WorldWideScience

Sample records for two-bladed teetering rotor

  1. User`s Guide for the NREL Teetering Rotor Analysis Program (STRAP)

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A D

    1992-08-01

    The following report gives the reader an overview of instructions on the proper use of the National Renewable Energy Laboratory (formerly the Solar Energy Research Institute, or SERI) teetering Rotor Analysis Program (STRAP version 2.20). STRAP is a derivative of the Force and Loads Analysis program (FLAP). It is intended as a tool for prediction of rotor and blade loads and response for only two-bladed teetering hub wind turbines. The effects of delta-3, undersling, hub mass, and wind turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed teetering hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user`s guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

  2. User's Guide for the NREL Teetering Rotor Analysis Program (STRAP). [National Renewable Energy Laboratory (NREL)

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.D.

    1992-08-01

    The following report gives the reader an overview of instructions on the proper use of the National Renewable Energy Laboratory (formerly the Solar Energy Research Institute, or SERI) teetering Rotor Analysis Program (STRAP version 2.20). STRAP is a derivative of the Force and Loads Analysis program (FLAP). It is intended as a tool for prediction of rotor and blade loads and response for only two-bladed teetering hub wind turbines. The effects of delta-3, undersling, hub mass, and wind turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed teetering hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user's guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

  3. A Two-Bladed Teetering Hub configuration for the DTU 10 MW RWT: loads considerations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Aagaard Madsen, Helge; Rasmussen, Flemming

    2014-01-01

    , and the rotor solidity is kept constant by increasing the blade chord by 50 %. The configuration allows saving 30 % of the rotor weight and material, corresponding to one blade, but implies several complications: lower power output due to increased tip losses effects, and increased load variations. The increase...

  4. A Two-Bladed Teetering Hub configuration for the DTU 10 MW RWT: loads considerations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Aagaard Madsen, Helge; Rasmussen, Flemming

    , and the rotor solidity is kept constant by increasing the blade chord by 50 %. The configuration allows saving 30 % of the rotor weight and material, corresponding to one blade, but implies several complications: lower power output due to increased tip losses effects, and increased load variations. The increase...

  5. Analysis of a teetered, variable-speed rotor: final report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T L; Wilson, R E; Walker, S N [Oregon State Univ., Corvallis, OR (USA). Dept. of Mechanical Engineering

    1991-06-01

    A computer model of a horizontal axis wind turbine (HOOT) with four structural degrees of freedom has been derived and verified. The four degrees of freedom include flapwise motion of the blades, teeter motion, and variable rotor speed. Options for the variable rotor speed include synchronous, induction, and constant-tip speed generator models with either start, stop, or normal operations. Verification is made by comparison with analytical solutions and mean and cyclic ESI-80 data. The Veers full-field turbulence model is used as a wind input for a synchronous and induction generator test case during normal operation. As a result of the comparison, it is concluded that the computer model can be used to predict accurately mean and cyclic loads with a turbulent wind input. 47 refs., 19 figs.

  6. Modal dynamics of structures with bladed isotropic rotors and its complexity for two-bladed rotors

    Directory of Open Access Journals (Sweden)

    M. H. Hansen

    2016-11-01

    These harmonic terms lead to modal couplings for the two-bladed turbine that do not exist for the three-bladed turbine. A single mode of a two-bladed turbine will also have several resonance frequencies in both the ground-fixed and rotating frames of reference, which complicates the interpretation of simulated or measured turbine responses.

  7. The effect of {delta}{sub 3} angle on the teeter response of an unstalled wind turbine rotor determined by analysis, experiment, and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Swift, A.H.P.; Moroz, E.M.; Craver, W.L. [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical and Industrial Engineering

    1995-09-01

    A large, positive {delta}{sub 3} angle offers some advantages over the usual zero {delta}{sub 3} teeter rotor;such as reduced flapping angles, reduced inplane excitations, and reduced teeter restraint impact loading. This paper discusses these advantages and presents results from theoretical analyses, computer simulations, and atmospheric test on the University of Texas at El Paso (UTEP) test-bed turbine. Results from these simulations and tests indicate stable and controlled teeter response at high yaw angles and yaw rates at wind speeds up to 30 m/s. Results of atmospheric tests also show reasonable correlation with the code TEETER, but some discrepancies with past and present versions of the code YAWDYN.

  8. The effect of {delta}{sub 3} angle on the teeter response of an unstalled wind turbine rotor determined by analysis, experiment, and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Swift, A.P.; Moroz, E.M.; Craver, W.L. [Texas Univ., El Paso, TX (United States)

    1995-12-31

    A large, positive {delta}{sub 3} offers some advantages over the usual zero {delta}{sub 3} teeter rotor; such as reduced flapping angles, reduced inplane excitations, and reduced teeter restraint impact loading. This paper discusses these advantages and presents results from theoretical analyses, computer simulations, and atmospheric tests on the University of Texas at El Paso (UTEP) test-bed turbine. Results from these simulations and test indicate stable and controlled teeter response at high yaw angles and yaw rates at wind speeds up to 30 m/s. Results of atmospheric tests also show reasonable correlation with the code TEETER, but some discrepancies with past and present versions of the code YAWDYN. (Author)

  9. CFD analysis of rotating two-bladed flatback wind turbine rotor.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, David, CA); Chao, David D.; Berg, Dale E. (University of California, David, CA)

    2008-04-01

    The effects of modifying the inboard portion of the NREL Phase VI rotor using a thickened, flatback version of the S809 design airfoil are studied using a three-dimensional Reynolds-averaged Navier-Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The calculated results for the baseline Phase VI rotor are benchmarked against wind tunnel results obtained at 10, 7, and 5 meters per second. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, flatback blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors.

  10. Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-11-15

    Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.

  11. Experimental and theoretical characterization of acoustic noise from a 7.6 m diameter yaw controlled teetered rotor wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, E. [Univ. of Texas at El Paso, Dept. of Mechanical and Industrial Engineering, El Paso, TX (United States)

    1997-12-31

    An experimental investigation into the acoustic noise from a small (7.6 m diameter) teetered rotor wind turbine, set at various yaw angles up to 90 degrees of yaw, was conducted. The results revealed a 1/3 octave spectra which was dominated by a broad peak in the higher frequency range, at all yaw angles investigated. This prompted a theoretical investigation to reveal the mechanisms producing the dominant feature in the experimentally obtained noise spectra and resulted in the development of a wind turbine aerodynamic noise prediction coce, WTNOISE. The location near busy roads and the relatively rough terrain of the wind test site caused difficulties in obtaining useful noise spectral information below 500Hz. However, sufficiently good data was obtained above 500Hz to clearly show a dominant `hump` in the spectrum, centered between 3000 and 4000Hz. Although the local Reynolds number for the blade elements was around 500,000 and one might expect Laminar flow over a significant portion of the blade, the data did not match the noise spectra predicted when Laminar flow was assumed. Given the relatively poor surface quality of the rotor blades and the high turbulence of the test site it was therefore assumed that the boundary layer on the blade may have tripped relatively early and that the turbulent flow setting should be used. This assumption led to a much better correlation between experiment and predictions. The WTNOISE code indicated that the broad peak in the spectrum was most likely caused by trailing edge bluntness noise. Unfortunately time did not allow for modifications to the trailing edge to be investigated. (au)

  12. Computational fluid dynamics analysis of a twisted airfoil shaped two-bladed H-Darrieus rotor made from fibreglass reinforced plastic (FRP

    Directory of Open Access Journals (Sweden)

    Rajat Gupta, Sukanta Roy, Agnimitra Biswas

    2010-11-01

    Full Text Available H-Darrieus rotor is a lift type device having two to three blades designed as airfoils. The blades are attached vertically to the central shaft through support arms. The support to vertical axis helps the rotor maintain its shape. In this paper, Computational Fluid Dynamics (CFD analysis of an airfoil shaped two-bladed H-Darrieus rotor using Fluent 6.2 software was performed. Based on the CFD results, a comparative study between experimental and computational works was carried out. The H-Darrieus rotor was 20cm in height, 5cm in chord and twisted with an angle of 30° at the trailing end. The blade material of rotor was Fiberglass Reinforced Plastic (FRP. The experiments were earlier conducted in a subsonic wind tunnel for various height-to-diameter (H/D ratios. A two dimensional computational modeling was done with the help of Gambit tool using unstructured grid. Realistic boundary conditions were provided for the model to have synchronization with the experimental conditions. Two dimensional steady-state segregated solver with absolute velocity formulation and cell based grid was considered, and a standard k-epsilon viscous model with standard wall functions was chosen. A first order upwind discretization scheme was adopted for pressure velocity coupling of the flow. The inlet velocities and rotor rotational speeds were taken from the experimental results. From the computational analysis, power coefficient (Cp and torque coefficient (Ct values at ten different H/D ratios namely 0.85, 1.0, 1.10, 1.33, 1.54, 1.72, 1.80, 1.92, 2.10 and 2.20 were calculated in order to predict the performances of the twisted H-rotor. The variations of Cp and Ct with tip speed ratios were analyzed and compared with the experimental results. The standard deviations of computational Cp and Ct from experimental Cp and Ct were obtained. From the computational analysis, the highest values of Cp and Ct were obtained at H/D ratios of 1.0 and 1.54 respectively. The

  13. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  14. A comprehensive vibration analysis of a coupled rotor/fuselage system

    Science.gov (United States)

    Yeo, Hyeonsoo

    A comprehensive vibration analysis of a coupled rotor/fuselage system for a two-bladed teetering rotor using finite element methods in space and time is developed which incorporates consistent rotor/fuselage structural, aerodynamic, and inertial couplings and a modern free wake model. A coordinate system is developed to take into account a teetering rotor's unique characteristics, such as teetering motion and undersling. Coupled nonlinear periodic blade and fuselage equations are transformed to the modal space in the fixed frame and solved simultaneously. The elastic line and detailed 3-D NASTRAN finite element models of the AH-1G helicopter airframe from the DAMVIBS program are integrated into the elastic rotor finite element model. Analytical predictions of rotor control angles, blade loads, hub forces, and vibration are compared with AH-1G Operation Load Survey flight test data. The blade loads predicted by present analysis show generally fair agreement with the flight test data, especially blade chord bending moment estimation shows good agreement. Calculated 2/rev vertical vibration levels at pilot seat show good correlation with the flight test data both in magnitude and phase, but 4/rev vibration levels show fair correlation only in magnitude. Lateral vibration results show more disagreement than vertical vibration results. Pylon flexibility effect is essential in the two-bladed teetering rotor vibration analysis. The pylon flexibility increases the first lag frequency by about 14%, and decreases 2/rev longitudinal and lateral hub forces by more than half. Rotor/fuselage coupling reduces 2/rev vertical and lateral vibration levels by 60% to 70% and has a small effect on 4/rev vibration levels. Modeling of difficult components (secondary structures, doors/panels, etc) is essential in predicting airframe natural frequencies. Refined aerodynamics such as free wake and unsteady aerodynamics have an important role in the prediction of vibration. For example, free

  15. A soft rotor concept - design, verification and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, F.; Thirstrup Petersen, J. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper contains results from development and testing of a two-bladed soft rotor for an existing 15 kW flexible wind turbine. The new concept is characterised as a free yawing down wind turbine with nacelle tilting flexibility and a two-bladed teetering rotor with three-point supported flexible blades with built-in structural couplings. The power and the loads are controlled by active stall and active coning. The concept has been developed by extensive application of aero-elastic predictions, numerical optimisation and stability analysis in order to obtain optimal aero-elastic response and minimal loads. The flexible blades and the principle of active coning allow the blades to deflect with the wind to such an extent that the loads are reduced to between 25 and 50% of the loads for a similar rigid rotor. All conceptual design principles have been focused on application to large MW turbines, and aero-elastic predictions for an upscale 1 MW version show that this would have approximately identical characteristisc, without being particularly optimised for the actual size. (au)

  16. Development of passive-controlled HUB (teetered brake & damper mechanism) of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yukimaru; Kamada, Yasunari; Maeda, Takao [Mie Univ. (Japan)

    1997-12-31

    For the purpose of the improvement of reliability of the Mega-Watt wind turbine, this paper indicates the development of an original mechanism for the passive-controlled hub, which has the effects of braking and damping on aerodynamic forces. This mechanism is useful for variable speed control of the large wind turbine. The passive-controlled hub is the combination of two mechanisms. One is the passive-teetered and damping mechanism, and the other is the passive-variable-pitch mechanism. These mechanism are carried out by the combination of the teetering and feathering motions. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, simultaneously, a feathering mechanism, which is linked to the teetering mechanism through a connecting rods, is activated. Testing of the model horizontal axis wind turbine in a wind tunnel showed that the passive-controlled hub mechanism can suppress the over-rotational speed of the rotor. By the application of the passive-controlled hub mechanism, the maximum rotor speed is reduced to about 60%.

  17. Analysis and test results for a two-bladed, passive cycle pitch, horizontal-axis wind turbine in free and controlled yaw

    Energy Technology Data Exchange (ETDEWEB)

    Holenemser, K.H. [Washington Univ., St. Louis, MO (United States)

    1995-10-01

    This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including those done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.

  18. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  19. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  20. Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    Science.gov (United States)

    Spera, D. A.

    1976-01-01

    Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.

  1. Effect of rotor configuration on guyed tower and foundation designs and estimated costs for intermediate site horizontal axis wind turbines

    Science.gov (United States)

    Frederick, G. R.; Winemiller, J. R.; Savino, J. M.

    1982-01-01

    Three designs of a guyed cylindrical tower and its foundation for an intermediate size horizontal axis wind turbine generator are discussed. The primary difference in the three designs is the configuration of the rotor. Two configurations are two-blade rotors with teetering hubs - one with full span pitchable blades, the other with fixed pitch blades. The third configuration is a three-bladed rotor with a rigid hub and fixed pitch blades. In all configurations the diameter of the rotor is 38 meters and the axis of rotation is 30.4 meters above grade, and the power output is 200 kW and 400 kW. For each configuration the design is based upon for the most severe loading condition either operating wind or hurricane conditions. The diameter of the tower is selected to be 1.5 meters (since it was determined that this would provide sufficient space for access ladders within the tower) with guy rods attached at 10.7 meters above grade. Completing a design requires selecting the required thicknesses of the various cylindrical segments, the number and diameter of the guy rods, the number and size of soil anchors, and the size of the central foundation. The lower natural frequencies of vibration are determined for each design to ensure that operation near resonance does not occur. Finally, a cost estimate is prepared for each design. A preliminary design and cost estimate of a cantilever tower (cylindrical and not guyed) and its foundation is also presented for each of the three configurations.

  2. Experimental and Numerical Study of Rotor Dynamics of a Two- and Three-Bladed Wind Turbine

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Kim, Taeseong

    2016-01-01

    In this paper the dynamics of a two-bladed turbine is investigated numerically as well as experimentally with respect to how the turbine frequencies change with the rotor speed. It is shown how the turbine frequencies of a two-bladed rotor change with the azimuthal position at standstill and how ...

  3. Rezension zu: Emily Teeter (Hg.), Before the pyramids. The origins of Egyptian civilization

    OpenAIRE

    Köpp-Junk, Heidi

    2013-01-01

    Rezension zu: Emily Teeter (Hg.), Before the Pyramids. The Origins of Egyptian Civilization. The Oriental Institute of the University of Chicago, Oriental Institute Museum Publications 33 (Chicago 2011)

  4. Rotor/body aerodynamic interactions

    Science.gov (United States)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  5. Wind tunnel tests on slow-running vertical-axis wind-rotors

    Science.gov (United States)

    Sivasegaram, S.

    1981-09-01

    This paper summarizes the results of investigations on the Savonius-type, slow-running, vertical-axis wind-rotors as well as on rotor designs on different subclasses under comparable design and test conditions. It is seen that the performance of the conventional Savonius rotor could be considerably improved upon and the best results are achieved by using two-bladed rotors with a more sophisticated sectional profile than in the conventional design. Rotors with several blades, although capable of considerably higher performance than the Savonius rotor, do not appear to be as good as those with two blades and improved sectional geometry.

  6. The ASPEC teeter: price/performance improvement of existing wind turbine technology by using a revolutionary concept

    Energy Technology Data Exchange (ETDEWEB)

    Doorenspleet, F. [Aerpac Special Products B.V., Amelo (Netherlands); Prats, J. [Ecotecnia S. Coop, Barcelona (Spain); Hagg, F. [Stork Product Engineering B.V. Amsterdam (Netherlands)

    1996-12-31

    Improvement of the price/performance ratio of wind turbines is essential if wind energy is to be taken seriously in the world energy market in the coming century. The key to improvement of the price/performance ratio lies in the minimisation of loads by inexpensive means, at a simultaneous increase in annual production of the wind turbine. On basis of the NOVEM/CEC Flexhat project, this design project is a first step towards commercialisation of flexible rotor technology. The goal of the project was to redesign an existing stall-regulated wind turbine to improve the original price/performance ratio by 20%. This goal has been reached by the use of a larger, two-bladed rotor with elastomeric tester, variable speed drivetrain and fast active tip pitch control with an advanced peakshaving function. The project has been sponsored by the European Commission under contract nr. Jou2CT93-0281. (author)

  7. Iterative tuning of feedforward IPC for two-bladed wind turbines

    Science.gov (United States)

    Mulders, SP; van Solingen, E.; van Wingerden, JW; Beerens, J.

    2016-09-01

    At present, the cost of offshore wind energy does not meet the level of onshore wind and fossil-based energy sources. One way to extend the turbine lifetime, and thus reduce cost, is by reduction of the fatigue loads of blades and other turbine parts using Individual Pitch Control (IPC). This type of control, which is generally implemented by feedback control using the MultiBlade Coordinate transformation on blade load measurement signals, is capable of mitigating the most dominant periodic loads. The main goal of this article is to develop a self-optimizing feedforward IPC strategy for a two-bladed wind turbine to reduce actuator duty cycle and reduce the dependency on blade load measurement signals. The approach uses blade load measurement data only initially for tuning of the feedforward controller, which is scheduled on the rotor azimuth angle and wind speed. The feedforward strategy will be compared to the feedback implementation in terms of load alleviation capabilities and actuator duty cycle. Results show that the implementation is capable of learning the optimal feedforward IPC controller in constant and turbulent wind conditions, to alleviate the pitch actuator duty cycle, and to considerably reduce harmonic fatigue loads without the need for blade load measurement signals after tuning.

  8. Reduction mechanism of dynamic loads on down wind rotor; Furyoku hatsuden system down wind rotor no doteki kaju no keigen kiko ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K.; Shimizu, Y.; Yasui, T. [Tokai University, Tokyo (Japan)

    1997-11-25

    Dynamic force on blades in a large wind mill changes with rotational speed for various reasons, such as wind shear that causes vertical distribution of wind velocity or titling angle. Therefore, a 2-blade system on a teetered hub is a practical selection for the coned, down-wind type. Use of teetered axis greatly reduces bending moment in the flap direction and that at the axis of rotation. An attempt was made to understand dynamic loads by inertial force resulting from oscillation of the blade rotating on the teetered axis, and thereby to avoid them. The in-plane load can be diminished to zero when the teetered axis is coincided with the center of gravity, but generally cannot be avoided when the blade is strained significantly, except it is operated at the rated condition. The in-plane load and bending moment can be avoided, when rotational freedom is given around the y axis. Dynamic load on a down-wind rotor can be avoided by use of universal joint. 3 refs., 6 figs.

  9. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  10. An experimental study on improvement of Savonius rotor performance

    Directory of Open Access Journals (Sweden)

    N.H. Mahmoud

    2012-03-01

    In this work different geometries of Savonius wind turbine are experimentally studied in order to determine the most effective operation parameters. It was found that, the two blades rotor is more efficient than three and four ones. The rotor with end plates gives higher efficiency than those of without end plates. Double stage rotors have higher performance compared to single stage rotors. The rotors without overlap ratio (β are better in operation than those with overlap. The results show also that the power coefficient increases with rising the aspect ratio (α. The conclusions from the measurements of the static torque for each rotor at different wind speeds verify the above summarized results of this work.

  11. Special Operations Aerial Mobility Vehicle Training Syllabus

    Science.gov (United States)

    2013-12-01

    powered glider. (9) A fixed-pitch, semi-rigid, teetering, two- blade rotor system, if a gyroplane...Kts) Notes NorthWing Apache XC $55K 2 490 335 780 65 Soft, folding wing ParaJet Sky Runner $118 K 1 500 200 100 55 Collapsing wing

  12. Vortex shedding by a Savonius rotor

    Science.gov (United States)

    Botrini, M.; Beguier, C.; Chauvin, A.; Brun, R.

    1984-05-01

    A series of flow visualizations was performed to characterize the wake vortices of a Savonius rotor. The trials were undertaken in an attempt to account for discrepancies between theoretical and experimentally-derived power coefficients. The Savonius examined was two-bladed with a center offset. All tests were made in a water tunnel. Dye injection provided the visualization, and average velocities and velocity fluctuations were measured using a laser Doppler anemometer. A system of three vortices was found to be periodically shed by the rotor. Flow velocity fluctuation intensity peaked as a vortex was shed. The vortex shedding alternated from blade to blade, so that one was shed from a blade moving upstream.

  13. Wind energy conversion. Volume VII. Effects of tower motion on the dynamic response of windmill rotor

    Energy Technology Data Exchange (ETDEWEB)

    Sheu, D.L.

    1978-09-01

    The effects of tower motion on the dynamic response of a windmill rotor are studied. The blade lagging and side tower motion are taken into consideration in the analysis. The equations of motion for the system are a set of linear ordinary differential equations having periodic coefficients. The periodic coefficients of the equations of motion for a three bladed rotor are eliminated by using the multiblade coordinate transformation method. For a two bladed rotor, the equations of motion are solved by using the harmonic balance method. In addition to both methods, the Floquet Transition Matrix method is shown to be an effective way in dealing with the linear ordinary differential equations having periodic coefficients. The differences between the instability regions for a three bladed system and for a two bladed system are discussed.

  14. Molecular Rotors

    Science.gov (United States)

    2006-10-31

    Molecular Dipolar Rotors on Insulating Surfaces," Salamanca , Spain. Trends in Nanotechnology Conference. September 5-9, 2003 [86] Laura I. Clarke, Mary Beth...Horansky at the Trends in Nanotechnology Conference, Salamanca , Spain (September 5-9, 2003). [145] Michl, J. “Unusual Molecules: Artificial Surface...temperature and frequency for difluorophenylene rotor crystal. Figure JP6. Monte Carlo results for the local potential asymmetry at

  15. Rotor Wake Development During the First Revolution

    Science.gov (United States)

    McAlister, Kenneth W.

    2003-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  16. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  17. Investigation of load reduction for a variable speed, variable pitch, and variable coning wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    A two bladed, variable speed and variable pitch wind turbine was modeled using ADAMS{reg_sign} to evaluate load reduction abilities of a variable coning configuration as compared to a teetered rotor, and also to evaluate control methods. The basic dynamic behavior of the variable coning turbine was investigated and compared to the teetered rotor under constant wind conditions as well as turbulent wind conditions. Results indicate the variable coning rotor has larger flap oscillation amplitudes and much lower root flap bending moments than the teetered rotor. Three methods of control were evaluated for turbulent wind simulations. These were a standard IPD control method, a generalized predictive control method, and a bias estimate control method. Each control method was evaluated for both the variable coning configuration and the teetered configuration. The ability of the different control methods to maintain the rotor speed near the desired set point is evaluated from the RMS error of rotor speed. The activity of the control system is evaluated from cycles per second of the blade pitch angle. All three of the methods were found to produce similar results for the variable coning rotor and the teetered rotor, as well as similar results to each other.

  18. Transient power coefficients for a two-blade Savonius wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Naterer, G. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    The wind power industry had a 29 percent growth rate in installed capacity in 2008, and technological advances are helping to speed up growth by significantly increasing wind turbine power yields. While the majority of the industry's growth has come from large horizontal axis wind turbine installations, small wind turbines can also be used in a wide variety of applications. This study predicted the transient power coefficient for a Savonius vertical axis wind turbine (VAWT) wind turbine with 2 blades. The turbine's flow field was used to analyze pressure distribution along the rotor blades in relation to the momentum, lift, and drag forces on the rotor surfaces. The integral force balance was used to predict the transient torque and power output of the turbine. The study examined the implications of the addition of a second blade on the model's ability to predict transient power outputs. Computational fluid dynamics (CFD) programs were used to verify that the formulation can be used to accurately predict the transient power coefficients of VAWTs with Savonius blades. 11 refs., 1 tab., 6 figs.

  19. CFD simulation and analysis for Savonius rotors with different blade configuration

    Science.gov (United States)

    Lin, Ching-Huei; Klimina, Liubov A.

    2014-12-01

    Savonius rotor is seldom applied in wind power generation system due to its lower aerodynamic efficiency. But studies about Savonius rotor still continued since the rotor structure is simpler and the manufacturing cost is lower. Computational fluid dynamics simulations are adopted to compare the output power, torque and power coefficient (Cp) for the conventional two-blade Savonius rotors with three different aspect ratios but the same swept area under the same wind condition to investigate the optimum blade configuration. The rotor with tall and thin configuration is found to have the maximum output power and Cp. The rotor with short and wide configuration has the maximum torque but the minimum Cp. The current result suggests the optimum aspect ratio is 4/1. The influence related to the circular cover plates at two ends of rotor was studied also. It reveals that both the torque and power coefficient for Savonius rotor with end-plates are larger than that without end-plates.

  20. Aeroelastic analysis for helicopter rotors with blade appended pendulum vibration absorbers. Mathematical derivations and program user's manual

    Science.gov (United States)

    Bielawa, R. L.

    1982-01-01

    Mathematical development is presented for the expanded capabilities of the United Technologies Research Center (UTRC) G400 Rotor Aeroelastic Analysis. This expanded analysis, G400PA, simulates the dynamics of teetered rotors, blade pendulum vibration absorbers and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. Formulations are also presented for calculating the rotor impedance matrix appropriate to these higher harmonic blade excitations. This impedance matrix and the associated vibratory hub loads are intended as the rotor blade characteristics elements for use in the Simplified Coupled Rotor/Fuselage Vibration Analysis (SIMVIB). Sections are included presenting updates to the development of the original G400 theory, and material appropriate to the user of the G400PA computer program. This material includes: (1) a general descriptionof the tructuring of the G400PA FORTRAN coding, (2) a detaild description of the required input data and other useful information for successfully running the program, and (3) a detailed description of the output results.

  1. Open Rotor Development

    Science.gov (United States)

    Van Zante, Dale E.; Rizzi, Stephen A.

    2016-01-01

    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  2. Measurements of wakes originated from 2-bladed and 3-bladed rotors

    Science.gov (United States)

    Wu, Yu-Ting; Lyu, Shao-Dong; Chen, Bo-Wei

    2016-04-01

    Measurements of wakes originated from 2-bladed and 3-bladed rotors were carried out using a hot-wire probe system in an open jet wind tunnel. Hot-wire anemometry was adopted to characterize the spanwise profiles of mean wind speed, turbulence intensity and momentum flux for downwind locations at 0.5, 1, 2, 3, and 4 rotor diameters. The results showed that the 2-bladed rotor spun faster than the 3-bladed one, where the ratio of the two blade angular velocities was 1.065:1 under the same inflow condition with a uniform distribution of 5.4 m/s flow velocity. The turbulence flow statistics of the rotor wakes showed that the wake originated from the 3-bladed rotor has larger velocity deficit, streamwise turbulence intensity, momentum flux magnitude, but smaller spanwise turbulence intensity. The velocity spectrum showed peaks associated with the presence of the blade-induced tip vortices in the near wake region (approximately within 3 rotor diameters).

  3. Pressure coefficient evolutions on the blades of a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, A.; Guignard, S. [UMRR 7343, Marseilles (France). Lab. IUSTI; Kamoun, B. [Faculte des Sciences de Sfax (Tunisia). Lab. de Physique

    2012-07-01

    Measurements of the pressure field distribution on the blades of a vertical axis Savonius wind machine are presented. The rotor used in the wind tunnel is a two blades cylindrical shape with a central gap. Pressure gauges are placed on each side of a blade, so the pressure jumps between intrados and extrados of a blade during a whole rotation are drawn. In the static configuration, the machine is disposed at various incidences. The determination of pressure jumps allows to calculate the static torque of the machine versus the incidence angle. In the dynamic situation the machine is rotating at various frequencies and gauges signals are varying dynamically of course with the incidence. The dynamic torque coefficient is calculated. Evolutions of the starting torque and starting conditions are then described and dynamic effects on torque evolution are presented. (orig.)

  4. CFD simulation of a 2 bladed multi megawatt wind turbine with flexible rotor connection

    Science.gov (United States)

    Klein, L.; Luhmann, B.; Rösch, K.-N.; Lutz, T.; Cheng, P.-W.; Krämer, E.

    2016-09-01

    An innovative passive load reduction concept for a two bladed 3.4 MW wind turbine is investigated by a conjoint CFD and MBS - BEM methodology. The concept consists of a flexible hub mount which allows a tumbling motion of the rotor. First, the system is simulated with a MBS tool coupled to a BEM code. Then, the resulting motion of the rotor is extracted from the simulation and applied on the CFD simulation as prescribed motion. The aerodynamic results show a significant load reduction on the support structure. Hub pitching and yawing moment amplitudes are reduced by more than 50% in a vertically sheared inflow. Furthermore, the suitability of the MBS - BEM approach for the simulation of the load reduction system is shown.

  5. Open Rotor Aeroacoustic Modelling

    Science.gov (United States)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  6. Large Rotor Test Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...

  7. Reducing rotor weight

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  8. Characteristics of wind power on Savonius rotor using a guide-box tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Irabu, Kunio; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, Senbaru-1, Nishihara, Okinawa 903-0213 (Japan)

    2007-11-15

    This study investigates to improve and adjust the output power of Savonius rotor under various wind power and suggests the method of prevention the rotor from strong wind disaster. In this study, as the appropriate device to achieve the purpose of it, a guide-box tunnel is employed. The guide-box tunnel is like a rectangular box as wind passage in which a test rotor is included. The area ratio between the inlet and exit of it is variable to adjust the inlet mass flow rate or input power. At first, the experiment was conducted to find the adequate configuration which would provide the best relative performance. The present experiment, however, does not include the test to retain the guide-box tunnel from the strong wind. The experiments include the static torque test of the fixed rotor at any phase angle and the dynamic torque test at rotation of them. Consequently, it was found that the maximum rotor rotational speed was achieved in the range of the guide-box area ratio between 0.3 and 0.7 and the value of the output power coefficient of the rotor with guide-box tunnel of the area ratio 0.43 increases about 1.5 times with three blades and 1.23 times with two blades greater than that without guide-box tunnel, respectively. It seemed that the performance of Savonius rotor within the guide-box tunnel is comparable enough with other methods for augmentation and control of the output. (author)

  9. Rotor balancing apparatus and system

    Science.gov (United States)

    Lyman, Frank (Inventor); Lyman, Joseph (Inventor)

    1976-01-01

    Rotor balancing apparatus and a system comprising balance probes for measuring unbalance at the ends of a magnetically suspended rotor are disclosed. Each balance probe comprises a photocell which is located in relationship to the magnetically suspended rotor such that unbalance of the rotor changes the amount of light recorded by each photocell. The signal from each photocell is electrically amplified and displayed by a suitable device, such as an oscilloscope.

  10. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  11. Lessons from Rotor 37

    Institute of Scientific and Technical Information of China (English)

    J.D.Denton

    1997-01-01

    NASA rotor 37 was used as a blind test case for turbomachinery CFD by the Turbomachinery Committee of the IGTI.The rotor is a transonic compressor with a tip speed of 454 m/s(1500ft/s)and a relatively high pressure ratio of 2.1.It was tested in isolation with a circumferentially uniform inlet flow so that the flow through it should be steady apart from and effects of passage to passage geometry variation and mechanical vibration.As such it represents the simplest possible type of test for three-dimensional turbomachinery flow solvers.Howerver,the rotor still presents a real challenge to 3D viscous flow solvers because the shock wave-boudary layer interaction is strong and the effects of viscosity are dominant in determining the flow deviation and hence the pressure ration.Eleven blind solutions were submittewd and in addition a non-blind solution was used to prepare for the exercies.This paper reviews the flow in the test case and the comparisons of the CFD solutions with the test data.Lessons for both the Flow physics in transonic fans and for the application of CFD to such machines are pointed out.

  12. Morphing Downwind-Aligned Rotor Concept Based on a 13-MW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ichter, Brian; Steele, Adam; Loth, Eric; Moriarty, Patrick; Selig, Michael

    2016-04-01

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (>/=10 MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for moment-free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22 degrees at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis.

  13. Homopolar motor with dual rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S. (Oak Ridge, TN)

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  14. Homopolar motor with dual rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  15. Variable Speed Rotor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...

  16. Molecular Rotors as Switches

    Directory of Open Access Journals (Sweden)

    Kang L. Wang

    2012-08-01

    Full Text Available The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V revealed a temperature-dependent negative differential resistance (NDR associated with the device. The analysis of the device

  17. Effect of control activity on blade fatigue damage rate for a small horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, A.F.; Freris, L.L.; Graham, J.M.R. [Imperial College, London (United Kingdom)

    1996-09-01

    An experiment into the effect of control activity on blade fatigue damage rate for a 5 kW, two bladed, teetered HAWT has been performed. It has been shown that control activity influences the distribution of strain in the blade but that in a high rotor speed, high cycle fatigue regime this has little influence on damage rate. The experiment was conducted on a small test turbine by implementing variable speed stall, pitch and yaw control strategies and measuring blade flapwise strain response at root and midspan locations. A full description of the investigation is provided. (au)

  18. The fast code

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Dept. of Mechanical Engineering, Corvallis, OR (United States)

    1996-09-01

    The FAST Code which is capable of determining structural loads on a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees of freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting, occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good. (au)

  19. 14 CFR 27.1509 - Rotor speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  20. 14 CFR 29.1509 - Rotor speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  1. Performance tests on helical Savonius rotors

    Energy Technology Data Exchange (ETDEWEB)

    Kamoji, M.A.; Kedare, S.B. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India); Prabhu, S.V. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay (India)

    2009-03-15

    Conventional Savonius rotors have high coefficient of static torque at certain rotor angles and a negative coefficient of static torque from 135 to 165 and from 315 to 345 in one cycle of 360 . In order to decrease this variation in static torque from 0 to 360 , a helical Savonius rotor with a twist of 90 is proposed. In this study, tests on helical Savonius rotors are conducted in an open jet wind tunnel. Coefficient of static torque, coefficient of torque and coefficient of power for each helical Savonius rotor are measured. The performance of helical rotor with shaft between the end plates and helical rotor without shaft between the end plates at different overlap ratios namely 0.0, 0.1 and 0.16 is compared. Helical Savonius rotor without shaft is also compared with the performance of the conventional Savonius rotor. The results indicate that all the helical Savonius rotors have positive coefficient of static torque at all the rotor angles. The helical rotors with shaft have lower coefficient of power than the helical rotors without shaft. Helical rotor without shaft at an overlap ratio of 0.0 and an aspect ratio of 0.88 is found to have almost the same coefficient of power when compared with the conventional Savonius rotor. Correlation for coefficient of torque and power is developed for helical Savonius rotor for a range of Reynolds numbers studied. (author)

  2. IDENTIFICATION OF CRACKED ROTOR BY WAVELET TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    邹剑; 陈进; 蒲亚鹏

    2002-01-01

    The dynamic equation of cracked rotor in rotational frame was modelled, the numerical simulation solutions of the cracked rotor and the uncracked rotor were obtained. By the wavelet transform, the time-frequency properties of the cracked rotor and the uncracked rotor were discussed, the difference of the time-frequency properties between the cracked rotor and the uncracked rotor was compared. A new detection algorithm using wavelet transform to identify crack was proposed. The experiments verify the availability and validity of the wavelet transform in identification of crack.

  3. Rotor blade assembly having internal loading features

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, Daniel David

    2017-05-16

    Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movement of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.

  4. Feedback Control of Rotor Overspeed

    Science.gov (United States)

    Churchill, G. B.

    1984-01-01

    Feedback system for automatically governing helicopter rotor speed promises to lessen pilot's workload, enhance maneuverability, and protect airframe. With suitable modifications, concept applied to control speed of electrical generators, automotive engines and other machinery.

  5. Design of composite flywheel rotor

    Institute of Scientific and Technical Information of China (English)

    Yue BAI; Qingjia GAO; Haiwen LI; Yihui WU; Ming XUAN

    2008-01-01

    A design method for a flywheel rotor com-posed of a composite rim and a metal hub is proposed by studying the connection between the rotor and the driving machine. The influence of some factors such as the rotor material, configuration, connection, and frac-ture techniques on energy density is analyzed. The results show that the ratio of the inner radius to outer radius of the rim is the key factor, and is determined by the rim material. Optimizing the hub can further efficiently improve energy density. The composite flywheel rotor is produced and its rotation stress has been tested at the speed of 20 krpm. The emulation results are consistent with testing results, which proves that the introduced design method is useful.

  6. On Cup Anemometer Rotor Aerodynamics

    OpenAIRE

    Santiago Pindado; Sergio Avila-Sanchez; Javier Pérez

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a lin...

  7. Simulation of Low frequency Noise from a Downwind Wind Turbine Rotor

    DEFF Research Database (Denmark)

    Madsen, Helge Aa.; Johansen, Jeppe; Sørensen, Niels

    2007-01-01

    One of the major drawbacks of a wind turbine with a downwind rotor is the generation of considerable low frequency noise (so-called thumping noise) which can cause annoyance of people at a considerable distance. This was experienced on a number of full-scale turbines in e.g. US and Sweden...... in the period from around 1980 to 1990. One of the common characteristics of this low frequency noise, emerging from analysis of the phenomenon, was that the sound pressure level is strongly varying in time. We have investigated this phenomenon using a model package by which the low frequency noise...... to the aero acoustic model. The results for a 5 MW two-bladed turbine with a downwind rotor showed an increase in the sound pressure level of 5-20 dB due to the unsteadiness in the wake caused mainly by vortex shedding. However, in some periods the sound pressure level can increase additionally 0-10 dB when...

  8. Rotor-Router Aggregation on the Comb

    OpenAIRE

    Huss, Wilfried; Sava, Ecaterina

    2011-01-01

    We prove a shape theorem for rotor-router aggregation on the comb, for a specific initial rotor configuration and clockwise rotor sequence for all vertices. Furthermore, as an application of rotor-router walks, we describe the harmonic measure of the rotor-router aggregate and related shapes, which is useful in the study of other growth models on the comb. We also identify the shape for which the harmonic measure is uniform. This gives the first known example where the rotor-router cluster ha...

  9. Rotor/Wing Interactions in Hover

    Science.gov (United States)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  10. The Diver with a Rotor

    CERN Document Server

    Bharadwaj, Sudarsh; Dullin, Holger R; Leung, Karen; Tong, William

    2015-01-01

    We present and analyse a simple model for the twisting somersault. The model is a rigid body with a rotor attached which can be switched on and off. This makes it simple enough to devise explicit analytical formulas whilst still maintaining sufficient complexity to preserve the shape-changing dynamics essential for twisting somersaults in springboard and platform diving. With `rotor on' and with `rotor off' the corresponding Euler-type equations can be solved, and the essential quantities characterising the dynamics, such as the periods and rotation numbers, can be computed in terms of complete elliptic integrals. Thus we arrive at explicit formulas for how to achieve a dive with m somersaults and n twists in a given total time. This can be thought of as a special case of a geometric phase formula due to Cabrera 2007.

  11. On cup anemometer rotor aerodynamics.

    Science.gov (United States)

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  12. Transonic Axial Splittered Rotor Tandem Stator Stage

    Science.gov (United States)

    2016-12-01

    compressor rotor was designed incorporating a splitter vane between the principal blades . Historical experiments conducted by Dr. Arthur J...conventional rotor design . The stage is composed of the rotor and stator. The flow of the air passing through the rotor is turned, and the flow is required...derived results achieved the best blade geometry for design continuation. The best circumferential and axial placement for the splitter blade was

  13. Genetics Home Reference: Rotor syndrome

    Science.gov (United States)

    ... of these proteins. Without the function of either transport protein, bilirubin is less efficiently taken up by the ... Schinkel AH. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into ...

  14. Rotor damage detection by using piezoelectric impedance

    Science.gov (United States)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  15. Advances in tilt rotor noise prediction

    Science.gov (United States)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  16. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research

    Science.gov (United States)

    Coleman, Colin P.

    1997-01-01

    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  17. On Cup Anemometer Rotor Aerodynamics

    Directory of Open Access Journals (Sweden)

    Santiago Pindado

    2012-05-01

    Full Text Available The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal, tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups’ center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor’s cup.

  18. Rotor Embedded with Shape Memory Alloy Wires

    Directory of Open Access Journals (Sweden)

    K. Gupta

    2000-01-01

    Full Text Available In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i increase in Young's modulus of SMA (NITINOL wires when activated, (ii tension in wires because of phase recovery stresses, and (iii variation of support stiffness by three times because of activation of SMA in rotor supports. It is shown by numerical examples that substantial variation in rotor critical speeds can be achieved by a combination of these factors which can be effectively used to avoid resonance during rotor coast up/down.

  19. Design of plywood and paper flywheel rotors

    Science.gov (United States)

    Hagen, D. L.

    Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Two bulb attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Plywood moisture equilibrium during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. Detailed measurements of the distribution of strengths, densities and specific energy of conventional Finnish Birch plywood and of custom made hexagonal Birch plywood are detailed. High resolution tensile tests were performed while monitoring the acoustic emissions with micoprocessor controlled data acquisition. Preliminary duration of load tests were performed on vacuum dried hexagonal birch plywood. Economics of cellulosic and conventional rotors were examined.

  20. Flywheel Rotor Safe-Life Technology

    Science.gov (United States)

    Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)

    2002-01-01

    Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options

  1. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  2. Energy from Swastika-Shaped Rotors

    Directory of Open Access Journals (Sweden)

    McCulloch M. E.

    2015-04-01

    Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.

  3. Rotor thermal stress monitoring in steam turbines

    Science.gov (United States)

    Antonín, Bouberle; Jan, Jakl; Jindřich, Liška

    2015-11-01

    One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.

  4. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  5. Performance tests of a Benesh wind turbine rotor and a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Moutsoglou, A.; Yan Weng [South Dakota State Univ., Brookings, SD (United States). Dept. of Mechanical Engineering

    1995-12-31

    A study was conducted to compare the performance of a Benesh rotor against a Savonius rotor as a wind power generating device. Rotors of similar dimensions were tested at the exit of a 1.22 m x 0.91 wind tunnel, at two different shaft heights above the ground. In all the tests, the maximum power coefficient for the Benesh rotor was considerably greater than for the Savonius and occurred at a lower tip speed ratio. The Benesh rotor also displayed better starting characteristics throughout. Finally, the present data compared very favourably with the experimental data of Backwell et al. (Author)

  6. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  7. Rotor theories by Professor Joukowsky: Momentum theories

    DEFF Research Database (Denmark)

    van Kuik, G. A. M.; Sørensen, Jens Nørkær; Okulov, V. L.

    2015-01-01

    This paper is the first of two papers on the history of rotor aerodynamics with special emphasis on the role of Joukowsky. The present one focuses on the development of the momentum theory while the second one surveys the development of vortex theory for rotors. Joukowsky has played a major role ...

  8. Pneumatic boot for helicopter rotor deicing

    Science.gov (United States)

    Blaha, B. J.; Evanich, P. L.

    1981-01-01

    Pneumatic deicer boots for helicopter rotor blades were tested. The tests were conducted in the 6 by 9 ft icing research tunnel on a stationary section of a UH-IH helicopter main rotor blade. The boots were effective in removing ice and in reducing aerodynamic drag due to ice.

  9. Computational Analysis of Multi-Rotor Flows

    Science.gov (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  10. Open Rotor - Analysis of Diagnostic Data

    Science.gov (United States)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  11. Rotors stress analysis and design

    CERN Document Server

    Vullo, Vincenzo

    2013-01-01

    Stress and strain analysis of rotors subjected to surface and body loads, as well as to thermal loads deriving from temperature variation along the radius, constitutes a classic subject of machine design. Nevertheless attention is limited to rotor profiles for which governing equations are solvable in closed form. Furthermore very few actual engineering issues may relate to structures for which stress and strain analysis in the linear elastic field and, even more, under non-linear conditions (i.e. plastic or viscoelastic conditions) produces equations to be solved in closed form. Moreover, when a product is still in its design stage, an analytical formulation with closed-form solution is of course simpler and more versatile than numerical methods, and it allows to quickly define a general configuration, which may then be fine-tuned using such numerical methods. In this view, all subjects are based on analytical-methodological approach, and some new solutions in closed form are presented. The analytical formul...

  12. Experimental modal tests applied to rotor balancing; Pruebas modales experimentales aplicadas al balanceo de rotores

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Solis, Jose Antonio; Munoz Quezada, Rodolfo; Franco Nava, Jose Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1993-01-01

    At the Instituto de Investigaciones Electricas (IIE), the experimental modal tests were initiated in order to validate the numerical models used by computer programs for the study of the rotor dynamic behavior. In order to contribute to the application of the rotor balancing methods based in the calculation of their modal forms, currently the capacity to determine these modal forms and the natural frequencies of turbogenerator rotors, is being developed, through experimental modal tests. In this paper a short description is made of the technique and the results of its application in an experimental rotor and in one of the rotors of a turbogenerator, are presented. [Espanol] En el Instituto de Investigaciones Electricas (IIE), las pruebas modales experimentales se iniciaron con la finalidad de validar los modelos numericos empleados por programas de computo para el estudio del comportamiento dinamico de rotores. Con objeto de contribuir a la aplicacion de los metodos de balanceo de rotores basados en el calculo de sus formas modales, actualmente esta desarrollandose la capacidad para determinar esas formas modales y las frecuencias naturales de rotores de turbogeneradores, a traves de las pruebas modales experimentales. En este trabajo se describe brevemente la tecnica y se presentan los resultados de su aplicacion en un rotor experimental y en uno de los tres rotores de un turbogenerador.

  13. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  14. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  15. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  16. Wind rotor with vertical axis. Vindrotor med vertikal axel

    Energy Technology Data Exchange (ETDEWEB)

    Colling, J.; Sjoenell, B.

    1987-06-15

    This rotor is of dual type i.e. a paddle wheel shaped rotor close to the vertical axis and a second rotor consisting of vertical blades with wing profile and attached to radial spokes which are fixed to the axis together with the paddle wheel rotor. (L.F.).

  17. On the torque mechanism of Savonius rotors

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N. (Dept. of Mechanical Univ., Kiryu (Japan))

    1992-07-01

    The aerodynamic performance and the flow fields of Savonius rotors at various overlap ratios have been investigated by measuring the pressure distributions on the blades and by visualizing the flow fields in and around the rotors with and without rotation. Experiments have been performed on four rotors having two semicircular blades but with different overlap ratios ranging 0 to 0.5. The static torque performance is improved by increasing the overlap ratio especially on the returning blade, which is due to the pressure recovery effect by the flow through the overlap. On the other hand, the torque and the power performance of the rotating rotor reaches a maximum at an overlap of 0.15. This effect is largely created by the Coanda-like flow on the convex side of the advancing blade, which is strengthened by the flow through the overlap at this small overlap ratio. However, this phenomena is weakened as the overlap ratio is further increased, suggesting a deteriorated performance of the rotor. Observations of the flow inside the rotor indicate an increased recirculation region at such large overlap ratios, which also suggests a reduced aerodynamic efficiency for rotors with large overlap. 11 figs., 16 refs.

  18. Discrete analog computing with rotor-routers.

    Science.gov (United States)

    Propp, James

    2010-09-01

    Rotor-routing is a procedure for routing tokens through a network that can implement certain kinds of computation. These computations are inherently asynchronous (the order in which tokens are routed makes no difference) and distributed (information is spread throughout the system). It is also possible to efficiently check that a computation has been carried out correctly in less time than the computation itself required, provided one has a certificate that can itself be computed by the rotor-router network. Rotor-router networks can be viewed as both discrete analogs of continuous linear systems and deterministic analogs of stochastic processes.

  19. Cyclic Control Optimization for a Smart Rotor

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Henriksen, Lars Christian

    2012-01-01

    The paper presents a method to determine cyclic control trajectories for a smart rotor undergoing periodic-deterministic load variations. The control trajectories result from a constrained optimization problem, where the cost function to minimize is given by the variation of the blade root flapwise...... bending moment within a rotor revolution. The method is applied to a rotor equipped with trailing edge flaps, and capable of individual blade pitching. Results show that the optimized cyclic control significantly alleviates the load variations from periodic disturbances; the combination of both cyclic...

  20. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  1. Study on wave rotor refrigerators

    Institute of Scientific and Technical Information of China (English)

    Yuqiang DAI; Dapeng HU; Meixia DING

    2009-01-01

    As a novel generation of a rotational gas wave machine, the wave rotor refrigerator (WRR) is an unsteady flow device used for refrigeration, in whose passages pressured streams directly contact and exchange energy due to the movement of pressure waves. In this paper, the working mechanism and refrigeration principle are inves-tigated based on the one-dimensional unsteady flow theory.A basic limitation on main structural parameters and operating parameters is deduced and the wave diagram of WRR to guide designing is sketched. The main influential factors are studied through an experiment. In the DUT Gas Wave Refrigeration Studying and Development Center (GWRSDC) lab, the isentropic efficiency can now reach about 65%. The results show that the WRR is a feasible and promising technology in pressured gas refrigeration cases.

  2. Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft

    Science.gov (United States)

    Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.

    1981-01-01

    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.

  3. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    Science.gov (United States)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  4. The Savonius rotor. A construction guide. 11. ed.; Der Savonius-Rotor. Eine Bauanleitung

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Heinz

    2009-07-01

    The Savonius rotor is particularly suited for medium and low wind velocities and low capacities (up to 500 W). It can be constructed of commercial components and using simple techniques. It requires little wind to start, and the useful energy is transmitted via a shaft. In this lavishly illustrated book, the author describes the construction and operation of a robust Savonius rotor. He also shows how this rotor can be developed into a flow-through rotor for bigger plants, and he presents recommendations for appropriate machinery like pumps and slow generators.

  5. Aerodynamics of Rotor Blades for Quadrotors

    CERN Document Server

    Bangura, Moses; Naldi, Roberto; Mahony, Robert

    2016-01-01

    In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...

  6. Valve-aided twisted Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Rajkumar, M.; Saha, U.K.

    2006-05-15

    Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].

  7. Edge states of periodically kicked quantum rotors

    CERN Document Server

    Floß, Johannes

    2015-01-01

    We present a quantum localization phenomenon that exists in periodically kicked 3D rotors, but is absent in the commonly studied 2D ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at $J=0$. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.

  8. Rotor dynamic analysis of main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chong Won; Seo, Jeong Hwan; Kim, Choong Hwan; Shin, Jae Chul; Wang, Lei Tian [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    A rotor dynamic analysis program DARBS/MCP, for the main coolant pump of the integral reactor, has been developed. The dynamic analysis model of the main coolant pump includes a vertical shaft, three grooved radial journal bearings and gaps that represent the structure-fluid interaction effects between the rotor and the lubricant fluid. The electromagnetic force from the motor and the hydro-dynamic force induced by impeller are the major sources of vibration that may affect the rotor system stability. DARBS/MCP is a software that is developed to effectively analyze the dynamics of MCP rotor systems effectively by applying powerful numerical algorithms such as FEM with modal truncation and {lambda}-matrix method for harmonic analysis. Main design control parameters, that have much influence to the dynamic stability, have been found by Taguchi's sensitivity analysis method. Design suggestions to improve the stability of MCP rotor system have been documented. The dynamic bearing parameters of the journal bearings used for main coolant pump have been determined by directly solving the Reynolds equation using FDM method. Fluid-structure interaction effect that occurs at the small gaps between the rotor and the stator were modeled as equivalent seals, the electromagnetic force effect was regarded as a linear negative radial spring and the impeller was modeled as a rigid disk with hydrodynamic and static radial force. Although there exist critical speeds in the range of operational speeds for type I and II rotor systems, the amplitude of vibration appears to be less than the vibration limit set by the API standards. Further more, it has been verified that the main design parameters such as the clearance and length of journal bearings, and the static radial force of impeller should be properly adjusted, in order to the improve dynamic stability of the rotor system. (author). 39 refs., 81 figs., 17 tabs.

  9. Investigation of rotor control system loads

    Institute of Scientific and Technical Information of China (English)

    Sun Tao; Tan Jianfeng; Wang Haowen

    2013-01-01

    This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two helicopter rotors of UH-60A and SA349/2, both operating in two critical flight conditions, high-speed flight and high-thrust flight, are studied. The analysis shows good agreements with the flight test data and the calculation results using CAMRAD II. The mechanisms of rotor control loads are then analyzed in details based on the present predictions and the flight test data. In high-speed conditions, the pitch link loads are dominated by the integral of blade pitching moments, which are generated by cyclic pitch control. In high-thrust conditions, the positive pitching loads in the advancing side are caused by high collective pitch angle, and dynamic stall in the retreating side excites high-frequency responses. The swashplate servo loads are predominated by the rotor pitch link loads, and the inertia of the swashplate has significant effects on high-frequency harmonics of the servo loads.

  10. Dynamic Gust Load Analysis for Rotors

    Directory of Open Access Journals (Sweden)

    Yuting Dai

    2016-01-01

    Full Text Available Dynamic load of helicopter rotors due to gust directly affects the structural stress and flight performance for helicopters. Based on a large deflection beam theory, an aeroelastic model for isolated helicopter rotors in the time domain is constructed. The dynamic response and structural load for a rotor under the impulse gust and slope-shape gust are calculated, respectively. First, a nonlinear Euler beam model with 36 degrees-of-freedoms per element is applied to depict the structural dynamics for an isolated rotor. The generalized dynamic wake model and Leishman-Beddoes dynamic stall model are applied to calculate the nonlinear unsteady aerodynamic forces on rotors. Then, we transformed the differential aeroelastic governing equation to an algebraic one. Hence, the widely used Newton-Raphson iteration algorithm is employed to simulate the dynamic gust load. An isolated helicopter rotor with four blades is studied to validate the structural model and the aeroelastic model. The modal frequencies based on the Euler beam model agree well with published ones by CAMRAD. The flap deflection due to impulse gust with the speed of 2m/s increases twice to the one without gust. In this numerical example, results indicate that the bending moment at the blade root is alleviated due to elastic effect.

  11. Forces exciting generation roll at rotor vibrations when rotor-to-stator rubbing

    Science.gov (United States)

    Shatokhin, V. F.

    2017-07-01

    The consequences of emergencies of turbosets for different application are revealed, the cause of forced shutdown and even catastrophic destructions of which many researchers consider the rotor-to-stator rubbing and development—to a greater or lesser extent—of the phenomena of the rotor generation roll over the stator. The synchronous or asynchronous generation roll is determined by the rotor precession direction, coinciding or not coinciding with the self-rotation direction of the rotor. Asynchronous generation roll is the most dangerous form of the rotor-stator contact interaction with the vibrations with rubbing. The basic equations of rotor vibrations are presented: symmetric rotor fixed on two supports and that fixed on several supports after abrupt imbalance with and without rotor coming in contact with a flexible stator. The vibration process is considered as the rotor motion in a backlash with subsequent contact with the stator, loss of contact, or development of generation roll. The latter essentially depends on the properties of the "rotor-support-stator" dynamic system. The stator stiffness characteristic is specified in "force-deformation" coordinates that make it possible to take into account damping in the supports and power loss in the stator. The diagram of elastic-damping device was presented, which makes it possible to ensure a certain level of power loss at the stator displacements. The exciting forces promoting development of self-exciting vibrations of the rotor in the form of asynchronous generation roll were compared with the exciting forces of oil film of sliding bearings and forces of aerodynamic excitation in the turbine flow path and sealings. For the rotor systems of high and medium pressure of a 300 MW capacity turboset, the simulation results of the process of development of asynchronous generation roll at the vibrations with rubbing were revealed, and the basic characteristics of development of generation roll in a span between

  12. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  13. Design improvements to the ESI-80 wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T.; Kleeman, A.; Manwell, J.; McGowan, J. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    This paper describes two investigations related to improvements to an ESI-80 wind turbine. One of them involved modeling the tip flaps during braking. The other was a study of the turbine behavior with various delta-3 angles. These topics are of interest since the turbine is a two-bladed, teetered, free-yaw machine with tip flaps and an adjustable delta-3 angle. Tip flaps are used for slowing the turbine during shutdown and as an emergency system to insure that the rotor does not go into an overspeed condition in the event of failure of other parts of the system. Upon deployment, the tip flaps are exposed to a number of varying forces including aerodynamic, damper, spring, centripetal, and gravitational forces and forces at the hinged connection to the blades. For maximum braking the angle of tip flap deployment needs to be as large as possible without striking the blades in overspeed conditions and when covered with ice. To investigate tip flap design tradeoffs, a dynamic model of the tip flaps on the modified ESI-80 turbine was developed. Results include a determination of the effect of the addition of weight to the flap, overspeed conditions, and changes in damping coefficient. Changes in the delta-3 angle can be used to couple pitching and flapping motions, affecting both teeter and yaw behavior. These effects have been investigated using a modified version of YawDyn. The effects of changes in the delta-3 angle on the teeter and yaw behavior of the modified ESI-80 wind turbine were investigated. Results show that increased teeter excursions in steady high winds can be reduced by increasing the delta-3 angle. Increasing the delta-3 angle may also increase yaw motion in low wind speeds. Results suggest that the optimum delta-3 angle for improved performance may be substantially greater than the presently used angle of zero degrees. 8 refs., 16 figs.

  14. A rotor for a high-rise building; Ein Rotor fuer das Hochhaus

    Energy Technology Data Exchange (ETDEWEB)

    Zastrow, F. [Hochschule Bremerhaven (Germany). Inst. fuer Automatisierungs- und Elektrotechnik; Okoth, G.; Boehm, K.; El Naggar, S. [Alfred-Wegener Inst. fuer Polar- und Meeresforschung, Bremerhaven (Germany)

    2004-08-30

    The typical characteristics of the H rotor recommend it not only for use in extreme climate zones but also for installation on buildings and in built-on terrain. It is difficult, however, to make small H rotors efficient and economical. (orig.)

  15. Electric Drive Control with Rotor Resistance and Rotor Speed Observers Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    C. Ben Regaya

    2014-01-01

    Full Text Available Many scientific researchers have proposed the control of the induction motor without speed sensor. These methods have the disadvantage that the variation of the rotor resistance causes an error of estimating the motor speed. Thus, simultaneous estimation of the rotor resistance and the motor speed is required. In this paper, a scheme for estimating simultaneously the rotor resistance and the rotor speed of an induction motor using fuzzy logic has been developed. We present a method which is based on two adaptive observers using fuzzy logic without affecting each other and a simple algorithm in order to facilitate the determination of the optimal values of the controller gains. The control algorithm is proved by the simulation tests. The results analysis shows the characteristic robustness of the two observers of the proposed method even in the case of variation of the rotor resistance.

  16. Optimum blade loading for a powered rotor in descent

    Institute of Scientific and Technical Information of China (English)

    Ramin Modarres; David A. Peters

    2016-01-01

    The optimum loading for rotors has previously been found for hover, climb and wind turbine conditions;but, up to now, no one has determined the optimum rotor loading in descent. This could be an important design consideration for rotary-wing parachutes and low-speed des-cents. In this paper, the optimal loading for a powered rotor in descent is found from momentum theory based on a variational principle. This loading is compared with the optimal loading for a rotor in hover or climb and with the Betz rotor loading (which is optimum for a lightly-loaded rotor). Wake contraction for each of the various loadings is also presented.

  17. THE DESIGN OF AXIAL PUMP ROTORS USING THE NUMERICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ali BEAZIT

    2010-06-01

    Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.

  18. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  19. Inlet Guide Vane Wakes Including Rotor Effects

    Science.gov (United States)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  20. Performance investigation of the S-Rotors

    Science.gov (United States)

    Bhayo, B. A.; Al-Kayiem, H. H.; Yahaya, N. Z.

    2015-12-01

    This paper presents and discusses results from an experimental investigation of three models of wind S-rotors. Models 1 is modified from conventional Savonius rotor with a single stage and zero offsets zero overlaps; model 2 is three blade single stage wind rotor; and model 3 is double stage conventional Savonius rotor. The three models were designed, fabricated and characterized in terms of their coefficient of performance and dynamic torque coefficient. A special open wind simulator was designed for the test. The optimum parameters for the models were based on previous studies. The results showed that the model 1, model 2 and model 3 has the maximum power coefficient of 0.26, 0.17, and 0.21 at the correspondence tip speed ratio (TSR) of 0.42, 0.39 and 0.46, respectively. Model 1 is further optimized in terms of the aspect ratio resulting in improved power coefficient by 24%. The maximum dynamic torque coefficient of model 1, model 2 and model 3 was found as 0.81, 0.56 and 0.67 at the correspondence minimum TSR of 0.28, 0.21 and 0.17, respectively. It was noted that the all three models have high torque coefficient because the models were tested at higher applied torque on the rotors.

  1. RESEARCH ON KNOWLEDGE-BASED CAPP SYSTEM FOR ROTOR FORGING

    Institute of Scientific and Technical Information of China (English)

    Wang Leigang; Deng Dongrnei; Liu Zhubai

    2000-01-01

    Guided by developing forging technology theory,designing rules on rotor forging process are summed up.Knowledge-based CAPP system for rotor forging is created.The system gives a rational and optimum process.

  2. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    Science.gov (United States)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  3. STABILITY OF ROTOR-BEARING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Uğur YÜCEL

    2003-03-01

    Full Text Available In various industrial applications there is a need for higher speed, yet reliably operating rotating machinery. A key factor in achieving this type of machinery continues to be the ability to accurately predict the dynamic response and stability of a rotor-bearing system. This paper introduces and explains the nature of rotordynamic phenomena from comparatively simple analytic models. Starting with the most simple rotor model that is supported in two rigid bearings at its ends, the more realistic and more involved cases are considered by incorporating the effects of flexible bearings. Knowledge of these phenomena is fundamental to an understanding of the behavior of complex models, which corresponds to the real rotors of turbomachines.

  4. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...... is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor...... system that can be diagnosed and monitored are: actuator faults, sensor faults and internal blade changes as e.g. change in mass of a blade....

  5. Identification of helicopter rotor dynamic models

    Science.gov (United States)

    Molusis, J. A.; Bar-Shalom, Y.; Warmbrodt, W.

    1983-01-01

    A recursive, extended Kalman-filter approach is applied to the identifiction of rotor damping levels of representative helicopter dynamic systems. The general formulation of the approach is presented in the context of a typically posed stochastic estimation problem, and the method is analytically applied to determining the damping levels of a coupled rotor-body system. The identified damping covergence characteristics are studied for sensitivity to both constant-coefficient and periodic-coefficient measurement models, process-noise covariance levels, and specified initial estimates of the rotor-system damping. A second application of the method to identifying the plant model for a highly damped, isolated flapping blade with a constant-coefficient state model (hover) and a periodic-coefficient state model (forward flight) is also investigated. The parameter-identification capability is evaluated for the effect of periodicity on the plant model coefficients and the influence of different measurement noise levels.

  6. Eigenfrequency sensitivity analysis of flexible rotors

    Directory of Open Access Journals (Sweden)

    Šašek J.

    2007-10-01

    Full Text Available This paper deals with sensitivity analysis of eigenfrequencies from the viewpoint of design parameters. The sensitivity analysis is applied to a rotor which consists of a shaft and a disk. The design parameters of sensitivity analysis are the disk radius and the disk width. The shaft is modeled as a 1D continuum using shaft finite elements. The disks of rotating systems are commonly modeled as rigid bodies. The presented approach to the disk modeling is based on a 3D flexible continuum discretized using hexahedral finite elements. The both components of the rotor are connected together by special proposed couplings. The whole rotor is modeled in rotating coordinate system with considering rotation influences (gyroscopic and dynamics stiffness matrices.

  7. Analysis on structural characteristics of rotors in twin-rotor cylinder-embedded piston engine

    Institute of Scientific and Technical Information of China (English)

    陈虎; 潘存云; 徐海军; 邓豪; 韩晨

    2014-01-01

    Twin-rotor cylinder-embedded piston engine is proposed for dealing with the sealing problems of rotors in twin-rotor piston engine where the existent mature sealing technologies for traditional reciprocating engine can be applied. The quantity and forms of its sealing surfaces are reduced and simplified, and what’s more, the advantages of twin-rotor piston engine are inherited, such as high power density and no valve mechanism. Given the motion law of two rotors, its kinematic model is established, and the general expression for some parameters related to engine performance, such as the trajectory, displacement, velocity and acceleration of the piston and centroid trajectory, angular displacement, velocity and acceleration of the rod are presented. By selecting different variation patterns of relative angle of two rotors, the relevant variables are compared. It can be concluded that by designing the relative angle function of two rotors, the volume variation of working chamber can be changed. However, a comprehensive consideration for friction and vibration is necessary because velocity and acceleration are quite different in the different functions, the swing magnitude of rod is proportional to link ratioλ, and the position of rod swing center is controlled by eccentricitye. In order to reduce the lateral force, a smaller value ofλshould be selected in the case of the structure, and the value ofe should be near 0.95. There is no relationship between the piston stroke and the variation process of relative angle of two rotors, the former is only proportional to the amplitude of relative angle of two rotors.

  8. A Study of Coaxial Rotor Performance and Flow Field Characteristics

    Science.gov (United States)

    2016-01-22

    A Study of Coaxial Rotor Performance and Flow Field Characteristics Natasha L. Barbely Aerospace Engineer NASA Ames Research Center Moffett Field...The pressure field generated by the two airfoils aided our interpretation of the more complex coaxial rotor system flow field. The pressure fields...velocity (ft/sec) Z vertical distance between rotors (ft) αS pitch angle (deg), negative pitch down κint coaxial rotor induced power interference

  9. On aerodynamic design of the Savonius windmill rotor

    Science.gov (United States)

    Mojola, O. O.

    This paper examines under field conditions the performance characteristics of the Savonius windmill rotor. Test data were collected on the speed, torque and power of the rotor at a large number of wind speeds for each of seven values of the rotor overlap ratio. Field testing procedures are critically appraised and a unified approach is suggested. The performance data of the Savonius rotor are also fully discussed and design criteria established.

  10. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Zahle, Frederik; Sørensen, Niels N.

    2013-01-01

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...

  11. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...

  12. APPLICATION OF MECHANIZED MATHEMATICS TO ROTOR DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    胡超; 王岩; 王立国; 黄文虎

    2002-01-01

    Based on the mechanized mathematics and WU Wen-tsun elimination method,using oil film forces of short-bearing model and Muszynska's dynamic model, the dynamical behavior of rotor-bearing system and its stability of motion are investigated. As example,the concept of Wu characteristic set and Maple software, whirl parameters of short- bearing model, which is usually solved by the numerical method, are analyzed. At the same time,stability of zero solution of Jeffcott rotor whirl equation and stability of self-excited vibration are studied. The conditions of stable motion are obtained by using theory of nonlinear vibration.

  13. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  14. Fine tuning of molecular rotor function in photochemical molecular switches

    NARCIS (Netherlands)

    ter Wiel, Matthijs K. J.; Feringa, Ben L.

    2009-01-01

    Molecular switches are used as scaffolds for the construction of controlled molecular rotors. The internal position of the switching entity in the molecule controls the dynamic behaviour of the rotor moiety in the molecule. Six new molecular motors with o-xylyl rotor moieties were prepared on the ba

  15. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  16. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for understandi

  17. 14 CFR 33.92 - Rotor locking tests.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.92 Rotor locking tests. If continued rotation is prevented by a means to lock the rotor(s), the engine must be subjected to a test that...

  18. On the Classification of Universal Rotor-Routers

    CERN Document Server

    He, Xiaoyu

    2011-01-01

    The combinatorial theory of rotor-routers has connections with problems of statistical mechanics, graph theory, chaos theory, and computer science. A rotor-router network defines a deterministic walk on a digraph G in which a particle walks from a source vertex until it reaches one of several target vertices. Motivated by recent results due to Giacaglia et al., we study rotor-router networks in which all non-target vertices have the same type. A rotor type r is universal if every hitting sequence can be achieved by a homogeneous rotor-router network consisting entirely of rotors of type r. We give a conjecture that completely classifies universal rotor types. Then, this problem is simplified by a theorem we call the Reduction Theorem that allows us to consider only two-state rotors. A rotor-router network called the compressor, because it tends to shorten rotor periods, is introduced along with an associated algorithm that determines the universality of almost all rotors. New rotor classes, including boppy ro...

  19. A Recurrent Rotor-Router Configuration in Z^3

    CERN Document Server

    A, Tulasi Ram Reddy

    2010-01-01

    Rotor Router models were first introduced by James Propp in 2002. A recurrent Rotor configuration is the one in which every state is visited infinitely often. In this project we investigated whether there is a recurrent Rotor configuration in Z^d (d>2).

  20. 14 CFR 29.547 - Main and tail rotor structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main and tail rotor structure. 29.547 Section 29.547 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Requirements § 29.547 Main and tail rotor structure. (a) A rotor is an assembly of rotating components, which...

  1. Modeling the effects of control systems of wind turbine fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.G.; Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    In this study we look at the effect on fatigue life of two types of control systems. First, we investigate the Micon 65, an upwind, three bladed turbine with a simple yaw control system. Results indicate that increased fatigue damage to the blade root can be attributed to continuous operation at significant yaw error allowed by the control system. Next, we model a two-bladed teetered rotor turbine using three different control systems to adjust flap deflections. The first two limit peak power output, the third limits peak power and cyclic power output over the entire range of operation. Results for simulations conducted both with and without active control are compared to determine how active control affects fatigue life. Improvement in fatigue lifetimes were seen for all control schemes, with increasing fatigue lifetime corresponding to increased flap deflection activity. 13 refs., 6 figs., 2 tabs.

  2. Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model

    Science.gov (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Castro-Gómez, L. L.; Rodríguez, J. A.; De Santiago, O.

    2016-04-01

    Thermal stresses in a simplified steam turbine rotor model during a cold startup are analyzed using finite element analysis (FEA). In order to validate the numerical model, an experimental array is developed in which a hollow cylinder is heated with hot air in the external surface. At the thick wall of the cylinder, temperature distribution is measured in real time, while at the same time an algorithm computes thermal stresses. Additional computational fluid dynamics (CFD) calculations are made to obtain magnitudes of velocity and pressure in order to compute convective heat transfer coefficient. The experimental results show good agreement with the FEA computations. To evaluate the effect of rotor diameter size, FEA computations with variation in external and internal diameters are performed. Results show that thermal stresses are proportional to rotor diameter size. Also, zones of higher stress concentration are found in the external and internal surfaces of the rotor.

  3. Response studies of rotors and rotor blades with application to aeroelastic tailoring

    Science.gov (United States)

    Friedmann, P. P.

    1982-01-01

    Various tools for the aeroelastic stability and response analysis of rotor blades in hover and forward flight were developed and incorporated in a comprehensive package capable of performing aeroelastic tailoring of rotor blades in forward flight. The results indicate that substantial vibration reductions, of order 15-40%, in the vibratory hub shears can be achieved by relatively small modifications of the initial design. Furthermore the optimized blade can be up to 20% lighter than the original design. Accomplishments are reported for the following tasks: (1) finite element modeling of rotary-wing aeroelastic problems in hover and forward flight; (2) development of numerical methods for calculating the aeroelastic response and stability of rotor blades in forward fight; (3) formulation of the helicopter air resonance problem in hover with active controls; and (4) optimum design of rotor blades for vibration reduction in forward flight.

  4. Computational Study of Flow Interactions in Coaxial Rotors

    Science.gov (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Although the first idea of coaxial rotors appeared more than 150 years ago, most helicopters have used single main-rotor/tail-rotor combination. Since reactive moments of coaxial rotors are canceled by contra-rotation, no tail rotor is required to counter the torque generated by the main rotor. Unlike the single main rotor design that distributes power to both main and tail rotors, all of the power for coaxial rotors is used for vertical thrust. Thus, no power is wasted for anti-torque or directional control. The saved power helps coaxial rotors reach a higher hover ceiling than single rotor helicopters. Another advantage of coaxial rotors is that the overall rotor diameter can be reduced for a given vehicle gross weight because each rotor provides a maximum contribution to vertical thrust to overcome vehicle weight. However, increased mechanical complexity of the hub has been one of the challenges for manufacturing coaxial rotorcraft. Only the Kamov Design Bureau of Russia had been notably successful in production of coaxial helicopters until Sikorsky built X2, an experimental compound helicopter. Recent developments in unmanned aircraft systems and high-speed rotorcraft have renewed interest in the coaxial configuration. Multi-rotors are frequently used for small electric unmanned rotorcraft partly due to mechanical simplicity. The use of multiple motors provides redundancy as well as cost-efficiency. The multi-rotor concept has rarely been used until recently because of its inherent stability and control problems. However, advances in inexpensive electronic flight control systems have opened the floodgates for small drones using multirotors. Coaxial rotors have started to appear in some multi-rotor configurations. Small coaxial rotors have often been designed using a hundred year old approach that is "sketch, build, fly, and iterate." In that approach, there is no systematic way to explore trade-offs or determine logical next steps. It is neither possible to

  5. Nonlinear Vibration of Rotor Rubbing Stator Caused by Initial Perturbation

    Institute of Scientific and Technical Information of China (English)

    张小章; 隆锦胜; 李正光

    2001-01-01

    The vibration of a rotor rubbing a stator caused by an initial perturbation was studied analytically.The analytical model consists of a simple disc shaft rotor and a fixed stator. The perturbation is aninstantaneous change of the radial velocity when the rotor is operating in its normal steady state. The analysisshowed that the rotor may continue rubbing the stator for small clearance, even if the initial perturbation nolonger exists. For the interest of engineering applications, we investigated various rotating speeds,perturbation amplitudes and clearances between the rotor and the stator. Various friction coefficients on thecontact surface were also considered. The graphical results can be used for the design of rotating machines.``

  6. Time Frequency Features of Rotor Systems with Slowly Varying Mass

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2011-01-01

    Full Text Available With the analytic method and numerical method respectively, the asymptotic solutions and finite element model of rotor system with single slowly varying mass is obtained to investigate the time frequency features of such rotor system; furthermore, with given model of slowly varying mass, the rotor system with dual slowly varying mass is studied. For the first order approximate solution is used, there exists difference between the results with analytic method and numerical method. On the base of common characteristics of rotor system with dual slowly varying mass, the general rules and formula describing the frequency distribution of rotor system with multiple slowly varying mass are proposed.

  7. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    Science.gov (United States)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  8. Numerical evaluation of tandem rotor for highly loaded transonic fan

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bin; LIU Bao-jie

    2011-01-01

    Transonic tandem rotor was designed for highly loaded fan at a corrected tip speed of 381 m/s and another conventional rotor was designed as a baseline to evaluate the loading superiority of tandem rotor with three-dimensional (3-D) numerical simulation. The aft blade solidity and its impact on total loading level were studied in depth. The result indicates that tandem rotor has potential to achieve higher loading level and attain favorable aerodynamic performance in a wide range of loading coefficient 0. 55 ~ 0.68, comparing with the conventional rotor which produced a total pressure ratio of 2.0 and loading coefficient of 0. 42.

  9. T700 power turbine rotor multiplane/multispeed balancing demonstration

    Science.gov (United States)

    Burgess, G.; Rio, R.

    1979-01-01

    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  10. On the flow field around a Savonius rotor

    Science.gov (United States)

    Bergeles, G.; Athanassiadis, N.

    A model of a two-bucket Savonius rotor windmill was constructed and tested in a wind tunnel. The flow field around the rotor was examined visually and also quantitatively with the use of a hot wire. The flow visualization revealed an upstream influence on the flow field up to 3 rotor diameters away and a strong downwash downstream. Hot wire measurements showed a large velocity deficit behind the rotor and a quick velocity recovery downstream due to strong mixing; the latter was associated with high levels of turbulence. Energy spectra revealed that all turbulence was concentrated in a single harmonic corresponding to twice the rotational speed of the rotor.

  11. Rotor Design for Diffuser Augmented Wind Turbines

    Directory of Open Access Journals (Sweden)

    Søren Hjort

    2015-09-01

    Full Text Available Diffuser augmented wind turbines (DAWTs can increase mass flow through the rotor substantially, but have often failed to fulfill expectations. We address high-performance diffusers, and investigate the design requirements for a DAWT rotor to efficiently convert the available energy to shaft energy. Several factors can induce wake stall scenarios causing significant energy loss. The causality between these stall mechanisms and earlier DAWT failures is discussed. First, a swirled actuator disk CFD code is validated through comparison with results from a far wake swirl corrected blade-element momentum (BEM model, and horizontal-axis wind turbine (HAWT reference results. Then, power efficiency versus thrust is computed with the swirled actuator disk (AD code for low and high values of tip-speed ratios (TSR, for different centerbodies, and for different spanwise rotor thrust loading distributions. Three different configurations are studied: The bare propeller HAWT, the classical DAWT, and the high-performance multi-element DAWT. In total nearly 400 high-resolution AD runs are generated. These results are presented and discussed. It is concluded that dedicated DAWT rotors can successfully convert the available energy to shaft energy, provided the identified design requirements for swirl and axial loading distributions are satisfied.

  12. Eigenvalue assignment strategies in rotor systems

    Science.gov (United States)

    Youngblood, J. N.; Welzyn, K. J.

    1986-01-01

    The work done to establish the control and direction of effective eigenvalue excursions of lightly damped, speed dependent rotor systems using passive control is discussed. Both second order and sixth order bi-axis, quasi-linear, speed dependent generic models were investigated. In every case a single, bi-directional control bearing was used in a passive feedback stabilization loop to resist modal destabilization above the rotor critical speed. Assuming incomplete state measurement, sub-optimal control strategies were used to define the preferred location of the control bearing, the most effective measurement locations, and the best set of control gains to extend the speed range of stable operation. Speed dependent control gains were found by Powell's method to maximize the minimum modal damping ratio for the speed dependent linear model. An increase of 300 percent in stable speed operation was obtained for the sixth order linear system using passive control. Simulations were run to examine the effectiveness of the linear control law on nonlinear rotor models with bearing deadband. The maximum level of control effort (force) required by the control bearing to stabilize the rotor at speeds above the critical was determined for the models with bearing deadband.

  13. 14 CFR 33.34 - Turbocharger rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger rotors. 33.34 Section 33.34 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34...

  14. Flywheel system using wire-wound rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  15. Rotor Systems of Aircraft Jet Engines

    Directory of Open Access Journals (Sweden)

    Ján Kamenický

    2000-01-01

    engine's both coaxial rotors, their supports (including their hydrodynamic dampers, and its casing as well. Besides the short description of the engine design peculiarities and of its calculating model, there is also a short description of the used method of calculations, with focus on its peculiarities as well. Finally, some results of calculations and conclusions that follow from them are presented.

  16. Development of the optimum rotor theories

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær; van Kuik, Gijs A.M.

    The purpose of this study is the examination of optimum rotor theories with ideal load distributions along the blades, to analyze some of the underlying ideas and concepts, as well as to illuminate them. The book gives the historical background of the issue and presents the analysis of the proble...

  17. rotor of the SC rotating condenser

    CERN Multimedia

    1974-01-01

    The rotor of the rotating condenser was installed instead of the tuning fork as the modulating element of the radiofrequency system, when the SC accelerator underwent extensive improvements between 1973 to 1975 (see object AC-025). The SC was the first accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990.

  18. A VORTEX MODEL OF A HELICOPTER ROTOR

    Directory of Open Access Journals (Sweden)

    Valentin BUTOESCU

    2009-06-01

    Full Text Available A vortex model of a helicopter rotor is presented. Each blade of the rotor has three degrees of freedom: flapping, lagging and feathering. The motions after each degree of freedom are also known for all blades. The blade is modelled as a thin vortex surface. The wakes are free fluid surfaces. A system of five equations are obtained: the first one is the integral equation of the lifting surface (rotor, the next three describe the wakes motion, and the last one relates the vortex strength on the wakes and the variation of vorticity on the rotor. A numerical solution of this system is presented. To avoid the singularities that can occur due to the complexity of vortex system, a desingularized model of the vortex core was adopted. A Mathcad worksheet containing the method has been written.The original contribution of the work. The calculation method of the motion of the wakes free vortex system, the development of the vortex cores in time and a new method to approximate the aerodynamic influence of remoted wake regions.

  19. Wind rotors and birds; Windraeder: neue Vogelperspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Loenker, O.; Jensen, D.

    2005-01-01

    Although most birds are not shy of wind rotors, authorities tend to use environmental protection arguments in their attempt to prevent wind power projects. Planners should be careful to establish ecological expert opinions for envisaged sites at an early stage. (orig.)

  20. MODIFIED SAVONIUS ROTOR FOR DOMESTIC POWER PRODUCTION

    Directory of Open Access Journals (Sweden)

    VINAY P V

    2012-07-01

    Full Text Available Conventional fuels which are fast depleting, have ever fluctuating price and polluting characteristic of theirs is pushing mankind towards energies which are renewable and green. Wind being one of the renewable energies among solar, geothermal, biomass, ocean and others is being more patronized in places where wind is copious by governmental and with private partnership to generate electricity. Vertical axis rotor was selected over the horizontal ones due to its simplicity and reliability. At a selected location a prototype was built and installed. The design and development process and the need of the new type of machine will be described in this paper. This paper produces an investigational exploration of a vertical axis rotor (Savonius rotor wind turbine adapted for household/domestic electricity generation. The model machine collects wind energy and generates a 12 volt output which is used to charge one heavy duty battery. As a result, the home is served simultaneously by the wind turbine and the utility. The wind turbine responds well to low wind velocities and also various materials for vanes, various transmission mechanisms were also tried to evaluate the performance of the rotor.

  1. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  2. Rotor for a line start permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Melfi, Mike; Schiferl, Rich; Umans, Stephen

    2017-07-11

    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.

  3. Dynamical localization of coupled relativistic kicked rotors

    Science.gov (United States)

    Rozenbaum, Efim B.; Galitski, Victor

    2017-02-01

    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  4. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 2: Run log and tabulated data

    Science.gov (United States)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.

  5. Artificial Neural Network Based Rotor Capacitive Reactance Control for Energy Efficient Wound Rotor Induction Motor

    Directory of Open Access Journals (Sweden)

    K. Siva Kumar

    2012-01-01

    Full Text Available Problem statement: The Rotor reactance control by inclusion of external capacitance in the rotor circuit has been in recent research for improving the performances of Wound Rotor Induction Motor (WRIM. The rotor capacitive reactance is adjusted such that for any desired load torque the efficiency of the WRIM is maximized. The rotor external capacitance can be controlled using a dynamic capacitor in which the duty ratio is varied for emulating the capacitance value. This study presents a novel technique for tracking maximum efficiency point in the entire operating range of WRIM using Artificial Neural Network (ANN. The data for ANN training were obtained on a three phase WRIM with dynamic capacitor control and rotor short circuit at different speed and load torque values. Approach: A novel neural network model based on the back-propagation algorithm has been developed and trained in determining the maximum efficiency of the motor with no prior knowledge of the machine parameters. The input variables to the ANN are stator current (Is, Speed (N and Torque (Tm and the output variable is the duty ratio (D. Results: The target is pre-set and the accuracy of the ANN model is measured using Mean Square Error (MSE and R2 parameters. The result of R2 value of the proposed ANN model is found to be 0.99980. Conclusion: The optimal duty ratio and corresponding optimal rotor capacitance for improving the performances of the motor are predicted for low, medium and full loads by using proposed ANN model.

  6. [Treatment of organic waste gas by adsorption rotor].

    Science.gov (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  7. Rotor-rotor interaction for counter-rotating fans. Part 1: Three-dimensional flowfield measurements

    Science.gov (United States)

    Shin, Hyoun-Woo; Whitfield, Charlotte E.; Wisler, David C.

    1994-11-01

    The rotor wake/vortex flowfield generated in a scale model simulator of General Electric's counter-rotating unducted fan (UDF) engine was investigated using three-dimensional hot-wire anemometry. The purpose was to obtain a set of benchmark experimental aerodynamic data defining the rotor wake and vortex structure, particularly in the tip region, and to relate this observed flow structure to its acoustic signature. The tests were conducted in a large, freejet anechoic chamber. Measurements of the three components of velocity were made at axial stations upstream and downstream of each rotor for conditions that simulate takeoff, cutback, and approach power. Two different forward blade designs were evaluated. The tip vortices, the axial velocity defect in the vortex core, and differences in the interaction of the wakes and vortices generated by the forward and aft rotor are used to explain differences in noise generated by the two different rotor designs. Part 1 presents the three-dimensional flowfield measurements. Part 2 (aeroacoustic prediction and analysis), which will be presented later, will give an acoustic prediction using the measured data.

  8. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  9. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    are assumed to be proportional to the relative inflow angle, which also gives a linear form with equivalent stiffness and damping terms. Geometric stiffness effects including the important stiffening from tensile axial stresses in equilibrium with centrifugal forces are included via an initial stress......This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...

  10. The Dynamics of Rotor with Rubbing

    Directory of Open Access Journals (Sweden)

    Jerzy T. Sawicki

    1999-01-01

    characteristics of rub-induced rotor response, initial conditions, as well as appropriate ranges of system parameters. Of special interest are the changes in the apparent nonlinearity of the system dynamics as rubs are induced at different rotor speeds. In particular, starting with 2nd order sub/superharmonics, which are symptomatic of quadratic nonlinearity, progressively higher order polynomial behavior is excited, i.e., cubic, giving rise to 3rd order sub/superharmonics. As the speed is transitioned between such apparent nonlinearities, chaotic like behavior is induced because of the lack of whole or rational tone tuning between the apparent system frequency and the external source noise. The cause of such behavior will be discussed in detail along with the results of several parametric studies.

  11. CFD simulations of the MEXICO rotor

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik

    2011-01-01

    The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...... the experimental results using the Reynold‐Averaged Navier‐Stokes method. Second, three‐dimensional airfoil characteristics are extracted that allow simulations with simpler wake models. Copyright © 2011 John Wiley & Sons, Ltd....

  12. Simulation of flow around rotating Savonius rotors

    Science.gov (United States)

    Ishimatsu, Katsuya; Shinohara, Toshio

    1993-09-01

    Flow around Savonius rotors was simulated by solving 2-D (two-dimensional) Navier-Stokes equations. The equations were discretized by finite volume method for space and fractional step method for time. Convection terms were specially discretized by an upwinding scheme for unstructured grid. Only rotating rotors were simulated in this report. The values of parameters were as follows: Reynolds number, 10(exp 5); overlap ratio, zero and 0.16; and tip speed ratio, 0.25 to 1.75. Results showed good agreement with experimental data for the following points: optimum tip speed ratio is 0.75 to 1.0; overlapping is effective to increase power coefficient. Moreover, simulated flow fields showed that vortex shedding occur at not only tips of bucket but back of bucket and the shed vortex decrease torque.

  13. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 1. Text and figures

    Science.gov (United States)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips.

  14. Balancing of Rigid and Flexible Rotors

    Science.gov (United States)

    1986-01-01

    converters Turbine wheels Turbinas (steam, gas , hydraulic), high speed > 10,000 rpm Turbines (steam, gas , hydraulic), medium speed 1000-10,000 rpm...MOUNTED ON CASINGD AI GA - + SIGNALS PROCESSED BY TRACKING FILTERS AND TIME-AVERAGED TO IDENTIFY PRINCIPAL FREQUENCY COMPONENTS Fig. 1.10, Noncontactlng...balanrcng of gas -turbine engines; by Little [121, whose thesis on flexible-rotor balancing contains selected refer- ences on this subject; and by Kendig

  15. Dark rotors in the late universe.

    Science.gov (United States)

    Mayer, Frederick J

    2015-11-01

    The tresino phase-transition that took place about 300 years after the big-bang, converted most baryons into almost equal numbers of protons and tresinos. Many of these become oppositely-charged rotating pairs or "rotors". This paper examines the formation, evolution, disposition and observations of the protons and tresinos from the phase-transition to the present era. The solar corona is further examined within the same tresino phase-transition picture.

  16. Stopped-Rotor Cyclocopter for Venus Exploration

    Science.gov (United States)

    Husseyin, Sema; Warmbrodt, William G.

    2016-01-01

    The cyclocopter system can use two or more rotating blades to create lift, propulsion and control. This system is explored for its use in a mission to Venus. Cyclocopters are not limited to speed and altitude and can provide 360 degrees of vector thrusting which is favorable for good maneuverability. The novel aspect of this study is that no other cyclocopter configuration has been previously proposed for Venus or any (terrestrial or otherwise) exploration application where the cyclocopters rotating blades are stopped, and act as fixed wings. The design considerations for this unique planetary aerial vehicle are discussed in terms of implementing the use of a cyclorotor blade system combined with a fixed wing and stopped rotor mechanism. This proposed concept avoids many of the disadvantages of conventional-rotor stopped-rotor concepts and accounts for the high temperature, pressure and atmospheric density present on Venus while carrying out the mission objectives. The fundamental goal is to find an ideal design that implements the combined use of cyclorotors and fixed wing surfaces. These design concepts will be analyzed with the computational fluid dynamics tool RotCFD for aerodynamic assessment. Aspects of the vehicle design is 3D printed and tested in a small water tunnel or wind tunnel.

  17. Turbine flowmeter for liquid helium with the rotor magnetically levitated

    Science.gov (United States)

    Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.

    A turbine flowmeter with no mechanical contact between rotor and body is described, to be used as a reference standard in our liquid helium flow rate calibration facility. The absence of contact, zeroing the bearings friction factor, ensures a good measurement repeatability, even at very low liquid helium flow rate values. The rotor is magnetically suspended by the Meissner effect: at liquid helium temperatures two magnetic fields generate sustaining forces against the surface of the two rotor ends, which are made of niobium. Due to the repulsive nature of the acting forces, the rotor equilibrium is intrinsically stable and no external electronics are required for its levitation. A particular configuration of the superconducting windings and of the rotor ends allow the rotor to levitate and hold good axial and radial stability. A detailed description of the solutions adopted for the realization of the prototype and the operation conditions are reported. The first results, made with the absolute liquid helium calibration facility, are shown.

  18. Performance of Savonius Rotor for Environmentally Friendly Hydraulic Turbine

    Science.gov (United States)

    Nakajima, Miyoshi; Iio, Shouichiro; Ikeda, Toshihiko

    The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine. A model of a two-bucket Savonius type hydraulic turbine was constructed and tested in a water tunnel to arrive at an optimum installation condition. Effects of two installation parameters, namely a distance between a rotor and a bottom wall of the tunnel, a rotation direction of the rotor, on the power performance were studied. A flow field around the rotor was examined visually to clarify influences of installation conditions on the flow field. The flow visualization showed differences of flow pattern around the rotor by the change of these parameters. From this study it was found that the power performances of Savonius hydraulic turbine were changed with the distance between the rotor and the bottom wall of the tunnel and with a rotation direction of the rotor.

  19. Abrasion Resistance Comparison between Rotor and Ring Spun Yarn

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-ping; YU Chong-wen

    2002-01-01

    On the base of literature review and the analysis of yarn properties, yarn structure and some other facts, the abrasion resistance of both rotor spun yarn and ring spun yarns are discussed. The results show that with the same raw material and twist, the rotor spun yarn has lower abrasion resistance than that of ring spun yarn, because of the higher twist employed, the abrasion resistance of rotor spun yarn is higher than that of ring spun yarn.

  20. Rotordynamics of Turbine Labyrinth Seals with Rotor Axial Shifting

    OpenAIRE

    Jinxiang Xi; Rhode, David L.

    2006-01-01

    Rotors in high-performance steam turbines experience a significant axial shifting during starting and stopping processes due to thermal expansion, for example. This axial shifting could significantly alter the flow pattern and the flow-induced rotordynamic forces in labyrinth seals, which in turn, can considerably affect the rotor-seal system performance. This paper investigates the influence of the rotor axial shifting on leakage rate as well as rotordynamic forces in hi...

  1. Theoretical study on the flow about Savonius rotor

    Science.gov (United States)

    Ogawa, T.

    1984-03-01

    A method for the two-dimensional analysis of the separated flow about Savonius rotors is presented. Calculations are performed by combining the singularity method and the discrete vortex method. The method is applied to the simulation of flows about a stationary rotor and a rotating rotor. Moreover, torque and power coefficients are computed and compared with the experimental results presented by Sheldahl et al. Theoretical and experimental results agree well qualitatively.

  2. Numerical modeling of a rotor misalignment; Modelado numerico del desalineamiento de un rotor

    Energy Technology Data Exchange (ETDEWEB)

    Leon Pina, Roberto

    2009-12-15

    In the turbo-machinery area after an unbalancing, the misalignment is the fault that most frequently appears, and this one has been little studied compared to the unbalance. The misalignment appears when the geometric centers of two shafts and/or bearings do not coincide, these differences take place by different factors such as: incorrect installation of the bearings or rotors, thermal effects, or rotor weight, to mention some of them. The of the misalignment diagnosis continues being an area little studied, since the effects it generates are complex and include diverse physical processes reason why it presents/displays similar symptoms to those of other faults; thus, one of the methods that are used to diagnose this fault, is based on analyzing the vibration phantoms but this works only under particular conditions. In order to reproduce the dynamic behavior of a misaligned rotor, in the present work non-linear simplified models of the supports are used, whose objective is to contribute to facilitate future studies of the flow-dynamic behavior of the bearing, helping to identify the type and magnitude of the existing non-linearity in the supports and leaning in the analysis of the vibratory behavior of misaligned rotors observed in the field. [Spanish] En el area de turbomaquinaria despues del desbalance, el desalineamiento es la falla que se presenta con mayor frecuencia, y esta se ha estudiado poco comparada con el desbalance. El desalineamiento se presenta cuando los centros geometricos de dos flechas y/o chumaceras no coinciden, estas diferencias se producen por diferentes factores como: instalacion incorrecta de las chumaceras o rotores, efectos termicos, o el peso del rotor, por mencionar algunos. El diagnostico del desalineamiento sigue siendo una area poco estudiada, ya que los efectos que genera son complejos y abarcan diversos procesos fisicos por lo que presenta sintomas similares a los de otras fallas; asi, uno de los metodos que se utilizan para

  3. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...... in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...

  4. Experimental study on the aerodynamic performance of a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki; Gotoh, Futoshi (Gunma Univ., Kiryu (Japan). Dept. of Mechanical Engineering)

    1994-08-01

    The aerodynamic performance of a Savonius rotor has been studied by measuring the pressure distributions on the blade surfaces at various rotor angles and tip-speed ratios. It is found that the pressure distributions on the rotating rotor differ remarkably from those on the still rotor especially on the convex side of the advancing blade, where a low pressure region is formed by the moving wall effect of the blade. The torque and power performances, evaluated by integrating the pressure, are in close agreement with those by the direct torque measurement. The drag and side force performance is also studied.

  5. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  6. Rotor dynamic considerations for large wind power generator systems

    Science.gov (United States)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  7. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    Science.gov (United States)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  8. THEORY OF MUM FOR METAL SPHERICAL ROTOR WITH CONTACTLESS SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    He Xiaoxia; Gao Zhongyu; Wang Yongliang

    2004-01-01

    Based on the motion equations of an unbalanced spherical rotor with contactless suspension,three methods of MUM (mass unbalance measurement) are put forward to measure the total mass unbalance,radical mass unbalance and radical mass unbalance of the rotor.Total mass unbalance is obtained when the unbalanced rotor plays as a simple pendulum in static situation.The pendulant period and pendulant midpoint indicate magnitude and direction of total mass unbalance of the rotor respectively.Analysis of the motion equations by using the averaging method yields that the rotor will do a special side oscillation when an auxiliary system makes the rotor spin about its pole axis which is orientating toward the local vertical.The radical mass unbalance can be obtained by building a proper displacement sensor to sense the amplitude of the side oscillation.Necessary analysis of the motion equations also shows that when the rotor spins at a small angular velocity and the rotary axis is perpendicular to the vertical,the pole axis of the rotor will precess slowly about the vertical by virtue of the axial mass unbalance.The axial mass unbalance can be estimated from the time history of the spin vector of the rotor.Finally,measurement precision of the three methods is compared and how the external torque affects the measurement precision for the three methods are examined.

  9. Numerical Analysis of Nonlinear Rotor-bearing-seal System

    Institute of Scientific and Technical Information of China (English)

    CHENG Mei; MENG Guang; JING Jian-ping

    2008-01-01

    The system state trajectory, Poincaré maps, largest Lyapunov exponents, frequency spectra and bifurcation diagrams were used to investigate the non-linear dynamic behaviors of a rotor-bearing-seal coupled system and to analyze the influence of the seal and bearing on the nonlinear characteristics of the rotor system. Various nonlinear phenomena in the rotor-bearing-seal system, such as periodic motion, double-periodicmotion, multi-periodic motion and quasi-periodic motion were investigated. The results may contribute to a further understanding of the non-linear dynamics of the rotor-bearing-seal coupled system.

  10. Stability of Rotor Systems: A Complex Modelling Approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1996-01-01

    A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared with the resu......A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...

  11. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    Science.gov (United States)

    Shi, Jun; Bombara, David; Green, Kevin E.; Bird, Connic; Holowczak, John

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  12. Position Sensing for Rotor in Hybrid Stepper Motor

    Science.gov (United States)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor)

    2011-01-01

    A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90.degree. out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.

  13. NONLINEAR DYNAMICS OF A CRACKED ROTOR IN A MANEUVERING AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    LIN Fu-sheng 林富生; MENG Guang 孟光; Eric Hahn

    2004-01-01

    The nonlinear dynamics of a cracked rotor system in an aircraft maneuvering with constant velocity or acceleration was investigated. The influence of the aircraft climbing angle on the cracked rotor system response is of particular interest and the results show that the climbing angle can markedly affect the parameter range for bifurcation, for quasi-periodic response and for chaotic response as well as for system stability. Aircraft acceleration is also shown to significantly affect the nonlinear behavior of the cracked rotor system, illustrating the possibility for on-line rotor crack fault diagnosis.

  14. Coupled Thermal Field of the Rotor of Liquid Floated Gyroscope

    Directory of Open Access Journals (Sweden)

    Wang Zhengjun

    2015-01-01

    Full Text Available Inertial navigation devices include star sensor, GPS, and gyroscope. Optical fiber and laser gyroscopes provide high accuracy, and their manufacturing costs are also high. Magnetic suspension rotor gyroscope improves the accuracy and reduces the production cost of the device because of the influence of thermodynamic coupling. Therefore, the precision of the gyroscope is reduced and drift rate is increased. In this study, the rotor of liquid floated gyroscope, particularly the dished rotor gyroscope, was placed under a thermal field, which improved the measurement accuracy of the gyroscope. A dynamic theory of the rotor of liquid floated gyroscope was proposed, and the thermal field of the rotor was simulated. The maximum stress was in x, 1.4; y, 8.43; min 97.23; and max 154.34. This stress occurred at the border of the dished rotor at a high-speed rotation. The secondary flow reached 5549 r/min, and the generated heat increased. Meanwhile, the high-speed rotation of the rotor was volatile, and the dished rotor movement was unstable. Thus, nanomaterials must be added to reduce the thermal coupling fluctuations in the dished rotor and improve the accuracy of the measurement error and drift rate.

  15. Optimum design configuration of Savonius rotor through wind tunnel experiments

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Thotla, S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Maity, D. [Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039 (India)

    2008-08-15

    Wind tunnel tests were conducted to assess the aerodynamic performance of single-, two- and three-stage Savonius rotor systems. Both semicircular and twisted blades have been used in either case. A family of rotor systems has been manufactured with identical stage aspect ratio keeping the identical projected area of each rotor. Experiments were carried out to optimize the different parameters like number of stages, number of blades (two and three) and geometry of the blade (semicircular and twisted). A further attempt was made to investigate the performance of two-stage rotor system by inserting valves on the concave side of blade. (author)

  16. Performance testing of a Savonius windmill rotor in shear flows

    Science.gov (United States)

    Mojola, O. O.; Onasanya, O. E.

    The effects of flow shear and/or unsteady behavior on the power generation capability of a Savonius wind turbine rotor are assessed in view of measurements conducted, both in two statistically steady shear flows and in the wind, of rotor tip speed and torque at a number of streamwise stations for each of four values of the rotor bucket overlap ratio. It is found that, even in the absence of shear, the power coefficient of a Savonius wind turbine rotor is most strongly dependent on tip speed ratio.

  17. Development of an advanced high-speed rotor - Final results from the Advanced Flight Research Rotor program

    Science.gov (United States)

    Jenks, Mark; Haslim, Leonard

    1988-01-01

    The final results of the Advanced Flight Research Rotor (AFRR) study, a NASA sponsored research program, are summarized. First, the results of the initial phase of the AFRR program, consisting of the definition of a conventional rotor with planform and prescribed twist distributions, are briefly reviewed. The mechanism of the calculated performance benefit is then explained, and a detailed analysis of the prescribed twist distribution is presented. Recommendations are made on the practical means of approximating the prescribed twist on the actual rotor.

  18. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout

    Directory of Open Access Journals (Sweden)

    Xiangbo Xu

    2015-08-01

    Full Text Available Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs, offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  19. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    Science.gov (United States)

    Xu, Xiangbo; Chen, Shao

    2015-08-31

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  20. Design of Low-Torque-Ripple Synchronous Reluctance Motor with External Rotor

    Directory of Open Access Journals (Sweden)

    Lavrinovicha L.

    2017-02-01

    Full Text Available The paper presents new designs for synchronous reluctance motors that have external rotor (segment-shaped rotor, rotor with additional non-magnetic space to the quadrature axis of the rotor, and rotor with several flux barriers. Impact of the external rotor configuration on the electromagnetic torque and torque ripple is analysed. Electromagnetic torque ripple factor is calculated for each studied motor using the results of magnetic field numerical calculations.

  1. Active damping of flexible rotor blade dynamics using electrorheological-fluid-based actuators

    Science.gov (United States)

    Wereley, Norman M.

    1994-05-01

    Advanced rotor systems including hingeless and bearingless rotors have air and ground resonance instabilities due to coalescence of low-frequency rotor modes with landing gear and fuselage modes, respectively. This coalescence is of difficulty due to the direct connection of the rotor blade in these advanced rotor systems to the rotor hub using a flexure or flexbeam. We are currently exploring the mitigation of this modal coalescence through the use of active damping techniques and electro-rheological fluid technology.

  2. Porphyrin and bodipy molecular rotors as microviscometers

    Science.gov (United States)

    Kimball, Joseph Daniel, III

    Viscosity, a fluid's internal resistance to flow and resist molecular diffusion, is a fundamental property of fluid media. Determining the bulk viscosity of a fluid has been easy to relatively simple to accomplish for many years, yet in the recent decade there has been a focus on techniques to measure a fluid's microviscosity. Microviscosity differs from bulk viscosity such that microviscosity is the friction experienced by a single particle interacting with its micron-sized local environment. Macroscopic methods to evaluate the viscosity are well established, but methods to determine viscosity on the microscale level remains unclear. This work determines the viability of three molecular rotors designed as probes for microviscosity in organic media, ionic liquids, and in the cellular microenvironment. Understanding microviscosity is important because it one of the main properties of any fluid and thus has an effect on any diffusion related processes. A variety of mass and signal transport phenomena as well as intermolecular interactions are often governed by viscosity. Molecular rotors are a subclass of intramolecular charge transfer fluorophores which form a lower energy twisted state. This results in a charge separated species which is highly sensitive to its surrounding microenviroment's viscosity as high viscosity limits its ability to form this twisted state. Once excited, there are deactivation routes which the excited fluorophore can undergo: radiative and non-radiative. Both were studied in this work. In the case of a radiative decay, as seen in porphyrin dimer, the energy is released in the form of a photon and is seen as a shifted band in the emission structure. The conformation of the porphyrin dimer was found to be influenced differently by ionic liquids as compared to molecular solvents, indicating the microheterogenous nature of ionic liquids play a role in the conformation. For non-radiative decays, BODIPY dyads and triads were investigated. The

  3. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  4. Several rotor noise sources and treatments

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J. [National Renewable Energy Laboratory, Golden, CO (United States)

    1997-12-31

    Noise has been a design consideration in the development of advanced blades and turbines at the National Renewable Energy Laboratory. During atmospheric testing associated with these efforts various types of aeroacoustic noise have been encountered. This presentation discusses several of these noise sources and treatments used to mitigate or eliminate the noise. Tonal noise resulting from tip-vortex/trailing-edge interaction and laminar separation bubbles was found to be easily eliminated. Impulsive noise resulting from blade/vortex interaction for rotors that furl and that due to tower shadow can be mitigated by various means. (au)

  5. Rotor-Router Walks on Directed Covers of Graphs

    CERN Document Server

    Huss, Wilfried

    2012-01-01

    The aim of this paper is to study the behaviour of rotor-router walks on directed covers of finite graphs. The latter are also called in the literature trees with finitely many cone types or periodic trees. A rotor-router walk is a deterministic version of a random walk, in which the walker is routed to each of the neighbouring vertices in some fixed cyclic order. We study several quantities related to rotor-router walks such as: order of the rotor-router group, order of the root element in the rotor-router group and the connection with random walks. For random initial configurations of rotors, we also address the question of recurrence and transience of transfinite rotor-router walks. On homogeneous trees, the recurrence/transience was studied by Angel and Holroyd. We extend their theory and provide an example of a directed cover such that the rotor-router walk can be either recurrent or transient, depending only on the planar embedding of the periodic tree.

  6. 14 CFR 27.661 - Rotor blade clearance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 27.661 Section 27.661 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  7. 14 CFR 29.661 - Rotor blade clearance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 29.661 Section 29.661 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  8. PIV in a model wind turbine rotor wake

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Naumov, Igor; Karbadin, Ivan

    2013-01-01

    Stereoscopic particle image velocimetry (PIV) measurements of the flow in the wake of scale model of a horizontal axis wind turbine is presented Near the rotor, measurements are made in vertical planes intersecting the rotor axis These planes capture flow effect from the tip and root vortices...

  9. Experimental Study on a Rotor for WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study of the power conversion capabilities of one single rotor of the WEPTOS wave energy converter. The investigation focuses mainly on defining the optimal weight distribution in the rotor in order to improve the hydraulic performance through...

  10. Induction Motor Speed Estimator Using Rotor Slot Harmonics

    Directory of Open Access Journals (Sweden)

    RATA, G.

    2009-02-01

    Full Text Available This paper presents a solution for the estimation of induction machine rotor speed utilizing harmonic saliencies created by rotor and stator slotting. This solution purposes to add a carrier-signal voltage at the fundamental excitation. We obtain a carrier-signal current that contains the spatial information. The PWM reference voltage is calculated with DSP - ADMC401, from Analog Device.

  11. Coupled Thermodynamic Behavior of New Screw Compressors Rotors Profile

    Directory of Open Access Journals (Sweden)

    Arístides Rivera Torres

    2010-05-01

    Full Text Available The article displays an evaluation of the thermodynamic behavior of screw compressor rotors with new profiles, obtained with the help of the Scorpath 2000 software. This allows predicting precisely the operation of the compressor, as well as its thermodynamic evaluation, under equal conditions, with the work of other compressors fitted with rotor profiles of other kinds.

  12. Study to Improve Turbine Engine Rotor Blade Containment

    Science.gov (United States)

    1977-08-01

    compressor stages, two low turbine stages, two high turbine stages, and two intershaft locations. The clearance at each possible ub location was aet to...for a fan rotor failure which were: engine mounts, low rotor bearings and bearing supports, fan coupling nut, low shaft, low turbine tierods, and all

  13. Topology Optimisation of PMSM rotor for pump application

    DEFF Research Database (Denmark)

    Hermann, Alexander Niels August; Mijatovic, Nenad; Henriksen, Matthew Lee

    2016-01-01

    This paper proposes a design optimization procedure of a PMSM rotor. In the process of optimization, the shape and the size of the permanent magnet is considered constant while the distribution of electric steel and voids (air) in the rotor are variables contributing to the final objective. For t...

  14. The rotor theories by Professor Joukowsky: Vortex theories

    DEFF Research Database (Denmark)

    Okulov, Valery L.; Sørensen, Jens Nørkær; Wood, David H.

    2015-01-01

    This is the second of two articles with the main, and largely self-explanatory, title "Rotor theories by Professor Joukowsky". This article considers rotors with finite number of blades and is subtitled "Vortex theories". The first article with subtitle "Momentum theories", assessed the starring ...

  15. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...

  16. Simulations of wind turbine rotor with vortex generators

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.

    2016-01-01

    This work presents simulations of the DTU 10MW wind turbine rotor equipped with vortex generators (VGs) on the inner part of the blades. The objective is to study the influence of different VG configurations on rotor performance and in particular to investigate the radial dependence of VGs, i...

  17. Fault detection in rotor bearing systems using time frequency techniques

    Science.gov (United States)

    Chandra, N. Harish; Sekhar, A. S.

    2016-05-01

    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  18. Thermal modeling of a mini rotor-stator system

    NARCIS (Netherlands)

    Dikmen, Emre; Hoogt, van der Peter; Boer, de André; Aarts, Ronald; Jonker, Ben

    2009-01-01

    In this study the temperature increase and heat dissipation in the air gap of a cylindrical mini rotor stator system has been analyzed. A simple thermal model based on lumped parameter thermal networks has been developed. With this model the temperature dependent air properties for the fluid-rotor i

  19. 14 CFR 27.547 - Main rotor structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor structure. 27.547 Section 27.547 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Main Component Requirements § 27.547 Main rotor...

  20. Composite rotor blades for large wind energy installations

    Science.gov (United States)

    Kussmann, A.; Molly, J.; Muser, D.

    1980-01-01

    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  1. Effects of increasing tip velocity on wind turbine rotor design.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  2. Brownian molecular rotors: Theoretical design principles and predicted realizations

    Science.gov (United States)

    Schönborn, Jan Boyke; Herges, Rainer; Hartke, Bernd

    2009-06-01

    We propose simple design concepts for molecular rotors driven by Brownian motion and external photochemical switching. Unidirectionality and efficiency of the motion is measured by explicit simulations. Two different molecular scaffolds are shown to yield viable molecular rotors when decorated with suitable substituents.

  3. Performance of meta power rotor shaft torque meter

    DEFF Research Database (Denmark)

    Schmidt Paulsen, U.

    2002-01-01

    The present report describes the novel experimental facility in detecting shaft torque in the transmission system (main rotor shaft, exit stage of gearbox) of a wind turbine, the results and the perspectives in using this concept. The measurements arecompared with measurements, based on existing ...... strain gauges and transducers mounted on the main rotor shaft and controller....

  4. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; Hoogt, van der P.J.M.; Aarts, R.G.K.M.

    2008-01-01

    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  5. Control of rotor function in light-driven molecular motors

    NARCIS (Netherlands)

    Lubbe, Anouk S.; Ruangsupapichat, Nopporn; Caroli, Giuseppe; Feringa, Ben L.

    2011-01-01

    A study is presented on the control of rotary motion of an appending rotor unit in a light-driven molecular motor. Two new light driven molecular motors were synthesized that contain aryl groups connected to the stereogenic centers. The aryl groups behave as bidirectional free rotors in three of the

  6. Experimental investigations on single stage modified Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kamoji, M.A.; Kedare, S.B. [Energy Science and Engineering Department, Indian Institute of Technology, Bombay, Powai, Mumbai - 4000 76 (India); Prabhu, S.V. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai - 4000 76 (India)

    2009-07-15

    Conventional Savonius or modified forms of the conventional Savonius rotors are being investigated in an effort to improve the coefficient of power and to obtain uniform coefficient of static torque. To achieve these objectives, the rotors are being studied with and without central shaft between the end plates. Tests in a closed jet wind tunnel on modified form of the conventional Savonius rotor with the central shaft is reported to have a coefficient of power of 0.32. In this study, modified Savonius rotor without central shaft between the two end plates is tested in an open jet wind tunnel. Investigation is undertaken to study the effect of geometrical parameters on the performance of the rotors in terms of coefficient of static torque, coefficient of torque and coefficient of power. The parameters studied are overlap ratio, blade arc angle, aspect ratio and Reynolds number. The modified Savonius rotor with an overlap ratio of 0.0, blade arc angle of 124 and an aspect ratio of 0.7 has a maximum coefficient of power of 0.21 at a Reynolds number of 1,50,000, which is higher than that of conventional Savonius rotor (0.19). Correlation is developed for a single stage modified Savonius rotor for a range of Reynolds numbers studied. (author)

  7. Complete control, direct observation and study of molecular super rotors

    CERN Document Server

    Korobenko, Aleksey; Milner, Valery

    2013-01-01

    Extremely fast rotating molecules carrying significantly more energy in their rotation than in any other degree of freedom are known as "super rotors". It has been speculated that super rotors may exhibit a number of unique and intriguing properties. Theoretical studies showed that ultrafast molecular rotation may change the character of molecular scattering from solid surfaces, alter molecular trajectories in external fields, make super rotors surprisingly stable against collisions, and lead to the formation of gas vortices. New ways of molecular cooling and selective chemical bond breaking by ultrafast spinning have been proposed. Owing to the fundamental laws of nature, bringing a large number of molecules to fast, directional and synchronous rotation is rather challenging. As a result, only indirect evidence of super rotors has been reported to date. Here we demonstrate the first controlled creation, direct observation and study of molecular super rotors. Using intense laser pulses tailored to produce an ...

  8. A Brief Review on Dynamics of a Cracked Rotor

    Directory of Open Access Journals (Sweden)

    Chandan Kumar

    2009-01-01

    Full Text Available Fatigue crack is an important rotor fault, which can lead to catastrophic failure if undetected properly and in time. Study and Investigation of dynamics of cracked shafts are continuing since last four decades. Some review papers were also published during this period. The aim of this paper is to present a review on recent studies and investigations done on cracked rotor. It is not the intention of the authors to provide all literatures related with the cracked rotor. However, the main emphasis is to provide all the methodologies adopted by various researchers to investigate a cracked rotor. The paper incorporates a candid commentary on various methodologies. The paper further deals an extended Lagrangian formulation to investigate dynamics of cracked rotor.

  9. Effect of Bearing Housings on Centrifugal Pump Rotor Dynamics

    Science.gov (United States)

    Yashchenko, A. S.; Rudenko, A. A.; Simonovskiy, V. I.; Kozlov, O. M.

    2017-08-01

    The article deals with the effect of a bearing housing on rotor dynamics of a barrel casing centrifugal boiler feed pump rotor. The calculation of the rotor model including the bearing housing has been performed by the method of initial parameters. The calculation of a rotor solid model including the bearing housing has been performed by the finite element method. Results of both calculations highlight the need to add bearing housings into dynamic analyses of the pump rotor. The calculation performed by modern software packages is more a time-taking process, at the same time it is a preferred one due to a graphic editor that is employed for creating a numerical model. When it is necessary to view many variants of design parameters, programs for beam modeling should be used.

  10. Design, analysis and testing of small, affordable HAWT rotors

    Science.gov (United States)

    Pricop, Mihai V.; Niculescu, Mihai L.; Cojocaru, Marius G.; Barsan, Dorin

    2012-09-01

    The paper presents affordable technologies dedicated to design, CAD modelling and manufacturing of the small-medium HAWT rotors. Three numerical tools are developed: blade/rotor design, blade modelling for industry CATIA(CATScript) and blade modelling for small scale developers. Numerical analysis of the rotors is accomplished for both performance and noise level estimation using XFLOW (LES) and an in-house code (URANS). Results are presented for a 5KW rotor at the design point only, since computations are expensive. Developement examples are included as two rotors are designed, manufactured and tested for 1.5 and 5KW. A third one, rated for 20KW is under developement. Basic testing results are also included.

  11. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)

    1997-08-01

    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  12. Applications of Fluorogens with Rotor Structures in Solar Cells.

    Science.gov (United States)

    Ong, Kok-Haw; Liu, Bin

    2017-05-29

    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  13. SMART wind turbine rotor. Data analysis and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Barone, Matthew Franklin; Yoder, Nathanael C.

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  14. Applications of Fluorogens with Rotor Structures in Solar Cells

    Directory of Open Access Journals (Sweden)

    Kok-Haw Ong

    2017-05-01

    Full Text Available Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  15. Local-to-global principles for rotor walk

    CERN Document Server

    Giacaglia, Giuliano Pezzolo; Propp, James; Zayas-Palmer, Linda

    2011-01-01

    In rotor walk on a finite directed graph, the exits from each vertex follow a prescribed periodic sequence. Here we consider the case of rotor walk where a particle starts from a designated source vertex and continues until it hits a designated target set, at which point the walk is restarted from the source. We show that the sequence of successively hit targets, which is easily seen to be eventually periodic, is in fact periodic. We show moreover that reversing the periodic patterns of all rotor sequences causes the periodic pattern of the hitting sequence to be reversed as well. The proofs involve a new notion of equivalence of rotor configurations, and an extension of rotor walk incorporating time-reversed particles.

  16. Analysis of Permanent Magnets Bearings in Flywheel Rotor Designs

    Directory of Open Access Journals (Sweden)

    Prince Owusu-Ansah

    2016-04-01

    Full Text Available This paper discusses analysis of permanent magnet bearing in flywheel rotor designs. This work focuses on the advantages of using permanent magnets in flywheel rotor design as compared to that of the convectional mode of levitating the rotor position. The use of permanent magnet in magnetic bearing design to generate the steady state position of the magnetic field results in less variation of the force exerted on the rotor when it deviates from the nominal position than when an electrical coil is used for the same purpose. Theresults of the analysis shows that the magnetic bearing dynamics as well as its load carryingcapacity improves when the rotor is offset from its central position. The use of permanent magnet compared to current-carrying coils results in smaller overall size of magnetic bearing leading to a more compact system design resulting in improved rotordynamic performance

  17. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  18. Structural characterization of rotor blades through photogrammetry

    Science.gov (United States)

    Bernardini, Giovanni; Serafini, Jacopo; Enei, Claudio; Mattioni, Luca; Ficuciello, Corrado; Vezzari, Valerio

    2016-06-01

    This paper deals with the use of photogrammetry for the experimental identification of structural and inertial properties of helicopter rotor blades4. The identification procedure is based upon theoretical/numerical algorithms for the evaluation of mass and flexural stiffness distributions which are an extension of those proposed in the past by Larsen, whereas the torsional properties (stiffness and shear center position) are determined through the Euler-Bernoulli beam theory. The identification algorithms require the knowledge of the blade displacement field produced by known steady loads. These data are experimentally obtained through photogrammetric detection technique, which allows the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D digital photos. Indeed, the displacement field is simply evaluated by comparing the markers positions on the loaded configuration with those on the reference one. The proposed identification procedure, numerically and experimentally validated in the past by the authors, has been here applied to the structural characterization of two main rotor blades, designed for ultra-light helicopters. Strain gauges measurements have been used to assess the accuracy of the identified properties through natural frequencies comparison as well as to evaluate the blades damping characteristics.

  19. Quad-rotor flight path energy optimization

    Science.gov (United States)

    Kemper, Edward

    Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.

  20. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    Science.gov (United States)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  1. Numerical Simulation of Tower Rotor Interaction for Downwind Wind Turbine

    Directory of Open Access Journals (Sweden)

    Isam Janajreh

    2010-01-01

    Full Text Available Downwind wind turbines have lower upwind rotor misalignment, and thus lower turning moment and self-steered advantage over the upwind configuration. In this paper, numerical simulation to the downwind turbine is conducted to investigate the interaction between the tower and the blade during the intrinsic passage of the rotor in the wake of the tower. The moving rotor has been accounted for via ALE formulation of the incompressible, unsteady, turbulent Navier-Stokes equations. The localized CP, CL, and CD are computed and compared to undisturbed flow evaluated by Panel method. The time history of the CP, aerodynamic forces (CL and CD, as well as moments were evaluated for three cross-sectional tower; asymmetrical airfoil (NACA0012 having four times the rotor's chord length, and two circular cross-sections having four and two chords lengths of the rotor's chord. 5%, 17%, and 57% reductions of the aerodynamic lift forces during the blade passage in the wake of the symmetrical airfoil tower, small circular cross-section tower and large circular cross-section tower were observed, respectively. The pronounced reduction, however, is confined to a short time/distance of three rotor chords. A net forward impulsive force is also observed on the tower due to the high speed rotor motion.

  2. Reference Model 2: %22Rev 0%22 Rotor Design.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew F.; Berg, Jonathan Charles; Griffith, Daniel

    2011-12-01

    The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

  3. Effects of injection frequency on the rotor stall margin

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The stall margin of compressor could be improved effectively by rotor tip injection,and the periodic injection is commonly used in the research.The purpose of this work is to investigate the influence of injection frequency on the rotor stall margin.An unsteady CFD code was employed to simulate the flow field of the rotor with injections of different frequencies.Comparing the stall margin of the rotor with injections of different frequencies,it is shown that there is an optimal injection frequency,around which the rotor stability enhancement is the largest.When the injection frequency is away form the optimal frequency,the improvement in stable flow range decreases correspondingly.For the rotor in this paper,the optimal frequency was 1.5 times the frequency of tip leakage vortex(for short,TLV) fluctuation.Time-averaged loading distribution at 98.5% span indicates that the loading of the rotor near the leading edge is decreased through injection with the optimal frequency,and therefore,the stall could be delayed.

  4. Flettner Rotor Concept for Marine Applications: A Systematic Study

    Directory of Open Access Journals (Sweden)

    A. De Marco

    2016-01-01

    Full Text Available The concept of Flettner rotor, a rotating cylinder immersed in a fluid current, with a top-mounted disk, has been analyzed by means of unsteady Reynolds averaged Navier-Stokes simulations, with the aim of creating a suitable tool for the preliminary design of the Flettner rotor as a ship’s auxiliary propulsion system. The simulation has been executed to evaluate the performance sensitivity of the Flettner rotor with respect to systematic variations of several parameters, that is, the spin ratio, the rotor aspect ratio, the effect of the end plates, and their dimensions. The Flettner rotor device has been characterized in terms of lift and drag coefficients, and these data were compared with experimental trends available in literature. A verification study has been conducted in order to evaluate the accuracy of the simulation results and the main sources of numerical uncertainty. All the simulation results were used to achieve a surrogate model of lift and drag coefficients. This model is an effective mathematical tool for the preliminary design of Flettner rotor. Finally, an example of assessment of the Flettner rotor performance as an auxiliary propulsion device on a real tanker ship is reported.

  5. The Effect of Rotor Tip Markings on Judgements of Rotor Sweep Extent

    Science.gov (United States)

    2010-12-01

    conditions. It was included to determine if the high contrast would lead to improved depth perception . In the other two conditions the rotor was...available to participants made this a very difficult task. Although motion parallax is a monocular cue that is usually available to make depth ...cues to depth . In this situation, the accommodative state of the eyes might account for the paradoxical result that under high contrast conditions

  6. Rotor Dynamic Analysis of RM12 Jet Engine Rotor using ANSYS

    OpenAIRE

    Srikrishnanivas, Deepak

    2012-01-01

    Rotordynamics is a field under mechanics, mainly deals with the vibration of rotating structures. In recent days, the study about rotordynamics has gained more importance within Jet engine industries. The main reason is Jet engine consists of many rotating parts constitutes a complex dynamic system. While designing rotors of high speed turbo machineries, it is of prime importance to consider rotordynamics characteristics in to account. Considering these characteristics at the design phase may...

  7. Effect of the Rotor Crank System on Cycling Performance

    Science.gov (United States)

    Jobson, Simon A.; Hopker, James; Galbraith, Andrew; Coleman, Damian A.; Nevill, Alan M.

    2009-01-01

    The aim of this study was to evaluate the impact of a novel crank system on laboratory time-trial cycling performance. The Rotor system makes each pedal independent from the other so that the cranks are no longer fixed at 180°. Twelve male competitive but non-elite cyclists (mean ± s: 35 ± 7 yr, Wmax = 363 ± 38 W, VO2peak = 4.5 ± 0.3 L·min-1) completed 6-weeks of their normal training using either a conventional (CON) or the novel Rotor (ROT) pedal system. All participants then completed two 40.23-km time-trials on an air-braked ergometer, one using CON and one using ROT. Mean performance speeds were not different between trials (CON = 41.7 km·h-1 vs. ROT = 41.6 km·h-1, P > 0.05). Indeed, the pedal system used during the time-trials had no impact on any of the measured variables (power output, cadence, heart rate, VO2, RER, gross efficiency). Furthermore, the ANOVA identified no significant interaction effect between main effects (Time-trial crank system*Training crank system, P > 0.05). To the authors’ knowledge, this is the first study to examine the effects of the Rotor system on endurance performance rather than endurance capacity. These results suggest that the Rotor system has no measurable impact on time-trial performance. However, further studies should examine the importance of the Rotor ‘regulation point’ and the suggestion that the Rotor system has acute ergogenic effects if used infrequently. Key points The Rotor crank system does not improve gross efficiency in well-trained cyclists. The Rotor crank system has no measurable impact on laboratory 40.23-km time-trial performance. A 6-week period of familiarisation does not increase the effectiveness of the Rotor crank system. PMID:24150012

  8. An experimental study on improvement of a Savonius rotor performance with curtaining

    Energy Technology Data Exchange (ETDEWEB)

    Altan, Burcin Deda; Atilgan, Mehmet [Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Kinikli 20070 Denizli (Turkey); Oezdamar, Aydogan [Department of Mechanical Engineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir (Turkey)

    2008-09-15

    This study introduces a new curtaining arrangement to improve the performance of Savonius wind rotors. The curtain arrangement was placed in front of the rotor preventing the negative torque opposite the rotor rotation. The geometrical parameters of the curtain arrangement were optimized to generate an optimum performance. The rotor with different curtain arrangements was tested out of a wind tunnel, and its performance was compared with that of the conventional rotor. The maximum power coefficient of the Savonius wind rotor is increased to about 38.5% with the optimum curtain arrangement. The experimental results showed that the performance of Savonius wind rotors could be improved with a suitable curtain arrangement. (author)

  9. System and method for smoothing a salient rotor in electrical machines

    Energy Technology Data Exchange (ETDEWEB)

    Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.

    2016-12-13

    An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.

  10. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor

    Science.gov (United States)

    Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.

    2017-05-01

    safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.

  11. Finite element analysis of two disk rotor system

    Science.gov (United States)

    Dixit, Harsh Kumar

    2016-05-01

    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.

  12. Power Properties of Two Interacting Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær

    2016-01-01

    In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both...... rotors are threebladed and designed using blade element/lifting line (BE/LL) optimum theory at a tip speed ratio, λ, of 5 with a constant design lift coefficient along the span, CL= 0.8. Measurements of the rotor characteristics were conducted by strain sensors installed in the rotor mounting...

  13. Power Properties of Two Interacting Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær

    2017-01-01

    In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both...... rotors are three-bladed and designed using blade element/lifting line (BE/LL) optimum theory at a tip-speed ratio, λ, of 5 with a constant design lift coefficient along the span, CL = 0.8. Measurements of the rotor characteristics were conducted by strain sensors installed in the rotor mounting...

  14. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...

  15. Computations of Torque-Balanced Coaxial Rotor Flows

    Science.gov (United States)

    Yoon, Seokkwan; Chan, William M.; Pulliam, Thomas H.

    2017-01-01

    Interactional aerodynamics has been studied for counter-rotating coaxial rotors in hover. The effects of torque balancing on the performance of coaxial-rotor systems have been investigated. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. Computational results for an experimental model are compared to available data. The results for a coaxial quadcopter vehicle with and without torque balancing are discussed. Understanding interactions in coaxial-rotor flows would help improve the design of next-generation autonomous drones.

  16. Analyzing Rotor Rotating Error by Using Fractal Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; LI Yan

    2004-01-01

    Based on the judgement of fractional Brownian motion, this paper analyzes the radial rotating error of a precision rotor. The results indicate that the rotating error motion of the precision rotor is characterized by basic fractional Brownian motions, i. e. randomicity, non-sequencity, and self-simulation insinuation to some extent. Also, this paper calculates the fractal box counting dimension of radial rotating error and judges that the rotor error motion is of stability, indicating that the motion range of the future track of the axes is relatively stable.

  17. Further development of the swinging-blade Savonius rotor

    Science.gov (United States)

    Aldoss, T. K.; Najjar, Y. S. H.

    Savonius rotor performance is improved by allowing both downwind and upwind rotor blades to swing back through an optimum angle. This will minimize the drag on the upwind blade and maximize the drag on the down-wind blade. A combination of 50 degrees upwind blade swing angle and 13.5 degrees downwind blade swing angle have been found experimentally to be the optimum swing angles that increased the rotor maximum power coefficient to about 23.5 percent compared with 18 percent with optimum upwind blade swing alone.

  18. Tip cap for a turbine rotor blade

    Science.gov (United States)

    Kimmel, Keith D

    2014-03-25

    A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.

  19. Preliminary analysis of turbochargers rotors dynamic behaviour

    Science.gov (United States)

    Monoranu, R.; Ştirbu, C.; Bujoreanu, C.

    2016-08-01

    Turbocharger rotors for the spark and compression ignition engines are resistant steels manufactured in order to support the exhaust gas temperatures exceeding 1200 K. In fact, the mechanical stress is not large as the power consumption of these systems is up to 10 kW, but the operating speeds are high, ranging between 30000 ÷ 250000 rpm. Therefore, the correct turbochargers functioning involves, even from the design stage, the accurate evaluation of the temperature effects, of the turbine torque due to the engine exhaust gases and of the vibration system behaviour caused by very high operating speeds. In addition, the turbocharger lubrication complicates the model, because the classical hydrodynamic theory cannot be applied to evaluate the floating bush bearings. The paper proposes a FEM study using CATIA environment, both as modeling medium and as tool for the numerical analysis, in order to highlight the turbocharger complex behaviour. An accurate design may prevent some major issues which can occur during its operation.

  20. Prediction of aerodynamic performance for MEXICO rotor

    DEFF Research Database (Denmark)

    Hong, Zedong; Yang, Hua; Xu, Haoran

    2013-01-01

    The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip...... the reliability of the MEXICO data. Second, the SST turbulence model can better capture the flow separation on the blade and has high aerodynamic performance prediction accuracy for a horizontal axis wind turbine in axial inflow conditions. Finally, the comparisons of the axial and tangential forces as well...... as the contrast of the angle of attack indicate that the prediction accuracy of BEM method is high when the blade is not in the stall condition. However, the airfoil characteristic becomes unstable in the stall condition, and the maximum relative error of tangential force calculated by BEM is -0.471. As a result...

  1. Relaxation and Diffusion for the Kicked Rotor

    CERN Document Server

    Khodas, M A

    2000-01-01

    The dynamics of the kicked-rotor, that is a paradigm for a mixed system, where the motion in some parts of phase space is chaotic and in other parts is regular is studied statistically. The evolution (Frobenius-Perron) operator of phase space densities in the chaotic component is calculated in presence of noise, and the limit of vanishing noise is taken is taken in the end of calculation. The relaxation rates (related to the Ruelle resonances) to the invariant equilibrium density are calculated analytically within an approximation that improves with increasing stochasticity. The results are tested numerically. The global picture of relaxation to the equilibrium density in the chaotic component when the system is bounded and of diffusive behavior when it is unbounded is presented.

  2. DESARROLLO DE UN INSTRUMENTO VIRTUAL PARA EL BALANCEAMIENTO DINAMICO DE ROTORES DEVELOPMENT OF A VIRTUAL INSTRUMENT FOR ROTOR DYNAMICS BALANCING

    Directory of Open Access Journals (Sweden)

    Edgar Estupiñán P

    2006-08-01

    Full Text Available El presente trabajo resalta la importancia del balanceamiento de rotores como principal herramienta dentro de las tareas correctivas del mantenimiento predictivo, con el fin de que se reduzcan las vibraciones y sus efectos secundarios en las máquinas rotatorias. Se ha desarrollado un instrumento virtual para el balanceamiento dinámico de rotores, basado en un sistema de adquisición de datos (SAD. El instrumento tiene incluidos todos los cálculos necesarios para balancear rotores en un plano y en dos planos, a partir de la medición de los datos de vibración, utilizando el procedimiento de los coeficientes de influencia o utilizando un procedimiento de medición sin fase. También se ha incluido un módulo para determinar la severidad vibratoria del rotor y un módulo de análisis de vibraciones, que incluye análisis espectral y de la forma de onda. Este instrumento virtual es una herramienta útil para el balanceamiento de rotores en laboratorio así como también en la industria.This article highlights the importance of rotor balancing like the most important corrective action included in a predictive maintenance program, whose main objective is reducing the vibrations level and its secondary effect in rotary machines. A virtual instrument, based in a data acquisition system has been developed for rotor balancing. With this instrument it is possible to balance rotors in a single or two-plane, using the influence coefficient method or a no phase method. Also the instrument includes a function to determine the vibration severity and a function of vibration analysis with spectral and waveform analysis included. This virtual instrument is useful for rotor balancing in the laboratory as well as in the industry.

  3. Flight Adaptive Blade for Optimum Rotor Response (FABFORR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While past research has demonstrated the utility and benefits to be gained with the application of advanced rotor system control concepts, none have been implemented...

  4. Usage of modal synthesis method with condensation in rotor

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2008-11-01

    Full Text Available The paper deals with mathematical modelling of vibration and modal analysis of rotors composed of a flexible shaft and several flexible disks. The shaft is modelled as a one dimensional continuum whereon flexible disks modelled as a three dimensional continuum are rigid mounted to shaft. The presented approach allows to introduce continuously distributed centrifugal and gyroscopic effects. The finite element method was used for shaft and disks discretization. The modelling of such flexible multi-body rotors with large DOF number is based on the system decomposition into subsystems and on the modal synthesis method with condensation. Lower vibration mode shapes of the mutually uncoupled and non-rotating subsystems are used for creation of the rotor condensed mathematical model. An influence of the different level of a rotor condensation model on the accuracy of calculated eigenfrequencies and eigenvectors is discussed.

  5. Rotor position sensor switches currents in brushless dc motors

    Science.gov (United States)

    1965-01-01

    Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.

  6. Towards More Efficient Comprehensive Rotor Noise Simulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotorcraft design and optimization currently still rely largely on simplified (low-fidelity) models, such as rotor disk or wake models to reduce the turn-around time...

  7. Flight Adaptive Blade for Optimum Rotor Response (FABFORR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While past research has demonstrated the utility and benefits to be gained with the application of advanced rotor system control concepts, none have been...

  8. 9th IFToMM International Conference on Rotor Dynamics

    CERN Document Server

    2015-01-01

    This book presents the proceedings of the 9th IFToMM International Conference on Rotor Dynamics. This conference is a premier global event that brings together specialists from the university and industry sectors worldwide in order to promote the exchange of knowledge, ideas, and information on the latest developments and applied technologies in the dynamics of rotating machinery. The coverage is wide ranging, including, for example, new ideas and trends in various aspects of bearing technologies, issues in the analysis of blade dynamic behavior,  condition monitoring of different rotating machines, vibration control, electromechanical and fluid-structure interactions in rotating machinery, rotor dynamics of micro, nano, and cryogenic machines, and applications of rotor dynamics in transportation engineering. Since its inception 32 years ago, the IFToMM International Conference on Rotor Dynamics has become an irreplaceable point of reference for those working in the field, and this book reflects the high qua...

  9. A Computational Model for Rotor-Fuselage Interactional Aerodynamics

    Science.gov (United States)

    Boyd, D. Douglas, Jr.; Barnwell, Richard W.; Gorton, Susan Althoff

    2000-01-01

    A novel unsteady rotor-fuselage interactional aerodynamics model has been developed. This model loosely couples a Generalized Dynamic Wake Theory (GDWT) to a thin-layer Navier-Stokes solution procedure. This coupling is achieved using an unsteady pressure jump boundary condition in the Navier-Stokes model. The new unsteady pressure jump boundary condition models each rotor blade as a moving pressure jump which travels around the rotor azimuth and is applied between two adjacent planes in a cylindrical, non-rotating grid. Comparisons are made between measured and predicted time-averaged and time-accurate rotor inflow ratios. Additional comparisons are made between measured and predicted unsteady surface pressures on the top centerline and sides of the fuselage.

  10. Fuzzy Logic Based Rotor Health Index of Induction Motor

    Science.gov (United States)

    Misra, Rajul; Pahuja, G. L.

    2015-10-01

    This paper presents an experimental study on detection and diagnosis of broken rotor bars in Squirrel Cage Induction Motor (SQIM). The proposed scheme is based on Motor Current Signature Analysis (MCSA) which uses amplitude difference of supply frequency to upper and lower side bands. Initially traditional MCSA has been used for rotor fault detection. It provides rotor health index on full load conditions. However in real practice if a fault occurs motor can not run at full load. To overcome the issue of reduced load condition a Fuzzy Logic based MCSA has been designed, implemented, tested and compared with traditional MCSA. A simulation result shows that proposed scheme is not only capable of detecting the severity of rotor fault but also provides remarkable performance at reduced load conditions.

  11. Rotation of artificial rotor axles in rotary molecular motors

    National Research Council Canada - National Science Library

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-01-01

    [F.sub.1]- and [V.sub.1]-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency...

  12. Spectral Analysis of Two Coupled Diatomic Rotor Molecules

    Directory of Open Access Journals (Sweden)

    Horace T. Crogman

    2014-10-01

    Full Text Available In a previous article the theory of frame transformation relation between Body Oriented Angular (BOA states and Lab Weakly Coupled states (LWC was developed to investigate simple rotor–rotor interactions. By analyzing the quantum spectrum for two coupled diatomic molecules and comparing it with spectrum and probability distribution of simple models, evidence was found that, as we move from a LWC state to a strongly coupled state, a single rotor emerges in the strong limit. In the low coupling, the spectrum was quadratic which indicates the degree of floppiness in the rotor–rotor system. However in the high coupling behavior it was found that the spectrum was linear which corresponds to a rotor deep in a well.

  13. Effects of Factors on Open-End Rotor Yarn Properties

    Directory of Open Access Journals (Sweden)

    Gözde BUHARALI

    2013-08-01

    Full Text Available Open-end rotor spinning system, which was begun to be used commercially during late 1960s, is now used as successfully as the conventional ring spinning system. Thanks to open-end rotor yarn spinning machines are very suitable to automation and have high production speeds, use of these machines have increased permanently and today open-end rotor yarn spinning in the world has a share of about 30%. In open-end rotor spinning system yarn properties and production are effected from three main parameters. They are material, sliver preparing process and machine parameters. In this system which manufacture with very high-speed and uses a high-tech, parameters must be selected carefully to ensure best yarn quality with high performance in yarn production

  14. Light Rotor: The 10-MW reference wind turbine

    DEFF Research Database (Denmark)

    Bak, Christian; Bitsche, Robert; Yde, Anders;

    2012-01-01

    design show a rather well performing wind turbine both in terms of power and loads, but in the further work towards the final design the challenges in the control needs to be solved and the balance between power performance and loads and between structural performance and mass will be investigated......This paper describes the design of a rotor and a wind turbine for an artificial 10-MW wind turbine carried out in the Light Rotor project. The turbine called the Light Rotor 10-MW Reference Wind Turbine (LR10-MW RWT), is designed with existing methods and techniques and serves as a reference...... like the determination of the specific power and upscaling of the turbine. The design of Iteration #2 of the LR10-MW RWT is carried out in a sequence between aerodynamic rotor design, structural design and aero-servo-elastic design. Each of these topics is described. The results from the Iteration #2...

  15. Controllability Analysis for Multirotor Helicopter Rotor Degradation and Failure

    Science.gov (United States)

    Du, Guang-Xun; Quan, Quan; Yang, Binxian; Cai, Kai-Yuan

    2015-05-01

    This paper considers the controllability analysis problem for a class of multirotor systems subject to rotor failure/wear. It is shown that classical controllability theories of linear systems are not sufficient to test the controllability of the considered multirotors. Owing to this, an easy-to-use measurement index is introduced to assess the available control authority. Based on it, a new necessary and sufficient condition for the controllability of multirotors is derived. Furthermore, a controllability test procedure is approached. The proposed controllability test method is applied to a class of hexacopters with different rotor configurations and different rotor efficiency parameters to show its effectiveness. The analysis results show that hexacopters with different rotor configurations have different fault-tolerant capabilities. It is therefore necessary to test the controllability of the multirotors before any fault-tolerant control strategies are employed.

  16. Assessment of Scaled Rotors for Wind Tunnel Experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chiu, Phillip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor, the G1, designed and built by researchers at the Technical University of München.

  17. TORNADO concept and realisation of a rotor for small VAWTs

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-09-01

    Full Text Available The concept of a three-tier configuration for a vertical axis rotor was successfully developed into a experimental model. The rotor assembly is divided into three tiers with three straight blades in each tier. The three-tiers are shifted by an angle of 400 generating a full helical flow field inside the rotor. Thereby the new configuration has some different mechanism of torque generation as other Darrieus rotors. The three-tier configuration facilitates the operation by enabling the turbine to self-start at wind velocity as low as 2 m/s with good performance and a smoother driving torque. At the same time the design couples an esthetic appearance with low noise level.

  18. Extension of Goldstein's circulation function for optimal rotors with hub

    Science.gov (United States)

    Okulov, V. L.; Sørensen, J. N.; Shen, W. Z.

    2016-09-01

    The aerodynamic interaction or interference between rotor blades and hub body is usually very complicated, but some useful simplifications can be made by considering the hub with an infinite cylinder. Various attempts to find the optimum distribution of circulation by the lifting vortex lines method have been previously proposed to describe the blade interaction with the hub modeled by the infinite cylinder. In this case, the ideal distribution of bound circulation on the rotor blades is such that the shed vortex system in the hub-area is a set of helicoidal vortex sheets moving uniformly as if rigid, exactly as in the case where there is no influence of the streamtube deformations by the central hub-body. In the present investigation, we consider a more specific problem of the rotor-hub interaction where the initial flow streamtubes and the rotor slipstream submitted strong deformations at the nose-area of the semi-infinite hub.

  19. Surface-Mount Rotor Motion Sensing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  20. Hollow Rotor Progressing Cavity Pump Technique for Oil Production

    Institute of Scientific and Technical Information of China (English)

    Cao Gang

    2002-01-01

    @@ Features of Hollow RotorProgressing Cavity Pump(HRPCP) (1) Keep the path forPCP well-flushing.Clean over the producing wells quickly without shutting off the wells. Heat loss is low while the efficiency is high.

  1. A Computational Tool for Helicopter Rotor Noise Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project proposes to develop a computational tool for helicopter rotor noise prediction based on hybrid Cartesian grid/gridless approach. The uniqueness of...

  2. SMART Wind Turbine Rotor: Design and Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  3. A Surface-Mounted Rotor State Sensing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  4. Aero dynamical and mechanical behaviour of the Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Batna Univ., (Algeria). Applied Energetic Physics Laboratory

    2009-07-01

    Although the Savonius wind turbine is not as efficient as the traditional Darrieus wind turbine, its rotor design has many advantages such as simple construction; acceptance of wind from all directions; high starting torque; operation at relatively low speed; and easy adaptation to urban sites. These advantages may outweigh its low efficiency and make it suitable for small-scale power requirements such as pumping and rural electrification. This paper presented a study of the aerodynamic behaviour of a Savonius rotor, based on blade pressure measurements. A two-dimensional analysis method was used to determine the aerodynamic strengths, which leads to the Magnus effect and the generation of the vibrations on the rotor. The study explained the vibratory behaviour of the rotor and proposed an antivibration system to protect the machine. 14 refs., 1 tab., 9 figs.

  5. On the performance analysis of Savonius rotor with twisted blades

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Rajkumar, M. Jaya [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781 039 (India)

    2006-09-15

    The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0{sup o}). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle. (author)

  6. The properties of isolated and coupled Savonius rotors

    Science.gov (United States)

    Bowden, G. J.; McAleese, S. A.

    Some measurments on the Queensland optimum S-shaped rotor are presented. In particular it is shown that the efficiency of the turbine is about 18 percent, which is lower than the figure of about 23 percent given by earlier workers. In addition, detailed measurements of the pulsating wind-flow around a Savonius rotor are presented. These results were obtained using (1) tell-tales and a stroboscope, (2) a hot-wire anemometer (0-5 kHz response), and (3) a turbulence meter. This data can be used to suggest that 'active coupling' between Savonius rotors might be useful in 'redirecting' the wind-flow more efficiently. In particular, it is shown that if two counter-rotating rotors are placed side by side in a wind-tunnel, a natural phase locking occurs.

  7. Robust stabilization of rotor-active magnetic bearing systems

    Science.gov (United States)

    Li, Guoxin

    Active magnetic bearings (AMBs) are emerging as a beneficial technology for high-speed and high-performance suspensions in rotating machinery applications. A fundamental feedback control problem is robust stabilization in the presence of uncertain destabilizing mechanisms in aeroelastic, hydroelastic dynamics, and AMB feedback. As rotating machines are evolving in achieving high speed, high energy density, and high performance, the rotor and the support structure become increasingly flexible, and highly coupled. This makes rotor-AMB system more challenging to stabilize. The primary objective of this research is to develop a systematic control synthesis procedure for achieving highly robust stabilization of rotor-AMB systems. Of special interest is the stabilization of multivariable systems such as the AMB supported flexible rotors and gyroscopic rotors, where the classical control design may encounter difficulties. To this end, we first developed a systematic modeling procedure. This modeling procedure exploited the best advantages of technology developed in rotordynamics and the unique system identification tool provided by the AMBs. A systematic uncertainty model for rotor-AMB systems was developed, eliminating the iterative process of selecting uncertainty structures. The consequences of overestimation or underestimation of uncertainties were made transparent to control engineers. To achieve high robustness, we explored the fundamental performance/robustness limitations due to rotor-AMB system unstable poles. We examined the mixed sensitivity performance that is closely related to the unstructured uncertainty. To enhance transparency of the synthesis, we analyzed multivariable controllers from classical control perspectives. Based on these results, a systematic robust control synthesis procedure was established. For a strong gyroscopic rotor over a wide speed range, we applied the advanced gain-scheduled synthesis, and compared two synthesis frameworks in

  8. Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius-three-bladed Darrieus rotor

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.; Biswas, A.; Sharma, K.K. [Department of Mechanical Engineering, National Institute of Technology (NIT), Silchar 788 010, Assam (India)

    2008-09-15

    The vertical axis wind turbines are simple in construction, self-starting, inexpensive and can accept wind from any direction without orientation. A combined Savonius-Darrieus type vertical axis wind rotor has got many advantages over individual Savonius or individual Darrieus wind rotor, such as better efficiency than Savonius rotor and high starting torque than Darrieus rotor. But works on the combined Savonius-Darrieus wind rotor are very scare. In view of the above, two types of models, one simple Savonius and the other combined Savonius-Darrieus wind rotors were designed and fabricated. The Savonius rotor was a three-bucket system having provisions for overlap variations. The Savonius-Darrieus rotor was a combination of three-bucket Savonius and three-bladed Darrieus rotors with the Savonius placed on top of the Darrieus rotor. The overlap variation was made in the upper part, i.e. the Savonius rotor only. These were tested in a subsonic wind tunnel available in the department. The various parameters namely, power coefficients and torque coefficients were calculated for both overlap and without overlap conditions. From the present investigation, it is seen that with the increase of overlap, the power coefficients start decreasing. The maximum power coefficient of 51% is obtained at no overlap condition. However, while comparing the power coefficients (C{sub p}) for simple Savonius-rotor with that of the combined configuration of Savonius-Darrieus rotor, it is observed that there is a definite improvement in the power coefficient for the combined Savonius-Darrieus rotor without overlap condition. Combined rotor without overlap condition provided an efficiency of 0.51, which is higher than the efficiency of the Savonius rotor at any overlap positions under the same test conditions. (author)

  9. Spatial Disorientation Training in the Rotor Wing Flight Simulator.

    Science.gov (United States)

    Powell-Dunford, Nicole; Bushby, Alaistair; Leland, Richard A

    This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.

  10. On the Spectrum of the Resonant Quantum Kicked Rotor

    CERN Document Server

    Guarneri, Italo

    2009-01-01

    It is proven that none of the bands in the quasi-energy spectrum of the Quantum Kicked Rotor is flat at any primitive resonance of any order. Perturbative estimates of bandwidths at small kick strength are established for the case of primitive resonances of prime order. Different bands scale with different powers of the kick strength, due to degeneracies in the spectrum of the free rotor.

  11. Suppression of Base Excitation of Rotors on Magnetic Bearings

    OpenAIRE

    2007-01-01

    This paper deals with rotor systems that suffer harmonic base excitation when supported on magnetic bearings. Magnetic bearings using conventional control techniques perform poorly in such situations mainly due to their highly nonlinear characteristics. The compensation method presented here is a novel optimal control procedure with a combination of conventional, proportional, and differential feedback control. A four-degree-of-freedom model is used for the rotor system, and the bearings a...

  12. Numerical and Analytical Analysis of Elastic Rotor Natural Frequency

    Directory of Open Access Journals (Sweden)

    Adis J. Muminovic

    2014-11-01

    Full Text Available In this paper simulation model which enables quick analysis of elastic rotor natural frequency modes is developed using Matlab. This simulation model enables users to get dependency diagram of natural frequency in relation to diameter and length of the rotor,density of the material or modulus of elasticity. Testing of the model is done using numerical analysis in SolidWorks software.

  13. Design and Test of a Transonic Axial Splittered Rotor

    Science.gov (United States)

    2015-06-15

    AXIAL SPLITTERED ROTOR A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and ANSYS-CFX) for the...TRANSONIC AXIAL SPLITTERED ROTOR Report Title A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and...that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and ANSYS-CFX) for the geometric rendering and analysis of a transonic axial

  14. Bohmian quantum mechanical and classical Lyapunov exponents for kicked rotor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yindong [Department of Physics, University of North Texas, Denton, TX 76203-1427 (United States); Kobe, Donald H. [Department of Physics, University of North Texas, Denton, TX 76203-1427 (United States)], E-mail: kobe@unt.edu

    2008-04-15

    Using de Broglie-Bohm approach to quantum theory, we show that the kicked rotor at quantum resonance exhibits quantum chaos for the control parameter K above a threshold. Lyapunov exponents are calculated from the method of Benettin et al. for bounded systems for both the quantum and classical kicked rotor. In the chaotic regime we find stability regions for control parameters equal to even and odd multiples of {pi}, but the quantum regions are only remnants of the classical ones.

  15. Dynamic Analysis of a Helicopter Rotor by Dymore Program

    Science.gov (United States)

    Doğan, Vedat; Kırca, Mesut

    The dynamic behavior of hingeless and bearingless blades of a light commercial helicopter which has been under design process at ITU (İstanbul Technical University, Rotorcraft Research and Development Centre) is investigated. Since the helicopter rotor consists of several parts connected to each other by joints and hinges; rotors in general can be considered as an assembly of the rigid and elastic parts. Dynamics of rotor system in rotation is complicated due to coupling of elastic forces (bending, torsion and tension), inertial forces, control and aerodynamic forces on the rotor blades. In this study, the dynamic behavior of the rotor for a real helicopter design project is analyzed by using DYMORE. Blades are modeled as elastic beams, hub as a rigid body, torque tubes as rigid bodies, control links as rigid bodies plus springs and several joints. Geometric and material cross-sectional properties of blades (Stiffness-Matrix and Mass-Matrix) are calculated by using VABS programs on a CATIA model. Natural frequencies and natural modes of the rotating (and non-rotating) blades are obtained by using DYMORE. Fan-Plots which show the variation of the natural frequencies for different modes (Lead-Lag, Flapping, Feathering, etc.) vs. rotor RPM are presented.

  16. Dipolar rotors orderly aligned in mesoporous fluorinated organosilica architectures

    KAUST Repository

    Bracco, Silvia

    2015-02-16

    New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p-divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid-state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl-fluoro-phenylene rotors, affecting their motion and the dielectric properties. Oriented molecular rotors: Fluorinated molecular rotors (see picture) were engineered in mesoporous hybrid organosilica architectures with crystalline order in their walls. The rotor dynamics was established by magic angle spinning NMR and dielectric measurements, indicating a rotational correlation time as short as 10-9 s at 325 K. The dynamics was modulated by I2 vapors entering the pores.

  17. Offline detection of broken rotor bars in AC induction motors

    Science.gov (United States)

    Powers, Craig Stephen

    ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.

  18. Fuzzy control of attitude of four - rotor UAV

    Science.gov (United States)

    Zhang, Zexiang; Hu, Shengbin

    2017-08-01

    The four - rotor unmanned aerial vehicle (UAV) is the object of study, in this paper. In order to solve the problem of poor robustness and low control precision of the four-rotor unmanned aerial vehicle (UAV) control system, and realized the stability control problem of the four-rotor UAV attitude. First, the dynamic model of the four-rotor unmanned aerial vehicle is established. And on this basis, a fuzzy controller is designed, and used to control the channel. Then, the simulation platform is built by Matlab / Simulink simulation software, and the performance of the designed fuzzy controller is analyzed comprehensively. It is also determined whether the algorithm can control the attitude of the four rotor unmanned aerial vehicle. The simulation results fully verify the accuracy of the model, and proved fuzzy controller has better dynamic performance and robustness under appropriate parameters so that UAVs can fly stable. The algorithm can improve the anti-jamming performance and control accuracy of the system, it has a certain significance for the actual four-rotor aircraft attitude control.

  19. Development of a Wind Turbine Rotor Flow Panel Method

    Energy Technology Data Exchange (ETDEWEB)

    Van Garrel, A. [ECN Wind Energy, Petten (Netherlands)

    2011-12-15

    The ongoing trend towards larger wind turbines intensifies the demand for more physically realistic wind turbine rotor aerodynamics models that can predict the detailed transient pressure loadings on the rotor blades better than current engineering models. In this report the mathematical, numerical, and practical aspects of a new wind turbine rotor flow simulation code is described. This wind turbine simulation code is designated ROTORFLOW. In this method the fluid dynamics problem is solved through a boundary integral equation which reduces the problem to the surface of the configuration. The derivation of the integral equations is described as well as the assumptions made to arrive at them starting with the full Navier-Stokes equations. The basic numerical aspects in the solution method are described and a verification study is performed to confirm the validity of the implementation. Example simulations with the code show the flow solutions for a stationary wing and for a rotating wing in yawed conditions. With the ROTORFLOW code developed in this project it is possible to simulate the unsteady flow around wind turbine rotors in yawed conditions and obtain detailed pressure distributions, and thus blade loadings, at the surface of the blades. General rotor blade geometries can be handled, opening the way to the detailed flow analysis of winglets, partial span flaps, swept blade tips, etc. The ROTORFLOW solver only requires a description of the rotor surface which keeps simulation preparation time short, and makes it feasible to use the solver in the design iteration process.

  20. Numerical Study of Stratified Charge Combustion in Wave Rotors

    Science.gov (United States)

    Nalim, M. Razi

    1997-01-01

    A wave rotor may be used as a pressure-gain combustor effecting non-steady flow, and intermittent, confined combustion to enhance gas turbine engine performance. It will be more compact and probably lighter than an equivalent pressure-exchange wave rotor, yet will have similar thermodynamic and mechanical characteristics. Because the allowable turbine blade temperature limits overall fuel/air ratio to sub-flammable values, premixed stratification techniques are necessary to burn hydrocarbon fuels in small engines with compressor discharge temperature well below autoignition conditions. One-dimensional, unsteady numerical simulations of stratified-charge combustion are performed using an eddy-diffusivity turbulence model and a simple reaction model incorporating a flammability limit temperature. For good combustion efficiency, a stratification strategy is developed which concentrates fuel at the leading and trailing edges of the inlet port. Rotor and exhaust temperature profiles and performance predictions are presented at three representative operating conditions of the engine: full design load, 40% load, and idle. The results indicate that peak local gas temperatures will result in excessive temperatures within the rotor housing unless additional cooling methods are used. The rotor itself will have acceptable temperatures, but the pattern factor presented to the turbine may be of concern, depending on exhaust duct design and duct-rotor interaction.

  1. Balancing of machinery with a flexible variable-speed rotor

    Science.gov (United States)

    Sève, F.; Andrianoely, M. A.; Berlioz, A.; Dufour, R.; Charreyron, M.

    2003-07-01

    The balancing procedure of machines composed of a flexible rotating part (rotor) and a non-rotating part (stator) mounted on suspensions is presented. The rotating part runs at a variable speed of rotation and is mounted on bearings with variable-speed-dependent characteristics. Assuming that the unbalance masses are relatively well defined, such as in the case of a crank-shaft, the procedure is based on a numerical approach using rotordynamics theory coupled with the Finite Element and Influence Coefficient Methods. An academic rotor/stator model illustrates the procedure. Moreover, the industrial application concerns a refrigerant rotary compressor whose experimental investigation permits validating the model. Assuming that the balancing planes are located on the rotor, it is shown that reducing the vibration level of both rotor and stator requires a balancing procedure using target planes on the rotor and on the stator. In the case of the rotary compressor, this avoids rotor-to-stator rubs and minimizes vibration transmission through pipes and grommets.

  2. Theoretical analysis of the flow around a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z.; Djoumati, D. [Batna Univ., Batna (Algeria). Laboratoire de Physique Energetique Appliquee; Djamel, H. [Batna Univ., Batna (Algeria). Dept. de Mecanique Energetique

    2009-07-01

    While Savonius rotors do not perform as well as Darrieus wind turbine rotors, Savonius rotors work in all wind directions, do not require a rudder, and are capable of operating at relatively low speeds. A discrete vortex method was used to analyze the complex flow around a Savonius rotor. Velocity and pressure fields obtained in the analysis were used to determine both mechanical and energetic rotor performance. Savonius rotor bi-blades were considered in relation to 4 free eddies, the leakage points of each blade, and the distribution of basic eddies along the blades. Each blade was divided into equal elementary arcs. Linear equations and Kelvin theorem were reduced to a single equation. Results showed good agreement with data obtained in previous experimental studies. The study demonstrated that vortice emissions were unbalanced. The resistant blade had 2 vortice emissions, while the driving blade had only a single vortex. The results of the study will be used to clarify the mechanical and aerodynamic functions as well as to determine the different values between the blades and the speed of the turbine's engine. 9 refs., 4 figs.

  3. An experimental and analytical method for approximate determination of the tilt rotor research aircraft rotor/wing download

    Science.gov (United States)

    Jordon, D. E.; Patterson, W.; Sandlin, D. R.

    1985-01-01

    The XV-15 Tilt Rotor Research Aircraft download phenomenon was analyzed. This phenomenon is a direct result of the two rotor wakes impinging on the wing upper surface when the aircraft is in the hover configuration. For this study the analysis proceeded along tow lines. First was a method whereby results from actual hover tests of the XV-15 aircraft were combined with drag coefficient results from wind tunnel tests of a wing that was representative of the aircraft wing. Second, an analytical method was used that modeled that airflow caused gy the two rotors. Formulas were developed in such a way that acomputer program could be used to calculate the axial velocities were then used in conjunction with the aforementioned wind tunnel drag coefficinet results to produce download values. An attempt was made to validate the analytical results by modeling a model rotor system for which direct download values were determinrd..

  4. Evaluation of the useful life of steam turbine rotors; Evaluacion de vida util de rotores de turbinas de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Carnero Parra, Antonio; Garcia Illescas, Rafael; Kubiak Szyszka, Janusz [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    This article presents the methodology applied by the Management of Turbomachinery of the Institute of Investigaciones Electricas (IIE), for the evaluation of the remaining useful life of steam turbine rotors in the phase of initiation of fissures. The evaluation of the remaining useful life of turbines, will reveal the real state of health of the rotor and will serve as a base for the future decision making that guarantees their structural integrity. [Spanish] El presentes articulo presenta la metodologia aplicada por la Gerencia de Turbomaquinaria del Instituto de Investigaciones Electricas (IIE), para la evaluacion de la vida util remanente de rotores de turbinas de vapor en la fase de iniciacion de fisuras. La evaluacion de la vida util de turbinas, revelar el estado real de salud del rotor y servira de base para la toma de decisiones futuras que garanticen su integridad estructural.

  5. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...... the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field....

  6. Useful life extension of steam turbine rotors; Alargamiento de la vida en rotores de turbina de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Arelle, Carlos [Turbomaquinas S. A. de C.V., La Piedad, Michoacan (Mexico)

    2007-11-15

    The continuous use of steam turbines, the chemistry of the steam itself and the variations of operation velocities, cause the gradual deterioration by erosion, oxidation and/or corrosion of the rotors and blades. When this happens most of the original manufacturers recommend to rectify the areas, diminishing the surfaces, or to compare with a new rotor. TURBOMAQUINARIAS S.A. de C.V. has developed the most reliable and safe methods to return the rotor to its original dimensions and in case of recurrent problems such as erosion, oxidation and/or wear, it offers the alternative of attaching coatings metallurgically compatible with which these problems are eliminated or diminished that might show up on the rotor surface as well as in the body of the discs or of the blades. These restoring methods are recommended by the international standards such as API 687. [Spanish] El uso continuo de las turbinas de vapor, la quimica del mismo vapor y la variacion de las velocidades de operacion, ocasionan el deterioro gradual por erosion, oxidacion y/o corrosion de los rotores y de los alabes. Al ocurrir esto la mayoria de los fabricantes originales recomiendan rectificar las areas, disminuyendo las superficies, o bien comparar un rotor nuevo. TURBOMAQUINARIAS S.A. de C.V. ha desarrollado los metodos mas confiables y seguros para devolver a su rotor las dimensiones originales y en caso de problemas recurrentes tales como erosion, oxidacion y/o desgaste, ofrece la alternativa de agregar recubrimientos metalurgicamente compatibles con los cuales se eliminan o se disminuyen estos problemas que pueden presentarse tanto en la superficie del rotor como del cuerpo de los discos o bien de los alabes. Estos metodos de restauracion son recomendados por las normas internacionales tales como la API 687.

  7. Numerical Simulation of Unsteady Flow Around Forward Flight Helicopter with Coaxial Rotors

    Institute of Scientific and Technical Information of China (English)

    XU Heyong; YE Zhengyin

    2011-01-01

    Three-dimensional unsteady Euler equations are numerically solved to simulate the unsteady flows around forward flight helicopter with coaxial rotors based on unstructured dynamic overset grids. The performances of the two coaxial rotors both become worse because of the aerodynamic interaction between them, and the influence of the top rotor on the bottom rotor is greater than that of the bottom rotor on the top rotor. The downwash velocity at the bottom rotor plane is much larger than that at the top rotor plane, and the downwash velocity at the top rotor plane is a little larger than that at an individual rotor plane. The downwash velocity and thrust coefficient both become larger when the collective angle of blades is added. When the spacing between the two coaxial rotors increases, the thrust coefficient of the top rotor increases, but the total thrust coefficient reduces a little,because the decrease of the bottom rotor thrust coefficient is larger than the increase of the top rotor thrust coefficient.

  8. Transverse vibration of a rotor system driven by two cardan joints

    Science.gov (United States)

    Saigo, M.; Iwatsubo, T.

    1987-05-01

    The torque-induced transverse vibration of a rotor system driven by two Cardan joints is analyzed and the effects of the stiffness asymmetry of the rotor shaft supports, the damping force in the joints and the gyroscopic moment of the rotor on the dynamic stability of the system are evaluated. The analysis proves that both parametric and self-excited vibrations can occur due to the transmitted torque when the driving shaft and the driven shaft (rotor shaft) are inclined; the stiffness asymmetry of rotor supports does not always have the stabilizing effect which has been observed in a rotor system driven by a single Cardan joint [1

  9. Extension-twist coupling optimization in composite rotor blades

    Science.gov (United States)

    Ozbay, Serkan

    2005-07-01

    For optimal rotor performance in a tiltrotor aircraft the difference in the inflow and the rotor speeds between the hover and cruise flight modes suggests different blade twist and chord distributions. The blade twist rates in current tiltrotor applications are defined based upon a compromise between the figure of merit in hover and propeller efficiency in airplane mode. However, when each operation mode is considered separately the optimum blade distributions are found to be considerably different. Passive blade twist control, which uses the inherent variation in centrifugal forces on a rotor blade to achieve optimum blade twist distributions in each flight mode through the use of extension-twist coupled composite rotor blades, has been considered for performance improvement of tiltrotor aircraft over the last two decades. The challenge for this concept is to achieve the desired twisting deformations in the rotor blade without altering the aeroelastic characteristics of the vehicle. A concept referred to as the sliding mass concept is proposed in this work in order to increase the twist change with rotor speed for a closed-cell composite rotor blade cross-section to practical levels for performance improvement in a tiltrotor aircraft. The concept is based on load path changes for the centrifugal forces by utilizing non-structural masses readily available on a conventional blade, such as the leading edge balancing mass. A multilevel optimization technique based on the simulated annealing method is applied to improve the performance of the XV15 tiltrotor aircraft. A cross-sectional analysis tool, VABS together with a multibody dynamics code, DYMORE are integrated into the optimization process. The optimization results revealed significant improvements in the power requirement in hover while preserving cruise efficiency. It is also shown that about 21% of the improvement is provided through the sliding mass concept pointing to the additional flexibility the concept

  10. Aeromechanical Evaluation of Smart-Twisting Active Rotor

    Science.gov (United States)

    Lim, Joon W.; Boyd, D. Douglas, Jr.; Hoffman, Frauke; van der Wall, Berend G.; Kim, Do-Hyung; Jung, Sung N.; You, Young H.; Tanabe, Yasutada; Bailly, Joelle; Lienard, Caroline; Delrieux, Yves

    2014-01-01

    An investigation of Smart-Twisting Active Rotor (STAR) was made to assess potential benefits of the current active twist rotor concept for performance improvement, vibration reduction, and noise alleviation. The STAR rotor is a 40% Mach-scaled, Bo105 rotor with an articulated flap-lag hinge at 3.5%R and no pre-cone. The 0-5 per rev active twist harmonic inputs were applied for various flight conditions including hover, descent, moderate to high speed level flights, and slowed rotor high advance ratio. For the analysis, the STAR partners used multiple codes including CAMRAD II, S4, HOST, rFlow3D, elsA, and their associated software. At the high thrust level in hover, the 0 per rev active twist with 80% amplitude increased figure of merit (FM) by 0.01-0.02 relative to the baseline. In descent, the largest BVI noise reduction was on the order of 2 to 5 dB at the 3 per rev active twist. In the high speed case (mu = 0.35), the 2 per rev actuation was found to be the most effective in achieving a power reduction as well as a vibration reduction. At the 2 per rev active twist, total power was reduced by 0.65% at the 60 deg active twist phase, and vibration was reduced by 47.6% at the 45 deg active twist phase. The use of the 2 per rev active twist appears effective for vibration reduction. In the high advance ratio case (mu = 0.70), the 0 per rev actuation appeared to have negligible impact on performance improvement. In summary, computational simulations successfully demonstrated that the current active twist concept provided a significant reduction of the maximum BVI noise in descent, a significant reduction of the vibration in the high speed case, a small improvement on rotor performance in hover, and a negligible impact on rotor performance in forward flight.

  11. Effect of fluid damping on vibration response of immersed rotors

    Directory of Open Access Journals (Sweden)

    Mahmud Rasheed Ismail, Mustafa Asaad Hussein

    2016-01-01

    Full Text Available As immersed rotors vibrate in a viscous media such as fluid, a considerable amount of damping may be generated due to the interaction phenomena between the rotor components and the fluid media.Such damping is depending on many factors such as; fluid drag,fluid friction,turbulence, vortex and so on. Immersed rotors find their application in many engineering fields such as Marines machines, gear box, turbine and pumps.In the presentwork, a mathematical modelis attempted to investigate the dynamical behaviorimmersed rotor.The model takes into account the effects of the most rotordynamic parameters, namely; fluid drag,damping and stiffness of bearing,unbalance and gyroscopic effects of the attacheddisc, and elastic bending and internal damping of rotor shaft.Four types of fluid are employed as a fluid immersing media which are; Air, Water, SAE 20 andSAE 40oils.The experimental apparatus includes a sample rotor with single disc and plastic fluid container.Two proximate sensors are employed for measuring the unbalance response and orbits shapes under different rotor speeds, and discs size and locations.Modal analysis is employed for solving the governing equation of vibration motion. To check the validity of the mathematical model the theoretical results are compared with the experimental results. It is found that; the theoretical results are in a good agreement with the experimental ones, where the maximum error is not exceeded (6.8 %, and that;the fluid damping can highly reduce the peak amplitude of the unbalance response (up to 60 % however, it has slight effect on the critical speeds which are highly affected by the size and location of the attached disc.

  12. Performance and Internal Flow of Sirocco Fan Using Contra-Rotating Rotors

    Institute of Scientific and Technical Information of China (English)

    J. Fukutomi; T.Shigemitsu; T. Yasunobu

    2008-01-01

    A sirocco fan using contra-rotating rotors in which an inner rotor is settled inside the sirocco fan rotor end each rotor rotates in an opposite direction was proposed for the purpose of getting the higher pressure and making the structure of a sirocco fan more compact. If the high discharge pressure is obtained with the adoption of the contra-rotating rotors, it could be used for various purposes. Pressure coefficient of a sirocco fan with contra-rotating rotors is 2.5 times as high as the conventional sirocco fan and the maximum efficiency point of contra-rotating rotors shifts to larger flow rate than a conventional sirocco fan. On the other hand, it was clarified from the flow measurement results that circumferential velocity component at the outlet of the outer rotor of contra-rotating rotors becomes larger than a conventional one. In the present paper, the performance of a conventional sirocco fan and a sirocco fan with contra-rotating rotors are shown and the internal flow field at the outlet of outer rotor of both cases is clarified. Then, the effect of different kind of contra-rotating rotors on the performance and internal flow field is investigated and the rotor design with higher performanco would be discussed.

  13. Three-dimensional flows in a transonic compressor rotor

    Science.gov (United States)

    Reid, Lonnie; Celestina, Mark L.; Dewitt, Kenneth; Keith, Theo

    1991-01-01

    This study involves an experimental and numerical investigation of the three-dimensional flows in a transonic compressor rotor. A variety of data which could be used, in a complementary fashion, to validate/calibrate the computational fluid dynamics turbomachinery code and improve understanding of the flow physics, were acquired. Detailed radial survey data which consisted of total pressure, total temperature, static pressure and flow angle were obtained at stations upstream and downstream of the rotor blade. Detailed velocity and turbulence profiles were obtained upstream of the rotor and used as the upstream boundary conditions for the numerical analysis. Calibrated flush-mounted hot film probes were used to measure wall shear stress on the hub and casing walls upstream of the rotor. The blade-to-blade shear-stress angle distributions were obtained at two axial locations on the rotor casing, using flush-mounted hot film probes. A numerical analysis conducted using a three-dimensional Navier-Stokes code was compared with the experimental results.

  14. Prospects for Brushless ac Motors with HTS Rotors

    Science.gov (United States)

    McCulloch, M. D.; Jim, K.; Kawai, Y.; Dew-Hughes, D.; Morgan, C.; Goringe, M. J.; Grovenor, C. R. M.

    1997-03-01

    There is a superconducting equivalent for every type of brushless ac motor; permanent magnet, reluctance, hysteresis and induction (squirrel cage) motor. The particular advantage of superconducting versions of these machines is that they are expected to provide much higher power densities than their conventional equivalents. The behaviour of superconducting rotors fabricated in the form of (a) squirrell cages from silver coated with melt-processed Bi-2212, (b) tubes cast centifugally from Bi-2212, and (c) small cylinders of melt-processed and seeded YBCO has been studied in rotating magnetic fields provided by conventional motor coils. Measurements of static torque, and values of dynamic torque deduced from angular velocity and acceleration have been used to characterise the potential performance of these embryonic machines. Two broad types of behaviour have been observed. In the Bi-2212 rotors the torque decreases with increasing rotor speed; this behaviour is believed due to flux creep. By contrast the strong-pinning YBCO rotors maintain a constant torque up to synchronous speed. Mathematical modelling of flux penetration and distribution within the rotors is able to reproduce both types of the observed behaviour. Power densities some 5 to 10 times that of conventional machines are predicted to be achievable in optimised prototype machines.

  15. Broken-Rotor-Bar Diagnosis for Induction Motors

    Science.gov (United States)

    Wang, Jinjiang; Gao, Robert X.; Yan, Ruqiang

    2011-07-01

    Broken rotor bar is one of the commonly encountered induction motor faults that may cause serious motor damage to the motor if not detected timely. Past efforts on broken rotor bar diagnosis have been focused on current signature analysis using spectral analysis and wavelet transform. These methods require accurate slip estimation to localize fault-related frequency. This paper presents a new approach to broken rotor bar diagnosis without slip estimation, based on the ensemble empirical mode decomposition (EEMD) and the Hilbert transform. Specifically, the Hilbert transform first extracts the envelope of the motor current signal, which contains broken rotor fault-related frequency information. Subsequently, the envelope signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by the EEMD algorithm. Two criteria based on the energy and correlation analyses have been investigated to automate the IMF selection. Numerical and experimental studies have confirmed that the proposed approach is effective in diagnosing broken rotor bar faults for improved induction motor condition monitoring and damage assessment.

  16. Active control for performance enhancement of electrically controlled rotor

    Institute of Scientific and Technical Information of China (English)

    Lu Yang; Wang Chao

    2015-01-01

    Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor-mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor perfor-mance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3%rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  17. Automatic magnetic flux measurement of micro plastic-magnetic rotors

    Science.gov (United States)

    Wang, Qingdong; Lin, Mingxing; Song, Aiwei

    2015-07-01

    Micro plastic-magnetic rotors of various sizes and shapes are widely used in industry, their magnetic flux measurement is one of the most important links in the production process, and therefore some technologies should be adopted to improve the measurement precision and efficiency. In this paper, the automatic measurement principle of micro plastic-magnetic rotors is proposed and the integration time constant and the integrator drift’s suppression and compensation in the measurement circuit are analyzed. Two other factors influencing the measurement precision are also analyzed, including the relative angles between the rotor magnetic poles and the measurement coil, and the starting point of the rotors in the coil where the measurement begins. An instrument is designed to measure the magnetic flux of the rotors. Measurement results show that the measurement error is within  ±1%, which meets the basic requirements in industry application, and the measurement efficiency is increased by 10 times, which can cut down labor cost and management cost when compared with manual measurement.

  18. Empennage Noise Shielding Benefits for an Open Rotor Transport

    Science.gov (United States)

    Berton, Jeffrey J.

    2012-01-01

    NASA sets aggressive, strategic, civil aircraft performance and environmental goals and develops ambitious technology roadmaps to guide its research efforts. NASA has adopted a phased approach for community noise reduction of civil aircraft. While the goal of the near-term first phase focuses primarily on source noise reduction, the goal of the second phase relies heavily on presumed architecture changes of future aircraft. The departure from conventional airplane configurations to designs that incorporate some type of propulsion noise shielding is anticipated to provide an additional 10 cumulative EPNdB of noise reduction. One candidate propulsion system for these advanced aircraft is the open rotor engine. In some planned applications, twin open rotor propulsors are located on the aft fuselage, with the vehicle s empennage shielding some of their acoustic signature from observers on the ground. This study focuses on predicting the noise certification benefits of a notional open rotor aircraft with tail structures shielding a portion of the rotor noise. The measured noise of an open rotor test article--collected with and without an acoustic barrier wall--is the basis of the prediction. The results are used to help validate NASA s reliance on acoustic shielding to achieve the second phase of its community noise reduction goals. The noise measurements are also compared to a popular empirical diffraction correlation often used at NASA to predict acoustic shielding.

  19. Field Balancing of Magnetically Levitated Rotors without Trial Weights

    Directory of Open Access Journals (Sweden)

    Jiancheng Fang

    2013-11-01

    Full Text Available Unbalance in magnetically levitated rotor (MLR can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor’s unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR’s rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC method, using a general band-pass filter (GPF to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.

  20. Liquid Self-Balancing Device Effects on Flexible Rotor Stability

    Directory of Open Access Journals (Sweden)

    Leonardo Urbiola-Soto

    2013-01-01

    Full Text Available Nearly a century ago, the liquid self-balancing device was first introduced by M. LeBlanc for passive balancing of turbine rotors. Although of common use in many types or rotating machines nowadays, little information is available on the unbalance response and stability characteristics of this device. Experimental fluid flow visualization evidences that radial and traverse circulatory waves arise due to the interaction of the fluid backward rotation and the baffle boards within the self-balancer annular cavity. The otherwise destabilizing force induced by trapped fluids in hollow rotors, becomes a stabilizing mechanism when the cavity is equipped with adequate baffle boards. Further experiments using Particle Image Velocimetry (PIV enable to assess the active fluid mass fraction to be one-third of the total fluid mass. An analytical model is introduced to study the effects of the active fluid mass fraction on a flexible rotor supported by flexible supports excited by bwo different destabilizing mechanisms; rotor internal friction damping and aerodynamic cross-coupling. It is found that the fluid radial and traverse forces contribute to the balancing action and to improve the rotor stability, respectively.

  1. Driving corrugated donut rotors with Laguerre-Gauss beams.

    Science.gov (United States)

    Loke, Vincent L Y; Asavei, Theodor; Stilgoe, Alexander B; Nieminen, Timo A; Rubinsztein-Dunlop, Halina

    2014-08-11

    Tightly-focused laser beams that carry angular momentum have been used to trap and rotate microrotors. In particular, a Laguerre-Gauss mode laser beam can be used to transfer its orbital angular momentum to drive microrotors. We increase the torque efficiency by a factor of about 2 by designing the rotor such that its geometry is compatible with the driving beam, when driving the rotation with the optimum beam, rather than beams of higher or lower orbital angular momentum. Based on Floquet's theorem, the order of discrete rotational symmetry of the rotor can be made to couple with the azimuthal mode of the Laguerre-Gauss beam. We design corrugated donut rotors, that have a flat disc-like profile, with the help of the discrete dipole approximation and the T-matrix methods in parallel with experimental demonstrations of stable trapping and torque measurement. We produce and test such a rotor using two-photon photopolymerization. With a rotor that has 8-fold discrete rotational symmetry, an outer radius of 1.85 μm and a hollow core radius of 0.5 μm, we were able to transfer approximately 0.3 h̄ per photon of the orbital angular momentum from an LG04 beam.

  2. QUANTITATIVE METHODOLOGY FOR STABILITY ANALYSIS OF NONLINEAR ROTOR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hui-ping; XUE Yu-sheng; CHEN Yu-shu

    2005-01-01

    Rotor-bearings systems applied widely in industry are nonlinear dynamic systems of multi-degree-of-freedom. Modem concepts on design and maintenance call for quantitative stability analysis. Using trajectory based stability-preserving and dimensional-reduction, a quanttative stability analysis method for rotor systems is presented. At first, an n-dimensional nonlinear non-autonomous rotor system is decoupled into n subsystems after numerical integration. Each of them has only onedegree-of-freedom and contains time-varying parameters to represent all other state variables. In this way, n-dimensional trajectory is mapped into a set of one-dimensional trajectories. Dynamic central point (DCP) of a subsystem is then defined on the extended phase plane, namely, force-position plane. Characteristics of curves on the extended phase plane and the DCP's kinetic energy difference sequence for general motion in rotor systems are studied. The corresponding stability margins of trajectory are evaluated quantitatively. By means of the margin and its sensitivity analysis, the critical parameters of the period doubling bifurcation and the Hopf bifurcation in a flexible rotor supported by two short journal beatings with nonlinear suspensionare are determined.

  3. Control of flexible rotor systems with active magnetic bearings

    Science.gov (United States)

    Lei, Shuliang; Palazzolo, Alan

    2008-07-01

    An approach is presented for the analysis and design of magnetic suspension systems with large flexible rotordynamics models including dynamics, control, and simulation. The objective is to formulate and synthesize a large-order, flexible shaft rotordynamics model for a flywheel supported with magnetic bearings. A finite element model of the rotor system is assembled and then employed to develop a magnetic suspension compensator to provide good reliability and disturbance rejection. Stable operation over the complete speed range and optimization of the closed-loop rotordynamic properties are obtained via synthesis of eigenvalue analysis, Campbell plots, waterfall plots, and mode shapes. The large order of the rotor model and high spin speed of the rotor present a challenge for magnetic suspension control. A flywheel system is studied as an example for realizing a physical controller that provides stable rotor suspension and good disturbance rejection in all operating states. The baseline flywheel system control is determined from extensive rotordynamics synthesis and analysis for rotor critical speeds, mode shapes, frequency responses, and time responses.

  4. Helicopter Rotor Load Prediction Using a Geometrically Exact Beam with Multicomponent Model

    DEFF Research Database (Denmark)

    Lee, Hyun-Ku; Viswamurthy, S.R.; Park, Sang Chul

    2010-01-01

    rotor-blade/control-system model was loosely coupled with various inflow and wake models in order to simulate both hover and forward-flight conditions. The resulting rotor blade response and pitch link loads are in good agreement with those predicted byCAMRADII. The present analysis features both model......In this paper, an accurate structural dynamic analysis was developed for a helicopter rotor system including rotor control components, which was coupled to various aerodynamic and wake models in order to predict an aeroelastic response and the loads acting on the rotor. Its blade analysis was based...... on an intrinsic formulation of moving beams implemented in the time domain. The rotor control system was modeled as a combination of rigid and elastic components. A multicomponent analysis was then developed by coupling the beam finite element model with the rotor control system model to obtain a complete rotor-blade/control...

  5. Loss of the Statical Stabity of Electrical Machine Rotor Under Influence of Stator Magnetic Field

    Directory of Open Access Journals (Sweden)

    Shekyan H.G.

    2007-06-01

    Full Text Available It is assumed, that magnetic forces, acting on to the rotor by the stator field, are varied proportional with displacements. The criteria of rotor statical stability, depending on rigid characteristics and boundary conditions are obtained.

  6. Hi-Q Rotor - Low Wind Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Todd E. Mills; Judy Tatum

    2010-01-11

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data

  7. Unsteady Tip Clearance Flow in an Isolated Axial Compressor Rotor

    Institute of Scientific and Technical Information of China (English)

    Hongwu ZHANG; Xiangyang DENG; Jingyi CHEN; Weiguang HUANG

    2005-01-01

    The paper investigates effects of operating conditions, tip clearance sizes and external unsteady excitations on the unsteady tip clearance flow in an isolated axial compressor rotor by unsteady 3D Navier-Stokes simulations. The results show that the unsteady tip clearance vortex takes a periodic flow behavior in the rotor tip region. With the decrease of the flow coefficient, the unsteady tip clearance vortex is enhanced and its frequency becomes lower. A larger tip clearance size can cause bigger unsteady fluctuation amplitude and a lower fluctuation frequency of the tip clearance vortex at the near stall operating condition. The unsteady excitation with the natural frequency of the tip clearance vortex can enhance the unsteadiness of the tip clearance vortex and improve the overall rotor performance. The frequency of the unsteady tip clearance vortex is independent of external unsteady excitations with different frequencies.

  8. Quantum molecular dynamics of methyl rotors in peptide links

    CERN Document Server

    Del Mar, J

    2002-01-01

    A particles wavefunction extends beyond the classically accessible regions of the potential energy surface. Quantum mechanical tunnelling is the result of this partial delocalisation, which enables the surpassing of classically inaccessible potential barriers. A particles mass is an important aspect, reflecting the tunnelling probability; a consequence of this is that a proton is ideally suited to this behaviour. Symmetrical molecular rotors such as Ch sub 3 provide a clear example of quantum mechanical tunnelling, seen in their motional spectrum. The advantage of the methyl rotor is that it's found in a wide range of organic compounds, giving a wide range in hindering potentials. It is effectively a proton rotor, and is easily observed using techniques such as Nuclear Magnetic Resonance (NMR), and Inelastic Neutron Scattering (INS). Both NMR and INS techniques are sensitive to molecular motion, and as they measure the tunnel frequencies in different energy windows, are complementary. Of central importance to...

  9. Dynamic Vibration Absorber with Negative Stiffness for Rotor System

    Directory of Open Access Journals (Sweden)

    Hongliang Yao

    2016-01-01

    Full Text Available To suppress the vibration of a rotor system, a vibration absorber combining negative stiffness with positive stiffness together is proposed in this paper. Firstly, the negative stiffness producing mechanism using ring type permanent magnets is presented and the characteristics of the negative stiffness are analyzed. Then, the structure of the absorber is proposed; the principles and nonlinear dynamic characteristics of the absorber-rotor system are studied numerically. Finally, experiments are carried out to verify the numerical conclusions. The results show that the proposed vibration absorber is effective to suppress the vibration of the rotor system, the nonlinearity of the negatives stiffness affects the vibration suppression effect little, and the negative stiffness can broaden the effective vibration control frequency range of the absorber.

  10. A new approach to helicopter rotor blade research instrumentation

    Science.gov (United States)

    Knight, V. H., Jr.

    1978-01-01

    A rotor-blade-mounted telemetry instrumentation system developed and used in flight tests by the NASA/Langley Research Center is described. The system uses high-speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested using an AH-1G helicopter. The system employs microelectronic PCM multiplexer-digitizer stations located remotely on the blade and in a hub-mounted metal canister. The electronics contained in the canister digitizes up to 16 sensors, formats this data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data is transmitted over an RF link to the ground for real-time monitoring and to the helicopter fuselage for tape recording.

  11. Lift capability prediction for helicopter rotor blade-numerical evaluation

    Science.gov (United States)

    Rotaru, Constantin; Cîrciu, Ionicǎ; Luculescu, Doru

    2016-06-01

    The main objective of this paper is to describe the key physical features for modelling the unsteady aerodynamic effects found on helicopter rotor blade operating under nominally attached flow conditions away from stall. The unsteady effects were considered as phase differences between the forcing function and the aerodynamic response, being functions of the reduced frequency, the Mach number and the mode forcing. For a helicopter rotor, the reduced frequency at any blade element can't be exactly calculated but a first order approximation for the reduced frequency gives useful information about the degree of unsteadiness. The sources of unsteady effects were decomposed into perturbations to the local angle of attack and velocity field. The numerical calculus and graphics were made in FLUENT and MAPLE soft environments. This mathematical model is applicable for aerodynamic design of wind turbine rotor blades, hybrid energy systems optimization and aeroelastic analysis.

  12. A New Fine Damping Method for Solid ESG Rotor

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-ning; TIAN Wei-feng; JIN Zhi-hua

    2006-01-01

    For the electrostatically suspended gyro(ESG) with solid rotor, because the equatorial photoelectric sensor won't sense the equatorial marking line and output the correct damping control information when the nutation angle is small, the active damping with equatorial marking line will bring considerable error. The passive damping method by applying strong DC magnetic field requires too much time. So an active damping method by longitude marking lines is proposed to fulfill the fine damping for solid ESG rotor. The shape of rotor marking lines and the principle of fine damping are introduced. The simulation results prove that this fine damping method can effectively solve the problem of damping error introduced by active damping with equatorial marking line. The estimating results for damping time indicate that the fine damping time is less than 10 percent of passive damping time.

  13. Design of a wind turbine rotor for maximum aerodynamic efficiency

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Aagaard Madsen, Helge; Gaunaa, Mac;

    2009-01-01

    The design of a three-bladed wind turbine rotor is described, where the main focus has been highest possible mechanical power coefficient, CP, at a single operational condition. Structural, as well as off-design, issues are not considered, leading to a purely theoretical design for investigating...... and a full three-dimensional Navier-Stokes solver. Excellent agreement is obtained using the three models. Global CP reaches a value of slightly above 0.51, while global thrust coefficient CT is 0.87. The local power coefficient Cp increases to slightly above the Betz limit on the inner part of the rotor......; the local thrust coefficient Ct increases to a value above 1.1. This agrees well with the theory of de Vries, which states that including the effect of the low pressure behind the centre of the rotor stemming from the increased rotation, both Cp and Ct will increase towards the root. Towards the tip, both...

  14. Design modification in rotor blade of turbo molecular pump

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Munawar, E-mail: muniqbal@yahoo.com [Centre for High Energy Physics, University of the Punjab, Quaid-e-Azam, Campus, Lahore 54590 (Pakistan); Wasy, Abdul [Department of Mechanical Engineering, University of Engineering and Technology, Taxila 47050 (Pakistan); Batani, Dimitri [Centre Lasers Intenses et Applications, Universite Bordeaux 1, Liberation, 33405 Talence cedex (France); Rashid, Haris [Centre for High Energy Physics, University of the Punjab, Quaid-e-Azam, Campus, Lahore 54590 (Pakistan); Lodhi, M.A.K. [Department of Physics, Texas Tech University, Lubbock Texas, 79409 (United States)

    2012-06-21

    Performance of a Turbo Molecular Pump (TMP) is strongly related to the frequency of the rotor. As rpm increases deflection in the rotor blades starts to occur. Therefore, quality of material and blade design has been modified in order to obtain stable performance at higher speed. To reduce the deformation, stiffer material and change in blade design have been calculated. Significant improvement has been achieved in modeling the blade design using CATIA software. The analysis has been performed by ANSYS workbench. It is shown that the modification in the blade design of TMP rotor has reduced the structural deformation up to 66 percent of the deformation produced in the original blade design under the same conditions. Modified design achieved additional 23 percent rpm which increased TMP's efficiency.

  15. Design modification in rotor blade of turbo molecular pump

    Science.gov (United States)

    Iqbal, Munawar; Wasy, Abdul; Batani, Dimitri; Rashid, Haris; Lodhi, M. A. K.

    2012-06-01

    Performance of a Turbo Molecular Pump (TMP) is strongly related to the frequency of the rotor. As rpm increases deflection in the rotor blades starts to occur. Therefore, quality of material and blade design has been modified in order to obtain stable performance at higher speed. To reduce the deformation, stiffer material and change in blade design have been calculated. Significant improvement has been achieved in modeling the blade design using CATIA software. The analysis has been performed by ANSYS workbench. It is shown that the modification in the blade design of TMP rotor has reduced the structural deformation up to 66 percent of the deformation produced in the original blade design under the same conditions. Modified design achieved additional 23 percent rpm which increased TMP's efficiency.

  16. Thermoelastic steam turbine rotor control based on neural network

    Science.gov (United States)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  17. Rotor Faults Detection in Induction Motor by Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Neelam Mehala

    2009-12-01

    Full Text Available Motor current signature analysis has been successfully used for fault diagnosis in induction motors. However, this method does not always achieve good results when the speed or the load torque is not constant, because this cause variation on the motor slip and fast Fourier transform problems appear due to non-stationary signal. This paper experimentally describes the effects of rotor broken bar fault in the stator current of induction motor operating under non-constant load conditions. To achieve this, broken rotor bar fault is eplicated in a laboratory and its effect on the motor current has been studied. To diagnose the broken rotor bar fault, a new approach based on wavelet transform is applied by using ‘Labview 8.2 software’ of National Instrument (NI. The diagnosis procedure was performed by using the virtual instruments. The theoretical basis of proposed method is proved by laboratory tests.

  18. Synchronous motor with hybrid permanent magnets on the rotor.

    Science.gov (United States)

    Slusarek, Barbara; Kapelski, Dariusz; Antal, Ludwik; Zalas, Pawel; Gwoździewicz, Maciej

    2014-07-10

    Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume.

  19. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  20. The Model of Nonstationary Rotor Magnetic Field Observer in the Induction Motor

    Science.gov (United States)

    Burkov, Alexander; Krasilnikyants, Evgenii; Smirnov, Alexander

    2011-01-01

    This article is devoted to the questions, associated with observer construction for monitoring the values of rotor magnetic vector magnitude and angular deflection of induction motor oriented on bidimensional convolution on temporal and spatial actual parameters. The interrelation of induction motor breakdown torque and rotor characteristic time and transportation lag is shown. The system of rotor running stream observer on the basis of gage rotor position and stator current is put forward.

  1. Nearfield Unsteady Pressures at Cruise Mach Numbers for a Model Scale Counter-Rotation Open Rotor

    Science.gov (United States)

    Stephens, David B.

    2012-01-01

    An open rotor experiment was conducted at cruise Mach numbers and the unsteady pressure in the nearfield was measured. The system included extensive performance measurements, which can help provide insight into the noise generating mechanisms in the absence of flow measurements. A set of data acquired at a constant blade pitch angle but various rotor speeds was examined. The tone levels generated by the front and rear rotor were found to be nearly equal when the thrust was evenly balanced between rotors.

  2. NUMERICAL AND EXSPERIMENTAL ASPECTS OF THERMALLY INDUCED VIBRATION IN REAL ROTORS

    OpenAIRE

    Milenko B Jevtić; Ljiljana Z Radovanović; Zivoslav Z Adamović

    2011-01-01

    Temperature fields in electric energy generators may lead to mechanical dissbalance of an already balanced rotor. The author collected information in a number of steam power plants and confirmed the existence of the problem. This paper is presents the specific case of thermal deformation of the rotor, caused by an asymmetrical temperature field in scale of rotor. On the grounds of the relevant physical aspects, we propose a mathematical model identifying fields in a turbo generator rotor and ...

  3. Control design for two-bladed wind turbines

    NARCIS (Netherlands)

    Van Solingen, E.

    2015-01-01

    In the past decades wind energy has evolved into a mature source of sustainable energy such that onshore wind turbines have become cost competitive with other fossil-based energy sources. Onshore wind energy, however, faces social resistance and a lack of available locations. Offshore wind energy,

  4. Control design for two-bladed wind turbines

    NARCIS (Netherlands)

    Van Solingen, E.

    2015-01-01

    In the past decades wind energy has evolved into a mature source of sustainable energy such that onshore wind turbines have become cost competitive with other fossil-based energy sources. Onshore wind energy, however, faces social resistance and a lack of available locations. Offshore wind energy,

  5. EFFECT OF THE ROTOR CRANK SYSTEM ON CYCLING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Simon A. Jobson

    2009-09-01

    Full Text Available The aim of this study was to evaluate the impact of a novel crank system on laboratory time-trial cycling performance. The Rotor system makes each pedal independent from the other so that the cranks are no longer fixed at 180°. Twelve male competitive but non-elite cyclists (mean ± s: 35 ± 7 yr, Wmax = 363 ± 38 W, VO2peak = 4.5 ± 0.3 L·min-1 completed 6-weeks of their normal training using either a conventional (CON or the novel Rotor (ROT pedal system. All participants then completed two 40.23-km time-trials on an air-braked ergometer, one using CON and one using ROT. Mean performance speeds were not different between trials (CON = 41.7 km·h-1 vs. ROT = 41.6 km·h-1, P > 0.05. Indeed, the pedal system used during the time-trials had no impact on any of the measured variables (power output, cadence, heart rate, VO2, RER, gross efficiency. Furthermore, the ANOVA identified no significant interaction effect between main effects (Time-trial crank system*Training crank system, P > 0.05. To the authors' knowledge, this is the first study to examine the effects of the Rotor system on endurance performance rather than endurance capacity. These results suggest that the Rotor system has no measurable impact on time-trial performance. However, further studies should examine the importance of the Rotor 'regulation point' and the suggestion that the Rotor system has acute ergogenic effects if used infrequently

  6. Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results

    Science.gov (United States)

    Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.

    2005-01-01

    The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.

  7. Blade tip vortex measurements on actively twisted rotor blades

    Science.gov (United States)

    Bauknecht, André; Ewers, Benjamin; Schneider, Oliver; Raffel, Markus

    2017-05-01

    Active rotor control concepts, such as active twist actuation, have the potential to effectively reduce the noise and vibrations of helicopter rotors. The present study focuses on the experimental investigation of active twist for the reduction of blade-vortex interaction (BVI) effects on a model rotor. Results of a large-scale smart-twisting active rotor test under hover conditions are described. This test investigated the effects of individual blade twist control on the blade tip vortices. The rotor blades were actuated with peak torsion amplitudes of up to 2° and harmonic frequencies of 1-5/rev with different phase angles. Time-resolved stereoscopic particle image velocimetry was carried out to study the effects of active twist on the strength and trajectories of the tip vortices between ψ _ {v}= 3.6° and 45.7° of vortex age. The analysis of the vortex trajectories revealed that the 1/rev active twist actuation mainly caused a vertical deflection of the blade tip and the corresponding vortex trajectories of up to 1.3% of the rotor radius R above and -1%R below the unactuated condition. An actuation with frequencies of 2 and 3/rev significantly affected the shapes of the vortex trajectories and caused negative vertical displacements of the vortices relative to the unactuated case of up to 2%R within the first 35° of wake age. The 2 and 3/rev actuation also had the most significant effects on the vortex strength and altered the initial peak swirl velocity by up to -34 and +31% relative to the unactuated value. The present aerodynamic investigation reveals a high control authority of the active twist actuation on the strength and trajectories of the trailing blade tip vortices. The magnitude of the evoked changes indicates that the active twist actuation constitutes an effective measure for the mitigation of BVI-induced noise on helicopters.

  8. Five-Phase Modular External Rotor PM Machines with Different Rotor Poles: A Comparative Simulation Study

    Directory of Open Access Journals (Sweden)

    A. S. Abdel-Khalik

    2012-01-01

    Full Text Available The performance of fault-tolerant modular permanent magnet machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low-order harmonics in the stator magnetomotive force and thereby the vibration and stray loss are reduced. In this paper, three external rotor machines with identical machine dimensions are designed with different slots per phase per pole ratios. A simulation study is carried out using finite element analysis to compare the performance of the three machines in terms of machine torque density, ripple torque, core loss, and machine efficiency. A mathematical model based on the conventional-phase-model approach is also used for the comparative study. The simulation study is extended to depict machine performance under fault conditions.

  9. Performance evaluation of a five-phase modular external rotor PM machine with different rotor poles

    Directory of Open Access Journals (Sweden)

    A.S. Abdel-Khalik

    2012-12-01

    Full Text Available The performance of fault-tolerant modular permanent magnet (PM machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low order harmonics in the stator magneto motive force and thereby the vibration and stray loss are reduced. In this paper, three external rotor machines with identical machine dimensions are designed with different slots per phase per pole (SPP ratios. A simulation study is carried out using finite element analysis to compare the performance of the three machines in terms of machine torque density, ripple torque, core loss, and machine efficiency. A mathematical model based on the conventional phase model approach is also used for the comparative study. The simulation study is extended to depict machine performance under fault conditions.

  10. Fractional Identification of Rotor Skin Effect in Induction Machines

    Directory of Open Access Journals (Sweden)

    Jean-Claude Trigeassou

    2011-07-01

    Full Text Available Fractional identification of rotor skin effect in induction machines is presented in this paper. Park transformation is used to obtain a system of differential equations which allows to include the skin effect in the rotor bars of asynchronous machines. A transfer function with a fractional derivative order has been selected to represent the admittance of the bar by the help of a non integer integrator which is approximated by a J+1 dimensional modal system. The machine parameters are estimated by an output-error technique using a non linear iterative optimization algorithm. Numerical simulations and experimental results show the performance of the modal approach for modeling and identification.

  11. A review of current finite difference rotor flow methods

    Science.gov (United States)

    Caradonna, F. X.; Tung, C.

    1986-01-01

    Rotary-wing computational fluid dynamics is reaching a point where many three-dimensional, unsteady, finite-difference codes are becoming available. This paper gives a brief review of five such codes, which treat the small disturbance, conservative and nonconservative full-potential, and Euler flow models. A discussion of the methods of applying these codes to the rotor environment (including wake and trim considerations) is followed by a comparison with various available data. These data include tests of advancing lifting and nonlifting, and hovering model rotors with significant supercritical flow regions. The codes are also compared for computational efficiency.

  12. Design of a Bearingless Outer Rotor Induction Motor

    Directory of Open Access Journals (Sweden)

    Yuxin Sun

    2017-05-01

    Full Text Available A bearingless induction (BI motor with an outer rotor for flywheel energy storage systems is proposed due to the perceived advantages of simple rotor structure, non-contact support and high speed operation. Firstly, the configuration and operation principle of the proposed motor are described. Then several leading dimensional parameters are optimally calculated for achieving the maximum average values and the minimum ripples of torque output and suspension force. Finally, by using the finite element method, the characteristics and performance of the proposed machine are analyzed and verified.

  13. Fuzzy logic estimator of rotor time constant in induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Alminoja, J. [Tampere University of Technology (Finland). Control Engineering Laboratory; Koivo, H. [Helsinki University of Technology, Otaniemi (Finland). Control Engineering Laboratory

    1997-12-31

    Vector control of AC machines is a well-known and widely used technique in induction machine control. It offers an exact method for speed control of induction motors, but it is also sensitive to the changes in machine parameters. E.g. rotor time constant has a strong dependence on temperature. In this paper a fuzzy logic estimator is developed, with which the rotor time constant can be estimated when the machine has a load. It is more simple than the estimators proposed in the literature. The fuzzy estimator is tested by simulation when step-wise abrupt changes and slow drifting occurs. (orig.) 7 refs.

  14. Recycling of used rotor blades; Der Kreislauf schliesst sich

    Energy Technology Data Exchange (ETDEWEB)

    Schmidl, Erwin; Hinrichs, Stephan [Holcim Deutschlands AG, Hamburg (Germany)

    2010-06-15

    Until recently, used wind rotor blades were shreddered and combusted in waste incinerators. This is problematic because of high fine dust emissions and of sharp-edged fibre composite residues escaping into the environment. It was also a costly and time-consuming procedure. Recycling into other products is impracticable because there are more than enough low-grade recycled plastic materials available. The Holcim AG of the German state of Schleswig-Holstein filed a patent application for a new process in which the rotor blades will be used up completely, without residues, in a cement clinker plant. (orig.)

  15. Extension of Goldstein's circulation function for optimal rotors with hub

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2016-01-01

    The aerodynamic interaction or interference between rotor blades and hub body is usually very complicated, but some useful simplifications can be made by considering the hub with an infinite cylinder. Various attempts to find the optimum distribution of circulation by the lifting vortex lines...... method have been previously proposed to describe the blade interaction with the hub modeled by the infinite cylinder. In this case, the ideal distribution of bound circulation on the rotor blades is such that the shed vortex system in the hub-area is a set of helicoidal vortex sheets moving uniformly...... at the nose-area of the semi-infinite hub....

  16. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Ennis, Brandon Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  17. The Yarn Curve and Tension in Rotor Spinning

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effective way of finding the yarn curve shape and tension of OE(open end) yarn inside the rotor is carried out and treated by dividing the yarn curve into two parts, from which the trajectory of the yarn sliding on the navel surface is also obtained. It is pointed out that the yarn curve shape and tension will both fluctuate with the trajectory's revolving cycle inside the rotor. However, the fluctuation is not too great, so the motion can still be regarded as approximately steady for dynamic analysis.

  18. Study of nonlinear dynamic characteristics of rotor-bearing systems

    Institute of Scientific and Technical Information of China (English)

    焦映厚; 陈照波; 曲秀全

    2004-01-01

    Based on the short-bearing model, the stability of a rigid Jeffcott rotor system is studied in a relatively wide parameter range by using Poincare maps and the numerical intrgration method. The results of the calculation show that the period doubling bifurcation, quasi-periodic and chaotic motions may occur. In some typical system are acquired with the numerical integration method. They demonstrate some motion state of the system.The fractal dimension concept is used to determine whether the system is in a state of chaotic motion. The analysis result of this paper provides the theoretical basis for qualitatively controlling the stable operating states ofthe rotors.

  19. Design of the Active Elevon Rotor for Low Vibration

    Science.gov (United States)

    Fulton, Mark V.; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    Helicopter fuselages vibrate more than desired, and traditional solutions have limited effectiveness and can impose an appreciable weight penalty. Alternative methods of combating high vibration, including Higher Harmonic Control (HHC) via harmonic swashplate motion and Individual Blade Control (IBC) via active pitch links, have been studied for several decades. HHC via an on-blade control surface was tested in 1977 on a full scale rotor using a secondary active swashplate and a mechanical control system. Recent smart material advances have prompted new research into the use of on-blade control concepts. Recent analytical studies have indicated that the use of on-blade control surfaces produces vibration reduction comparable to swashplate-based HHC but for less power. Furthermore, smart materials (such as piezoceramics) have been shown to provide sufficient control authority for preliminary rotor experiments. These experiments were initially performed at small scale for reduced tip speeds. More recent experiments have been conducted at or near full tip speeds, and a full-scale active rotor is under development by Boeing with Eurocopter et al. pursuing a similarly advanced full-scale implementation. The US Army Aeroflightdynamics Directorate has undertaken a new research program called the Active Elevon Rotor (AER) Focus Demo. This program includes the design, fabrication, and wind. tunnel testing of a four-bladed, 12.96 ft diameter rotor with one or two on-blade elevons per blade. The rotor, which will be Mach scaled, will use 2-5/rev elevon motion for closed-loop control and :will be tested in late 2001. The primary goal of the AER Focus Demo is the reduction of vibratory hub loads by 80% and the reduction of vibratory blade structural loads. A secondary goal is the reduction of rotor power. The third priority is the measurement and possible reduction of Blade Vortex Interaction (BVI) noise. The present study is focused on elevon effectiveness, that is, the elevon

  20. Savonius rotor using swinging blades as an augmentation system

    Science.gov (United States)

    Aldos, T. K.

    The power output from a Savonius rotor can be improved by reducing the drag force on the up-wind blades. A new method of doing this is experimentally investigated in the present work. The method depends on allowing the rotor blades to swing back when they are on the upwind stroke. A high and real power augmentation may be achieved by the new system at an optimum angle of swing. The system is independent of wind direction, is simple to construct, and requires no additional accessories.

  1. Dynamics of the rotor on elastic-damping supports under action of kinematic effects

    Science.gov (United States)

    Chernyshev, V.; Savin, L.; Fominova, O.

    2017-08-01

    The article describes the elements of the theory of dynamic analysis of rotor systems. The mathematical model of a gyroscopic rotor as an elementary object on elastic-damping supports. The results of simulation of the trajectories of the rotor under kinematic loading with amplitude commensurate with the clearance in bearing assemblies of fluid friction.

  2. Study on the rotor design method for a small propeller-type wind turbine

    Science.gov (United States)

    Nishi, Yasuyuki; Yamashita, Yusuke; Inagaki, Terumi

    2016-08-01

    Small propeller-type wind turbines have a low Reynolds number, limiting the number of usable airfoil materials. Thus, their design method is not sufficiently established, and their performance is often low. The ultimate goal of this research is to establish high-performance design guidelines and design methods for small propeller-type wind turbines. To that end, we designed two rotors: Rotor A, based on the rotor optimum design method from the blade element momentum theory, and Rotor B, in which the chord length of the tip is extended and the chord length distribution is linearized. We examined performance characteristics and flow fields of the two rotors through wind tunnel experiments and numerical analysis. Our results revealed that the maximum output tip speed ratio of Rotor B shifted lower than that of Rotor A, but the maximum output coefficient increased by approximately 38.7%. Rotors A and B experienced a large-scale separation on the hub side, which extended to the mean in Rotor A. This difference in separation had an impact on the significant decrease in Rotor A's output compared to the design value and the increase in Rotor B's output compared to Rotor A.

  3. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    Science.gov (United States)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.

  4. Influence of unbalance levels on nonlinear dynamics of a rotor-backup rolling bearing system

    DEFF Research Database (Denmark)

    Fonseca, Cesar A.; Santos, Ilmar; Weber, Hans I.

    2017-01-01

    Rotor drops in magnetic bearing and unbalance in rotors have been objective of study for many years. The combination of these two well-known phenomena led to an interesting chaotic response, when the rotor touches the inner race of the back-up bearing. The present work explores the nonlinear roto...

  5. Large Wind Turbine Rotor Design using an Aero-Elastic / Free-Wake Panel Coupling Code

    DEFF Research Database (Denmark)

    Sessarego, Matias; Ramos García, Néstor; Shen, Wen Zhong;

    2016-01-01

    Despite the advances in computing resources in the recent years, the majority of large wind-turbine rotor design problems still rely on aero-elastic codes that use blade element momentum (BEM) approaches to model the rotor aerodynamics. The present work describes an approach to wind-turbine rotor...

  6. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations, Phase 1

    Science.gov (United States)

    Hohenemser, K. H.; Gaonkar, G. H.

    1967-01-01

    A number of lifting rotor conditions with random inputs are discussed. The present state of random process theory, applicable to lifting rotor problems is sketched. Possible theories of random blade flapping and random blade flap-bending are outlined and their limitations discussed. A plan for preliminary experiments to study random flapping motions of a see-saw rotor is developed.

  7. Adaptive rotor current control for wind-turbine driven DFIG using resonant controllers in a rotor rotating reference frame

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P) controller and two harmonic resonant (R) controllers implemented in the rotor rotating reference frame. The two resonant controllers are tuned at slip frequencies ωslip+ and ωslip-, respectively. As a result, the positive- and negative-sequence components of the rotor current are fully regulated by the PR controller without involving the positive- and negative-sequence decomposition, which in effect improves the fault ride-through (FRT) capability of the DFIG-based wind power generation system during the period of large transient grid voltage unbalance. Correctness of the theoretical analysis and feasibility of the proposed unbalanced control scheme are validated by simulation on a 1.5-MW DFIG wind power generation system.

  8. Data Summary Report for the Open Rotor Propulsion Rig Equipped With F31/A31 Rotor Blades

    Science.gov (United States)

    Stephens, David

    2014-01-01

    An extensive wind tunnel test campaign was undertaken to quantify the performance and acoustics of a counter-rotating open rotor system. The present document summarizes the portion of this test performed with the so-called Historical Baseline rotor blades, designated F31A31. It includes performance and acoustic data acquired at Mach numbers from take-off to cruise. It also includes the effect of propulsor angle of attack as well as an upstream pylon. This report is accompanied by an electronic data set including relevant acoustic and performance measurements for all of the F31A31 data.

  9. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

    Science.gov (United States)

    Cary, Charles M.

    1987-01-01

    The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.

  10. Effects of rotor location, coning, and tilt on critical loads in large wind turbines

    Science.gov (United States)

    Spera, D. A.; Janetzke, D. C.

    1978-01-01

    Several large (1500 kW) horizontal rotor configurations were analyzed to determine the effects on dynamic loads of upwind downwind rotor locations, coned and radial blade positions, and tilted and horizontal rotor axis positions. Loads were calculated for a range of wind velocities at three locations in the structure: (1) the blade shank; (2) the hub shaft; and (3) the yaw drive. Blade axis coning and rotor axis tilt were found to have minor effects on loads. However, locating the rotor upwind of the tower significantly reduced loads at all locations analyzed.

  11. Measurement of the Lightweight Rotor Eigenfrequencies and Tuning of its Model Parameters

    Directory of Open Access Journals (Sweden)

    Luboš SMOLÍK

    2013-06-01

    Full Text Available The common sizes and weights of rotors, which can be found e.g. in the energy production industry, allow to employ a standard methodology of an experimental modal analysis. However, certain applications with rotors of small weights lead to the usage of alternative measuring methods suitable for the identification of rotor eigenfrequencies. One of these methods, which is characterized by the measuring of noise, is introduced in this paper and the results for a particular rotor is presented. Moreover the tuning of the finite element rotor model on the basis of such measured values is shown.

  12. The analysis of typical profile clearances formation in meshing rotors of the screw compressor

    Science.gov (United States)

    Mustafin, T. N.; Yakupov, R. R.; Khamidullin, M. S.; Khisameev, I. G.; Alyaev, V. A.; Paranina, O. Yu.

    2017-08-01

    The improvement of screw compressor energetic characteristics is related to their working process enhancement. In many ways, it depends on the gas leakage between working chambers through the gaps. One of the main gaps in the screw compressor is the rotor profile clearances. They also generally determine the smoothness of meshing, partially influencing vibration levels. The rotor profile clearances occur due to the reduction of the real rotor profile in relation to the theoretical profile. It is done to compensate negative factors such as a rotor thermal deformation, manufacturing errors, etc. Their deep analysis may help to improve the real rotor profiling method and increase the screw compressor energetic characteristics.

  13. Dynamic response of a rub-impact rotor system under axial thrust

    Energy Technology Data Exchange (ETDEWEB)

    An, Xueli; Zhou, Jianzhong; Xiang, Xiuqiao; Li, Chaoshun; Luo, Zhimeng [Huazhong University of Science andTechnology, College of Hydroelectric and Digitalization Engineering, Wuhan, Hubei (China)

    2009-11-15

    A model of a rigid rotor system under axial thrust with rotor-to-stator is developed based on the classic impact theory and is analyzed by the Lagrangian dynamics. The rubbing condition is modeled using the elastic impact-contact idealization, which consists of normal and tangential forces at the rotor-to-stator contact point. Mass eccentricity and rotating speed are used as control parameters to simulate the response of rotor system. The motions of periodic, quasi-periodic and chaotic are found in the rotor system response. Mass eccentricity plays an important role in creating chaotic phenomena. (orig.)

  14. Deformation Analysis and Optimization on Hollow Spherical Rotor in Electrostactically Suspended Gyroscope

    Institute of Scientific and Technical Information of China (English)

    LIU Rui-ge; SONG Feng; LIU Rui-ying

    2012-01-01

    Non-spherical of rotor was described with solution method. Electrostatically suspended gyroscope's hollow spherical rotor's structure was presented. The simulative analysis of static deformation, dynamic deformation and synthesize deformation of rotor under different working conditions using the finite element software were carried out. Its deformation law and volume were obtained. The structural parameters of the rotor were optimized. The value of pressure required when the rotor was machined was calculated. The analysis has important theoretical reference value to the design for hollow spherical rotor in electrostatically suspended gyroscope.

  15. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    Science.gov (United States)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  16. Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son

    2003-05-01

    The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.

  17. Calculation of design load for the MOD-5A 7.3 mW wind turbine system

    Science.gov (United States)

    Mirandy, L.; Strain, J. C.

    1995-01-01

    Design loads are presented for the General Electric MOD-SA wind turbine. The MOD-SA system consists of a 400 ft. diameter, upwind, two-bladed, teetered rotor connected to a 7.3 mW variable-speed generator. Fatigue loads are specified in the form of histograms for the 30 year life of the machine, while limit (or maximum) loads have been derived from transient dynamic analysis at critical operating conditions. Loads prediction was accomplished using state of the art aeroelastic analyses developed at General Electric. Features of the primary predictive tool - the Transient Rotor Analysis Code (TRAC) are described in the paper. Key to the load predictions are the following wind models: (1) yearly mean wind distribution; (2) mean wind variations during operation; (3) number of start/shutdown cycles; (4) spatially large gusts; and (5) spatially small gusts (local turbulence). The methods used to develop statistical distributions from load calculations represent an extension of procedures used in past wind programs and are believed to be a significant contribution to Wind Turbine Generator analysis. Test/theory correlations are presented to demonstrate code load predictive capability and to support the wind models used in the analysis. In addition MOD-5A loads are compared with those of existing machines. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department, under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.

  18. Rotation of artificial rotor axles in rotary molecular motors.

    Science.gov (United States)

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-Ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-10-04

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.

  19. Limit cases for rotor theories with Betz optimization

    DEFF Research Database (Denmark)

    Okulov, Valery

    2014-01-01

    pitch is independent from velocities induced by the wake; the pitch depends on the induced velocities in the far wake; the pitch depends on the induced velocities in the rotor plane) was considered by a comparison with the main restriction of the actuator disk theory – the Betz-Joukowsky limit...

  20. Early Prediction of Transient Voltage Sags caused by Rotor Swings

    DEFF Research Database (Denmark)

    Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Van Cutsem, Thierry

    2014-01-01

    The paper investigates various methods to predict voltage sags at load buses caused by large generator rotor swings and following a transient disturbance. Three different prediction methods are proposed, which all use real-time measurements from PMUs. One of the methods uses a slightly extended v...

  1. Flow diagnostics downstream of a tribladed rotor model

    DEFF Research Database (Denmark)

    Naumov, I. V.; Rahmanov, V. V.; Okulov, Valery

    2012-01-01

    This paper presents results of a study of vortex wake structures and measurements of instantaneous 3D velocity fields downstream of a triblade turbine model. Two operation modes of flow around the rotor with different tip speed ratios were tested. Initially the wake structures were visualized and...

  2. Estimation of Rotor Effective Wind Speed: A Comparison

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Knudsen, Torben; Svenstrup, Mikael

    2013-01-01

    Modern wind turbine controllers use wind speed information to improve power production and reduce loads on the turbine components. The turbine top wind speed measurement is unfortunately imprecise and not a good representative of the rotor effective wind speed. Consequently, many different model...

  3. Power harvesting using piezomaterial in a helicopter rotor blade

    NARCIS (Netherlands)

    Jong, de P.H.; Boer, de A.; Loendersloot, R.; Hoogt, van der P.J.M.

    2010-01-01

    Current power harvesting research has focused on bending beams and determining power output under a given excitation. For the European CleanSky – Green Rotor Craft project a tool is being developed which optimizes the piezoelectric material and placement thereof for power harvesting. It focuses on b

  4. Active Flap Control of the SMART Rotor for Vibration Reduction

    Science.gov (United States)

    Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.

    2009-01-01

    Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.

  5. RNN Based Rotor Flux and Speed Estimation of Induction Motor

    Directory of Open Access Journals (Sweden)

    Bambang Purwahyudi

    2011-09-01

    Full Text Available Speed control of induction motor can be obtained by closed loop system which require speed sensor. Speed sensor system is less effective for wide plant system, because the sensor location is too far from the main control system and measurement result is less accurate. This paper presents the development of speed sensorless field oriented control (FOC of induction motor by using the rotor flux and speed observers. The observers only required the stator voltage and current of induction motor to obtain the rotor flux and speed estimation. The observers based on recurrent neural network (RNN methods are implemented. Finally, the effectiveness of the proposed method is verified by simulation. Simulation results show that RNN observer can produce well the rotor flux and speed estimation. MSE values of the rotor flux estimation are between 0.000087 and 0.000264, whereas MSE values of the speed estimation are between 43.0552 and 156.0798. Keywords: field oriented control, induction motor, observer, and recurrent neural network.

  6. Model and Stability Analysis of a Flexible Bladed Rotor

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available This paper presents a fully bladed flexible rotor and outlines the associated stability analysis. From an energetic approach based on the complete energies and potentials for Euler-Bernoulli beams, a system of equations is derived, in the rotational frame, for the rotor. This later one is made of a hollow shaft modelled by an Euler-Bernoulli beam supported by a set of bearings. It is connected to a rigid disk having a rotational inertia. A full set of flexible blades is also modelled by Euler-Bernoulli beams clamped in the disk. The flexural vibrations of the blades as well as those of the shaft are considered. The evolution of the eigenvalues of this rotor, in the corotational frame, is studied. A stability detection method, bringing coalescence and loci separation phenomena to the fore, in case of an asymmetric rotor, is undertaken in order to determine a parametric domain where turbomachinery cannot encounter damage. Finally, extensive parametric studies including the length and the stagger angle of the blades as well as their flexibility are presented in order to obtain robust criteria for stable and unstable areas prediction.

  7. CFD Analysis of Automotive Ventilated Disc Brake Rotor

    Directory of Open Access Journals (Sweden)

    Amol V. More

    2014-04-01

    Full Text Available Disc brakes work on the principle of friction by converting kinetic energy into heat energy. The key objective of a disc brake rotor is to accumulate this heat energy and dissipate it immediately. The effect of rotational speed on the aero-thermal performance is assessed. The rotor speed is observed to have substantial effect on the rotor performance. The heat dissipation and thermal performance of ventilated brake discs intensely be influenced by the aerodynamic characteristics of the air flow through the rotor passages. In order to investigate the aero-thermal performance of the ventilated disc brake at several altered driving speeds of the vehicle, the simulations were carried out at 3 different rotational speeds of 44rad/s 88 rad/s and 120 rad/s. The semi-automatic geometric model is created using the package Solid Works and the mesh for the model is done using ICEM CFD and the Post processing of the results is done using FLUENT-14.5.The results are discussed and presented in detail.

  8. General model and control of an n rotor helicopter

    DEFF Research Database (Denmark)

    Sidea, Adriana-Gabriela; Brogaard, Rune Yding; Andersen, Nils Axel

    2015-01-01

    The purpose of this study was to create a dynamic, nonlinear mathematical model ofa multirotor that would be valid for different numbers of rotors. Furthermore, a set of SingleInput Single Output (SISO) controllers were implemented for attitude control. Both model andcontrollers were tested exper...

  9. SMART Wind Turbine Rotor: Data Analysis and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yoder, Nathanael C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-29

    This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  10. Analysis of a Compessor Rotor using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Munagunuri Suneel Babu

    2014-11-01

    Full Text Available The compressor compresses its working fluid by first accelerating the fluid and then diffusing it to obtain a pressure increase. In an axial flow compressor, air passes from one stage to the next, each stage raising the pressure slightly. The energy level of air or gas flowing through it is increased by the action of the rotor blades which exert a torque on the fluid which is supplied by an electric motor or a steam or a gas turbine. In this present work we are taken the existing model of transonic compressor test rotors which contains 18 blades. The model was modeled in Pro-E Creo 5.0 with existing dimensions and analyzed using Ansys14.5. For the analysis we are taken two different materials and compared the values. For the further extension we changed the existing mode by decreasing the number of blades and analyzed with different materials. The developed stress values of the existing model are compares with the modified models. Our objective is to increase the performance of the rotor blade by changing the materials and the model. From the observation we will suggest which model is suitable for the compressor rotor.

  11. Efficient sensitivity analysis and optimization of a helicopter rotor

    Science.gov (United States)

    Lim, Joon W.; Chopra, Inderjit

    1989-01-01

    Aeroelastic optimization of a system essentially consists of the determination of the optimum values of design variables which minimize the objective function and satisfy certain aeroelastic and geometric constraints. The process of aeroelastic optimization analysis is illustrated. To carry out aeroelastic optimization effectively, one needs a reliable analysis procedure to determine steady response and stability of a rotor system in forward flight. The rotor dynamic analysis used in the present study developed inhouse at the University of Maryland is based on finite elements in space and time. The analysis consists of two major phases: vehicle trim and rotor steady response (coupled trim analysis), and aeroelastic stability of the blade. For a reduction of helicopter vibration, the optimization process requires the sensitivity derivatives of the objective function and aeroelastic stability constraints. For this, the derivatives of steady response, hub loads and blade stability roots are calculated using a direct analytical approach. An automated optimization procedure is developed by coupling the rotor dynamic analysis, design sensitivity analysis and constrained optimization code CONMIN.

  12. Aeromechanical Analysis of a Smart Helicopter Rotor in Forward Flight

    Directory of Open Access Journals (Sweden)

    Jacopo Serafini

    2015-02-01

    Full Text Available This paper deals with a smart system integrated into a helicopter blade aimed at giving an anhedral shape to the blade tip region to alleviate the blade-vortex interaction phenomenon that may cause reduced helicopter performance in terms of noise and vibrations. The blade tip morphing is obtained through the joint action of a magneto-rheological fluid (MRF device, a shape-memory alloy ribbons- based (SMA device and a set of concentrated masses properly distributed spanwise. The presence of this smart actuator (particularly the concentrated masses inside the blades modifies the aeromechanical behaviour of the rotor and may be detrimental in terms of hub vibratory loads, pitch control effectiveness and aeroelastic stability. Following a previous literature work concerning with the effectiveness of the smart actuated rotor in hovering conditions, the present paper focuses on the aeromechanical effects due to the inclusion of the smart device in a four-bladed helicopter rotor in forward flight where blade morphing is not needed. Aim of this work is to investigate on the compatibility of the smart system with the required aeromechanical performance of the rotor, highlighting the feasibility of its application on helicopters.

  13. Method for predicting impulsive noise generated by wind turbine rotors

    Science.gov (United States)

    Viterna, L. A.

    1982-01-01

    Large wind turbines can generate both broad band and impulsive noises. These noises can be controlled by proper choice of rotor design parameters such as rotor location with respect to the supporting tower, tower geometry and tip speed. A method was developed to calculate the impulsive noise generated when the wind turbine blade experiences air forces that are periodic functions of the rotational frequency. This phenomenon can occur when the blades operate in the wake of the support tower and the nonuniform velocity field near the ground due to wind shear. Results from this method were compared with measured sound spectra taken at locations of one to two rotor diameters from the DOE/NASA Mod-1 wind turbine. The calculated spectra generally agreed with the measured data in both the amplitude of the predominant harmonics and the roll of rate with frequency. Measured sound pressure levels far from the Mod-1 (15 rotor diameters), however, were higher than predicted. Simultaneous measurements in the near and far field indicated that the propagation effects could enhance the sound levels by more than 10 dB above that expected by spherical dispersion. These propagation effects are believed to be due to terrain and atmospheric characteristics of the Mod-1 site.

  14. Counter Rotating Open Rotor Animation using Particle Image Velocimetry

    CERN Document Server

    Roosenboom, E W M; Geisler, R; Pallek, D; Agocs, J; Neitzke, K -P

    2011-01-01

    This article describes the two accompanying fluid dynamics videos for the "Counter rotating open rotor flow field investigation using stereoscopic Particle Image Velocimetry" presented at the 64th Annual Meeting of the APS Division of Fluid Dynamics in Baltimore, Maryland, November 20-22, 2011.

  15. Modeling of Exterior Rotor Permanent Magnet Machines with Concentrated Windings

    NARCIS (Netherlands)

    Vu Xuan, H.

    2012-01-01

    In this thesis modeling, analysis, design and measurement of exterior rotor permanent magnet (PM) machines with concentrated windings are dealt with. Special attention is paid to slotting effect. The PM machine is integrated in flywheel and used for small-scale ship application. Analytical model and

  16. Influence of vane sweep on rotor-stator interaction noise

    Science.gov (United States)

    Envia, Edmane; Kerschen, Edward J.

    1990-01-01

    The influence of vane sweep in rotor-stator interaction noise is investigated. In an analytical approach, the interaction of a convected gust representing the rotor viscous wake, with a cascade of cascade of finite span swept airfoils, representing the stator, is analyzed. The analysis is based on the solution of the exact linearized equations of motion. High frequency convected gusts for which noise generation is concentrated near the leading edge of airfoils is considered. In a preliminary study, the problem of an isolated finite span swept airfoil interacting with a convected gust is analyzed. Results indicate that sweep can substantially reduce the farfield noise levels for a single airfoil. Using the single airfoil model, an approximate solution to the problem of noise radiation from a cascade of finite span swept airfoils interacting with a convected gust is derived. A parametric study of noise generated by gust cascade interaction is carried out to assess the effectiveness of vane sweep in reducing rotor-stator interaction noise. The results show that sweep is beneficial in reducing noise levels. Rotor wake twist or circumferential lean substantially influences the effectiveness of vane sweep. The orientation of vane sweep must be chosen to enhance the natural phase lag caused by wake lean, in which case rather small sweep angles substantially reduce the noise levels.

  17. Application of aeroacoustic models to design of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Madsen, H.A. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    A design method is presented for wind turbine rotors. The design process is split into overall design of the rotor and detailed design of the blade tip. A numerical optimization tool is used together with a semi-empirical noise prediction code for overall rotor design. The noise prediction code is validated with measurements and good agreement is obtained both on the total noise emission and on the sensitivity to wind speed, tip pitch angle and tip speed. A design study for minimum noise emission for a 300 kW rotor shows that the total sound power level can be reduced by 3 dB(A) without loss in energy production and the energy production can be increased by 2% without increase in the total noise. Detailed CFD calculations are subsequently done to resolve the blade tip flow. The characteristics of the general flow and the tip vortex are found, and the relevant parameters for the aeroacoustic models are derived for a sharp rectangular tip. (au) 16 refs.

  18. Study of aerodynamical and mechanical behaviours of Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Hadj Lakhdar Univ., Batna (Algeria). Applied Energetic Physic Laboratory

    2007-07-01

    Although the efficiency of a Savonius rotor is not as high conventional propeller-type and Darrieus wind turbines, it has the advantage of simple construction; acceptance of wind from various directions, thereby eliminating the need for reorientation; high starting torque; and, relatively low operating speed. These advantages outweigh its low efficiency and make it an ideal economic source to meet small-scale power requirements. The instantaneous pressure field on the blades surface was determined in order to analyze the flow around a Savonius rotor. A two dimensional analysis was used to determine the aerodynamic strengths, which led to underline the Magnus effect and to vibrations on the rotor. An anti-vibratory system was also proposed to stabilize or avoid these vibrations. The drag and lift coefficients were found to be in good agreement with results reported in literature. This study identified an inversion lift effect on a Savonius rotor, which closely resembled the Reynolds number, particularly in the peripheral speed coefficient values. It was shown that the machine does not move in accordance with the Magnus effect. 22 refs., 1 tab., 9 figs.

  19. Determinación de perfiles para rotores de compresores de tornillo con perfil simétrico. // Profiles determination for screw compressors rotors with symmetrical profile.

    Directory of Open Access Journals (Sweden)

    A. Rivera Torres

    2005-05-01

    Full Text Available Los compresores rotativos de tornillo, constituyeron el acontecimiento histórico más relevante del siglo XX en el campodel proceso de compresión. Dentro de los elementos fundamentales de los compresores rotativos de tornillo se encuentranlos rotores, los cuales tienen lóbulos o canales helicoidales con perfiles con formas simétricas o asimétricas.En este articulo se presenta un método para el diseño de los perfiles de rotores para compresores o bombas de tornillo, conperfil circular, a partir del empleo de una curva de cuarto orden y la condición de conjugación de los engranajes, sin incluirel empleo de cicloides en la generación de dichos perfiles, lográndose características similares a la de los perfiles SRM.Palabras claves: Rotores, rotor macho, rotor hembra._____________________________________________________________________________Abstract:Rotary screw compressors constitute the most relevant historic event of the twentieth century in the field of the process ofcompression. The most fundamental elements of rotary screw compressors are the rotors, which have helical lobes or canalsand symmetrical or asymmetrical profiles.This paper presents a method of circular profile design for screw compressors or pumps, based on fourth order curves andthe conjugation of gears, which does not include the application of cycloids in profile generation but have similarcharacteristics to SRM profiles.Key words: rotors, male rotor, female rotor.

  20. Model of the double-rotor induction motor in terms of electromagnetic differential

    Directory of Open Access Journals (Sweden)

    Adamczyk Dominik

    2016-12-01

    Full Text Available The paper presents a concept, a construction, a circuit model and experimental results of the double-rotor induction motor. This type of a motor is to be implemented in the concept of the electromagnetic differential. At the same time it should fulfill the function of differential mechanism and the vehicle drive. One of the motor shafts is coupled to the direction changing mechanical transmission. The windings of the external rotor are powered by slip rings and brushes. The inner rotor has the squirrel-cage windings. The circuit model parameters were calculated based on the 7.5 kW real single-rotor induction motor (2p = 4. Experimental verification of the model was based on comparison between the mentioned single-rotor motor and double-rotor model with the outer rotor blocked. The presented results showed relatively good compliance between the model and real motor.

  1. Study on leakage flow characteristics of radial inflow turbines at rotor tip clearance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Tip clearance leakage flow in a radial inflow turbine rotor for microturbines under the stage environment is investigated using a three-dimensional viscous flow simulation. The results indicate that the scraping flow caused by relative motion between casing and rotor tip, and the pressure difference between pressure side and suction side at rotor tip, play important roles in tip clearance leakage flow. The more the rotor tip speed increases and tip clearance height decreases, the more the scraping effect acts. Though the leakage velocity of tip clearance at midsection and exducer regions changes less when the rotor rotational speed is changing, the distance between passage vortex and rotor suction side varies in evidence. Main leakage flow rate of tip clearance takes place at region of exducer tip and some seal configurations will be quite effective for cutting leakage flow if these configurations are arranged over midsection and exducer of the radial inflow rotor.

  2. Study on leakage flow characteristics of radial inflow turbines at rotor tip clearance

    Institute of Scientific and Technical Information of China (English)

    DENG QingHua; NIU JiuFang; FENG ZhenPing

    2008-01-01

    Tip clearance leakage flow in a radial inflow turbine rotor for microturbines under the stage environment is investigated using a three-dimensional viscous flow simulation. The results indicate that the scraping flow caused by relative motion between casing and rotor tip, and the pressure difference between pressure side and suction side at rotor tip, play important roles in tip clearance leakage flow. The more the rotor tip speed increases and tip clearance height decreases, the more the scraping effect acta. Though the leakage velocity of tip clearance at midsection and exducer regions changes less when the rotor rotational speed is changing, the distance between passage vortex and rotor suction side varies in evidence. Main leakage flow rate of tip clearance takes place at region of exducer tip and some seal configurations will be quite effective for cutting leakage flow if these configurations are arranged over midsection and exducer of the radial inflow rotor.

  3. Performance of twist-coupled blades on variable speed rotors

    Energy Technology Data Exchange (ETDEWEB)

    Lobitz, D.W.; Veers, P.S.; Laino, D.J.

    1999-12-07

    The load mitigation and energy capture characteristics of twist-coupled HAWT blades that are mounted on a variable speed rotor are investigated in this paper. These blades are designed to twist toward feather as they bend with pretwist set to achieve a desirable twist distribution at rated power. For this investigation, the ADAMS-WT software has been modified to include blade models with bending-twist coupling. Using twist-coupled and uncoupled models, the ADAMS software is exercised for steady wind environments to generate C{sub p} curves at a number of operating speeds to compare the efficiencies of the two models. The ADAMS software is also used to generate the response of a twist-coupled variable speed rotor to a spectrum of stochastic wind time series. This spectrum contains time series with two mean wind speeds at two turbulence levels. Power control is achieved by imposing a reactive torque on the low speed shaft proportional to the RPM squared with the coefficient specified so that the rotor operates at peak efficiency in the linear aerodynamic range, and by limiting the maximum RPM to take advantage of the stall controlled nature of the rotor. Fatigue calculations are done for the generated load histories using a range of material exponents that represent materials from welded steel to aluminum to composites, and results are compared with the damage computed for the rotor without twist-coupling. Results indicate that significant reductions in damage are achieved across the spectrum of applied wind loading without any degradation in power production.

  4. The Effect of Flowing Water on Turbine Rotor Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Ida

    2010-07-01

    There is a lack of standardized rules on how the fluid in the turbine should be included in rotor models of hydraulic machinery. This thesis is an attempt to shed some light on this issue. We approach the problem from two viewpoints, situated at place at a hydropower plant and by mathematical analysis. One goal of the thesis is to develop a measurement system that monitors the instantaneous pressure at several locations of a runner blade on a 10 MW Kaplan prototype in Porjus along Lule river. Paper A outlines the development of the measurement system and the instrumentation of the runner blade. Miniature piezo-resistive pressure transducers were mounted flush to the surface. If instrumentation is successful, the pressure field of the runner blade could be measured simultaneously as the loads and displacements of the guide bearings and the generator. The second objective is concerned with how the motion-induced fluid force affects the dynamic behaviour of the rotor. Inertia and angular momentum of the fluid and shrouding are expected to influence the dynamic behaviour of the turbine. Paper B scrutinizes this assumption by presenting a simple fluid-rotor model that captures the effects of inertia and angular momentum of the fluid on the motion of a confined cylinder. The simplicity of the model allows for powerful analytical solution methods. The results show that fluid inertia, angular momentum and shrouding of hydraulic turbines could have substantial effects on lateral rotor vibrations. This calls for further investigation with a more complex fluid-rotor model that accounts for flexural bending modes.

  5. Computer Code for Interpreting 13C NMR Relaxation Measurements with Specific Models of Molecular Motion: The Rigid Isotropic and Symmetric Top Rotor Models and the Flexible Symmetric Top Rotor Model

    Science.gov (United States)

    2017-01-01

    resonance (NMR) Spectral density functions Spin - spin relaxation Molecular dynamics Nuclear Overhauser effect Symmetric top rotor Spin -lattice relaxation...SYMMETRIC TOP ROTOR MODELS AND THE FLEXIBLE SYMMETRIC TOP ROTOR MODEL ECBC-TR-1428 Terry J. Henderson RESEARCH AND TECHNOLOGY DIRECTORATE...Symmetric Top Rotor Models and the Flexible Symmetric Top Rotor Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  6. INFLUENCES ON COUPLED LATERAL AND TORSION VIBRATION BEHAVIOR OF RUB-IMPACT ROTOR BY ROTOR-TO-STATOR CLEARANCE

    Institute of Scientific and Technical Information of China (English)

    Gu Yujiong; He Chengbing; Yang Kun; Zhang Jianqiang

    2004-01-01

    With the establishment of the nonlinear coupled lateral and torsion vibration equations of rub-impact Jeffcott rotor and through numerical simulations,the influences on lateral and torsion vibration behavior by rotor-to-stator clearance are analyzed,which prove that there is strong impact on coupled lateral and torsion vibration behavior.Smaller the clearance is,more complex the motion of rotor is.When the clearance is larger,the frequency spectrum of rub-impact rotor is mainly composed of 1/2X,1/3X and 1/4X components.With the decrease of clearance,quasi-periodic and chaotic motions will be present.Under different clearances,the bifurcation diagrams of lateral and torsion vibrations can be divided into rub-free zone,rub-light zone and three complex motion zones in which the motion trend of lateral vibration is similar to that of the torsion vibration.Compared with the lateral vibration,the torsion vibration is of more motion forms and more abundant frequency components in amplitude spectrum.

  7. An Empirical Study of Overlapping Rotor Interference for a Small Unmanned Aircraft Propulsion System

    Directory of Open Access Journals (Sweden)

    Mantas Brazinskas

    2016-10-01

    Full Text Available The majority of research into full-sized helicopter overlapping propulsion systems involves co-axial setups (fully overlapped. Partially overlapping rotor setups (tandem, multirotor have received less attention, and empirical data produced over the years is limited. The increase in demand for compact small unmanned aircraft has exposed the need for empirical investigations of overlapping propulsion systems at a small scale (Reynolds Number < 250,000. Rotor-to-rotor interference at the static state in various overlapping propulsion system configurations was empirically measured using off the shelf T-Motor 16 inch × 5.4 inch rotors. A purpose-built test rig was manufactured allowing various overlapping rotor configurations to be tested. First, single rotor data was gathered, then performance measurements were taken at different thrust and tip speeds on a range of overlap configurations. The studies were conducted in a system torque balance mode. Overlapping rotor performance was compared to an isolated dual rotor propulsion system revealing interference factors which were compared to the momentum theory. Tests revealed that in the co-axial torque-balanced propulsion system the upper rotor outperforms the lower rotor at axial separation ratios between 0.05 and 0.85. Additionally, in the same region, thrust sharing between the two rotors changed by 21%; the upper rotor produced more thrust than the lower rotor at all times. Peak performance was recorded as a 22% efficiency loss when the axial separation ratio was greater than 0.25. The performance of a co-axial torque-balanced system reached a 27% efficiency loss when the axial separation ratio was equal to 0.05. The co-axial system swirl recovery effect was recorded to have a 4% efficiency gain in the axial separation ratio region between 0.05 and 0.85. The smallest efficiency loss (3% was recorded when the rotor separation ratio was between 0.95 and 1 (axial separation ratio was kept at 0

  8. Redesigned rotor for a highly loaded, 1800 ft/sec tip speed compressor fan stage 1: Aerodynamic and mechanical design

    Science.gov (United States)

    Halle, J. E.; Ruschak, J. T.

    1975-01-01

    A highly loaded, high tip-speed fan rotor was designed with multiple-circular-arc airfoil sections as a replacement for a marginally successful rotor which had precompression airfoil sections. The substitution of airfoil sections was the only aerodynamic change. Structural design of the redesigned rotor blade was guided by successful experience with the original blade. Calculated stress levels and stability parameters for the redesigned rotor are within limits demonstrated in tests of the original rotor.

  9. Active Flow Control on Bidirectional Rotors for Tidal MHK Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Henry [Research Engineer; van Dam, Cornelis P. [Professor

    2013-08-22

    A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn

  10. Dynamic analysis of squeeze film damper supported rotors using equivalent linearization

    Energy Technology Data Exchange (ETDEWEB)

    El-Shafei, A. (Cairo Univ., Giza (Egypt). Dept. of Mechanical Design and Production); Eranki, R.V. (Aluman Mill Products, Inc., Morris, IL (United States))

    1994-07-01

    The technique of equivalent linearization is presented in this paper as a powerful technique to perform nonlinear dynamic analysis of squeeze film damper (SFD) supported rotors using linear rotor-dynamic methods. Historically, it is customary to design SFDs for rotor-dynamic analysis by assuming circular-centered orbits, which is convenient in making the nonlinear damper coefficients time independent and thus can be used in an iterative approach to determine the rotor-dynamic characteristics. However, the general synchronous orbit is elliptic in nature due to possible asymmetry in the rotor support. This renders the nonlinear damper coefficients time dependent, which would require extensive numerical computation using numerical integration to determine the rotor dynamic characteristics. Alternatively, it is shown that the equivalent linearization, which is based on a least-squares approach, can be used to obtain time-independent damper coefficients for SFDs executing eccentric elliptic orbits, which are nonlinear in the orbit parameters. The resulting equivalent linear forces are then used in an iterative procedure to obtain the unbalance response of a rigid rotor-SFD system. Huge savings over numerical integration are reported for this simple rotor. The technique can be extended to be used in conjunction with currently available linear rotor-dynamic programs to determine the rotor-dynamic characteristics through iteration. It is expected that for multirotor multibearing systems this technique will result in even more economical computation.

  11. A Numerical Investigation to Identify Dimensionless Parameters for Dual-Rotor Horizontal Axis Wind Turbines

    Science.gov (United States)

    Slew, K. Lee; Miller, M.; Matida, E.

    2016-09-01

    A numerical study was carried out to identify non-dimensional parameters for dual-rotor horizontal axis wind turbines (DRWTs). Based on some important DRWT parameters such as the rotor speeds, rotor diameters and the distance between the rotors, three dimensionless parameters were derived from the Buckingham Pi theorem. Hypothetical DRWT models were created using geometrically-scaled National Renewable Energy Laboratory (NREL) Phase VI rotor geometry and operating conditions in order to confirm the validity of these parameters. The performance of each turbine was simulated using DR_HAWT, an inhouse prediction tool for single and dual-rotor wind turbines created by the current authors. The variation in normalized output power as a function of the dimensionless parameters suggests that an improved performance of DRWTs can be obtained at lower diameter and gap ratios. The NREL Phase VI rotor equipped with a 5 m geometrically-scaled upwind rotor can generate about 88% of the combined power output of two equivalent single-rotors. In addition, the effect of having an auxiliary upwind rotor reduces the angle of attack along the inboard section of the downwind blade.

  12. Flow Field Characteristics of the Rotor Cage in Turbo Air Classifiers

    Institute of Scientific and Technical Information of China (English)

    GUO Lijie; LIU Jiaxiang; LIU Shengzhao

    2009-01-01

    The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air classifier's structural design. The flow field characteristics of the rotor cage in turbo air classifiers were investigated under different operating conditions by laser Doppler velocimeter(LDV), and a measure diminishing the axial velocity is proposed. The investigation results show that the tangential velocity of the air flow inside the rotor cage is different from the rotary speed of the rotor cage on the same measurement point due to the influences of both the negative pressure at the exit and the rotation of the rotor cage. The tangential velocity of the air flow likewise decreases as the radius decreases in the case of the rotor cage's low rotary speed. In contrast, the tangential velocity of the air flow increases as the radius decreases in the case of the rotor cage's high rotary speed. Meanwhile, the vortex inside the rotor cage is found to occur near the pressure side of the blade when the rotor cage's rotary speed is less than the tangential velocity of air flow. On the contrary, the vortex is found to occur near the blade suction side once the rotor cage's rotary speed is higher than the tangential velocity of air flow. Inside the rotor cage, the axial velocity could not be disregarded and is largely determined by the distances between the measurement point and the exit.

  13. Rotor-stator contact dynamics using a non-ideal drive—Theoretical and experimental aspects

    Science.gov (United States)

    Lahriri, Said; Weber, Hans I.; Santos, Ilmar F.; Hartmann, Henning

    2012-09-01

    The possible contact between rotor and stator is considered a serious malfunction that may lead to catastrophic failure. Rotor rub is seen as a secondary phenomenon caused by a primary source, i.e. sudden mass unbalance, instabilities generated by aerodynamic and hydrodynamic forces in seals and bearings among others. The contact event gives rise to normal and friction forces exerted on the rotor at impact events. The friction force plays a significant role by transferring some rotational energy of the rotor to lateral motion. A mathematical model has been developed to capture this for a conventional backup annular guide setup. It is reasonable to superpose an impact condition to the rub, where the rotor spin energy can be fully transformed into rotor lateral movements. Using a nonideal drive, i.e. an electric motor without any kind of velocity feedback control, it is even possible to stop the rotor spin under rubbing conditions. All the rotational energy will be transformed in a kind of "self-excited" rotor lateral vibration with repeated impacts against the housing. This paper studies the impact motion of a rotor impacting a conventional backup annular guide for the case of dry and lubricated inner surface of the guide. For the dry surface case, the experimental and numerical analysis shows that the rotational energy is fully transformed into lateral motion and the rotor spin is stopped. Based on this study this paper proposes a new unconventional backup bearing design in order to reduce the rub related severity in friction and center the rotor at impact events. The analysis shows that the rotor at impacts is forced to the center of the backup bearing and the lateral motion is mitigated. As a result of this, the rotor spin is kept constant.

  14. Comportamiento termodinámico de rotores para compresores de tornillo con nuevo perfil. // Thermodynamic behavior of new screw compressors rotors profile.

    Directory of Open Access Journals (Sweden)

    A. Rivera Torres

    2007-01-01

    Full Text Available En el presente artículo se evalúa el comportamiento termodinámico de rotores para compresores de tornillo con nuevosperfiles, realizado con ayuda del software Scorpath 2000. Ello permite predecir con precisión el desempeño completo delcompresor y su evaluación termodinámica, así como realizar comparaciones, en igualdad de condiciones, con el trabajo deotros compresores dotados de perfiles de otros tipos.Palabras claves: Termodinámica, compresores de tornillo, rotores.______________________________________________________________________Abstract.The article displays an evaluation of the thermodynamic behavior of screw compressor rotors with new profiles, obtainedwith the help of the Scorpath 2000 software. This allows predicting precisely the operation of the compressor, as well as itsthermodynamic evaluation, under equal conditions, with the work of other compressors fitted with rotor profiles of otherkinds.Key words. Thermodinamic behaviour, screw compressors, rotors.

  15. Simultaneous observation of wind shears and misalignments from rotor loads

    Science.gov (United States)

    Cacciola, S.; Bertelè, M.; Bottasso, C. L.

    2016-09-01

    A wind turbine is used in this paper as a sensor to measure the wind conditions at the rotor disk. In fact, as any anisotropy in the wind will lead to a specific signature in the machine response, by inverting a response model one may infer its generating cause, i.e. the wind. Control laws that exploit this knowledge can be used to enhance the performance of a wind turbine or a wind power plant. This idea is used in the present paper to formulate a linear implicit model that relates wind states and rotor loads. Simulations are run in both uniform and turbulent winds, using a high-fidelity aeroservoleastic wind turbine model. Results demonstrate the ability of the proposed observer in detecting the horizontal and vertical wind misalignments, as well as the vertical and horizontal shears.

  16. Rotor-Flying Manipulator: Modeling, Analysis, and Control

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2014-01-01

    Full Text Available Equipping multijoint manipulators on a mobile robot is a typical redesign scheme to make the latter be able to actively influence the surroundings and has been extensively used for many ground robots, underwater robots, and space robotic systems. However, the rotor-flying robot (RFR is difficult to be made such redesign. This is mainly because the motion of the manipulator will bring heavy coupling between itself and the RFR system, which makes the system model highly complicated and the controller design difficult. Thus, in this paper, the modeling, analysis, and control of the combined system, called rotor-flying multijoint manipulator (RF-MJM, are conducted. Firstly, the detailed dynamics model is constructed and analyzed. Subsequently, a full-state feedback linear quadratic regulator (LQR controller is designed through obtaining linearized model near steady state. Finally, simulations are conducted and the results are analyzed to show the basic control performance.

  17. Stability of helical tip vortices in a rotor far wake

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2007-01-01

    , corresponding to Rankine, Gaussian and Scully vortices, at radial extents ranging from the core radius of a tip vortex to several rotor radii. The analysis shows that the stability of tip vortices largely depends on the radial extent of the hub vorticity as well as on the type of vorticity distribution. As part......As a means of analysing the stability of the wake behind a multi-bladed rotor the stability of a multiplicity of helical vortices embedded in an assigned flow field is addressed. In the model the tip vortices in the far wake are approximated by infinitely long helical vortices with constant pitch...... and radius. The work is a further development of a model developed in Okulov (J. Fluid Mech., vol. 521, p. 319) in which the linear stability of N equally azimuthally spaced helical vortices was considered. In the present work the analysis is extended to include an assigned vorticity field due to root...

  18. Thermal Modeling of Disc Brake Rotor in Frictional Contact

    Science.gov (United States)

    Ali, Belhocine; Ghazaly, Nouby Mahdi

    2013-01-01

    Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyze the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor. The analysis also gives us, the heat flux distribution for the two discs.

  19. Sweep-twist adaptive rotor blade : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  20. un régimen de trabajo estable del rotor

    Directory of Open Access Journals (Sweden)

    Arturo Martínez Rodríguez

    2005-01-01

    Full Text Available Partiendo del análisis energético y adaptando el método de cálculo propuesto por Gariachkin para el órgano de trilla de granos, se obtienen las expresiones que permiten determinar el momento de inercia del rotor que garantiza un régimen de trabajo estable de este. Se elabora un programa en MathCAD para la evaluación del modelo y se comparan los resultados con el momento de inercia del rotor de un molino de producción nacional, determinado experimentalmente. Sobre la base de la comparación se brindan recomendaciones para el perfeccionamiento de dicho molino

  1. The Effect of Ultrapolish on a Transonic Axial Rotor

    Science.gov (United States)

    Roberts, William B.; Thorp, Scott; Prahst, Patricia S.; Strazisar, Anthony

    2005-01-01

    Back-to-back testing has been done using NASA fan rotor 67 in the Glenn Research Center W8 Axial Compressor Test Facility. The rotor was baseline tested with a normal industrial RMS surface finish of 0.5-0.6 m (20-24 microinches) at 60, 80 and 100% of design speed. At design speed the tip relative Mach number was 1.38. The blades were then removed from the facility and ultrapolished to a surface finish of 0.125 m (5 microinch) or less and retested. At 100% speed near the design point, the ultrapolished blades showed approximately 0.3 - 0.5% increase in adiabatic efficiency. The difference was greater near maximum flow. Due to increased relative measurement error at 60 and 80% speed, the performance difference between the normal and ultrapolished blades was indeterminate at these speeds.

  2. Nonlinear dynamic behaviors of ball bearing rotor system

    Institute of Scientific and Technical Information of China (English)

    WANG Li-qin; CUI Li; ZHENG De-zhi; GU Le

    2009-01-01

    Nonlinear forces and moments caused by ball bearing were calculated based on relationship of displacement and deflection and quasi-dynamic model of bearing. Five-DOF dynamic equations of rotor supported by ball bearings were estimated. The Newmark-β method and Newton-Laphson method were used to solve the equations. The dynamic characteristics of rotor system were studied through the time response, the phase portrait, the Poincar? maps and the bifurcation diagrams. The results show that the system goes through the quasiperiodic bifurcation route to chaos as rotate speed increases and there are several quasi-periodic regions and chaos regions. The amplitude decreases and the dynamic behaviors change as the axial load of ball bearing increases; the initial contact angle of ball bearing affects dynamic behaviors of the system obviously. The system can avoid non-periodic vibration by choosing structural parameters and operating parameters reasonably.

  3. Effect of blunt trailing edge on rotor broadband noise

    Science.gov (United States)

    Chou, S.-T.; George, A. R.

    1986-01-01

    The production of high-frequency broadband noise by turbulent vortex shedding from rotor blades with blunt trailing edges is investigated analytically. The derivation of the governing equations, analogous to that of Kim and George (1982) for boundary-layer/trailing-edge noise, is explained, and numerical results are compared with the experimental data of Hubbard et al. (1981) and Lowson et al. (1972) in graphs. It is shown that vortex-shedding noise is a significant component of blunt-trailing-edge rotor broadband noise and that the analytical method employed gives reasonable predictions. The need for a better empirical expression for the normalized spectrum and for more measurements of surface pressure fluctuations near blunt trailing edges is indicated.

  4. A New Hybrid Model Rotor Flux Observer and Its Application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new hybrid model rotor flux observer, based on a new voltage model, is presented. In the first place, the voltage model of an induction machine was constructed by using the modeling method discussed in this paper and then the current model using a flux feedback was adopted in this flux observer. Secondly, the two models were combined via a filter and then the rotor flux observer was established. In the M-T synchronous coordinate, the observer was analyzed theoretically and several important functions were derived. A comparison between the observer and the traditional models was made using Matlab software. The simulation results show that the observer model had a better performance than the traditional model.

  5. Dynamic Model of Contact Interface between Stator and Rotor

    OpenAIRE

    Zhao, Zenghui; Wang, Yuping; Yuan, YiKun; Zhao, Xiangdong

    2013-01-01

    Based on the equivalent principle, a linear spring contact model was established for the friction layer between stator and rotor. Different contact conditions were described by a distance index δ. Detailed analysis of the nonlinear contact behavior especially the static and dynamic slipping was carried on using a space-time equation. A contact deflection angle was proposed to quantitatively express the influence of friction force on the output performance. A more precision simulation model wa...

  6. Stoichiometry and Turnover of the Stator and Rotor.

    Science.gov (United States)

    Morimoto, Yusuke V; Minamino, Tohru

    2017-01-01

    Fluorescence imaging techniques using green fluorescent protein (GFP) and related fluorescent proteins are utilized to monitor and analyze a wide range of biological processes in living cells. Stepwise photobleaching experiments can determine the stoichiometry of protein complexes. Fluorescence recovery after photobleaching (FRAP) experiments can reveal in vivo dynamics of biomolecules. In this chapter, we describe methods to detect the subcellular localization, stoichiometry, and turnovers of stator and rotor components of the Salmonella flagellar motor.

  7. Helicopter rotor loads using a matched asymptotic expansion technique

    Science.gov (United States)

    Pierce, G. A.; Vaidyanathan, A. R.

    1981-01-01

    The theoretical basis and computational feasibility of the Van Holten method, and its performance and range of validity by comparison with experiment and other approximate methods was examined. It is found that within the restrictions of incompressible, potential flow and the assumption of small disturbances, the method does lead to a valid description of the flow. However, the method begins to break down under conditions favoring nonlinear effects such as wake distortion and blade/rotor interaction.

  8. NASA/GE Collaboration on Open Rotors - High Speed Testing

    Science.gov (United States)

    VanZante, Dale E.

    2011-01-01

    A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecmaand GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. Current test status for the 8x6 SWT high speed testing is presented as well as future scheduled testing which includes the FAA/CLEEN test entry. The tunnel blockage and propeller thrust calibration configurations are shown.

  9. Preform spar cap for a wind turbine rotor blade

    Science.gov (United States)

    Livingston, Jamie T [Simpsonville, SC; Driver, Howard D [Greer, SC; van Breugel, Sjef [Enschede, NL; Jenkins, Thomas B [Cantonment, FL; Bakhuis, Jan Willem [Nijverdal, NL; Billen, Andrew J [Daarlerveen, NL; Riahi, Amir [Pensacola, FL

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  10. The Second Generation High Speed Rotor Head Mounted Instrumentation System

    Science.gov (United States)

    Lewis, John; Reynolds, R. S. (Technical Monitor)

    1997-01-01

    NASA Ames Research Center has been investigating the air pressure flow of a rotor blade on a UH-60 Black Hawk helicopter in-flight. This paper will address the changes and improvements due to additional restrictions and requirements for the instrumentation system. The second generation instrumentation system was substantially larger and this allowed greatly improved accessibility to the components for ease of maintenance as well as improved gain and offset adjustment capabilities and better filtering.

  11. Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    Science.gov (United States)

    Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.

    2015-01-01

    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.

  12. Semiclassical theory for fidelity of nearly resonant quantum rotors

    CERN Document Server

    Abb, Martina; Wimberger, Sandro

    2009-01-01

    We present an analytical explanation of effects occurring in the overlap of delta-kicked rotor wavefunctions temporally evolved with different kicking strengths. Using a semiclassical ansatz, we are able to predict both the occurrence of revivals and the disappearance of intermediate revival peaks arising from the breaking of a symmetry in the initial conditions. A numerical verification of the predicted effects is given and experimental ramifications are discussed.

  13. Analysis methods for Kevlar shield response to rotor fragments

    Science.gov (United States)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  14. General model and control of an n rotor helicopter

    Science.gov (United States)

    Sidea, A. G.; Yding Brogaard, R.; Andersen, N. A.; Ravn, O.

    2014-12-01

    The purpose of this study was to create a dynamic, nonlinear mathematical model of a multirotor that would be valid for different numbers of rotors. Furthermore, a set of Single Input Single Output (SISO) controllers were implemented for attitude control. Both model and controllers were tested experimentally on a quadcopter. Using the combined model and controllers, simple system simulation and control is possible, by replacing the physical values for the individual systems.

  15. A 64 Bits Rotor Enhanced Block Cipher (Rebc3

    Directory of Open Access Journals (Sweden)

    Ahmed ElShafee

    2013-04-01

    Full Text Available This paper gives a new proposed cryptosystem (REBC3 that is designed to take advantages of the new generation of 64bits microprocessors which commercially known as x64 systems. The old version REBC2,which was published in Africon 2007. REBC2 was basically developed for the 32bits microprocessors which is commercially known as x86 systems. REBC3 like REBC2 use the concept of rotor enhanced blockcipher which was initially proposed by the author in [NRSC 2002] on the first version of REBC. REBC2 used the same concept from a another point of view, which is using rotors to achieve two basiccryptographic operations; permutation, and substitution. Round key is generated using rotor too, which is used to achieve ciphertext key dependency. To enhance non-linearity and to resist linear cryptanalysis,REBC3 has a variable block, and key lengths. Each round has its own block length which depends on round the key and round key length. Dependency is based upon the previous round generated key. Rotors implemented using successive affine transformation . The 32 bits version was proposed in KAMFEE cipher, then the 64bits version was proposed in KAMFEE-X64 cipher. This achieved memory-less, normalized ciphertext statistics, and small processing speed trend. The strength of this system is compared with the REBC2 and RIJNDAEL (AES ciphers.REBC3 cipher gives excellent results from security characteristics and statistical point of view of. So authors suggests to use REBC3 in the area of banking and electronic fund transfer.

  16. General model and control of an n rotor helicopter

    OpenAIRE

    2015-01-01

    The purpose of this study was to create a dynamic, nonlinear mathematical model ofa multirotor that would be valid for different numbers of rotors. Furthermore, a set of SingleInput Single Output (SISO) controllers were implemented for attitude control. Both model andcontrollers were tested experimentally on a quadcopter. Using the combined model andcontrollers, simple system simulation and control is possible, by replacing the physical valuesfor the individual systems.

  17. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H.; Weber, M.; Weiss, M. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  18. A Static Burst Test for Composite Flywheel Rotors

    Science.gov (United States)

    Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred

    2016-06-01

    High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.

  19. Advanced turbocharger rotor for variable geometry turbocharging systems

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, R.J.; Mulloy, J.M.; Yonushonis, T.M.; Weber, H.G.; Patel, M.J. [Cummins Engine Co., Inc., Columbus, IN (United States)

    1997-12-31

    Turbocharging of diesel engines has enhanced fuel economy and reduced diesel engine emissions. The initial applications of turbochargers to heavy duty diesel engines during the early 1970`s reduced Bosch smoke (a measure of particulate matter used at the time) from 2.4 to 0.6 units. Current turbochargers are optimized at one set of engine conditions and by necessity, at the off-design conditions or transient conditions the fuel economy and emissions performance are penalized. A rotor was designed and a prototype fabricated which showed as much as a 10% efficiency improvement at off-design conditions. The leading edges are blunt and rounded to accept the flow from the turbine nozzles at a variety of inlet conditions with a minimum of losses. The rotor efficiency is better at all conditions and the advantage improves as it operates at conditions further from the design point. Unfortunately, the conventional materials from which this turbine rotor was constructed had inadequate strength to allow its use on engines, and had such high rotational inertia that transient response would have been severely compromised.

  20. Fuzzy adaptive PID control for six rotor eppo UAV

    Directory of Open Access Journals (Sweden)

    Yongwei LI

    2017-02-01

    Full Text Available Six rotor eppo drones's load change itself in the job process will reduce the aircraft flight control performance and make the resistance to environmental disturbance being poor. In order to improve the six rotor eppo unmanned aerial vehicle (UAV control performance, the UAV in the process of spraying pesticide is analyzed and the model is constructed, then the eppo UAV time-varying dynamics mathematical model is deduced, and a fuzzy adaptive PID control algorithm is proposed. Fuzzy adaptive PID algorithm has good adaptability and the parameter setting is simple, which improves the system dynamic response and steady state performance, realizing the stability of the six rotor eppo UAV flight. With measured parameters of each sensor input in to the fuzzy adaptive PID algorithm, the corresponding control quality is obtained, and the stable operation of aircraft is realized. Through using Matlab to simulate the flight system and combining the practical experiments, it shows that the dynamic performance and stability of the system is improved effetively.

  1. Field oriented control design of inset rotor PMSM drive

    Science.gov (United States)

    Mukti, Ersalina Werda; Wijanarko, Sulistyo; Muqorobin, Anwar; Rozaqi, Latif

    2017-06-01

    The main challenge of PMSM implementation in the adjustable-speed drives especially in automotive industry is to attain the optimal PMSM drive performance. Vector control is proved to be the best method in controlling synchronous machine such as PMSM. This paper objective is to design a speed control system for the manufactured inset rotor PMSM, which integrates the interleaved DC-DC boost converter, inverter, and sinusoidal pulse width modulation and fed by the battery bank DC source. The proposed speed control in this paper employs FOC vector control technique with PI controller which control both converter and inverter independently. This paper investigates the effectiveness of the proposed speed control method for driving the manufactured inset rotor PMSM. To verify the effectiveness of the designed speed control system, computer simulation is conducted. The motor performances are observed in operating condition with disturbance in form of sudden change of load torque. The simulation results show that the control method is stable but the rotor speed still affected by the given disturbance.

  2. ROTOR- YATAK SİSTEMLERİNİN KARARLILIĞI

    Directory of Open Access Journals (Sweden)

    Uğur YÜCEL

    2003-03-01

    Full Text Available Endüstrideki çeşitli uygulamalarda yüksek hızının yanısıra güvenli olarak çalışan dönen rotorlu makinaya ihtiyaç vardır. Bu tür bir makinayı elde etmedeki anahtar faktörün rotor-yatak sisteminin dinamik tepkisini ve kararlılığını doğru tahmin edebilme olduğu geçerliliğini korumaktadır. Bu makale basit analitik modellerle rotor dinamiği kavramının doğasını tanıştırmakta ve açıklamaktadır. İki ucundan sabit yataklarla desteklenen en basit rotor modeli ile başlanarak, daha gerçekçi ve daha detaylı durumlar esnek yatak etkileri de katılarak ele alınmıştır. Bu olguların bilinmesi gerçek turbomakinaların rotorlarını temsil eden karmaşık modellerin davranışını anlamada esastır.

  3. Investigation of Wind Turbine Rotor Concepts for Offshore Wind Farms

    Science.gov (United States)

    Ceyhan, Özlem; Grasso, Francesco

    2014-06-01

    Current plans in offshore wind energy developments call for further reduction of cost of energy. In order to contribute to this goal, several wind turbine rotor concepts have been investigated. Assuming the future offshore wind turbines will operate only in the offshore wind farms, the rotor concepts are not only evaluated for their stand-alone performances and their potential in reducing the loads, but also for their performance in an offshore wind farm. In order to do that, the 10MW reference wind turbine designed in Innwind.EU project is chosen as baseline. Several rotor parameters have been modified and their influences are investigated for offshore wind turbine design purposes. This investigation is carried out as a conceptual parametrical study. All concepts are evaluated numerically with BOT (Blade optimisation tool) software in wind turbine level and with Farmflow software in wind farm level for two wind farm layouts. At the end, all these concepts are compared with each other in terms of their advantages and disadvantages.

  4. Government teeters on edge of collapse / Aleksei Gunter

    Index Scriptorium Estoniae

    Gunter, Aleksei, 1979-

    2005-01-01

    Valitsuses tekkinud kriisist seoses justiitsministri korruptsiooni vastu võitlemise programmiga. Lisa: Res Publica ja Keskerakond ühinesid Tallinnas. Tabel: Kohtade jagunemine erakondade vahel Riigikogus

  5. Government teeters on edge of collapse / Aleksei Gunter

    Index Scriptorium Estoniae

    Gunter, Aleksei, 1979-

    2005-01-01

    Valitsuses tekkinud kriisist seoses justiitsministri korruptsiooni vastu võitlemise programmiga. Lisa: Res Publica ja Keskerakond ühinesid Tallinnas. Tabel: Kohtade jagunemine erakondade vahel Riigikogus

  6. Preliminary structural design conceptualization for composite rotor for verdant power water current turbine

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, J. A.

    2012-03-01

    Sandia National Laboratories (SNL) and Verdant Power Inc. (VPI) have partnered under a Cooperative Research and Development Agreement (CRADA) to develop a new kinetic hydropower rotor. The rotor features an improved hydrodynamic and structural design which features state-of-the-art technology developed for the wind industry. The new rotor will have higher energy capture, increased system reliability, and reduction of overall cost of energy. This project was divided into six tasks: (1) Composite Rotor Project Planning and Design Specification; (2) Baseline Fatigue Testing and Failure analysis; (3) Develop Blade/Rotor Performance Model; (4) Hydrofoil Survey and Selection; (5) FEM Structural Design; and (6) Develop Candidate Rotor Designs and Prepare Final Report.

  7. Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors

    Energy Technology Data Exchange (ETDEWEB)

    Sale, D.; Jonkman, J.; Musial, W.

    2009-08-01

    This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

  8. A New Soft Starting Method for Wound-Rotor Induction Motor

    Science.gov (United States)

    Sharifian, Mohammad Bagher Bannae; Feyzi, Mohammad Reza; Sabahi, Mehran; Farrokhifar, Meysam

    2011-01-01

    Starting of a three-phase Induction motor using a starter rheostat in rotor circuit has some disadvantages. A new method for starting of a three-phase motor by using a parallel combination of resistors, self-inductors and capacitors in rotor circuit is proposed in this paper. The proposed method ensures the soft and higher starting torque as well as limited starting current as compared to shorted rotor method. The characteristic curves for both methods (shorted rotor and rotor with added elements) are provided. The mathematical model based on the steady-state equivalent circuit of the induction motor is expanded in frequency domain and the required computer program is prepared using an optimization method. The values for added elements to rotor circuit are calculated in such a way that minimum starting time considering current and torque limitations are achieved.

  9. Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods

    Science.gov (United States)

    Okulov, V. L.; Mikkelsen, R.; Litvinov, I. V.; Naumov, I. V.

    2015-11-01

    The models of two types of rotors with blades constructed using different optimization methods are compared experimentally. In the first case, the Glauert optimization by the pulsed method is used, which is applied independently for each individual blade cross section. This method remains the main approach in designing rotors of various duties. The construction of the other rotor is based on the Betz idea about optimization of rotors by determining a special distribution of circulation over the blade, which ensures the helical structure of the wake behind the rotor. It is established for the first time as a result of direct experimental comparison that the rotor constructed using the Betz method makes it possible to extract more kinetic energy from the homogeneous incoming flow.

  10. Active Magnetic Bearing Rotor Model Updating Using Resonance and MAC Error

    Directory of Open Access Journals (Sweden)

    Yuanping Xu

    2015-01-01

    Full Text Available Modern control techniques can improve the performance and robustness of a rotor active magnetic bearing (AMB system. Since those control methods usually rely on system models, it is important to obtain a precise rotor AMB analytical model. However, the interference fits and shrink effects of rotor AMB cause inaccuracy to the final system model. In this paper, an experiment based model updating method is proposed to improve the accuracy of the finite element (FE model used in a rotor AMB system. Modelling error is minimized by applying a numerical optimization Nelder-Mead simplex algorithm to properly adjust FE model parameters. Both the error resonance frequencies and modal assurance criterion (MAC values are minimized simultaneously to account for the rotor natural frequencies as well as for the mode shapes. Verification of the updated rotor model is performed by comparing the experimental and analytical frequency response. The close agreements demonstrate the effectiveness of the proposed model updating methodology.

  11. APPLICATION OF WAVELET TIME-FR EQUENCY ANALYSIS TO IDENTIFICATION OF CRACKED ROTOR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Based on the simple hinge crack model and the local flexibility theorem, the corresponding dynamic equation of the cracked rotor is modelled, the numerical simulation solutions of the cracked rotor and the uncracked rotor are obtained. By the continuous wavelet time-frequency transform, the wavelet time-frequency properties of the uncracked rotor and the cracked rotor are discussed. A new detection algorithm that uses the wavelet time-frequency transform to identify the crack is proposed. The influence of the sampling frequency on the wavelet time-frequency transform is analyzed by the numerical simulation research. The valid sampling frequency is suggested. Experiments demonstrate the validity and availability of the proposed algorithm in identification of the cracked rotor for engineering practices.

  12. Model based methods for rotor position detection of doubly-fed induction generator

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Zhang, Yunqian;

    2014-01-01

    Model based strategy to detect the initial position angle of doubly-fed induction generator (DFIG) is proposed in this paper. As the stator windings are open-circuit when the wind speed is below the cut-in speed, the stator flux is determined by both rotor position and currents. Based...... on the characteristic, the initial position angle of the rotor is derived by rotor voltage injection (RVI) method and rotor current close loop injection (RCCLI) method, respectively. Further, the two methods are validated by a scaled-down 7.5kW DFIG setup, and the results clearly show that with the RCCLI, the rotor...... initial position of DFIG can be accurately and fast detected for a DFIG with rated parameters and rotor resistance deviations....

  13. Numerical Analysis of Helicopter Rotor Hovering in Close Proximity to the Ground with a Wall

    Science.gov (United States)

    Itoga, Noriaki; Iboshi, Naohiro; Horimoto, Mitsumasa; Saito, Shigeru; Tanabe, Yasutada

    In rescue operations and emergency medical services, helicopters are frequently required to operate near the ground with obstacles such as buildings and sidewalls of highway. In this paper, numerical analysis of helicopter rotor hovering in close proximity to the ground with an obstacle is done by solving unsteady 3D compressible Euler equations with an overlapped grid system. The obstacle is simulated by a wall vertically set up on the ground. The parameters for numerical analysis are the rotor height and distance from the rotor-hub-center to the wall. The effects of combinations of these parameters on the flowfields around the rotor, inflow distributions on the rotor disc and behaviors of blade flapping motion are discussed. It is also clarified the cause that the helicopter rotor hovering in close proximity to the ground with a wall does not have the enough ground effect depending on the combinations of these parameters.

  14. An online estimator for rotor resistance in vector drives of induction machines based on Walsh functions

    Institute of Scientific and Technical Information of China (English)

    Hamidreza SHIRAZI; Jalal NAZARZADEH

    2014-01-01

    In a modern electrical driver, rotor field oriented control (RFOC) method has been used to achieve a good performance and an appropriate transient response. In this method, the space vector of the rotor flux comes handy by the rotor resistance value. The rotor resistance is one of the important parameters which varies according to motor speed and room temperature alteration. In this paper, a new on-line estimation method is utilized to obtain the rotor resistance by using Walsh functions domain. The Walsh functions are one of the most applicable functions in piecewise constant basis functions (PCBF) to solve dynamic equations. On the other hand, an integral operational matrix is used to simplify the process and speed of the computation algorithm. The simulations results show that the proposed method is capable of solving the dynamic equations in an electrical machine on a time interval which robustly estimates the rotor resistance in contrast with injection noises.

  15. Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays

    Science.gov (United States)

    Wasio, Natalie A.; Slough, Diana P.; Smith, Zachary C.; Ivimey, Christopher J.; Thomas, Samuel W., III; Lin, Yu-Shan; Sykes, E. Charles H.

    2017-07-01

    Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies. Here we demonstrate that ordered organometallic arrays can be formed spontaneously by reaction of precursor molecular rotor molecules with a metal surface. Scanning tunnelling microscopy enables individual rotors in the arrays to be switched and the resultant switches in neighbouring rotors imaged. The structure and dimensions of the ordered molecular rotor arrays dictate the correlated switching properties of the internal submolecular rotor units. Our results indicate that self-assembly of two-dimensional rotor crystals produces systems with correlated dynamics that would not have been predicted a priori.

  16. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  17. Performance of Double-step Savonius Rotor for Environmentally Friendly Hydraulic Turbine

    Science.gov (United States)

    Nakajima, Miyoshi; Iio, Shouichiro; Ikeda, Toshihiko

    The aim of this investigation is to develop an environmentally friendly nano-hydraulic turbine. Three type models of Savonius rotor are constructed and tested in a water tunnel to improve and clarify the power performance. Flow field around the rotor is examined visually to reveal the enhancement mechanisms of power coefficient using the double-step rotor. Flow visualization showed the difference of flow patterns at the central section between the standard (single-step) rotor and the double-step one. A meandering flow in the axial direction of the rotor was observed only for the double-step rotor. This flow had the pressure restoration effect at the returning blade's concave side and the torque strengthened effect at the advancing blade's convex side. As a consequence, the power coefficient was 10% improved.

  18. Transverse vibration of a rotor system driven by a Cardan joint

    Science.gov (United States)

    Iwatsubo, T.; Saigo, M.

    1984-07-01

    The transverse vibration of a rotor system driven by a Cardan joint is analyzed and the effect of the transmitted torque on the dynamic stability of the system evaluated. As a result of the analysis, the following facts are proved: when the driving shaft and driven shaft (rotor shaft) are included, both parametric and self-excited vibrations arise due to transmitted torque; asymmetrical stiffness of the rotor supports has the effect of stabilizing this self-excited vibration.

  19. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME ONE: PRELIMINARY DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.; Chow, Ray [Zimitar, Inc.; Nordenholz, Thomas R. [The California Maritime Academy; Wamble, John Lee [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  20. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME TWO: INNOVATION & COST OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  1. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME ZERO: OVERVIEW AND COMMERCIAL PATH

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  2. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME THREE: MARKET & TEAM

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  3. A study of EV induction motor controller based on rotor flux oriented control

    Institute of Scientific and Technical Information of China (English)

    Song Jianguo; Chen Quanshi

    2006-01-01

    Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-fed is deduced in detail, including stator voltage compensation, closed-loop PI parameters' calculation of torque and rotor flux. FOC's Simulink model is setup to simulate torque and rotor flux's response. At last, the experimental results are shown.

  4. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    OpenAIRE

    Shouliang Han; Shumei Cui; Liwei Song; Ching Chuen Chan

    2014-01-01

    The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM) is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not onl...

  5. An advanced stochastic model for threshold crossing studies of rotor blade vibrations.

    Science.gov (United States)

    Gaonkar, G. H.; Hohenemser, K. H.

    1972-01-01

    A stochastic model to analyze turbulence-excited rotor blade vibrations, previously described by Gaonkar et al. (1971), is generalized to include nonuniformity of the atmospheric turbulence velocity across the rotor disk in the longitudinal direction. The results of the presented analysis suggest that the nonuniformity of the vertical turbulence over the rotor disk is of little influence on the random blade flapping response, at least as far as longitudinal nonuniformity is concerned.

  6. PERFORMANCE ANALYSIS OF A HELICAL SAVONIUS ROTOR WITHOUT SHAFT AT 45° TWIST ANGLE USING CFD

    Directory of Open Access Journals (Sweden)

    Bachu Deb

    2013-06-01

    Full Text Available Helical Savonius rotor exhibits better performance characteristics at all the rotor angles compared to conventional Savonius rotor. However studies related to the performance measurement and flow physics of such rotor are very scarce. Keeping this in view, in this paper, a three dimensional Computational Fluid Dynamics analysis using commercial Fluent 6.2 software was done to predict the performance of a two-bucket helical Savonius rotor without shaft and with end plates in a complete cycle of rotation. A two-bucket helical Savonius rotor having height of 60 cm and diameter of 17 cm with 45° bucket twist angle was designed using Gambit. The buckets were connected at the top and bottom circular end plates, which are 1.1 times the rotor diameter. The k-ε turbulence model with second order upwind discretization scheme was adopted with standard wall condition. Power coefficients (Cp and torque coefficients (Ct at different tip speed ratios were evaluated at different rotor angles. From the investigation, it was observed that power coefficient increased with increase of tip speed ratio up to an optimum limit, but then decreased even further tip speed ratio was increased. Further investigation was done on the variations of Cp & Ct in a complete cycle of rotation from 0° to 360° in a step of 45° rotor corresponding to the optimum tip speed ratio. The value of Cp at all the rotor angles is positive. Moreover, velocity magnitude contours were analyzed for each rotor angle and it could be concluded that high aerodynamic torque and power can be expected when the rotor is positioned at 45º & 90º with respect to incoming flow.

  7. PERFORMANCE ANALYSIS OF A HELICAL SAVONIUS ROTOR WITHOUT SHAFT AT 45° TWIST ANGLE USING CFD

    Directory of Open Access Journals (Sweden)

    Bachu Deb

    2013-01-01

    Full Text Available Helical Savonius rotor exhibits better performance characteristics at all the rotor angles compared to conventional Savonius rotor. However studies related to the performance measurement and flow physics of such rotor are very scarce. Keeping this in view, in this paper, a three dimensional Computational Fluid Dynamics analysis using commercial Fluent 6.2 software was done to predict the performance of a two-bucket helical Savonius rotor without shaft and with end plates in a complete cycle of rotation. A two-bucket helical Savonius rotor having height of 60 cm and diameter of 17 cm with 45° bucket twist angle was designed using Gambit. The buckets were connected at the top and bottom circular end plates, which are 1.1 times the rotor diameter. The k- ε turbulence model with second order upwind discretization scheme was adopted with standard wall condition. Power coefficients (Cp and torque coefficients (Ct at different tip speed ratios were evaluated at different rotor angles. From the investigation, it was observed that power coefficient increased with increase of tip speed ratio up to an optimum limit, but then decreased even further tip speed ratio was increased. Further investigation was done on the variations of Cp & Ct in a complete cycle of rotation from 0° to 360° in a step of 45° rotor corresponding to the optimum tip speed ratio. The value of Cp at all the rotor angles is positive. Moreover, velocity magnitude contours were analyzed for each rotor angle and it could be concluded that high aerodynamic torque and power can be expected when the rotor is positioned at 45º & 90º with respect to incoming flow.

  8. Numerical Simulation of Rotor-stator Interactions in a Transonic Compressor Stage

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A numerical method is developed for the simulation of rotor-stator interactions in a compessor or turbine stage. This method solves quasi-three-dimensional Navier-Stokes equations by an implicit high-resolution finite volume approach.A fully conservative method is designed to compute the inviscid and viscous fluxes at the interface of rotor and stator grids. Numerical results of rotor-stator interactions in a transonic compressor stage are presented. The mechanism of rotor-stator interactions in this compressor stage is discussed in terms of the computational results.

  9. Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography

    Science.gov (United States)

    Heineck, James T.; Schuelein, Erich; Raffel, Markus

    2014-01-01

    Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.

  10. An Incidence Loss Model for Wave Rotors with Axially Aligned Passages

    Science.gov (United States)

    Paxson, Daniel E.

    1998-01-01

    A simple mathematical model is described to account for the losses incurred when the flow in the duct (port) of a wave rotor is not aligned with the passages. The model, specifically for wave rotors with axially aligned passages, describes a loss mechanism which is sensitive to incident flow angle and Mach number. Implementation of the model in a one-dimensional CFD based wave rotor simulation is presented. Comparisons with limited experimental results are consistent with the model. Sensitivity studies are presented which highlight the significance of the incidence loss relative to other loss mechanisms in the wave rotor.

  11. Control of Magnetic Bearings for Rotor Unbalance With Plug-In Time-Varying Resonators.

    Science.gov (United States)

    Kang, Christopher; Tsao, Tsu-Chin

    2016-01-01

    Rotor unbalance, common phenomenon of rotational systems, manifests itself as a periodic disturbance synchronized with the rotor's angular velocity. In active magnetic bearing (AMB) systems, feedback control is required to stabilize the open-loop unstable electromagnetic levitation. Further, feedback action can be added to suppress the repeatable runout but maintain closed-loop stability. In this paper, a plug-in time-varying resonator is designed by inverting cascaded notch filters. This formulation allows flexibility in designing the internal model for appropriate disturbance rejection. The plug-in structure ensures that stability can be maintained for varying rotor speeds. Experimental results of an AMB-rotor system are presented.

  12. A control strategy for stand-alone wound rotor induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Forchetti, D.G.; Garcia, G.O. [Grupo de Electronica Aplicada (GEA), Universidad Nacional de Rio Cuarto, X5804 BYA Rio Cuarto (Argentina); Solsona, J.A. [Instituto de Investigaciones en Ingenieria Electrica?Alfredo Desages?, Departamento de Ingenieria Electrica y de Computadoras, Universidad Nacional del Sur, Bahia Blanca (Argentina); Valla, M.I. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, 1900 La Plata (Argentina)

    2007-02-15

    A control strategy to regulate the frequency and voltage of a stand-alone wound rotor induction machine is presented. This strategy allows the machine to work as a generator in stand-alone systems (without grid connection) with variable rotor speed. A stator flux-oriented control is proposed using the rotor voltages as actuation variables. Two cascade control loops are used to regulate the stator flux and the rotor currents. A closed loop observer is designed to estimate the machine flux which is necessary to implement these control loops. The proposed control strategy is validated through simulations with satisfactory results. (author)

  13. Dynamic Model and Fault Feature Research of Dual-Rotor System with Bearing Pedestal Looseness

    Directory of Open Access Journals (Sweden)

    Nanfei Wang

    2016-01-01

    Full Text Available The paper presents a finite element model of dual-rotor system with pedestal looseness stemming from loosened bolts. Dynamic model including bearing pedestal looseness is established based on the dual-rotor test rig. Three-degree-of-freedom (DOF planar rigid motion of loose bearing pedestal is fully considered and collision recovery coefficient is also introduced in the model. Based on the Timoshenko beam elements, using the finite element method, rigid body kinematics, and the Newmark-β algorithm for numerical simulation, dynamic characteristics of the inner and outer rotors and the bearing pedestal plane rigid body motion under bearing pedestal looseness condition are studied. Meanwhile, the looseness experiments under two different speed combinations are carried out, and the experimental results are basically the same. The simulation results are compared with the experimental results, indicating that vibration displacement waveforms of loosened rotor have “clipping” phenomenon. When the bearing pedestal looseness fault occurs, the inner and outer rotors vibration spectrum not only contains the difference and sum frequency of the two rotors’ fundamental frequency but also contains 2X and 3X component of rotor with loosened support, and so forth; low frequency spectrum is more, containing dividing component, and so forth; the rotor displacement spectrums also contain fewer combination frequency components, and so forth; when one side of the inner rotor bearing pedestal is loosened, the inner rotor axis trajectory is drawn into similar-ellipse shape.

  14. An Experimental Study of Three-Dimensional Characteristics of Turbulent Wakes of Axial Compressor Rotors

    Institute of Scientific and Technical Information of China (English)

    Hongwei MA; Haokang JIANG

    2005-01-01

    This paper presents an experimental investigation of the characteristics of three-dimensional turbulent wakes of an isolated axial compressor rotor and a single-stage axial compressor rotor. The wakes were measured from hub to tip using a single-slant hot-wire and a four-hole conical high frequency pressure probe. The experiments were made at both design and near stall conditions. Variations of mean velocities, total pressure, static pressure and turbulence stresses in the wakes are shown and interpreted. The experimental data from the isolated compressor rotor wake are compared with that from the single-stage compressor rotor.

  15. Dynamic balancing of dual-rotor system with very little rotating speed difference

    Institute of Scientific and Technical Information of China (English)

    杨健; 贺世正; 王乐勤

    2003-01-01

    Unbalanced vibration in dual-rotor rotating machinery was studied with numerical simulations and experiments. A new method is proposed to separate vibration signals of inner and outer rotors for a system with very little difference in rotating speeds. Magnitudes and phase values of unbalance defects can be obtained directly by sampling the vibration signal synchronized with reference signal. The balancing process is completed by the reciprocity influence coefficients of inner and outer rotors method. Results showed the advantage of such method for a dual-rotor system as compared with conventional balancing.

  16. Investigation of Maximum Blade Loading Capability of Lift-Offset Rotors

    Science.gov (United States)

    Yeo, Hyeonsoo; Johnson, Wayne

    2013-01-01

    Maximum blade loading capability of a coaxial, lift-offset rotor is investigated using a rotorcraft configuration designed in the context of short-haul, medium-size civil and military missions. The aircraft was sized for a 6600-lb payload and a range of 300 nm. The rotor planform and twist were optimized for hover and cruise performance. For the present rotor performance calculations, the collective pitch angle is progressively increased up to and through stall with the shaft angle set to zero. The effects of lift offset on rotor lift, power, controls, and blade airloads and structural loads are examined. The maximum lift capability of the coaxial rotor increases as lift offset increases and extends well beyond the McHugh lift boundary as the lift potential of the advancing blades are fully realized. A parametric study is conducted to examine the differences between the present coaxial rotor and the McHugh rotor in terms of maximum lift capabilities and to identify important design parameters that define the maximum lift capability of the rotor. The effects of lift offset on rotor blade airloads and structural loads are also investigated. Flap bending moment increases substantially as lift offset increases to carry the hub roll moment even at low collective values. The magnitude of flap bending moment is dictated by the lift-offset value (hub roll moment) but is less sensitive to collective and speed.

  17. Test rig for investigations of force excited and synchrocoupling loaded rotor

    Science.gov (United States)

    Rauch, Adam

    1987-10-01

    The main topics of test rig based rotor investigations are: dynamic relations of a rotor bearing foundation system, shaft cracking, torsional simulation of rotor-generator hunting, flexural-torsional coupling of vibrations, and other areas of rotor dynamics including balancing, maintenance and modal analysis of a rotor. The present paper describes a general purpose rotor test rig capable of handling a great number of these areas. The test rig simulates a heavy, power-loaded rotor mounted on a flexible foundation. Five forms of excitation are provided: oscillating or impact torque, impact force, step force, bearing and foundation excitation. They can be combined if necessary. New research facilities offered by the rig are: external flexural force loading, driving torque loading by synchrocoupling with a full recovery of brake energy, bending release of rotor ends by pivoting, and multi-pulse impact force excitation. The most remarkable is the synchroaxle principle, called SAP for short, which is described in detail. Test rig features have been proved to be successful by research of shaft cracking and rotor-foundation vibrations. This presentation concerns only the general description, calculation and application aspects of the rig.

  18. Improvements of Power Factor and Torque of a Synchronous Reluctance Motor with a Slit Rotor

    Science.gov (United States)

    Nashiki, Masayuki; Inoue, Yoshimitu; Kawai, Youichi; Yokochi, Takanori; Satake, Akiyoshi; Okuma, Shigeru

    Power factor and torque of synchronous reluctance motors with a slit rotor are studied. In there stators, divided teeth made of powder magnetic core are adopted and windings are improved to get high space factor of stator windings and to shorten coil ends. In there rotors, stainless sheets are inserted among soft magnetic metal sheets with adhesive to strengthen the rotors and rotor structure is improved to enlarge the saliency ratio (Ld/Lq). As the result, the power factor 0.78 and 1.6 times torque at same motor size are attained.

  19. Finite Element Analysis of a BLDC Motor Considering the Eddy Current in Rotor Steel Shell

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Chan; Yoon, Tae Ho; Kwon Byung Il [Hanyang University (Korea, Republic of); Yoon, Hee Soo; Won, Sung Hong [Samsung Electro-Mechanics R and D Center (Korea, Republic of)

    1999-03-01

    This paper describes the effect of eddy currents in the rotor steel shell of exterior-rotor permanent magnet BLDC motor of which rotor is revolving at a high speed. A two-dimensional time-stepping finite element method is used for analyzing electromagnetic field and computing performances of the motor. As a result, the effect of the eddy currents in the rotor steel shell is shown by comparing the analysis results from both the proposed method and the conventional one. (author). 7 refs., 11 figs., 1 tab.

  20. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    Science.gov (United States)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  1. Jet engine performance enhancement through use of a wave-rotor topping cycle

    Science.gov (United States)

    Wilson, Jack; Paxson, Daniel E.

    1993-01-01

    A simple model is used to calculate the thermal efficiency and specific power of simple jet engines and jet engines with a wave-rotor topping cycle. The performance of the wave rotor is based on measurements from a previous experiment. Applied to the case of an aircraft flying at Mach 0.8, the calculations show that an engine with a wave rotor topping cycle may have gains in thermal efficiency of approximately 1 to 2 percent and gains in specific power of approximately 10 to 16 percent over a simple jet engine with the same overall compression ratio. Even greater gains are possible if the wave rotor's performance can be improved.

  2. Design Considerations for a Stopped-Rotor Cyclocopter for Venus Exploration

    Science.gov (United States)

    Husseyin, S.; Warmbrodt, William G.

    2016-01-01

    This paper considers the use of a cycloidal blade system as a means of providing lift and propulsive thrust as well as combined with a stopped rotor system, to create a stopped-rotor cyclocopter vehicle, during a mission to Venus. This stopped-rotor cyclocopter will be capable of flying at all atmospheric levels of Venus as well as landing on the surface for scientific investigation. Three reference conceptual designs with different stopped-rotor cyclocopter yaw angles are tested in RotCFD as well as a model of a hovering cyclorotor for comparison with past work in the literature and innovative study for future projects.

  3. Validation of a three-dimensional viscous-inviscid interactive solver for wind turbine rotors

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2014-01-01

    measurements and/or CFD simulations for five wind turbine rotors, including three experimental model rotors [20-22], the 2.5 MW NM80 machine [23] and the NREL 5 MW virtual rotor [24]. Such a broad set of operational conditions and rotor sizes constitutes a very challenging validation matrix, with Reynolds......MIRAS is a newly developed computational model that predicts the aerodynamic behavior of wind turbine blades and wakes subject to unsteady motions and viscous effects. The model is based on a three-dimensional panel method using a surface distribution of quadrilateral singularities with a Neumann...

  4. Impulsive Control of the Rotor-Stator Rub Based on Phase Characteristic

    Directory of Open Access Journals (Sweden)

    Jieqiong Xu

    2014-01-01

    Full Text Available An impulsive control method is proposed to eliminate the rotor-stator rubbing based on the phase characteristic. The relation between the vibration energy and the phase difference suggests the starting point for controlling the rotor-stator rubbing by implementing impulse. When the contact between the rotor and the stator occurs, the impulse is implemented in x-direction and y-direction several times to avoid the rotor-stator rubbing. The practical feasibility of this approach is investigated by numerical simulations.

  5. Dynamic Characteristics and Experimental Research of Dual-Rotor System with Rub-Impact Fault

    Directory of Open Access Journals (Sweden)

    Hongzhi Xu

    2016-01-01

    Full Text Available Rub-impact fault model for dual-rotor system was further developed, in which rubbing board is regarded as elastic sheet. Sheet elastic deformation, contact penetration, and elastic damping support during rubbing of sheet and wheel disk were considered. Collision force and friction were calculated by utilizing Hertz contact theory and Coulomb model and introducing nonlinear spring damping model and friction coefficient. Then kinetic differential equations of rub-impact under dry rubbing condition were established. Based on one-dimensional finite element model of dual-rotor system, dynamic transient response of overall structure under rub-impact existing between rotor wheel and sheet was obtained. Meanwhile, fault dynamic characteristics and impact of rubbing clearance on rotor vibration were analyzed. The results show that, during the process of rub-impact, the spectrums of rotor vibration are complicated and multiple combined frequency components of inner and outer rotor fundamental frequencies are typical characteristic of rub-impact fault for dual-rotor system. It also can be seen from rotor vibration response that the rubbing rotor’s fundamental frequency is modulated by normal rotor double frequency.

  6. NUMERICAL AND EXSPERIMENTAL ASPECTS OF THERMALLY INDUCED VIBRATION IN REAL ROTORS

    Directory of Open Access Journals (Sweden)

    Milenko B Jevtić

    2011-01-01

    Full Text Available Temperature fields in electric energy generators may lead to mechanical dissbalance of an already balanced rotor. The author collected information in a number of steam power plants and confirmed the existence of the problem. This paper is presents the specific case of thermal deformation of the rotor, caused by an asymmetrical temperature field in scale of rotor. On the grounds of the relevant physical aspects, we propose a mathematical model identifying fields in a turbo generator rotor and suggest the optimum control by which the unwanted effects are eliminated.

  7. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    Science.gov (United States)

    Flowers, George T.

    1995-02-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  8. Augmentation of power in slow-running vertical-axis wind rotors using multiple vanes

    Science.gov (United States)

    Sivasegaram, S.; Sivapalan, S.

    Improving the sectional geometry of slow-runnig vertical-axis wind rotors of the Savonius type has resulted in considerable improvement in rotor performance. Further improvement in power output from a rotor of given overall dimensions demands the use of power augmenting systems. This paper presents a simple two-vane power augmentation system for rotors of the Savonius-type. The influence of important design parameters of the augmenting system and that of wind direction have been investigated and the system configuration giving maximum power augmentation has been determined. It is shown that an eighty percent increase in power output could be achieved using a pair of vanes of moderate size.

  9. Visualization study of the flow in and around a Savonius rotor

    Science.gov (United States)

    Fujisawa, N.; Gotoh, F.

    1992-04-01

    Flow in and around a Savonius rotor has been studied by flow visualization experiments, and the rotation effect is discussed in comparison with the measured pressure distributions on the blade surfaces. It is observed that the flow separating regions on the blade surfaces are fairly reduced by the rotation effect and the flow through the overlap is weakened by the appearance of resisting flow. The former contributes to the torque production of the rotating rotor while the latter acts as a resistance. These phenomena together with the stagnation effect on the front side of the rotor contribute to the power producing mechanism of the Savonius rotor.

  10. Identification of Flap Motion Parameters for Vibration Reduction in Helicopter Rotors with Multiple Active Trailing Edge Flaps

    Directory of Open Access Journals (Sweden)

    Uğbreve;ur Dalli

    2011-01-01

    Full Text Available An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing conditions. Rotor blade system response is calculated using the proposed solution method and the developed program depending on any structural and aerodynamic properties of rotor blades, structural properties of trailing edge flaps and properties of trailing edge flap actuator inputs. Rotor blade loads are determined first on a nominal rotor blade without multiple active trailing edge flaps and then the effects of the active flap motions on the existing rotor blade loads are investigated. Multiple active trailing edge flaps are controlled by using open loop controllers to identify the effects of the actuator signal output properties such as frequency, amplitude and phase on the system response. Effects of using multiple trailing edge flaps on controlling rotor blade vibrations are investigated and some design criteria are determined for the design of trailing edge flap controller that will provide actuator signal outputs to minimize the rotor blade root loads. It is calculated that using the developed active trailing edge rotor blade model, helicopter rotor blade vibrations can be reduced up to 36% of the nominal rotor blade vibrations.

  11. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  12. Development of an aeroelastic methodology for surface morphing rotors

    Science.gov (United States)

    Cook, James R.

    Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for

  13. Experimental Investigation of a Shrouded Rotor Micro Air Vehicle in Hover and in Edgewise Gusts

    Science.gov (United States)

    Hrishikeshavan, Vikram

    Due to the hover capability of rotary wing Micro Air Vehicles (MAVs), it is of interest to improve their aerodynamic performance, and hence hover endurance (or payload capability). In this research, a shrouded rotor configuration is studied and implemented, that has the potential to offer two key operational benefits: enhanced system thrust for a given input power, and improved structural rigidity and crashworthiness of an MAV platform. The main challenges involved in realising such a system for a lightweight craft are: design of a lightweight and stiff shroud, and increased sensitivity to external flow disturbances that can affect flight stability. These key aspects are addressed and studied in order to assess the capability of the shrouded rotor as a platform of choice for MAV applications. A fully functional shrouded rotor vehicle (disk loading 60 N/ m2) was designed and constructed with key shroud design variables derived from previous studies on micro shrouded rotors. The vehicle weighed about 280 g (244 mm rotor diameter). The shrouded rotor had a 30% increase in power loading in hover compared to an unshrouded rotor. Due to the stiff, lightweight shroud construction, a net payload benefit of 20-30 g was achieved. The different components such as the rotor, stabilizer bar, yaw control vanes and the shroud were systematically studied for system efficiency and overall aerodynamic improvements. Analysis of the data showed that the chosen shroud dimensions was close to optimum for a design payload of 250 g. Risk reduction prototypes were built to sequentially arrive at the final configuration. In order to prevent periodic oscillations in ight, a hingeless rotor was incorporated in the shroud. The vehicle was successfully ight tested in hover with a proportional-integralderivative feedback controller. A flybarless rotor was incorporated for efficiency and control moment improvements. Time domain system identification of the attitude dynamics of the flybar and

  14. Analysis of deformation of rotor and influence on the performance of Gyro based on B-Spline wavelet FEM

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Some construct characteristics and composing material of the new Gyro's rotor are introduced. Some factors resulting in deformation of the rotor surface are analyzed. Under different loads such as the force of deflecting center, the change of temperature, the force of pressure and couple factors, the deformation of rotor is analyzed with the wavelet finite element simulation software. The vector distributing map of rotor reformation is given. The deformation resulting from the pressure force of photon is studied. Finally, the influence on Gyro's performance because of anomalous surface of rotor due to deformation of rotor is researched and the result is useful to forecast the performance of the drift of gyroscope. The disturbing moment resulting from the deformation of rotor can be compensated using the mathematic method, and provides an important reference for both design and optimization of the rotor.

  15. Orbiting in rotors. Modeling for real time simulation; Orbitacion en rotores. Modelado para simulacion en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Romero Navarrete, Jose Antonio

    1988-09-01

    In the operation of complicated systems the simulation has been transformed into an important resource, as much for the aid in the operation of the real plant as for the previous training of the personnel who will have the operation responsibility of the different systems. In this general frame, and particularly in the field referring to the development of models to be used in the simulators for thermal and nuclear power stations future operators training, in this work a general modeling of the rotors orbiting amplitudes of turbogroups, carrying out as a part of the methodology a general typification of the conditions and modifying effects of the dynamic behavior of the rotors of the turbogroups. The mathematical model consists of the handling of an abstracted system of the real system, considering discreet masses united by mass devoid flexible sections. In the bearings, average cutting moments are considered, sensible to linear misalignments of the bearing, as well as to the lubricating oil pressure and temperature. The three-axial states of stresses are taken into account as far as the parameters of the material hardening are set out for each considered segment, leaving this phenomenon based on the radius of the section as well as on the rotation speed. As an influence of the environment, a diminution of the elasticity modulus of the material as the temperature increases, is considered. As faults are studied, on one hand, the influence that the diminution of the diametric moment of inertia, as the result of a cross-sectional fissure has on the critical speeds values and the rotor configurations. The other evaluated fault consists of the linear misalignment of the bearing pedestals, and its influence appears on the orbitation amplitude. The calculation method applied is the one of Prohl, since the alternative method for the mathematical model applied, the one of the transference matrixes, consumes longer run time and memory, which is demonstrated by means of an

  16. Theory of 2 δ-kicked quantum rotors

    OpenAIRE

    Creffield, Charles E.; Fishman, S.; Monteiro, T. S.

    2006-01-01

    We examine the quantum dynamics of cold atoms subjected to pairs of closely spaced kicks from standing waves of light and find behavior quite unlike the well-studied quantum kicked rotor QKR. We show that the quantum phase space has a periodic, cellular structure arising from a unitary matrix with oscillating bandwidth. The corresponding eigenstates are exponentially localized, but scale with a fractional power L~ħ_(-0.75), in contrast to the QKR for which L~ħ_(-1). The effect of intercell...

  17. Improved Rotor Speed Brushless DC Motor using Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Jafar Mostafapour

    2016-03-01

    Full Text Available A brushless DC (BLDC Motors have advantages over brushed, direct current (DC motors and Induction motor (IM. They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive appliance, aerospace medical, and instrumentation and automation industries This paper can be seen as fuzzy controllers compared to PI control BLDC motor rotor speed has improved significantly and better result can be achieve.

  18. Improved Rotor Speed Brushless DC Motor Using Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Jafar Mostafapour

    2015-04-01

    Full Text Available A brushless DC (BLDC Motors have advantages over brushed, Direct current (DC Motors and , Induction motor (IM. They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive appliance, aerospace medical, and instrumentation and automation industries This paper can be seen as fuzzy controllers compared to PI control BLDC motor rotor speed has improved significantly and beter result can be achieve.

  19. Rotor Field Oriented Control with adaptive Iron Loss Compensation

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1999-01-01

    It is well known from the literature that iron loses in an induction motor implies field angle estimation errors and hence detuning problems. In this paper a new method for estimating the iron loss resistor in an induction motor is presented. The method is based on a traditional dynamic model...... of the motor referenced to the rotor magnetizing current, and with the extension of an iron loss resistor added in parallel to the magnetizing inductance. The resistor estimator is based on the observation that the actual applied stator voltages deviates from the voltage estimated, when a motor is current...

  20. Acoustic design of rotor blades using a genetic algorithm

    Science.gov (United States)

    Wells, V. L.; Han, A. Y.; Crossley, W. A.

    1995-01-01

    A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.