decays
INSPIRE-00160626
2015-10-16
The LHCb experiment recorded data corresponding to an integrated luminosity of 3.0 $fb^{-1}$ during its first run of data taking. These data yield the largest samples of charmed hadrons in the world and are used to search for CP violation in the $D^0$ system. Among the many measurements performed at LHCb, a measurement of the direct CP asymmetry in $D^0 \\rightarrow K_S^0 K_S^0$ decays is presented and is found to be $A_{CP}(D^0 \\rightarrow K_S^0 K_S^0) = (-2.9 \\pm 5.2 \\pm 2.2)\\, \\%, $ where the first uncertainty is statistical and the second systematic. This represents a significant improvement in precision over the previous measurement of this parameter. Measurements of the parameter $A^\\Gamma$, defined as the CP asymmetry of the $D^0$ effective lifetime when decaying to a CP eigenstate, are also presented. Using semi-leptonic b-hadron decays to tag the flavour of the $D^0$ meson at production with the $K^+K^-$ and $\\pi^+\\pi^-$ final states yields $A^\\Gamma(K^+K^-) = (-0.134 \\pm 0.077^{+0.026}_{-0.034})\\, \\%...
Simple ``invariance'' of two-body decay kinematics
Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin
2013-09-01
We study the two-body decay of a mother particle into a massless daughter. We further assume that the mother particle is unpolarized and has a generic boost distribution in the laboratory frame. In this case, we show analytically that the laboratory frame energy distribution of the massless decay product has a peak, whose location is identical to the (fixed) energy of that particle in the rest frame of the corresponding mother particle. Given its simplicity and “invariance” under changes in the boost distribution of the mother particle, our finding should be useful for the determination of masses of mother particles. In particular, we anticipate that such a procedure will then not require a full reconstruction of this two-body decay chain (or, for that matter, information about the rest of the event). With this eventual goal in mind, we make a proposal for extracting the peak position by fitting the data to a well-motivated analytic function describing the shape of such an energy distribution. This fitting function is then tested on the theoretical prediction for top quark pair production and its decay, and it is found to be quite successful in this regard. As a proof of principle of the usefulness of our observation, we apply it for measuring the mass of the top quark at the LHC, using simulated data and including experimental effects.
A new separable expansion for the two-body problem
International Nuclear Information System (INIS)
Haberzettl, H.
1988-07-01
We derive a new separable expansion of the two-body T matrix which represents the T matrix as a series of diagonal separable terms. The representation is exact half-on-shell at all energies even when truncated to one single term; moreover, the truncated expansion satisfies the full off-shell unitarity relation. The approach does not take recourse to some complete set of functions but rather uses properties of the Lippmann-Schwinger equation itself to arrive at the expansion. It is based on the W-matrix representation of the two-body T matrix introduced by Bartnik, Haberzettl, and Sandhas. That representation provides a splitting of the T matrix in one single separable term which contains all bound state poles and scatttering cuts and in a nonsingular, real remainder which vanishes half-on-shell. The method presented here yields a separable expansion of this remainder in which all its properties are preserved term by term. Any given n-term approximation can easily be refined to an (n+1)-term expansion by simply adding a new term. At each stage the amount of additional numerical work is constant. The method is applicable to any kind of short range potential, local, nonlocal or energy dependent. (orig.)
Institutional Solutions to the ``Two-Body Problem"
Knezek, P.
2005-05-01
The Committee on the Status of Women (CSWA), in conjunction with the Employment Committee (EC), will hold a special session that will focus on institutional approaches to solving the ``two-body problem". In step with the national employment trend, for the majority of astronomers with partners, those partners work outside the home. This is particularly true for female astronomers, who generally are married to professionals (and often to other astronomers). Academic and professional institutions that employ the majority of astronomers are now beginning to recognize the importance of addressing what has come to be known as the ``two-body" problem in order to attract and retain the best scientists. A few of those institutions are making pioneering efforts to create pro-active approaches to the issue of dual-career couples. The special session will feature two or three speakers involved with the administration at institutions with pro-active policies. This special session will be coupled with the normal afternoon CSWA session, which will focus on the other side of the issue - how dual-career couples have successfully approached the issue at institutions that do NOT have proactive policies.
Meißner, Ulf-G.
2004-01-01
The status of hadron physics at the end of the HADRON07 Conference is reviewed. The latest results presented at the conference, as well as those important developments in the field which were not represented, are included.
QCD in hadron-hadron collisions
International Nuclear Information System (INIS)
Albrow, M.
1997-03-01
Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E T jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction
High energy hadron-hadron collisions
International Nuclear Information System (INIS)
Chou, T.T.
1990-01-01
Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs
International Nuclear Information System (INIS)
Eyraud, L; Furget, C.; Goy, J.; Kox, S.; Merchez, F.; Pastor, A.; Real, J.S.; Russew, T.; Tieulent, R.; Voutier, E.
1997-01-01
Over these two years, our group has been worked in hadronic physics at Saturn and CEBAF using the polarimeter POLDER. Tensor polarization observables have been measured in the reaction H(p bar, d bar)π + between 580 and 1300 MeV proton energy. The group has also been leader in an experiment, performed in 1997 at CEBAF. By measuring the t 20 polarization of the recoil deuteron produced in the elastic electron-deuteron scattering at large Q 2 , the separation of the charge and quadrupole form-factors of the deuteron will be performed for Q=4.1-6.8 fm -1 . Finally, we were involved in the construction and test of the neutron polarimeter HARP and in the definition of the physics program of the ELFE project. (authors)
Exclusive hadronic and nuclear processes in QCD
International Nuclear Information System (INIS)
Brodsky, S.J.
1985-12-01
Hadronic and nuclear processes are covered, in which all final particles are measured at large invariant masses compared with each other, i.e., large momentum transfer exclusive reactions. Hadronic wave functions in QCD and QCD sum rule constraints on hadron wave functions are discussed. The question of the range of applicability of the factorization formula and perturbation theory for exclusive processes is considered. Some consequences of quark and gluon degrees of freedom in nuclei are discussed which are outside the usual domain of traditional nuclear physics. 44 refs., 7 figs
CMS Central Hadron Calorimeter
Budd, Howard S.
2001-01-01
We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.
Problems of hadron electrodynamics
International Nuclear Information System (INIS)
Rekalo, M.P.
1989-01-01
Certain directions of hadron electrodynamics referring to testing symmetry properties relatively to C-, P- and T-transformations; determination of fundamental electromagnetic characteristics of hadrons as well as to clarifying the dynamics of electromagnetic processes in which hadrons participate are analyzed briefly. 52 refs
Two-body correlation functions in dilute nuclear matter
International Nuclear Information System (INIS)
Isayev, A A
2006-01-01
Finding the distinct features of the crossover from the regime of large overlapping Cooper pairs to the limit of non-overlapping pairs of fermions (Shafroth pairs) in multicomponent Fermi systems remains one of the actual problems in a quantum many-body theory. Here this transition is studied by calculating the two-body density, spin and isospin correlation functions in dilute asymmetric nuclear matter. It is shown that criterion of the crossover (Phys. Rev. Lett. 95, 090402 (2005)), consisting in the change of the sign of the density correlation function at low momentum transfer, fails to describe correctly the density-driven BEC-BCS transition at finite isospin asymmetry or finite temperature. As an unambiguous signature of the BEC-BCS transition, there can be used the presence (BCS regime) or absence (BEC regime) of the singularity in the momentum distribution of the quasiparticle density of states
Fluctuations of radiative heat exchange between two bodies
Biehs, S.-A.; Ben-Abdallah, P.
2018-05-01
We present a theory to describe the fluctuations of nonequilibrium radiative heat transfer between two bodies both in the far- and near-field regimes. As predicted by the blackbody theory, in the far field, we show that the variance of radiative heat flux is of the same order of magnitude as its mean value. However, in the near-field regime, we demonstrate that the presence of surface polaritons makes this variance more than one order of magnitude larger than the mean flux. We further show that the correlation time of heat flux in this regime is comparable to the relaxation time of heat carriers in each medium. This theory could open the way to an experimental investigation of heat exchanges far from the thermal equilibrium condition.
Micromagnetic simulation of two-body magnetic nanoparticles
Li, Fei; Lu, Jincheng; Yang, Yu; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.
2017-05-01
Field-induced magnetization dynamics was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value on nanometer scale in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The same results were observed when varying the radius of particles. The micromagnetic results are consistent with the previous theoretical prediction where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles could be implemented as a composite information bit.
Relativistic two-body forces in many-body systems
International Nuclear Information System (INIS)
Namyslowski, J.M.
1979-01-01
For the fully off-shell extension in the relativistic dynamics, based on a covariant light-front field theory, we define the relative momenta and their proper angular variables such that -1 < cos theta/sub α/ < 1. In terms of these variables and the timelike total momenta we write explicitly the Weinberg interaction, corresponding to the exchange of a spinless particle of mass μ. The total momentum dependence and the cluster decomposition property of the Weinberg interaction are presented in detail, together with its energy dependence and other nonlocal features. In the nonrelativistic limit we recover the Yukawa interaction, while for the finite masses the Weinberg interaction is a product of the Yukawa interaction and a form factor. The Weinberg two-body force goes to zero at large energies and is truly nonlocal, in spite of the fact that the underlying field theory has a local Lagrangian
Successive canonical transformation in model two-body electrodynamics
International Nuclear Information System (INIS)
Raha, S.
1978-10-01
The possibility is investigated of bypassing the no interaction theorum of Currie, Jordan and Sudarshan for direct action Lagrangians. Starting with the field theoretic description of a two-body electrodynamic problem, the field variable is solved for in terms of the particle variables, which paves the way to write an action-at-a-distance Hamiltonian for the problem. A suitable transformation is found which uncouples the field and the particle variables in the interaction up to order e 2 . It is shown that this transformation leaves the statement of Newton's 2nd law unchanged which also agrees with the standard results of electrodynamics. This allows for the identification of canonical variables for the proper action-at-a-distance problem. 19 references
Neutrino-antineutrino pair production by hadronic bremsstrahlung
Bacca, Sonia
2016-09-01
I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).
Light-cone quantization and hadron structure
International Nuclear Information System (INIS)
Brodsky, S.J.
1996-04-01
Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Aguilar-Benitez, M; Salicio, J
1981-07-01
An analysis of (1385) production in reactions of the type 0{sup +} 1/z 4 +{yields}>-1{sup +} 3+/2 and 0{sup -} + 1/2+{yields} 0{sup -} + 3*/2 is presented. A determination of the {sigma}(1385) production parameters Is performed and the results are compared with the predictions from several models. A transversity amplitudes reconstruction describing the processes {pi} {sup p} ->K(890) {sigma}(1385) and K{sup -}p {yields} 3{yields}{phi}(1385), {zeta}{sup -}{sigma}(1385) is obtained in a model independent way. We observe dominance of unnatural partly exchange in the production mechanisms. Exchanges of exotic quantum numbers are established by the study of {pi}p {yields} K{sup 0}+ {sigma}(1385)s and K{sup -} p{yields}>{pi}+{sigma}(1385){+-} processes. Additive quark model predictions are reasonable agreement with the experimental data. (Author)
Hadronic degrees of freedom in relativistic heavy-ion collisions
International Nuclear Information System (INIS)
Otsuka, Naohiko
2001-01-01
Relativistic heavy-ion collisions at AGS energies are studied by using an new developed hadronic cascade model, HANDEL which includes a few hadronic degrees of freedom. The spectra of hadron-hadron, hadron-nucleus and nucleus-nucleus reactions at AGS energies are well reproduced by HANDEL. It is confirmed that the infinite matter described by HANDEL has particle fractions which are expected from grand canonical ensemble. When we compare the thermal evolution of Au+Au collision from HANDEL with the result from JAM which has larger hadronic degree of freedoms, we find both models give similar evolution of temperature, against naive expectation. We argue that this results can be interpretated if the particles in formation time works as the additional effective hadronic degrees of freedom. (author)
Hadron and photon production at large transverse momentum and the dynamics of QCD jets. [Review
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J.
1978-10-01
The phenomenology of hadron and photon reactions at short distances is discussed in terms of perturbative quantum chromodynamics. In addition to large P/sub T/ hadron reactions, predictions are reviewed for jet production in two photon collisions, the relation of photon and gluon jet production, hadronic production and color separation, upsilon decay into hadrons and photons, leading particle distributions in low P/sub T/ hadron collisions, discriminants of quark and gluon jets, and the effects of coherence on gluon distributions in hadrons. A number of new experimental tests of QCD are discussed.
Hadron and photon production at large transverse momentum and the dynamics of QCD jets
International Nuclear Information System (INIS)
Brodsky, S.J.
1978-10-01
The phenomenology of hadron and photon reactions at short distances is discussed in terms of perturbative quantum chromodynamics. In addition to large P/sub T/ hadron reactions, predictions are reviewed for jet production in two photon collisions, the relation of photon and gluon jet production, hadronic production and color separation, upsilon decay into hadrons and photons, leading particle distributions in low P/sub T/ hadron collisions, discriminants of quark and gluon jets, and the effects of coherence on gluon distributions in hadrons. A number of new experimental tests of QCD are discussed
Updated analysis of some two-body charmless B decays
International Nuclear Information System (INIS)
Chiang Chengwei; Rosner, Jonathan L.
2002-01-01
New data from the BaBar, Belle, and CLEO Collaborations on B decays to two-body charmless final states are analyzed, with the following consequences. (1) The penguin amplitude which dominates the decay B + →π + K *0 has a magnitude similar to that dominating B + →π + K 0 . (2) The decay B + →π + η, a good candidate for observing direct CP violation, should be detectable at present levels of sensitivity. (3) The decays B + →η ' K + and B + →ηK* + are sufficiently similar in rate to the corresponding decays B 0 →η ' K 0 and B 0 →ηK* 0 , respectively, that one cannot yet infer the need for 'tree' amplitudes t ' contributing to the B + but not the B 0 decays. Statistical requirements for observing this and other examples of tree-penguin interference are given. (4) Whereas the B + →η ' K + and B 0 →η ' K 0 rates cannot be accounted for by the penguin amplitude p ' alone but require an additional flavor-singlet penguin contribution s ' , no such flavor-singlet penguin contribution is yet called for in the decays B + →ηK* + or B 0 →ηK *0 . Predictions for the rates for B + →η ' K* + and B 0 →η ' K* 0 are given which would allow one to gauge the importance of these flavor-singlet penguin amplitudes
Hadron physics programs at J-PARC
Directory of Open Access Journals (Sweden)
Naruki M.
2014-06-01
Full Text Available The J-PARC Hadron Facility is designed as a multipurpose experimental facility for a wide range of particle and nuclear physics programs, aiming to provide the world highest intensity secondary beams. Currently three secondary beam lines; K1.8, K1.8BR and KL together with the test beam line named K1.1BR come into operation. Various experimental programs are proposed at each beam line and some of them have been performed so far. As the first experiment at the J-PARC Hadron Facility, the Θ+ pentaquark was searched for via the pion-induced hadronic reaction in the autumn of 2010. Also experimental programs to search for new hadronic states such as K−pp have started to perform a physics run. The current status and near future programs are introduced.
Hadron chemistry in heavy ion collisions
International Nuclear Information System (INIS)
Montvay, I.; Zimanyi, J.
1978-06-01
In the models for energetic heavy ion reactions it is assumed that during the reaction a hot and dense nuclear matter, a fireball is formed from all or a part of nucleons of the target and projectile nuclei. The process is similar to the chemical processes leading to dynamical equilibrium. The relaxation times necessary to establish ''chemical'' equilibrium among different hadrons in hot, dense hadronic matter is deducted in a statistical model. Consequences for heavy ion collisions are discussed. The possibility of Bose-Einstein pion condensation around the break-up time of the nuclear fireball is pointed out. (D.P.)
Hadron correlations from recombination
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2005-01-01
Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.
International Nuclear Information System (INIS)
Wiedner, Ulrich
2011-01-01
The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.
Density oscillations within hadrons
International Nuclear Information System (INIS)
Arnold, R.; Barshay, S.
1976-01-01
In models of extended hadrons, in which small bits of matter carrying charge and effective mass exist confined within a medium, oscillations in the matter density may occur. A way of investigating this possibility experimentally in high-energy hadron-hadron elastic diffraction scattering is suggested, and the effect is illustrated by examining some existing data which might be relevant to the question [fr
Quantum chromodynamic quark model study of hadron and few hadron systems
International Nuclear Information System (INIS)
Ji, Chueng-Ryong.
1990-10-01
This report details research progress and results obtained during the five month period July 1, 1990 to November 30, 1990. The research project, entitled ''Quantum Chromodynamic Quark Model Study of Hadron and Few Hadron Systems,'' is supported by grant FG05-90ER40589 between North Carolina State University and the United States Department of Energy. This is a research program addressing theoretical investigations of hadron structure and reactions using quantum chromodynamic quark models. The new, significant research results are briefly summarized in the following sections
International Nuclear Information System (INIS)
Hanson, P.
1982-10-01
The two and quasi-two body final states Σ + K + , Σ + K* (892) + , Σ*(1385) + K + , Σ(1385) + K*(892) + produced by neutral strangeness exchange in π + p interactions are studied using our own 1-3 GeV/c data, comprising the 14 incident momenta of a two million picture bubble chamber experiment, in combination with the world data on the same and related channels. Because low energy resonance formation is not strongly coupled to the Σ,Σ* production channels, at very modest incident momenta their dominant features are seen to be understandable in terms of high energy hypercharge exchange phenomenology. We find that Regge models fitted to data in the 10 to 20 GeV/c range adequately describe the Σ and Σ* channels down to within a few hundred MeV/c of threshold and out to large center of mass scattering angles, and that over the range of the available world data weak exchange degeneracy expectations for these reactions are at least qualitatively successful. We observe that the SU(2), SU(3) flavor symmetries successfully describe these hypercharge exchange processes and relate them to charge exchange via sum rules and equalities expressing flavor independence of the strong interaction; in particular, we derive and test on the available world data a mass broken SU(3) sum rule for π + p → K + Σ + , π - p → K 0 Λ, K - p → anti K 0 n and test over a wider range of momenta than before an earlier expression relating Σ* and Δ production. We also find at least qualitative agreement between quark model predictions for forward hypercharge exchange and the data, and we find that 90 0 hypercharge exchange cross sections also conform to the expectations of the quark constituent picture for hadrons
Nuclear energy release in hadron-nucleus collisions
International Nuclear Information System (INIS)
Strugalski, Z.; Strugalska-Gola, E.
1998-01-01
Energy release process in nuclear reactions induced by fast hadrons in hadron-nucleus collisions is discussed. Some portion of the internal nuclear energy is released when the locally damaged in a collision, and instable therefore, residual target nucleus transits itself into light nuclear fragments (nucleons, D, T) and a stable lighter final nucleus or some number of stable lighter nuclei. It is not excluded that in some of the collisions the induced intranuclear nuclear reactions may be energy overcompensating. Corresponding reconnaissance should be made - in analysing the nuclear reactions induced in hadron-nucleus collisions
Hard Two-Body Photodisintegration of He3
Pomerantz, I.; Ilieva, Y.; Gilman, R.; Higinbotham, D. W.; Piasetzky, E.; Strauch, S.; Adhikari, K. P.; Aghasyan, M.; Allada, K.; Amaryan, M. J.; Anefalos Pereira, S.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Beck, A.; Beck, S.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Boeglin, W.; Bono, J.; Bookwalter, C.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Bubis, N.; Burkert, V.; Camsonne, A.; Canan, M.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chirapatpimol, K.; Cisbani, E.; Cole, P. L.; Contalbrigo, M.; Crede, V.; Cusanno, F.; D'Angelo, A.; Daniel, A.; Dashyan, N.; de Jager, C. W.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Dutta, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Fradi, A.; Garibaldi, F.; Geagla, O.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Glister, J.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, X.; Jo, H. S.; Joo, K.; Katramatou, A. T.; Keller, D.; Khandaker, M.; Khetarpal, P.; Khrosinkova, E.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Lee, B.; LeRose, J. J.; Lewis, S.; Lindgren, R.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Martinez, D.; Mayer, M.; McCullough, E.; McKinnon, B.; Meekins, D.; Meyer, C. A.; Michaels, R.; Mineeva, T.; Mirazita, M.; Moffit, B.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Petratos, G. G.; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rodriguez, I.; Ron, G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saha, A.; Saini, M. S.; Sarty, A. J.; Sawatzky, B.; Saylor, N. A.; Schott, D.; Schulte, E.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Shneor, R.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Subedi, R.; Sulkosky, V.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wang, Y.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wojtsekhowski, B.; Wood, M. H.; Yan, X.; Yao, H.; Zachariou, N.; Zhan, X.; Zhang, J.; Zhao, Z. W.; Zheng, X.; Zonta, I.
2013-06-01
We have measured cross sections for the γHe3→pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron.
Hard two-body photodisintegration of 3He.
Pomerantz, I; Ilieva, Y; Gilman, R; Higinbotham, D W; Piasetzky, E; Strauch, S; Adhikari, K P; Aghasyan, M; Allada, K; Amaryan, M J; Anefalos Pereira, S; Anghinolfi, M; Baghdasaryan, H; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Beck, A; Beck, S; Bedlinskiy, I; Berman, B L; Biselli, A S; Boeglin, W; Bono, J; Bookwalter, C; Boiarinov, S; Briscoe, W J; Brooks, W K; Bubis, N; Burkert, V; Camsonne, A; Canan, M; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Chirapatpimol, K; Cisbani, E; Cole, P L; Contalbrigo, M; Crede, V; Cusanno, F; D'Angelo, A; Daniel, A; Dashyan, N; de Jager, C W; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Doughty, D; Dupre, R; Dutta, C; Egiyan, H; El Alaoui, A; El Fassi, L; Eugenio, P; Fedotov, G; Fegan, S; Fleming, J A; Fradi, A; Garibaldi, F; Geagla, O; Gevorgyan, N; Giovanetti, K L; Girod, F X; Glister, J; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Harrison, N; Heddle, D; Hicks, K; Ho, D; Holtrop, M; Hyde, C E; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jiang, X; Jo, H S; Joo, K; Katramatou, A T; Keller, D; Khandaker, M; Khetarpal, P; Khrosinkova, E; Kim, A; Kim, W; Klein, F J; Koirala, S; Kubarovsky, A; Kubarovsky, V; Kuleshov, S V; Kvaltine, N D; Lee, B; LeRose, J J; Lewis, S; Lindgren, R; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Martinez, D; Mayer, M; McCullough, E; McKinnon, B; Meekins, D; Meyer, C A; Michaels, R; Mineeva, T; Mirazita, M; Moffit, B; Mokeev, V; Montgomery, R A; Moutarde, H; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Nasseripour, R; Nepali, C S; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Petratos, G G; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Procureur, S; Protopopescu, D; Puckett, A J R; Qian, X; Qiang, Y; Ricco, G; Rimal, D; Ripani, M; Ritchie, B G; Rodriguez, I; Ron, G; Rosner, G; Rossi, P; Sabatié, F; Saha, A; Saini, M S; Sarty, A J; Sawatzky, B; Saylor, N A; Schott, D; Schulte, E; Schumacher, R A; Seder, E; Seraydaryan, H; Shneor, R; Smith, G D; Sokhan, D; Sparveris, N; Stepanyan, S S; Stepanyan, S; Stoler, P; Subedi, R; Sulkosky, V; Taiuti, M; Tang, W; Taylor, C E; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voskanyan, H; Voutier, E; Walford, N K; Wang, Y; Watts, D P; Weinstein, L B; Weygand, D P; Wojtsekhowski, B; Wood, M H; Yan, X; Yao, H; Zachariou, N; Zhan, X; Zhang, J; Zhao, Z W; Zheng, X; Zonta, I
2013-06-14
We have measured cross sections for the γ(3)He → pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron.
International Nuclear Information System (INIS)
Bayukov, Yu.D.; Vlasov, A.V.; Gavrilov, V.B.
1981-01-01
Hardonic correlations were investigated in reactions with the proton backward production induced by 6.0-GeV/c π - mesons on nuclei Be, C, Al, Cu, Cd, Pb, U. The studied correlations indicate an essential role of multiple interactions of the incident particle in production of cumulative protons [ru
anti ee annihilation into hadrons from dual unitarisation
International Nuclear Information System (INIS)
Hong-mo, C.
1976-09-01
By grafting to the dual unitarisation scheme for hadron reactions a quark-current coupling suggested by the parton model, a model is obtained for anti ee annihilations in which the conversion of quarks into final hadrons is specific. As a first application, the correction to the value of R given by the parton model is estimated. (author)
Spectroscopy and Decay of $B$ Hadrons at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Paulini, Manfred
2007-02-01
The authors review recent results on heavy quark physics focusing on Run II measurements of B hadron spectroscopy and decay at the Tevatron. A wealth of new B physics measurements from CDF and D0 has been available. These include the spectroscopy of excited B states (B**, B**{sub s}) and the observation of the {Sigma}{sub b} baryon. The discussion of the decays of B hadrons and measurements of branching fractions focuses on charmless two-body decays of B {yields} h{sup +}h{sup -}. They report several new B{sub s}{sup 0} and {Lambda}{sub b}{sup 0} decay channels.
International Nuclear Information System (INIS)
Schwitters, R.F.
1975-01-01
A report is given of the knowledge obtained from SPEAR about hadron production in e + e - annihilation since the discovery of the new particles. Included are the SPEAR magnetic detector, the total cross sections, mean charged multiplicity and energy, inclusive momentum spectra, and hadron angular distribution
International Nuclear Information System (INIS)
Ernst, David J.
1992-01-01
At a Workshop on the Future of Hadron Facilities, held on 15-16 August at Los Alamos National Laboratory, several speakers pointed out that the US physics community carrying out fixed target experiments with hadron beam had not been as successful with funding as it deserved. To rectify this, they said, the community should be better organized and present a more united front
International Nuclear Information System (INIS)
De, S.S.
1989-01-01
The paper deals with the space-time structure of the sub-atomic world and attempts to construct the fields of the constitutents of the hadrons. Then it is attempted to construct the fields of the hadrons from these micro-fields. (autho r). 24 refs
Statistical Hadronization and Holography
DEFF Research Database (Denmark)
Bechi, Jacopo
2009-01-01
In this paper we consider some issues about the statistical model of the hadronization in a holographic approach. We introduce a Rindler like horizon in the bulk and we understand the string breaking as a tunneling event under this horizon. We calculate the hadron spectrum and we get a thermal...
Perspectives in hadron spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Richard, J.M. [Universite Joseph Fourier-IN2P3-CNRS, Lab. de Physique Subatomique et Cosmologie, 38 - Grenoble (France)
2005-07-01
A brief survey is presented of selected recent results on hadron spectroscopy and related theoretical studies. Among the new hadron states, some of them are good candidates for exotic structures: chiral partners of ground-states, hybrid mesons (quark, antiquark and constituent gluon), four-quark states, or meson-meson molecules.
Energy Technology Data Exchange (ETDEWEB)
Ernst, David J.
1992-11-15
At a Workshop on the Future of Hadron Facilities, held on 15-16 August at Los Alamos National Laboratory, several speakers pointed out that the US physics community carrying out fixed target experiments with hadron beam had not been as successful with funding as it deserved. To rectify this, they said, the community should be better organized and present a more united front.
Researches at hadron experiment facility
International Nuclear Information System (INIS)
Sawada, Shinya
2006-01-01
Some of the nuclear, hadron and elementary particle experiments proposed to hadron experiment facility to use the extracted slow proton beam at J-PARC are overviewed. Characteristic feature of the facility is the secondary beam obtained from the intense proton beam. Nuclear hadron physics experiments and kaon rare decay experiments are presented here as the typical ones. Hypernuclear spectroscopy with S=-2 state is expected to be started as soon as the beam becomes available. The kaon bound systems not only with three nucleons like K-pnn but also more numerous like Li and Be are to be studied systematically. Bound states of two kaons using (K - , K + ) reaction will be challenged. Pentaquark will be searched for and its properties will be studied if it really exists. Nuclear structure studies from the view point of large Bjorken x are planned to be studied by irradiating hydrogen, deuteron or heavier targets with primary proton beam and analyzing generated muon pairs. Properties of vector mesons in nuclear matter are to be studied with the primary beam. Neutral kaon rare decay will be investigated to study CP nonconservation. Large progress of elementary particle physics is anticipated by using the intense proton beam at J-PARC. (S. Funahashi)
Effects of hadronic colour structure in quasi-elastic and charge-exchange scattering on nuclei
International Nuclear Information System (INIS)
Kopeliovich, B.Z.; Zakharov, B.G.
1986-01-01
Effects of hadronic hidden colour screening are considered in hadron-nucleus interaction. It is shown that in the quasi-free charge exchange-reaction nuclear matter becomes transparent for the scattered hadron if the momentum transfer is large enough. The available experimental data confirm this prediction of QCD
Production of strange particles in hadronization processes
International Nuclear Information System (INIS)
Hofmann, W.
1987-08-01
Strange particles provide an important tool for the study of the color confinement mechanisms involved in hadronization processes. We review data on inclusive strange-particle production and on correlations between strange particles in high-energy reactions, and discuss phenomenological models for parton fragmentation. 58 refs., 24 figs
Study of the hadronisation process from single hadron and hadron-pair production in SIDIS at COMPASS
Makke, Nour
2014-01-01
Hadron production in hard scattering reactions is described by the hadronization mechanism which combines quarks into final-state hadrons. Within the theoretical framework of leading-twist collinear QCD, the cross section for hadron production in semi-inclusive deep-inelastic scattering can be factorized into a hard scattering cross section describing the hard interaction at the quark level calculable in perturbative QED, and non-perturbative universal functions: parton distribution functions which reflect the quark structure of initial-state hadrons and collinear fragmentation functions which encode details on the hadronization process. In the last decades, a major effort has been achieved on theoretical and experimental levels and allowed to constraint, with very high precision, parton distribution functions except strange quark distribution, which still carries large uncertainties. Fragmentation functions, however, remain at a very preliminary stage of study with a growing interest in a more accurate and p...
Energy Technology Data Exchange (ETDEWEB)
Dudouet, J. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Juliani, D. [Institut Pluridisciplinaire Hubert Curien Strasbourg (France); Labalme, M., E-mail: labalme@lpccaen.in2p3.fr [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Angélique, J.C. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Braunn, B. [CEA, Centre de Saclay, IRFU/SPhN, F-91191, Gif-sur-Yvette (France); Colin, J.; Cussol, D. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Finck, Ch. [Institut Pluridisciplinaire Hubert Curien Strasbourg (France); Fontbonne, J.M.; Guérin, H. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Henriquet, P.; Krimmer, J. [IPNL, Université de Lyon, F-69003 Lyon (France); Université Lyon 1 and CNRS/IN2P3, UMR 5822 F-69622 Villeurbanne (France); Rousseau, M. [Institut Pluridisciplinaire Hubert Curien Strasbourg (France); Saint-Laurent, M.G. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3 BP5027,F-14076 Caen cedex 5 (France)
2013-07-01
During therapeutic treatment with heavier ions like carbon, the beam undergoes nuclear fragmentation and secondary light charged particles, in particular protons and alpha particles, are produced. To estimate the dose deposited into the tumors and the surrounding healthy tissues, the accuracy must be higher than ±3% and±1 mm. Therefore, measurements are performed to determine the double differential cross-section for different reactions. In this paper, the analysis of data from {sup 12}C +{sup 12}C reactions at 95 MeV/u are presented. The emitted particles are detected with ΔE{sub thin}−ΔE{sub thick}−E telescopes made of a stack of two silicon detectors and a CsI crystal. Two different methods are used to identify the particles. One is based on graphical cuts onto the ΔE−E maps, the second is based on the so-called KaliVeda method using a functional description of ΔE versus E. The results of the two methods will be presented in this paper as well as the comparison between both.
International Nuclear Information System (INIS)
Anon.
1987-01-01
With much particle physics research using particle beams to probe the behaviour of the quark constituents deep inside nucleons and other strongly interacting particles (hadrons), it is easy to overlook the progress being made through hadron spectroscopy – the search for and classification of rare particles – and the way it has increased our understanding of quark physics. One way of remedying this was to attend the stimulating and encouraging Hadron 87 meeting held earlier this year at the Japanese KEK Laboratory, where Jonathan Rosner from Chicago's Enrico Fermi Institute gave the concluding talk
Hadron accelerators in medicine
International Nuclear Information System (INIS)
Amaldi, U.
1996-01-01
The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)
Energy Technology Data Exchange (ETDEWEB)
Anon.
1987-09-15
With much particle physics research using particle beams to probe the behaviour of the quark constituents deep inside nucleons and other strongly interacting particles (hadrons), it is easy to overlook the progress being made through hadron spectroscopy – the search for and classification of rare particles – and the way it has increased our understanding of quark physics. One way of remedying this was to attend the stimulating and encouraging Hadron 87 meeting held earlier this year at the Japanese KEK Laboratory, where Jonathan Rosner from Chicago's Enrico Fermi Institute gave the concluding talk.
Srivastava, D K
2001-01-01
The production of single photons in Pb+Pb collisions at the CERN SPS as measured by the WA98 experiment is analysed. A quark gluon plasma is assumed to be formed initially, which expands, cools, hadronizes, and undergoes freeze-out. A rich hadronic equation of state is used and the transverse expansion of the interacting system is taken into account. The recent estimates of photon production in quark-matter (at two loop level) along with the dominant reactions in the hadronic matter leading to photons are used. About half of the radiated photons are seen to have a thermal origin. The same treatment and the initial conditions provide a very good description to hadronic spectra measured by several groups and the intermediate mass dileptons measured by the NA50 experiment, lending a strong support to the conclusion that quark gluon plasma has been formed in these collisions. Predictions for RHIC and LHC energies are also given. (37 refs).
Hadron final states in deep inelastic processes
International Nuclear Information System (INIS)
Bjorken, J.D.
1976-05-01
Lectures are presented dealing mainly with the description and discussion of hadron final states in electroproduction, colliding beams, and neutrino reactions from the point of view of the simple parton model. Also the space-time evolution of final states in the parton model is considered. It is found that the picture of space-time evolution of hadron final states in deep inelastic processes isn't totally trivial and that it can be made consistent with the hypotheses of the parton model. 39 references
African Journals Online (AJOL)
abp
19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.
International Nuclear Information System (INIS)
Kaplan, D.B.
1995-01-01
I give a brief and selective overview of QCD as it pertains to determining hadron structure, and the relevant directions in this field for nuclear theory. This document is intended to start discussion about priorities, not end it
International Nuclear Information System (INIS)
Ferbel, T.
1976-01-01
Recent experimental results from studies of hadron interactions at Fermilab are surveyed. Elastic, total and charge-exchange cross section measurements, diffractive phenomena, and inclusive production, using nuclear as well as hydrogen targets, are discussed in these lectures
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
The following topics were ealt with: Hadron physics with proton and deuteron probes, physics projects with Georgian participation, spin physics with antiprotons and leptons, spin filtering experiments, ISTC projects, technical issues for FAIR. (HSI)
Hadron multiplicities at COMPASS
Energy Technology Data Exchange (ETDEWEB)
Du Fresne von Hohenesche, Nicolas [Institut fuer Kernphysik, Universitaet Mainz, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany); Collaboration: COMPASS Collaboration
2014-07-01
Quark fragmentation functions (FF) D{sub q}{sup h}(z,Q{sup 2}) describe final-state hadronization of quarks q into hadrons h. The FFs can be extracted from hadron multiplicities produced in semi-inclusive deep inelastic scattering. The COMPASS collaboration has recently measured charged hadron multiplicities for identified pions and kaons using a 160 GeV/c muon beam impinging on an iso-scalar target. The data cover a large kinematical range and provide an important input for global QCD analyses of world data at NLO, aiming at the determination of FFs in particular in the strange quark sector. The newest results from COMPASS on pion and kaon multiplicities will be presented.
Hadronic production of glueballs
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1983-01-01
Local Gauge Invariance of SU(3)/sub c/ and color confinement would require that the only hadrons in the world be glueballs. However, when we add the quarks and obtain QCD it is experimentally clear that quark built states mask the expected glueballs. Thus discovery of glueballs is essential for the viability of QCD. Papers presented at the 1983 International Europhysics Conference on High Energy Physics on the hadronic production of glueballs and searches for glueballs are reviewed
Banfi, Andrea
2016-01-01
Jet physics is an incredibly rich subject detailing the narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. This book is a general overview of jet physics for scientists not directly involved in the field. It presents the basic experimental and theoretical problems arising when dealing with jets, and describing the solutions proposed in recent years.
Hadronization in nuclear matter
International Nuclear Information System (INIS)
Anton, G.; Blok, H.P.; Boudard, A.; Kopeliovich, B.
1993-01-01
The investigation of the space time structure of quark propagation and hadronization is proposed by studying particle production in deep-inelastic scattering of electrons from nucleons and nuclei with high statistics. A 15 to 30 GeV electron beam impinging on targets of hydrogen, deuterium, helium, carbon and lead is planned to be used and the final state hadrons are to be detected in a large solid angle device. (authors). 48 refs., 13 figs., 4 tabs
International Nuclear Information System (INIS)
Martin, F.
1981-03-01
The x dependence of hadron structure functions is investigated. If quarks can exist in very low mass states (10 MeV for d and u quarks) the pion structure function is predicted to behave like (1-x) and not (1-x) 2 in a x-region around 1. Relativistic and non-relativistic quark bound state pictures of hadrons are considered together with their relation with the Q 2 evolution of structure functions. Good agreement with data is in general obtained
International Nuclear Information System (INIS)
Greenberg, O.W.; Nelson, C.A.
1977-01-01
The evidence for a three-valued 'color' degree of freedom in hadron physics is reviewed. The structure of color models is discussed. Consequences of color models for elementary particle physics are discussed, including saturation properties of hadronic states, π 0 →2γ and related decays, leptoproduction, and lepton pair annihilation. Signatures are given which distinguish theories with isolated colored particles from those in which color is permanently bound. (Auth.)
Rapidity and multiplicity correlations in high energy hadronic collisions
International Nuclear Information System (INIS)
Heiselberg, H.
1993-01-01
Rapidity and multiplicity correlations of particle production in high energy hadronic collisions are studied. A simple model including short range correlations in rapidity due to clustering and long range correlations due to energy conservation is able to describe the two-body correlation functions well hadron-nucleon collisions around lab energies of 250 GeV. In this model fractional moments are calculated and compared to data. The strong rise of the factorial moments in rapidity intervals by size δy∝1 can be explained by long and short range correlation alone whereas the factorial moments approach a constant value at very small δy due to lack of correlations also in agreement with experiment. There is therefore no need for introducing intermittency in the particle production in hadronic collisions at these energies. (orig.)
Two-body density matrix for closed s-d shell nuclei
International Nuclear Information System (INIS)
Dimitrova, S.S.; Kadrev, D.N.; Antonov, A.N.; Stoitsov, M.V.
2000-01-01
The two-body density matrix for 4 He, 16 O and 40 Ca within the Low-order approximation of the Jastrow correlation method is considered. Closed analytical expressions for the two-body density matrix, the center of mass and relative local densities and momentum distributions are presented. The effects of the short-range correlations on the two-body nuclear characteristics are investigated. (orig.)
Hadron physics and transfinite set theory
International Nuclear Information System (INIS)
Augenstein, B.W.
1984-01-01
Known results in transfinite set theory appear to anticipate many aspects of modern particle physics. Extensive and powerful analogies exist between the very curious theorems on ''paradoxical'' decompositions in transfinite set theory, and hadron physics with its underlying quark theory. The phenomenon of quark confinement is an example of a topic with a natural explanation via the analogies. Further, every observed strong interaction hadron reaction can be envisaged as a paradoxical decomposition or sequence of paradoxical decompositions. The essential role of non-Abelian groups in both hadron physics and paradoxical decompositions is one mathematical link connecting these two areas. The analogies suggest critical roles in physics for transfinite set theory and nonmeasurable sets. (author)
Evidences for two scales in hadrons
International Nuclear Information System (INIS)
Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan; Povh, B.
2007-01-01
Some unusual features observed in hadronic collisions at high energies can be understood assuming that gluons in hadrons are located within small spots occupying only about 10% of the hadrons' area. Such a conjecture about the presence of two scales in hadrons helps to explain the following: why diffractive gluon radiation is so suppressed; why the triple-Pomeron coupling shows no t dependence; why total hadronic cross sections rise so slowly with energy; why diffraction cones shrink so slowly, and why α P ' R ' ; why the transition from hard to soft regimes in the structure functions occurs at rather large Q 2 ; why the observed Cronin effect at collider energies is so weak; why hard reactions sensitive to primordial parton motion (direct photon, Drell-Yan dileptons, heavy flavors, back-to-back dihadrons, seagull effect, etc.) demand such a large transverse momenta of the projectile partons, which is not explained by next-to-leading order calculations; why the onset of nuclear shadowing for gluons is so delayed compared to quarks; and why shadowing is so weak
Quark-model study of the hadron structure and the hadron-hadron interaction
International Nuclear Information System (INIS)
Valcarce, A; Caramés, T F; Vijande, J; Garcilazo, H
2011-01-01
Recent results of hadron spectroscopy and hadron-hadron interaction within a quark model framework are reviewed. Higher order Fock space components are considered based on new experimental data on low-energy hadron phenomenology. The purpose of this study is to obtain a coherent description of the low-energy hadron phenomenology to constrain QCD phenomenological models and try to learn about low-energy realizations of the theory.
Artificial Neural Networks For Hadron Hadron Cross-sections
International Nuclear Information System (INIS)
ELMashad, M.; ELBakry, M.Y.; Tantawy, M.; Habashy, D.M.
2011-01-01
In recent years artificial neural networks (ANN ) have emerged as a mature and viable framework with many applications in various areas. Artificial neural networks theory is sometimes used to refer to a branch of computational science that uses neural networks as models to either simulate or analyze complex phenomena and/or study the principles of operation of neural networks analytically. In this work a model of hadron- hadron collision using the ANN technique is present, the hadron- hadron based ANN model calculates the cross sections of hadron- hadron collision. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness
2009-01-01
The CERN Dragon Boat team – the Hadron Dragons – achieved a fantastic result at the "Paddle for Cancer" Dragon Boat Festival at Lac de Joux on 6 September. CERN Hadron Dragons heading for the start line.Under blue skies and on a clear lake, the Hadron Dragons won 2nd place in a hard-fought final, following top times in the previous heats. In a close and dramatic race – neck-and-neck until the final 50 metres – the local Lac-de-Joux team managed to inch ahead at the last moment. The Hadron Dragons were delighted to take part in this festival. No one would turn down a day out in such a friendly and fun atmosphere, but the Dragons were also giving their support to cancer awareness and fund-raising in association with ESCA (English-Speaking Cancer Association of Geneva). Riding on their great success in recent competitions, the Hadron Dragons plan to enter the last Dragon Boat festival of 2009 in Annecy on 17-18 October. This will coincide with t...
Energy changes in massive target-nuclei, induced by high-energy hadronic projectiles
International Nuclear Information System (INIS)
Strugalski, Z.; Strugalska-Gola, E.
1997-01-01
Now it turned out that it is real to estimate by experiments the energy changes in massive target-nuclei, induced by high-energy hadronic projectiles. The subject matter in this work is to present results of the quantitative estimations of the energy changes in intranuclear matter at various stages of hadron-nucleus collision reactions. Appropriate formulas are proposed for the energy balances - as following from the experimentally based mechanism of the hadron-nucleus collision reactions
Non-equilibrium dilepton production in hadronic transport approaches
International Nuclear Information System (INIS)
Staudenmaier, Jan; Weil, Janus; Petersen, Hannah
2017-01-01
In this work the non-equilibrium dilepton production from a hadronic transport approach (SMASH) is presented. The dilepton emission from the hadronic stage is of interest for current HADES results measured at GSI in the beam energy range from 1.25 - 3.5 GeV. Also at high collision energies (RHIC/LHC) the later dilute stages of the reaction are dominated by hadronic dynamics. The newly developed hadronic transport approach called SMASH (=Simulating Many Accelerated Strongly-interacting Hadrons) is introduced first. After explaining the basic interaction mechanisms, a comparison of elementary cross sections for pion production to experimental data is shown. The dilepton production within SMASH is explained in detail. The main contribution to the dilepton spectra in the low energy regime of GSI/FAIR/RHIC-BES originates from resonance decays. Results of the dilepton production with SMASH such as invariant mass spectra are shown. (paper)
Mechanisms of High Energy Hadron-Nucleus and Nucleus-Nucleus Collision Processes
International Nuclear Information System (INIS)
Strugalski, Z.
1994-01-01
Mechanisms of high energy hadron-nucleus and nucleus-nucleus collision processes are depicted qualitatively, as prompted experimentally. In hadron-nucleus collisions the interaction of the incident hadron in intranuclear matter is localized in small cylindrical volume, with the radius as large as the strong interaction range is, centered on the hadron course in the nucleus. The nucleon emission is induced by the hadron in its passing through the nucleus; particles are produced via intermediate objects produced in 2 → 2 endoergic reactions of the hadron and its successors with downstream nucleons. In nucleus-nucleus collisions, the outcome of the reaction appears as the composition of statistically independent hadron-nucleus collision outcomes at various impact parameters. Observable effects supporting such mechanisms are discussed. 51 refs
Novel Perspectives for Hadron Physics
International Nuclear Information System (INIS)
Brodsky, Stanley
2012-01-01
I discuss several novel and unexpected aspects of quantum chromodynamics. These include: (a) the nonperturbative origin of intrinsic strange, charm and bottom quarks in the nucleon at large x; the breakdown of pQCD factorization theorems due to the lensing effects of initial- and final-state interactions; (b) important corrections to pQCD scaling for inclusive reactions due to processes in which hadrons are created at high transverse momentum directly in the hard processes and their relation to the baryon anomaly in high-centrality heavy-ion collisions; and (c) the nonuniversality of quark distributions in nuclei. I also discuss some novel theoretical perspectives in QCD: (a) light-front holography - a relativistic color-confining first approximation to QCD based on the AdS/CFT correspondence principle; (b) the principle of maximum conformality - a method which determines the renormalization scale at finite order in perturbation theory yielding scheme independent results; (c) the replacement of quark and gluon vacuum condensates by 'in-hadron condensates' and how this helps to resolve the conflict between QCD vacuum and the cosmological constant.
Novel Perspectives for Hadron Physics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC
2012-03-09
I discuss several novel and unexpected aspects of quantum chromodynamics. These include: (a) the nonperturbative origin of intrinsic strange, charm and bottom quarks in the nucleon at large x; the breakdown of pQCD factorization theorems due to the lensing effects of initial- and final-state interactions; (b) important corrections to pQCD scaling for inclusive reactions due to processes in which hadrons are created at high transverse momentum directly in the hard processes and their relation to the baryon anomaly in high-centrality heavy-ion collisions; and (c) the nonuniversality of quark distributions in nuclei. I also discuss some novel theoretical perspectives in QCD: (a) light-front holography - a relativistic color-confining first approximation to QCD based on the AdS/CFT correspondence principle; (b) the principle of maximum conformality - a method which determines the renormalization scale at finite order in perturbation theory yielding scheme independent results; (c) the replacement of quark and gluon vacuum condensates by 'in-hadron condensates' and how this helps to resolve the conflict between QCD vacuum and the cosmological constant.
Palano, Antimo
2018-01-01
The LHCb experiment is designed to study the properties and decays of heavy ﬂavored hadrons produced in pp collisions at the LHC. The data collected in the LHC Run I enables precision spectroscopy studies of beauty and charm hadrons. The latest results on spectroscopy of conventional and exotic hadrons are reviewed. In particular the discovery of the ﬁrst charmonium pentaquark states in the $J/\\psi p$ system, the possible existence of four-quark states decaying to $J/\\psi \\phi$ and the conﬁrmation of resonant nature of the $Z_c(4430)^−$ mesonic state are discussed. In the sector of charmed baryons, the observation of ﬁve new $\\Omega_c$ states, the observation of the $\\Xi^+_{cc}$ and the study of charmed baryons decaying to $D^0 p$ are presented.
Mallik, Samirnath
2016-01-01
High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal ...
International Nuclear Information System (INIS)
Chela-Flores, J.
1981-08-01
A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)
Hadrons in dense and/or hot hadronic matter
International Nuclear Information System (INIS)
Bertrand, T.; Chanfray, G.; Davesne, D.; Delorme, J.; Ericson, M.; Marteau, J.
1998-01-01
Medium effects on various properties of hadrons have been considered. We have studied the mixing between axial and vector currents which accompanies the partial restoration of chiral symmetry. We have improved in several ways our interpretation of the modifications of the ρ mass spectrum in the CERN heavy ion experiment CERES. Still in the domain of relativistic heavy ion collisions, a Boltzmann transport equation has been solved with the aim of incorporating medium effects on the pion spectra. More formally, studies have been conducted with promising results on non perturbative methods in field theory. Other topics cover nuclear effects in the atmospheric neutrino problem and a semi-classical approach to exclusive (e,e'p) reactions. (authors)
International Nuclear Information System (INIS)
Quigg, C.
1982-11-01
The subject of hadron jet studies, to judge by the work presented at this workshop, is a maturing field which is still gathering steam. The very detailed work being done in lepton-lepton and lepton-hadron collisions, the second-generation measurements being carried out at Fermilab, the CERN SPS, and the ISR, and the very high energy hard scatterings being observed at the CERN Collider all show enormous promise for increased understanding. Perhaps we shall yet reach that long-sought nirvana in which high-p/sub perpendicular/ collisions become truly simple
International Nuclear Information System (INIS)
Ogava, S.; Savada, S.; Nakagava, M.
1983-01-01
Composite models of hadrons are considered. The main attention is paid to the Sakata, S model. In the framework of the model it is presupposed that proton, neutron and Λ particle are the fundamental particles. Theoretical studies of unknown fundamental constituents of a substance have led to the creation of the quark model. In the framework of the quark model using the theory of SU(6)-symmetry the classification of mesons and baryons is considered. Using the quark model relations between hadron masses, their spins and electromagnetic properties are explained. The problem of three-colour model with many flavours is briefly presented
High intensity hadron accelerators
International Nuclear Information System (INIS)
Teng, L.C.
1989-05-01
This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics
International Nuclear Information System (INIS)
Anon.
1987-01-01
'Hadron facilities' – high intensity (typically a hundred microamps), medium energy (30-60 GeV) machines producing intense secondary beams of pions, kaons, etc., are being widely touted as a profitable research avenue to supplement what is learned through the thrust for higher and higher energies. This interest was reflected at an International Workshop on Hadron Facility Technology, held in Santa Fe, New Mexico. As well as invited talks describing the various projects being pushed in the US, Europe and Japan, the meeting included working groups covering linacs, beam dynamics, hardware, radiofrequency, polarized beams and experimental facilities
Large transverse momenta phenomena in hadron-hadron collisions
International Nuclear Information System (INIS)
McCubbin, N.A.
1981-05-01
The production of particles with large transverse momentum in high energy hadron-hadron collisions is reviewed. The emphasis is placed on the experimental results. These results are discussed in terms of present theoretical ideas on interactions between hadronic constituents, but no attempt is made to review the theoretical work in a comprehensive manner. (author)
Quark models in hadron physics
International Nuclear Information System (INIS)
Phatak, Shashikant C.
2007-01-01
In this talk, we review the role played by the quark models in the study of interaction of strong, weak and electromagnetic probes with hadrons at intermediate and high momentum transfers. By hadrons, we mean individual nucleons as well as nuclei. We argue that at these momentum transfers, the structure of hadrons plays an important role. The hadron structure of the hadrons is because of the underlying quark structure of hadrons and therefore the quark models play an important role in determining the hadron structure. Further, the properties of hadrons are likely to change when these are placed in nuclear medium and this change should arise from the underlying quark structure. We shall consider some quark models to look into these aspects. (author)
Measurement of $b$-hadron masses
Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Constantin, F; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Gracianiv Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, A C; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Torr, N; Tournefier, E; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Voss, H; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A
2012-01-01
Measurements of $b$-hadron masses are performed with the exclusive decay modes $B^+\\to J/\\psi K^+$, $B^0 \\to J/\\psi K^{*0}$, $B^0 \\to J/\\psi K^0_{\\rm S}$, $B_s^0 \\to J/\\psi\\phi$ and $\\Lambda^0_b\\to J/\\psi\\Lambda$ using an integrated luminosity of 35 pb$^{-1}$ collected in $pp$ collisions at a centre-of-mass energy of 7 TeV by the LHCb experiment. The momentum scale is calibrated with $J/\\psi \\to \\mu^+\\mu^-$ decays and verified to be known to a relative precision of $2 \\times 10^{-4}$ using other two-body decays. The results are more precise than previous measurements, particularly in the case of the $B^0_s$ and $\\Lambda^0_b$ masses.
Virtual reality: electromagnetic decays and new hadrons
International Nuclear Information System (INIS)
Landsberg, L.G.
1998-01-01
The electromagnetic Coulomb processes and their application to study of radiative decays of hadrons and to the search for some exotic states are discussed. The Coulomb processes h + (Z, A) → (Z, A) involving collisions with virtual photons are photoproduction reactions on primary hadrons h. With pion, kaon or hyperon beams it is possible to study photoproduction on unstable targets (π, Κ, Υ). The results of several experiments for direct study of rare radiation decays of mesons are presented. The main features of the Coulomb production and coherent background reactions governed by strong interactions are considered. The main results of the Primakoff production study are summarized with some recent data in the SELEX experiment at E L = 600 eV obtained by means of Fermilab Tevatron. The SPHINX experiment allows to obtain new information on exotic baryons and other states [ru
Hadron Therapy for Cancer Treatment
International Nuclear Information System (INIS)
Lennox, Arlene
2003-01-01
The biological and physical rationale for hadron therapy is well understood by the research community, but hadron therapy is not well established in mainstream medicine. This talk will describe the biological advantage of neutron therapy and the dose distribution advantage of proton therapy, followed by a discussion of the challenges to be met before hadron therapy can play a significant role in treating cancer. A proposal for a new research-oriented hadron clinic will be presented.
Hadronization of dense partonic matter
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2006-12-15
The parton recombination model has turned out to be a valuable tool to describe hadronization in high-energy heavy-ion collisions. I review the model and revisit recent progress in our understanding of hadron correlations. I also discuss higher Fock states in the hadrons, possible violations of the elliptic flow scaling and recombination effects in more dilute systems.
International Nuclear Information System (INIS)
Filho, Victo S.; Tomio, Lauro; Frederico, T.; Gammal, Arnaldo
2002-01-01
The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive two-body interaction is numerically investigated, considering wide variations of the nonconservative parameters, related to atomic feeding and dissipation. We study the possible limitations of the mean-field description for an atomic condensate with attractive two-body interaction, by defining the parameter regions, where stable or unstable formation can be found. The present study is useful and timely considering the possibility of large variations of attractive two-body scattering lengths, which may be feasible in recent experiments
Two-body tensor interactions in the nuclear matter response function
International Nuclear Information System (INIS)
Besprosvany, J.
1997-01-01
The inclusive scattering response of nuclear matter is studied in the regime of large momentum transfer q, and around the quasielastic peak. We review interaction corrections to free propagation as embodied in the impulse approximation. Calculations of the two-body and many-body corrections within an eikonal approach are presented. These use an approximated two-body density matrix which takes account of spin and isospin degrees of freedom. Both calculations give similar and sizable corrections at q = 550 MeV and reproduce data extrapolated from finite nuclei; this indicates the relevance of two-body tensor contributions in this regime. (Author)
Energy Technology Data Exchange (ETDEWEB)
Pondrom, L.
1991-10-03
An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.
Bilki, Burak
2018-03-01
The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...
Eytier, Jean-Louis
2009-01-01
Qu'aurait-il proposé comme solutions face aux déboires du LHC, le grand collisionneur du hadrons du CERN, arrêté peu après son démarrage à l'automne 2008? Lucien Edmond André Montanet était un des grands de la physique des particules. (2 pages)
Indian Academy of Sciences (India)
manifestly the symmetries of the underlying theory of strong interactions, i.e. ..... Note that such a picture, in which the self-energies of hadrons are generated by ..... An experimental verification of this prediction would be a major step forward in.
International Nuclear Information System (INIS)
Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.
1977-01-01
The analytical treatment of hadronic decay cascades within the framework of the statistical bootstrap model is demonstrated on the basis of a simple variant. Selected problems for a more comprehensive formulation of the model such as angular momentum conservation, quantum statistical effects, and the immediate applicability to particle production processes at high energies are discussed in detail
Hirstius, Andreas
2008-01-01
Plans for dealing with the torrent of data from the Large Hadron Collider's detectors have made the CERN particle-phycis lab, yet again, a pioneer in computing as well as physics. The author describes the challenges of processing and storing data in the age of petabyt science. (4 pages)
2007-01-01
"In the spring 2008, the Large Hadron Collider (LHC) machine at CERN (the European Particle Physics laboratory) will be switched on for the first time. The huge machine is housed in a circular tunnel, 27 km long, excavated deep under the French-Swiss border near Geneva." (1,5 page)
International Nuclear Information System (INIS)
Pondrom, L.
1991-01-01
An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs
Nuclei transmutation by collisions with fast hadrons and nuclei
International Nuclear Information System (INIS)
Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.
1998-01-01
Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process
International Nuclear Information System (INIS)
Carruthers, P.; Stottman, D.
1986-01-01
This book contains papers given at a conference on hadronic matter in collision. Some of the topics include the following: Nuclear Fragmentation; Nucleus-Nucleus Reactions; Phase Transformations; Hydrodynamics of Nuclear Matter; Hadron Hadronic Multi-Particle Production; and Bose Einstien Correlations
Backward emission in hadron-nucleus collisions
International Nuclear Information System (INIS)
Stelte, N.; Weiner, R.
1981-01-01
Backward emission of hadrons in reactions of the type: P + T → a + anything, where the projectile P is a hadron, T a nuclear target and a a hadron or a light nucleus has been the subject of experimental investigation in the last decade in an energy range E starting in the hundred MeV region and extending up to 400 GeV projectile energy. The main interest in these reactions lies in the fact that they provide information about collective behavior of nucleons in nuclei (cumulative effect, i.e., the presence of secondary particles in a region of momentum space which cannot be populated by nucleon-nucleon interactions) although some authors have recently patronized this effect. In particular the consequences of nuclear limiting fragementation together with the cumulative effect can be used to obtain important information on transport properties and the equation of state of nuclear matter. Limiting fragmentation is a phenomenon discovered in the GeV region and applied to the reaction implies that in the high E limit two separate rapidity regions exist, one for the projectile and another for the target so that in each of the regions the inclusive cross section dsigma/dEd Ω becomes independent of the incoming energy. Here E and Ω refer to the kinetic energy and solid angle of the emitted particle
International Nuclear Information System (INIS)
Haberzettl, H.; Sandhas, W.
1981-01-01
Effective two-body equations for the four-body problem are derived within the general N-body theory of Alt, Grassberger, and Sandhas. In contrast to usual treatments, the final expressions do not require separable (2+2) subamplitudes but incorporate these exactly. All four-body amplitudes can be calculated from the solution of a single integral equation for the reaction (3+1)→(3+1). With single-term separable approximations for the two-particle and the (3+1) subsystem amplitudes the driving terms of the final equations are seen to reduce to those of the field-theoretical model by Fonseca and Shanley. Since our results are based on an exact and complete N-body theory, the investigation of subsystem reaction mechanisms is facilitated. As a consequence, we are led to a three-particle propagator which has the right pole behavior and includes exchange effects
Nuclear structure and reaction studies at medium energies
International Nuclear Information System (INIS)
Hoffmann, G.W.; Ray, R.L.
1990-10-01
This document constitutes the (1988--1991) technical progress report for the ongoing medium energy physics research program supported by the US Department of Energy through special Research Grant FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF), the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL), and at the Fermi National Accelerator Laboratory (FNAL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics;(2) provide unique, first-of-a-kind ''exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics
Hadron Spectroscopy with COMPASS – Newest Results
Directory of Open Access Journals (Sweden)
Nerling Frank
2012-12-01
Full Text Available The COMPASS experiment at the CERN SPS investigates the structure and spectrum of hadrons by scattering high energetic hadrons and polarised muons off various fixed targets. During the years 2002–2007, COMPASS focused on nucleon spin physics using 160 GeV/c polarised µ+ beams on polarised deuteron and proton targets, including measurements of the gluon contribution to the nucleon spin using longitudinal target polarisation as well as studies of transverse spin effects in the nucleon on a transversely polarised target. One major goal of the physics programme using hadron beams is the search for new states, in particular the search for JPC exotic states and glue-balls. COMPASS measures not only charged but also neutral final-state particles, allowing for investigation of new objects in different reactions and decay channels. In addition COMPASS can measure low-energy QCD constants like, e.g. the electromagnetic polarisability of the pion. Apart from a few days pilot run data taken in 2004 with a 190 GeV/c π− beam on a Pb target, showing a significant spin-exotic JPC = 1−+ resonance at around 1660 MeV/c2, COMPASS collected high statistics with negative and positive 190 GeV/c hadron beams on a proton (H2 and nuclear (Ni, Pb targets in 2008 and 2009. We give a selected overview of the newest results and discuss the status of various ongoing analyses.
Two-body similarity and its violation in tokamak edge plasmas
International Nuclear Information System (INIS)
Catto, P.J.; Knoll, D.A.; Krasheninnikov, S.I.
1996-01-01
Scaling laws found under the assumption that two-body collisions dominate can be effectively used to benchmark complex multi-dimensional codes dedicated to investigating tokamak edge plasmas. The applicability of such scaling laws to the interpretation of experimental data, however, is found to be restricted to the relatively low plasma densities ( 19 m -3 ) at which multistep processes, which break the two-body collision approximation, are unimportant. copyright 1996 American Institute of Physics
A solution of the Schrodinger equation with two-body correlations included
International Nuclear Information System (INIS)
Fabre de la Ripelle, M.
1984-01-01
A procedure for introducing the two-body correlations in the solution of the Schrodinger equation is described. The N-body Schrodinger equation for nucleons subject to two-(or many)-body N-N interaction has never been solved with accuracy except for few-body systems. Indeed it is difficult to take the two-body correlations generated by the interaction into account in the wave function
On The Dynamics and Design of a Two-body Wave Energy Converter
Liang, Changwei; Zuo, Lei
2016-09-01
A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.
Lavender, Gemma
2018-01-01
What is the universe made of? How did it start? This Manual tells the story of how physicists are seeking answers to these questions using the worlds largest particle smasher the Large Hadron Collider at the CERN laboratory on the Franco-Swiss border. Beginning with the first tentative steps taken to build the machine, the digestible text, supported by color photographs of the hardware involved, along with annotated schematic diagrams of the physics experiments, covers the particle accelerators greatest discoveries from both the perspective of the writer and the scientists who work there. The Large Hadron Collider Manual is a full, comprehensive guide to the most famous, record-breaking physics experiment in the world, which continues to capture the public imagination as it provides new insight into the fundamental laws of nature.
International Nuclear Information System (INIS)
Yamazaki, Toshimitsu
1990-01-01
The Japanese Hadron Project (JHP) is aimed at producing various kinds of unstable secondary beams based on high-intensity protons from a new accelerator complex. The 1 GeV protons, first produced from a 1 GeV linac, are transferred to a compressor/stretcher ring, where a sharply-pulsed beam or a stretched continuous beam will be produced. The pulsed beam will be used for a pulsed muon source (M arena) and a spallation neutron source (N arena). A part of the proton beam will be used to produce unstable nuclei, which will be accelerated to several MeV/nucleon (E arena). The purpose and impact of JHP will be described in view of future applications of hadronic beams to nuclear energy and material science. (author)
International Nuclear Information System (INIS)
Roser, T.
1994-01-01
There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5. 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future
International Nuclear Information System (INIS)
Roser, T.
1995-01-01
There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5, 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future. copyright 1995 American Institute of Physics
Juettner Fernandes, Bonnie
2014-01-01
What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.
International Nuclear Information System (INIS)
Krivoruchenko, M.I.
1985-01-01
In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model
Electromagnetic polarizabilities of hadrons
International Nuclear Information System (INIS)
Friar, J.L.
1988-01-01
Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.
2015-02-26
This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.
Keil, Eberhard
1998-01-01
Plans for future hadron colliders are presented, and accelerator physics and engineering aspects common to these machines are discussed. The Tevatron is presented first, starting with a summary of the achievements in Run IB which finished in 1995, followed by performance predictions for Run II which will start in 1999, and the TeV33 project, aiming for a peak luminosity $L ~ 1 (nbs)^-1$. The next machine is the Large Hadron Collider LHC at CERN, planned to come into operation in 2005. The last set of machines are Very Large Hadron Colliders which might be constructed after the LHC. Three variants are presented: Two machines with a beam energy of 50 TeV, and dipole fields of 1.8 and 12.6 T in the arcs, and a machine with 100 TeV and 12 T. The discussion of accelerator physics aspects includes the beam-beam effect, bunch spacing and parasitic collisions, and the crossing angle. The discussion of the engineering aspects covers synchrotron radiation and stored energy in the beams, the power in the debris of the p...
Hadronization, spin and lifetimes
International Nuclear Information System (INIS)
Grossman, Yuval; Nachshon, Itay
2008-01-01
Measurements of lifetimes can be done in two ways. For very short lived particles, the width can be measured. For long lived ones, the lifetime can be directly measured, for example, using a displaced vertex. Practically, the lifetime cannot be extracted for particles with intermediate lifetimes. We show that for such cases information about the lifetime can be extracted for heavy colored particles that can be produced with known polarization. For example, a t-like particle with intermediate lifetime hadronizes into a superposition of the lowest two hadronic states, T* and T (the equivalent of B* and B). Depolarization effects are governed by time scales that are much longer than the hadronization time scale, Λ QCD -1 . After a time of order 1/Δm, with Δm≡m(T*)-m(T), half of the initial polarization is lost. The polarization is totally lost after a time of order 1/Γ γ , with Γ γ = Γ(T* → Tγ). Thus, by comparing the initial and final polarization, we get information on the particle's lifetime.
Supersymmetry at hadron supercolliders
International Nuclear Information System (INIS)
Dzialo, D.L.
1989-01-01
At the next generation of hadron supercolliders, the proposed US Superconducting Supercollider (SSC) and the European Large Hadron Collider (LHC), protons will be collided at such high energy to allow the creation of new particles with masses greater those that have been previously created in the laboratory. One of the most important questions to be resolved at these accelerators is whether or not any supersymmetric extension of the Standard Model is manifest below the TeV scale. It is expected that the strongly-interacting supersymmetric particles, the gluinos and squarks, will be pair-produced in the most abundance there. Light gluinos primarily decay into quarks and the lightest supersymmetric particle, which is assumed to escape detection; this gives the classic supersymmetric signature of events with large missing momentum. It is known, however, that for gluinos of masses larger than just 100 GeV this process is no longer the preferred gluino decay channel. New signals must therefore be sought to either detect these particles, or to set meaningful lower mass limits. It is in this work that such new detection strategies for supersymmetry at hadron supercolliders are proposed. Gluino and squark production rates and decay channels are studied in a model-independent fashion over the entire theoretical mass range of interest. New experimental signatures are proposed and compared with sources of background over a wide region of the parameter space that characterizes different supersymmetric models
The role of hadron resonances in hot hadronic matter
Energy Technology Data Exchange (ETDEWEB)
Goity, Jose [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hampton Univ., Hampton, VA (United States)
2017-02-01
Hadron resonances can play a significant role in hot hadronic matter. Of particular interest for this workshop are the contributions of hyperon resonances. The question about how to quantify the effects of resonances is here addressed. In the framework of the hadron resonance gas, the chemically equilibrated case, relevant in the context of lattice QCD calculations, and the chemically frozen case relevant in heavy ion collisions are discussed.
Passages of high energy hadrons through atomic nuclei
International Nuclear Information System (INIS)
Strugalska-Gola, E.; Strugalski, Z.
2001-01-01
The subject matter in this paper are descriptions of more important results of investigations of the intranuclear matter properties by means of hadronic probes (pionic, e.g.). The projectile-nucleus collisions occurred in liquid xenon in the 180 litre xenon bubble chamber. The chamber in the experiments was practically a total 4π angle aperture for detection of the secondary products from the hadron-nucleus collision reactions. All the π +-0 mesons were practically registered with an efficiency near to 100 %. The hadron passages through nuclei (through layers of intranuclear matter) in their pure sort, when multiparticle creation does not occur, were observed. Conclusive information, obtained on the hadron passages, is presented here. It may be used for new nuclear power technology, in radioactive waste neutralization, in other works on intranuclear matter properties
Quark-Hadron Duality in Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Wally Melnitchouk; Rolf Ent; Cynthia Keppel
2004-08-01
The duality between partonic and hadronic descriptions of physical phenomena is one of the most remarkable features of strong interaction physics. A classic example of this is in electron-nucleon scattering, in which low-energy cross sections, when averaged over appropriate energy intervals, are found to exhibit the scaling behavior expected from perturbative QCD. We present a comprehensive review of data on structure functions in the resonance region, from which the global and local aspects of duality are quantified, including its flavor, spin and nuclear medium dependence. To interpret the experimental findings, we discuss various theoretical approaches which have been developed to understand the microscopic origins of quark-hadron duality in QCD. Examples from other reactions are used to place duality in a broader context, and future experimental and theoretical challenges are identified.
Theory of hadronic production of heavy quarks
International Nuclear Information System (INIS)
Peterson, C.
1981-07-01
Conventional theoretical predictions for hadronic production of heavy quarks (Q anti Q) are reviewed and confronted with data. Perturbative hard scattering predictions agree qualitatively well with hidden Q anti Q production (e.g., psi, chi, T) whereas for open Q anti Q-production (e.g., pp → Λ/sub c/ + X) additional mechanisms or inputs are needed to explain the forwardly produced Λ/sub c/ + at ISR. It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data. The theoretical foundations of the intrinsic charm hypotheses together with its consequences for lepton-induced reactions is discussed in some detail
Unraveling hadron structure with generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Andrei Belitsky; Anatoly Radyushkin
2004-10-01
The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.
Quantum chromodynamics and hadron jets
International Nuclear Information System (INIS)
Dokshitser, Y.L.; Dyakonov, D.I.
1979-07-01
These lectures are devoted to the description of the various properties of hard scattering processes with the participation of hadrons in the framework of Quantum Chromodynamics. We discuss in detail the validity and region of applicability of perturbation theory applied to hadron processes. Particular attention is paid to the question of the structure of quark and gluon jets produced in hard processes (as an example, e + e - annihilation into hadrons). In addition to giving a pedagogical review, we also present new results. (orig.)
Hadron collider physics at UCR
International Nuclear Information System (INIS)
Kernan, A.; Shen, B.C.
1997-01-01
This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e + -e - collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2γ at PEP and the OPAL detector at LEP, as well as efforts on hadron machines
Nuclear shape evolution starting from superdeformed state. Role of two-body collision and rotation
International Nuclear Information System (INIS)
Liu, Yu-xin; Sakata, Fumihiko
1999-01-01
With the nuclear density distribution being simulated by the Boltzmann Uehling-Uhlenbeck equation and Vlasov equation with several rotational frequencies, the time evolution of the quadrupole moment of nucleus 86 Zr starting with superdeformed shape is studied. The contribution of two-body collisions and the effects of collective rotation to the shape evolution is investigated. The numerical results indicate that the two-body collisions play a role of damping on the evolution from a superdeformed shape to a normal deformed one in a case without rotation. In a case of rotation with lower frequency, the two-body collisions accelerate the evolution process. A new role of the collective rotation to enhance the nuclear fission is proposed. (author)
Two-body loss rates for reactive collisions of cold atoms
Cop, C.; Walser, R.
2018-01-01
We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.
Relativistic two-body equation for one Dirac and one Duffin-Kemmer particle
International Nuclear Information System (INIS)
Krolikowski, W.
1983-01-01
A new relativistic two-body wave equation is proposed for one spin-1/2 and one spin-0 or spin-1 particle which, if isolated from each other, are described by the Dirac and the Duffin-Kemmer equation, respectively. For a static mutual interaction this equation splits into two equations: a two-body wave equation for one Dirac and one Klein-Gordon particle (which was introduced by the author previously) and a new two-body wave equation for one Dirac and one Proca particle. The proposed equation may be applied in particular to the quark-diquark system. In Appendix, however, an alternative approach is sketched, where the diquark is described as the point limit of a very close Breit system rather than a Duffin-Kemmer particle. (Author)
Generalized separable expansion method of the two-body and the three-body scattering amplitudes
International Nuclear Information System (INIS)
Oryu, S.; Ishihara, T.
1976-01-01
A systematic method is proposed for obtaining new N-rank separable amplitudes of the two-body and the three-body equations. First of all, the authors start from the Amado equation which is modified from the three-body Faddeev equation by using the two-body Yamaguchi potential for the nucleon-nucleon interaction. It is well known that the Amado equation can be integrated on the real axis because the kernel has a logarithmic cut on the real axis. However, a separable three-body form factor which is regular on the real axis except for the cut has been found. (Auth.)
Statistical methods for including two-body forces in large system calculations
International Nuclear Information System (INIS)
Grimes, S.M.
1980-07-01
Large systems of interacting particles are often treated by assuming that the effect on any one particle of the remaining N-1 may be approximated by an average potential. This approach reduces the problem to that of finding the bound-state solutions for a particle in a potential; statistical mechanics is then used to obtain the properties of the many-body system. In some physical systems this approach may not be acceptable, because the two-body force component cannot be treated in this one-body limit. A technique for incorporating two-body forces in such calculations in a more realistic fashion is described. 1 figure
Neutral weak-current two-body contributions in inclusive scattering from {sup 12}C
Energy Technology Data Exchange (ETDEWEB)
Lovato, Alessandro [ANL; Gandolfi, Stefano [LANL; Carlson, Joseph [LANL; Pieper, S. C. [ANL; Schiavilla, Rocco [JLAB, ODU
2014-05-01
An {\\it ab initio} calculation of the sum rules of the neutral weak response functions in $^{12}$C is reported, based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic currents, consisting of one- and two-body terms. We find that the sum rules of the response functions associated with the longitudinal and transverse components of the (space-like) neutral current are largest and that a significant portion ($\\simeq 30$\\%) of the calculated strength is due to two-body terms. This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data on nuclei.
One- and two-body dissipation in peripheral heavy ion collisions
International Nuclear Information System (INIS)
Bartel, J.; Feldmeier, H.
1980-01-01
For peripheral collisions of heavy ions we solve the man-body Schroedinger equation in second order time-dependent perturbation theory. The two nuclei interact via a two-body interaction of finite range. With controllable approximations we get to a sensible comparison between 1p-1h excitations caused by the coherent Hartree part and direct 2p-2h excitations both created by the same two-body interaction. The results of the calculation show that for peripheral collisions almost all excitation energy originates from one-body dissipation. Furthermore we encounter large virtual excitations during the collision indicating a non Markovian process. (orig.)
Vector and tensor meson production in quasi-two-body final states using the dual fermion model
International Nuclear Information System (INIS)
Becker, L.; Matthaeus, E.; Weigt, G.
1976-01-01
Phenomenological dual fermion amplitudes are obtained by using Neveu-Schwarz-Ramond model as a guide to incorporate half-integer spin. The model relates the production mechanism of different resonances lying on the same degenerate Regge trajectory, thus allowing a simultaneous description of vector and tensor meson production. A characteristic feature of the amplitudes is their non-evasive coupling structure. Predictions of the model for rho 0 -f-g 0 , ω-A 2 - and anti K*(890)-anti K*(1420) production in quasi-two-body reactions are compared with experimental data. The differential cross sections for natural and unnatural spin-parity t-channel exchanges as well as their contributions to different helicities of the produced resonances are given. In particular, new properties arise from the non-evasive pion exchange. Reasonable agreement with the data is found. (Auth.)
Vector and tensor meson production in quasi-two-body final states using the dual fermion model
International Nuclear Information System (INIS)
Becker, L.; Matthaeus, E.; Weigt, G.
1975-01-01
Phenomenological dual fermion amplitudes are obtained by using the Neveu-Schwarz-Ramond model as a guide to incorporate half-integer spin. The model relates the production mechanism of different resonances lying on the same degenerated Regge trajectory, thus allowing a simultaneous description of vector and tensor meson production. A characteristic feature of the amplitudes is their non-evasive coupling structure. Predictions of the model for rho 0 - f - g 0 , ω - A 2 - and anti K-890 and anti K-1420 resonances production in quasi-two-body reactions are compared with experimental data. The differential cross sections for natural and unnatural spin-parity t-channel exchanges as well as their contributions to different helicities of the produced resonances are given. In particular, new properties arise from the non-evasive pion exchange. Reasonable agreement with the data is found. (author)
International Nuclear Information System (INIS)
Faccini, R.
2010-01-01
In the past few years the field of hadron spectroscopy has seen renewed interest due to the publication, initially mostly from B-Factories, of evidences of states that do not match regular spectroscopy, but are rather candidates for bound states with additional quarks or gluons (four quarks for tetraquarks and molecules and two quarks and gluons for hybrids). A huge effort in understanding the nature of this new states and in building a new spectroscopy is ongoing. This paper reviews the experimental and theoretical state of the art on heavy quarkonium exotic spectroscopy, with particular attention on the steps towards a global picture.
International Nuclear Information System (INIS)
Dremin, I.M.
1981-01-01
The process of the coherent production of hadrons analogous to Cherenkov radiation of photons is considered. Its appearence and qualitative treatment are possible now because it is known from experiment that the real part of the πp (and pp) forward elastic scattering amplitude is positive at high energies. The threshold behaviour of the process as well as very typical angular and psub(T)-distributions where psub(t)-transverse momentum corresponding to the ring structure of the target diagram at rather large angles and to high-psub(T) jet production are emphasized [ru
International Nuclear Information System (INIS)
Ferreira, P.L.
1984-01-01
An overview of the current phenomenological models of hadron structure, whose theoretical basis is the Quantum Chromodynamics (QCD), is presented. A short introduction to the QCD permits to focalize the relevant properties which are attached to those models. Following, bag-like models (in particular, MIT bag and chiral extensions) and potential-like models among them the Karl and Isgur non-relativistic model and a semi-relativistic model, free of the Klein paradox, with equal scalar-vetorial mixture of confinement potential are shortly studied. Enphasis is given to the baryons, treated, basically, as three-quarks systems. (L.C.) [pt
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1989-01-01
This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)
Directory of Open Access Journals (Sweden)
Wada Masayuki
2012-11-01
Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.
Tsallis-Pareto like distributions in hadron-hadron collisions
International Nuclear Information System (INIS)
Barnafoeldi, G G; Uermoessy, K; Biro, T S
2011-01-01
Non-extensive thermodynamics is a novel approach in high energy physics. In high-energy heavy-ion, and especially in proton-proton collisions we are far from a canonical thermal state, described by the Boltzmann-Gibbs statistic. In these reactions low and intermediate transverse momentum spectra are extremely well reproduced by the Tsallis-Pareto distribution, but the physical origin of Tsallis parameters is still an unsettled question. Here, we analyze whether Tsallis-Pareto energy distribution do overlap with hadron spectra at high-pT. We fitted data, measured in proton-proton (proton-antiproton) collisions in wide center of mass energy range from 200 GeV RHIC up to 7 TeV LHC energies. Furthermore, our test is extended to an investigation of a possible √s-dependence of the power in the Tsallis-Pareto distribution, motivated by QCD evolution equations. We found that Tsallis-Pareto distributions fit well high-pT data, in the wide center of mass energy range. Deviance from the fits appears at p T > 20-30 GeV/c, especially on CDF data. Introducing a pT-scaling ansatz, the fits at low and intermediate transverse momenta still remain good, and the deviations tend to disappear at the highest-pT data.
Particle production in hadron--nucleus collisions above 10 GeV
International Nuclear Information System (INIS)
Busza, W.
1978-01-01
The reasons for interest in the observed phenomena in hadron reactions above 10 GeV are considered. The latest data are not reviewed except for comparison with theoretical models. Among the topics considered are total or absorption cross sections, low average multiplicity, nuclear fragment distributions, implications for the nature of hadrons and their interactions, rapidity distributions, and multiple production energy dependence. 38 references
Confinement and hadron-hadron interactions by general relativistic methods
Recami, Erasmo
By postulating covariance of physical laws under global dilations, one can describe gravitational and strong interactions in a unified way. Namely, in terms of the new discrete dilational degree of freedom, our cosmos and hadrons can be regarded as finite, similar systems. And a discrete hierarchy of finite ``universes'' may be defined, which are governed by fields with strengths inversally proportional to their radii; in each universe an Equivalence Principle holds, so that the relevant field can be there geometrized. Scaled-down Einstein equations -with cosmological term- are assumed to hold inside hadrons (= strong micro-cosmoses); and they yield in a natural way classical confinement, as well as ``asymptotic freedom'', of the hadron constituents. In other words, the association of strong micro-universes of Friedmann type with hadrons (i.e., applying the methods of General Relativity to subnuclear particle physics) allows avoiding recourse to phenomenological models such as the Bag Model. Inside hadrons we have to deal with a tensorial field (= strong gravity), and hadron constituents are supposed to exchange spin-2 ``gluons''. Our approach allows us also to write down a tensorial, bi-scale field theory of hadron-hadron interactions, based on modified Einstein-type equations here proposed for strong interactions in our space. We obtain in particular: (i) the correct Yukawa behaviour of the strong scalar potential at the static limit and for r>~l fm; (ii) the value of hadron radii. As a byproduct, we derive a whole ``numerology'', connecting our gravitational cosmos with the strong micro-cosmoses (hadrons), such that it does imply no variation of G with the epoch. Finally, since a structute of the ``micro-universe'' type seems to be characteristic even of leptons, a hope for the future is including also weak interactions in our classical unification of the fundamental forces.
International Nuclear Information System (INIS)
Olsen, S.L.
2014-01-01
QCD-motivated models for hadrons predict an assortment of "exotic" hadrons that have structures that are more complex than the quark-antiquark mesons and three-quark baryons of the original quark-parton model. These include pentaquark baryons, the six-quark H-dibaryon, and tetraquark and glueball mesons. Despite extensive experimental searches, no unambiguous candidates for any of these exotic configurations have yet to be identified. On the other hand, a number of meson states, one that seems to be a proton-antiproton bound state, and others that contain either charmed-anticharmed quark pairs or bottom-antibottom quark pairs, have been recently discovered that neither fit into the quark-antiquark meson picture nor match the expected properties of the QCD-inspired exotics. Here I briefly review results from a recent search for the H-dibaryon, and discuss some properties of the newly discovered states –the so-called XYZ mesons– and compare them with expectations for conventional quark-antiquark mesons and the predicted QCD-exotic states. (author)
International Nuclear Information System (INIS)
Cahill, R.T.
1992-01-01
A review is given of progress in deriving the effective action for hadronic physics, S[π, ρ, ω, .., anti N, N, ..], from the fundamental defining action of QCD, S[anti q, q, A μ a ]. This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling. (orig.)
International Nuclear Information System (INIS)
Dzhelyadin, R.I.
2002-01-01
The Hadron Calorimeter (HCAL) is designed for the LHCb experiment. The main purpose of the detector is to provide data for the L0 hadron trigger. The HCAL is designed as consisting of two symmetric movable parts of about 500 ton in total getting in touch in operation position without non-instrumented zones. The lateral dimensions of an active area are X=8.4 m width, Y=6.8 m height, and is distanced from the interaction point at Z=13.33 m. Both halves are assembled from stacked up modules. An internal structure consisting of thin iron plates interspaced with scintillating tiles has been chosen. Attention is paid to optimize the detector according to the requirements of the experiment, reducing the spending needed for its construction. Different construction technologies are being discussed. The calorimeter properties have been extensively studied with a variety of prototype on the accelerator beam. The calibration with a radioactive source and module-0 construction experience is discussed
Simple realization of the Fredkin gate using a series of two-body operators
International Nuclear Information System (INIS)
Chau, H.F.; Wilczek, F.
1995-01-01
The Fredkin three-bit gate is universal for computational logic, and is reversible. Classically, it is impossible to do universal computation using reversible two-bit gates only. Here we construct the Fredkin gate using a combination of six two-body reversible (quantum) operators
Comments upon a bound state model for a two body system
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
We show that in classical mechanics, classical and relativistic quantum mechanics it is possible to replace the equation of the relative motion for a two-body bound system at rest by individual dynamical equations with correlated solutions. We compare the representations of a bound system in terms of the relative and individual coordinates and mention some of the observable differences. (author)
The time-dependent Hartree-Fock equations with Coulomb two-body interaction
International Nuclear Information System (INIS)
Chadam, J.M.; Glassey, R.T.
1975-06-01
The existence and uniqueness of global solutions to the Cauchy problem is proved in the space of ''smooth'' density matrices for the time-dependent Hartree-Fock equations describing the motion of finite Fermi systems interacting via a Coulomb two-body potential [fr
Effective linear two-body method for many-body problems in atomic and nuclear physics
International Nuclear Information System (INIS)
Kim, Y.E.; Zubarev, A.L.
2000-01-01
We present an equivalent linear two-body method for the many body problem, which is based on an approximate reduction of the many-body Schroedinger equation by the use of a variational principle. The method is applied to several problems in atomic and nuclear physics. (author)
Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory
Dick, Frank; Norbury, John W.
2009-01-01
The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…
78 FR 54756 - Extension of Expiration Dates for Two Body System Listings
2013-09-06
... Security Online, at http://www.socialsecurity.gov . SUPPLEMENTARY INFORMATION: Background We use the... SOCIAL SECURITY ADMINISTRATION 20 CFR Part 404 [Docket No. SSA-2013-0039] RIN 0960-AH60 Extension of Expiration Dates for Two Body System Listings AGENCY: Social Security Administration. ACTION...
Universal algorithms and programs for calculating the motion parameters in the two-body problem
Bakhshiyan, B. T.; Sukhanov, A. A.
1979-01-01
The algorithms and FORTRAN programs for computing positions and velocities, orbital elements and first and second partial derivatives in the two-body problem are presented. The algorithms are applicable for any value of eccentricity and are convenient for computing various navigation parameters.
Hadron Correlations and Parton Recombination
Energy Technology Data Exchange (ETDEWEB)
Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu
2007-02-15
Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.
Quarkonium production in hadronic collisions
International Nuclear Information System (INIS)
Gavai, R.; Schuler, G.A.; Sridhar, K.
1995-01-01
We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies
Hadron induced leptons and photons
International Nuclear Information System (INIS)
Cronin, J.W.
1977-01-01
A review of direct production of leptons and photons in hadron-hadron collisions is presented. Production of lepton pairs with large mass is well accounted for by the Drell-Yan process. The origin of direct single leptons is principally due to the production of lepton pairs. A dominant source of lepton pairs is at low effective mass, m [de
Current Status of Exotic Hadrons
International Nuclear Information System (INIS)
Saeed, M.A.; Ahmed, Maqsood; Fazal-e-Aleem
2005-01-01
Physics of exotic hadrons is in the limelight these days. The models for these baryons are discussed as well as their production and decay processes and methods of their identification. The results of recent experiments in this field are presented, in which some unusual states are observed. These states are candidates for exotic hadrons
International Nuclear Information System (INIS)
Migdal, A.B.; Khokhlachev, S.B.; Borue, V.Yu.
1989-01-01
The hadron is considered as a stringlike gluon drop with a quark and antiquark near the ends of the 'string' for a meson and with the antiquark replaced by a diquark for a baryon. The softer 'string' modes are the rotations and the longitudinal vibrations. Quantization of these modes enables to describe the hadron spectra. (orig.)
Spin structure of hadronization products
International Nuclear Information System (INIS)
Clavelli, L.
1979-03-01
We point out that the hypothesis of soft hadronization together with Lorentz invariance strongly constrain the hadronization process ine + e - annihilation. A final stage jet hypothesis is made which satisfies these constraints. The resulting picture leads to testable predictions not obtainable from perturbative QCD. (orig.) [de
Non-perturbative inputs for gluon distributions in the hadrons
Energy Technology Data Exchange (ETDEWEB)
Ermolaev, B.I. [Ioffe Physico-Technical Institute, Saint Petersburg (Russian Federation); Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation)
2017-03-15
Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K{sub T}-and collinear factorizations. (orig.)
Non-perturbative inputs for gluon distributions in the hadrons
International Nuclear Information System (INIS)
Ermolaev, B.I.; Troyan, S.I.
2017-01-01
Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations. (orig.)
Issues in light hadron spectroscopy
International Nuclear Information System (INIS)
Morgan, D.
1993-10-01
A high priority in light spectroscopy is to seek out and characterize various types of non-(QQ-bar) meson. The large quantity of new data now appearing will present a great opportunity. To identify the non-(QQ-bar) intruders one needs to know the regular (QQ-bar) pattern well; whole meson families thus become a target for close investigation. A powerful discovery strategy is to observe the same meson in a variety of reactions. Because mesons appear as resonances, other dynamics can distort the signal in a particular decay channel. Unitarity is the master principle for co-ordinating various sightings of the same resonance. Much of the new spectroscopic information in prospect will come from inferring two-body dynamics from three-body final states. Conventional methods of analysis via the isobar model use approximations to unitarity that need validation. Of all the meson families, the scalars should be a prime hunting ground for non-(QQ-bar)s. Even before the advent of the new results, some revisions of the 'official' classifications are urged. In particular, it is argued that the lightest broad I = 0 scalar is a very broad f o (1000). One unfinished task is to decide whether f o (975) and a o (980) are alike or different; several non-(QQ-bar) scalar scenarios hinge on this. To settle this, much better data on KK-bar channels is needed. (author)
Geant4 Hadronic Cascade Models and CMS Data Analysis : Computational Challenges in the LHC era
Heikkinen, Aatos
This work belongs to the field of computational high-energy physics (HEP). The key methods used in this thesis work to meet the challenges raised by the Large Hadron Collider (LHC) era experiments are object-orientation with software engineering, Monte Carlo simulation, the computer technology of clusters, and artificial neural networks. The first aspect discussed is the development of hadronic cascade models, used for the accurate simulation of medium-energy hadron-nucleus reactions, up to 10 GeV. These models are typically needed in hadronic calorimeter studies and in the estimation of radiation backgrounds. Various applications outside HEP include the medical field (such as hadron treatment simulations), space science (satellite shielding), and nuclear physics (spallation studies). Validation results are presented for several significant improvements released in Geant4 simulation tool, and the significance of the new models for computing in the Large Hadron Collider era is estimated. In particular, we es...
Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Huang, T.; Lepage, G.P.
1983-01-01
This chapter emphasizes the utility of a Fock state representation of the meson and baryon wave functions as a means not only to parametrize the effects of bound state dynamics in QCD phenomena, but also to interrelate exclusive, inclusive, and higher twist processes. Discusses hadronic wave functions in QCD, measures of hadronic wave functions (form factors of composite systems, form factors of mesons, the meson distribution amplitude); large momentum transfer exclusive processes (two-photon processes); deep inelastic lepton scattering; and the phenomenology of hadronic wave functions (measures of hadron wave functions, constraints on the pion and proton valence wave function, quark jet diffraction excitation, the ''unveiling'' of the hadronic wave function and intrinsic charm). Finds that the testing ground of perturbative QCD where rigorous, definitive tests of the theory can be made can now be extended throughout a large domain of large momentum transfer exclusive and inclusive lepton, photon, and hadron reactions
Theoretical studies in hadronic and nuclear physics
International Nuclear Information System (INIS)
Griffin, J.J.; Cohen, T.D.
1993-07-01
Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. The section on Hadrons in Nuclei reports research into the ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate decreases in nuclear matter, and this is responsible for the decrease of the nucleon's mass. The section on the Structure of Hadrons reports progress in understanding the structure of the nucleon. These results cover widely different approaches -- lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. Progress in Relativistic Nuclear Physics is reported on electromagnetic interactions in a relativistic bound state formalism, with applications to elastic electron scattering by deuterium, and on application of a two-body quasipotential equation to calculate the spectrum of mesons formed as bound states of a quark and antiquark. A Lorentz-invariant description of the nuclear force suggests a decrease of the nucleon's mass in the nuclear medium similar to that found from QCD sum rules. Calculations of three-body bound states with simple forms of relativistic dynamics are also discussed. The section on Heavy Ion Dynamics and Related Processes describes progress on the (e + e - ) problem and heavy-on dynamics. In particular, the sharp electrons observed in β + irradiation of heavy atoms have recently been subsumed into the ''Composite Particle Scenario,'' generalizing the ''(e + e - -Puzzle'' of the pairs from heavy ion collisions to the ''Sharp Lepton Problem.''
Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS
Klochkov, V; Herve, A E; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Matulewicz, T N; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Planeta, R J; Rubbia, A; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Sadovskiy, A; Morozov, S; Petukhov, O; Mathes, H; Roehrich, D; Marcinek, A J; Marino, A D; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Koziel, M E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Strikhanov, M; Taranenko, A; Cirkovic, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Blondel, A P P; Stroebele, H W; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Morgala, S J; Paolone, V; Damyanova, A; Gazdzicki, M; Unger, M T; Wilczek, A G; Stepaniak, J M; Seryakov, A; Susa, T; Staszel, P P; Brzychczyk, J; Maksiak, B; Tefelski, D B
2007-01-01
The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...
HIGH ENERGY HADRON POLARIMETRY
International Nuclear Information System (INIS)
BUNCE, G.
2007-01-01
Proton polarimetry at RHIC uses the interference of electromagnetic (EM) and hadronic scattering amplitudes. The EM spin-flip amplitude for protons is responsible for the proton's anomalous magnetic moment, and is large. This then generates a significant analyzing power for small angle elastic scattering. RHIC polarimetry has reached a 5% uncertainty on the beam polarization, and seem capable of reducing this uncertainty further. Polarized neutron beams ax also interesting for RHIC and for a polarized electron-polarized proton/ion collider in the fume. In this case, deuterons, for example, have a very small anomalous magnetic moment, making the approach used for protons impractical. Although it might be possible to use quasielastic scattering from the protons in the deuteron to monitor the polarization. 3-He beams can provide polarized neutrons, and do have a large anomalous magnetic moment, making a similar approach to proton polarimetry possible
CMS hadronic forward calorimeter
International Nuclear Information System (INIS)
Merlo, J.P.
1998-01-01
Tests of quartz fiber prototypes, based on the detection of Cherenkov light from showering particles, demonstrate a detector possessing all of the desirable characteristics for a forward calorimeter. A prototype for the CMS experiment consists of 0.3 mm diameter fibers embedded in a copper matrix. The response to high energy (10-375 GeV) electrons, pions, protons and muons, the light yield, energy and position resolutions, and signal uniformity and linearity, are discussed. The signal generation mechanism gives this type of detector unique properties, especially for the detection of hadronic showers: Narrow, shallow shower profiles, hermeticity and extremely fast signals. The implications for measurements in the high-rate, high-radiation LHC environment are discussed. (orig.)
Hadronic collision and hadronic structure (an experimental review)
International Nuclear Information System (INIS)
Davier, M.
1975-01-01
In this set of lectures an attempt is made to present a survey of the available experimental data on hadronic collisions at large transverse momentum, together with their current phenomenological descriptions. In particular, the experimental confirmation of constituent structure is looked at in a critical way. The emphasis throughout is to let the data speak in the most unbiased way and to gather evidence as to the short range structure of the hadronic interactions. Finally the current information on lepton production in hadronic collisions is reviewed
J/psi and Υ radiative and hadronic decays
International Nuclear Information System (INIS)
Bloom, E.D.
1987-07-01
The search for gluonium at the J/psi and Υ is discussed, as well as the search for exotics at the Υ. Reactions discussed include radiative and hadronic decays of the J/psi and the search for radiative decays of the Υ. Future perspectives are also briefly considered. 45 refs., 27 figs
Properties of hadronic matter near the phase transition
Energy Technology Data Exchange (ETDEWEB)
Noronha-Hostler, Jacquelyn
2010-12-08
According to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M{approx}2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are ''missing'' hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these ''missing'' Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. We show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X anti X pairs (where X=p, K, {lambda}, or {omega}) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, {eta}/s, of hadronic matter near T{sub c} that is close to 1/(4/{pi}). We show how the measured particle ratios can be used to provide non-trivial information about T{sub c} of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the ''missing'' Hagedorn states
Properties of hadronic matter near the phase transition
International Nuclear Information System (INIS)
Noronha-Hostler, Jacquelyn
2010-01-01
According to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M∼2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are ''missing'' hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these ''missing'' Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. We show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X anti X pairs (where X=p, K, Λ, or Ω) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, η/s, of hadronic matter near T c that is close to 1/(4/π). We show how the measured particle ratios can be used to provide non-trivial information about T c of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the ''missing'' Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, T H , and leads to a
Transformations of the perturbed two-body problem to unperturbed harmonic oscillators
Energy Technology Data Exchange (ETDEWEB)
Szebehely, V; Bond, V
1983-05-01
Singular, nonlinear, and Liapunov unstable equations are made regular and linear through transformations that change the perturbed planar problem of two bodies into unperturbed and undamped harmonic oscillators with constant coefficients, so that the stable solution may be immediately written in terms of the new variables. The use of arbitrary and special functions for the transformations allows the systematic discussion of previously introduced and novel anomalies. For the case of the unperturbed two-body problem, it is proved that if transformations are power functions of the radial variable, only the eccentric and the true anomalies (with the corresponding transformations of the radial variable) will result in harmonic oscillators. The present method significantly reduces computation requirements in autonomous space operations. 11 references.
The two-body problem of a pseudo-rigid body and a rigid sphere
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.
2012-01-01
n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....
Relaxation in a two-body Fermi-Pasta-Ulam system in the canonical ensemble
Sen, Surajit; Barrett, Tyler
The study of the dynamics of the Fermi-Pasta-Ulam (FPU) chain remains a challenging problem. Inspired by the recent work of Onorato et al. on thermalization in the FPU system, we report a study of relaxation processes in a two-body FPU system in the canonical ensemble. The studies have been carried out using the Recurrence Relations Method introduced by Zwanzig, Mori, Lee and others. We have obtained exact analytical expressions for the first thirteen levels of the continued fraction representation of the Laplace transformed velocity autocorrelation function of the system. Using simple and reasonable extrapolation schemes and known limits we are able to estimate the relaxation behavior of the oscillators in the two-body FPU system and recover the expected behavior in the harmonic limit. Generalizations of the calculations to larger systems will be discussed.
Annihilation diagrams in two-body nonleptonic decays of charmed mesons
International Nuclear Information System (INIS)
Bedaque, P.; Das, A.; Mathur, V.S.
1994-06-01
In the pole-dominance model for the two-body nonleptonic decays of charmed mesons D → PV and D → VV, it is shown that the contributions of the intermediate pseudoscalar and the axial-vector meson poles cancel each other in the annihilation diagrams in the chiral limit. In the same limit, the annihilation diagrams for the D → PP decays vanish independently. (author). 6 refs, 3 figs
Direct and mixing-induced CP violation in charmless two-body B decays.
Derkach, Denis
2012-01-01
The recent analyses performed by the LHCb collaboration in the sector of the charmless two-body B-decays. The following analyses are included: time-integrated CP asymmetry measurement of Bd ! Kp and Bs ! pK decays, time-dependent measurements of Bd ! pp and Bs ! KK decays, effective lifetime measurements of Bs ! KK decays, and triple asymmetries of Bs ! f f.
Dimensionally regularized Tsallis' statistical mechanics and two-body Newton's gravitation
Zamora, J. D.; Rocca, M. C.; Plastino, A.; Ferri, G. L.
2018-05-01
Typical Tsallis' statistical mechanics' quantifiers like the partition function and the mean energy exhibit poles. We are speaking of the partition function Z and the mean energy 〈 U 〉 . The poles appear for distinctive values of Tsallis' characteristic real parameter q, at a numerable set of rational numbers of the q-line. These poles are dealt with dimensional regularization resources. The physical effects of these poles on the specific heats are studied here for the two-body classical gravitation potential.
The relativistic two-body potentials of constraint theory from summation of Feynman diagrams
Jallouli, H.; Sazdjian, H.
1996-01-01
The relativistic two-body potentials of constraint theory for systems composed of two spin-0 or two spin-1/2 particles are calculated, in perturbation theory, by means of the Lippmann-Schwinger type equation that relates them to the scattering amplitude. The cases of scalar and vector interactions with massless photons are considered. The two-photon exchange contributions, calculated with covariant propagators,are globally free of spurious infra-red singularities and produce at leading order ...
Translationally invariant multipartite Bell inequalities involving only two-body correlators
International Nuclear Information System (INIS)
Tura, J; B Sainz, A; Acín, A; Lewenstein, M; Augusiak, R; Vértesi, T
2014-01-01
Bell inequalities are natural tools that allow one to certify the presence of nonlocality in quantum systems. The known constructions of multipartite Bell inequalities contain, however, correlation functions involving all observers, making their experimental implementation difficult. The main purpose of this work is to explore the possibility of witnessing nonlocality in multipartite quantum states from the easiest-to-measure quantities, that is, the two-body correlations. In particular, we determine all three- and four-partite Bell inequalities constructed from one- and two-body expectation values that obey translational symmetry, and show that they reveal nonlocality in multipartite states. Also, by providing a particular example of a five-partite Bell inequality, we show that nonlocality can be detected from two-body correlators involving only nearest neighbours. Finally, we demonstrate that any translationally invariant Bell inequality can be maximally violated by a translationally invariant state and the same set of observables at all sites. We provide a numerical algorithm allowing one to seek for maximal violation of a translationally invariant Bell inequality. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’. (paper)
Meson spectra from two-body dirac equations with minimal interactions
International Nuclear Information System (INIS)
Crater, H.W.; Becker, R.L.; Wong, C.Y.
1991-01-01
Many authors have used two-body relativistic wave equations with spin in nonperturbative numerical quark model calculations of the meson spectrum. Usually, they adopt a truncation of the Bethe-Salpeter equation of QED and/or scalar. QED and replace the static Coulomb interactions of those field theories with a semiphenomenological Q bar Q potential whose insertion in the Breit terms give the corresponding spin corrections. However, the successes of these wave equations in QED have invariably depended on perturbative treatment of the terms in each beyond the Coulomb terms. There have been no successful nonperturbative numerical test of two-body quantum wave equations in QED, because in most equations the effective potentials beyond the Coulomb are singular and can only be treated perturbatively. This is a glaring omission that we rectify here for the case of the two-body Dirac equations of constraint dynamics. We show in this paper that a nonperturbative numerical treatment of these equations for QED yields the same spectral results as a perturbative treatment of them which in turn agrees with the standard spectral results for positronium and muonium. This establishes that the vector and scalar interaction structures of our equations accurately incorporate field theoretic interactions in a bone fide relativistic wave equation. The last portion of this work will report recent quark model calculations using these equations with the Adler-Piran static Q bar Q potential
Two-body and three-body correlations in Os-shell nuclei
International Nuclear Information System (INIS)
Halderson, D.W.
1974-01-01
It is well known that conventional Brueckner calculations with modern nucleon-nucleon potentials have failed to reproduce experimental saturation properties of finite nuclei. The intent was to determine whether the discrepancies are due to the methods of calculation or the nucleon-nucleon potentials. Brueckner procedures which include only two-body correlations were applied to Os-shell nuclei. Calculations were performed with and without the Hartree-Fock condition, with and without partial occupation probabilities, and with various propagators and Pauli correction techniques. Then the entire class of three-body correlations was calculated by matrix solution of the Bethe-Faddeev equations. The convergence necessary to validate this technique was achieved by constructing a set of basic functions which contain no center of mass excitations and yet are still properly antisymmetrized. The two-body calculations yielded typical Brueckner results. The nuclei were underbound or the radii were too small. However, the three-body calculations yielded reasonable radii and moderate overbinding for the Reid soft core and Hamada-Johnston potentials. Therefore, the Bethe-Faddeev formalism has been shown to be a reasonable approach to calculation of the three-body correlations in finite nuclei; and the results of []these calculations demonstrate that the underbinding and collapsed radii of two-body calculations were largely due to the uncalculated correlations. (auth)
Nuclei, hadrons, and elementary particles
International Nuclear Information System (INIS)
Bopp, F.W.
1989-01-01
This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs [de
Hadron collider physics 2005. Proceedings
International Nuclear Information System (INIS)
Campanelli, M.; Clark, A.; Wu, X.
2006-01-01
The Hadron Collider Physics Symposia (HCP) are a new series of conferences that follow the merger of the Hadron Collider Conferences with the LHC Symposia series, with the goal of maximizing the shared experience of the Tevatron and LHC communities. This book gathers the proceedings of the first symposium, HCP2005, and reviews the state of the art in the key physics directions of experimental hadron collider research: - QCD physics - precision electroweak physics - c-, b-, and t-quark physics - physics beyond the Standard Model - heavy ion physics The present volume will serve as a reference for everyone working in the field of accelerator-based high-energy physics. (orig.)
Physics at Future Hadron Colliders
Baur, U.; Parsons, J.; Albrow, M.; Denisov, D.; Han, T.; Kotwal, A.; Olness, F.; Qian, J.; Belyaev, S.; Bosman, M.; Brooijmans, G.; Gaines, I.; Godfrey, S.; Hansen, J.B.; Hauser, J.; Heintz, U.; Hinchliffe, I.; Kao, C.; Landsberg, G.; Maltoni, F.; Oleari, C.; Pagliarone, C.; Paige, F.; Plehn, T.; Rainwater, D.; Reina, L.; Rizzo, T.; Su, S.; Tait, T.; Wackeroth, D.; Vataga, E.; Zeppenfeld, D.
2001-01-01
We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.
Fundamentals in hadronic atom theory
Deloff, A
2003-01-01
Hadronic atoms provide a unique laboratory for studying hadronic interactions essentially at threshold. This text is the first book-form exposition of hadronic atom theory with emphasis on recent developments, both theoretical and experimental. Since the underlying Hamiltonian is a non-self-adjoined operator, the theory goes beyond traditional quantum mechanics and this book covers topics that are often glossed over in standard texts on nuclear physics. The material contained here is intended for the advanced student and researcher in nuclear, atomic or elementary-particle physics. A good know
Hadron collider physics at UCR
Energy Technology Data Exchange (ETDEWEB)
Kernan, A.; Shen, B.C.
1997-07-01
This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.
Nucleus fragmentation induced by a high-energy hadron
International Nuclear Information System (INIS)
Zielinski, P.
1982-10-01
The author presents a review about the spallation in hadron reactions. Especially he considers proton-proton correlations at low relative momentum, angular distributions of 30-100 MeV protons, emission of fast deuterons, the vanishing of the Coulomb barrier, fission-like processes, the rise of the heavy fragment yield with energy transfer, proton-deuteron breakup reactions, and the backward emission of fast protons. (HSI)
Compilation of data on γ - γ → hadrons
International Nuclear Information System (INIS)
Roberts, R.G.; Whalley, M.R.
1986-06-01
Data on γγ → hadrons extracted from e + e - reactions is compiled. The review includes inclusive cross-sections, structure functions, exclusive cross-sections and resonance widths. Data up to 1st July 1986 are included. All the data in this review can be found and retrieved in the Durham-RAL HEP database, together with a wide range of other reaction data. Users throughout Europe can interactively access the database through CMS on the RAL computer. (author)
Factorization for short distance hadron-hadron scattering
International Nuclear Information System (INIS)
Collins, J.C.; Illinois Inst. of Tech., Chicago; Soper, D.E.; Sterman, G.
1985-01-01
We show that factorization holds at leading twist in the Drell-Yang cross section dsigma/dQ 2 dy and related inclusive hadron-hadron cross sections. We review the heuristic arguments for factorization, as well as the difficulties which must be overcome in a proof. We go on to give detailed arguments for the all order cancellation of soft gluons, and to show how this leads to factorization. (orig.)
Simulation of soft hadron hadron collisions at ultrarelativistic energies
International Nuclear Information System (INIS)
Werner, K.
1987-01-01
An event generator to simulate ultrarelativistic hadron hadron collisions is proposed. It is based on the following main assumptions: the process can be divided into two independent steps, string formation and string fragmentation; strings are formed as a consequence of color exchange between a quark of the projectile and a quark of the target; the fragmentation of strings is the same as in e + e - annihilation or in lepton nucleon scattering. 11 refs., 4 figs
On slow particle production in hadron-nucleus interactions
International Nuclear Information System (INIS)
Stenlund, E.; Otterlund, I.
1982-01-01
A model for slow particle production in hadron-nucleus interactions is presented. The model succesfully predicts correlations between the number of knock-on particles and the number of particles associated with the evaporation process as well as correlations with the number of collisions, ν, between the incident hadron and the nucleons inside the target nucleus. The model provides two independent possibilities to determine the number of primary intranuclear collisions, ν, i.e. by its correlation to the number of knock-on particles or to the number of evaporated particles. The good agreement indicates that the model gives an impact-parameter sensitive description of hardron nucleus reactions. (orig.)
Nuclear phenomena and the short distance structure of hadrons
International Nuclear Information System (INIS)
Brodsky, S.J.
1979-09-01
In certain cases, nuclear corrections to hadronic phenomena depend in detail on the nature of quark and gluon interactions, as well as the effects of jet development within the nuclear medium. Applications of quantum chromodynamics to fast particle production in nuclear collisions, nuclear form factors, and shadowing in deep inelastic lepton processes are reviewed. Also discussed is a new approach to particle production in hadron-nucleus, nucleus-nucleus and deep-inelastic nuclear reactions from the standpoint of a color-neutralization model. 74 references
Theoretical studies in nuclear reactions and nuclear structure
International Nuclear Information System (INIS)
Wallace, S.J.
1991-05-01
This report discusses topics in the following areas: Hadronic structure; hadrons in nuclei; hot hadronic matter; relativistic nuclear physics and NN interaction; leptonic emissions from high-Z heavy ion collisions; theoretical studies of heavy ion dynamics; nuclear pre-equilibrium reactions; classical chaotic dynamics and nuclear structure; and, theory of nuclear fission
Measurement of b-hadron masses
Energy Technology Data Exchange (ETDEWEB)
Aaij, R. [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Abellan Beteta, C. [Universitat de Barcelona, Barcelona (Spain); Adeva, B. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Adrover, C. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Affolder, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Ajaltouni, Z. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand (France); Albrecht, J.; Alessio, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Alexander, M. [School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Alkhazov, G. [Petersburg Nuclear Physics Institute (PNPI), Gatchina (Russian Federation); Alvarez Cartelle, P. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Alves, A.A. [Sezione INFN di Roma La Sapienza, Roma (Italy); Amato, S. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (Brazil); Amhis, Y. [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Anderson, J. [Physik-Institut, Universitaet Zuerich, Zuerich (Switzerland); Appleby, R.B. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Aquines Gutierrez, O. [Max-Planck-Institut fuer Kernphysik (MPIK), Heidelberg (Germany); Archilli, F. [Laboratori Nazionali dell' INFN di Frascati, Frascati (Italy); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Arrabito, L. [CC-IN2P3, CNRS/IN2P3, Lyon-Villeurbanne (France); and others
2012-02-28
Measurements of b-hadron masses are performed with the exclusive decay modes B{sup +}{yields}J/{psi}K{sup +}, B{sup 0}{yields}J/{psi}K{sup Low-Asterisk 0}, B{sup 0}{yields}J/{psi}K{sub S}{sup 0}, B{sub s}{sup 0}{yields}J/{psi}{phi} and {Lambda}{sub b}{sup 0}{yields}J/{psi}{Lambda} using an integrated luminosity of 35 pb{sup -1} collected in pp collisions at a centre-of-mass energy of 7 TeV by the LHCb experiment. The momentum scale is calibrated with J/{psi}{yields}{mu}{sup +}{mu}{sup -} decays and verified to be known to a relative precision of 2 Multiplication-Sign 10{sup -4} using other two-body decays. The results are more precise than previous measurements, particularly in the case of the B{sub s}{sup 0} and {Lambda}{sub b}{sup 0} masses.
Polarization experiments with hadronic and electromagnetic probes
International Nuclear Information System (INIS)
Punjabi, V.
1993-01-01
The following research activities were carried out during the past year Calibration of focal plane polarimeter POMME up to 2.4 GeV at Saturne National Laboratory (LNS) in Saclay. Measurement of tensor analyzing power T 20 and polarization transfer κ 0 at Saturne up to 2.1 GeV in elastic backward dp scattering rvec dp → rvec pd. Measurement of tensor analyzing power T 20 at synchrophasotron in Dubha up to 4.4 Gev in elastic backward dp scattering rvec dp → pd. Resubmission of conditionally Approved G EP proposal 89-14 at CEBAF. Start construction of focal plane polarimeter (FPP) for CEBAF hall A hadron spectrometer. The planned work for the next year includes: Construction of FPP for CEBAF hall A hadron spectrometer; measurement of polarization transfer κ 0 and tensor analyzing power T 20 in elastic backward dp scattering at Saturne; measurements of tensor analyzing power in 1 H( 6 Li,d)X, 1 H( 6 Li,α)X, 1 H( 6 Li,t)X and 1 H( 6 Li, 3 He)X reactions at Saturne; and study of polarization transfer in 2 H(rvec e,e'rvec p)n reaction at Bates
Large Hadron Collider nears completion
2008-01-01
Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.
The CMS Outer Hadron Calorimeter
Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush
2006-01-01
The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.
Quark confinement and hadronic interactions
International Nuclear Information System (INIS)
Lenz, F.
1985-01-01
With the possibility for 'exact' calculations within the framework of a fundamental theory, QCD, the role of models in strong interaction physics is changing radically. The relevance of detailed numerical model studies is diminishing with the development of those exact, numerical approaches to QCD. On the other hand, the insight gained from such purely numerical studies is necessarily limited and must be complemented by the more qualitative but also more intuitive insight gained from model studies. In particular, the subject of hadron-hadron interactions requires model studies to relate the wide variety of strong interaction physics to the fundamental properties of strong interaction physics. The author reports on such model studies of the hadron-hadron interaction
Hadron energy resolution at ICAL
International Nuclear Information System (INIS)
Devi, Moon Moon; Ghosh, Anushree; Kaur, Daljeet; Mohan, Lakshmi S.
2013-01-01
We have performed a simulation study for determining the hadron energy resolution of INO-ICAL detector within a GEANT4 based simulation framework. We do this by propagating single pions from a fixed or a randomised vertex, as also with the NUANCE (neutrino event generator) generated events in which hadrons are produced in the energy range (0.5 ≤ E ≤ 15 GeV). Hadron interactions produce a shower of hits inside the detector. The energy of hadrons can therefore be reconstructed only by taking these hits into account. Hit distribution for each energy and angle bin has been obtained and analyzed. In order to find the suitable fit for such hit distributions a comparative study has been performed by applying different fit functions and results will be shown
Hadron seagulls and parton jets
International Nuclear Information System (INIS)
Satz, H.; Zarmi, Y.
1976-01-01
For the lepton production of hadrons in the current fragmentation region it was recently shown that the two-level partonic picture leads to a broadening of the average transverse momentum of the observed secondaries. This ''seagull'' effect is well known for hadron-hadron interactions. In the note it is considered the possibility that parton arguments can explain it here as well and it is discussed what information on the constituent structure of hadrons can be obtained through an investigation of the seagull effect from such a point of view. It is shown that a non trivial seagull effect is a consequence of a simple two step production mechanism and the parton model predicts significant differences between baryon, meson and virtual-photon fragmentation seagull
Fixed target hadron production measurements
Panman, J
2009-01-01
The knowledge of light hadron production cross-sections in proton-nucleus interactions is an important prerequisite to the analysis of a wide variety of experiments. One of the important limiting factors for the precision of accelerator based and atmospheric neutrino oscillation experiments is the uncertainty in the composition and spectrum of the neutrino flux. Cosmic-ray experiments detecting extensive air-showers can greatly improve their ability to interpret the data when precise hadron production spectra are available over a large range of energies. Dedicated hadron production experiments have been taking data recently and are now publishing their results. Other experiments have just started their data-taking and plan to supply measurements which can significantly extend the kinematic range in which data will be available. Early measurements at the LHC can extend this range to much higher energies than available up to now. Recent results will be shown and compared with hadronic production models. An outl...
Topological objects in hadron physics
International Nuclear Information System (INIS)
Rho, M.
1988-01-01
The notion of topological objects in hadronic physics is discussed, with emphasis on the role of the Wess-Zumino term and induced transmutation of quantum numbers in chiral bag models. Some applications to nuclear systems are given
Ericson fluctuations in hadron scattering
International Nuclear Information System (INIS)
Frautschi, S.
1975-01-01
It is shown that there are resonances with high mass and long lives, at the very least, longer than the 10 -23 second transit time across a hadron. The theoretical and then the experimental approaches to this problem are described
B factory with hadron colliders
International Nuclear Information System (INIS)
Lockyer, N.S.
1990-01-01
The opportunities to study B physics in a hadron collider are discussed. Emphasis is placed on the technological developments necessary for these experiments. The R and D program of the Bottom Collider Detector group is reviewed. (author)
Japan Hadron Facility (JHF) project
International Nuclear Information System (INIS)
Nagamiya, S.
1999-01-01
The Japan Hadron Facility (JHF) is the next accelerator project proposed at KEK to promote exciting sciences by utilising high-intensity proton beams. The project is characterised by three unique features: hadronic beams of the world's highest intensity; a variety of beams from one accelerator complex; frontier sciences to cover a broad research area including nuclear physics, particle physics, material sciences and life sciences by utilising a common accelerator complex. (author)
Anisotropic superfluidity of hadronic matter
International Nuclear Information System (INIS)
Chela Flores, J.
1977-10-01
From a model of strong interactions with important general features (f-g model) and from recent experiments of Rudnick and co-workers on thin films of helium II, hadronic matter is considered as a new manifestation of anisotropic superfluidity. In order to test the validity of the suggestion, some qualitative features of multiparticle production of hadrons are considered, and found to have a natural explanation. A prediction is made following a recent experiment on π + p collisions
The ATLAS hadronic tau trigger
International Nuclear Information System (INIS)
Shamim, Mansoora
2012-01-01
The extensive tau physics programs of the ATLAS experiment relies heavily on trigger to select hadronic decays of tau lepton. Such a trigger is implemented in ATLAS to efficiently collect signal events, while keeping the rate of multi-jet background within the allowed bandwidth. This contribution summarizes the performance of the ATLAS hadronic tau trigger system during 2011 data taking period and improvements implemented for the 2012 data collection.
International Nuclear Information System (INIS)
Davier, M.
1999-12-01
Hadronic decays of the τ lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)
Energy Technology Data Exchange (ETDEWEB)
Davier, M
1999-12-01
Hadronic decays of the {tau} lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)
A. Skuja
Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...
High resolution hadron calorimetry
International Nuclear Information System (INIS)
Wigmans, R.
1987-01-01
The components that contribute to the signal of a hadron calorimeter and the factors that affect its performance are discussed, concentrating on two aspects; energy resolution and signal linearity. Both are decisively dependent on the relative response to the electromagnetic and the non-electromagnetic shower components, the e/h signal ratio, which should be equal to 1.0 for optimal performance. The factors that determine the value of this ratio are examined. The calorimeter performance is crucially determined by its response to the abundantly present soft neutrons in the shower. The presence of a considerable fraction of hydrogen atoms in the active medium is essential for achieving the best possible results. Firstly, this allows one to tune e/h to the desired value by choosing the appropriate sampling fraction. And secondly, the efficient neutron detection via recoil protons in the readout medium itself reduces considerably the effect of fluctuations in binding energy losses at the nuclear level, which dominate the intrinsic energy resolution. Signal equalization, or compensation (e/h = 1.0) does not seem to be a property unique to 238 U, but can also be achieved with lead and probably even iron absorbers. 21 refs.; 19 figs
Late effects from hadron therapy
Energy Technology Data Exchange (ETDEWEB)
Blakely, Eleanor A.; Chang, Polly Y.
2004-06-01
Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.
Present and future of hadron spectroscopy at Jefferson Lab
Battaglieri, M
2010-01-01
The CLAS Collaboration is operating the CLAS detector at theThomas Jefferson National Laboratory (JLab) in USA. The unique combination of the detector large acceptance and high intensity of the continuous electron beam of CEBAF has opened the way to a comprehensive study of the hadrons structure in kinematic domain between nuclear and particle physics. Hadron spectroscopy plays a central role in the physics program of the Collaboration. Many exclusive channels have been studied with virtual and real photon beams in a wide kinematic providing key information about the hadron structure as well as the reactions dynamic. In this contribution, the rich physics program covered by present and future experiments will be reviewed.
Integral equations of hadronic correlation functions a functional- bootstrap approach
Manesis, E K
1974-01-01
A reasonable 'microscopic' foundation of the Feynman hadron-liquid analogy is offered, based on a class of models for hadron production. In an external field formalism, the equivalence (complementarity) of the exclusive and inclusive descriptions of hadronic reactions is specifically expressed in a functional-bootstrap form, and integral equations between inclusive and exclusive correlation functions are derived. Using the latest CERN-ISR data on the two-pion inclusive correlation function, and assuming rapidity translational invariance for the exclusive one, the simplest integral equation is solved in the 'central region' and an exclusive correlation length in rapidity predicted. An explanation is also offered for the unexpected similarity observed between pi /sup +/ pi /sup -/ and pi /sup -/ pi /sup -/ inclusive correlations. (31 refs).
Two-body relativistic scattering with an O(1,1)-symmetric square-well potential
International Nuclear Information System (INIS)
Arshansky, R.; Horwitz, L.P.
1984-01-01
Scattering theory in the framework of a relativistic manifestly covariant quantum mechanics is applied to the relativistic analog of the nonrelativistic one-dimensional square-well potential, a two-body O(1,1)-symmetric hyperbolic square well in one space and one time dimension. The unitary S matrix is explicitly obtained. For well sizes large compared to the de Broglie wavelength of the reduced motion system, simple formulas are obtained for the associated sequence of resonances. This sequence has equally spaced levels and constant widths for higher resonances, and linearly increasing widths for lower-lying levels
Vibrations versus collisions and the iterative structure of two-body dynamics
International Nuclear Information System (INIS)
Pfitzner, A.; Cassing, W.; Peter, A.
1993-11-01
The two-body correlation function is decomposed into two channel correlation functions for the pp- and the ph-channel. The associated coupled equations describe the evolution in the respective channels as well as their mixing. Integration of the ph-channel in terms of vibrational RPA-states yields a closed equation for the correlations in the pp-channel comprising phonon-particle coupling and a memory term. In the stationary limit the equation for a generalised effective interaction is derived which iterates both the G-matrix (ladders) and the polarisation matrix (loops), thus accounting nonperturbatively for the mixing of ladders and loops. (orig.)
One dimensional two-body collisions experiment based on LabVIEW interface with Arduino
Saphet, Parinya; Tong-on, Anusorn; Thepnurat, Meechai
2017-09-01
The purpose of this work is to build a physics lab apparatus that is modern, low-cost and simple. In one dimensional two-body collisions experiment, we used the Arduino UNO R3 as a data acquisition system which was controlled by LabVIEW program. The photogate sensors were designed using LED and LDR to measure position as a function of the time. Aluminium frame houseware and blower were used for the air track system. In both totally inelastic and elastic collision experiments, the results of momentum and energy conservation are in good agreement with the theoretical calculations.
Two-body tunnel transitions in a Mn 4 single-molecule magnet
Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.
2004-05-01
The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross-relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn 4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps.
Two-body photodisintegration of 3He between 7 and 16 MeV
International Nuclear Information System (INIS)
Tornow, W.; Karwowski, H.J.; Kelley, J.H.; Raut, R.; Rusev, G.; Stave, S.C.; Tonchev, A.P.; Deltuva, A.; Fonseca, A.C.; Marcucci, L.E.; Viviani, M.; Kievsky, A.; Golak, J.; Skibinski, R.; Witala, H.; Schiavilla, R.
2011-01-01
A comprehensive data set is reported for the two-body photodisintegration cross section of 3 He using mono-energetic photon beams at eleven energies between 7.0 and 16.0 MeV. A 3 He+Xe high-pressure gas scintillator served as target and detector. Although our data are in much better agreement with our state-of-the-art theoretical calculations than the majority of the previous data, these calculations underpredict the new data by about 10%. This disagreement suggests an incomplete understanding of the dynamics of the three-nucleon system and its response to electromagnetic probes.
Two-body photodisintegration of {sup 3}He between 7 and 16 MeV
Energy Technology Data Exchange (ETDEWEB)
Tornow, W., E-mail: tornow@tunl.duke.edu [Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Karwowski, H.J. [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Kelley, J.H. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Raut, R.; Rusev, G.; Stave, S.C.; Tonchev, A.P. [Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Deltuva, A.; Fonseca, A.C. [Centro de Fisica Nuclear da Universidade de Lisboa, P-1649-003 Lisboa (Portugal); Marcucci, L.E. [Department of Physics, ' Enrico Fermi' , University of Pisa, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56100 Pisa (Italy); Viviani, M.; Kievsky, A. [INFN, Sezione di Pisa, I-56100 Pisa (Italy); Golak, J.; Skibinski, R.; Witala, H. [M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Krakow (Poland); Schiavilla, R. [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)
2011-08-11
A comprehensive data set is reported for the two-body photodisintegration cross section of {sup 3}He using mono-energetic photon beams at eleven energies between 7.0 and 16.0 MeV. A {sup 3}He+Xe high-pressure gas scintillator served as target and detector. Although our data are in much better agreement with our state-of-the-art theoretical calculations than the majority of the previous data, these calculations underpredict the new data by about 10%. This disagreement suggests an incomplete understanding of the dynamics of the three-nucleon system and its response to electromagnetic probes.
Statistical hadronization and hadronic micro-canonical ensemble II
International Nuclear Information System (INIS)
Becattini, F.; Ferroni, L.
2004-01-01
We present a Monte Carlo calculation of the micro-canonical ensemble of the ideal hadron-resonance gas including all known states up to a mass of about 1.8 GeV and full quantum statistics. The micro-canonical average multiplicities of the various hadron species are found to converge to the canonical ones for moderately low values of the total energy, around 8 GeV, thus bearing out previous analyses of hadronic multiplicities in the canonical ensemble. The main numerical computing method is an importance sampling Monte Carlo algorithm using the product of Poisson distributions to generate multi-hadronic channels. It is shown that the use of this multi-Poisson distribution allows for an efficient and fast computation of averages, which can be further improved in the limit of very large clusters. We have also studied the fitness of a previously proposed computing method, based on the Metropolis Monte Carlo algorithm, for event generation in the statistical hadronization model. We find that the use of the multi-Poisson distribution as proposal matrix dramatically improves the computation performance. However, due to the correlation of subsequent samples, this method proves to be generally less robust and effective than the importance sampling method. (orig.)
International Nuclear Information System (INIS)
Alonso, J.R.
1995-05-01
Radiation therapy with ''hadrons'' (protons, neutrons, pions, ions) has accrued a 55-year track record, with by now over 30,000 patients having received treatments with one of these particles. Very good, and in some cases spectacular results are leading to growth in the field in specific well-defined directions. The most noted contributor to success has been the ability to better define and control the radiation field produced with these particles, to increase the dose delivered to the treatment volume while achieving a high degree of sparing of normal tissue. An additional benefit is the highly-ionizing, character of certain beams, leading to creater cell-killing potential for tumor lines that have historically been very resistant to radiation treatments. Until recently these treatments have been delivered in laboratories and research centers whose primary, or original mission was physics research. With maturity in the field has come both the desire to provide beam facilities more accessible to the clinical setting, of a hospital, as well as achieving, highly-efficient, reliable and economical accelerator and beam-delivery systems that can make maximum advantage of the physical characteristics of these particle beams. Considerable work in technology development is now leading, to the implementation of many of these ideas, and a new generation of clinically-oriented facilities is beginning to appear. We will discuss both the physical, clinical and technological considerations that are driving these designs, as well as highlighting, specific examples of new facilities that are either now treating, patients or that will be doing so in the near future
Quantum chromodynamic quark model study of hadron and few hadron systems
International Nuclear Information System (INIS)
Ji, Chueng-Ryong.
1991-05-01
This report details research progress and results obtained during the one year period December 1, 1990 to November 30, 1991. The research project, entitled ''Quantum Chromodynamic Quark Model Study of Hadron and Few Hadron Systems,'' is supported by grant FG05-90ER40589 between North Carolina State University and the United States Department of Energy. In compliance with grant requirements the principal investigator, Professor Chueng-Ryong Ji, has conducted a research program addressing theoretical investigations of hadron structure and reactions using quantum chromodynamic quark models. This principal investigator has devoted 50% of his time during the academic year and 100% of his time in the summer. This percent effort will continue for the remaining period of the grant. The new, significant research results are briefly summarized in the following sections. Recent progress has been reported in the renewal/continuation grant proposal just submitted to the Department of Energy. Finally, full, detailed descriptions of completed work can be found in the project publications which are listed at the end of this progress report
Identifying Multiquark Hadrons from Heavy Ion Collisions
International Nuclear Information System (INIS)
Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Jido, Daisuke; Ohnishi, Akira; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro
2011-01-01
Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.
Searches for two-body charmless baryonic $B^0$ decays at LHCb
AUTHOR|(CDS)2083570; Eklund, Lars
2016-09-26
The results of two separate searches for the rare two-body charmless baryonic decays B0 -> p pbar and B0s -> p pbar at the LHCb experiment are reported in this thesis. The first analysis uses a data sample, corresponding to an integrated luminosity of 0.9 fb^-1, of proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. An excess of B0 -> p pbar candidates with respect to background expectations is seen with a statistical significance of 3.3 standard deviations. This constitutes the first evidence for a two-body charmless baryonic B0 decay. No significant B0s -> p pbar signal was observed. However, a small excess of B0s -> p pbar events allowed the extraction of two sided confidence level intervals for the B0s -> p pbar branching fraction using the Feldman-Cousins frequentist method. This improved the upper limit on the B0s -> p pbar branching fraction by three orders of magnitude over previous bounds. The 68.3% confidence level intervals on the branching fractions w...
Global solutions to the electrodynamic two-body problem on a straight line
Bauer, G.; Deckert, D.-A.; Dürr, D.; Hinrichs, G.
2017-06-01
The classical electrodynamic two-body problem has been a long standing open problem in mathematics. For motion constrained to the straight line, the interaction is similar to that of the two-body problem of classical gravitation. The additional complication is the presence of unbounded state-dependent delays in the Coulomb forces due to the finiteness of the speed of light. This circumstance renders the notion of local solutions meaningless, and therefore, straightforward ODE techniques cannot be applied. Here, we study the time-symmetric case, i.e., the Fokker-Schwarzschild-Tetrode (FST) equations, comprising both advanced and retarded delays. We extend the technique developed in Deckert and Hinrichs (J Differ Equ 260:6900-6929, 2016), where existence of FST solutions was proven on the half line, to ensure global existence—a result that had been obtained by Bauer (Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik, Herbert Utz Verlag, München, 1997). Due to the novel technique, the presented proof is shorter and more transparent but also relies on the idea to employ asymptotic data to characterize solutions.
Neutron-deuteron scattering calculations with W-matrix representation of the two-body input
International Nuclear Information System (INIS)
Bartnik, E.A.; Haberzettl, H.; Januschke, T.; Kerwath, U.; Sandhas, W.
1987-05-01
Employing the W-matrix representation of the partial-wave T matrix introduced by Bartnik, Haberzettl, and Sandhas, we show for the example of the Malfliet-Tjon potentials I and III that the single-term separable part of the W-matrix representation, when used as input in three-nucleon neutron-deuteron scattering calculations, is fully capable of reproducing the exact results obtained by Kloet and Tjon. This approximate two-body input not only satisfies the two-body off-shell unitarity relation but, moreover, it also contains a parameter which may be used in optimizing the three-body data. We present numerical evidence that there exists a variational (minimum) principle for the determination of the three-body binding energy which allows one to choose this parameter also in the absence of an exact reference calculation. Our results for neutron-deuteron scattering show that it is precisely this choice of the parameter which provides optimal scattering data. We conclude that the W-matrix approach, despite its simplicity, is a remarkably efficient tool for high-quality three-nucleon calculations. (orig.)
Spallation reactions; Reactions de spallation
Energy Technology Data Exchange (ETDEWEB)
Cugon, J.
1996-12-31
Spallation reactions dominate the interactions of hadrons with nuclei in the GeV range (from {approx} 0.1 to {approx} 10 GeV). They correspond to a sometimes important ejection of light particles leaving most of the time a residue of mass commensurate with the target mass. The main features of the experimental data are briefly reviewed. The most successful theoretical model, namely the intranuclear cascade + evaporation model, is presented. Its physical content, results and possible improvements are critically discussed. Alternative approaches are shortly reviewed. (author). 84 refs.
Extensive Air Showers: from the muonic smoking guns to the hadronic backbone
Directory of Open Access Journals (Sweden)
Cazon L.
2013-06-01
Full Text Available Extensive Air Showers are complex macroscopic objects initiated by single ultra-high energy particles. They are the result of millions of high energy reactions in the atmosphere and can be described as the superposition of hadronic and electromagnetic cascades. The hadronic cascade is the air shower backbone, and it is mainly made of pions. Decays of neutral pions initiate electromagnetic cascades, while the decays of charged pions produce muons which leave the hadronic core and travel many kilometers almost unaffected. Muons are smoking guns of the hadronic cascade: the energy, transverse momentum, spatial distribution and depth of production are key to reconstruct the history of the air shower. In this work, we overview the phenomenology of muons on the air shower and its relation to the hadronic cascade. We briefly review the experimental efforts to analyze muons within air showers and discuss possible paths to use this information.
Cross-Section of Hadron Production in $\\gamma\\gamma$ Collisions at LEP
Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F
1997-01-01
The reaction $\\mathrm{e}^{+} \\mathrm{e}^{-} \\rightarrow \\mathrm{e}^{+} \\mathrm{e}^{-} \\gamma ^{*} \\gamma ^{*} \\rightarrow \\mathrm{e}^{+} \\mathrm{e}^{-} $ {\\sl hadrons} is analysed using data collected by the L3 detector during the LEP runs at $\\sqrt {s}$ = 130-140 GeV and $\\sqrt {s}$ = 161 GeV. The cross sections $\\sigma(\\mathrm{e}^{+} \\mathrm{e}^{-} \\rightarrow \\mathrm{e}^{+} \\mathrm{e}^{-} $ {\\sl hadrons}) and $\\sigma (\\gamma\\gamma \\rightarrow $ {\\sl hadrons}) are measured in the interval 5 $\\leq W_{\\gamma\\gamma} \\leq$ 75 GeV. The energy dependence of the $\\sigma (\\gamma\\gamma \\rightarrow $ {\\sl hadrons}) cross section is consistent with the universal Regge behaviour of total hadronic cross sections. %\\end{abstract}
Multiplicities of secondary hadrons produced in vp and overlinevp charged current interactions
Grässler, H.; Lanske, D.; Schulte, R.; Jones, G. T.; Middleton, R. P.; O'Neale, S. W.; Böckmann, K.; Gebel, W.; Geich-Gimbel, C.; Nellen, B.; Grant, A.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Chima, J. S.; Mobayyen, M. M.; Talebzadeh, M.; Villalobos-Baillie, O.; Aderholz, M.; Deck, L.; Schmitz, N.; Settles, R.; Wernhard, K. L.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicić, D.; Saitta, B.; Wells, J.; Aachen-Birmingham-Bonn-CERN-Imperial College-München (MPI)-Oxford Collaboration
1983-08-01
In an experiment with the hydrogen bubble chamber BEBC at CERN multiplicities of hadrons produced in νp and overlinevp interactions have been investigated. Results are presented on the multiplicities of charged hadrons and neutral pions, forward and backward multiplicities of charged hadrons and correlations between forward and backward multiplicities. Comparisons are made with hadronic reactions and e +e - annihilation. In the framework of the quark-parton model the data imply similar charged multiplicities for the fragments of a u- and a d-quark, and a larger multiplicities for the fragments of a uu- than for a ud-diquark. The correlation data suggest independent fragmentation of the quark and diquark for hadronic masses above ˜ 7 GeV and local charge compensation within an event.
Multiplicities of secondary hadrons produced in vp and anti vp charged current interactions
International Nuclear Information System (INIS)
Graessler, H.; Lanske, D.; Schulte, R.; Chima, J.S.; Mobayyen, M.M.; Talebzadeh, M.; Villalobos-Baillie, O.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.
1983-01-01
In an experiment with the hydrogen bubble chamber BEBC at CERN multiplicities of hadrons produced in vp and anti vp interactions have been investigated. Results are presented on the multiplicities of charged hadrons and neutral pions, forward and backward multiplicities of charged hadrons and correlations between forward and backward multiplicities. Comparisons are made with hadronic reactions and e + e - annihilation. In the framework of the quark-parton model the data imply similar charged multiplicities for the fragments of a u- and a d-quark, and larger multiplicities for the fragments of a uu- than for a ud-diquark. The correlation data suggest independent fragmentation of the quark and diquark for hadronic masses above approx.= 7 GeV and local charge compensation within an event. (orig.)
Hocker, Andreas
1997-01-01
We present new results for the r hadronic spectral functions analysis using data accumulated by the ALEPH detector at LEP during the years 1991-94. The vector and the axial-vector spectral functions are determined from their respective unfolded, i.e., physical invariant mass spectra. The r vector and axial-vector hadronic widths and certain spectral moments are exploited to measure a, and nonperturbative contributions at the r mass scale. The best, and experimentally and theoretically most robust, determination of a,(Mr) is obtained from the inclusive (V + A) fit that yields a,(Mr) = 0.349 ± 0.018 giving a,(Mz) = 0.1 212 ± 0.0022 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the r hadronic width to masses smaller than the r mass.
Composite hadrons and relativistic nuclei
International Nuclear Information System (INIS)
Blankenbecler, R.
1978-01-01
Lectures are presented describing a model of hadronic scattering at large momentum transfer, either transverse or longitudinal. This model emphasizes in this regime the importance of forces involving the interchange of constituents of the hadrons, hence its name, the constituent interchange model CIM. The CIM is a rearrangement of standard perturbation theory to take into account the fact that the binding force is very strong in color singlet states (singlet dominance). The hard scattering expansion, incoherence problems, nuclear wave functions and counting rules, interaction between nuclei, pion and proton yields and form factors, structure functions and nonscaling, massive lepton pairs, hadrons at large transverse momentum, and quark-quark scattering are treated. 49 references
Phenomenological studies of hadronic collisions
International Nuclear Information System (INIS)
van Zijl, M.
1987-04-01
Several aspects of hadronic collisions are studied in a phenomenological framework. A Monte Carlo model for initial state parton showers, using a backwards evolution scheme, is presented. Comparisons with experimental data and analytical calculations are made. The consequence of using different fragmentation model on the determination of α s is also investigated. It is found that the different fragmentation models lead to the reconstruction of significantly α s values. Finally the possibility of having several independent parton-parton interactions in a hadron-hadron collision is studied. A model is developed, which takes into account the effects of variable impact parameters. This is implemented in a Monte Carlo computer program and extensive comparisons with experimental data are carried out. There is clear evidence in favour of multiple interactions with variable impact parameters. (author)
Dijet imbalance in hadronic collisions
International Nuclear Information System (INIS)
Boer, Danieel; Mulders, Piet J.; Pisano, Cristian
2009-01-01
The imbalance of dijets produced in hadronic collisions has been used to extract the average transverse momentum of partons inside the hadrons. In this paper we discuss new contributions to the dijet imbalance that could complicate or even hamper this extraction. They are due to polarization of initial state partons inside unpolarized hadrons that can arise in the presence of nonzero parton transverse momentum. Transversely polarized quarks and linearly polarized gluons produce specific azimuthal dependences of the two jets that in principle are not suppressed. Their effects cannot be isolated just by looking at the angular deviation from the back-to-back situation; rather they enter jet broadening observables. In this way they directly affect the extraction of the average transverse momentum of unpolarized partons that is thought to be extracted. We discuss appropriately weighted cross sections to isolate the additional contributions.
On the hadron mass decomposition
Lorcé, Cédric
2018-02-01
We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force.
International Nuclear Information System (INIS)
Anderson, J.T.
1994-01-01
Without the spin interactions the hardron masses within a multiplet are degenerate. The light quark hadron degenerate mulitplet mass spectrum is extended from the 3 quark ground state multiplets at J P =0 - , 1/2 + , 1 - to include the excited states which follow the spinorial decomposition of SU(2)xSU(2). The mass scales for the 4, 5, 6, .. quark hadrons are obtained from the degenerate multiplet mass m 0 /M=n 2 /α with n=4, 5, 6, .. The 4, 5, 6, .. quark hadron degenerate multiplet masses follow by splitting of the heavy quark mass scales according to the spinorial decomposition of SU(2)xSU(2). (orig.)
On the hadron mass decomposition
Energy Technology Data Exchange (ETDEWEB)
Lorce, Cedric [Universite Paris-Saclay, Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)
2018-02-15
We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force. (orig.)
Hadron Contribution to Vacuum Polarisation
Davier, M; Malaescu, B; Zhang, Z
2016-01-01
Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...
Hadron production near threshold
Indian Academy of Sciences (India)
Abstract. Final state interaction effects in pp → pΛK+ and pd → 3He η reactions are explored near threshold to study the sensitivity of the cross-sections to the pΛ potential and the ηN scattering matrix. The final state scattering wave functions between Λ and p and η and 3He are described rigorously. The Λ production is ...
Parametric study of two-body floating-point wave absorber
Amiri, Atena; Panahi, Roozbeh; Radfar, Soheil
2016-03-01
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.
CP violation in charmless two-body B decays at LHCb
CERN. Geneva
2013-01-01
The study of CP violation in charmless charged two-body decays of neutral B mesons provides a test of the Cabibbo-Kobayashi-Maskawa picture of the Standard Model, and is a sensitive probe to contributions of processes beyond it. Using a data sample of proton-proton collisions, corresponding to an integrated luminosity of 1.0 fb-1, collected with the LHCb detector at a centre-of-mass energy of 7 TeV, CP violation has been observed for the first time in the B0_s to K-pi+ decay with a significance of more than 5 sigma. Furthermore, first measurements of direct and mixing-induced CP-violating asymmetries in the B0_s to K+K- decay have been performed, opening new avenues to the determination of the unitarity triangle angle gamma using decays affected by penguin processes.
Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2001-01-01
Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
Reply to C. M. Will on the axially symmetric two-body problem in general relativity
International Nuclear Information System (INIS)
Cooperstock, F.I.; Lim, P.H.
1985-01-01
The recent paper by Will (1983) is considered which purports to demonstrate that the gravitational radiation which the authors had computed from their model two-body free-fall system is consistent with the so-called quadrupole formula. It is shown that in fact the system presented by Will is different from the authors and that the illegitimate application of the quadrupole formula to the authors system leads to a smaller flux than that which is correctly deduced using general relativity and a proper consideration of nonlinearities. It is demonstrated that a judicious choice of stress release is propagated through the bodies as a superposition of plane and spherical waves leading to pressure fluctuations to the order in question. This underlines the essential distinction between the authors problem and the Will problem. Various aspects of the problem are also discussed. 25 references
Bose-Einstein atoms in atomic traps with predominantly attractive two-body interactions
International Nuclear Information System (INIS)
Hussein, M.S.; Vorov, O.K.
2002-01-01
Using the Perron-Frobenius theorem, we prove that the results by Wilkin, Gunn, and Smith [Phys. Rev. Lett. 80, 2265 (1998)] for the ground states at angular momentum L of N harmonically trapped Bose atoms, interacting via weak attractive δ 2 (r) forces, are valid for a broad class of predominantly attractive interactions V(r), not necessarily attractive for any r. This class is described by sufficient conditions on the two-body matrix elements of the potential V(r). It includes, in particular, the Gaussian attraction of arbitrary radius, -1/r-Coulomb and log(r)-Coulomb forces, as well as all the short-range interactions satisfying inequality ∫d 2 r-vectorV(r)<0. In the precollapse regime, the angular momentum L is concentrated in the collective 'center-of-mass' mode, and there is no condensation at high L
Low-Thrust Orbital Transfers in the Two-Body Problem
Directory of Open Access Journals (Sweden)
A. A. Sukhanov
2012-01-01
Full Text Available Low-thrust transfers between given orbits within the two-body problem are considered; the thrust is assumed power limited. A simple method for obtaining the transfer trajectories based on the linearization of the motion near reference orbits is suggested. Required calculation accuracy can be reached by means of use of a proper number of the reference orbits. The method may be used in the case of a large number of the orbits around the attracting center; no averaging is necessary in this case. The suggested method also is applicable to the cases of partly given final orbit and if there are constraints on the thrust direction. The method gives an optimal solution to the linearized problem which is not optimal for the original nonlinear problem; the difference between the optimal solutions to the original and linearized problems is estimated using a numerical example. Also examples illustrating the method capacities are given.
Charmed hadron production by neutrinos
Energy Technology Data Exchange (ETDEWEB)
Ushida, N [Aichi Univ. of Education, Kariya (Japan). Dept. of Physics; Kondo, T [Fermi National Accelerator Lab., Batavia, IL (USA); Fujioka, G; Fukushima, J; Takahashi, Y; Tatsumi, S; Yokoyama, C [Kobe Univ. (Japan). Dept. of Physics; Homma, Y; Tsuzuki, Y [Kobe Univ. (Japan). Coll. of Liberal Arts; Bahk, S
1983-02-03
Charmed hadron production has been studied using a hybrid emulsion spectrometer in the Fermilab wide-band neutrino beam. The relative rates of D/sup 0/, D/sup +/, F/sup +/, and ..lambda..sub(c)/sup +/ production have been measured - the fraction of D mesons is 69 +- 8/10%. Momentum, transverse momentum, Feynman X, and fragmentation (Z) distributions are presented. The mean Z for charmed hadrons is 0.59 +- 0.03 (+- 0.03). Charmed target fragments have been observed.
Very high multiplicity hadron processes
International Nuclear Information System (INIS)
Mandzhavidze, I.; Sisakyan, A.
2000-01-01
The paper contains a description of a first attempt to understand the extremely inelastic high energy hadron collisions, when the multiplicity of produced hadrons considerably exceeds its mean value. Problems with existing model predictions are discussed. The real-time finite-temperature S-matrix theory is built to have a possibility to find model-free predictions. This allows one to include the statistical effects into consideration and build the phenomenology. The questions to experiment are formulated at the very end of the paper
Hadron structure from lattice QCD
International Nuclear Information System (INIS)
Schaefer, Andreas
2008-01-01
Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review
Hadron scattering, resonances, and QCD
Briceño, R. A.
2016-11-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
Generic calculation of two-body partial decay widths at the full one-loop level
Goodsell, Mark D.; Liebler, Stefan; Staub, Florian
2017-11-01
We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wave-function corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a \\overline{ {DR}} (or \\overline{ {MS}}) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop-induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infrared divergences for such cases, which is achieved through an infrared counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiatively induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described.
Generic calculation of two-body partial decay widths at the full one-loop level
Energy Technology Data Exchange (ETDEWEB)
Goodsell, Mark D. [UPMC Univ. Paris 06 (France); Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Sorbonne Univ., Paris (France); Liebler, Stefan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Staub, Florian [Karlsruhe Institute for Technology, Karlsruhe (Germany). Inst. for Theoretical Physics; Karlsruhe Institute for Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Physics
2017-04-15
We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wavefunction corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a DR (or MS) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infra-red divergences for such cases, which is achieved through an infra-red counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiative induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described.
Generic calculation of two-body partial decay widths at the full one-loop level
Energy Technology Data Exchange (ETDEWEB)
Goodsell, Mark D. [Sorbonne Universites, UPMC Univ Paris 06, UMR 7589, LPTHE, Paris (France); CNRS, UMR 7589, LPTHE, Paris (France); Liebler, Stefan [DESY, Hamburg (Germany); Staub, Florian [Karlsruhe Institute of Technology, Institute for Theoretical Physics (ITP), Karlsruhe (Germany); Karlsruhe Institute of Technology, Institute for Nuclear Physics (IKP), Eggenstein-Leopoldshafen (Germany)
2017-11-15
We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wave-function corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a DR (or MS) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop-induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infrared divergences for such cases, which is achieved through an infrared counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiatively induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described. (orig.)
Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.
2011-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ
Generic calculation of two-body partial decay widths at the full one-loop level
International Nuclear Information System (INIS)
Goodsell, Mark D.; Liebler, Stefan; Staub, Florian; Karlsruhe Institute for Technology, Eggenstein-Leopoldshafen
2017-04-01
We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wavefunction corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a DR (or MS) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infra-red divergences for such cases, which is achieved through an infra-red counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiative induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described.
Stochastic evolutions and hadronization of highly excited hadronic matter
International Nuclear Information System (INIS)
Carruthers, P.
1984-01-01
Stochastic ingredients of high energy hadronic collisions are analyzed, with emphasis on multiplicity distributions. The conceptual simplicity of the k-cell negative binomial distribution is related to the evolution of probability distributions via the Fokker-Planck and related equations. The connection to underlying field theory ideas is sketched. 17 references
Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Fan, Q; Gill, M S; Gowdy, S J; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Kirk, A; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; Mass, A; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Camanzi, B; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Dubrovin, M S; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Bloom, P; Fahey, S; Ford, W T; Gaede, F; Johnson, D R; Michael, A K; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; LePeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljevic, V; Fackler, O; Fujino, D; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Martin, R; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Lin, C S; Moore, T B; Staengle, H; Willocq, S; Wittlin, J; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Britton, D I; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; De La Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel De Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yeche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bartelt, J; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Doser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Grosso, P; Himel, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Manzin, G; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Serbo, V V; Snyder, A; Soha, A; Spanier, S M; Stahl, A; Stelzer, J; Su, D; Sullivan, M K; Talby, M; Tanaka, H A; Trunov, A; Va'vra, J; Wagner, S R; Weinstein, A J; Wisniewski, W J; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; De Silva, A; Henderson, R; Bugg, W; Cohn, H; Hart, E; Weidemann, A W; Benninger, T; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Bosisio, L; Della Ricca, G; Lanceri, L; Pompili, A; Poropat, P; Prest, M; Vallazza, E; Vuagnin, G; Panvini, R S; Brown, C M; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Elmer, P; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Orejudos, W; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobering, H; Kordich, T M; Neal, H
2001-10-08
We present measurements, based on a sample of approximately 23x10(6) BB pairs, of the branching fractions and a search for CP-violating charge asymmetries in charmless hadronic decays of B mesons into two-body final states of kaons and pions. We find the branching fractions B(B0-->pi(+)pi(-)) = (4.1+/-1.0+/-0.7)x10(-6), B(B0-->K+pi(-)) = (16.7+/-1.6+/-1.3)x10(-6), B(B+-->K+pi(0)) = (10.8(+2.1)(-1.9)+/-1.0)x10(-6), B(B+-->K0pi(+)) = (18.2(+3.3)(-3.0)+/-2.0)x10(-6), B(B0-->K0pi(0)) = (8.2(+3.1)(-2.7)+/-1.2)x10(-6). We also report 90% confidence level upper limits for B meson decays to the pi(+)pi(0), K+K-, and K0K+ final states. In addition, charge asymmetries have been found to be consistent with zero, where the statistical precision is in the range of +/-0.10 to +/-0.18, depending on the decay mode.
An object-oriented framework for the hadronic Monte-Carlo event generators
International Nuclear Information System (INIS)
Amelin, N.; Komogorov, M.
1999-01-01
We advocate the development of an object-oriented framework for the hadronic Monte-Carlo (MC) event generators. The hadronic MC user and developer requirements are discussed as well as the hadronic model commonalities. It is argued that the development of a framework is in favour of taking into account of model commonalities since common means are stable and can be developed only at once. Such framework can provide different possibilities to have user session more convenient and productive, e.g., an easy access and edition of any model parameter, substitution of the model components by the alternative model components without changing the code, customized output, which offers either full information about history of generated event or specific information about reaction final state, etc. Such framework can indeed increase the productivity of a hadronic model developer, particularly, due to the formalization of the hadronic model component structure and model component collaborations. The framework based on the component approach opens a way to organize a library of the hadronic model components, which can be considered as the pool of hadronic model building blocks. Basic features, code structure and working examples of the first framework version for the hadronic MC models, which has been built as the starting point, are shortly explained
Hadron-hadron potentials from lattice quantum chromodynamics
International Nuclear Information System (INIS)
Rabitsch, K.
1997-10-01
Problems in nuclear physics generally involve several nucleons due to the composite structure of the atomic nucleus. To study such systems one has to solve the Schroedinger equation and therefore has to know a nucleon-nucleon potential. Experimental data and theoretical considerations indicate that nucleons consist of constituent particles, called quarks. Today, Quantum Chromodynamics (QCD) is believed to be the fundamental theory of strong interactions. Consequently, one should try to understand the nucleon-nucleon interaction from first principles of QCD. At nucleonic distances the strong coupling constant is large. Thus, a perturbative treatment of QCD low energy phenomena is not adequate. However, the formulation of QCD on a four-dimensional Euclidean lattice (lattice QCD) makes it possible to address the nonperturbative aspects of the theory. This approach has already produced valuable results. For example, the confinement of quarks in a nucleon has been demonstrated, and hadron masses have been calculated In this thesis various methods to extract the hadron-hadron interactions from first principles of lattice QCD are presented. One possibility is to consider systems of two static hadrons. A comparison of results in pure gluonic vacuum and with sea quarks is given for both the confinement and the deconfinement phase of QCD. Numerical simulations yield attractive potentials in the overlap region of the hadrons for all considered systems. In the deconfinement phase the resulting potentials are shallower reflecting the dissolution of the hadrons. A big step towards the simulation of realistic two-hadron systems on the lattice is the consideration of mesons consisting of dynamic valence quarks. This is done for the two most important fermionic discretization schemes in the pure gluonic vacuum. A calculation in coordinate space utilizing Kogut-Susskind fermions for the valence quarks yields meson-meson potentials with a long ranged interaction, an intermediate
Hadron production at RHIC: recombination of quarks
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2005-01-01
We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.
Detectors and luminosity for hadron colliders
International Nuclear Information System (INIS)
Diebold, R.
1983-01-01
Three types of very high energy hadron-hadron coliders are discussed in terms of the trade-off between energy and luminosity. The usable luminosity depends both on the physics under study and the rate capabilities of the detector
Physics at hadron colliders: Experimental view
International Nuclear Information System (INIS)
Siegrist, J.L.
1987-08-01
The physics of the hadron-hadron collider experiment is considered from an experimental point of view. The problems encountered in determination of how well the standard model describes collider results are discussed. 53 refs., 58 figs
Is there a hadronic Ramsauer effect
International Nuclear Information System (INIS)
Urban, M.
1980-01-01
We show that a good part of the hadronic resonances could very well not be resonances at all. We extend the principle of Ramsauer effect of atomic physics to other Physics' areas and especially to hadronic physics
International Nuclear Information System (INIS)
Yazaki, K.
1995-01-01
The nuclear or color transparency in initial and final state interactions of protons, involved in high energy semi-exclusive processes such as (, e ' p) and (p, 2 p) reactions, is discussed first in the conventional Glauber approach and then in models taking account of the proton internal dynamics. The conventional approach includes nuclear many-body effects as well as multiple scattering effects and serves as a reference for finding the roles of the internal dynamics in the observed transparency. The models predict non-trivial effects on the transparency. (author)
Neutrino--proton interactions in the 15-foot bubble chamber and properties of hadron jets
International Nuclear Information System (INIS)
Vander Velde, J.C.
1975-01-01
An analysis is made on about 600 charged-current neutrino events from the Fermilab 15-foot hydrogen bubble chamber. Properties of the inclusive reaction νp → μ - + h +- + anything, where h +- represents a charged hadron, are studied. Longitudinal and transverse properties of hadron jets are described. An analysis is made to see whether the hadrons carry with them the charges of their parent elementary quarks. Distributions are presented for the number of tracks, average charge, and average P/sub T/ vs. rapidity in the lab, c.m., ''hole,'' and ''quark'' reference frames
Proceedings of the second symposium on science of hadrons under extreme conditions
International Nuclear Information System (INIS)
Chiba, Satoshi
2000-08-01
The second symposium on Science of Hadrons under Extreme Conditions, organized by the Research Group for Hadron Science, Advanced Science Research Center, was held at Tokai Research Establishment of JAERI on January 24 to 26, 2000. The symposium was devoted for discussions and presentations of research results in wide variety of fields such as nuclear matter, high-energy nuclear reactions, quantum chromodynamics, supernovae and nucleosynthesis to understand various aspects of hadrons under extreme conditions. The 26 of the presented papers are indexed individually. (J.P.N.)
Photon-hadron fragmentation: theoretical situation
International Nuclear Information System (INIS)
Peschanski, R.
1983-07-01
Using a selection of new experimental results models of hadronic fragmentation and their phenomenological comparison are presented. Indeed a convenient theory of hadronic fragmentation -for instance based on Q.C.D.- does not exist: low transverse momentum fragmentation involves the badly known hadronic long-range forces. Models should clarify the situation in the prospect of an eventual future theory
Heavy flavour hadron spectroscopy: An overview
Indian Academy of Sciences (India)
2014-10-31
Oct 31, 2014 ... A comprehensive overview and some of the theoretical attempts towards understanding heavy flavour hadron spectroscopy are presented. Apart from the conventional quark structure (quark, antiquarks structure for the mesons and three-quarks structure of baryons) of hadrons, multiquark hadrons the ...
Assembly of the CMS hadronic calorimeter
Maximilien Brice
2004-01-01
The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.
High energy hadron-nucleus scattering
International Nuclear Information System (INIS)
Koplik, J.; Mueller, A.H.
1975-01-01
Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models
Gluonic excitations in hadronic spectroscopy
International Nuclear Information System (INIS)
Close, F.E.
1983-09-01
Theoretical expectations are described for new forms of hadronic matter containing gluons as excitable degrees of freedom. Particular attention is paid to hybrid states containing both quarks and gluons. Recent work on the spectroscopy of hybrid mesons and hybrid baryons is reviewed. Comparisons of bag model, lattice QCD and QCD sum rule predictions are made and some confrontation with data attempted. (author)
Dimensional Reduction and Hadronic Processes
International Nuclear Information System (INIS)
Signer, Adrian; Stoeckinger, Dominik
2008-01-01
We consider the application of regularization by dimensional reduction to NLO corrections of hadronic processes. The general collinear singularity structure is discussed, the origin of the regularization-scheme dependence is identified and transition rules to other regularization schemes are derived.
Top production at hadron colliders
Indian Academy of Sciences (India)
New results on top quark production are presented from four hadron collider experiments: CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC. Cross-sections for single top and top pair production are discussed, as well as results on the top–antitop production asymmetry and searches for new physics including ...
Hadron production simulation by FLUKA
Battistoni, G; Ferrari, A; Ranft, J; Roesler, S; Sala, P R
2013-01-01
For the purposes of accelerator based neutrino experiments, the simulation of parent hadron production plays a key role. In this paper a quick overview of the main ingredients of the PEANUT event generator implemented in the FLUKA Monte Carlo code is given, together with some benchmarking examples.
A PARTNERship for hadron therapy
2008-01-01
PARTNER, the Particle Training Network for European Radiotherapy, has recently been awarded 5.6 million euros by the European Commission. The project, which is coordinated by CERN, has been set up to train researchers of the future in hadron therapy and in doing so aid the battle against cancer.
Electroweak results from hadron colliders
International Nuclear Information System (INIS)
Demarteau, Marcel
1997-01-01
A review of recent electroweak results from hadron colliders is given. Properties of the W ± and Z 0 gauge bosons using final states containing electrons and muons based on large integrated luminosities are presented. The emphasis is placed on the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings
Feigenbaum constants in hadron collisions
International Nuclear Information System (INIS)
Batunin, A.V.
1991-01-01
The coincidence is found between the law n ch (s) growth in hadron collisions for symmetric rapidity intervals and the law of growth of the number of elements in limit 2 m -cycles for one-dimensional quadratic maps when a govering parameter is varied. Fractal structure of the corresponding attractor underlies intermittency phenomenon in the multiplicity distribution of particles. 12 refs.; 1 fig
Salazar De Paula, Leandro
2015-01-01
The latest years have seen a resurrection of interest in searches for exotic states motivated by tantalising observations by Belle and CDF. Using the data collected at pp collisions at 7 and 8 TeV by the LHCb experiment we present the unambiguous new observation of exotic charmonia hadrons produced in B decays.
Energy Technology Data Exchange (ETDEWEB)
Wilkinson, III, Richard Paul [Univ. of Pennsylvania, Philadelphia, PA (United States)
1997-01-01
We present evidence for hadronic W decays in t$\\bar{t}$ → lepton + neutrino + ≥ 4 jet events using a 109 pb ^{-1} data sample of p$\\bar{p}$ collisions at √s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF).
CERN's Large Hadron Collider project
Fearnley, Tom A.
1997-03-01
The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B.
CERN's Large Hadron Collider project
International Nuclear Information System (INIS)
Fearnley, Tom A.
1997-01-01
The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B
Charmed hadrons in nuclear medium
Tolos, L.; Gamermann, D.; Garcia-Recio, C.; Molina, R.; Nieves, J.; Oset, E.; Ramos, A.
We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the
Hadron interactions in quark models
International Nuclear Information System (INIS)
Narodetskij, I.M.
1987-01-01
Some recent developments on the study of quark degrees of freedom in hadron scattering at intermediate energy are reviewed. Physical foundations of the P-matrix approach and the Quark Compound Bag method are discussed including applications to pion-pion, pion-nucleon, nucleon-nucleon and three-nucleon systems
Polarization effects in hadron fragmentation
International Nuclear Information System (INIS)
Lednicky, R.
1984-01-01
Hadron polarization (spin alignment) and polarization asymmetry are discussed in terms of the quark recombination model with the spin-orbit interaction taken into account. It is shown that predictions of this model are at least in qualitative agreement with experimental data. Various polarization mechanisms in terms of this model and the possibility of their checking are also discussed
Higgs-photon associated production at hadron colliders
International Nuclear Information System (INIS)
Abbasabadi, A.; Repko, W.W.
1997-01-01
The authors present cross sections for the reactions p anti p → Hγ and pp → Hγ arising from the subprocess q anti q → Hγ. The calculation includes the complete one-loop contribution from all light quarks and is the main source of Higgs-photon associated production in hadron colliders. At Tevatron energies, the cross section is typically 0.1 fb or less, while at LHC energies it can exceed 1.0fb
Properties of the hadronic system produced in antineutrino proton interactions
International Nuclear Information System (INIS)
Musgrave, B.
1979-01-01
The separation of the hadronic system produced in anti νp charged-current reactions into the current and target fragmentation components is discussed. The current fragments show properties in good qualitative agreement with the expectations of the naive quark-parton model. In particular, there is no evidence for either a Q 2 - or X/sub BJ/-dependence of the fragmentation functions. 7 references
Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong; PAN Feng
2001-01-01
The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.
Neutron spectra measuring by magnetless hadron spectrometer
International Nuclear Information System (INIS)
Bayukov, Yu.D.; Buklej, A.E.; Gavrilov, V.B.
1980-01-01
The energy resolution, efficiency and background conditions of neutron recording in inclusive nuclear reactions by a magnetless hadron spectrometer (MHS) in the 8-300 MeV energy range. The scheme of apparatus lay-out for measuring neutron recording efficiency is shown. For recording colliding particles with the 3 GeV/c momentum four beam scintillation counters, the latter of which of 30x40 mm dimensions and 1 mm thickness defines the working beam range in the target centre, are used. Targets of the 80 mm diameter made of C and Pb (2.08 g/cm 2 and 3.04 g/cm 2 thickness, respectively) are located at the 45 deg angle in respect to the beam direction. Secondary particles escaping at the 90 deg angle are recorded by two telescopes of the scintillation counters. For neutron and γ quanta recording the special scintillation detector of the 20 cm thickness encircled by an anticoincidence counter is used. The neutron recording efficiency is determined on the basis of comparison of the neutron production differential cross sections of the π +- 12 C 6 → nX reactions and of proton production in isotopically symmetric reactions π +- 12 C 6 → pX. The experimental data are in good agreement with the calculation data [ru
Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions
Energy Technology Data Exchange (ETDEWEB)
Guenther, Anneke
2011-02-02
calculate the {sup 4}He ground-state energy. As they are of direct interest for nuclear astrophysics collective excitation modes, namely giant resonances, are investigated in the framework of the Random Phase Approximation. Including the full three-body interaction would be very time-demanding. Therefore, a density-dependent two-body interaction is used instead. This simple interaction leads to a significant improvement in the description of the isovector dipole and isoscalar quadrupole resonances while the isoscalar monopole resonances remain in good agreement with experimental data compared to the results obtained with pure unitarily transformed two-body interactions. (orig.)
International Nuclear Information System (INIS)
Pripstein, M.
1975-06-01
The discussion of pion charge-exchange and hadron production at large transverse momenta includes the physics motivation, the experimental method event selection criteria, results for the reaction π - p → nπ 0 (eta)
Heavy hadron spectroscopy: A quark model perspective
International Nuclear Information System (INIS)
Vijande, J.; Valcarce, A.; Caramés, T.F.; Garcilazo, H.
2013-01-01
We present recent results of hadron spectroscopy and hadron–hadron interaction from the perspective of constituent quark models. We pay special attention to the role played by higher order Fock space components in the hadron spectra and the connection of this extension with the hadron–hadron interaction. The main goal of our description is to obtain a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about low-energy realization of the theory
Multiplicity fluctuations in a hadron gas with exact conservation laws
International Nuclear Information System (INIS)
Becattini, Francesco; Keraenen, Antti; Ferroni, Lorenzo; Gabbriellini, Tommaso
2005-01-01
The study of fluctuations of particle multiplicities in relativistic heavy-ion reactions has drawn much attention in recent years, because they have been proposed as a probe for underlying dynamics and possible formation of quark-gluon plasma. Thus it is of uttermost importance to describe the baseline of statistical fluctuations in the hadron gas phase in a correct way. We performed a comprehensive study of multiplicity distributions in the full ideal hadron-resonance gas in different ensembles, namely grand canonical, canonical, and microcanonical, by using two different methods: Asymptotic expansions and full Monte Carlo simulations. The method based on asymptotic expansion allows a quick numerical calculation of dispersions in the hadron gas with three conserved charges at the primary hadron level, while the Monte Carlo simulation is suitable for studying the effect of resonance decays. Even though mean multiplicities converge to the same values, major differences in fluctuations for these ensembles persist in the thermodynamic limit, as pointed out in recent studies. We observe that this difference is ultimately related to the nonadditivity of the variances in the ensembles with exact conservation of extensive quantities
The LOCV asymmetric nuclear matter two-body density distributions versus those of FHNC
Tafrihi, Azar
2018-05-01
The theoretical computations of the electron-nucleus scattering can be improved, by employing the asymmetric nuclear matter (ASM) two-body density distributions (TBDD) . But, due to the sophistications of the calculations, the TBDD with arbitrary isospin asymmetry have not yet been computed in the Fermi Hypernetted Chain (FHNC) or the Monte Carlo (MC) approaches. So, in the present work, we intend to find the ASM TBDD, in the states with isospin T, spin S and spin projection Sz, in the Lowest Order Constrained Variational (LOCV) method. It is demonstrated that, at small relative distances, independent of the proton to neutron ratio β, the state-dependent TBDD have a universal shape. Expectedly, it is observed that, at low (high) β values, the nucleons prefer to make a pair in the T = 1(0) states. In addition, the strength of the tensor-dependent correlations is investigated, using the ratio of the TBDD in the TSSz = 010 state with θ = π / 2 and that of θ = 0. The mentioned ratios peak at r ∼ 0 . 9 fm, considering different β values. It is hoped that, the present results could help a better reproduction of the experimental data of the electron-nucleus scattering.
Short versus long range interactions and the size of two-body weakly bound objects
International Nuclear Information System (INIS)
Lombard, R.J.; Volpe, C.
2003-01-01
Very weakly bound systems may manifest intriguing ''universal'' properties, independent of the specific interaction which keeps the system bound. An interesting example is given by relations between the size of the system and the separation energy, or scaling laws. So far, scaling laws have been investigated for short-range and long-range (repulsive) potentials. We report here on scaling laws for weakly bound two-body systems valid for a larger class of potentials, i.e. short-range potentials having a repulsive core and long-range attractive potentials. We emphasize analogies and differences between the short- and the long-range case. In particular, we show that the emergence of halos is a threshold phenomenon which can arise when the system is bound not only by short-range interactions but also by long-range ones, and this for any value of the orbital angular momentum l. These results enlarge the image of halo systems we are accustomed to. (orig.)
An investigation of two-body abrasive wear of laser processed surfaces
International Nuclear Information System (INIS)
Abass, G.
1995-01-01
This paper reports two body abrasive wear studies of alloy and composite deposits produced with a 2 kW continuous wave CO/sub 2/ laser. Stellite alloy 6, Alloy 4815, Stainless steel and SiC powders were used to produce alloy and composite deposits on an En 3b mild steel substrate. The cladding material was injected into the laser produced melt pool by means of a pneumatic powder delivery system. In the present studies instead of using the conventional pin-on-disc method of wear measurement, a more realistic and practical wear testing procedure was adopted. The wear testing machine used was capable of measuring wear of three comparatively larger (30 x 30 x 10 mm) clad samples by abrading simultaneously against a revolving alumina disc. A comparative study of microstructure, hardness and wear of alloy and composite clads was made. The clad deposits were found sound and continuous. The hardness and wear resistance of the composites were markedly higher than that of the alloy clads. (author) 9 figs
Medium modified two-body scattering amplitude from proton-nucleus total cross-sections
Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.
2001-01-01
Recently (R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 145 (1998) 277; R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA-TP-1998-208438), we have extracted nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. Here, we investigate the ratio of real to imaginary part of the two-body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate total proton-nucleus cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2001 Elsevier Science B.V. All rights reserved.
Three-body calculation of two-body threshold electrodisintegration of 3He and 3H
International Nuclear Information System (INIS)
Heimbach, C.R.; Lehman, D.R.; O'Connell, J.S.
1977-01-01
Threshold two-body electrodisintegration of 3 He and 3 H is investigated within the context of exact three-body theory. The calculations performed are based on the formalism of Gibson and Lehman. Careful consideration is given to the singularities of the disintegration Born amplitude for this case, since the momentum transfer is not zero, to assure validity of the numerical methods. Calculated results are compared with all the latest threshold 3 He electrodisintegration data which samples a range of scattered-electron angles, 92.6 0 0 , and incident electron energies, 40 MeV 0 3 H electrodisintegration for some of the same kinematics. The mechanism for the sharp rise as a function of excitation energy in the (e,e') cross section for theta/sub e/ approx. 90 0 due to the 2 S → 2 S monopole transition from Coulomb scattering is singled out by examination of the contributions to the Coulomb doublet amplitude. A similar analysis is carried out for the doublet and quartet transverse amplitudes where the 2 S → 4 P magnetic quadrupole transition dominates for excitation energies less than 20 MeV
Experimental determination of two-body spectrum and pair polarizability of argon
International Nuclear Information System (INIS)
Barocchi, F.; Zoppi, M.
1980-01-01
Despite the considerable amount of experimental and theoretical work which has been done in the past ten years on collision-induced light scattering (CILS) with investigation of depolarized scattering in moderate- and high-pressure gases, liquids and even solids of isotropic molecules, various discrepancies, as far as the quantitative comparison is concerned, do still remain among the various experiments. In order to understand in detail the scattering mechanism and make useful connections between experiments and theory, those discrepancies must be understood and results reconciled. To try to derive reliable information from CILS, we performed an experiment in gaseous argon at T = 298 K between 10 and 250 amagat devoting particular attention to possible sources of discrepancies. First, we introduce the general expressions for the moments of the two-body spectrum and briefly discuss the results of preceding experiments for the integrated intensity, then the experimental procedure and results of the present experiment in argon will be described in some detail. (KBE)
Two-body Dirac equation and its wave function at the origin
International Nuclear Information System (INIS)
Ito, Hitoshi
1998-01-01
We propose a relativistic bound state equation for the Dirac particles interacting through an Abelian gauge field. It reduces to the (one body) Dirac equation in the infinite limit of one of the masses and is invariant under the PCT transformation. This invariance is a consequence of a modification of the Stueckelberg-Feynman boundary condition for propagation of the negative-energy two-body states, by which the some effect of the crossed diagram is taken in the lowest ladder equation. We can correct back the modification in perturbative calculations of the weak-coupling theory by adding a counter correction term in the interaction kernel. The equation can be used for the phenomenology of the heavy flavored mesons. We get good behavior of the wave function at the origin (WFO), with which the annihilation amplitude of the pseudoscalar meson becomes finite. Some comments are mentioned for the application in the heavy quark effective theory. The talk was based on a preprint
Schwinger variational principle in the nuclear two-body problem and multichannel theory
International Nuclear Information System (INIS)
Zubarev, A.L.; Podkopaev, A.P.
1978-01-01
The aim of the investigation is to study the Schwinger variational principle in the nuclear two-body problem and the multichannel theory. An approach is proposed to problems of the potential scattering based on the substitution of the exact potential operator V by the finite rank operator Vsup((n)) with which the dynamic equations are solved exactly. The functionals obtained for observed values coincide with corresponding expressions derived by the Schwinger variational principle with the set of test functions. The determination of the Schwinger variational principle is given. The method is given for finding amplitude of the double-particle scattering with the potential Vsup((n)). The corresponding amplitudes are constructed within the framework of the multichannel potential model. Interpolation formula for determining amplitude, which describes with high accuracy a process of elastic scattering for any energies, is obtained. On the basis of the above method high-energy amplitude may be obtained within the range of small and large scattering angles
Coulomb interference and bending slope in hadron-hadron scattering
International Nuclear Information System (INIS)
Pereira, Flavio I.; Ferreira, Erasmo
1994-01-01
With the purpose of testing the results of QCD calculations on the structure of the forward elastic scattering cross-section, we analyse the coulombic-nuclear interference occurring at small values of the momentum transfer. We emphasize the influence of the hadronic structures on the determination of the Coulomb phase and consequently on the t-dependence of the strong interaction slope parameter. (author)
Hadronic photon-photon interactions at high energies
International Nuclear Information System (INIS)
Engel, R.; Siegen Univ.; Ranft, J.
1996-01-01
Photon-photon collisions are investigated in the framework of the two-component Dual Parton Model. The model contains contributions from direct, resolved soft and resolved hard interactions. All free parameters of the model are determined in fits to hadron-hadron and photon-hadron cross section data. The model is shown to agree well to hadron production data from hadron-hadron and photon-hadron collisions. The multiparticle production in hadron-hadron, photon-hadron and photon-photon collisions as predicted by the model is compared. Strong differences are only found as function of the transverse momentum variable. (author)
Srivastava, D K; Kvasnikova, I; Gale, C; Srivastava, Dinesh Kumar; Sinha, Bikash; Kvasnikova, Ioulia; Gale, Charles
2002-01-01
The production of single photons in $Pb+Pb$ collisions at the CERN SPS as measured by the WA98 experiment is analysed. A very good description of the data is obtained if a quark gluon plasma is assumed to be formed initially, which expands, cools, hadronizes, and undergoes freeze-out. A rich hadronic equation of state is used and the transverse expansion of the interacting system is taken into account. The recent estimates of photon production in quark-matter (at two loop level) along with the dominant reactions in the hadronic matter leading to photons are used. Most of the radiation of the photons is seen to arise from the quark-matter, which contributes dominantly through the mechanism of annihilation of quarks with scattering, and which in turn is possible only in a hot and dense plasma of quarks and gluons. The same treatment provides a very good description to hadronic spectra measured by several groups and the intermediate mass dileptons measured by the NA50 experiment, lending a strong support to the ...
Supersymmetry across the Hadronic Spectrum
Directory of Open Access Journals (Sweden)
Hans Günter Dosch
2017-01-01
Full Text Available Semiclassical light-front bound-state equations for hadrons are presented and compared with experiment. The essential dynamical feature is the holographic approach; that is, the hadronic equations in four-dimensional Minkowski space are derived as holograms of classical equations in a 5-dimensional anti-de Sitter space. The form of the equations is constrained by the imposed superconformal algebra, which fixes the form of the light-front potential. If conformal symmetry is strongly broken by heavy quark masses, the combination of supersymmetry and the classical action in the 5-dimensional space still fixes the form of the potential. By heavy quark symmetry, the strength of the potential is related to the heavy quark mass. The contribution is based on several recent papers in collaboration with Stan Brodsky and Guy de Téramond.
Hadron therapy information sharing prototype
Roman, Faustin Laurentiu; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose
2013-01-01
The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.
Quantum groups in hadron phenomenology
International Nuclear Information System (INIS)
Gavrilik, A.M.
1997-01-01
We show that application of quantum unitary groups, in place of ordinary flavor SU(n f ), to such static aspects of hadron phenomenology as hadron masses and mass formulas is indeed fruitful. So-called q-deformed mass formulas are given for octet baryons 1/2 + and decuplet baryons 3/2 + , as well as for the case of vector mesons 1 - involving heavy flavors. For deformation parameter q, rigid fixation of values is used. New mass sum rules of remarkable accuracy are presented. As shown in decuplet case, the approach accounts for effects highly nonlinear in SU(3)-breaking. Topological implication (possible connection with knots) for singlet vector mesons and the relation q ↔ Θ c (Cabibbo angle) in case of baryons are considered
Hadron therapy physics and simulations
d’Ávila Nunes, Marcos
2014-01-01
This brief provides an in-depth overview of the physics of hadron therapy, ranging from the history to the latest contributions to the subject. It covers the mechanisms of protons and carbon ions at the molecular level (DNA breaks and proteins 53BP1 and RPA), the physics and mathematics of accelerators (Cyclotron and Synchrotron), microdosimetry measurements (with new results so far achieved), and Monte Carlo simulations in hadron therapy using FLUKA (CERN) and MCHIT (FIAS) software. The text also includes information about proton therapy centers and carbon ion centers (PTCOG), as well as a comparison and discussion of both techniques in treatment planning and radiation monitoring. This brief is suitable for newcomers to medical physics as well as seasoned specialists in radiation oncology.
Nonlocality in many-body quantum systems detected with two-body correlators
Energy Technology Data Exchange (ETDEWEB)
Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)
2015-11-15
Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.
Chain and ladder models with two-body interactions and analytical ground states
Manna, Sourav; Nielsen, Anne E. B.
2018-05-01
We consider a family of spin-1 /2 models with few-body, SU(2)-invariant Hamiltonians and analytical ground states related to the one-dimensional (1D) Haldane-Shastry wave function. The spins are placed on the surface of a cylinder, and the standard 1D Haldane-Shastry model is obtained by placing the spins with equal spacing in a circle around the cylinder. Here, we show that another interesting family of models with two-body exchange interactions is obtained if we instead place the spins along one or two lines parallel to the cylinder axis, giving rise to chain and ladder models, respectively. We can change the scale along the cylinder axis without changing the radius of the cylinder. This gives us a parameter that controls the ratio between the circumference of the cylinder and all other length scales in the system. We use Monte Carlo simulations and analytical investigations to study how this ratio affects the properties of the models. If the ratio is large, we find that the two legs of the ladder decouple into two chains that are in a critical phase with Haldane-Shastry-like properties. If the ratio is small, the wave function reduces to a product of singlets. In between, we find that the behavior of the correlations and the Renyi entropy depends on the distance considered. For small distances the behavior is critical, and for long distances the correlations decay exponentially and the entropy shows an area law behavior. The distance up to which there is critical behavior gets larger as the ratio increases.
Charmless two-body B(s)→VP decays in soft collinear effective theory
International Nuclear Information System (INIS)
Wang Wei; Wang Yuming; Yang Deshan; Lue Caidian
2008-01-01
We provide the analysis of charmless two-body B→VP decays under the framework of the soft collinear effective theory (SCET), where V(P) denotes a light vector (pseudoscalar) meson. Besides the leading power contributions, some power corrections (chiraly enhanced penguins) are also taken into account. Using the current available B→PP and B→VP experimental data on branching fractions and CP asymmetry variables, we find two kinds of solutions in χ 2 fit for the 16 nonperturbative inputs which are essential in the 87 B→PP and B→VP decay channels. Chiraly enhanced penguins can change several charming penguins sizably, since they share the same topology. However, most of the other nonperturbative inputs and predictions on branching ratios and CP asymmetries are not changed too much. With the two sets of inputs, we predict the branching fractions and CP asymmetries of other modes especially B s →VP decays. The agreements and differences with results in QCD factorization and perturbative QCD approach are analyzed. We also study the time-dependent CP asymmetries in channels with CP eigenstates in the final states and some other channels such as B 0 /B 0 →π ± ρ ± and B s 0 /B s 0 →K ± K* ± . In the perturbative QCD approach, the (S-P)(S+P) penguins in annihilation diagrams play an important role. Although they have the same topology with charming penguins in SCET, there are many differences between the two objects in weak phases, magnitudes, strong phases, and factorization properties.
Full Two-Body Problem Mass Parameter Observability Explored Through Doubly Synchronous Systems
Davis, Alex Benjamin; Scheeres, Daniel
2018-04-01
The full two-body problem (F2BP) is often used to model binary asteroid systems, representing the bodies as two finite mass distributions whose dynamics are influenced by their mutual gravity potential. The emergent behavior of the F2BP is highly coupled translational and rotational mutual motion of the mass distributions. For these systems the doubly synchronous equilibrium occurs when both bodies are tidally-locked and in a circular co-orbit. Stable oscillations about this equilibrium can be shown, for the nonplanar system, to be combinations of seven fundamental frequencies of the system and the mutual orbit rate. The fundamental frequencies arise as the linear periods of center manifolds identified about the equilibrium which are heavily influenced by each body’s mass parameters. We leverage these eight dynamical constraints to investigate the observability of binary asteroid mass parameters via dynamical observations. This is accomplished by proving the nonsingularity of the relationship between the frequencies and mass parameters for doubly synchronous systems. Thus we can invert the relationship to show that given observations of the frequencies, we can solve for the mass parameters of a target system. In so doing we are able to predict the estimation covariance of the mass parameters based on observation quality and define necessary observation accuracies for desired mass parameter certainties. We apply these tools to 617 Patroclus, a doubly synchronous Trojan binary and flyby target of the LUCY mission, as well as the Pluto and Charon system in order to predict mutual behaviors of these doubly synchronous systems and to provide observational requirements for these systems’ mass parameters
New possibilities for exotic hadrons
International Nuclear Information System (INIS)
Lipkin, H.J.
1987-01-01
New theoretical ideas and experimental evidence for exotic hadrons are presented. A new exciting candidate is an anticharmed baryon; i.e., a bound state of a nucleon and an F (now called D 3 ). New experimental evidence for four-quark exotic mesons presented at this conference is discussed. The confusion in the E-iota region and the pseudoscalar spectrum still await further experimental clarification
Hard processes in hadronic interactions
International Nuclear Information System (INIS)
Satz, H.; Wang, X.N.
1995-01-01
Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks' duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley
Heavy leptons at hadron colliders
International Nuclear Information System (INIS)
Ohnemus, J.E.
1987-01-01
The recent advent of high energy hadron colliders capable of producing weak bosons has opened new vistas for particle physics research, including the search for a possible fourth generation heavy charged lepton, which is the primary topic of the thesis. Signals for identifying a new heavy lepton have been calculated and compared to Standard Model backgrounds. Results are presented for signals at the CERN collider, the Fermilab collider, and the proposed Superconducting Supercollider
Hadron Structure '87. Volume 14
International Nuclear Information System (INIS)
Krupa, D.
1988-01-01
Out of the 21 papers and 41 short communications presented at the conference, the proceedings contain the full texts of 12 papers and 35 short communications. All these contributions have been inputted to INIS. The topics covered include nonperturbative calculations in the field theory, in QCD in particular; particle production in hadron-nucleus and nucleus-nucleus collisions and the quark-gluon plasma; and recent experimental results in the field. (A.K.)
Hadrons, the simplest gentilionic systems
International Nuclear Information System (INIS)
Cattani, M.S.D.
1987-11-01
Basic quantum mechanical properties of systems constituted by two and three gentileons are deduced in this paper. By using Pauli's theorem and symmetry properties of the intermediate states it is shown that, in some cases, gentileons must have half-odd-integral spin. As an immediate and natural result of our theoretical analysis, we show how fundamental observed properties of composed hadrons can be predicted from first principles assuming quarks as spin 1/2 gentileons. (author) [pt
Hadronic resonances at FAIR energies
International Nuclear Information System (INIS)
Vogel, Sascha
2013-01-01
These proceedings cover the analysis of hadronic resonances in heavy ion collisions. The model used for these studies is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model. The model will be briefly explained, resonance observables will be highlighted and various kinematical issues will be investigated. Special emphasis will be put on the FAIR energy regime, especially highlighting the Compressed Baryonic Matter (CBM) program.
Experiments at future hadron colliders
International Nuclear Information System (INIS)
Paige, F.E.
1991-01-01
This report summarizes signatures and backgrounds for processes in high-energy hadronic collisions, particularly at the SSC. It includes both signatures for new particles -- t quarks, Higgs bosons, new Ζ' bosons, supersymmetric particles, and technicolor particles -- and other experiments which might be done. It is based on the 1990 Snowmass Workshop and on work contained in the Expressions of Interest submitted to the SSC. 46 refs., 19 figs., 1 tab
Two-body photodisintegration of [sup 3]He between 200 and 800 MeV
Energy Technology Data Exchange (ETDEWEB)
Isbert, V. (SPhN-DAPNIA, C.E.N. Saclay, 91191 Gif sur Yvette (France)); Audit, G. (SPhN-DAPNIA, C.E.N. Saclay, 91191 Gif sur Yvette (France)); D' Hose, N. (SPhN-DAPNIA, C.E.N. Saclay, 91191 Gif sur Yvette (France)); Kerhoas, S. (SPhN-DAPNIA, C.E.N. Saclay, 91191 Gif sur Yvette (France)); MacCormick, M. (SPhN-DAPNIA, C.E.N. Saclay, 91191 Gif sur Yvette (France)); Tamas, G. (SPhN-DAPNIA, C.E.N. Saclay, 91191 Gif sur Yvette (France)); Wallace, P.A. (SPhN-DAPNIA, C.E.N. Saclay, 91191 Gif sur Yvette (France)); Altieri, S. (INFN-Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy) Dipartimento di Fisica Nucleare e Teorica, Universita degli Studi di Pavia, via Bassi 6, 27100 Pavia (Italy)); Braghieri, A. (INFN-Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy) Dipartimento di Fisica Nucleare e Teorica, Universita degli Studi di Pavia, via Bassi 6, 27100 Pavia (Italy)); Pedroni, P. (INFN-Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy)); Pinelli, T. (INFN-Sezione di Pavia, via Bassi 6; DAPHNE Collaboration
1994-10-10
Differential cross sections for the [sup 3]He([gamma],pd) reaction at photon energies between 200 and 800 MeV at all proton c.m. angles between 35[sup circle] and 145[sup circle] have been measured using the tagged photon beam facility of the 855 MeV MAMI accelerator in Mainz. Reaction products were detected using the large acceptance detector DAPHNE. The results confirm the rapid decrease of forward-angle cross sections with increasing E[sub [gamma
Ultra-Fast Hadronic Calorimetry
Energy Technology Data Exchange (ETDEWEB)
Denisov, Dmitri [Fermilab; Lukić, Strahinja [VINCA Inst. Nucl. Sci., Belgrade; Mokhov, Nikolai [Fermilab; Striganov, Sergei [Fermilab; Ujić, Predrag [VINCA Inst. Nucl. Sci., Belgrade
2017-12-18
Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.
Signatures of Parton Exogamy in e+ e- -> W+ W- -> hadrons
Ellis, John; Geiger, Klaus
1997-01-01
We propose possible signatures of `exogamous' combinations between partons in the different W+ and W- hadron showers in e+e- -> W+W- events with purely hadronic final states. Within the space-time model for hadronic shower development that we have proposed previously, we find a possible difference of about 10 % between the mean hadronic multiplicity in such purely hadronic final states and twice the hadronic multiplicity in events in which one W decays hadronically and the other leptonically,...
International Nuclear Information System (INIS)
Albino, S.; Kniehl, B.A.; Kramer, G.; Sandoval, C.
2006-11-01
Predictions for light charged hadron production data in the current fragmentation region of deeply inelastic scattering from the H1 and ZEUS experiments are calculated using perturbative Quantum Chromodynamics at next-to-leading order, and using fragmentation functions obtained by fitting to similar data from e + e - reactions. General good agreement is found when the magnitude Q 2 of the hard photon's virtuality is sufficiently large. The discrepancy at low Q and small scaled momentum x p is reduced by incorporating mass effects of the detected hadron. By performing quark tagging, the contributions to the overall fragmentation from the various quark flavours in the ep reactions are studied and compared to the contributions in e + e - reactions. The yields of the various hadron species are also calculated. (orig.)
Analysis of elastic interactions of hadrons at high energies
International Nuclear Information System (INIS)
Yuldashev, B.S.; Fazilova, Z.F.; Ismatov, E.I.; Kurmanbai, M.S.; Ajniyazova, G.T.; Tskhay, K.V.; Medeuova, A.B.
2004-01-01
Study of elastic interactions of hadrons at high energies if of great interest due to the fact that the amplitude of this process is the simplest, and at the same time, it is a fundamental object for theoretical and experimental researches. Study of this process allows one to have a quantitative check of various theories and models, and to make a critical selection. By using of fundamental property of theory - unitarity condition of scattering matrix - elastic scattering can be connected with inelastic reaction. Based on S-channel unitarity condition expressing elastic amplitude via inelastic overlapping function, to study the latter, as well as to describe the experimentally measured characteristics of hadron-nucleon interactions at high-energies, as well as for results prediction. By using experimental data on differential cross-section of elastic scattering of hadrons at various energies and by theoretical information on ratio of a real part and an imaginary part of scattering amplitude δ(t) the t-dependence of inelastic and elastic overlapping functions is studied. Influence of a zigzag form of differential cross-section of elastic pp(p) scattering on profile function and inelastic overlapping function to violation of geometric scaling was studied. In frames of the scaling the general expressions for s- and t-dependences of inelastic overlapping function are derived. Comparison of this function in three elastic scattering models was carried out. It was demonstrated that one would need to assume that hadrons become blacker at central part in order to correctly describe experimental angular distribution data. Dependence of differential cross-section on transfer momentum square for elastic hadrons scattering at energies of ISR and SPS in the model of inelastic overlapping function is studied. (author)
Analysis of elastic interactions of hadrons at high energies
International Nuclear Information System (INIS)
Fazylov, M.I.; Yuldashev, B.S.; Azhniyazova, G.T.; Ismatov, E.I.; Sartbay, T.; Kurmanbay, M.S.; Tskhay, K.V.
2004-01-01
Full text: Study of elastic interactions of hadrons at high energies if of great interest due to the fact that the amplitude of this process is the simplest, and at the same time, it is a fundamental object for theoretical and experimental researches. Study of this process allows one to have a quantitative check of various theories and models, and to make a critical selection. By using of fundamental property of theory - unitarity condition of scattering matrix - elastic scattering can be connected with inelastic reaction. Based on S-channel unitarity condition expressing elastic amplitude via inelastic overlapping function, to study the latter, as well as to describe the experimentally measured characteristics of hadron-nucleon interactions at high-energies, as well as for results prediction. By using experimental data on differential cross-section of elastic scattering of hadrons at various energies and by theoretical information on ratio of a real part and an imaginary part of scattering amplitude δ(t) the t-dependence of inelastic and elastic overlapping functions is studied. Influence of a zigzag form of differential cross-section of elastic pp(p) scattering on profile function and inelastic overlapping function to violation of geometric scaling was studied. In frames of the scaling the general expressions for s- and t-dependences of inelastic overlapping function are derived. Comparison of this function in three elastic scattering models was carried out. It was demonstrated that one would need to assume that hadrons become blacker at central part in order to correctly describe experimental angular distribution data. Dependence of differential cross-section on transfer momentum square for elastic hadrons scattering at energies of ISR and SPS in the model of inelastic overlapping function is studied
Quasiparticle effects in the two-body photodisintegration of 4He
International Nuclear Information System (INIS)
Boettger, W.; Casel, A.; Sandhas, W.
1979-09-01
The total cross sections for the reactions 4 He(γ,n) 3 He and 4 He(γ,p) 3 H are calculated for photon energies between 50 MeV and 150 MeV in a quasiparticle formalism, leading to a simple interpretation for the γ-absorption mechanism. Results are compared with shell model calculations. (orig.)
Investigation of effects beyond two-body forces in three-nucleon systems
Ermisch, K.; van den Berg, A.M.; Bieber, R.; Hagemann, M.; Hannen, V.M.; Harakeh, M.N.; de Huu, M.A.; Kalantar-Nayestanaki, N.; Kis, M.; Micherdzilska, A.; Shafiei, M.; Wörtche, H.J.
2001-01-01
An experiment has been performed at KVI to measure vector analyzing powers and differential cross sections of the D((p) over right arrow pd) reaction as a function of incident beam energy. The measurements have been performed so far at several kinetic energies of the incoming particle between 108
International Nuclear Information System (INIS)
Zhao Hongsheng; Li Baojiu; Bienayme, Olivier
2010-01-01
We derive a simple analytical expression for the two-body force in a subclass of modified Newtonian dynamics (MOND) theories and make testable predictions in the modification to the two-body orbital period, shape, precession rate, escape speed, etc. We demonstrate the applications of the modified Kepler's law in the timing of satellite orbits around the Milky Way, and checking the feasibility of MOND in the orbit of the large Magellanic cloud, the M31 galaxy, and the merging bullet clusters. MOND appears to be consistent with satellite orbits although with a tight margin. Our results on two-bodies are also generalized to restricted three-body, many-body problems, rings, and shells.
Proceedings of the third symposium on science of hadrons under extreme conditions
Energy Technology Data Exchange (ETDEWEB)
Chiba, Satoshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-09-01
The third symposium on Science of Hadrons under Extreme Conditions, organized by the Research Group for Hadron Science, Advanced Science Research Center, was held at Tokai Research Establishment of JAERI on January 29 to 31, 2001. The symposium was devoted for discussions and presentations of research results in wide variety of hadron physics such as nuclear matter, high-energy nuclear reactions, quantum chromodynamics, neutron stars, supernovae, nucleosynthesis as well as finite nuclei to understand various aspects of hadrons under extreme conditions. Twenty two papers on these topics presented at the symposium, including a special talk on the present status of JAERI-KEK joint project on high-intensity proton accelerator, aroused lively discussions among approximately 40 participants. The 20 of the presented papers are indexed individually. (J.P.N.)
Relativistic two-body system in (1+1)-dimensional QED. 1. On the circle S1
International Nuclear Information System (INIS)
Barut, A.O.; Saradzhev, F.M.
1994-01-01
From the coupled Maxwell-Dirac equations for two fermion fields Ψ 1 , Ψ 2 the authors derive a covariant two-body equation for the composite field Φ(x 1 , x 2 ) in configuration space which includes radiative self-energy effects. Both Coulomb gauge and covariant gauge have been used and their equivalence is proved. For the space S 1 the authors solve the two-body equation with mutual interactions exactly and obtain the mass spectrum in the case of massless fermions. 7 refs., 5 figs
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Hadron correlations from recombination and fragmentation
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2005-04-01
We review the formalism of quark recombination applied to the hadronization of a quark-gluon plasma. Evidence in favour of the quark recombination model is outlined. Recent work on parton correlations, leading to detectable correlations between hadrons, is discussed. Hot spots from completely quenched jets are a likely source of such correlations which appear to be jet like. It will be discussed how such a picture compares with measurement of associated hadron yields at RHIC.
Compilation of data from hadronic atoms
International Nuclear Information System (INIS)
Poth, H.
1979-01-01
This compilation is a survey of the existing data of hadronic atoms (pionic-atoms, kaonic-atoms, antiprotonic-atoms, sigmonic-atoms). It collects measurements of the energies, intensities and line width of X-rays from hadronic atoms. Averaged values for each hadronic atom are given and the data are summarized. The listing contains data on 58 pionic-atoms, on 54 kaonic-atoms, on 23 antiprotonic-atoms and on 20 sigmonic-atoms. (orig./HB) [de
International Nuclear Information System (INIS)
Ji, C.R.
1999-01-01
This report details research progress and results obtained during the entire period of the research project. In compliance with grant requirements the Principal Investigator, Professor Chueng-Ryong Ji, has conducted a research program addressing theoretical investigations of hadron structure and reactions using quantum chromodynamic quark models. This Principal Investigator has devoted 50% of his time during the academic year and 100% of his time in the summer. This percent effort has continued during the entire period of the grant. The new, significant research results are briefly summarized in this report. Finally, full, detailed descriptions of completed work can be found in the project publications which are listed at the end of this technical report
Elastic diffraction interactions of hadrons at high energies
International Nuclear Information System (INIS)
Ismatov, E.I.; Ubaev, J.K.; Tshay, K.V.; Zholdasova, S.M.; Juraev, Sh.Kh.; Essaniazov, Sh.P.
2006-01-01
simplest, and at the same time, it is a fundamental object for theoretical and experimental researches. Study of this process allows one to have a quantitative check of various theories and experimental researches. Study of this process allows one to have a quantitative check of various theories and models, and to make a critical selection. By using of fundamental property of theory-unitarity condition of scattering matrix- elastic scattering can be connected with inelastic reaction. Based on S-channel unitarity condition expressing elastic amplitude via inelastic overlapping function, it is important to study the latter, as well as to describe the experimentally measured characteristics of hadron-nucleon interaction at high-energies and to have results prediction. By using experimental data on differential cross section elastic scattering of hadrons at various energies and by theoretical information on ratio of a real part and an imaginary part of scattering amplitude δ(t) the t- dependence of inelastic and elastic overlapping functions is studied. Influence of a zigzag from differential cross-section of elastic p p( p-bar) scattering on profile function and inelastic overlapping function to violation of geometric scaling was studied. In frames of scaling the general expressions for s- and t- dependences of inelastic and elastic overlapping function are derived. Comparison of this function in three elastic scattering models was carried out. It was demonstrated that one would need to assume that hadrons become blacker at central part in order to correctly describe experimental angular distribution data. Dependence of differential cross-section on transfer momentum square for elastic hadron scattering at energies of ISR and SPS in the model of inelastic overlapping function is studied [1-2]. (author)
Hadronization systematics and top mass reconstruction
Directory of Open Access Journals (Sweden)
Corcella Gennaro
2014-01-01
Full Text Available I discuss a few issues related to the systematic error on the top mass mea- surement at hadron colliders, due to hadronization effects. Special care is taken about the impact of bottom-quark fragmentation in top decays, especially on the reconstruction relying on final states with leptons and J/Ψ in the dilepton channel. I also debate the relation between the measured mass and its theoretical definition, and report on work in progress, based on the Monte Carlo simulation of fictitious top-flavoured hadrons, which may shed light on this issue and on the hadronization systematics.
XIII International Workshop on Hadron Physics
2015-01-01
The XIII International Workshop on Hadron Physics, XIII Hadron Physics, is intended for graduate students, postdocs and researchers in Hadronic Physics, High Energy Physics, Astrophysics and Effective Field Theories, who wish to improve their theoretical background, learn about recent experimental results and develop collaboration projects. The series Hadron Physics, in activity since 1988, has the format of an advanced school and has the objective to introduce, in a series of pedagogical lectures, new lines of research in Strong Interaction Physics, mainly concerned with QCD. It envisages also to stimulate collaborations in international level.
Hadronic molecules with hidden charm and bottom
Directory of Open Access Journals (Sweden)
Guo Feng-Kun
2016-01-01
Full Text Available Many of the new structures observed since 2003 in experiments in the heavy quarkonium mass region, such as the X(3872 and Zc (3900, are rather close to certain thresholds, and thus can be good candidates of hadronic molecules, which are loose bound systems of hadrons. We will discuss the consequences of heavy quark symmetry for hadronic molecules with heavy quarks. We will also emphasize that the hadronic molecular component of a given structure can be directly probed in long-distance processes, while the short-distance processes are not sensitive to it.
The Emergence of Hadrons from QCD Color
Brooks, William; Color Dynamics in Cold Matter (CDCM) Collaboration
2015-10-01
The formation of hadrons from energetic quarks, the dynamical enforcement of QCD confinement, is not well understood at a fundamental level. In Deep Inelastic Scattering, modifications of the distributions of identified hadrons emerging from nuclei of different sizes reveal a rich variety of spatial and temporal characteristics of the hadronization process, including its dependence on spin, flavor, energy, and hadron mass and structure. The EIC will feature a wide range of kinematics, allowing a complete investigation of medium-induced gluon bremsstrahlung by the propagating quarks, leading to partonic energy loss. This fundamental process, which is also at the heart of jet quenching in heavy ion collisions, can be studied for light and heavy quarks at the EIC through observables quantifying hadron ``attenuation'' for a variety of hadron species. Transverse momentum broadening of hadrons, which is sensitive to the nuclear gluonic field, will also be accessible, and can be used to test our understanding from pQCD of how this quantity evolves with pathlength, as well as its connection to partonic energy loss. The evolution of the forming hadrons in the medium will shed new light on the dynamical origins of the forces between hadrons, and thus ultimately on the nuclear force. Supported by the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) of Chile.
Correlations in hadron-hadron interactions at high energy
International Nuclear Information System (INIS)
Nguyen Huu Khanh
1978-01-01
Some main features of the experimental results on the correlations in hadron-hadron interactions at high energy are considered. Particular attention is paid to the long-range correlation, short-range correlation and Bose-Einstein effect. Long-range correlations are confirmed by the variation of the number of charged particles produced in the final state depending on energy, violation of Koba-Nielsen- Olesen scaling and the analysis of correlation betWeen the numbers of charged particles emitted in the forward and backward hemispheres. Short-range correlations are discussed from the point of view of ISR pp, 195 GeV/c pN and 32 GeV/c k + p experiments. Bose-Einstein effects are studied up to now only between pions. Pions are not produced directly but from the decay of heavier objects. Some experimental results seem to support the evidence for dynamical long-range correlations. Most of the data are compatible with the independent cluster model
Propagation of ''heat'' in hadronic matter
International Nuclear Information System (INIS)
Weiner, R.M.
1976-01-01
The space-time evolution of a local excitation hadronic matter (h.m.) is investigated in connection with the establishment of local thermodynamical equilibrium as assumed in statistical and hydrodynamical models. After a critical discussion of the concept of instantaneous equilibrium it is pointed out that peripheral reactions are a particularly useful source of information for the study of the fate of an excitation in h.m. A local excitation (''hot spot'') is considered corresponding to a pre-equilibrium phase and which is created in peripheral inelastic reactions with m/sub pi/ very-much-less-than q very-much-less-than p/subi/ where p/subi/ is the incoming momentum with m/sub pi/ very-much-less-than q very-much-less-than p/subi/ where p/subi/ is the incoming momentum of the projectile and q the momentum transfer. By solving the diffusion equation the distribution of the temperature field in the excited target (projectile) is obtained and all the relevant physical quantities such as average momenta of secondaries, multiplicities, and mass and energy distributions in semi-inclusive peripheral reactions are computed. It turns out that these quantities have a very pronounced angular dependence leading to a strong asymmetry in these observables. The measurement of this asymmetry can provide information on the constants of h.m. A discussion is presented how large p/sub perpendicular/ events observed in the CERN ISR energy range might be due to pre-equilibrium emission in close analogy to pre-equilibrium nuclear decay
Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards
Street, Kenneth W., Jr.; Kobrick, Ryan L.; Klaus, David M.
2013-01-01
Abrasion of mechanical components and fabrics by soil on Earth is typically minimized by the effects of atmosphere and water. Potentially abrasive particles lose sharp and pointed geometrical features through erosion. In environments where such erosion does not exist, such as the vacuum of the Moon, particles retain sharp geometries associated with fracturing of their parent particles by micrometeorite impacts. The relationship between hardness of the abrasive and that of the material being abraded is well understood, such that the abrasive ability of a material can be estimated as a function of the ratio of the hardness of the two interacting materials. Knowing the abrasive nature of an environment (abrasive)/construction material is crucial to designing durable equipment for use in such surroundings. The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width. The ZOI has been found to be at least twice the size of a standard width measurement; in some cases, considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for de tailed analysis. Documenting additional changes to various surface roughness par ameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Further - more, by investigating the use of custom scratch tips for specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized
International Nuclear Information System (INIS)
Graessler, H.; Lanske, D.; Schulte, R.; Chima, J.S.; Mobayyen, M.M.; Talebzadeh, M.; Villalobos-Baillie, O.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.
1983-02-01
In an experiment with the hydrogen bubble chamber BEBC at CERN multiplicities of hadrons produced in #betta#p and anti #betta# interactions have been investigated. Results are presented on the multiplicities of charged hadrons and neutral pions, forward and backward multiplicities of charged hadrons and correlations between forward and backward multiplicities. Comparisons are made with hadronic reactions and e + e - annihilation. In the framework of the quark-parton model the data imply similar charged multiplicities for the fragments of a u- and a d-quark, and larger multiplicities for the fragments of a uu- than for a ud-diquark. The correlation data suggest independent fragmentation of the quark and diquark for hadronic masses above approx.=7 GeV and local charge compensation within an event. (orig.)
Multidimensional intermittency in hadronic collisions
International Nuclear Information System (INIS)
Pan, J.; Hwa, R.C.
1992-06-01
The study of intermittency in high-energy hadronic collisions by the Monte Carlo code ECCO is extended to 3-dimensional phase space. Strong intermittency is found in agreement with the data. Fluctuation in the impact parameter is responsible for the intermittency in lnp T , and the transverse-momentum conservation leads to negative intermittency slopes in the azimuthal angle φ. The Ochs-Wosiek plots are linear in all dimensions having universal slopes. An exponent ν = 1.448 emerges to characterize multiparticle production in pp collisions. The properties of G moments are also examined, and the fractal dimensions determined
Recent results from hadron colliders
International Nuclear Information System (INIS)
Frisch, H.J.
1990-01-01
This is a summary of some of the many recent results from the CERN and Fermilab colliders, presented for an audience of nuclear, medium-energy, and elementary particle physicists. The topics are jets and QCD at very high energies, precision measurements of electroweak parameters, the remarkably heavy top quark, and new results on the detection of the large flux of B mesons produced at these machines. A summary and some comments on the bright prospects for the future of hadron colliders conclude the talk. 39 refs., 44 figs., 3 tabs
The theory of hadronic systems
International Nuclear Information System (INIS)
Gibbs, W.R.
1995-01-01
This report briefly discusses progress on the following topics: isospin breaking in the pion-nucleon system; subthreshold amplitudes in the πN system; neutron-proton charge-exchange; transparency in pion production; energy dependence of pion DCX; direct capture of pions into deeply bound atomic states; knock out of secondary components in the nucleus; radii of neutron distributions in nuclei; the hadronic double scattering operator; pion scattering and charge exchange from polarized nuclei; pion absorption in nuclei; modification of nucleon structure in nuclei; and antiproton annihilation in nuclei
Hadronic Structure from Perturbative Dressing
Energy Technology Data Exchange (ETDEWEB)
Arash, Firooz [Physics Department, Tafresh University, Tafresh, Iran and Center for theoretical physics and Mathematics, AEOI, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)]. E-mail: farash@cic.aut.ac.ir
2005-09-15
Perturbative dressing of a valence quark in QCD produces the internal structure of an extended object, the so-called Valon. The valon structure is universal and independent of the hosting hadron. Polarized and unpolarized proton and pion structure functions are calculated in the valon representation. One finds that although all the available data on g{sub 1}{sup p,n,d} are easily reproduced, a sizable orbital angular momentum associated with the partonic structure of the valon is required in order to have a spin 1/2 valon.
Hadron accelerators in cancer therapy
International Nuclear Information System (INIS)
Amaldi, U.; Silari, M.
1997-01-01
The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)
International Nuclear Information System (INIS)
Latham, T.E.
2014-01-01
We present recent results from the analysis of hadronic decays of B s 0 mesons at LHCb detector. The analyses use the data sample collected in 2011, which correspond to an integrated luminosity of 1.0 fb -1 . A large variety of different decays are being studied in order to probe for signs of physics beyond the Standard Model. The statistics available in the 2011 data sample already allow sophisticated analysis techniques, such as the Dalitz-plot analysis and the angular analysis to be employed
Scalar strong interaction hadron theory
Hoh, Fang Chao
2015-01-01
The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.
Charmed hadrons in nuclear medium
International Nuclear Information System (INIS)
Tolos, L.; Gamermann, D.; Molina, R.; Nieves, J.; Oset, E.; Garcia-Recio, C.; Ramos, A.
2010-01-01
We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner. We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the open-charm meson spectral functions. We discuss the implications of the in-medium properties of open-charm mesons on the D s0 (2317) and the predicted X(3700) scalar resonances. (authors)
Identified hadron spectra from PHOBOS
Veres, Gábor I.; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wysłouch, B.; Zhang, J.
2004-08-01
Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{sNN} = 200 GeV have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.
Measurements of the two-body photodisintegration of 3 He in the Δ(1236) resonance region
International Nuclear Information System (INIS)
Gassen, H.J.; Hegerath, A.; Loers, W.; Mecking, B.; Noeldeke, G.; Reichelt, T.; Stanek, H.
1981-07-01
The 3 He (γ,p) d reaction has been measured in the photon energy region between 200 MeV and 450 MeV at proton c.m. angles between 20 0 and 150 0 . Protons and deuterons were detected in coincidence with two time-of-flight spectromters consisting of scintillation counters; both particles were identified and their energies and angles were measured. The angular distributions show a strong forward peak. The differential cross sections fall off with increasing photon energy without showing a significant influence of the Δ resonance. (orig.)
Two body photodisintegration of the deuteron from 100 to 800 MeV
Energy Technology Data Exchange (ETDEWEB)
Crawford, R.; Annand, J.R.M.; Anthony, I. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Ahrens, J.; Beck, R. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Braghieri, A.; Pedroni, P. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Altieri, S. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy)]|[Pavia Univ. (Italy). Ist. di Fisica Nucleare; Audit, G.; D`Hose, N. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee] [and others
1996-01-01
The total and the differential cross sections for the D({gamma},p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 deg-160 deg in 10 deg intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and the results compared with some recent theoretical calculations. (author). Submitted to Nuclear Physics, B (NL); 23 refs.
Two body photodisintegration of the deuteron from 100 to 800 MeV
International Nuclear Information System (INIS)
Crawford, R.; Annand, J.R.M.; Anthony, I.; Altieri, S.; Pavia Univ.; Audit, G.; D'Hose, N.
1996-01-01
The total and the differential cross sections for the D(γ,p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 deg-160 deg in 10 deg intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and the results compared with some recent theoretical calculations. (author)
Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G
2017-12-07
We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.
Importance of momentum dependence interaction on the isospin effects of two-body dissipation
International Nuclear Information System (INIS)
Yang Yanfang; Guo Wenjun; Zhao Qiang; Liu Jianye; Zuo Wei
2002-01-01
The role of momentum dependence equation of state on the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section is studied by using the isospin dependence quantum molecular dynamics. The nuclear stopping depends strongly on the isospin dependence of in-medium nucleon-nucleon cross section and weakly on the isospin dependence of the mean field-symmetry potential from above the Fermi energy to about 150 MeV/u for the small impact parameters. A detail study indicates that the difference between the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section depends sensitively on the momentum dependence interaction, namely, the difference between the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section in the present of momentum dependence interaction is larger than that without the momentum dependence interaction (MDI) for the mass symmetry and mass asymmetry reaction systems, neutron-rich and neutron-poor reaction systems. Namely, MDI increases the sensitivity of the nuclear stopping on the isospin dependence nucleon-nucleon cross section. Therefore, the knowledge on the isospin dependence of in-medium nucleon-nucleon cross section can be extracted more accurately from nucleon stopping as a probe if the momentum dependence interaction is taken into account
Jets in hadron colliders at order αs3
International Nuclear Information System (INIS)
Ellis, S.D.; Kunszt, Z.; Soper, D.E.
1991-10-01
Recent results from the study of hadronic jets in hadron-hadron collisions at order a s 3 in perturbation theory are presented. The numerical results are in good agreement with data and this agreement is illustrated where possible
Superclusters and hadronic multiplicity distributions
International Nuclear Information System (INIS)
Shih, C.C.; Carruthers, P.
1986-01-01
The multiplicity distribution is expressed in terms of supercluster production in hadronic processes at high energy. This process creates unstable clusters at intermediate stages and hadrons in final stage. It includes Poisson-transform distributions (with the partially coherent distribution as a special case) and is very flexible for phenomenological analyses. The associated Koba, Nielson, and Olesen limit and the behavior of cumulant moments are analyzed in detail for finite and/or infinite cluster size and particle size per cluster. In general, a supercluster distribution does not need to be equivalent to a negative binomial distribution to fit experimental data well. Furthermore, the requirement of such equivalence leads to many solutions, in which the average size of the cluster is not logarithmic: e.g., it may show a power behavior instead. Superclustering is defined as a two-or multi-stage process underlying observed global multiplicity distributions. At the first stage of the production process, individual clusters are produced according to a given statistical law. For example, the clustering distribution may be described by partially coherent (oreven sub-Poissonian distribution models. At the second stage, the clusters are considered as the sources of particle production. The corresponding distribution may then be as general as the clustering distribution just mentioned. 8 refs
Flavorful leptoquarks at hadron colliders
Hiller, Gudrun; Loose, Dennis; Nišandžić, Ivan
2018-04-01
B -physics data and flavor symmetries suggest that leptoquarks can have masses as low as a few O (TeV ) , predominantly decay to third generation quarks, and highlight p p →b μ μ signatures from single production and p p →b b μ μ from pair production. Abandoning flavor symmetries could allow for inverted quark hierarchies and cause sizable p p →j μ μ and j j μ μ cross sections, induced by second generation couplings. Final states with leptons other than muons including lepton flavor violation (LFV) ones can also arise. The corresponding couplings can also be probed by precision studies of the B →(Xs,K*,ϕ )e e distribution and LFV searches in B -decays. We demonstrate sensitivity in single leptoquark production for the large hadron collider (LHC) and extrapolate to the high luminosity LHC. Exploration of the bulk of the parameter space requires a hadron collider beyond the reach of the LHC, with b -identification capabilities.
Two-body photodisintegration of the deuteron from 100 to 800 MeV
Energy Technology Data Exchange (ETDEWEB)
Crawford, R.; Ahrens, J.; Altieri, S.; Annand, J.R.M.; Anthony, I.; Audit, G.; Beck, R.; Braghieri, A.; D`Hose, N.; Hall, S.; Isbert, V.; Kellie, J.D.; Kerhoas, S.; MacCormick, M.; MacGeorge, J.C.; Medaglia, R.; Miller, G.J.; Murphy, L.Y.; Owens, R.O.; Pedroni, P.; Pinelli, T.; Tamas, G.; Wallace, P.A. [Glasgow Univ. (United Kingdom). Dept. of Phys. and Astron.]|[Mainz Univ. (Germany). Inst. fuer Kernphys.]|[INFN, Sezione di Pavia (Italy)]|[Pavia Univ. (Italy). Dipartimento di Fisica Nucleare e Teorica]|[CEA-DAPNIA/SPhN, 91 - Gif-sur-Yvette (France)
1996-06-24
The total and the differential cross sections for the D({gamma},p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. Using the large acceptance detector DAPHNE in conjunction with the Glasgow tagging spectrometer, high precision results with small systematic errors were obtained. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 {sup circle} -160 {sup circle} in 10 {sup circle} intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and comparison with some recent theoretical calculations. (orig.).
Heavy quark correlations in hadronic collisions
International Nuclear Information System (INIS)
Mangano, M.L.; Ridolfi, G.
1992-01-01
The study of heavy quark production at hadron colliders will provide important tests and measurements within and possibly beyond the Standard Model. The results of a recent calculation of heavy quark hadronic production correlation properties at the full next-to-leading order (NLO) in perturbative QCD are presented. These properties are important for several applications. (R.P.) 8 refs.; 3 figs
Hadron production in e+e- annihilation
International Nuclear Information System (INIS)
Lueth, V.
1977-01-01
The lectures cover recent results on hadron production by e + e - annihilation. Included are total hadronic cross section and scale invariance as applied to e + e - annihilation, the present status of the psi spectroscopy by study of the decay modes of the narrow psi resonances, and the recent discovery of charmed mesons. 93 references
Mounting LHCb hadron calorimeter scintillating tiles
Maximilien Brice
2004-01-01
Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.
Leptons as a probe of hadronic structure
International Nuclear Information System (INIS)
Gilman, F.J.
1976-04-01
Lectures are given on some of the theoretical ideas involved in electroproduction, neutrino production and electron--positron annihilation into hadrons. In so doing a study is simultaneously made of both the short distance behavior of products of currents and hadron structure. 56 references
Light-Front Dynamics in Hadron Physics
Ji, C.R.; Bakker, B.L.G.; Choi, H.M.
2013-01-01
Light-front dynamics(LFD) plays an important role in the analyses of relativistic few-body systems. As evidenced from the recent studies of generalized parton distributions (GPDs) in hadron physics, a natural framework for a detailed study of hadron structures is LFD due to its direct application in
Successive combination jet algorithm for hadron collisions
International Nuclear Information System (INIS)
Ellis, S.D.; Soper, D.E.
1993-01-01
Jet finding algorithms, as they are used in e + e- and hadron collisions, are reviewed and compared. It is suggested that a successive combination style algorithm, similar to that used in e + e- physics, might be useful also in hadron collisions, where cone style algorithms have been used previously