WorldWideScience

Sample records for two-bladed 17-metre darrieus

  1. Computational fluid dynamics analysis of a twisted airfoil shaped two-bladed H-Darrieus rotor made from fibreglass reinforced plastic (FRP

    Directory of Open Access Journals (Sweden)

    Rajat Gupta, Sukanta Roy, Agnimitra Biswas

    2010-11-01

    Full Text Available H-Darrieus rotor is a lift type device having two to three blades designed as airfoils. The blades are attached vertically to the central shaft through support arms. The support to vertical axis helps the rotor maintain its shape. In this paper, Computational Fluid Dynamics (CFD analysis of an airfoil shaped two-bladed H-Darrieus rotor using Fluent 6.2 software was performed. Based on the CFD results, a comparative study between experimental and computational works was carried out. The H-Darrieus rotor was 20cm in height, 5cm in chord and twisted with an angle of 30° at the trailing end. The blade material of rotor was Fiberglass Reinforced Plastic (FRP. The experiments were earlier conducted in a subsonic wind tunnel for various height-to-diameter (H/D ratios. A two dimensional computational modeling was done with the help of Gambit tool using unstructured grid. Realistic boundary conditions were provided for the model to have synchronization with the experimental conditions. Two dimensional steady-state segregated solver with absolute velocity formulation and cell based grid was considered, and a standard k-epsilon viscous model with standard wall functions was chosen. A first order upwind discretization scheme was adopted for pressure velocity coupling of the flow. The inlet velocities and rotor rotational speeds were taken from the experimental results. From the computational analysis, power coefficient (Cp and torque coefficient (Ct values at ten different H/D ratios namely 0.85, 1.0, 1.10, 1.33, 1.54, 1.72, 1.80, 1.92, 2.10 and 2.20 were calculated in order to predict the performances of the twisted H-rotor. The variations of Cp and Ct with tip speed ratios were analyzed and compared with the experimental results. The standard deviations of computational Cp and Ct from experimental Cp and Ct were obtained. From the computational analysis, the highest values of Cp and Ct were obtained at H/D ratios of 1.0 and 1.54 respectively. The

  2. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  3. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  4. CFD analysis of a Darrieus wind turbine

    Science.gov (United States)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  5. Flutter of Darrieus wind turbine blades

    Science.gov (United States)

    Ham, N. D.

    1978-01-01

    The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.

  6. The Darrieus wind turbine for electrical power generation

    Science.gov (United States)

    Robinson, M. L.

    1981-06-01

    Aspects of wind as an energy source and the momentum theory of wind turbines are briefly examined. Types of Darrieus wind turbine are described; attention is given to a turbine with airfoil blades curved in troposkein form, and a turbine with straight blades of fixed or variable pitch. The Darrieus vertical-axis wind turbine is then considered with regard to aerodynamics, annual energy output, structures, control systems, and energy storage. Brief reviews of selected Darrieus wind turbine projects are given, including those at Magdalen Islands, Canada, Sandia Laboratories, Reading University, and Australia and New Zealand.

  7. Scale Adaptive Simulation Model for the Darrieus Wind Turbine

    DEFF Research Database (Denmark)

    Rogowski, K.; Hansen, Martin Otto Laver; Maroński, R.

    2016-01-01

    Accurate prediction of aerodynamic loads for the Darrieus wind turbine using more or less complex aerodynamic models is still a challenge. One of the problems is the small amount of experimental data available to validate the numerical codes. The major objective of the present study is to examine...

  8. Modal dynamics of structures with bladed isotropic rotors and its complexity for two-bladed rotors

    Directory of Open Access Journals (Sweden)

    M. H. Hansen

    2016-11-01

    These harmonic terms lead to modal couplings for the two-bladed turbine that do not exist for the three-bladed turbine. A single mode of a two-bladed turbine will also have several resonance frequencies in both the ground-fixed and rotating frames of reference, which complicates the interpretation of simulated or measured turbine responses.

  9. Performance of Combined Water Turbine Darrieus-Savonius with Two Stage Savonius Buckets and Single Deflector

    OpenAIRE

    Sahim, Kaprawi; Santoso, Dyos; Sipahutar, Riman

    2016-01-01

    The objective of this study is to show the effect of single deflector plate on the performance of combined Darrieus-Savonius water turbine. In order to overcome the disadvantages of low torque of solo Darrieus turbine, a plate deflector mounted in front of returning Savonius bucket of combined water turbine composing of Darrieus and Savonius rotor has been proposed in this study. Some configurations of combined turbines with two stage Savonius rotors were experimentally tested in a river of c...

  10. A vortex model for Darrieus turbine using finite element techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, Fernando L. [Universidad de Buenos Aires, Dept. de Electrotecnia, Grupo ISEP, Buenos Aires (Argentina); Jacovkis, Pablo M. [Universidad de Buenos Aires, Dept. de Computacion and Inst. de Calculo, Buenos Aires (Argentina)

    2001-09-01

    Since 1970 several aerodynamic prediction models have been formulated for the Darrieus turbine. We can identify two families of models: stream-tube and vortex. The former needs much less computation time but the latter is more accurate. The purpose of this paper is to show a new option for modelling the aerodynamic behaviour of Darrieus turbines. The idea is to combine a classic free vortex model with a finite element analysis of the flow in the surroundings of the blades. This avoids some of the remaining deficiencies in classic vortex models. The agreement between analysis and experiment when predicting instantaneous blade forces and near wake flow behind the rotor is better than the one obtained in previous models. (Author)

  11. Scale Adaptive Simulation Model for the Darrieus Wind Turbine

    Science.gov (United States)

    Rogowski, K.; Hansen, M. O. L.; Maroński, R.; Lichota, P.

    2016-09-01

    Accurate prediction of aerodynamic loads for the Darrieus wind turbine using more or less complex aerodynamic models is still a challenge. One of the problems is the small amount of experimental data available to validate the numerical codes. The major objective of the present study is to examine the scale adaptive simulation (SAS) approach for performance analysis of a one-bladed Darrieus wind turbine working at a tip speed ratio of 5 and at a blade Reynolds number of 40 000. The three-dimensional incompressible unsteady Navier-Stokes equations are used. Numerical results of aerodynamic loads and wake velocity profiles behind the rotor are compared with experimental data taken from literature. The level of agreement between CFD and experimental results is reasonable.

  12. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    Science.gov (United States)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  13. Experimental Study of Darrieus-Savonius Water Turbine with Deflector: Effect of Deflector on the Performance

    OpenAIRE

    Sahim, Kaprawi; Ihtisan, Kadafi; Santoso, Dyos; Sipahutar, Riman

    2014-01-01

    The reverse force on the returning blade of a water turbine can be reduced by setting a deflector on the returning blade side of a rotor. The deflector configuration can also concentrate the flow which passes through the rotor so that the torque and the power of turbine can be considerably increased. The placing of Savonius in Darrieus rotor is carried out by setting the Savonius bucket in Darrieus rotor at the same axis. The combination of these rotors is also called a Darrieus-Savonius turb...

  14. Aerodynamic performance prediction of Darrieus-type wind turbines

    Directory of Open Access Journals (Sweden)

    Ion NILĂ

    2010-06-01

    Full Text Available The prediction of Darrieus wind turbine aerodynamic performances provides the necessarydesign and operational data base related to the wind potential. In this sense it provides the type ofturbine suitable to the area where it is to be installed. Two calculation methods are analyzed for arotor with straight blades. The first one is a global method that allows an assessment of the turbinenominal power by a brief calculation. This method leads to an overestimation of performances. Thesecond is the calculation method of the gust factor and momentum which deals with the pale as beingcomposed of different elements that don’t influence each other. This method, developed based on thetheory of the turbine blades, leads to values close to the statistical data obtained experimentally. Thevalues obtained by the calculation method of gust factor - momentum led to the concept of a Darrieusturbine, which will be tested for different wind values in the INCAS subsonic wind tunnel.

  15. H-Darrieus Wind Turbine with Blade Pitch Control

    Directory of Open Access Journals (Sweden)

    I. Paraschivoiu

    2009-01-01

    Full Text Available A procedure for computing the optimal variation of the blades' pitch angle of an H-Darrieus wind turbine that maximizes its torque at given operational conditions is proposed and presented along with the results obtained on a 7 kW prototype. The CARDAAV code, based on the “Double-Multiple Streamtube” model developed by the first author, is used to determine the performances of the straight-bladed vertical axis wind turbine. This was coupled with a genetic algorithm optimizer. The azimuthal variation of the blades' pitch angle is modeled with an analytical function whose coefficients are used as variables in the optimization process. Two types of variations were considered for the pitch angle: a simple sinusoidal one and one which is more general, relating closely the blades' pitch to the local flow conditions along their circular path. A gain of almost 30% in the annual energy production was obtained with the polynomial optimal pitch control.

  16. Hybrid Configuration of Darrieus and Savonius Rotors for Stand-alone Power Systems

    Science.gov (United States)

    Wakui, Tetsuya; Tanzawa, Yoshiaki; Hashizume, Takumi; Nagao, Toshio

    The suitable hybrid configuration of Darrieus lift-type and Savonius drag-type rotors for stand-alone wind turbine-generator systems is discussed using our dynamic simulation model. Two types of hybrid configurations are taken up: Type-A installs the Savonius rotor inside the Darrieus rotor and Type-B installs the Savonius rotor outside the Darrieus rotor. The computed results of the output characteristics and the dynamic behaviors of the system operated at the maximum power coefficient points show that Type-A, which has fine operating behavior to wind speed changes and can be compactly designed because of a shorter rotational shaft, is an effective way for self-controlled stand-alone small-scale systems.

  17. Design of h-Darrieus vertical axis wind turbine

    Science.gov (United States)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  18. Design of h-Darrieus vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  19. Experimental Study of Darrieus-Savonius Water Turbine with Deflector: Effect of Deflector on the Performance

    Directory of Open Access Journals (Sweden)

    Kaprawi Sahim

    2014-01-01

    Full Text Available The reverse force on the returning blade of a water turbine can be reduced by setting a deflector on the returning blade side of a rotor. The deflector configuration can also concentrate the flow which passes through the rotor so that the torque and the power of turbine can be considerably increased. The placing of Savonius in Darrieus rotor is carried out by setting the Savonius bucket in Darrieus rotor at the same axis. The combination of these rotors is also called a Darrieus-Savonius turbine. This rotor can improve torque of turbine. Experiments are conducted in an irrigation canal to find the performance characteristics of presence of deflector and Savonius rotor in Darrieus-Savonius turbine. Results conclude that the single deflector plate placed on returning blade side increases the torque and power coefficient. The presence of Savonius rotor increases the torque at a lower speed, but the power coefficient decreases. The torque and power coefficient characteristics depend on the aspect ratio of Savonius rotor.

  20. A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development

    National Research Council Canada - National Science Library

    Pierre Tchakoua; Rene Wamkeue; Mohand Ouhrouche; Tommy Andy Tameghe; Gabriel Ekemb

    2015-01-01

    .... Thus, models can significantly reduce design, development and optimization costs. This paper proposes a novel equivalent electrical model for Darrieus-type vertical axis wind turbines (DTVAWTs...

  1. Iterative tuning of feedforward IPC for two-bladed wind turbines

    Science.gov (United States)

    Mulders, SP; van Solingen, E.; van Wingerden, JW; Beerens, J.

    2016-09-01

    At present, the cost of offshore wind energy does not meet the level of onshore wind and fossil-based energy sources. One way to extend the turbine lifetime, and thus reduce cost, is by reduction of the fatigue loads of blades and other turbine parts using Individual Pitch Control (IPC). This type of control, which is generally implemented by feedback control using the MultiBlade Coordinate transformation on blade load measurement signals, is capable of mitigating the most dominant periodic loads. The main goal of this article is to develop a self-optimizing feedforward IPC strategy for a two-bladed wind turbine to reduce actuator duty cycle and reduce the dependency on blade load measurement signals. The approach uses blade load measurement data only initially for tuning of the feedforward controller, which is scheduled on the rotor azimuth angle and wind speed. The feedforward strategy will be compared to the feedback implementation in terms of load alleviation capabilities and actuator duty cycle. Results show that the implementation is capable of learning the optimal feedforward IPC controller in constant and turbulent wind conditions, to alleviate the pitch actuator duty cycle, and to considerably reduce harmonic fatigue loads without the need for blade load measurement signals after tuning.

  2. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    As Development of small vertical axis wind turbines (VAWT) for urban use is becoming an interesting topic both within industry and academia. However, there are few new designs of vertical axis turbines which are customized for building integration. These are getting importance because they operate...... at low rotational speed producing very less noise during operation, although these are less efficient than Horizontal Axis Wind Turbines (HAWT). The efficiency of a VAWT has been significantly improved by H-Darrieus VAWT design based on double airfoil technology as demonstrated by the authors...... multiple stream tube method is used to determine the performance of the H-Darrieus VAWT. The power coefficient is compared with that of a fixed pitch and a variable pitch double airfoil blade VAWT. It is demonstrated that an improvement in power coefficient by 20% is achieved and the turbine could start...

  3. Performance Prediction of Darrieus-Type Hydroturbine with Inlet Nozzle Operated in Open Water Channels

    Science.gov (United States)

    Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.

    2016-11-01

    Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.

  4. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  5. Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius-three-bladed Darrieus rotor

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.; Biswas, A.; Sharma, K.K. [Department of Mechanical Engineering, National Institute of Technology (NIT), Silchar 788 010, Assam (India)

    2008-09-15

    The vertical axis wind turbines are simple in construction, self-starting, inexpensive and can accept wind from any direction without orientation. A combined Savonius-Darrieus type vertical axis wind rotor has got many advantages over individual Savonius or individual Darrieus wind rotor, such as better efficiency than Savonius rotor and high starting torque than Darrieus rotor. But works on the combined Savonius-Darrieus wind rotor are very scare. In view of the above, two types of models, one simple Savonius and the other combined Savonius-Darrieus wind rotors were designed and fabricated. The Savonius rotor was a three-bucket system having provisions for overlap variations. The Savonius-Darrieus rotor was a combination of three-bucket Savonius and three-bladed Darrieus rotors with the Savonius placed on top of the Darrieus rotor. The overlap variation was made in the upper part, i.e. the Savonius rotor only. These were tested in a subsonic wind tunnel available in the department. The various parameters namely, power coefficients and torque coefficients were calculated for both overlap and without overlap conditions. From the present investigation, it is seen that with the increase of overlap, the power coefficients start decreasing. The maximum power coefficient of 51% is obtained at no overlap condition. However, while comparing the power coefficients (C{sub p}) for simple Savonius-rotor with that of the combined configuration of Savonius-Darrieus rotor, it is observed that there is a definite improvement in the power coefficient for the combined Savonius-Darrieus rotor without overlap condition. Combined rotor without overlap condition provided an efficiency of 0.51, which is higher than the efficiency of the Savonius rotor at any overlap positions under the same test conditions. (author)

  6. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    at low rotational speed producing very less noise during operation, although these are less efficient than Horizontal Axis Wind Turbines (HAWT). The efficiency of a VAWT has been significantly improved by H-Darrieus VAWT design based on double airfoil technology as demonstrated by the authors...... in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  7. Structural analysis of a 1kW Darrieus turbine spoke

    DEFF Research Database (Denmark)

    Belloni, Federico; Bedon, Gabriele; Castelli, Marco Raciti

    A structural study of a 1 kW Darrieus turbine spoke was performed in order to study stress distribution on the piece and make it more light. The VAWT turbine, originally intended for urban operation, is provided with 3 blades and 6 spokes. Since turbine initial tests showed relevant balancing......, the spoke was considered rotating at the maximum admitted rotational speed, since centrifugal forces were observed to be much more remarkable than others loads. Original steel configuration and different architectures with shaped holes made along the spoke were simulated, but stress value was found...

  8. Cavitating behaviour analysis of Darrieus-type cross flow water turbines

    Energy Technology Data Exchange (ETDEWEB)

    Aumelas, V; Pellone, C; MaItre, T, E-mail: vivien.aumelas@hmg.inpg.f [Equipe Energetique, Grenoble-INP - LEGI (Laboratory of Geophysical and Industrial Flows) Domaine Universitaire - BP 53, Grenoble cedex 9, 38041 (France)

    2010-08-15

    The aim of this paper is to study the cavitating behaviour of bare Darrieus-type turbines. For that, the RANS code CAVKA, has been used. Under non-cavitating conditions, the power coefficient and the thrusts calculated with CAVKA are compared to experimental values obtained in the LEGI hydrodynamic tunnel. Under cavitating conditions, for several cavitation numbers, the numerical power coefficients and vapour structures are compared to experimental ones. Different blade profiles and camber lines are also studied for non-cavitating and cavitating conditions.

  9. Cavitating behaviour analysis of Darrieus-type cross flow water turbines

    Science.gov (United States)

    Aumelas, V.; Pellone, C.; Maître, T.

    2010-08-01

    The aim of this paper is to study the cavitating behaviour of bare Darrieus-type turbines. For that, the RANS code CAVKA, has been used. Under non-cavitating conditions, the power coefficient and the thrusts calculated with CAVKA are compared to experimental values obtained in the LEGI hydrodynamic tunnel. Under cavitating conditions, for several cavitation numbers, the numerical power coefficients and vapour structures are compared to experimental ones. Different blade profiles and camber lines are also studied for non-cavitating and cavitating conditions.

  10. Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2003-11-24

    Planar flames are intrinsically unstable in open domains due to the thermal expansion across the burning front--the Landau-Darrieus instability. This instability leads to wrinkling and growth of the flame surface, and corresponding acceleration of the flame, until it is stabilized by cusp formation. We look at the Landau-Darrieus in stability for C/O thermonuclear flames at conditions relevant to the late stages of a Type Ia supernova explosion. Two-dimensional direct numerical simulations of both single-mode and multi-mode perturbations using a low Mach number hydrodynamics code are presented. We show the effect of the instability on the flame speed as a function of both the density and domain size, demonstrate the existence of the small scale cutoff to the growth of the instability, and look for the proposed breakdown of the non-linear stabilization at low densities. The effects of curvature on the flame as quantified through measurements of the growth rate and computation of the corresponding Markstein number. While accelerations of a few percent are observed, they are too small to have any direct outcome on the supernova explosion.

  11. CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter

    Directory of Open Access Journals (Sweden)

    M.H. Mohamed

    2015-03-01

    Full Text Available Vertical axis wind turbines like the Darrieus turbine appear to be promising for the conditions of low wind speed, but suffer from a low efficiency compared to horizontal axis turbines. A fully detailed numerical analysis is introduced in this work to improve the global performance of this wind turbine. A comparison between ANSYS Workbench and Gambit meshing tools for the numerical modeling is performed to summarize a final numerical sequence for the Darrieus rotor performance. Then, this model sequence is applied for different blade airfoils to obtain the best performance. Unsteady simulations performed for different speed ratios and based on URANS turbulent calculations using sliding mesh approach. Results show that the accuracy of ANSYS Workbench meshing is improved by using SST K-omega model but it is not recommended for other turbulence models. Moreover, this CFD procedure is used in this paper to assess the turbine performance with different airfoil shapes (25 airfoils. The results introduced new shapes for this turbine with higher efficiency than the regular airfoils by 10%. In addition, blade pitch angle has been studied and the results indicated that the zero pitch angle gives best performance.

  12. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition

    Science.gov (United States)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.

    2017-07-01

    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  13. Numerical investigation of aerodynamic performance of darrieus wind turbine based on the magnus effect

    Directory of Open Access Journals (Sweden)

    L Khadir

    2016-10-01

    Full Text Available The use of several developmental approaches is the researchers’ major preoccupation with the DARRIEUS wind turbine. This paper presents the first approach and results of a wide computational investigation on the aerodynamics of a vertical axis DARRIEUS wind turbine based on the MAGNUS effect. Consequently, wind tunnel tests were carried out to ascertain overall performance of the turbine and two-dimensional unsteady computational fluid dynamics (CFD models were generated to help understand the aerodynamics of this new performance. Accordingly, a moving mesh technique was used where the geometry of the turbine blade was cylinders. The turbine model was created in Gambit modeling software and then read into fluent software for fluid flow analysis. Flow field characteristics are investigated for several values of tip speed ratio (TSR, in this case we generated a new rotational speed ratio between the turbine and cylinder (δ = ωC/ωT. This new concept based on the MAGNUS approach provides the best configuration for better power coefficient values. The positive results of Cp obtained in this study are used to generate energy; on the other hand, the negative values of Cp could be used in order to supply the engines with energy.

  14. Direct Numerical Simulations of Type Ia Supernovae Flames I: The Landau-Darrieus Instability

    CERN Document Server

    Bell, J B; Rendleman, C A; Woosley, S E; Zingale, M A

    2004-01-01

    Planar flames are intrinsically unstable in open domains due to the thermal expansion across the burning front--the Landau-Darrieus instability. This instability leads to wrinkling and growth of the flame surface, and corresponding acceleration of the flame, until it is stabilized by cusp formation. We look at the Landau-Darrieus instability for C/O thermonuclear flames at conditions relevant to the late stages of a Type Ia supernova explosion. Two-dimensional direct numerical simulations of both single-mode and multi-mode perturbations using a low Mach number hydrodynamics code are presented. We show the effect of the instability on the flame speed as a function of both the density and domain size, demonstrate the existence of the small scale cutoff to the growth of the instability, and look for the proposed breakdown of the non-linear stabilization at low densities. The effects of curvature on the flame as quantified through measurements of the growth rate and computation of the corresponding Markstein numb...

  15. The effect of solidity on the performance of H-rotor Darrieus turbine

    Science.gov (United States)

    Hassan, S. M. Rakibul; Ali, Mohammad; Islam, Md. Quamrul

    2016-07-01

    Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades) on power coefficient (CP) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.

  16. Counterpart of the Darrieus-Landau instability at a magnetic deflagration front

    Science.gov (United States)

    Jukimenko, O.; Modestov, M.; Dion, C. M.; Marklund, M.; Bychkov, V.

    2016-04-01

    The magnetic instability at the front of the spin avalanche in a crystal of molecular magnets is considered. This phenomenon reveals similar features with the Darrieus-Landau instability, inherent to classical combustion flame fronts. The instability growth rate and the cutoff wavelength are investigated with respect to the strength of the external magnetic field, both analytically in the limit of an infinitely thin front and numerically for finite-width fronts. The presence of quantum tunneling resonances is shown to increase the growth rate significantly, which may lead to a possible transition from deflagration to detonation regimes. Different orientations of the crystal easy axis are shown to exhibit opposite stability properties. In addition, we suggest experimental conditions that could evidence the instability and its influence on the magnetic deflagration velocity.

  17. Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade

    Science.gov (United States)

    Kaza, K. R. V.; Kvaternik, R. G.

    1979-01-01

    The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.

  18. Feedback control of a Darrieus wind turbine and optimization of the produced energy

    Science.gov (United States)

    Maurin, T.; Henry, B.; Devos, F.; de Saint Louvent, B.; Gosselin, J.

    1984-03-01

    A microprocessor-driven control system, applied to the feedback control of a Darrieus wind turbine is presented. The use of a dc machine as a generator to recover the energy and as a motor to start the engine, allows simplified power electronics. The architecture of the control unit is built to ensure four different functions: starting, optimization of the recoverable energy, regulation of the speed, and braking. An experimental study of the system in a wind tunnel allowed optimization of the coefficients of the proportional and integral (pi) control algorithm. The electrical energy recovery was found to be much more efficient using the feedback system than without the control unit. This system allows a better characterization of the wind turbine and a regulation adapted to the wind statistics observed in one given geographical location.

  19. A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Taek; Oh, Chul Soo [Kyung Pook National University, Taegu (Korea, Republic of)

    1996-02-01

    This paper presents a design of vertical axis Darrieus wind turbine combined with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kWh], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system. (author). 11 refs., 14 figs.

  20. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations

    Energy Technology Data Exchange (ETDEWEB)

    Roa, A M; Aumelas, V; MaItre, T; Pellone, C, E-mail: ane.mentxaka@hmg.inpg.f [Equipe Energetique, Grenoble-INP - LEGI (Laboratory of Geophysical and Industrial Flows), Domaine Universitaire - BP 53, Grenoble cedex 9, 38041 (France)

    2010-08-15

    The aim of this paper is to present the results of the analysis of a Darrieus-type cross flow water turbine in bare and shrouded configurations. Numerical results are compared to experimental data and differences found in values are also highlighted. The benefit of the introduction of a channelling device, which generates an efficiency increment factor varying from 2 to 5, depending on the configuration, is discussed.

  1. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations

    Science.gov (United States)

    Roa, A. M.; Aumelas, V.; Maître, T.; Pellone, C.

    2010-08-01

    The aim of this paper is to present the results of the analysis of a Darrieus-type cross flow water turbine in bare and shrouded configurations. Numerical results are compared to experimental data and differences found in values are also highlighted. The benefit of the introduction of a channelling device, which generates an efficiency increment factor varying from 2 to 5, depending on the configuration, is discussed.

  2. Numerical investigation on the flow and power of small-sized multi-bladed straight Darrieus wind turbine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated, especially for the existence of dynamic stall. How to get better aerodynamic performance arouses lots of interests in the design procedure of a straight Darrieus wind turbine. In this paper, mainly the effects of number of blades and tip speed ratio are discussed. Based on the numerical investigation, an assumed asymmetric straight Darrieus wind turbine is proposed to improve the averaged power coefficient. As to the numerical method, the flow around the turbine is simulated by solving the 2D unsteady Navier-Stokes equation combined with continuous equation. The time marching method on a body-fitted coordinate system based on MAC (Marker-and-Cell) method is used. O-type grid is generated for the whole calculation domain. The characteristics of tangential and normal force are discussed related with dynamic stall of the blade. Averaged power coefficient per period of rotating is calculated to evaluate the eligibility of the turbine.

  3. Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-11-15

    Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.

  4. Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation

    Science.gov (United States)

    Creta, Francesco; Lamioni, Rachele; Lapenna, Pasquale Eduardo; Troiani, Guido

    2016-11-01

    In this study we investigate, both numerically and experimentally, the interplay between the intrinsic Darrieus-Landau (DL) or hydrodynamic instability of a premixed flame and the moderately turbulent flow field in which the flame propagates. The objective is threefold: to establish, unambiguously, through a suitably defined marker, the presence or absence of DL-induced effects on the turbulent flame, to quantify the DL effects on the flame propagation and morphology and, finally, to asses whether such effects are mitigated or suppressed as the turbulence intensity is increased. The numerical simulations are based on a deficient reactant model which lends itself to a wealth of results from asymptotic theory, such as the determination of stability limits. The skewness of the flame curvature probability density function is identified as an unambiguous morphological marker for the presence or absence of DL effects in a turbulent environment. In addition, the turbulent propagation speed is shown to exhibit a distinct dual behavior whereby it is noticeably enhanced in the presence of DL instability while it is unchanged otherwise. Furthermore, increasing the turbulence intensity is found to be mitigating with respect to DL-induced effects such as the mentioned dual behavior which disappears at higher intensities. Experimental propane and/or air Bunsen flames are also investigated, utilizing two distinct diameters, respectively, above and below the estimated DL cutoff wavelength. Curvature skewness is still clearly observed to act as a marker for DL instability while the turbulent propagation speed is concurrently enhanced in the presence of the instability.

  5. Computational investigation of flow control by means of tubercles on Darrieus wind turbine blades

    Science.gov (United States)

    Sevinç, K.; Özdamar, G.; Şentürk, U.; Özdamar, A.

    2015-09-01

    This work presents the current status of the computational study of the boundary layer control of a vertical axis wind turbine blade by modifying the blade geometry for use in wind energy conversion. The control method is a passive method which comprises the implementation of the tubercle geometry of a humpback whale flipper onto the leading edge of the blades. The baseline design is an H-type, three-bladed Darrieus turbine with a NACA 0015 cross-section. Finite-volume based software ANSYS Fluent was used in the simulations. Using the optimum control parameters for a NACA 634-021 profile given by Johari et al. (2006), turbine blades were modified. Three dimensional, unsteady, turbulent simulations for the blade were conducted to look for a possible improvement on the performance. The flow structure on the blades was investigated and flow phenomena such as separation and stall were examined to understand their impact on the overall performance. For a tip speed ratio of 2.12, good agreement was obtained in the validation of the baseline model with a relative error in time- averaged power coefficient of 1.05%. Modified turbine simulations with a less expensive but less accurate turbulence model yielded a decrease in power coefficient. Results are shown comparatively.

  6. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability

    Science.gov (United States)

    Yu, Rixin; Bai, Xue-Song; Bychkov, Vitaly

    2015-12-01

    By using large scale numerical simulations, we obtain fractal structure, which develops at originally planar flame fronts due to the hydrodynamic Darrieus-Landau (DL) instability bending the fronts. We clarify some important issues regarding the DL fractal flames, which have been debated for a long time. We demonstrate an increase of the flame propagation speed with the hypothetic channel width, which controls the length scale of the instability development. We show that this increase may be fitted by a power law indicating the mean fractal properties of the flame front structure. The power exponent in this law is found to be not a universal constant, rather it depends on the flame properties—on the density drop at the front. Using box counting on the simulated flame front shapes we show the fractal flame dimension at the intermediate scale is smaller than the one given by the power law, but it has a similar dependency on the density drop. We also obtain a formation of pockets at the DL fractal flame fronts, which previously has been associated only with turbulent burning.

  7. Dynamical study of the Darrieus-type turbine runners by using finite element method; Estudo da dinamica de turbinas hidraulicas mare-motrizes do tipo Darrieus atraves do metodo dos elementos finitos

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Manoel Jose dos Santos; Mesquita, Andre Luiz Amarante [Para Univ., Belem, PA (Brazil). Dept. de Engenharia Mecanica. Grupo de Turbomaquinas]. E-mail: gtdem@ufpa.br

    2000-07-01

    The purpose of this work is describe the implementation of a finite element model for dynamic response analysis of Darrieus-type turbine runners. A fluid-structure coupling is be used to put in evidence some aspects of the rotor-water interaction. The rotating system fixed to the rotor will be used when writing the equations governing the system. A procedure using the ANSYS Parametric Design Language is discussed and some results obtained for the free-free configuration are shown. (author)

  8. CFD study of a twisted blade H-Darrieus wind turbine

    Directory of Open Access Journals (Sweden)

    Rajat Gupta, Rituraj Gautam, Siddhartha Sankar Deka

    2014-01-01

    Full Text Available In this paper, a two-dimensional Computational Fluid Dynamics (CFD study of the performance of a H-Darrieus turbine with three twisted blade had been carried out. The chord length of each blade is 5cm and the blade height is considered to be same for all the rotors. A two dimensional (2D model of the turbine was designed in CATIA V5R19 software and a k-epsilon turbulence closure was adopted with the unstructured mesh generated around the rotor modeled in GAMBIT 2.3.16. The inlet velocities and the rotational speeds are taken from the experimental results and the CFD analysis was carried out in CFD Code-FLUENT 6.3.26. From the CFD analysis, power coefficient (Cp and torque coefficient (Ct at three different H/D ratios of 1.13, 1.31 and 1.55 respectively were calculated and compared with available experimental results. The computational analysis showed that the highest values of Cp (0.525 and Ct (0.95 were obtained at H/D ratios of 1.31 and 1.13 respectively. The deviation of computational Cp from experimental Cp was within ±3.08 % and that of computational Ct from experimental Ct was within ±1.106 %. A study of the flow behaviour around the rotor was also carried out using the pressure contours and velocity vectors plots. A maximum pressure drop is obtained for H/D ratio of 1.31 and a vortex reattachment near rear blade of rotor with H/D ratio of 1.31 was observed from the pressure contours and velocity vectors plots. The vortex attachment to the blade of the rotor enhances the lift coefficient of the rotor which helps in improving the power coefficient of the rotor. The comparison between the computational results and previous experimental work is pretty encouraging.

  9. A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2015-09-01

    Full Text Available Models are crucial in the engineering design process because they can be used for both the optimization of design parameters and the prediction of performance. Thus, models can significantly reduce design, development and optimization costs. This paper proposes a novel equivalent electrical model for Darrieus-type vertical axis wind turbines (DTVAWTs. The proposed model was built from the mechanical description given by the Paraschivoiu double-multiple streamtube model and is based on the analogy between mechanical and electrical circuits. This work addresses the physical concepts and theoretical formulations underpinning the development of the model. After highlighting the working principle of the DTVAWT, the step-by-step development of the model is presented. For assessment purposes, simulations of aerodynamic characteristics and those of corresponding electrical components are performed and compared.

  10. Electric Circuit Model for the Aerodynamic Performance Analysis of a Three-Blade Darrieus-Type Vertical Axis Wind Turbine: The Tchakoua Model

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2016-10-01

    Full Text Available The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric circuit model for Darrieus-type vertical axis wind turbine (DT-VAWT rotors. The novel Tchakoua model is based on the mechanical description given by the Paraschivoiu double-multiple streamtube model using a mechanical‑electrical analogy. Model simulations were conducted using MATLAB for a three-bladed rotor architecture, characterized by a NACA0012 profile, an average Reynolds number of 40,000 for the blade and a tip speed ratio of 5. The results obtained show strong agreement with findings from both aerodynamic and computational fluid dynamics (CFD models in the literature.

  11. Side-wall effect of runner casing on performance of Darrieus-type hydro turbine with inlet nozzle for extra-low head utilization

    Institute of Scientific and Technical Information of China (English)

    Kai; SHIMOKAWA; Akinori; FURUKAWA; Kusuo; OKUMA; Daisuke; MATSUSHITA; Satoshi; WATANABE

    2010-01-01

    A ducted Darrieus-type turbine has been proposed for hydropower utilization of extra-low head less than 2 m.Though the hydro turbine system,in general,might consist of an intake,runner casing section and a draft tube for higher efficiency operation,it was clarified in previous experiment that there was no need of the side-walls of runner casing section and a draft-tube for keeping the efficiency high in the case of duct with an inlet nozzle.This would yield a simplification of the structure of the turbine system.In order to reconfirm this result for large-sized turbine with 560 mm×300 mm duct,instead of small-sized one with 400 mm×200 mm duct,the side-wall effect on turbine performance was experimentally investigated for three-or four-bladed runner.In the present paper,the experimental results are shown with considering flow behaviors in the runner section.

  12. On the dynamic behavior of a wind turbine-generator system with a Darrieus-Savonius hybrid wind turbine; Hybrid furyoku turbine wo mochiita furyoku hatsuden system no kyodo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, T.; Tanzawa, Y.; Hashizume, T.; Ota, E. [Waseda University, Tokyo (Japan). School of Science and Engineering; Terashima, Y.; Machiyama, T. [Nippon Institute of Technology, Saitama (Japan)

    1997-03-25

    In order to clarify the dynamic characteristics of a self-controlled Darrieus-Savonius hybrid wind turbine system, a system consisting of a hybrid wind turbine and an AC generator was tested under various wind conditions in the wind tunnel. We took up four types of wind blowing change for the test; ramp, sinusoidal and square wind velocity changes and a similar wind velocity change to the field wind. A series of tests substantiated the effectiveness of our operating scheme wherein the tip speed ratio is maintained at a constant value. On the other hand, theoretical studies have been carried out on the characteristics of the system. A simulation model is presented in order to describe the system characteristics not only for the steady-state behavior but also for the dynamic behavior. In spite of its simplicity, the model can predict both characteristics of the system well. The appropriateness of the simulation model is confirmed by comparing with the experimental results. -In addition, the field test data are discussed. As a result, it is confirmed that the system is operated and controlled satisfactorily in the field. 14 refs., 19 figs., 3 tabs.

  13. 一种提高Darrieus型海流能转换装置性能方法的研究%A Study on a Method to Improve the Hydrodynamic Performance of a Darrieus Marine Current Turbine

    Institute of Scientific and Technical Information of China (English)

    孙晓晶; 黄典贵; 吴国庆

    2011-01-01

    Most marine current turbines currently under development can be divided into horizontal axis and vertical axis. A weak self-starting ability and low efficiency of energy conversion are the main obstacles on the way of a commercial application of vertical-axis marine current devices. In this paper, an approach is numerically investigated, which aims to improve the performance of vertical-axis marine current device through the installation of several straight plates around its periphery. The efficiency of a Darrieus-type marine current turbine with and without surrounding plates has been compared and the results indicate that these plates can form a narrow entrance in front of the device and effectively accelerate the water speed to increase the power output. Meanwhile due to its low cost, this approach has great potential to be applied to an actual project.%目前大多数海流能发电装置的设计可分为水平轴和垂直轴两类。起动性能差、能量利用率低是限制垂直轴海流能转换装置进行商业化应用的主要障碍。本文以Darrieus型垂直轴海流能装置为例,通过数值模拟分析,对在其周边以一定角度添加竖直平板来提高其性能的方法进行b 研究。结果表明这些平板可以在装置前方形成一个导流加速的通道,从而可以有效地提高这类装置的能量转换率。同时由于造价低廉,使这种方法在实际工程中具有很大的应用潜力。

  14. Control design for two-bladed wind turbines

    NARCIS (Netherlands)

    Van Solingen, E.

    2015-01-01

    In the past decades wind energy has evolved into a mature source of sustainable energy such that onshore wind turbines have become cost competitive with other fossil-based energy sources. Onshore wind energy, however, faces social resistance and a lack of available locations. Offshore wind energy,

  15. Control design for two-bladed wind turbines

    NARCIS (Netherlands)

    Van Solingen, E.

    2015-01-01

    In the past decades wind energy has evolved into a mature source of sustainable energy such that onshore wind turbines have become cost competitive with other fossil-based energy sources. Onshore wind energy, however, faces social resistance and a lack of available locations. Offshore wind energy,

  16. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  17. Wind tunnel tests of sailwings for Darrieus rotors

    Science.gov (United States)

    Revell, P. S.; Everitt, K. W.

    Wind tunnel tests have been made to investigate the aerodynamics of sailwings intended for use in vertical axis wind turbines. The tests were made over the full range of angles of incidence and used a number of different membranes and pre-tensions. The majority of tests used a rigid trailing edge but a limited number of tests was made using a wire or nylon cord in a circular-arc shaped trailing-edge. The tangential and radial force coefficients were measured as also was the chordwise component of membrane tension. It is concluded that such turbines should produce a high starting torque and that their performance will be influenced by the trailing edge elasticity and pre-tension at quite low tip speed ratios.

  18. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    Science.gov (United States)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  19. A Two-Bladed Teetering Hub configuration for the DTU 10 MW RWT: loads considerations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Aagaard Madsen, Helge; Rasmussen, Flemming

    2014-01-01

    , and the rotor solidity is kept constant by increasing the blade chord by 50 %. The configuration allows saving 30 % of the rotor weight and material, corresponding to one blade, but implies several complications: lower power output due to increased tip losses effects, and increased load variations. The increase...

  20. A Two-Bladed Teetering Hub configuration for the DTU 10 MW RWT: loads considerations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Aagaard Madsen, Helge; Rasmussen, Flemming

    , and the rotor solidity is kept constant by increasing the blade chord by 50 %. The configuration allows saving 30 % of the rotor weight and material, corresponding to one blade, but implies several complications: lower power output due to increased tip losses effects, and increased load variations. The increase...

  1. CFD analysis of rotating two-bladed flatback wind turbine rotor.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, David, CA); Chao, David D.; Berg, Dale E. (University of California, David, CA)

    2008-04-01

    The effects of modifying the inboard portion of the NREL Phase VI rotor using a thickened, flatback version of the S809 design airfoil are studied using a three-dimensional Reynolds-averaged Navier-Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The calculated results for the baseline Phase VI rotor are benchmarked against wind tunnel results obtained at 10, 7, and 5 meters per second. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, flatback blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors.

  2. Transient power coefficients for a two-blade Savonius wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Naterer, G. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    The wind power industry had a 29 percent growth rate in installed capacity in 2008, and technological advances are helping to speed up growth by significantly increasing wind turbine power yields. While the majority of the industry's growth has come from large horizontal axis wind turbine installations, small wind turbines can also be used in a wide variety of applications. This study predicted the transient power coefficient for a Savonius vertical axis wind turbine (VAWT) wind turbine with 2 blades. The turbine's flow field was used to analyze pressure distribution along the rotor blades in relation to the momentum, lift, and drag forces on the rotor surfaces. The integral force balance was used to predict the transient torque and power output of the turbine. The study examined the implications of the addition of a second blade on the model's ability to predict transient power outputs. Computational fluid dynamics (CFD) programs were used to verify that the formulation can be used to accurately predict the transient power coefficients of VAWTs with Savonius blades. 11 refs., 1 tab., 6 figs.

  3. Electric Motor Whirl Test of a Flottorp Standard Two-Blade Propeller and a Flottorp Standard Two-Blade Propeller Incorporating Nemeth Modified Leading Edge (Whirl Test No. 2355)

    Science.gov (United States)

    1952-08-01

    8217..ment -@onter. The tbest propollers vYre the property of Flottorp 10-nufactur.ing Company, Grand Lapids, ,’Ichigan. The wlhirl test program vas...TYhe fic aciliie of l’jetý’etlh Acronauttical laboratory pr-ohibited them fron A&In Lll scale inet!’llninto the probicrai and t-hey appealcd to Propol

  4. The Internal Stress Evaluation of Pultruded Blades for a Darrieus Wind Turbine

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2013-01-01

    This paper investigates the integrated modeling of a pultruded NACA0018 blade profile which is a part of the FP7 EU project DeepWind. The pultrusion process simulation is combined with the preliminary subsequent in-service load scenario. In particular, the process induced residual stresses and di...

  5. The Internal Stress Evaluation of Pultruded Blades for a Darrieus Wind Turbine

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper Henri

    2013-01-01

    This paper investigates the integrated modeling of a pultruded NACA0018 blade profile which is a part of the FP7 EU project DeepWind. The pultrusion process simulation is combined with the preliminary subsequent in-service load scenario. In particular, the process induced residual stresses and disto

  6. Modal analysis of a small vertical axis wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Ion NILA

    2012-06-01

    Full Text Available This paper reports a brief study on free vibration analysis for determining parameters such as natural frequencies and mode shapes for vertical axis wind turbines (VAWT for an urban application. This study is focused on numerical work using available finite element software. For further understanding of the wind turbine dynamic analysis, two vibration parameters of dynamic response have been studied, namely natural frequencies and mode shapes.Block Lanczos method has been used to analyze the natural frequency while wind turbine mode shapes have been utilized because of their accuracy and faster solution. In this problem 12 modes of structure have been extracted.

  7. Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil

    DEFF Research Database (Denmark)

    Chougle, Prasad Devendra

    , as big as 10 MW wind energy convertors. Today wind turbines are the biggest structures on the earth. The knowledge and experiences from aviation and a construction industry has made quicker developments in the wind turbines. This research work is aimed at design and development of a small wind turbine....... Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical...... for validation. In this PhD research, a development of wind turbine rotor is planned based on the multi-element airfoil technology used in aviation for aeroplanes. A method of experimental and numerical analysis is combined together for successful research. A double-element airfoil design is carried out...

  8. Analysis and test results for a two-bladed, passive cycle pitch, horizontal-axis wind turbine in free and controlled yaw

    Energy Technology Data Exchange (ETDEWEB)

    Holenemser, K.H. [Washington Univ., St. Louis, MO (United States)

    1995-10-01

    This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including those done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.

  9. Design and fabrication of a low cost Darrieus vertical axis wing turbine system. Phase I. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-06-22

    The contract has two phases, a design phase and a fabrication and installation phase. Presented is the work completed in Phase I, the design phase. The Sandia 17 m was used as the background machine from which design information was drawn. By concentrating the modifications on an existing design, emphasis was focused on component cost reduction rather than selection of optimal configuration or operating modes. The resulting design is a stretched version of the Sandia 17 m preserving the same rotor diameter and many other good features, but in the meantime lighter in weight, larger in capacity, and anticipated to be more cost effective.

  10. Performance of Combined Water Turbine with Semielliptic Section of the Savonius Rotor

    OpenAIRE

    Kaprawi Sahim; Dyos Santoso; Agus Radentan

    2013-01-01

    The Darrieus turbine is a suitable power generation in free stream flow because it is simple in construction, but it has the disadvantage of its small starting torque. The Savonius turbine has a high starting torque but the efficiency is smaller than that of Darrieus turbine. To improve the starting torque of Darrieus turbine, the Savonius buckets are introduced into the Darrieus turbine and the combined turbine is called Darrieus-Savonius turbine. In this study, three semielliptic sections o...

  11. Wind energy in Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Various types of wind energy systems were described. The most popular wind energy system uses a high speed propeller, and has a typical efficiency of 40 per cent. A 3 kW two blade propeller wind energy system was set up as a demonstration project at Fort Whyte Centre in Winnipeg, Manitoba. It generates about four per cent of the electrical requirements of the centre. Other types of wind energy systems include the Darrieus wind energy system using a wind turbine, the Savonius and Multiblade systems, and Hybrid systems. A group of wind energy systems working together is known as a wind farm; such farms have been in operation for many years in high wind areas of the USA. In Manitoba, no wind energy system operates for the sole purpose of generating and selling electricity to a local utility, but some wind energy systems can feed surplus energy into the utility system. A review of environmental impacts, economic considerations and an assessment of wind resources within Manitoba, was also provided. 4 figs.

  12. Performance of Combined Water Turbine with Semielliptic Section of the Savonius Rotor

    Directory of Open Access Journals (Sweden)

    Kaprawi Sahim

    2013-01-01

    Full Text Available The Darrieus turbine is a suitable power generation in free stream flow because it is simple in construction, but it has the disadvantage of its small starting torque. The Savonius turbine has a high starting torque but the efficiency is smaller than that of Darrieus turbine. To improve the starting torque of Darrieus turbine, the Savonius buckets are introduced into the Darrieus turbine and the combined turbine is called Darrieus-Savonius turbine. In this study, three semielliptic sections of aspect ratio 0.8 were used for Savonius bucket while the Darrieus blade used three wings of airfoil NACA 0015. The Darrieus-Savonius turbine’s performances were studied experimentally in an irrigation canal of South Sumatera, Indonesia. The results show that the distance of Savonius buckets from the shaft centre influences performance of combined turbine, and the attachment angle of Savonius rotor made important variation of turbine performance.

  13. Mechanical power efficiency of modified turbine blades

    Science.gov (United States)

    Mahmud, Syahir; Sampebatu, Limbran; Kwang, Suendy Ciayadi

    2017-01-01

    Abstract-The problem of energy crisis has become one of the unsolved issues until today. Indonesia has a lot of non-conventional energy sources that does not utilized effectively yet. For that the available resources must utilized efficiently due to the energy crisis and the growing energy needs. Among the abundant resources of energy, one potential source of energy is hydroelectric energy. This research compares the mechanical power efficiency generated by the Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. The comparation of the mechanical power amongst the three turbine starts from the measurement of the water flow rate, water temperature, turbine rotation and force on the shaft on each type of turbine. The comparison will show the mechanical power efficiency of each turbine to find the most efficient turbine that can work optimally. The results show that with 0.637m/s flow velocity and 44.827 Watt of water flow power, the Darrieus-Savonius turbine can generate power equal to 29.927 Watt and shaft force around by 17 N. The Darrieus-Savonius turbine provides around 66.76% efficiency betwen the three turbines; Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. Overall, the Darrieus Savonius turbine has the ability to work optimally at the research location.

  14. Experimental and Numerical Study of Rotor Dynamics of a Two- and Three-Bladed Wind Turbine

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Kim, Taeseong

    2016-01-01

    In this paper the dynamics of a two-bladed turbine is investigated numerically as well as experimentally with respect to how the turbine frequencies change with the rotor speed. It is shown how the turbine frequencies of a two-bladed rotor change with the azimuthal position at standstill and how ...

  15. Dynamic Analysis of a Floating Vertical Axis Wind Turbine Under Emergency Shutdown Using Hydrodynamic Brake

    DEFF Research Database (Denmark)

    Wang, K.; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    Emergency shutdown is always a challenge for an operating vertical axis wind turbine. A 5-MW vertical axis wind turbine with a Darrieus rotor mounted on a semi-submersible support structure was examined in this study. Coupled non-linear aero-hydro-servo-elastic simulations of the floating vertical...

  16. Design And Analysis Of Savonius Wind Turbine Blades

    OpenAIRE

    2015-01-01

    There are two kinds of wind turbines according to the axis of rotation to the ground, horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). VAWTs include both a drag type configuration like Savonius wind turbine and a lift-type configuration like Darrieus wind turbine. Savonius wind rotor has many advantages such as low starting speeds and no need for external torque for its starting. Moreover it is cheaper in construction and has low maintenance. It is inde...

  17. 水轮机

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Heat-storage characteristics of LongTan hydroelectric station's building enclosure in China;Integrated maintenance features of hydro turbine governors;Latest progress of design and manufacturing for hydro turbine in China;Life Damage of Shaft and Spider in Hydraulic Generator Unit Based on Vibration Signal;On Applicability of Darrieus-type Cross Flow Water Turbine for Abandoned Hydro and Tidal Powers……

  18. Efisiensi Prototipe Turbin Savonius pada Kecepatan Angin Rendah

    OpenAIRE

    Melda Latif

    2013-01-01

    Wind energy can be transformed into electrical energy using wind turbine. Based on rotation axis, there are two types of wind turbine, namely turbine with horizontal axis and the one with vertical axis. Turbine with vertical axis has been known with various names that are Darrieus turbine, Savonius turbine and H turbine. This research designed and implemented a prototype of simple Savonius turbine for small scale wind speed. Resistor with resistance of 200 ohm and LED are used as the load. Ma...

  19. Modélisation des hydroliennes à axe vertical libres ou carénées : développement d'un moyen expérimental et d'un moyen numérique pour l'étude de la cavitation

    OpenAIRE

    Aumelas, Vivien

    2011-01-01

    The general context of the present thesis is renewable energies within the HARVEST project, which consists in a water current turbine (WCT) development, inspired from the Darrieus and Gorlov geometries. The main advantage of the HARVEST WCT is the introduction of a channelling device, which allows extracting a bigger amount of the kinetic energy contained in the flowstream. However, the shrouding device can eventually increase cavitating risks, which generally damage the WCT itself and its pe...

  20. A new concept of floating turbine for using in high seas; Um novo conceito de turbina flutuante para uso em alto mar

    Energy Technology Data Exchange (ETDEWEB)

    Vita, Luca; Paulsen, Uwe Schmidt; Pedersen, Troels Friis; Madsen, Helge Aagaard; Rasmussen, Flemming [Technical University of Denmark (Risoe-DTU), Copenhagen (Denmark). National Laboratory for Sustainable Energy

    2010-02-15

    The wind turbine presented is presented in this paper, which utilizes Darrieus vertical axis rotor, can indicate the way for the future big farms in deep waters. The main object of the project is to simplify and reduce total costs of the wind plants in open seas. They are described as basic ideas, mean details of the components and procedures of operation and maintenance. (author)

  1. International Symposium on Wind Energy Systems, Held at Cambridge University, on 7-9 September 1976

    Science.gov (United States)

    1976-12-07

    vertical axis turbine which is of current interest im the " Savonius " roto:x which consists of solid fins that form continuous s-shaped curves when viewed...Darrieus and Savonius rotors. The model assumemo inviscid flow, but Lissaman suggests modifications to account for viscous effects. For "low chordal...actuator analysis) quadratic function of the wlndwise interference factor. The analysis for the high chordal ratio Savonius rotor is a good deal more complex

  2. Experimental studies for the vertical-axis hybrid wind turbine; Suichiyokuziku haiburiddo hoshiki fusya ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, M.; Ushiyama, I. [Ashikaga Institute Of Technology, Tochigi (Japan); Inoh, M.; Hiroki, T. [NihondenkiSeiki Corp., Tokyo (Japan)

    1997-06-01

    Advantages and disadvantages of Darrieus type and Savonius type turbines as the wind energy generation system are described and the above-titled wind turbine is proposed to improve the drawback of poorer output performance in case of hybrid of these 2 types than that of independent Darrieus type. The layout of wind channel equipment and the hybrid system of conventional direct type and that of the clutch type prototype are explained with consideration on the test results. When compared 2 blades of 136mm chord length to 3 blades of 90mm chord length in terms of torque and power properties, the prototype showed a performance for the both properties 20% better than those of conventional type, particularly in the case of 3 blades, both the maximum power and the torque coefficients became about half of those of 2 blades. Further, a prototype wind turbine was designed and fabricated according to the theory of single tube of flow with regard to the straight Darrieus type and tested in association with Savonius type turbine as well as the latter alone and the results for each case were compared and examined. As for the conclusion, the usefulness of clutch connection and its effect of improvement became more remarkable along with the increase of wind speed and so forth are indicated. 7 refs., 14 figs., 2 tabs.

  3. Development of a 5.5 m diameter vertical axis wind turbine, phase 3

    Science.gov (United States)

    Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.

    1982-06-01

    In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.

  4. Matching of wind turbine type and system scale to wind conditions; Chiten no fukyo ni taisuru furyoku turbine no keitai to sytem taikaku no seigosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, T. [Japan Society for the Promotion of Science, Tokyo (Japan); Tanzawa, Y. [Nippon Institute of Technology, Saitama (Japan); Ota, E. [Waseda University, Tokyo (Japan). School of Science and Engineering; Hashizume, T.

    2000-09-25

    The matching of the wind turbine type and system scale of the stand-alone wind turbine generator system to wind conditions is investigated using our dynamic simulation model. This paper examines three types of wind turbines: the Darrieus-Savonius hybrid wind turbine, the Darrieus turbine proper and the up-wind Propeller turbine. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient. As a computed result of the net extracting energy under fluctuations of wind speed and direction, the Darrieus turbine proper has little conformability to wind fluctuations because of its output characteristics. As for other wind turbines, large-scale systems do not always have advantages over small-scale systems as the effect of the dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine under wind direction fluctuations is much reduced when compared with that of the hybrid wind turbine. Thus, it is concluded that the appropriate wind turbine type and system scale exist for each wind condition. (author)

  5. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  6. Wind tunnel tests on slow-running vertical-axis wind-rotors

    Science.gov (United States)

    Sivasegaram, S.

    1981-09-01

    This paper summarizes the results of investigations on the Savonius-type, slow-running, vertical-axis wind-rotors as well as on rotor designs on different subclasses under comparable design and test conditions. It is seen that the performance of the conventional Savonius rotor could be considerably improved upon and the best results are achieved by using two-bladed rotors with a more sophisticated sectional profile than in the conventional design. Rotors with several blades, although capable of considerably higher performance than the Savonius rotor, do not appear to be as good as those with two blades and improved sectional geometry.

  7. Structural Dynamic Analysis of Semi-Submersible Floating Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Jeremiah Ishie

    2016-12-01

    Full Text Available The strong and stable wind at offshore locations and the increasing demand for energy have made the application of wind turbines in deeper water surge. A novel concept of a 5 MW baseline Floating Vertical Axis Wind Turbine (FVAWT and a 5 MW optimised FVAWT with the DeepWind Darrieus rotor and the optimised DeepWind Darrieus rotor, respectively, were studied extensively. The structural responses, fatigue damages, platform global motions and mooring line dynamics of the FVAWTs were investigated comprehensively during normal operating conditions under steady wind and turbulent wind conditions, using a coupled non-linear aero-hydro-servo-elastic code (the Simo-Riflex-DMS code which was developed by Wang et al. for modeling FVAWTs. This coupled code incorporates the models for the turbulent wind field, aerodynamics, hydrodynamics, structural dynamics, and generator controller. The simulation is performed in a fully coupled manner in time domain. The comparison of responses under different wind conditions were used to demonstrate the effect of turbulence on both FVAWTs dynamic responses. The turbulent wind condition has the advantage of reducing the 2P effects. Furthermore, comparative studies of the FVAWTs responses were undertaken to explore the advantages of adopting the optimised 5 MW DeepWind Darrieus rotor over the baseline model. The results identified the 5 MW optimised FVAWT to having: lower Fore-Aft (FA but higher lower Side-Side (SS bending moments of structural components; lower motions amplitude; lower short-term fatigue equivalent loads and a further reduced 2P effects.

  8. Performance Investigation of A Mix Wind Turbine Using A Clutch Mechanism At Low Wind Speed Condition

    Science.gov (United States)

    Jamanun, M. J.; Misaran, M. S.; Rahman, M.; Muzammil, W. K.

    2017-07-01

    Wind energy is one of the methods that generates energy from sustainable resources. This technology has gained prominence in this era because it produces no harmful product to the society. There is two fundamental type of wind turbine are generally used this day which is Horizontal axis wind turbine (HAWT) and Vertical axis wind turbine (VAWT). The VAWT technology is more preferable compare to HAWT because it gives better efficiency and cost effectiveness as a whole. However, VAWT is known to have distinct disadvantage compared to HAWT; self-start ability and efficiency at low wind speed condition. Different solution has been proposed to solve these issues which includes custom design blades, variable angle of attack mechanism and mix wind turbine. A new type of clutch device was successfully developed in UMS to be used in a mix Savonius-Darrieus wind turbine configuration. The clutch system which barely audible when in operation compared to a ratchet clutch system interconnects the Savonius and Darrieus rotor; allowing the turbine to self-start at low wind speed condition as opposed to a standalone Darrieus turbine. The Savonius height were varied at three different size in order to understand the effect of the Savonius rotor to the mix wind turbine performance. The experimental result shows that the fabricated Savonius rotor show that the height of the Savonius rotor affecting the RPM for the turbine. The swept area (SA), aspect ratio (AR) and tip speed ratio (TSR) also calculated in this paper. The highest RPM recorded in this study is 90 RPM for Savonius rotor 0.22-meter height at 2.75 m/s. The Savonius rotor 0.22-meter also give the highest TSR for each range of speed from 0.75 m/s, 1.75 m/s and 2.75 m/s where it gives 1.03 TSR, 0.76 TSR, and 0.55 TSR.

  9. Analytical Interaction of the Acoustic Wave and Turbulent Flame

    Institute of Scientific and Technical Information of China (English)

    TENG Hong-Hui; JIANG Zong-Lin

    2007-01-01

    A modified resonance model of a weakly turbulent flame in a high-frequency acoustic wave is derived analytically.Under the mechanism of Darrieus-Landau instability, the amplitude of flame wrinkles, which is as functions of turbulence. The high perturbation wave number makes the resonance easier to be triggered but weakened with respect to the extra acoustic wave. In a closed burning chamber with the acoustic wave induced by the flame itself, the high perturbation wave number is to restrain the resonance for a realistic flame.

  10. 水能

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An Undergraduate Research Experience in New Technology Commercialization of PEM Fuel Cells;Barriers against tidal power; CHILD EDUCATION ON RENEWABLE ENERGIES IN PERU; Computer aided design of pumps installed at Hindustan paper corporation LTD. Panchgram, Cachar paper mill (Assam);DEGREE OF CENTRALIZATION, DISTRIBUTION, AND WAYS FOR OPTIMIZATION OF HEAT LOAD OF INDUSTRIAL HUBS IN THE RUSSIAN FEDERATION; Experimental Study on Water Turbine Characteristics of Darrieus Type Runner with Staggered Blade Arrangement;Following the plan: Stephen Watson reports on development in the water use planning process in place at the ash river hydroelectric facility in British Columbia;

  11. Tentative Study on Performance of Darriues-Type Hydroturbine Operated in Small Open Water Channel

    Science.gov (United States)

    Matsushita, D.; Moriyama, R.; Nakashima, K.; Watanabe, S.; Okuma, K.; Furukawa, A.

    2014-03-01

    The development of small hydropower is one of the realistic and preferable utilizations of renewable energy, but the extra-low head hydropower less than 2 m is almost undeveloped yet for some reasons. The authors have developed several types of Darrieus-type hydro-turbine system, and among them, the Darrieus-turbine with a wear and a nozzle installed upstream of turbine is so far in success to obtain more output power, i.e. more shaft torque, by gathering all water into the turbine. However, there can several cases exist, in which installing the wear covering all the flow channel width is unrealistic. Then, in the present study, the hydraulic performances of Darrieus-type hydro-turbine with the inlet nozzle is investigated, putting alone in a small open channel without upstream wear. In the experiment, the five-bladed Darrieus-type runner with the pitch-circle diameter of 300 mm and the blade span of 300 mm is vertically installed in the open channel with the width of 1,200 mm. The effectiveness of the shape of the inlet nozzle is also examined using two types of two-dimensional symmetric nozzle, the straight line nozzle (SL nozzle) with the converging angle of 45 degrees and the half diameter curved nozzle (HD nozzle) whose radius is a half diameter of runner pitch circle. Inlet and outlet nozzle widths are in common for the both nozzles, which are 540 mm and 240 mm respectively. All the experiments are carried out under the conditions with constant flow rate and downstream water level, and performances are evaluated by measured output torque and the measured head difference between the water levels upstream and downstream of the turbine. As a result, it is found that the output power is remarkably increased by installing the inlet nozzle, and the turbine with SL nozzle produces larger power than that with HD nozzle. However, the peak efficiency is deteriorated in both cases. The speed ratio defined by the rotor speed divided by the downstream water velocity at

  12. WIND ENERGY – ECOSUSTAINABILITY ENGINEERING SOLUTION

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2013-05-01

    Full Text Available Renewables provides increased safety energy supply and limiting imports of energy resources, interms of sustainable economic development. The new requirements for sustainable development have determinedthe world to put the issue of energy production methods and increase the share of energy produced fromrenewable energy. This paper presents the history of wind power, advantages and disadvantages of renewableenergy, particularly wind energy as an alternative source of energy. Windmills can be horizontal axis or verticalaxis Savonius and Darrieus rotor. Latest innovations allow operation of variable speed wind turbines, or turbinespeed control based on wind speed. Wind energy is considered one of the most sustainable choices betweenvariants future wind resources are immense.

  13. Kinetic energy entrainment in wind turbine and actuator disc wakes: an experimental analysis

    NARCIS (Netherlands)

    Lignarolo, L.E.M.; Ragni, D.; Simao Ferreira, C.J.; Van Bussel, G.J.W.

    2014-01-01

    The present experimental study focuses on the comparison between the wake of a two-bladed wind turbine and the one of an actuator disk. The flow field at the middle plane of the wake is measured with a stereoscopic particle image velocimetry setup, in the low-speed Open Jet Facility wind tunnel of t

  14. Comparison between PIV measurements and computations of the near-wake of an actuator disc

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Lignarolo, L. E. M.; Ragni, D.

    2014-01-01

    Experimental stereoscopic PIV measurements in the wake of a two-bladed rotor and a porous actuator disc are compared to numerical simulation of an actuator disc. Compared to previous literature, the focus of the present analysis is on the near wake, where the actuator discs fail to represent...

  15. Kinetic energy entrainment in wind turbine and actuator disc wakes: an experimental analysis

    NARCIS (Netherlands)

    Lignarolo, L.E.M.; Ragni, D.; Simao Ferreira, C.J.; Van Bussel, G.J.W.

    2014-01-01

    The present experimental study focuses on the comparison between the wake of a two-bladed wind turbine and the one of an actuator disk. The flow field at the middle plane of the wake is measured with a stereoscopic particle image velocimetry setup, in the low-speed Open Jet Facility wind tunnel of t

  16. Effect of blade flutter and electrical loading on small wind turbine noise

    Science.gov (United States)

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  17. Special Operations Aerial Mobility Vehicle Training Syllabus

    Science.gov (United States)

    2013-12-01

    powered glider. (9) A fixed-pitch, semi-rigid, teetering, two- blade rotor system, if a gyroplane...Kts) Notes NorthWing Apache XC $55K 2 490 335 780 65 Soft, folding wing ParaJet Sky Runner $118 K 1 500 200 100 55 Collapsing wing

  18. Giromill wind tunnel test and analysis. Volume II. Technical discussion. Final report, June 1976--October 1977

    Energy Technology Data Exchange (ETDEWEB)

    Moran, W.A.

    1977-10-01

    A wind tunnel test of a Giromill rotor was conducted. The objective of this test was to substantiate the performance computed by the Larsen cyclogiro vortex theory. Additional objectives were to obtain performance comparison data between the Giromill, a sinusoidal blade modulation Giromill, a Darrieus rotor, and a modified Darrieus rotor that flips the blades a few degrees. A three bladed Giromill rotor having a diameter of 2.13 m (7 ft) and a span of 1.52 m (5 ft) was tested in the McDonnell Aircraft Company 15 x 20 ft Mini Speed Wind Tunnel. The blade modulations were accomplished through use of a cam and push rod arrangement. Replaceable cams provided the desired blade modulation at the various operating points. Various operating conditions were achieved by adjusting the rotor RPM and tunnel speed. The results show that the Giromill has good performance, equal to or much better than that predicted by theory, and outperforms the other types of vertical axis wind turbines tested.

  19. Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine

    Science.gov (United States)

    Mabrouk, Imen Bel; El Hami, Abdelkhalak; Walha, Lassâad; Zghal, Bacem; Haddar, Mohamed

    2017-02-01

    Dynamic analysis of Darrieus turbine bevel spur gear subjected to transient aerodynamic loads is carried out in the present study. The aerodynamic torque is obtained by solving the two dimensional unsteady incompressible Navies Stocks equation with the k-ω shear stress transport turbulence model. The results are presented for several values of tip speed ratio. The two-dimensional Computational Fluid Dynamics model is validated with experimental results. The optimum tip speed ratio is achieved, giving the best overall performance. In this study, we developed a lamped mass dynamic model with 14 degrees of freedom. This model is excited by external and internal issues sources. The main factors of these excitations are the periodic fluctuations of the gear meshes' stiffness and the unsteady aerodynamic torque oscillations. The vibration responses are obtained in time and frequency domains. The originality of our work is the correlation between the complexity of the aerodynamic phenomenon and the non-stationary dynamics vibration of the mechanical gearing system. The effect of the rotational speed on the dynamic behavior of the Darrieus turbine is also discussed. The present study shows that the variation of rotor rotational speed directly affects the torque production. However, there is a small change in the dynamic vibration of the studied gearing system.

  20. Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

    Directory of Open Access Journals (Sweden)

    Le Tuyen Quang

    2014-06-01

    Full Text Available In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR. First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flowdriven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

  1. A retrospective of VAWT technology.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.; Sutherland, Herbert J. (HJS Consulting, Albuquerque, NM); Berg, Dale E.

    2012-01-01

    The study of Vertical-Axis Wind Turbine (VAWT) technology at Sandia National Laboratories started in the 1970's and concluded in the 1990's. These studies concentrated on the Darrieus configurations because of their high inherent efficiency, but other configurations (e.g., the Savonius turbine) were also examined. The Sandia VAWT program culminated with the design of the 34-m 'Test Bed' Darrieus VAWT. This turbine was designed and built to test various VAWT design concepts and to provide the necessary databases to validate analytical design codes and algorithms. Using the Test Bed as their starting point, FloWind Corp. developed a commercial VAWT product line with composite blades and an extended height-to-diameter ratio. The purpose of this paper is to discuss the design process and results of the Sandia 34-m VAWT Test Bed program and the FloWind prototype development program with an eye toward future offshore designs. This paper is our retrospective of the design, analysis, testing and commercial process. Special emphasis is given to those lessons learned that will aid in the development of an off-shore VAWT.

  2. Model tests of wind turbine with a vertical axis of rotation type Lenz 2

    Directory of Open Access Journals (Sweden)

    Zwierzchowski Jaroslaw

    2017-01-01

    Full Text Available A building design of vertical axis wind turbines (VAWT was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.

  3. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  4. Demonstration of partial pitch 2-bladed wind turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong; Zahle, Frederik; Troldborg, Niels;

    This is the final report for the EUDP project performed from January 2012 to December 2015. The main objective for the project was to demonstrate the potential of the partial pitch two-bladed (PP-2B) technology. DTU Wind Energy took a responsibility for three workpackages (WPs) among 6 WPs which...... were aerodynamic evaluation of partial pitch technology (WP2), aeroelastic analysis of two-bladed turbine (WP3) and On-site testing (WP4). For the WP2, a comprehensive set of 3D CFD simulations including the gap between inner and outer part of the blade and vortex generators (VGs) of both cross...... pitch concept and detailed load analyses were performed. Also the comparison studies between numerical results and experimental results were performed. Moreover stability analyses for the PP- 2B turbine have been performed with HAWC2 and modal analysis using Hill’s method was performed to calculate...

  5. Wind energy conversion. Volume VII. Effects of tower motion on the dynamic response of windmill rotor

    Energy Technology Data Exchange (ETDEWEB)

    Sheu, D.L.

    1978-09-01

    The effects of tower motion on the dynamic response of a windmill rotor are studied. The blade lagging and side tower motion are taken into consideration in the analysis. The equations of motion for the system are a set of linear ordinary differential equations having periodic coefficients. The periodic coefficients of the equations of motion for a three bladed rotor are eliminated by using the multiblade coordinate transformation method. For a two bladed rotor, the equations of motion are solved by using the harmonic balance method. In addition to both methods, the Floquet Transition Matrix method is shown to be an effective way in dealing with the linear ordinary differential equations having periodic coefficients. The differences between the instability regions for a three bladed system and for a two bladed system are discussed.

  6. Effect of the blade arc angle on the performance of a Savonius wind turbine

    OpenAIRE

    2015-01-01

    Savonius wind turbine is a common vertical axis wind turbine which simply comprises two or three arc-type blades and can generate power under poor wind conditions. With the aim of increasing the turbine’s power efficiency, the effect of the blade arc angle on the performance of a typical two-bladed Savonius wind turbine is investigated with a transient computational fluid dynamics method. Simulations were based on the Reynolds Averaged Navier–Stokes equations, and the renormalization group k ...

  7. Yaw control for active damping of structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Control Engineering Lab.

    1996-12-01

    Yaw torque control for reduction of structural dynamic loads in a two-bladed wind turbine is investigated. The models are obtained using rigid-body mechanics. Linear quadratic control theory is utilized for design and analysis. The analysis of two simple examples, where the teeter angle and the tower lateral bending motion are regarded, shows that a time-varying controller has some advantages compared with a time-invariant controller. 6 refs, 9 figs

  8. Optimization Design and Experimental Study of Low-Pressure Axial Fan with Forward-Skewed Blades

    OpenAIRE

    2007-01-01

    This paper presents an experimental study of the optimization of blade skew in low pressure axial fan. Using back propagation (BP) neural network and genetic algorithm (GA), the optimization was performed for a radial blade. An optimized blade is obtained through blade forward skew. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the optimized blade demonstrated improvements in efficiency, total pres...

  9. Wibault two-seat monoplane 8C2 : an all-metal pursuit and observation airplane

    Science.gov (United States)

    Serryer, J

    1926-01-01

    Michel Wibault's two seat monoplane 8C2, is similar to the Parasol pursuit monoplane which preceded it. It has no perishable parts in its structure and needs no special storage or coverings. The sample aeroplane uses a 500 HP Hispano-Suiza engine but can accept a 400-600HP engine from a variety of manufacturers with little difficulty. It uses a two blade tractor propeller.

  10. The Effect of Blade-Section Thickness Ratio on the Aerodynamic Characteristics of Related Full-Scale Propellers at Mach Numbers up to 0.65

    Science.gov (United States)

    Maynard, Julian D; Steinberg, Seymour

    1953-01-01

    The results of an investigation of two 10-foot-diameter, two-blade NACA propellers are presented for a range of blade angles from 20 degrees to 55 degrees at airspeeds up to 500 miles per hour. These results are compared with those from previous investigations of five related NACA propellers in order to evaluate the effects of blade-section thickness ratios on propeller aerodynamic characteristics.

  11. Analysis of Reaction-Diffusion Systems for Flame Capturing in Type Ia Supernova Simulations

    CERN Document Server

    Zhiglo, Andrey V

    2009-01-01

    We present a study of numerical behavior of a thickened flame used in Flame Capturing (FC, Khokhlov (1995)) for tracking thin unresolved physical flames in deflagration simulations. We develop a steady-state procedure for calibrating the flame model used, and test it against analytical results. We observe numerical noises generated by original realization of the technique. Alternative artificial burning rates are discussed, which produce acceptably quiet flames. Two new quiet models are calibrated to yield required "flame" speed and width, and further studied in 2D and 3D setting. Landau-Darrieus type instabilities of the flames are observed. One model also shows significantly anisotropic propagation speed on the grid, both effects increasingly pronounced at larger matter expansion as a result of burning; this makes the model unacceptable for use in type Ia supernova simulations. Another model looks promising for use in flame capturing at fuel to ash density ratio of order 3 and below. That "Model B" yields f...

  12. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  13. 水轮机

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [篇名] A model approach, [篇名 ] A modified neuron model-free controller with PID turning gain for hydroelectric generating units, [篇名 ] An Innovative Hydraulic Turbine Governor for Predictive Maintenance of Hydropower Plant, [篇名] Comparison of water turbine characteristics using different blades in Darrieus water turbines used for tidal current generations, [ 篇名] Development of Broadband Micro-hydraulic Turbine, [ 篇名 ] Development of counter-rotational type machine for hydroelectric power generation (2nd report, hydraulic performance and potential interference of counter-rotating runners), [ 篇名] Exploiting voltage support of voltage-source HVDC, [ 篇名 ] Field operation and performance of a downhole hydraulic submersible multiphase pump.

  14. An evolution equation modeling inversion of tulip flames

    Energy Technology Data Exchange (ETDEWEB)

    Dold, J.W. [Univ. of Bristol (United Kingdom). School of Mathematics; Joulin, G. [E.N.S.M.A., Poitiers (France). Lab. d`Energetique et de Detonique

    1995-02-01

    The authors attempt to reduce the number of physical ingredients needed to model the phenomenon of tulip-flame inversion to a bare minimum. This is achieved by synthesizing the nonlinear, first-order Michelson-Sivashinsky (MS) equation with the second order linear dispersion relation of Landau and Darrieus, which adds only one extra term to the MS equation without changing any of its stationary behavior and without changing its dynamics in the limit of small density change when the MS equation is asymptotically valid. However, as demonstrated by spectral numerical solutions, the resulting second-order nonlinear evolution equation is found to describe the inversion of tulip flames in good qualitative agreement with classical experiments on the phenomenon. This shows that the combined influences of front curvature, geometric nonlinearity and hydrodynamic instability (including its second-order, or inertial effects, which are an essential result of vorticity production at the flame front) are sufficient to reproduce the inversion process.

  15. Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities

    Directory of Open Access Journals (Sweden)

    Olazabal-Loumé M.

    2013-11-01

    Full Text Available The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1,2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [5]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT, ablative Richtmyer-Meshkov (RM and Darrieus-Landau (DL instabilities.

  16. Australasian Conference on Hydraulics and Fluid Mechanics, 7th, Brisbane, Australia, August 18-22, 1980, Preprints of Papers

    Science.gov (United States)

    A review is provided of research and developments in hydraulics in Australasia during the past decade, and aspects of prospecting for wind energy are explored. Power generation from the East Australian current by use of arrays of submerged Darrieus vertical axis turbines is considered along with normal stress measurements for viscoelastic liquids using real time holographic interferometry of the Weissenberg effect, admissibility requirements and the least squares finite element solution for potential flow, two-dimensional solid blockage in a slotted wall wind tunnel, and the dynamic behavior of propeller anemometers. Attention is given to the potential flow signature of a turbulent spot, topographic forcing in nonlinear and linear barotropic models, flow control by secondary injection, friction factors of aqueous electrolyte solutions in pipe flow, the vortex shedding process behind a circular cylinder, and the use of the method of lines for choking flow in a nozzle.

  17. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater

    DEFF Research Database (Denmark)

    Wang, Kai; Moan, Torgeir; Hansen, Martin Otto Laver

    2016-01-01

    Floating vertical-axis wind turbines (FVAWTs) provide the potential for utilizing offshore wind resources in moderate and deep water because of their economical installation and maintenance. Therefore, it is important to assess the performance of the FVAWT concept. This paper presents a stochastic...... dynamic response analysis of a 5MW FVAWT based on fully coupled nonlinear time domain simulations. The studied FVAWT, which is composed of a Darrieus rotor and a semi-submersible floater, is subjected to various wind and wave conditions. The global motion, structural response and mooring line tension....... The global motions and structural responses as a function of the azimuthal angle are studied. Finally, the dynamic response of the FVAWT in selected misaligned wind and wave conditions is analysed to determine the effects of wind-wave misalignment on the dynamic response....

  18. Model improvements for evaluating the effect of tower tilting on the aerodynamics of a vertical axis wind turbine

    DEFF Research Database (Denmark)

    Wang, K.; Hansen, Martin Otto Laver; Moan, T.

    2015-01-01

    is quantified with respect to power, rotor torque, thrust force and the normal force and tangential force coefficients on the blades. Additionally, applications of Glauert momentum theory and pure axial momentum theory are compared to evaluate the effect of the velocity component parallel to the rotor shaft...... be investigated to more accurately predict the aerodynamic loads. This paper proposes certain modifications to the double multiple-streamtube (DMS) model to include the component of wind speed parallel to the rotating shaft. The model is validated against experimental data collected on an H-Darrieus wind turbine...... in skewed flow conditions. Three different dynamic stall models are also integrated into the DMS model: Gormont's model with the adaptation of Strickland, Gormont's model with the modification of Berg and the Beddoes-Leishman dynamic stall model. Both the small Sandia 17m wind turbine and the large Deep...

  19. Concept Specifications/Prerequisites for DeepWind Deliverable D8.1

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Schløer, Signe; Larsén, Xiaoli Guo

    The work is a result of the contributions within the DeepWind project which is supported by the European Commission, Grant 256769 FP7 Energy 2010 - Future emerging technologies, and by the DeepWind beneficiaries: DTU(DK), AAU(DK), TUDELFT(NL), TUTRENTO(I), DHI(DK), SINTEF(N), MARINTEK(N), MARIN......(NL), NREL(USA), STATOIL(N), VESTAS(DK) and NENUPHAR(F). The report discuss the design considerations for offshore wind turbines, both in general and specifically for Darrieus-type floating turbines, as is the focus of the DeepWind project. The project is considered in a North Sea environment, notably close...

  20. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    . In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine......It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... This integrated dynamic model takes into account the wind inflow, aerodynamics, hydrodynamics, structural dynamics (wind turbine, floating platform and the mooring lines) and a generator control. This approach calculates dynamic equilibrium at each time step and takes account of the interaction between the rotor...

  1. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca;

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...... turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating...... support structure and mooring system for the DeepWind concept. The conceptual design is formulated as an optimization problem: Starting with an initial configuration, the optimization procedure tries to find a cheaper solution while satisfying a set of design requirements. This approach utilizes available...

  2. TORNADO concept and realisation of a rotor for small VAWTs

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-09-01

    Full Text Available The concept of a three-tier configuration for a vertical axis rotor was successfully developed into a experimental model. The rotor assembly is divided into three tiers with three straight blades in each tier. The three-tiers are shifted by an angle of 400 generating a full helical flow field inside the rotor. Thereby the new configuration has some different mechanism of torque generation as other Darrieus rotors. The three-tier configuration facilitates the operation by enabling the turbine to self-start at wind velocity as low as 2 m/s with good performance and a smoother driving torque. At the same time the design couples an esthetic appearance with low noise level.

  3. Effect of Difference-frequency Forces on the Dynamics of a Semi-submersible Type FVAWT in Misaligned Wave-wind Condition

    DEFF Research Database (Denmark)

    Wang, Kai; Cheng, Zhengshun; Moan, Torgeir;

    2015-01-01

    With increasing interests in the development of offshore floating vertical axis wind turbines (FVAWTs), a large amount of studies on the FVAWTs have been conducted. This paper focuses on evaluating the effect of second-order difference-frequency force on the dynamics of a 5 MW FVAWT in misaligned...... wave-wind condition. The studied FVAWT is composed of a 5 MW Darrieus rotor, a semi-submersible floater and a catenary mooring system. Fully coupled nonlinear time domain simulations were conducted using the state-of-art code Simo- Riflex-DMS. Several misaligned wave-wind conditions were selected...... to investigate the global dynamic responses of the FVAWT, such as the platform motions, structural responses and mooring line tensions. It has been found that the wave-wind misalignment does not significantly affect the mean values of the global responses since the global responses are primarily wind...

  4. Efisiensi Prototipe Turbin Savonius pada Kecepatan Angin Rendah

    Directory of Open Access Journals (Sweden)

    Melda Latif

    2013-04-01

    Full Text Available Wind energy can be transformed into electrical energy using wind turbine. Based on rotation axis, there are two types of wind turbine, namely turbine with horizontal axis and the one with vertical axis. Turbine with vertical axis has been known with various names that are Darrieus turbine, Savonius turbine and H turbine. This research designed and implemented a prototype of simple Savonius turbine for small scale wind speed. Resistor with resistance of 200 ohm and LED are used as the load. Material of the prototype is alumunium plate, which is light and easy to find. The experiment was conducted at the beach. Permanent magnet synchronous generator was chosen for generating equipment. Voltage resulted by the generator increased as the wind speed increased. The prototype began rotating at wind speed 2.4 m/s. Average efficiency for Y and D connected load are 4.8% and 14.5% respectively.

  5. Effect of operating methods of wind turbine generator system on net power extraction under wind velocity fluctuations in fields

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Yamaguchi, Kazuya; Hashizume, Takumi [Waseda Univ., Advanced Research Inst. for Science and Engineering, Tokyo (Japan); Outa, Eisuke [Waseda Univ., Mechanical Engineering Dept., Tokyo (Japan); Tanzawa, Yoshiaki [Nippon Inst. of Technology, Mechanical Engineering Dept., Saitama (Japan)

    1999-01-01

    The effect of how a wind turbine generator system is operated is discussed from the viewpoint of net power extraction with wind velocity fluctuation in relation to the scale and the dynamic behaviour of the system. On a wind turbine generator system consisting of a Darrieus-Savonius hybrid wind turbine, a load generator and a battery, we took up two operating methods: constant tip speed ratio operation for a stand-alone system (Scheme 1) and synchronous operation by connecting a grid (Scheme 2). With our simulation model, using the result of the net extracting power, we clarified that Scheme 1 is more effective than Scheme 2 for small-scale systems. Furthermore, in Scheme 1, the appropriate rated power output of the system under each wind condition can be confirmed. (Author)

  6. Underwater energy harvesting from a turbine hosting ionic polymer metal composites

    Science.gov (United States)

    Cellini, Filippo; Pounds, Jason; Peterson, Sean D.; Porfiri, Maurizio

    2014-08-01

    In this study, we explore the possibility of energy harvesting from fluid flow through a turbine hosting ionic polymer metal composites (IPMCs). Specifically, IPMC harvesters are embedded in the blades of a small-scale vertical axis water turbine to convert flow kinetics into electrical power via low-frequency flow-induced IPMC deformations. An in-house fabricated Savonius-Darrieus hybrid active turbine with three IPMCs is tested in a laboratory water tunnel to estimate the energy harvesting capabilities of the device as a function of the shunting electrical load. The turbine is shown to harvest a few nanowatt from a mean flow of 0.43\\;m\\;{{s}^{-1}} for shunting resistances in the range 100-1000\\;\\Omega . To establish a first understanding of the energy harvesting device, we propose a quasi-static hydroelastic model for the bending of the IPMCs and we utilize a black-box model to study their electromechanical response.

  7. Aero dynamical and mechanical behaviour of the Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Batna Univ., (Algeria). Applied Energetic Physics Laboratory

    2009-07-01

    Although the Savonius wind turbine is not as efficient as the traditional Darrieus wind turbine, its rotor design has many advantages such as simple construction; acceptance of wind from all directions; high starting torque; operation at relatively low speed; and easy adaptation to urban sites. These advantages may outweigh its low efficiency and make it suitable for small-scale power requirements such as pumping and rural electrification. This paper presented a study of the aerodynamic behaviour of a Savonius rotor, based on blade pressure measurements. A two-dimensional analysis method was used to determine the aerodynamic strengths, which leads to the Magnus effect and the generation of the vibrations on the rotor. The study explained the vibratory behaviour of the rotor and proposed an antivibration system to protect the machine. 14 refs., 1 tab., 9 figs.

  8. Effect of the number of blades and solidity on the performance of a vertical axis wind turbine

    Science.gov (United States)

    Delafin, PL; Nishino, T.; Wang, L.; Kolios, A.

    2016-09-01

    Two, three and four bladed ϕ-shape Vertical Axis Wind Turbines are simulated using a free-wake vortex model. Two versions of the three and four bladed turbines are considered, one having the same chord length as the two-bladed turbine and the other having the same solidity as the two-bladed turbine. Results of the two-bladed turbine are validated against published experimental data of power coefficient and instantaneous torque. The effect of solidity on the power coefficient is presented and the instantaneous torque, thrust and lateral force of the two-, three- and four-bladed turbines are compared for the same solidity. It is found that increasing the number of blades from two to three significantly reduces the torque, thrust and lateral force ripples. Adding a fourth blade further reduces the ripples except for the torque at low tip speed ratio. This work aims to help choosing the number of blades during the design phase of a vertical axis wind turbine.

  9. CFD Modeling in Development of Renewable Energy Applications

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available Chapter 1: A Multi-fluid Model to Simulate Heat and Mass Transfer in a PEM Fuel Cell. Torsten Berning, Madeleine Odgaard, Søren K. Kær Chapter 2: CFD Modeling of a Planar Solid Oxide Fuel Cell (SOFC for Clean Power Generation. Meng Ni Chapter 3: Hydrodynamics and Hydropower in the New Paradigm for a Sustainable Engineering. Helena M. Ramos, Petra A. López-Jiménez Chapter 4: Opportunities for CFD in Ejector Solar Cooling. M. Dennis Chapter 5: Three Dimensional Modelling of Flow Field Around a Horizontal Axis Wind Turbine (HAWT. Chaouki Ghenai, Armen Sargsyan, Isam Janajreh Chapter 6: Scaling Rules for Hydrodynamics and Heat Transfer in Jetting Fluidized-Bed Biomass Gasifiers. K. Zhang, J. Chang, P. Pei, H. Chen, Y. Yang Chapter 7: Investigation of Low Reynolds Number Unsteady Flow around Airfoils in Pitching, Plunging and Flapping Motions. M.R. Amiralaei, H. Alighanbari, S.M. Hashemi Chapter 8: Justification of Computational Fluid Dynamics Simulation for Flat Plate Solar Energy Collector. Mohamed Selmi, Mohammed J. Al-Khawaja, Abdulhamid Marafia Chapter 9: Comparative Performance of a 3-Bladed Airfoil Chord H-Darrieus and a 3-Bladed Straight Chord H-Darrieus Turbines using CFD. R. Gupta, Agnimitra Biswas Chapter 10: Computational Fluid Dynamics for PEM Fuel Cell Modelling. A. Iranzo, F. Rosa Chapter 11: Analysis of the Performance of PEM Fuel Cells: Tutorial of Major Functional and Constructive Characteristics using CFD Analysis. P.J. Costa Branco, J.A. Dente Chapter 12: Application of Techniques of Computational Fluid Dynamics in the Design of Bipolar Plates for PEM Fuel Cells. A.P. Manso, F.F. Marzo, J. Barranco, M. Garmendia Mujika.

  10. Río textil sobre la calle de participantes en la EXPO 2008 de Zaragoza

    Directory of Open Access Journals (Sweden)

    Ponce, M.

    2008-09-01

    Full Text Available Tensile fabric structures offer possibilities for the solution of urban problems which no other type of structure permits. In the Expo Zaragoza 2008 site (Saragossa, Spain we have designed a 400 metre-long structure that has turned out to be one of leading attractions of the event. It consists of thirteen pieces of torical surface that twist and turn at a height of 17 metres, taking on the appearance of a river. Technically, it includes some advances in structural geometry that are described in this paper. Artistically, it stands out due to its formal decoration.La arquitectura textil ofrece unas posibilidades para resolver problemas urbanos que ningún otro tipo permite. Para la EXPO 2008 en Zaragoza (España diseñamos una pieza de 400 m de longitud que ha resultado ser uno de los atractivos de la muestra. Consiste en trece módulos de superficie tórica que serpentea a 17 m de altura tomando el aspecto de un río. Técnicamente hace algunas aportaciones en geometría estructural que se describen y, artísticamente, destaca por su decoración formal.

  11. Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes

    OpenAIRE

    2015-01-01

    The Savonius wind turbine is a type of vertical axis wind turbine (VAWTs) that is simply composed of two or three arc-type blades which can generate power even under poor wind conditions. A modified Savonius wind turbine with novel blade shapes is introduced with the aim of increasing the power coefficient of the turbine. The effect of blade fullness, which is a main shape parameter of the blade, on the power production of a two-bladed Savonius wind turbine is investigated using transient com...

  12. Rotor/body aerodynamic interactions

    Science.gov (United States)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  13. Wind turbine wake structure and yawed effect analysis

    Science.gov (United States)

    Ge, Yuntian

    In this research, the three-dimensional CFD simulation of the complex flow around a two-bladed rotor based on NREL Phase VI Experiment is presented. Its accuracy is demonstrated by comparing torque, thrust, power and power coefficient with experimental data. Then the wake structure behind the rotor is analyzed by showing the vorticity contour and comparing the velocity distribution behind the rotor with previous studies. Furthermore, a triangle relationship among power, upstream wind speed and yaw angle is given by setting control groups simulation. Reasonable explanations to the simulation results are presented. Finally, a linear relationship between power output and cosine value of yaw angle is found and analyzed.

  14. Effect of control activity on blade fatigue damage rate for a small horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, A.F.; Freris, L.L.; Graham, J.M.R. [Imperial College, London (United Kingdom)

    1996-09-01

    An experiment into the effect of control activity on blade fatigue damage rate for a 5 kW, two bladed, teetered HAWT has been performed. It has been shown that control activity influences the distribution of strain in the blade but that in a high rotor speed, high cycle fatigue regime this has little influence on damage rate. The experiment was conducted on a small test turbine by implementing variable speed stall, pitch and yaw control strategies and measuring blade flapwise strain response at root and midspan locations. A full description of the investigation is provided. (au)

  15. U.S. Navy: A History of Stagnation and Innovation

    Science.gov (United States)

    2014-09-01

    Confederate blockade runners and commerce on a wide scale. Along with the change in strategy came the change in technology that was in train in the mid...all steam ships with sail, full rigging and to change the propellers from four blades to two, set the stage for what has been argued as the technical...and two blade screws they made a ship that was ill suited for coastal defense or commerce raiding. The shift in propulsion also had an impact on

  16. Relationships between physico-chemical and microbiological parameters in the monimolimnion of a forest meromictic lake

    Directory of Open Access Journals (Sweden)

    Dorota Górniak

    2014-05-01

    Full Text Available The small meromictic Lake Zapadłe in North-Eastern Poland was the subject of our research in the vegetation period between April and November. Our study were to aim a better recognition of meromixis phenomenon and find connections between hydrochemical and microbiological parameters. Here, the monimolimnion layer was below 10 m depth with the chemocline between 13-14 m. Highly significant Spearman’s ranks correlations of P<0.05 were found between conductivity and biochemical oxygen demand (0.91, ammonium nitrogen (0.96, phosphate (0.91, iron (0.77 and manganese (0.82. Favourable conditions for bacterioplankton growth and function here included; the absence of water circulation, the presence of anaerobic conditions and hydrogen sulphide, a constant water temperature and highly significant correlations between total bacterial counts (TBC, bacterial biomass (BB and biochemical oxygen demand (BOD, conductivity, total organic carbon (TOC and dissolved organic carbon (DOC. The pool of bacteria-forming biomass increased significantly in the lower part of the monimolimnion. A highly significant correlation (P<0.05 existed between bacterial biomass (BB and their anaerobic metabolic products: ammonium (r=0.75, hydrogen sulphide (r=0.45 and phosphate (r=0.68 anaerobic metabolic products. This correlation indicated the significant proportion of anaerobic sulfate-reducing bacteria. The impact of physico-chemical parameters on bacterioplankton biomass during the June-November growth season was clearly illustrated in the correspondence canonical analysis (CCA. This recorded its greatest mass at 15 to 17 metres above the lake bed. Although no clear seasonal variations were noted in bacterioplankton composition described by Denaturing Gradient Gel Electrophoresis (DGGE. The monimolimnion lake layer contained 46 Operational Taxonomic Units (OTUs. Subsequent comparison of the upper and lower minimolimnion layers showed 37 of these OTUs were common, while 5 were

  17. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    Science.gov (United States)

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  18. Microgravity experiments and numerical studies on ethanol/air spray flames

    Science.gov (United States)

    Thimothée, Romain; Chauveau, Christian; Halter, Fabien; Nicoli, Colette; Haldenwang, Pierre; Denet, Bruno

    2017-01-01

    Spray flames are known to exhibit amazing features in comparison with single-phase flames. The weightless situation offers the conditions in which the spray characteristics can be well controlled before and during combustion. The article reports on a joint experimental/numerical work that concerns ethanol/air spray flames observed in a spherical chamber using the condensation technique of expansion cooling (based on the Wilson cloud chamber principle), under microgravity. We describe the experimental set-up and give details on the creation of a homogeneous and nearly monosized aerosol. Different optical diagnostics are employed successfully to measure the relevant parameters of two-phase combustion. A classical shadowgraphy system is used to track the flame speed propagation and allow us to observe the flame front instability. The complete characterization of the aerosol is performed with a laser diffraction particle size analyser by measuring the droplet diameter and the droplet density number, just before ignition. A laser tomography device allows us to measure the temporal evolution of the droplet displacement during flame propagation, as well as to identify the presence of droplets in the burnt gases. The numerical modelling is briefly recalled. In particular, spray-flame propagation is schematized by the combustion spread in a 2-D lattice of fuel droplets surrounded by an initial gaseous mixture of fuel vapour and air. In its spherical expansion, the spray flame presents a corrugated front pattern, while the equivalent single-phase flame does not. From a numerical point of view, the same phenomena of wrinkles are also observed in the simulations. The front pattern pointed out by the numerical approach is identified as of Darrieus-Landau (DL) type. The droplets are found to trigger the instability. Then, we quantitatively compare experimental data with numerical predictions on spray-flame speed. The experimental results show that the spray-flame speed is of the

  19. User`s Guide for the NREL Teetering Rotor Analysis Program (STRAP)

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A D

    1992-08-01

    The following report gives the reader an overview of instructions on the proper use of the National Renewable Energy Laboratory (formerly the Solar Energy Research Institute, or SERI) teetering Rotor Analysis Program (STRAP version 2.20). STRAP is a derivative of the Force and Loads Analysis program (FLAP). It is intended as a tool for prediction of rotor and blade loads and response for only two-bladed teetering hub wind turbines. The effects of delta-3, undersling, hub mass, and wind turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed teetering hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user`s guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

  20. User's Guide for the NREL Teetering Rotor Analysis Program (STRAP). [National Renewable Energy Laboratory (NREL)

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.D.

    1992-08-01

    The following report gives the reader an overview of instructions on the proper use of the National Renewable Energy Laboratory (formerly the Solar Energy Research Institute, or SERI) teetering Rotor Analysis Program (STRAP version 2.20). STRAP is a derivative of the Force and Loads Analysis program (FLAP). It is intended as a tool for prediction of rotor and blade loads and response for only two-bladed teetering hub wind turbines. The effects of delta-3, undersling, hub mass, and wind turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed teetering hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user's guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

  1. A soft rotor concept - design, verification and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, F.; Thirstrup Petersen, J. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper contains results from development and testing of a two-bladed soft rotor for an existing 15 kW flexible wind turbine. The new concept is characterised as a free yawing down wind turbine with nacelle tilting flexibility and a two-bladed teetering rotor with three-point supported flexible blades with built-in structural couplings. The power and the loads are controlled by active stall and active coning. The concept has been developed by extensive application of aero-elastic predictions, numerical optimisation and stability analysis in order to obtain optimal aero-elastic response and minimal loads. The flexible blades and the principle of active coning allow the blades to deflect with the wind to such an extent that the loads are reduced to between 25 and 50% of the loads for a similar rigid rotor. All conceptual design principles have been focused on application to large MW turbines, and aero-elastic predictions for an upscale 1 MW version show that this would have approximately identical characteristisc, without being particularly optimised for the actual size. (au)

  2. German chemical plant manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Cobbing, J.H.W.

    1946-01-01

    This report was about some equipment which was used in the chemical plant. Mixing machines with one or two blades were built in a large variety of sizes up to 7,500 liters. Several different types of drive were arranged for the blades, but the main one which was illustrated in the report was not altered. Because of shortage of special metals, like stainless steel, only very few of those machines were made of these metals. The two-bladed mixers, known as the universal mixers, were developed and built in sizes up to a total capacity of 15,000 liters, with a top stirring blade to keep the upper layers of the material being treated in a state of agitation. Bronze and stainless steel were frequently used to make the smaller-size machine. Cast iron was used to encase the gears in more substantial guards. A new internal rubber mixer was developed which contained many new features. A laboratory size of this machine was also made. A disc shredder with outputs of 800 to 1,000 kgs of alkali cellulose per hour was made in that time. The centrifuge sifter which was used to screen viscose, a small liquid mixer, and a grinder of a conical type were the other kinds of equipment which were used in the chemical plant and were discussed in this report. Seven pictures of different kinds of equipment were given with the report. 7 photographs

  3. Unsteady flow analysis of an axial flow hydraulic turbine with collection devices comprising a different number of blades

    Science.gov (United States)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Hirama, Sou; Kikuchi, Norio

    2015-06-01

    We previously devised a new type of portable hydraulic turbine that uses the kinetic energy of an open-channel flow to improve output power by catching and accelerating the flow. The turbine contains an axial flow runner with an appended collection device and a diffuser section that is not axisymmetric. The objective of this study is to determine how interference between the collection device and the runner influences performance characteristics of the turbine. We investigated the performance characteristics of the turbine and flow field for different numbers of blades during both unsteady and steady flow. During an unsteady flow, the maximum values of power coefficients for three and two blades increased by approximately 8.8% and 21.4%, respectively, compared to those during a steady flow. For the three-blade runner, the power coefficient showed small fluctuations, but for the two-blade runner, the power coefficient showed large fluctuations. These fluctuations in the power coefficient are attributed to fluctuations in the loading coefficient, which were generated by interference between the runner and the diffuser section of the collection device.

  4. Experimental studies for the vertical-axis wind turbine. Suichokujiku fusha no suiryoku ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Mashige, M.; Kakita, Y.; Ushiyama, I. (Ashikaga Institute of Technology, Tochigi (Japan))

    1992-06-01

    Studies are made on wind direction component force, that is, thrust exerted on the rotor of a vertical-axis wind turbine by the wind tunnel experiment. Wind turbines tested are eight including 7 drag types and 1 lift type. Setting the wind velocity at 6 and 8m/second, braking gradually from the no-load condition and varying the revolution number till arriving at the stationary state, torque and thrust in arbitary yevolution numbers are measured. The thrust coefficient which is the dimensionless thrust is smaller at resting than at revolving, except for cross-flow type and straight Darrieus rotors. Flat plate, curved-plate and savonius types increase in operational peripheral speed ratio (ratio of tip peripheral speed to wind velocity) field by setting upper and lower discs, but shows no difference in the thrust coefficient. In the vertical-axis wind turbine, there is no clear relationship between thrust characteristic and torque characteristic. Measured values of wake wind velocity distribution by the pilot tube show a slight difference between in the no-load condition and in the load condition, but no difference is seen in the visualization experiment using polyester string. 3 refs., 9 figs.

  5. Evaluation of turbulent transport and flame surface dissipation using direct numerical simulation of turbulent combustion; Evaluation des termes de transport et de dissipation de surface de flamme par simulation numerique directe de la combustion turbulente

    Energy Technology Data Exchange (ETDEWEB)

    Boughanem, H.

    1998-03-24

    The assumption of gradient transport for the mean reaction progress variable has a limited domain of validity in premixed turbulent combustion. The existence of two turbulent transport regimes, gradient and counter-gradient, is demonstrated in the present work using Direct Numerical Simulations (DNS) of plane flame configurations. The DNS data base describes the influence of the heat release factor, of the turbulence-to-flame velocity ratio, and of an external pressure gradient. The simulations reveal a strong correlation between the regime of turbulent transport and the turbulent flame speed and turbulent flame thickness. These effects re not well described by current turbulent combustion models. A conditional approach `fresh gases / burnt gases` is proposed to overcome these difficulties. Furthermore, he development of flame instabilities in turbulent configurations is also observed in the simulations. A criterion is derived that determines the domain of occurrence of these instabilities (Darrieus- Landau instabilities, Rayleigh- Taylor instabilities, thermo-diffusive instabilities). This criterion suggests that the domain of occurrence of flame instabilities is not limited to small Reynolds numbers. (author) 98 refs.

  6. Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2004-01-12

    A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.

  7. Interaction of a flame front with its self-generated flow in an enclosure; The tulip flame phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Borghi, R.; Saouab, A. (Univ. de Rouen, Mont-Saint-Aignan (FR))

    1992-02-01

    This paper reports on the propagation of a flame front under nonturbulent condition in a closed tube ignited at one end which is numerically investigated using a computing procedure based on finite volumes technique and devoted to two-dimensional, compressible, reacting flows. A global one-step reaction for the chemical process and an Arrhenius law for fuel consumption are assumed. The detailed analysis of the results of computations in which wall friction, tube aspect ratio and initial flame configuration are varied allows to highlight the influence of different parameters and to get more insight into the tulip-shaped flame phenomenon. In particular, Darrieus-landau instability is examined by comparing the shape variations of an initially perturbed flat front in a tube closed at both ends to those in a tube in which the ignition end is open while the opposite one is closed. Attention is also given to the computed flame generated flowfield; the flame front-confined flow interaction is specially scrutinized. Furthermore, the oscillatory acoustic regime occurring during tulip flame appearance, as well as the collapse of the tulip shape in tubes of large aspect ratio, already experimentally put into evidence but never numerically addressed, have also been simulated and discussed.

  8. An aerodynamic study on flexed blades for VAWT applications

    Science.gov (United States)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  9. Vertical Axis Wind Turbine Design Load Cases Investigation and Comparison with Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.; Aagaard Madsen, Helge

    2016-01-01

    The paper studies the applicability of the IEC 61400-1 ed.3, 2005 International Standard of wind turbine minimum design requirements in the case of an onshore Darrieus VAWT and compares the results of basic Design Load Cases (DLCs) with those of a 3-bladed HAWT. The study is based on aeroelastic...... computations using the HAWC2 aero-servo-elastic code A 2-bladed 5 MW VAWT rotor is used based on a modified version of the DeepWind rotor For the HAWT simulations the NREL 3-bladed 5 MW reference wind turbine model is utilized Various DLCs are examined including normal power production, emergency shut down.......3 can be used to a large extent with proper interpretation of the DLCs and choice of parameters such as the hub-height. In addition, the design drivers for the VAWT appear to differ from the ones of the HAWT. Normal operation results in the highest tower bottom and blade root loads for the VAWT...

  10. Experimental results on evaporation waves

    Science.gov (United States)

    Grana Otero, Jose; Parra Fabian, Ignacio

    2010-11-01

    A liquid contained in a vertical glass tube is suddenly depressurized from a high initial pressure down to one for which the stable state is vapour, so vaporization sets off at the free surface. For large enough evaporation rates, the planar vapour-liquid interface is Darrieus-Landau unstable [1], leading to the interface surface rippling close to the instability threshold. Further increasing the initial to final pressure ratio brings about evaporation waves [2,3], in which a highly corrugated front propagates downwards into the liquid. A new experimental method is presented as well as some experimental results obtained by tracking the evolution of the front with a high speed camera. In addition, a number of new phenomena related to the dynamics of bubbles growth at the walls has been uncovered. In particular, a new mode of propagation of the evaporation front is found. In this mode the front originates from below the interface, so the propagation is upwards against gravity with a curved but smooth front.[4pt] [1] F. J. Higuera, Phys. Fluids, V. 30, 679 (1987).[0pt] [2] J.E.Shepherd and B.Sturtevant, J.Fluid Mech., V.121,379 (1982).[0pt] [3] P.Reinke and G.Yadigaroglu, Int.J.Multiph. Flow, V.27,1487 (2001).

  11. Instability of Magnetized Ionization Fronts Surrounding H II Regions

    CERN Document Server

    Kim, Jeong-Gyu

    2014-01-01

    An ionization front (IF) surrounding an H II region is a sharp interface where a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central stars. We investigate the instability of a plane-parallel D-type IF threaded by parallel magnetic fields, by neglecting the effects of recombination within the ionized gas. We find that weak D-type IFs always have the post-IF magnetosonic Mach number $\\mathcal{M}_{\\rm M2} \\leq 1$. For such fronts, magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor $\\alpha$ by a factor of $1+1/(2\\beta_1)$ compared to the unmagnetized case, with $\\beta_1$ denoting the plasma beta in the pre-IF region. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow ...

  12. Survey on utility technology of a tidal and ocean current energy

    Science.gov (United States)

    Hirose, Manabu; Kadoyu, Masataka; Tanaka, Hiroyoshi

    1987-06-01

    A study is made to show the current technological levels in Japan and other nations regarding the conversion of tidal current or ocean current energy to electric power and to determine the latent energy quantities and energy-related characteristics of tidal and ocean currents. In Japan, relatively large-scale experiments made so far mostly used one of the following three types of devices: Savonius-wheel type, Darrieus-wheel type, and cross-flow-wheel type. Field experiments of tidal energy conversion have been performed at the Naruto and Kurushima Straits. The energy in the Kuroshio current is estimated at about 170 billion kWh per year. Ocean current energy does not undergo large seasonal variations. The total energy in major straits and channels in the Inland Sea and other sea areas to the west is estimated at about 124 billion kWh per year. Tidal current energy shows large seasonal variations, but it is possible to predict the changes. A survey is made to determine energy-related characteristics of a tidal current at Chichino-seto, Kagoshima Prefecture. At Chichino-seto, the flow velocity ranges from 0 to 2.2m/s, with a latent tidal current energy of about 70 kW, of which about 20 kW can actually be utilized.

  13. Instability of Evaporation Fronts in the Interstellar Meidum

    CERN Document Server

    Kim, Jeong-Gyu

    2013-01-01

    The neutral component of the interstellar medium is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that a plane-parallel CNM-WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) of terrestrial flames. We perform a full linear stability analysis as well as nonlinear hydrodynamic simulations of the DLI of such evaporation fronts in the presence of thermal conduction. We find that the DLI is suppressed at short length scales by conduction. The length and time scales of the fastest growing mode are inversely proportional to the evaporation flow speed of the CNM and its square, respectively. In the nonlinear stage, the DLI saturates to a steady state where the front deforms to a finger-like shape protruding toward the WNM, without generating turbulence. The evaporation rate at nonlinear saturation is ...

  14. Wind energy technology : from the past to the future; 20 seiki ni okeru furyoku riyo gijutsu no henkan. Furyoku hatsuden : kako kara mirai e

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, I. [Ashikaga Institute of Technology, Tochigi (Japan)

    2000-01-20

    Windmills are one of the oldest prime movers and have been used for more than 700 years in Europe. The transition from low speed windmills for grain grinding and water pumping to high speed wind turbines for electric power generation had occurred at first, reviews the windmill technologies and the researchers before 20{sup th} century. Then describes the back ground of how the wind power generator has existed and how the four pioneers developed their wind power generator. The historical developments of windmills to wind turbines in this century are studied focusing mainly on Danish activities. Then, the effort of the development of large wind turbine such as Smith-Putnum's first MW machine in U.S.A. and other mammoth machine concept are introduced. The new concept machines such as Savonius and Darrieus wind turbines in 1920s to 1930s are also explained. Finally, the novel technologies of wind turbine covering larger machines, variable speed generators, special wing sections for wind turbines, theoretical analysis method of wind turbine performance, offshore wind turbines, and wind turbine control technologies are stated. (author)

  15. Study of aerodynamical and mechanical behaviours of Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Hadj Lakhdar Univ., Batna (Algeria). Applied Energetic Physic Laboratory

    2007-07-01

    Although the efficiency of a Savonius rotor is not as high conventional propeller-type and Darrieus wind turbines, it has the advantage of simple construction; acceptance of wind from various directions, thereby eliminating the need for reorientation; high starting torque; and, relatively low operating speed. These advantages outweigh its low efficiency and make it an ideal economic source to meet small-scale power requirements. The instantaneous pressure field on the blades surface was determined in order to analyze the flow around a Savonius rotor. A two dimensional analysis was used to determine the aerodynamic strengths, which led to underline the Magnus effect and to vibrations on the rotor. An anti-vibratory system was also proposed to stabilize or avoid these vibrations. The drag and lift coefficients were found to be in good agreement with results reported in literature. This study identified an inversion lift effect on a Savonius rotor, which closely resembled the Reynolds number, particularly in the peripheral speed coefficient values. It was shown that the machine does not move in accordance with the Magnus effect. 22 refs., 1 tab., 9 figs.

  16. Design And Analysis Of Savonius Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Kshitija. M. Deshmukh,

    2015-11-01

    Full Text Available There are two kinds of wind turbines according to the axis of rotation to the ground, horizontal axis wind turbines (HAWT and vertical axis wind turbines (VAWT. VAWTs include both a drag type configuration like Savonius wind turbine and a lift-type configuration like Darrieus wind turbine. Savonius wind rotor has many advantages such as low starting speeds and no need for external torque for its starting. Moreover it is cheaper in construction and has low maintenance. It is independent of the wind direction and has a good starting torque at lower wind speeds. The experimental study conducted in this paper aims to investigate the effect of number of blades and other criteria that can affect the performance of the model of Savonius type wind turbine. The experiments used to compare 2, 3, and 4 blades wind turbines to show tip speed ratio, torque and power coefficient related with wind speed. A simulation using ANSYS 13.0 software will show pressure distribution of wind turbine. The results of study showed that number of blades influence the performance of wind turbine. Savonius model with three blades has the best performance at high tip speed ratio.

  17. Effect of operating methods of wind turbine-generator system on net power extraction under wind speed fluctuations in fields; Hendo fukyoka deno doryoku chushutsu kara mita furyoku hatsuden system no unten seigyoho ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, T. [Japan Society for the Promotion of Science, Tokyo (Japan); Hashizume, T.; Ota, E. [Waseda University, Tokyo (Japan). School of Science and Engineering

    2000-01-25

    The effect of operating methods of wind turbine-generator system on net power extraction under wind speed fluctuations is discussed in relation to the dynamic behavior of the system. The system is composed of a Darrieus-Savonius hybrid wind turbine and a load generator. In this paper, two types of operating method are examined; constant tip speed ratio operation for stand-alone power systems (Scheme 1) and synchronous operation for utility power systems (Scheme 2). The computed results of the net extracting power using our dynamic simulation model show that the dominant factor of power extraction in Scheme 1 is the dynamic characteristics of rotational components and that it is important to select the appropriate rated wind speed in Scheme 2. Thus, it is concluded that a conformable operating method and rated power output of the system exist for each wind condition. In particular, small-scale systems, which are smaller than approximately 10 kW-system range, are desirable to be operated under a constant tip speed ratio as stand-alone power systems. (author)

  18. Study on a constant-tip-speed-ratio operation of wind power generation system. Effect of load control system on dynamic behavior; Furyoku hatsuden system no hensoku seigyo unten ni kansuru kenkyu. Fuka seigyokei ga system no rikigakuteki kyodo ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, T.; Yamaguchi, K. [Waseda University, Tokyo (Japan); Tanzawa, Y. [Nippon Institute of Technology, Saitama (Japan); Hashizume, T.; Ota, E. [Waseda University, Tokyo (Japan). School of Science and Engineering

    1998-06-01

    The effect that the set data of the load control system in a wind power generation system exerts on the dynamic behavior of a system was investigated. The wind power generation system consists of a hybrid wind turbine with combined Darrieus and Savonius rotors, load with a generator and battery in the center, and a controller. A constant-tip-speed ratio operation that holds the circumferential speed ratio in which the power coefficient is maximized irrespective of the change in wind velocity was used to extract and convert the wind energy more effectively. In a high-wind velocity area, the system is operated at a fixed speed, and the increase in rotation is suppressed to protect the wing strength. In a large system, the response characteristics are only slightly improved by the limited load operation range and influenced rotor inertial. Power cannot be fully extracted even if the control system is changed in setting, and the applicability to the wind situation remains low. During the actual operation, the adjustment value of the control system should be set so that the output operation is satisfactorily possible in the specified load operation range, that is, the change in the instantaneous value of an effective power coefficient indicates almost flat gain characteristics in frequency characteristics. 14 refs., 10 figs., 2 tabs.

  19. Theoretical analysis of the flow around a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z.; Djoumati, D. [Batna Univ., Batna (Algeria). Laboratoire de Physique Energetique Appliquee; Djamel, H. [Batna Univ., Batna (Algeria). Dept. de Mecanique Energetique

    2009-07-01

    While Savonius rotors do not perform as well as Darrieus wind turbine rotors, Savonius rotors work in all wind directions, do not require a rudder, and are capable of operating at relatively low speeds. A discrete vortex method was used to analyze the complex flow around a Savonius rotor. Velocity and pressure fields obtained in the analysis were used to determine both mechanical and energetic rotor performance. Savonius rotor bi-blades were considered in relation to 4 free eddies, the leakage points of each blade, and the distribution of basic eddies along the blades. Each blade was divided into equal elementary arcs. Linear equations and Kelvin theorem were reduced to a single equation. Results showed good agreement with data obtained in previous experimental studies. The study demonstrated that vortice emissions were unbalanced. The resistant blade had 2 vortice emissions, while the driving blade had only a single vortex. The results of the study will be used to clarify the mechanical and aerodynamic functions as well as to determine the different values between the blades and the speed of the turbine's engine. 9 refs., 4 figs.

  20. Transition of wind power utilization technology in the 20th century; 20 seiki ni okeru furyoku riyo gijutsu no hensen

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, I. [Ashikaga Inst. of Tech., Tochigi (Japan)

    2000-04-01

    Windmills are one of the oldest prime movers and have been used for more than 700 years in Europe. The transition from low speed windmills for grain grinding and water pumping to high speed wind turbines for electric power generation had occurred at the end of 19{sup th} century. This paper, at first, reviews the windmill technologies and the researchers before 20th century. Then describes the back ground of how the wind power generator has existed and how the four pioneers developed their wind power generator. The historical developments of windmills to wind turbines in this century are studied focusing mainly on Danish activities. Then, the effort of the development of large wind turbine such as Smith-Putnum's first MW machine in U.S.A. and other mammoth machine concept are introduced. The new concept machines such as Savonius and Darrieus wind turbines in 1920s to 1930s are also explained. Finally, the novel technologies of wind turbine covering larger machines, variable speed generators, special wing sections for wind turbines, theoretical analysis method of wind turbine performance, offshore wind turbines, and wind turbine control technologies are stated. (author)

  1. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Roger Beeden

    Full Text Available Full recovery of coral reefs from tropical cyclone (TC damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second within the Great Barrier Reef Marine Park (GBRMP. Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale, TC Yasi (February, 2011 was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3 and reef structural damage (4, 5. Average damage severity was significantly affected by direction (north vs south of the cyclone track, reef shelf position (mid-shelf vs outer-shelf and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km. Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2 of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2 sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  2. Effect of Number of Blades on Performance of Ceiling Fans

    Directory of Open Access Journals (Sweden)

    Adeeb Ehsan

    2015-01-01

    Full Text Available In this paper, the effect of number of blades on ceiling fan performance is discussed. This approach helps to satisfy tradeoff between high air flow (performance and power consumption (energy efficiency. Specifically, variation from two to six blades is considered with nonlinear forward sweep profile. Reynolds Averaged Navier-Stokes (RANS technique is used to model the flow field induced by the ceiling fan inside a generic room. The performance is gauged through response parameters namely volumetric flow rate, mass flow rate, torque and energy efficiency. The results indicate that mass and volumetric flow rates are maximized for six blade configuration and energy efficiency is maximized for two blade configuration. The study indicates the importance of tradeoff between high air flow through ceiling fan and associated energy efficiency.

  3. Numerical simulation and optimization of clearance in sheet shearing process

    Institute of Scientific and Technical Information of China (English)

    秦泗吉; 李洪波; 彭加耕; 李硕本

    2003-01-01

    An analysis model to simplify the shearing and blanking process was developed. Based on the simplified model, the shearing process was simulated by FEM and analyzed for various clearances. An optimum clearance in the process was determined by new approach based on orientation of the maximum shearing stress on the characteristic line linking two blades, according to the law of crack propagation and experiments. The optimum clearance determined by this method can be used to dictate the range of reasonable clearance. By the new approach, the optimum clearance can be obtained conveniently and accurately even if there is some difference between the selected points, where the initial crack is assumed originated, and the actual one, where the initial crack occurs really.

  4. Linearization of friction effects in vibration of two rotating blades

    Directory of Open Access Journals (Sweden)

    Hajžman M.

    2013-06-01

    Full Text Available This paper is aimed at modelling of friction effects in blade shrouding which are realized by means of friction elements placed between blades. In order to develop a methodology of modelling, two blades with one friction element in between are considered only. Flexible blades fixed to a rotating disc are discretized by FEM using 1D Rayleigh beam elements derived in rotating space as well as the friction element modelled as a rigid body. The blades and the friction element are connected through two concurrent friction planes, where the friction forces arise on the basis of centrifugal force acting on the friction element. The linearization of friction is performed using the harmonic balance method to determine equivalent damping coefficients in dependence on the amplitudes of relative slip motion between the blades and the friction element. The methodology is applied to a model of two real blades and will be extended for the whole bladed disc with shrouding.

  5. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  6. Model predictive control of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien Bruno

    , in Roskilde, Denmark. One blade of the turbine was equipped with three independent trailing edge flaps. In spite of the failure of several sensors and actuators, the test of the trailing edge flaps controller described in this thesis showed a consistent flapwise blade root fatigue load reduction. An average......Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some...... of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped...

  7. The fast code

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Dept. of Mechanical Engineering, Corvallis, OR (United States)

    1996-09-01

    The FAST Code which is capable of determining structural loads on a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees of freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting, occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good. (au)

  8. Reduced design load basis for ultimate blade loads estimation in multidisciplinary design optimization frameworks

    DEFF Research Database (Denmark)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.;

    2016-01-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost...... function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed...... for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar...

  9. CFD simulation of a 2 bladed multi megawatt wind turbine with flexible rotor connection

    Science.gov (United States)

    Klein, L.; Luhmann, B.; Rösch, K.-N.; Lutz, T.; Cheng, P.-W.; Krämer, E.

    2016-09-01

    An innovative passive load reduction concept for a two bladed 3.4 MW wind turbine is investigated by a conjoint CFD and MBS - BEM methodology. The concept consists of a flexible hub mount which allows a tumbling motion of the rotor. First, the system is simulated with a MBS tool coupled to a BEM code. Then, the resulting motion of the rotor is extracted from the simulation and applied on the CFD simulation as prescribed motion. The aerodynamic results show a significant load reduction on the support structure. Hub pitching and yawing moment amplitudes are reduced by more than 50% in a vertically sheared inflow. Furthermore, the suitability of the MBS - BEM approach for the simulation of the load reduction system is shown.

  10. Five-axis rough machining for impellers

    Institute of Scientific and Technical Information of China (English)

    Ruolong QI; Weijun LIU; Hongyou BIAN; Lun LI

    2009-01-01

    The most important components used in aero-space, ships, and automobiles are designed with free form surfaces. An impeller is one of the most important components that is difficult to machine because of its twisted blades. Rough machining is recognized as the most crucial procedure influencing machining efficiency and is critical for the finishing process. An integrated rough machining course with detailed algorithms is presented in this paper. An algorithm for determining the minimum distance between two surfaces is applied to estimate the tool size. The space between two blades that will be cleared from the roughcast is divided to generate CC points. The tool axis vector is confirmed based on flank milling using a simple method that could eliminate global interference between the tool and the blades. The result proves that the machining methodology presented in this paper is useful and successful.

  11. Development of large wind energy power generation system

    Science.gov (United States)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  12. Modelling the peopling of Australia: 1900-1930.

    Science.gov (United States)

    Pope, D

    1981-12-01

    An analysis of migration from the United Kingdom to Australia during the period 1900 to 1930 is presented. The author attempts "first to explicitly develop and estimate a model of the behavioural relations of the two blades of the Marshallian scissors, rather than mixing supply and demand (under the polyglot terms of 'push-pull') in a single equation without regard to the problem of identification. And second, [he attempts] to incorporate in these structural equations key elements of government intervention in the migration process." The relationship between economic factors and Australian government support for immigration is considered. The author also identifies three factors influencing annual variations in the flow of migration from the United Kingdom: expected income gains, transport costs, and the costs of job search.

  13. Low-cost optical data acquisition system for blade vibration measurement

    Science.gov (United States)

    Posta, Stephen J.

    1988-01-01

    A low cost optical data acquisition system was designed to measure deflection of vibrating rotor blade tips. The basic principle of the new design is to record raw data, which is a set of blade arrival times, in memory and to perform all processing by software following a run. This approach yields a simple and inexpensive system with the least possible hardware. Functional elements of the system were breadboarded and operated satisfactorily during rotor simulations on the bench, and during a data collection run with a two-bladed rotor in the Lewis Research Center Spin Rig. Software was written to demonstrate the sorting and processing of data stored in the system control computer, after retrieval from the data acquisition system. The demonstration produced an accurate graphical display of deflection versus time.

  14. A low-cost optical data acquisition system for vibration measurement

    Science.gov (United States)

    Posta, S. J.; Brown, G. V.

    1986-01-01

    A low cost optical data acquisition system was designed to measure deflection of vibrating rotor blade tips. The basic principle of the new design is to record raw data, which is a set of blade arrival times, in memory and to perform all processing by software following a run. This approach yields a simple and inexpensive system with the least possible hardware. Functional elements of the system were breadboarded and operated satisfactorily during rotor simulations on the bench, and during a data collection run with a two-bladed rotor in the Lewis Research Center Spin Rig. Software was written to demonstrate the sorting and processing of data stored in the system control computer, after retrieval from the data acquisition system. The demonstration produced an accurate graphical display of deflection versus time.

  15. Effect of the blade arc angle on the performance of a Savonius wind turbine

    Directory of Open Access Journals (Sweden)

    Zhaoyong Mao

    2015-05-01

    Full Text Available Savonius wind turbine is a common vertical axis wind turbine which simply comprises two or three arc-type blades and can generate power under poor wind conditions. With the aim of increasing the turbine’s power efficiency, the effect of the blade arc angle on the performance of a typical two-bladed Savonius wind turbine is investigated with a transient computational fluid dynamics method. Simulations were based on the Reynolds Averaged Navier–Stokes equations, and the renormalization group k − ε turbulent model was utilized. The numerical method was validated with existing experimental data. The results indicate that the turbine with a blade arc angle of 160 ∘ generates the maximum power coefficient, 0.2836, which is 8.37% higher than that from a conventional Savonius turbine.

  16. NUMERICAL SIMULATION OF PARTICLE MOTION IN TURBO CLASSIFIER

    Institute of Scientific and Technical Information of China (English)

    Ning Xu; Guohua Li; Zhichu Huang

    2005-01-01

    Research on the flow field inside a turbo classifier is complicated though important. According to the stochastic trajectory model of particles in gas-solid two-phase flow, and adopting the PHOENICS code, numerical simulation is carried out on the flow field, including particle trajectory, in the inner cavity of a turbo classifier, using both straight and backward crooked elbow blades. Computation results show that when the backward crooked elbow blades are used, the mixed stream that passes through the two blades produces a vortex in the positive direction which counteracts the attached vortex in the opposite direction due to the high-speed turbo rotation, making the flow steadier, thus improving both the grade efficiency and precision of the turbo classifier. This research provides positive theoretical evidences for designing sub-micron particle classifiers with high efficiency and accuracy.

  17. Optimization Design and Experimental Study of Low-Pressure Axial Fan with Forward-Skewed Blades

    Directory of Open Access Journals (Sweden)

    Li Yang

    2007-01-01

    Full Text Available This paper presents an experimental study of the optimization of blade skew in low pressure axial fan. Using back propagation (BP neural network and genetic algorithm (GA, the optimization was performed for a radial blade. An optimized blade is obtained through blade forward skew. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the optimized blade demonstrated improvements in efficiency, total pressure ratio, stable operating range, and aerodynamic noise. Detailed flow measurement was performed in outlet flow field for investigating the responsible flow mechanisms. The optimized blade can cause a spanwise redistribution of flow toward the blade midspan and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at midspan. In addition, the measured spectrums show that the broadband noise of the impeller is dominant.

  18. INTERNAL FLOW MECHANISM AND EXPERIMENTAL RESEARCH OF LOW PRESSURE AXIAL FAN WITH FORWARD-SKEWED BLADES

    Institute of Scientific and Technical Information of China (English)

    LI Yang; LIU Jie; OUYANG Hua; DU Zhao-Hui

    2008-01-01

    This article presents the flow mechanism analysis and experimental study of a forward-skewed impeller and a radial impeller in low pressure axial fan. The forward-skewed blade was obtained by the optimization design of the radial blade and CFD technique. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the forward-skewed blade has demonstrated the improvements in efficiency, total pressure ratio, Stable Operating Range (SOR) and less aerodynamic noise. Detailed flow measurement and computation were performed for outlet flow field for investigating the responsible flow mechanisms. The results show the forward-skewed blade can cause a spanwise redistribution of flow toward the blade mid-span and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at mid-span.

  19. Biomimetic mechanism for micro aircraft

    Science.gov (United States)

    Pines, Darryll J. (Inventor); Bohorquez, Felipe A. (Inventor); Sirohi, Jayant (Inventor)

    2005-01-01

    A biomimetic pitching and flapping mechanism including a support member, at least two blade joints for holding blades and operatively connected to the support member. An outer shaft member is concentric with the support member, and an inner shaft member is concentric with the outer shaft member. The mechanism allows the blades of a small-scale rotor to be actuated in the flap and pitch degrees of freedom. The pitching and the flapping are completely independent from and uncoupled to each other. As such, the rotor can independently flap, or independently pitch, or flap and pitch simultaneously with different amplitudes and/or frequencies. The mechanism can also be used in a non-rotary wing configuration, such as an ornithopter, in which case the rotational degree of freedom would be suppressed.

  20. Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine

    DEFF Research Database (Denmark)

    Lignarolo, Lorenzo E.M.; Mehta, Dhruv; Stevens, Richard J.A.M.

    2016-01-01

    stereoscopic Particle Image Velocimetry was employed to obtain the velocity field and turbulence statistics in the near wake of a two-bladed wind turbine model and of a porous disc, which mimics the numerical actuator used in the simulations. Researchers have been invited to simulate the experimental case......In this paper we report the results of a workshop organised by the Delft University of Technology in 2014, aiming at the comparison between different state-of-the-art numerical models for the simulation of wind turbine wakes. The chosen benchmark case is a wind tunnel measurement, where...... based on the disc drag coefficient and the inflow characteristics. Four large eddy simulation (LES) codes from different institutions and a vortex model are part of the comparison. The purpose of this benchmark is to validate the numerical predictions of the flow field statistics in the near wake...

  1. The ASPEC teeter: price/performance improvement of existing wind turbine technology by using a revolutionary concept

    Energy Technology Data Exchange (ETDEWEB)

    Doorenspleet, F. [Aerpac Special Products B.V., Amelo (Netherlands); Prats, J. [Ecotecnia S. Coop, Barcelona (Spain); Hagg, F. [Stork Product Engineering B.V. Amsterdam (Netherlands)

    1996-12-31

    Improvement of the price/performance ratio of wind turbines is essential if wind energy is to be taken seriously in the world energy market in the coming century. The key to improvement of the price/performance ratio lies in the minimisation of loads by inexpensive means, at a simultaneous increase in annual production of the wind turbine. On basis of the NOVEM/CEC Flexhat project, this design project is a first step towards commercialisation of flexible rotor technology. The goal of the project was to redesign an existing stall-regulated wind turbine to improve the original price/performance ratio by 20%. This goal has been reached by the use of a larger, two-bladed rotor with elastomeric tester, variable speed drivetrain and fast active tip pitch control with an advanced peakshaving function. The project has been sponsored by the European Commission under contract nr. Jou2CT93-0281. (author)

  2. An approach to the development and analysis of wind turbine control algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.C.

    1998-03-01

    The objective of this project is to develop the capability of symbolically generating an analytical model of a wind turbine for studies of control systems. This report focuses on a theoretical formulation of the symbolic equations of motion (EOMs) modeler for horizontal axis wind turbines. In addition to the power train dynamics, a generic 7-axis rotor assembly is used as the base model from which the EOMs of various turbine configurations can be derived. A systematic approach to generate the EOMs is presented using d`Alembert`s principle and Lagrangian dynamics. A Matlab M file was implemented to generate the EOMs of a two-bladed, free yaw wind turbine. The EOMs will be compared in the future to those of a similar wind turbine modeled with the YawDyn code for verification. This project was sponsored by Sandia National Laboratories as part of the Adaptive Structures and Control Task. This is the final report of Sandia Contract AS-0985.

  3. Modeling the effects of control systems of wind turbine fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.G.; Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    In this study we look at the effect on fatigue life of two types of control systems. First, we investigate the Micon 65, an upwind, three bladed turbine with a simple yaw control system. Results indicate that increased fatigue damage to the blade root can be attributed to continuous operation at significant yaw error allowed by the control system. Next, we model a two-bladed teetered rotor turbine using three different control systems to adjust flap deflections. The first two limit peak power output, the third limits peak power and cyclic power output over the entire range of operation. Results for simulations conducted both with and without active control are compared to determine how active control affects fatigue life. Improvement in fatigue lifetimes were seen for all control schemes, with increasing fatigue lifetime corresponding to increased flap deflection activity. 13 refs., 6 figs., 2 tabs.

  4. Vortex shedding by a Savonius rotor

    Science.gov (United States)

    Botrini, M.; Beguier, C.; Chauvin, A.; Brun, R.

    1984-05-01

    A series of flow visualizations was performed to characterize the wake vortices of a Savonius rotor. The trials were undertaken in an attempt to account for discrepancies between theoretical and experimentally-derived power coefficients. The Savonius examined was two-bladed with a center offset. All tests were made in a water tunnel. Dye injection provided the visualization, and average velocities and velocity fluctuations were measured using a laser Doppler anemometer. A system of three vortices was found to be periodically shed by the rotor. Flow velocity fluctuation intensity peaked as a vortex was shed. The vortex shedding alternated from blade to blade, so that one was shed from a blade moving upstream.

  5. The optimum design configurations of savonius wind turbines

    Science.gov (United States)

    Ushiyama, I.; Nagai, H.; Mino, M.

    The results of wind tunnel and water channel trials to optimize the Savonius rotor windmill are reported. The design simplicity, omnidirectional wind acceptance, self-starting characteristics, and lack of a need for overspeed control encouraged the tests. The rotor aspect ratio, blade overlap, blade separation gap, the blade cross-section profile, and the guide vane attachment were investigated, together with the flow pattern through the blades. Two-bladed semicircular and Bach type configurations were examined. Every factor was found to significantly affect performance, and the Bach blades with a 30-50% overlap and no blade separation were determined to be effective. Inclusion of separation gap degraded performance. High aspect ratios are favored for high wind velocity regions, while low aspect ratios are preferable in regions with low winds. Guide vanes augmented the power coefficient, which approached 0.35 at 4 m/s.

  6. Pressure coefficient evolutions on the blades of a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, A.; Guignard, S. [UMRR 7343, Marseilles (France). Lab. IUSTI; Kamoun, B. [Faculte des Sciences de Sfax (Tunisia). Lab. de Physique

    2012-07-01

    Measurements of the pressure field distribution on the blades of a vertical axis Savonius wind machine are presented. The rotor used in the wind tunnel is a two blades cylindrical shape with a central gap. Pressure gauges are placed on each side of a blade, so the pressure jumps between intrados and extrados of a blade during a whole rotation are drawn. In the static configuration, the machine is disposed at various incidences. The determination of pressure jumps allows to calculate the static torque of the machine versus the incidence angle. In the dynamic situation the machine is rotating at various frequencies and gauges signals are varying dynamically of course with the incidence. The dynamic torque coefficient is calculated. Evolutions of the starting torque and starting conditions are then described and dynamic effects on torque evolution are presented. (orig.)

  7. An experimental study on improvement of Savonius rotor performance

    Directory of Open Access Journals (Sweden)

    N.H. Mahmoud

    2012-03-01

    In this work different geometries of Savonius wind turbine are experimentally studied in order to determine the most effective operation parameters. It was found that, the two blades rotor is more efficient than three and four ones. The rotor with end plates gives higher efficiency than those of without end plates. Double stage rotors have higher performance compared to single stage rotors. The rotors without overlap ratio (β are better in operation than those with overlap. The results show also that the power coefficient increases with rising the aspect ratio (α. The conclusions from the measurements of the static torque for each rotor at different wind speeds verify the above summarized results of this work.

  8. The effect of shielding on the aerodynamic performance of Savonius wind turbines

    Science.gov (United States)

    Morcos, S. M.; Khalafallah, M. G.; Heikel, H. A.

    The effect of the flat plate shield on the performance of two-bladed Savonius rotor has been experimentally determined. Tests were carried out in a low speed wind tunnel with a working section of 1.0 sq m. Flat plate shields with various values of plate width and inclination angle were tested in order to determine the optimum configuration. The maximum power coefficient of the Savonius rotor was increased from 0.22 for the case without shielding to 0.34 for the case with an optimum shielding configuration. The addition of a flat plate shield to the Savonius rotor can, therefore, enhance the power coefficient to values approaching the more elaborate wind turbines without affecting the simplicity of the Savonius rotor.

  9. Ethic Control:A New Domain of Internet Control%伦理治理:网络治理的新视域

    Institute of Scientific and Technical Information of China (English)

    许亚非

    2014-01-01

    The internet is a two-blade sword, and can be controlled from the angle of ethic control. The sound methods concerned are, firstly, to formulate internet ethic rules, and regulation; secondly, to strengthen internet ethic education and observe the ground line of internet ethic control.%网络是一柄双刃剑。对于网络问题,新形势下可从伦理治理的角度,进行网络治理。建立网络伦理原则,构建网络伦理规范,强化网络伦理教育,坚守网络伦理底线,是伦理治理的有效途径。

  10. 风光互补型发电和提水两用机组的研究%Research on wind and solar powers mutually complemented generating-pumping dual purpose unit

    Institute of Scientific and Technical Information of China (English)

    孙彦君; 尹钢吉; 滕云; 司振江; 陶延怀

    2012-01-01

    In accordance with the problems from high energy consumption and large pollution emission over the relevant national standards during pumping water with the conventional energies generally existed in China, a new generation of wind and solar powers mutually complemented generating-pumping dual purpose unit is developed with the key techniques, I. E. High-efficiency centrifugal pump, solar cell array, Darrieus vertical-axis wind turbine(VAWT) and "S" type low wind speed windmill, etc. , so as to largely save fuels and electric power resources and lower the production costs concerned. With the optimal structure, this kind of unit has realized the diversification of both the function and the application, and then got the target of energy saving and consumption reducing along with the enhancement of production efficiency.%针对我国目前普遍存在的利用常规能源来提水时能耗大和污染排放超过国家标准等问题,创制出新一代风光互补型发电和提水两用机组,采用高效离心潜水电泵、太阳能电池组和达里厄型立轴式风力机、S型低风速启动风车等这些关键技术来节约大量燃料、电能资源,降低生产成本.这种机组以最优的结构匹配,实现了功能和用途的多样化,达到了节能降耗及提高生产效率之目的.

  11. 垂直轴风力发电机结构研究进展%Structural research of vertical axis wind turbine

    Institute of Scientific and Technical Information of China (English)

    陈兴华; 吴国庆; 曹阳; 茅靖峰; 张旭东; 张玉梅; 迟晓妮

    2011-01-01

    与水平轴风力发电机相比,垂直轴风力发电机具有结构对称、风能利用率高、噪音低等优点,有着较为广阔的市场前景.首先对垂直轴与水平轴风力机作了比较,分析了垂直轴风力发电机的特点,简要地概述了垂直轴风力机的先后发展,分别介绍了常见的萨渥纽斯阻力型、达里厄型及其变形结构等垂直轴风力机的结构,阐述了国内外学者对垂直轴风力机结构的研究现状,最后简要地分析了设计垂直轴风力机所面临的主要问题.%Compared with the horizontal axis wind turbines (HAWT),vertical axis wind turbine (VAWT)is characterized with its symmetrical structure,high wind energy utilization and low noise,therefore more broad market prospect is forseen.First,through comparing between the VAWT and HAWT,the characteristics of vertical axis wind turbine are analyzed,the development of VAWT is expounded briefly. Then the common Savonius resistance type and lift type such as Darrieus type as well as its deformation structures are introduced, the current research on VAWT of domestic and foreign scholars are expounded in brief.At last,some major problems of the structural design of VAWT are summarized briefly.

  12. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack

  13. Study on a similar-flapping wing ornithopter and flow-field characteristic of blades%类扑翼飞行器及其叶片流场特性研究

    Institute of Scientific and Technical Information of China (English)

    张玉华; 代强; 周进

    2013-01-01

    为了简化扑翼机构的结构和运动控制,采用半转机构及内凸轮传动,设计了一种新型的类扑翼飞行器.对类扑翼飞行器的结构组成及叶片运动原理进行了分析.基于FLUENT建立了叶片流场分析模型,对双叶片运动流场进行了仿真分析,获得了叶片流场特性的变化规律.研究结果表明:在一个运动周期中双叶片周围的流场速度矢量、压力分布和升力系数是随叶片方位变化的,两个叶片之间存在很强的相互影响;前半周的叶片升力系数大于后半周的升力系数;增加叶片大小和两叶片的中心距可有效提高升力系数.该研究为类扑翼飞行器的升力计算提供了可行的方法,对于修正该飞行器的升力计算模型具有重要的指导意义.%In order to simplify the construction and motion control of the flapping wing mechanism, a new similar-flapping wing ornithopter was designed based on the half-rotating mechanism and inner cam with rotational follower. Its construction and blade motion principle were analyzed. A blade-fluid FE model was established using Fluent software. Changes of flow field characteristic around the two blades were discovered after the simulation analysis of the flow field with double blades in motion. The results indicate that the fluid velocity and pressure around the blades and the lift coefficient of a blade change with the position and orientation of the blades within a motional period, and are mutually affected by the movement of two blades, and the lift coefficient of a blade in former half of the period is greater than in latter half of the period, and the increase in the size of blade can effectively raise the lift coefficient. These provide practicable approaches for the lift calculation and offer important guidance to modify the lift calculation model of the similar ornithopter.

  14. TX-100 manufacturing final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

    2007-11-01

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three

  15. A comprehensive vibration analysis of a coupled rotor/fuselage system

    Science.gov (United States)

    Yeo, Hyeonsoo

    A comprehensive vibration analysis of a coupled rotor/fuselage system for a two-bladed teetering rotor using finite element methods in space and time is developed which incorporates consistent rotor/fuselage structural, aerodynamic, and inertial couplings and a modern free wake model. A coordinate system is developed to take into account a teetering rotor's unique characteristics, such as teetering motion and undersling. Coupled nonlinear periodic blade and fuselage equations are transformed to the modal space in the fixed frame and solved simultaneously. The elastic line and detailed 3-D NASTRAN finite element models of the AH-1G helicopter airframe from the DAMVIBS program are integrated into the elastic rotor finite element model. Analytical predictions of rotor control angles, blade loads, hub forces, and vibration are compared with AH-1G Operation Load Survey flight test data. The blade loads predicted by present analysis show generally fair agreement with the flight test data, especially blade chord bending moment estimation shows good agreement. Calculated 2/rev vertical vibration levels at pilot seat show good correlation with the flight test data both in magnitude and phase, but 4/rev vibration levels show fair correlation only in magnitude. Lateral vibration results show more disagreement than vertical vibration results. Pylon flexibility effect is essential in the two-bladed teetering rotor vibration analysis. The pylon flexibility increases the first lag frequency by about 14%, and decreases 2/rev longitudinal and lateral hub forces by more than half. Rotor/fuselage coupling reduces 2/rev vertical and lateral vibration levels by 60% to 70% and has a small effect on 4/rev vibration levels. Modeling of difficult components (secondary structures, doors/panels, etc) is essential in predicting airframe natural frequencies. Refined aerodynamics such as free wake and unsteady aerodynamics have an important role in the prediction of vibration. For example, free

  16. Small scale wind power harnessing in Colombian oil industry facilities: Wind resource and technology issues

    Energy Technology Data Exchange (ETDEWEB)

    Giraldo, Mauricio; Nieto, Cesar; Escudero, Ana C.; Cobos, Juan C.; Delgado, Fernando

    2010-07-01

    Full text: Looking to improve its national and international standing, Colombia's national oil company, Ecopetrol, has set its goal on becoming involved on the production of energy from multiple sources, most importantly, on having an important percentage of its installed capacity from renewable sources. Part of this effort entices the evaluation of wind power potential on its facilities, including production, transportation and administrative, as well as identifying those technologies most suitable for the specific conditions of an equatorial country such as Colombia. Due to the lack of adequate site information, the first step consisted in superimposing national data to the facilities map of the company; this allowed for the selection of the first set of potential sites. From this set, the terminal at Covenas-Sucre was selected taking into account not only wind resource, but ease of access and power needs, as well as having a more or less representative wind potential in comparison to the rest of the country. A weather station was then installed to monitor wind variables. Measurements taken showed high variations in wind direction, and relatively low velocity profiles, making most commercially available wind turbines difficult to implement. In light of the above, a series of iterative steps were taken, first considering a range of individual Vertical Axis Wind Turbines (VAWT), given their capacity to adapt to changing wind directions. However, wind speed variations proved to be a challenge for individual VAWT's, i.e. Darriues turbines do not work well with low wind speeds, and Savonius turbines are not efficient of high wind speeds. As a result, a combined Darrieus- Savonius VAWT was selected given the capacity to adapt to both wind regimes, while at the same time modifying the size and shape of the blades in order to adapt to the lower average wind speeds present at the site. The resulting prototype is currently under construction and is scheduled to

  17. Numerical simulation for Savonius rotors. ; Running performance and flow fields. Savonius fusha ni kansuru suchi keisan. ; Unten tokusei to nagareba

    Energy Technology Data Exchange (ETDEWEB)

    Ishimatsu, K.; Shinohara, T. (Oita University, Oita (Japan). Faculty of Engineering); Takuma, F. (Kyushu Matsushita Electric Co. Ltd., Tokyo (Japan))

    1994-01-25

    This paper reports numerical calculations on flow around Savonius wind turbine (rotating) with blades in a semi-circular shape and their output characteristics. The two-dimensional non-compressive Navier-Stokes equations were discretized by a fractional step method with regard to time, and by a finite volume method using non-structural grids with regard to space. Upon the discretization, the flow field in a region 20 times as large as the wind turbine diameter was analyzed for the cases that the Reynolds number is 10[sup 5], the ratios of clearance between two blades to the blade diameter are zero and 0.16, and the circumferential velocity ratio is in a range from 0.25 to 1.75. The paper describes the result as follows: the circumferential velocity ratio when the output is at a maximum is slightly smaller than one, and the circumferential velocity ratio when the output is zero is about 1.7, which agree approximately with values in the previous experiments on the circumferential velocity ratio and output; and vortices are discharged also from rear of the blades in addition to from tips of the blades. Several examples of flow fields as seen from static coordinates are illustrated. 4 refs., 11 figs.

  18. The high Reynolds number flow through an axial-flow pump

    Science.gov (United States)

    Zierke, W. C.; Straka, W. A.; Taylor, P. D.

    1993-11-01

    The high Reynolds number pump (HIREP) facility at ARL Penn State has been used to perform a low-speed, large-scale experiment of the incompressible flow of water through a two-blade-row turbomachine. HIREP can involve blade chord Reynolds numbers as high as 6,000,000 and can accommodate a variety of instrumentation in both a stationary and a rotating frame of reference. The objectives of this experiment were as follows: to provide a database for comparison with three-dimensional, viscous (turbulent) flow computations; to evaluate the engineering models; and to improve our physical understanding of many of the phenomena involved in this complex flow field. The experimental results include a large quantity of data acquired throughout HIREP. A five-hole probe survey of the inlet flow 37.0 percent chord upstream of the inlet guide vane (IGV) leading edge is sufficient to give information for the inflow boundary conditions, while some static-pressure information is available to help establish an outflow boundary condition.

  19. Modal testing of the TX-100 wind turbine blade.

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Sarah; Griffith, Daniel Todd; Casias, Miguel; Simmermacher, Todd William; Smith, Gregory A.

    2006-05-01

    This test report covers the SNL modal test results for two nominally identical TX-100 wind turbine blades. The TX-100 blade design is unique in that it features a passive braking, force-shedding mechanism where bending and torsion are coupled to produce desirable aerodynamic characteristics. A specific aim of this test is to characterize the coupling between bending and torsional dynamics. The results of the modal tests and the subsequent analysis characterize the natural frequencies, damping, and mode shapes of the individual blades. The results of this report are expected to be used for model validation--the frequencies and mode shapes from the experimental analysis can be compared with those of a finite-element analysis. Damping values are included in the results of these tests to potentially improve the fidelity of numerical simulations, although numerical finite element models typically have no means of predicting structural damping characteristics. Thereafter, an additional objective of the test is achieved in evaluating the test to test and unit variation in the modal parameters of the two blades.

  20. Development of a towing tank PIV system and a wake survey of a marine current turbine under steady conditions

    Science.gov (United States)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2015-11-01

    A submersible particle image velocimetry (PIV) system was designed and built at the U.S. Naval Academy. The system was used to study the wake of a scale-independent horizontal axis marine current turbine. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross-section. The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed by registering the resultant vector fields together into a single field of investigation. Results include the field of investigation from a representative case, for the mean velocity field averaged over approximately 1,000 realizations, and turbulent statistics including turbulence intensities, Reynolds shear stresses, and turbulent kinetic energy. This research was funded by the Office of Naval Research.

  1. User's Guide for the NREL Force and Loads Analysis Program. [National Renewable Energy Laboratory (NREL)

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.D.

    1992-08-01

    The following report gives the reader an overview of and instructions on the proper use of the National Renewable Energy Laboratory Force and Loads Analysis Program (FLAP, version 2.2). It is intended as a tool for prediction of rotor and blade loads and response for two- or three-bladed rigid hub wind turbines. The effects of turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed rigid hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user's guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

  2. User`s Guide for the NREL Force and Loads Analysis Program. Version 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A D

    1992-08-01

    The following report gives the reader an overview of and instructions on the proper use of the National Renewable Energy Laboratory Force and Loads Analysis Program (FLAP, version 2.2). It is intended as a tool for prediction of rotor and blade loads and response for two- or three-bladed rigid hub wind turbines. The effects of turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed rigid hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user`s guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

  3. Analytical comparison of three stiffened panel concepts

    Science.gov (United States)

    Maloney, Jill M.; Wu, K. Chauncey; Robinson, James C.

    1995-01-01

    Three stiffened panel concepts are evaluated to find optimized designs for integral stiffeners in the barrels of Reusable Launch Vehicle fuel tanks. The three panel concepts considered are a T-stiffened panel, a panel with one blade stiffener centered between each pair of T-stiffeners, and a panel with two blade stiffeners equally spaced between each pair of T-stiffeners. The panels are optimized using PASCO for a range of compressive loads, and the computed areal weight for each panel is used to compare the concepts and predict tank weights. The areal weight of the T-stiffened panel with one blade is up to seven-percent lower than the other panel concepts. Two tank construction methods are compared for a representative tank design with three barrels. In the first method, 45-degree circumferential sections of a barrel are each designed to carry the same maximum load in the barrel. In the second method, each barrel section is designed for the maximum load in that section. Representative tanks designed with the first method are over 250 lb heavier than tanks designed using the second method. Optimized panel designs and areal weights are also computed for variation of the nominal panel length and skin thickness.

  4. Effect of Favorable Pressure Gradients on Turbine Blade Pressure Surface Heat Transfer

    Science.gov (United States)

    Boyle, Robert J.; Giel, P. W.

    2002-01-01

    Recent measurements on a turbine rotor showed significant relaminarization effects. These effects were evident on the pressure surface heat transfer measurements. The character of the heat transfer varied with Reynolds number. Data were obtained for exit Reynolds numbers between 500,000 and 880,000. Tests were done with a high level of inlet turbulence, 7.5%. At lower Reynolds numbers the heat transfer was similar to that for laminar flow, but at a level higher than for laminar flow. At higher Reynolds numbers the heat transfer was similar to turbulent flow, when the acceleration parameter, K, was sufficiently small. The proposed paper discusses the experimental results, and also discusses approaches to calculating the surface heat transfer for the blade surface. Calculations were done using a three-dimensional Navier-Stokes CFD analysis. The results of these tests, when compared with previous blade tests in the same facility, illustrate modeling difficulties that were encountered in CFD predictions. The two blades were in many ways similar. However, the degree of agreement between the same analysis and the experimental data was significantly different. These differences are highlighted to illustrate where improvements in modeling approaches are needed for transitional flows.

  5. Experimental calibration of the mathematical model of Air Torque Position dampers with non-cascading blades

    Directory of Open Access Journals (Sweden)

    Bikić Siniša M.

    2016-01-01

    Full Text Available This paper is focused on the mathematical model of the Air Torque Position dampers. The mathematical model establishes a link between the velocity of air in front of the damper, position of the damper blade and the moment acting on the blade caused by the air flow. This research aims to experimentally verify the mathematical model for the damper type with non-cascading blades. Four different types of dampers with non-cascading blades were considered: single blade dampers, dampers with two cross-blades, dampers with two parallel blades and dampers with two blades of which one is a fixed blade in the horizontal position. The case of a damper with a straight pipeline positioned in front of and behind the damper was taken in consideration. Calibration and verification of the mathematical model was conducted experimentally. The experiment was conducted on the laboratory facility for testing dampers used for regulation of the air flow rate in heating, ventilation and air conditioning systems. The design and setup of the laboratory facility, as well as construction, adjustment and calibration of the laboratory damper are presented in this paper. The mathematical model was calibrated by using one set of data, while the verification of the mathematical model was conducted by using the second set of data. The mathematical model was successfully validated and it can be used for accurate measurement of the air velocity on dampers with non-cascading blades under different operating conditions. [Projekat Ministarstva nauke Republike Srbije, br. TR31058

  6. Calculation of design load for the MOD-5A 7.3 mW wind turbine system

    Science.gov (United States)

    Mirandy, L.; Strain, J. C.

    1995-01-01

    Design loads are presented for the General Electric MOD-SA wind turbine. The MOD-SA system consists of a 400 ft. diameter, upwind, two-bladed, teetered rotor connected to a 7.3 mW variable-speed generator. Fatigue loads are specified in the form of histograms for the 30 year life of the machine, while limit (or maximum) loads have been derived from transient dynamic analysis at critical operating conditions. Loads prediction was accomplished using state of the art aeroelastic analyses developed at General Electric. Features of the primary predictive tool - the Transient Rotor Analysis Code (TRAC) are described in the paper. Key to the load predictions are the following wind models: (1) yearly mean wind distribution; (2) mean wind variations during operation; (3) number of start/shutdown cycles; (4) spatially large gusts; and (5) spatially small gusts (local turbulence). The methods used to develop statistical distributions from load calculations represent an extension of procedures used in past wind programs and are believed to be a significant contribution to Wind Turbine Generator analysis. Test/theory correlations are presented to demonstrate code load predictive capability and to support the wind models used in the analysis. In addition MOD-5A loads are compared with those of existing machines. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department, under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.

  7. Reduced Design Load Basis for Ultimate Blade Loads Estimation in Multidisciplinary Design Optimization Frameworks

    Science.gov (United States)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth

    2016-09-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.

  8. Variable structure control for maximum wind power extraction

    Energy Technology Data Exchange (ETDEWEB)

    Barambones, O.; Gonzalez de Durana, J.M.; Alcorta, P. [Univ. of the Basque Country, Vitoria (Spain)

    2009-07-01

    The future development of wind power technology will affect the level of impact that wind power will have on the power system. Very large wind farms can pose complex technical challenges while also paving the way for other new technologies that will help with electric grid integration. Increasingly complicated power electronic and computerized control schemes will lead to significant improvements and full controllability of available wind power. Reactive power compensation is an important issue in the control of distribution and transmission systems as it increases feeder system losses, reduces system power factor, and can cause large-amplitude variations in load-side voltage. Moreover, rapid changes in the reactive power consumption of large load centers can cause voltage amplitude oscillations, leading to a change in the electric system real power demand resulting in power oscillation. This paper described a sliding mode vector control for a double fed induction generator (DFIG) drive, used in variable speed wind power generation. The study proposed a new variable structure control which has an integral sliding surface to relax the requirement of the acceleration signal, commonly used in conventional sliding mode speed control techniques. The paper discussed the system modelling, DFIG control scheme, and simulation results. A test of the proposed method based on a two-bladed horizontal axis wind turbine was conducted using the Matlab/Simulink software. In this test, several operating conditions were simulated and the study concluded that satisfactory results were obtained. 14 refs., 5 figs.

  9. Structural and Biochemical Insights into MLL1 Core Complex Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Avdic, Vanja; Zhang, Pamela; Lanouette, Sylvain; Groulx, Adam; Tremblay, Véronique; Brunzelle, Joseph; Couture, Jean-François (Ottawa); (NWU)

    2012-05-02

    Histone H3 Lys-4 methylation is predominantly catalyzed by a family of methyltransferases whose enzymatic activity depends on their interaction with a three-subunit complex composed of WDR5, RbBP5, and Ash2L. Here, we report that a segment of 50 residues of RbBP5 bridges the Ash2L C-terminal domain to WDR5. The crystal structure of WDR5 in ternary complex with RbBP5 and MLL1 reveals that both proteins binds peptide-binding clefts located on opposite sides of WDR5s {beta}-propeller domain. RbBP5 engages in several hydrogen bonds and van der Waals contacts within a V-shaped cleft formed by the junction of two blades on WDR5. Mutational analyses of both the WDR5 V-shaped cleft and RbBP5 residues reveal that the interactions between RbBP5 and WDR5 are important for the stimulation of MLL1 methyltransferase activity. Overall, this study provides the structural basis underlying the formation of the WDR5-RbBP5 subcomplex and further highlight the crucial role of WDR5 in scaffolding the MLL1 core complex.

  10. Measurements of wakes originated from 2-bladed and 3-bladed rotors

    Science.gov (United States)

    Wu, Yu-Ting; Lyu, Shao-Dong; Chen, Bo-Wei

    2016-04-01

    Measurements of wakes originated from 2-bladed and 3-bladed rotors were carried out using a hot-wire probe system in an open jet wind tunnel. Hot-wire anemometry was adopted to characterize the spanwise profiles of mean wind speed, turbulence intensity and momentum flux for downwind locations at 0.5, 1, 2, 3, and 4 rotor diameters. The results showed that the 2-bladed rotor spun faster than the 3-bladed one, where the ratio of the two blade angular velocities was 1.065:1 under the same inflow condition with a uniform distribution of 5.4 m/s flow velocity. The turbulence flow statistics of the rotor wakes showed that the wake originated from the 3-bladed rotor has larger velocity deficit, streamwise turbulence intensity, momentum flux magnitude, but smaller spanwise turbulence intensity. The velocity spectrum showed peaks associated with the presence of the blade-induced tip vortices in the near wake region (approximately within 3 rotor diameters).

  11. Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2015-07-01

    Full Text Available The Savonius wind turbine is a type of vertical axis wind turbine (VAWTs that is simply composed of two or three arc-type blades which can generate power even under poor wind conditions. A modified Savonius wind turbine with novel blade shapes is introduced with the aim of increasing the power coefficient of the turbine. The effect of blade fullness, which is a main shape parameter of the blade, on the power production of a two-bladed Savonius wind turbine is investigated using transient computational fluid dynamics (CFD. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations with a renormalization group turbulent model. This numerical method is validated with existing experimental data and then utilized to quantify the performance of design variants. Results quantify the relationship between blade fullness and turbine performance with a blade fullness of 1 resulting in the highest coefficient of power, 0.2573. This power coefficient is 10.98% higher than a conventional Savonius turbine.

  12. An experimental investigation into cavitation behaviour and pressure characteristics of alternative blade sections for propellers

    Science.gov (United States)

    Korkut, Emin; Atlar, Mehmet; Wang, Dazheng

    2013-03-01

    During the final quarter of the last century considerable efforts have been spent to reduce the hull pressure fluctuations caused by unsteady propeller cavitation. This has resulted in further changes in propeller design characteristics including increased skew, tip unloading and introduction of "New Blade Sections" (NBS) designed on the basis of the so-called Eppler code. An experimental study was carried out to investigate flow characteristics of alternative two-dimensional (2-D) blade sections of rectangular planform, one of which was the New Blade Section (NBS) developed in Newcastle University and other was based on the well-known National Advisory Committee for Aeronautics (NACA) section. The experiments comprised the cavitation observations and the measurements of the local velocity distribution around the blade sections by using a 2-D Laser Doppler Anemometry (LDA) system. Analysis of the cavitation tests demonstrated that the two blade sections presented very similar bucket shapes with virtually no width at the bottom but relatively favourable buckets arms at the suction and pressure sides for the NACA section. Similarly, pressure analysis of the sections displayed a slightly larger value for the NBS pressure peak. The comparative overall pressure distributions around the sections suggested that the NBS might be more susceptible to cavitation than the NACA section. This can be closely related to the fundamental shape of the NBS with very fine leading edge. Therefore a further investigation into the modification of the leading edge should be considered to improve the cavitation behaviour of the NBS.

  13. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  14. Monitoring the petroleum bitumen characteristics changes during their interaction with the polymers

    Science.gov (United States)

    Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Frolov, V. A.

    2017-08-01

    The subject of the study is the characteristics (penetration, softening temperature, ductility and elasticity) of a road binder based on petroleum bitumen. The work purpose is to monitor the changes in the characteristics of petroleum bitumen when it interacting with polymers: thermoplastic elastomer, low-density polyethylene, including the adhesive additive presence. To carry out the research a special laboratory facility was designed and manufactured with two blade mixers providing intensive turbulent mixing and the possibility to effect on the transition process of combining the components in a polymer-bitumen binder. To construct a mathematical model of the polymer-bitumen binder characteristics dependence from the composition, methods of statistical experiments planning were used. The possibility of the expensive thermoplastic elastomers replacement with polyethylene is established while maintaining acceptable polymer-bitumen binder quality parameters. The obtained results are proposed for use in road construction. They allow to reduce the roads construction cost with solving the problem of recycling long-term waste packaging from polyethylene.

  15. Counting Possibilia

    Directory of Open Access Journals (Sweden)

    Alfredo Tomasetta

    2010-06-01

    Full Text Available Timothy Williamson supports the thesis that every possible entity necessarily exists and so he needs to explain how a possible son of Wittgenstein’s, for example, exists in our world:he exists as a merely possible object (MPO, a pure locus of potential. Williamson presents a short argument for the existence of MPOs: how many knives can be made by fitting together two blades and two handles? Four: at the most two are concrete objects, the others being merely possible knives and merely possible objects. This paper defends the idea that one can avoid reference and ontological commitment to MPOs. My proposal is that MPOs can be dispensed with by using the notion of rules of knife-making. I first present a solution according to which we count lists of instructions - selected by the rules - describing physical combinations between components. This account, however, has its own difficulties and I eventually suggest that one can find a way out by admitting possible worlds, entities which are more commonly accepted - at least by philosophers - than MPOs. I maintain that, in answering Williamson’s questions, we count classes of physically possible worlds in which the same instance of a general rule is applied.

  16. A new blade element method for calculating the performance of high and intermediate solidity axial flow fans

    Science.gov (United States)

    Borst, H. V.

    1978-01-01

    A method is presented to design and predict the performance of axial flow rotors operating in a duct. The same method is suitable for the design of ducted fans and open propellers. The unified method is based on the blade element approach and the vortex theory for determining the three dimensional effects, so that two dimensional airfoil data can be used for determining the resultant force on each blade element. Resolution of this force in the thrust and torque planes and integration allows the total performance of the rotor, fan or propeller to be predicted. Three different methods of analysis, one based on a momentum flow theory; another on the vortex theory of propellers; and a third based on the theory of ducted fans, agree and reduce cascade airfoil data to single line as a function of the loading and induced angle of attack at values of constant inflow angle. The theory applies for any solidity from .01 to over 1 and any blade section camber. The effects of the duct and blade number can be determined so that the procedure applies over the entire range from two blade open propellers, to ducted helicopter tail rotors, to axial flow compressors with or without guide vanes, and to wind tunnel drive fans.

  17. Simulation of Low frequency Noise from a Downwind Wind Turbine Rotor

    DEFF Research Database (Denmark)

    Madsen, Helge Aa.; Johansen, Jeppe; Sørensen, Niels

    2007-01-01

    One of the major drawbacks of a wind turbine with a downwind rotor is the generation of considerable low frequency noise (so-called thumping noise) which can cause annoyance of people at a considerable distance. This was experienced on a number of full-scale turbines in e.g. US and Sweden...... in the period from around 1980 to 1990. One of the common characteristics of this low frequency noise, emerging from analysis of the phenomenon, was that the sound pressure level is strongly varying in time. We have investigated this phenomenon using a model package by which the low frequency noise...... to the aero acoustic model. The results for a 5 MW two-bladed turbine with a downwind rotor showed an increase in the sound pressure level of 5-20 dB due to the unsteadiness in the wake caused mainly by vortex shedding. However, in some periods the sound pressure level can increase additionally 0-10 dB when...

  18. Wake Survey of a Marine Current Turbine Under Steady Conditions

    Science.gov (United States)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  19. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.

    Science.gov (United States)

    Su, Boyang; Chua, Leok Poh; Wang, Xikun

    2012-04-01

    A magnetically suspended axial flow blood pump is studied experimentally in this article. The pump casing enclosed a three-blade straightener, a two-blade impeller shrouded by a permanent magnet-embedded cylinder, and a three-blade diffuser. The internal flow fields were simulated earlier using computational fluid dynamics (CFD), and the pump characteristic curves were determined. The simulation results showed that the internal flow field was basically streamlined, except the diffuser region. Particle image velocimetry (PIV) measurement of the 1:1 pump model was conducted to validate the CFD result. In order to ensure the optical access, an acrylic prototype was fabricated with the impeller driven by a servomotor instead, as the magnet is opaque. In addition to the transparent model, the blood analog fluid with the refractive index close to that of acrylic was used to avoid refraction. According to the CFD results, the axial flow blood pump could generate adequate pressure head at the rotating speed of 9500rpm and flow rate of 5L/min, and the same flow condition was applied during the PIV measurement. Through the comparisons, it was found that the experimental results were close to those obtained by CFD and had thus validated the CFD model, which could complement the limitation of the measurement in assessing the more detailed flow fields of the axial flow pump.

  20. Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium.

    Science.gov (United States)

    Pohlscheidt, M; Langer, U; Minuth, T; Bödeker, B; Apeler, H; Hörlein, H-D; Paulsen, D; Rübsamen-Waigmann, H; Henzler, H-J; Reichl, U

    2008-03-17

    For the production of a chemically inactivated Parapoxvirus ovis (PPVO), an adherent bovine kidney cell line was cultivated on Cytodex-3 microcarriers in suspension culture. The inactivated and purified virus particles have shown immune modulatory activity in several animal models. PPVO was produced by a biphasic batch process at the 3.5 and 10 L scale. Aeration was realised by bubble-free membrane oxygenation via a tube stator with a central two-blade anchor impeller. In order to increase efficiency, process robustness and safety, the established process was optimised. The cell line was adapted to a protein-free medium (except recombinant insulin) in order to increase biosafety. A scale up to a 50 L pilot plant with direct cell expansion was performed successfully. In parallel, the biphasic batch process was optimised with special emphasis on different operating conditions (cell number, Multiplicity of Infection (MOI), etc.) and process management (fed-batch, dialysis, etc.). The quality and concentration of the purified virus particles was assessed by quantitative electron microscopy, residual host cell protein and DNA-content and, finally, biologic activity in a transgenic mouse model. This integrated approach led to a new, safe, robust and highly productive large-scale production process, called "Volume-Expanded-Fed" Batch with cell densities up to 6-7e06 cells/mL. By subsequent dilution of infected cells into the next process scale, an increase in total productivity by a factor of 40 (related to an established biphasic batch process) was achieved.

  1. Metal Linear Expansion Coefficient Measuring Based on Laser Diffraction%激光衍射法测金属线胀系数

    Institute of Scientific and Technical Information of China (English)

    许巧平

    2015-01-01

    In this paper,we proposed a new method for measuring metal linear expansion coefficient based on the principle of single slit diffraction of light. By using the two blades to make a slit,one blade is fixed on the hob,the other is fixed on the metal bar indirectly. Activity slit width becomes smaller when the metal bar heated to be expanded. And the diffraction fringe width changes when the laser passes through the slit. The elongation of metal bar can be calculated by measuring fringe change.%介绍了一种利用光的衍射原理测量金属线胀系数的新方法。利用两个刀片构成一活动狭缝。其中一刀片固定在铁架台支架上,另一刀片间接固定在金属棒上,当金属棒受热膨胀时,活动狭缝变小。在激光照射下,形成单缝衍射条纹的宽度发生变化,通过测量条纹的变化计算出金属丝的伸长量。

  2. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hughes, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paquette, J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  3. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    Science.gov (United States)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  4. Numerical simulation of the tip aerodynamics and acoustics test

    Science.gov (United States)

    Tejero E, F.; Doerffer, P.; Szulc, O.; Cross, J. L.

    2016-04-01

    The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators (RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor (without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA (Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test (TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.

  5. Investigation of load reduction for a variable speed, variable pitch, and variable coning wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    A two bladed, variable speed and variable pitch wind turbine was modeled using ADAMS{reg_sign} to evaluate load reduction abilities of a variable coning configuration as compared to a teetered rotor, and also to evaluate control methods. The basic dynamic behavior of the variable coning turbine was investigated and compared to the teetered rotor under constant wind conditions as well as turbulent wind conditions. Results indicate the variable coning rotor has larger flap oscillation amplitudes and much lower root flap bending moments than the teetered rotor. Three methods of control were evaluated for turbulent wind simulations. These were a standard IPD control method, a generalized predictive control method, and a bias estimate control method. Each control method was evaluated for both the variable coning configuration and the teetered configuration. The ability of the different control methods to maintain the rotor speed near the desired set point is evaluated from the RMS error of rotor speed. The activity of the control system is evaluated from cycles per second of the blade pitch angle. All three of the methods were found to produce similar results for the variable coning rotor and the teetered rotor, as well as similar results to each other.

  6. Study of the turbulent wake behind a tidal turbine through different numerical models

    Science.gov (United States)

    Teymour Javaherchi Mozafari, Amir; Aliseda, Alberto; Antheaume, Sylvain; Seydel, Joseph; Polagye, Brian

    2009-11-01

    As developing sources of renewable energy becomes a critical priority, research in this field become more essential. A novel method to produce clean renewable energy is extraction from ocean tides via a turbine. Although energy generation from tidal currents has many similarities to wind, the balance between kinetic and potential energy is a key element in tidal channels that invalidates ``Betz's'' limit. Other practical differences arise from the concentrated nature of tidal resources which impose very close turbine spacing for economic reasons. These, together with the potential influence of geometric constraints imposed by free surface and tidal channel walls, makes the study of the turbulent wake in tidal energy extraction a very important problem in development of this technology from economical and environmental aspects. We will present numerical simulations of turbulent wake behind a well characterized two-bladed turbine using a hierarchy of different models: Actuator Disk, Virtual Blade, the Single and Multiple Reference Frame and Sliding Mesh model with various boundary conditions and inlet velocity profiles. We will compare the results, discuss the differences among these models and the potential for each one to answer questions about optimization of energy extraction and environmental impacts.

  7. Optimization of Savonius turbines using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2010-11-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. In Germany, wind energy is becoming particularly important. Although considerable progress has already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a Savonius turbine with either two or three blades. In addition, the improved design leads to a better self-starting capability. To achieve these objectives, the position of an obstacle shielding the returning blade of the Savonius turbine and possibly leading to a better flow orientation toward the advancing blade is optimized. This automatic optimization is carried out by coupling an in-house optimization library (OPAL) with an industrial flow simulation code (ANSYS-Fluent). The optimization process takes into account the output power coefficient as target function, considers the position and the angle of the shield as optimization parameters, and relies on Evolutionary Algorithms. A considerable improvement of the performance of Savonius turbines can be obtained in this manner, in particular a relative increase of the power output coefficient by more than 27%. It is furthermore demonstrated that the optimized configuration involving a two-blade rotor is better than the three-blade design. (author)

  8. CFD simulation and analysis for Savonius rotors with different blade configuration

    Science.gov (United States)

    Lin, Ching-Huei; Klimina, Liubov A.

    2014-12-01

    Savonius rotor is seldom applied in wind power generation system due to its lower aerodynamic efficiency. But studies about Savonius rotor still continued since the rotor structure is simpler and the manufacturing cost is lower. Computational fluid dynamics simulations are adopted to compare the output power, torque and power coefficient (Cp) for the conventional two-blade Savonius rotors with three different aspect ratios but the same swept area under the same wind condition to investigate the optimum blade configuration. The rotor with tall and thin configuration is found to have the maximum output power and Cp. The rotor with short and wide configuration has the maximum torque but the minimum Cp. The current result suggests the optimum aspect ratio is 4/1. The influence related to the circular cover plates at two ends of rotor was studied also. It reveals that both the torque and power coefficient for Savonius rotor with end-plates are larger than that without end-plates.

  9. Characterization of wake effects and loading status of wind turbine arrays under different inflow conditions

    Science.gov (United States)

    Gao, Xiangyu

    The objective of the present work is to improve the accuracy of Actuator Line Modeling (ALM) in predicting the unsteady aerodynamic loadings on turbine blades and turbine wake by assessing different methods used to determine the relative velocity between the rotating blades and wind. ALM is incorporated into a Large Eddy Simulation (LES) solver in OpenFOAM (Open Field Operations and Manipulations). The aerodynamic loadings are validated by experiment results from National Renewable Energy Laboratory (NREL). Turbine wakes are validated by predictions of large eddy simulation using exact 3D blade geometries from a two-blade NREL Phase VI turbine. Three different relative velocity calculation methods are presented: iterative process in Blade Element Momentum (BEM) theory, local velocity sampling, and Lagrange-Euler Interpolation (LEI). Loadings and wakes obtained from these three methods are compared. It is discovered that LEI functions better than the conventional BEM with iterative process in both loading and wake prediction. Then LES-ALM with LEI is performed on a small wind farm deploying five NREL Phase VI turbines in full wake setting. The power outputs and force coefficients of downstream turbines are evaluated. The LES-ALM with LEI is also performed on a small wind farm deploying 25 NREL Phase VI turbines with different inflow angles (from full wake setting to partial wake setting). The power outputs and force coefficients of each turbine are evaluated under different inflow angles (the angle the rotor has to turn to make the rotor plane face the incoming wind) (0, 5, 15, 30 and 45 degree). The power coefficient distributions and thrust coefficient distributions of the wind farm under each inflow angle are compared. The range of inflow angle which is best for power generation is also discussed. The results demonstrate that the LES-ALM with LEI has the potential to optimize wind farm arrangement and pitch angle of individual turbines.

  10. Alternative blade materials for technical and ecological optimization of a hydraulic pressure machine

    Science.gov (United States)

    Schwyzer, Olivier; Saenger, Nicole

    2016-11-01

    The Hydraulic Pressure Machine (HPM) is an energy converter to exploit head differences between 0.5 and 2.5 m in small streams and irrigation canals. Previous investigations show that efficiencies above 60% are possible. Several case studies indicate good continuity for aquatic life (e.g. fish) and bed load for the technology. The technology is described as an economically and ecologically viable option for small scale hydropower generation. Primary goal of this research is to improve the HPM blade design regarding its continuity properties by maintaining good efficiency rates. This is done by modifying the blade tip and testing within a large physical model under laboratory condition. Blade tips from steel (conventional - reference case) and a combination of EPDM rubber and steel as sandwich construction (rubber, steel, rubber - adhesive layered) are tested and compared. Both materials reach similar values for hydraulic efficiency (approx. 58%) and mechanical power output (approx. 220 W). The variation of different gap sizes pointed out the importance of small clearance gaps to reach high efficiencies. For assessing the two blade tip materials regarding continuity for aquatic life, fish dummies were led through the wheel. Analysis of slow motion video of dummies hit by the blade show significant advantages for the EPDM blade tip. The EPDM rubber allows to bend and thus reduces the shock and the probability for cuts on the fish dummy. It was shown that blade tips from EPDM have certain advantages regarding continuity compared to standard blade tips from steel. No compromise regarding energy production had to be made. These results from the HPM can be transferred to breast shot water wheel and may be applied for new and retrofitting projects.

  11. Late maturation of adult-born neurons in the temporal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Jason S Snyder

    Full Text Available Hippocampal function varies along its septotemporal axis, with the septal (dorsal pole more frequently involved in spatial learning and memory and the temporal (ventral pole playing a greater role in emotional behaviors. One feature that varies across these subregions is adult neurogenesis. New neurons are more numerous in the septal hippocampus but are more active in the temporal hippocampus during water maze training. However, many other aspects of adult neurogenesis remain unexplored in the context of septal versus temporal subregions. In addition, the dentate gyrus contains another functionally important anatomical division along the transverse axis, with the suprapyramidal blade showing greater experience-related activity than the infrapyramidal blade. Here we ask whether new neurons differ in their rates of survival and maturation along the septotemporal and transverse axes. We found that neurogenesis is initially higher in the infrapyramidal than suprapyramidal blade, but these cells are less likely to survive, resulting in similar densities of neurons in the two blades by four weeks. Across the septotemporal axis, neurogenesis was higher in septal than temporal pole, while the survival rate of new neurons did not differ. Maturation was assessed by immunostaining for the neuronal marker, NeuN, which increases in expression level with maturation, and for the immediate-early gene, Arc, which suggests a neuron is capable of undergoing activity-dependent synaptic plasticity. Maturation occurred approximately 1-2 weeks earlier in the septal pole than in the temporal pole. This suggests that septal neurons may contribute to function sooner; however, the prolonged maturation of new temporal neurons may endow them with a longer window of plasticity during which their functions could be distinct from those of the mature granule cell population. These data point to subregional differences in new neuron maturation and suggest that changes in

  12. Effect of rotor configuration on guyed tower and foundation designs and estimated costs for intermediate site horizontal axis wind turbines

    Science.gov (United States)

    Frederick, G. R.; Winemiller, J. R.; Savino, J. M.

    1982-01-01

    Three designs of a guyed cylindrical tower and its foundation for an intermediate size horizontal axis wind turbine generator are discussed. The primary difference in the three designs is the configuration of the rotor. Two configurations are two-blade rotors with teetering hubs - one with full span pitchable blades, the other with fixed pitch blades. The third configuration is a three-bladed rotor with a rigid hub and fixed pitch blades. In all configurations the diameter of the rotor is 38 meters and the axis of rotation is 30.4 meters above grade, and the power output is 200 kW and 400 kW. For each configuration the design is based upon for the most severe loading condition either operating wind or hurricane conditions. The diameter of the tower is selected to be 1.5 meters (since it was determined that this would provide sufficient space for access ladders within the tower) with guy rods attached at 10.7 meters above grade. Completing a design requires selecting the required thicknesses of the various cylindrical segments, the number and diameter of the guy rods, the number and size of soil anchors, and the size of the central foundation. The lower natural frequencies of vibration are determined for each design to ensure that operation near resonance does not occur. Finally, a cost estimate is prepared for each design. A preliminary design and cost estimate of a cantilever tower (cylindrical and not guyed) and its foundation is also presented for each of the three configurations.

  13. The near wake structure and the development of vorticity behind a model horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, P.; Wood, D. [The Univ. of Newcastle, Dept. of Mechanical Engineering, Callaghan (Australia)

    1997-08-01

    The wake of a two bladed model HAWT operating at zero yaw angle and in a steady flow in a wind tunnel was measured using hot wire probes. By phase locked averaging and moving the probe axially and radially the full three dimensional mean flow file was determined. All measurements were within two chord lengths of the blades and at tip speed ratios giving high turbine power output, a condition approaching runaway, and a stalled condition. For all tip speed ratios the wakes were significantly three dimensional. Large velocity variations were associated with vortex structures in the wakes, and irrotational fluctuations caused by the blade bound circulation. The vorticity clearly defined the hub and tip vortices that traced helical paths downstream, with the constant tip vortex pitch inversely proportional to tip speed ratio. Close to the blades the flow was complicated, though vortex roll-up was completed within one chord length. Considerable changes in wake structure occurred with tip speed ratio. At high power output the wake showed tip and hub vortices connected by a diffuse vortex sheet of mostly radial vorticity from the blade boundary layers; blade bound circulation was almost constant. The structure approaching runaway was similar though the hub vortex was not well defined and formed a vortex sheet around the hub which lifted away and diffused. The stalled condition was more complicated, with evidence of incomplete tip and hub vortex formation. The stream-wise velocity of the tip vortex core decreased with increasing tip speed ratio, but this was never aligned with local streamlines. The core of the tip vortex was not circular but more elliptical. A phase locked averaged angular momentum analysis was undertaken, the extra terms introduced through phase locked averaging were small. (Abstract Truncated)

  14. Motion-deblurred, fast-response pressure-sensitive paint on a rotor in forward flight

    Science.gov (United States)

    Juliano, Thomas J.; Disotell, Kevin J.; Gregory, James W.; Crafton, Jim; Fonov, Sergey

    2012-04-01

    A pressure-sensitive paint (PSP) system capable of measuring the global, unsteady pressure distribution on a rotating surface without resorting to phase averaging is applied to a two-bladed model propeller in edgewise freestream flow. A gated lifetime-based technique captures the paint luminescence after a single pulse of high-energy laser excitation, yielding a signal-to-noise ratio sufficient to avoid image averaging. The selection of a porous polymer/ceramic matrix base with platinum tetra(pentafluorophenyl) porphyrin (PtTFPP) as the luminophore afforded high frequency response and pressure sensitivity, but the long lifetime of PtTFPP caused blurring in the long-exposure image of the rotating blade. An approach to deblurring based on the lifetime of the paint and surface motion is described and validated by results obtained from a disc of 17.8 cm diameter spinning at 70 Hz. An infrared camera recorded wind-on and -off temperature maps to provide a temperature correction for the PSP. The single-shot PSP technique with motion deblurring and temperature correction is then applied to a vertically mounted model propeller with a 25.4 cm diameter and 10.2 cm pitch. Surface pressure maps for the advancing and retreating blades are presented for a spin rate of 70 Hz and advance ratio of 0.3. The higher suction peak and other features on the advancing blade due to its larger effective velocity are detected by the paint system, while the retreating blade shows a qualitatively different distribution.

  15. Wind tunnel and numerical study of a small vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Robert; Qin, Ning; Edwards, Jonathan; Durrani, Naveed [Department of Mechanical Engineering, University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2010-02-15

    This paper presents a combined experimental and computational study into the aerodynamics and performance of a small scale vertical axis wind turbine (VAWT). Wind tunnel tests were carried out to ascertain overall performance of the turbine and two- and three-dimensional unsteady computational fluid dynamics (CFD) models were generated to help understand the aerodynamics of this performance. Wind tunnel performance results are presented for cases of different wind velocity, tip-speed ratio and solidity as well as rotor blade surface finish. It is shown experimentally that the surface roughness on the turbine rotor blades has a significant effect on performance. Below a critical wind speed (Reynolds number of 30,000) the performance of the turbine is degraded by a smooth rotor surface finish but above it, the turbine performance is enhanced by a smooth surface finish. Both two bladed and three bladed rotors were tested and a significant increase in performance coefficient is observed for the higher solidity rotors (three bladed rotors) over most of the operating range. Dynamic stalling behaviour and the resulting large and rapid changes in force coefficients and the rotor torque are shown to be the likely cause of changes to rotor pitch angle that occurred during early testing. This small change in pitch angle caused significant decreases in performance. The performance coefficient predicted by the two dimensional computational model is significantly higher than that of the experimental and the three-dimensional CFD model. The predictions show that the presence of the over tip vortices in the 3D simulations is responsible for producing the large difference in efficiency compared to the 2D predictions. The dynamic behaviour of the over tip vortex as a rotor blade rotates through each revolution is also explored in the paper. (author)

  16. Karyotype characteristics and polymorphism peculiarities of Chironomus bernensis Wülker & Klötzli, 1973 (Diptera, Chironomidae from the Central Caucasus and Ciscaucasia

    Directory of Open Access Journals (Sweden)

    Mukhamed Kh. Karmokov

    2015-06-01

    Full Text Available Data about the karyotype characteristics, features of chromosomal polymorphism and larval morphology of populations of Chironomus bernensis Wülker & Klötzli, 1973 (Diptera, Chironomidae from the Central Caucasus (the northern macroslope and Ciscaucasia are presented. The characteristics of the pericentromeric regions of the long chromosomes of this species from Caucasian populations were very similar to the ones from some European populations (from Poland and Italy, but differed from Swiss and Siberian populations. In the North Caucasian populations 10 banding sequences were found: two in arms A, C, and E, and one in arms B, D, F, and G. Nine of them were already known for this species, and one, berC2, is described for the first time. Cytogenetic distances between all the studied populations of Ch. bernensis show that close geographical location of all studied populations from the Central Caucasus and Ciscaucasia is reflected in their similar cytogenetic structure, but on the other hand, that they are more closely related to populations from Europe than to populations from Western Siberia. At the same time, all studied larvae from Caucasian populations have a four-bladed premandible, instead of a two-bladed one, as in the description of Ch. bernensis from Switzerland (Wülker and Klötzli 1973, Polukonova 2005c. These peculiarities may indicate the relative isolation of the Caucasus from the viewpoint of microevolution. Further research on karyological and morphological characteristics of Chironomus bernensis from geographically distant regions is necessary as there is a possibility that the presently known species is actually polytypic and consists of several sibling species.

  17. Hydraulic Resistance of Vitreous Cutters: The Impact of Blade Design and Cut Rate

    Science.gov (United States)

    Rossi, Tommaso; Querzoli, Giorgio; Angelini, Giampiero; Malvasi, Carlo; Rossi, Alessandro; Morini, Mario; Esposito, Graziana; Micera, Alessandra; di Luca, Natale Mario; Ripandelli, Guido

    2016-01-01

    Purpose To measure the hydraulic resistance (HR) of vitreous cutters equipped with a Regular guillotine Blade (RB) or double edge blade (DEB) at cut rates comprised between 0 and 12,000 cuts per minute (CPM) and compare it with vitreous fragment size. This was an in vitro experimental study; in vivo HR measure and vitreous sampling. Methods HR, defined as aspiration pressure/flow rate, was measured in balanced salt solution (BSS; Alcon, Fort Worth, TX) (in vitro) and during pars plana vitrectomy of 20 consecutive patients aged 18 to 65, undergoing macular surgery. HR was recorded at increasing cut rates (500–6000 CPM for the RB and 500–12,000 CPM for the DEB; 5 mL/min flow). Vitreous samples were withdrawn and analyzed with Western and collagen type II and IX immunostaining to evaluate protein size. The main outcome measures were hydraulic resistance (mm Hg/ml/min [±SD]) and optic density for Western blot and immunostaining. Results RB and DEB showed identical HR in BSS between 0 and 3000 CPM. Above 3000 CPM, RB HR steadily increased, and was significantly higher than DEB HR. Vitreous HR was also similar for the two blades between 0 and 1500 CPM. Above 1500 CPM, RB offered a significantly higher resistance. Western blot and immunostaining of vitreous samples did not yield a significant difference in size, regardless of blade type and cut rate. Conclusions DEB is more efficient, offering a lower HR than RB over 1500 CPM in human vitreous. There is no viscosity reduction as a function of cut-rate between 1500 and 12,000 CPM, as HR does not vary. Translational Relevance Future vitreous cutters will benefit of a DEB; optimal cut rate needs to be defined, and the simple increase of cut rate does not provide benefits after a certain limit to be assessed. PMID:27441099

  18. Experimental and numerical investigations on the dynamic response of turbine blades with tip pin dampers

    Science.gov (United States)

    Zucca, S.; Berruti, T.; Cosi, L.

    2016-09-01

    Friction dampers are used to reduce vibration amplitude of turbine blades. The dynamics of these assemblies (blades + dampers) is nonlinear and the analysis is challenging from both the experimental and the numerical point of view. The study of the dynamics of blades with a tip damper is the aim of the present paper. The blades with axial-entry fir tree attachment carry a damper in a pocket between the blade covers. Pin dampers significantly affect the resonance frequency of the first blade bending mode and introduces non linearity due to friction contacts. A test rig, made of two blades held in a fixture by an hydraulic press with one damper between the blades was used for the experimental activity. Three different types of dampers (cylindrical, asymmetrical, wedge) have been experimentally investigated and experiments have shown that asymmetrical damper performs better than the others. The response of the blades with the asymmetrical damper was then simulated with a non linear code based on the Harmonic Balance Method (HBM). In the analysis, both the blade and the damper are modelled with the Finite Elements and then the matrices reduced with the Craig- Bampton Component Mode Synthesis (CB-CMS), while the periodical contact forces are modelled with state-of-the-art node-to-node contact elements. Numerical analysis has shown a strong influence of the actual extent of the contact area on the dynamics of the assembly. A model updating process was necessary. In the end, the numerical predictions match very well with the experimental curves.

  19. Morphing Downwind-Aligned Rotor Concept Based on a 13-MW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ichter, Brian; Steele, Adam; Loth, Eric; Moriarty, Patrick; Selig, Michael

    2016-04-01

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (>/=10 MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for moment-free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22 degrees at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis.

  20. Active Blade Vibration Control Being Developed and Tested

    Science.gov (United States)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  1. Corona discharges from a windmill and its lightning protection tower in winter thunderstorms

    Science.gov (United States)

    Wu, Ting; Wang, Daohong; Rison, William; Thomas, Ronald J.; Edens, Harald E.; Takagi, Nobuyuki; Krehbiel, Paul R.

    2017-05-01

    This paper presents lightning mapping array (LMA) observations of corona discharges from a windmill and its lightning protection tower in winter thunderstorms in Japan. Corona discharges from the windmill, called windmill coronas, and those from the tower, called tower coronas, are distinctly different. Windmill coronas occur with periodic bursts, generally radiate larger power, and possibly develop to higher altitudes than tower coronas do. A strong negative electric field is necessary for the frequent production of tower coronas but is not apparently related with windmill coronas. These differences are due to the periodic rotation of the windmill and the moving blades which can escape space charges produced by corona discharges and sustain a large local electric field. The production period of windmill coronas is related with the rotation period of the windmill. Surprisingly, for one rotation of the windmill, only two out of the three blades produce detectable discharges and source powers of discharges from these two blades are different. The reason for this phenomenon is still unclear. For tower coronas, the source rate can get very high only when there is a strong negative electric field, and the source power can get very high only when the source rate is very low. The relationship between corona discharges and lightning flashes is investigated. There is no direct evidence that corona discharges can increase the chance of upward leader initiation, but nearby lightning flashes can increase the source rate of corona discharges right after the flashes. The peak of the source height distribution of corona discharges is about 100 m higher than the top of the windmill and the top of the tower. Possible reasons for this result are discussed.

  2. Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage.

    Science.gov (United States)

    Patel, Jitendra; Sharma, Manan; Millner, Patricia; Calaway, Todd; Singh, Manpreet

    2011-04-01

    Outbreaks associated with leafy greens have focused attention on the transfer of human pathogens to these commodities during harvest with commercial equipment. Attachment of Escherichia coli O157:H7 on new or rusty spinach harvester blades immersed in spinach extract or 10% tryptic soy broth (TSB) was investigated. Bacteriophages specific for E. coli O157:H7 were evaluated to kill cells attached to blade. A cocktail of five nalidixic acid-resistant E. coli O157:H7 isolates was transferred to 25 mL of spinach extract or 10% TSB. A piece of sterilized spinach harvester blade (2×1") was placed in above spinach extract or 10% TSB and incubated at room (22 °C) or dynamic (30 °C day, 20 °C night) temperatures. E. coli O157:H7 populations attached to blade during incubation in spinach extract or 10% TSB were determined. When inoculated at 1 log CFU/mL, E. coli O157:H7 attachment to blades after 24 and 48 h incubation at dynamic temperature (6.09 and 6.37 log CFU/mL) was significantly higher than when incubated at 22 °C (4.84 and 5.68 log CFU/mL), respectively. After 48 h incubation, two blades were sprayed on each side with a cocktail of E. coli O157-specific bacteriophages before scraping the blade, and subsequent plating on Sorbitol MacConkey media-nalidixic acid. Application of bacteriophages reduced E. coli O157:H7 populations by 4.5 log CFU on blades after 2 h of phage treatment. Our study demonstrates that E. coli O157:H7 can attach to and proliferate on spinach harvester blades under static and dynamic temperature conditions, and bacteriophages are able to reduce E. coli O157:H7 populations adhered to blades.

  3. Design improvements to the ESI-80 wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T.; Kleeman, A.; Manwell, J.; McGowan, J. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    This paper describes two investigations related to improvements to an ESI-80 wind turbine. One of them involved modeling the tip flaps during braking. The other was a study of the turbine behavior with various delta-3 angles. These topics are of interest since the turbine is a two-bladed, teetered, free-yaw machine with tip flaps and an adjustable delta-3 angle. Tip flaps are used for slowing the turbine during shutdown and as an emergency system to insure that the rotor does not go into an overspeed condition in the event of failure of other parts of the system. Upon deployment, the tip flaps are exposed to a number of varying forces including aerodynamic, damper, spring, centripetal, and gravitational forces and forces at the hinged connection to the blades. For maximum braking the angle of tip flap deployment needs to be as large as possible without striking the blades in overspeed conditions and when covered with ice. To investigate tip flap design tradeoffs, a dynamic model of the tip flaps on the modified ESI-80 turbine was developed. Results include a determination of the effect of the addition of weight to the flap, overspeed conditions, and changes in damping coefficient. Changes in the delta-3 angle can be used to couple pitching and flapping motions, affecting both teeter and yaw behavior. These effects have been investigated using a modified version of YawDyn. The effects of changes in the delta-3 angle on the teeter and yaw behavior of the modified ESI-80 wind turbine were investigated. Results show that increased teeter excursions in steady high winds can be reduced by increasing the delta-3 angle. Increasing the delta-3 angle may also increase yaw motion in low wind speeds. Results suggest that the optimum delta-3 angle for improved performance may be substantially greater than the presently used angle of zero degrees. 8 refs., 16 figs.

  4. Velocity and pressure fluctuations induced by the precessing helical vortex in a conical diffuser

    Science.gov (United States)

    Javadi, A.; Bosioc, A.; Nilsson, H.; Muntean, S.; Susan-Resiga, R.

    2014-03-01

    The flow unsteadiness generated in the draft tube cone of hydraulic turbines affects the turbine operation. Therefore, several swirling flow configurations are investigated using a swirling apparatus in order to explore the unsteady phenomena. The swirl apparatus has two parts: the swirl generator and the test section. The swirl generator includes two blade rows being designed such that the exit velocity profile resembles that of a turbine with fixed pitch. The test section includes a divergent part similar to the draft tube cone of a Francis turbine. A new control method based on a magneto rheological brake is used in order to produce several swirling flow configurations. As a result, the investigations are performed for six operating regimes in order to quantify the flow from part load operation, corresponding to runaway speed, to overload operation, corresponding to minimum speed, at constant guide vane opening. The part load operation corresponds to 0.7 times the best efficiency discharge, while the overload operation corresponds to 1.54 times the best efficiency discharge. LDV measurements are performed along three survey axes in the test section. The first survey axis is located just downstream the runner in order to check the velocity field at the swirl generator exit, while the next two survey axes are located at the inlet and at the outlet of the draft tube cone. Two velocity components are simultaneously measured on each survey axis. The measured unsteady velocity components are used to validate the results of unsteady numerical simulations, conducted using the OpenFOAM CFD code. The computational domain covers the entire swirling apparatus, including strouts, guide vanes, runner, and the conical diffuser. A dynamic mesh is used together with sliding GGI interfaces to include the effect of the rotating runner. The Reynolds averaged Navier-Stokes equations coupled with the RNG k-ε turbulence model are utilized to simulate the unsteady turbulent flow

  5. Rotor Wake Development During the First Revolution

    Science.gov (United States)

    McAlister, Kenneth W.

    2003-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  6. Characteristics of wind power on Savonius rotor using a guide-box tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Irabu, Kunio; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, Senbaru-1, Nishihara, Okinawa 903-0213 (Japan)

    2007-11-15

    This study investigates to improve and adjust the output power of Savonius rotor under various wind power and suggests the method of prevention the rotor from strong wind disaster. In this study, as the appropriate device to achieve the purpose of it, a guide-box tunnel is employed. The guide-box tunnel is like a rectangular box as wind passage in which a test rotor is included. The area ratio between the inlet and exit of it is variable to adjust the inlet mass flow rate or input power. At first, the experiment was conducted to find the adequate configuration which would provide the best relative performance. The present experiment, however, does not include the test to retain the guide-box tunnel from the strong wind. The experiments include the static torque test of the fixed rotor at any phase angle and the dynamic torque test at rotation of them. Consequently, it was found that the maximum rotor rotational speed was achieved in the range of the guide-box area ratio between 0.3 and 0.7 and the value of the output power coefficient of the rotor with guide-box tunnel of the area ratio 0.43 increases about 1.5 times with three blades and 1.23 times with two blades greater than that without guide-box tunnel, respectively. It seemed that the performance of Savonius rotor within the guide-box tunnel is comparable enough with other methods for augmentation and control of the output. (author)

  7. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

    2012-12-31

    strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than

  8. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack

  9. Experimental study on the effects of surface gravity waves of different wavelengths on the phase averaged performance characteristics of marine current turbine

    Science.gov (United States)

    Luznik, L.; Lust, E.; Flack, K. A.

    2014-12-01

    There are few studies describing the interaction between marine current turbines and an overlying surface gravity wave field. In this work we present an experimental study on the effects of surface gravity waves of different wavelengths on the wave phase averaged performance characteristics of a marine current turbine model. Measurements are performed with a 1/25 scale (diameter D=0.8m) two bladed horizontal axis turbine towed in the large (116m long) towing tank at the U.S. Naval Academy equipped with a dual-flap, servo-controlled wave maker. Three regular waves with wavelengths of 15.8, 8.8 and 3.9m with wave heights adjusted such that all waveforms have the same energy input per unit width are produced by the wave maker and model turbine is towed into the waves at constant carriage speed of 1.68 m/s. This representing the case of waves travelling in the same direction as the mean current. Thrust and torque developed by the model turbine are measured using a dynamometer mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using in in-house designed shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Free surface elevation and wave parameters are measured with two optical wave height sensors, one located in the turbine rotor plane and other one diameter upstream of the rotor. All instruments are synchronized in time and data is sampled at a rate of 700 Hz. All measured quantities are conditionally sampled as a function of the measured surface elevation and transformed to wave phase space using the Hilbert Transform. Phenomena observed in earlier experiments with the same turbine such as phase lag in the torque signal and an increase in thrust due to Stokes drift are examined and presented with the present data as well as spectral analysis of the torque and thrust data.

  10. New Dynamic Spin Rig Capabilities Used to Determine Rotating Blade Dynamics

    Science.gov (United States)

    Provenza, Andrew J.

    2004-01-01

    The Dynamic Spin Rig Facility at the NASA Glenn Research Center is used to determine the structural response of rotating engine components without the effects of aerodynamic loading. Recently, this rig's capabilities were enhanced through the replacement of grease-lubricated ball bearings with magnetic bearings. Magnetic bearings offer a number of advantages--the most important here being that they not only fully support the rotor system, but excite it as well. Three magnetic bearings support the rotor and provide five axes of controlled motion: an x- and y-axis translation at each of two radial bearings and a z-axis translation in the vertical or axial direction. Sinusoidal excitation (most commonly used) can be imparted on the rotor through the radial magnetic bearings in either a fixed or rotating frame of reference. This excitation is added directly to the magnetic bearing control output. Since the rotor is fully levitated, large translations and rotations of the rotor system can be achieved. Some of the capabilities of this excitation system were determined and reported. The accelerations obtained at the tip of a titanium flat plate test article versus the swept sine excitation sent to both radial bearings in phase and perpendicular to the plane containing the two blades are shown. Recent tests required the excitation of fundamental bending and torsional blade resonances at rotor speeds up to 10,000 rpm. Successful fixed synchronous rotation of the excitation signal provided the best detectable blade resonant vibrations at excitation frequencies up to 1100 Hz for the particular blades of interest. A noncontacting laser measurement system was used to collect blade-tip motions. From these data, the amplitude and frequency of the motion could be determined as well as the blade damping properties. Damping could be determined using two methods: (1) free decay and (2) curve fitting the vibration amplitude as a function of frequency in and around the resonance of

  11. ANALYSIS OF THREE-DIMENSIONAL FLOW AROUND A VERTICAL-AXIS SPIRAL WIND BLADE%垂直螺旋风力叶片周围的三维流动特征分析

    Institute of Scientific and Technical Information of China (English)

    康灿; 张峰; 杨敏官; 茅雪峻

    2011-01-01

    A new vertical-axis spiral wind blade was proposed. The relation between flow characteristics around the blade and torque property of the blade was studied. With computational fluid dynamics ( CFD) technology and Spalart-Allmaras turbulence model, three-dimensional flows inside and outside the two-blade rotor were numerically simulated. The torque coefficient under rated wind speed was analyzed. At upper stream velocity of 4m/s, flow parameter distributions under maximum and minimum torque coefficient conditions were compared. The results indicate that torque property of the presented rotor is satisfying. Pressure difference between pressure and suction surfaces of the blade, position of large-scale low-pressure zone are two critical factors affecting torque production. Flows around the blade are evident three-dimensional spatial flow patterns. The study provides helpful references for further improvement and aerodynamics analysis of Savonius rotor.%提出一种新型的垂直轴螺旋风力叶片,分析叶片附近的流动特征与叶轮力矩特性之间的关联.采用计算流体动力学(CFD)方法,运用Spalart-Allmaras湍流模型,对两叶片叶轮内外的三维湍流流动进行数值计算.分析设计风速下的叶轮力矩系数;在来流速度为4m/s的低风速条件下,对最大力矩系数工况和最小力矩系数工况下的流动参数分布和空间流动结构进行对比研究.研究结果表明:该叶轮的力矩特性较好;叶片两侧的压差和大尺度低压区的位置是影响该叶轮运行特性的两个重要因素;叶片附近的流动具有明显的三维空间结构.

  12. 叶片出口边侧斜对船用离心泵振动和水动力噪声的影响%Effect of inclined trailing edge of blade on vibration and hydrodynamic noise of marine centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    黄浩钦; 刘厚林; 王勇; 蒋玲林; 邵昌

    2015-01-01

    以125clla -13型船用离心泵为研究对象,研究叶片出口边侧斜对船用离心泵振动和水动力噪声的影响。首先对出口边非侧斜和侧斜两种叶轮模型泵进行全流场非定常数值计算,提取蜗壳及泄漏流道壁面脉动激励作为载荷,对两种模型泵进行基于模态响应的振动计算和基于边界元法的水动力噪声计算,并对非侧斜出口模型泵进行振动测试,经试验验证,模型泵振动噪声数值预测具有一定可行性。进一步对比两种出口方式模型泵计算结果,分析表明:叶片非侧斜出口模型泵振动加速度计算结果整体高于叶片侧斜出口;两种出口方式模型泵声功率随工况变化趋势一致,设计工况声功率最小,大流量工况声功率最大,叶片侧斜出口模型泵声功率和声压级都明显低于非侧斜出口,且声压级降幅从 APF到4BPF 大致呈上升趋势。从减振降噪角度考虑,叶片侧斜出口方式优于非侧斜出口方式。该研究可为船用离心泵减振降噪设计提供参考。%In order to analyze the effect of inclined trailing edge of blade on the vibration and hydrodynamic noise of marine centrifugal pump,125clla-13 type marine centrifugal pump was chosen as a research object.A blade with inclined trailing edge and a blade without inclined trailing edge were used in the unsteady numerical simulation of the pump's whole flow passage respectively.The pressure fluctuations on the walls of volute and leakage flow passage were calculated and then used as the vibration source and dipole source to calculate the vibration with the modal response method and the hydrodynamic noise with the BEM.A vibration experiment on the pump without inclined trailing edge was also carried out and it verifies that the simulation of NVH is of certain feasibility.The simulation results with respeet to the two blade styles were analysed and show that the vibration acceleration of the

  13. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

    2012-12-31

    strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than

  14. Morphological features of Triassic and Late Cretaceous high-latitude radiolarian assemblages (comparative analysis)

    Science.gov (United States)

    Bragin, Nikita; Bragina, Liubov

    2010-05-01

    the Cretaceous assemblages. Spherical forms with hollow, commonly twisted spines (Capnuchosphaera) and with two-bladed spines (Zhamojdasphaera) are present only in the Triassic assemblages. 3. Saturnalids are present both in Triassic and Late Cretaceous high-latitude assemblages but not common. 4. Stauraxon three-rayed forms (like Paronaella) are very rare in the Triassic high-latitude assemblages but very common in the Late Cretaceous ones. Some Late Cretaceous morphotypes of this type have bipolar distribution pattern (Spongotripus). 5. Discoidal forms in the Triassic high-latitude assemblages are represented by Tetraspongodiscus - small forms with 4 radial spines. Cretaceous discoids are highly more diverse and are represented by numerous taxa with variable morphology. 6. Multicyrtoid nassellarians with longitudinal ridges are very rare in the Triassic (Whalenella), but very common in the Late Cretaceous (Pseudodictyomitra, Dictyomitra). Multicyrtoid Stichomitra-type specimens are present both in the Triassic and Cretaceous assemblages. 7. Hat-shaped and highly ornamented Nassellaria are almost absent in the high-latitude Triassic and Late Cretaceous assemblages. 8. During long evolutionary history of Radiolaria typically boreal forms strongly differ, and only morphotypes with bipolar main spines and pylomate forms retain their significance as high-latitude indicators.

  15. 排尘孔涡轮冷却叶片叶顶流动与传热研究%Tip Flow and Heat Transfer Prediction of Cooling Blade with Dirt Purge Holes

    Institute of Scientific and Technical Information of China (English)

    虞跨海; 杨茜; 岳珠峰

    2012-01-01

    涡轮叶片叶顶排尘孔用于清除冷气中掺杂的尘粒,以保证气膜孔和冲击孔的可靠工作,但排尘孔射流引起叶顶流动和传热问题.采用参数化方法建立有、无排尘孔涡轮冷却叶片几何模型,基于包含叶片主体、主燃气通道和三腔回流式内冷却通道的全局模型,采用流热耦合数值分析,开展排尘孔对涡轮冷却叶片叶顶流动与传热问题的初步研究.研究结果表明,对比有、无排尘孔叶片,排尘孔射流可降低叶顶平均温度约25 K;冷却通道对流换热作用和叶顶排尘孔射流可使叶顶平面降温400~600 K,冷却效果与冷却通道冷气流量和尘孔结构在叶顶位置相关;排尘孔叶顶射流对叶顶间隙高温燃气泄漏具有阻碍作用,可以提高叶片总压恢复系数约0.5%~1.5%,随着冷气流量的增大,这种作用增强;尘孔结构设计应兼顾射流对叶顶流动与传热的共同影响.%Dirty purge holes in the blade tip are used to extract dirt from the coolant flow through centrifugal forces such that these dirt particles do not block small diameter film-cooling holes and injection holes, to ensure safety and reliability of the blade. Whereas, the holes will affect blade tip flow and heat transfer. A numerical study of a turbine blade with dirt purge holes is performed to examine both flow and heat transfer characteristics. Two blade geometry models with and without dirty purge holes are established by a parametric method in CAD software. Coupled aerodynamic and heat transfer numerical simulation is used to predict the blade tip flow and heat transfer, with the integral of the blade solid field, main gas and internal cooling passage flow field. The result shows that, the cool air jet from purge holes can reduce the tip facet average temperature about 25 K, based on the contrast between blades with and without dirty purge holes. Convective heat transfer of internal cooling passage and jet flow of dirty

  16. Turbulent vortex-flow and dynamic pressure oscillations in regenerative blowers; Turbulente Wirbelstroemung und dynamische Druckschwankungen in Seitenkanalmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Surek, D. [Fachbereich Maschinenbau, Fachhochschule Merseburg (Germany)

    1997-05-01

    Regenerative blowers with high pressure coefficients have high dissipation losses in the side channel and on the breaker. These losses can be in the same magnitude as the polytropic specific head. The cause of the high specific dissipation energy is the turbulent vortex flow in the side channel, which is released by the high numbers of blades and restrict the polytropic efficiency by {eta}=0.46 to 0.50. The enforced turbulent vortex-flow is the reason for the high head coefficients of regenerative blowers. In the side channel, pressure pulsations occur with pressure amplitudes of high frequency up to 40 kHz. These dynamic pressure oscillations are the result of the turbulent vortex-flow. They are indicated from the edge of the impeller blades and the impeller flow in the side channel. For instance, for one rotation of the impeller t=0.02 s and the time between two blades t=0.35 ms. The analysis of the dynamic pressure shows a distribution of the amplitudes over a wide area up to 10 kHz and higher. The dominant amplitudes are the amplitude of blade rotation frequency. The forced turbulent vortex-flow causes a high turbulent vortex-viscosity in the flow and releases a pulse-flow transportation in the side channel. This is the reason for the energy transfer and the increase of the specific dissipation energy in the side channel. With knowledge of the specific pulse-flow transportation of the turbulent vortex-flow the connection to the total transmitted enthalpy can be explained. (orig.) [Deutsch] In Seitenkanalmaschinen mit den grossen Druckzahlen treten hohe Dissipationsverluste im Seitenkanal und im Unterbrecher auf, die von der gleichen Groessenordnung sein koennen wie die polytrope spezifische Nutzarbeit. Die Ursache fuer den grossen spezifischen Dissipationsenergieanteil ist in der turbulenten Wirbelstroemung im Seitenkanal zu suchen, die von den Laufradschaufeln hoher Zahl ausgeloest wird und den Wirkungsgrad der Maschinen auf Werte von {eta}=0,46... 0

  17. Perseus Taxi

    Science.gov (United States)

    1991-01-01

    mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  18. Policy instruments for development of wind power in Sweden; Styrmedel foer vindkraftens utveckling i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Aastrand, Kerstin; Neij, Lena

    2003-07-01

    development (R and D), demonstration (D) and investment and production subsidies. In order to study development of and changes in the socio-technological-system, we identify indicators that describe the wind power development. The indicators show: (i) changes in technology development; (ii) cost development due to technology and market development; (iii) development of actors, institutions and organisations and changes in their commitment to wind power development. From this analysis of the changes in the wind power system over time, the impact of the policy instruments on the development of the technology and market of wind power is assessed. Lastly, we discuss the tardiness in market development and identify possible reasons why wind power has not been installed to a greater extent in Sweden. The study of the development of the Swedish wind power system shows how public energy policy and the impact of policy instruments shaped turbine technology and market development. The governmental interventions made during the 1970s and 1980s were limited to RD and D measures. These steered both the choice of technology; i.e. turbine development with a focus on large (over 1 MW), two-bladed, flexible turbines, and the early market development in Sweden, with a limited number of actors, institutions and organizations. The number of wind turbines manufactured in Sweden is low and by 2000 there had not been a commercial breakthrough for the technology developed. The R and D-programmes have, however, generated knowledge and increased competence regarding wind power technology. The introduction of investment and production subsidies in the early 1990s changed the focus from technology development to a more general focus on market development and the production of wind power. The change in policy increased the diversity of actors involved in the development process and a market for commercially available, three-bladed, Danish turbines grew in Sweden. The investment and production subsidies

  19. Swashplateless Helicopter Experimental Investigation: Primary Control with Trailing Edge Flaps Actuated with Piezobenders

    Science.gov (United States)

    Copp, Peter

    V/cm (limited by depoling). An undocumented phenomenon is found called bender relaxation where the benders lose over half of their initial DC stroke over time. While the bender stiffness is shown not to change with electric field, the DC stroke is significantly less than AC stroke. A two-bladed Mach-scale rotor is constructed with each blade containing 2 flaps each actuated by a single piezobender. Each flap is 26.5% chord and 14% span for a total of 28% span centered at 75% of the blade radius. Flap motion of greater than 10 degrees half peak-peak is obtained for all 4 flaps at 900 RPM on the hoverstand. So, the flaps show promise for the Mach-scale rotor speed of 2400 RPM. A PID loop is implemented for closed loop control of flap amplitude and mean position. On the hoverstand at 900 RPM, the swashplateless concept is demonstrated. The linear springs used to lower the torsional frequency are shown to have minimum friction during rotation. 1/rev blade pitching of +/-1 degree is achieved at a torsional frequency of 1.5/rev for each blade. At resonance, the blade pitching for each blade is greater than +/-4 degrees. Primary control is demonstrated by measuring hub forces and moments. At resonance state, the flaps in conjunction with the blade pitching provide +/-15 lbs of normal force at a mean lift of 15 lbs yielding +/-100% lift authority. Significant hub forces and moments are produced as well. For a production swashplateless helicopter, it may be prudent to eliminate the pitch links by reducing the blade structural stiffness. A novel wire sensor system network is proposed in order to measure blade elastic flap bending, lead-lag bending and torsion. The theory for measuring blade twist is rigorously derived. A blade is constructed with the wire sensor network and validated on the benchtop for blade elastic bending and twist. This work is a step forward in achieving a swashplateless rotor system. Not only would this reduce drag in high speed forward flight, but it would lead to

  20. Study of the stall delay phenomenon and of wind turbine blade dynamics using numerical approaches and NREL's wind tunnel tests

    Energy Technology Data Exchange (ETDEWEB)

    Breton, Simon-Philippe

    2008-06-15

    The production of electricity from wind has experienced an enormous growth worldwide in the last 20 years. It is now widely seen as a serious alternative to more conventional energy production methods. Improvements are however still possible to make it more cost-effective. This can be done through a better understanding of the fundamental phenomena involved in the interaction of the wind with the wind turbine rotor. This growth in the production of energy from wind is expected to continue at a similar rate in the years to come, helped by the installation of wind turbines at sea, that is becoming a hot topic in the wind energy field today. The phenomenon of stall delay affecting rotating wind turbine blades is an example of an aerodynamic phenomenon that is not yet fully understood. Several models exist to correct for this effect. Five such models were first tested within a vortex wake simulation code based on the modelling of a prescribed wake behind the rotor of the turbine. Comparison was made with wind tunnel test data acquired in head-on flow on a two-bladed 10.1 diameter wind turbine at the National Renewable Energy Laboratories (NREL) in 2000. It revealed a general overprediction of the stall delay effects, at the same time as great disparity was obtained between the different models. Conclusions from this work served as a starting point for a much more thorough investigation on this subject, where several models were tested in terms of different quantities using the same simulation code, and where the application of some of the models was improved. Overprediction of the loads was once again obtained when comparison was made to the NREL results in head-on flow, and none of the models was found to correctly represent the flow physics involved. The premises on which each of the models relies were discussed as a means of better understanding and modelling this phenomenon. The important issue of tip loss was also covered, and guidelines were suggested to improve

  1. The mathematical model of thread unrolling from a bobbin

    Directory of Open Access Journals (Sweden)

    S. M. Tenenbaum

    2014-01-01

    solving of ordinary differential equation.III. Mathematical modelIn this section the detailed description of proposed mathematical model based on conventional spring-mass model is given.The major feature of this model is that on the every integration step all nodes divided into three groups: nodes on the bobbin (linked – their motion is completely determined by the bobbin rotation; free nodes – descended from the bobbin and not neighboring nodes on the bobbin; boundary nodes - descended from the bobbin neighboring nodes on the bobbin.For each nodes group the right parts of equations of motions are different. In these equations the additional corrections are included that result in reducing the impact of discretization on simulation results. These corrections are: equations of motion for boundary nodes eliminate unphysical reaction components, resulting from discretization; when a node descends from the bobbin its velocity vector turns following motion of already descended nodes, thus simulating the thread bending of very small radius at the point of thread descending.IV. Numerical experimentThe developed mathematical model is tested using the simplified problem of two-blades rotary solar sail deploying from the «BMSTU-Sail» project [2].The calculations demonstrated that the proposed mathematical model satisfies the law of conservation of angular momentum. It is also shown that calculation results are almost independent on the utility parameters of mathematical model (e.g. damping coefficient of nodes relative oscillations.V. ConclusionMajor conclusions in this paper are: proposed mathematical model satisfies the law of conservation of angular momentum that indirectly confirms its correctness; the transverse thread motion is almost independent on the damping and stiffness coefficients, therefore they can be adjusted for calculation stability without accuracy loss; based on proposed mathematical model of unrolling a thread from a bobbin the

  2. PREFACE Turbulent Mixing and Beyond

    Science.gov (United States)

    Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.

    2010-12-01

    , maintaining the scope and the interdisciplinary character of the meeting while keeping the focus on a fundamental scientific problem of non-equilibrium processes and on the Conference objectives. The abstracts of the 194 accepted presentations of more than 400 authors were published in the Book of Abstracts of the Second International Conference and Advanced School 'Turbulent Mixing and Beyond', 27 July-7 August 2009 , Copyright © 2009, the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy (ISBN 92095003-41-1). This Topical Issue consists of 70 articles accepted for publication in the Conference Proceedings and represents a substantial part of the Conference contributions. The articles are in a broad variety of TMB-2009 themes and are sorted alphabetically by the last name of the first author within each of the following topics: Canonical turbulence and turbulent mixing: invariant, scaling, spectral properties, scalar transports, convection; Wall-bounded flows: structure and fundamentals, non-canonical turbulent boundary layers, including unsteady and transitional flows, supersonic and hypersonic flows, shock-boundary layer interactions; Non-equilibrium processes: unsteady, multiphase and shock-driven turbulent flows, anisotropic non-local dynamics, connection of continuous description at macro-scales to kinetic processes at atomistic scales; Interfacial dynamics: instabilities of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov, Landau-Darrieus, Saffman-Taylor High energy density physics: inertial confinement and heavy-ion fusion, Z-pinches, light-matter and laser-plasma interactions, non-equilibrium heat transfer; Material science: material transformation under high strain rates, equation of state, impact dynamics, mixing at nano- and micro-scales; Astrophysics: supernovae, interstellar medium, star formation, stellar interiors, early Universe, cosmic-microwave background, accretion disks; Magneto-hydrodynamics: magnetic fusion and magnetically

  3. INTRODUCTION Outline of Round Tables Outline of Round Tables

    Science.gov (United States)

    Abarzhi, Snezhana I.; Sreenivasan, Katepalli R.

    2010-12-01

    impose constraints on the accuracy and spatio-temporal resolution of the measurements of the flow quantities as well as on the data acquisition rate. It was emphasized that theoretical, experimental and numerical descriptions of non-equilibrium turbulent processes require innovative approaches, going well beyond classical statistically steady considerations. TMB-related problems, from atomistic to astrophysical scales, under high and low energy density conditions, have in common a set of outstanding scientific issues. Their solution has the potential to provide paradigm-shifting advances in a variety of disciplines in science, technology and mathematics. The participants discussed at length a set of characteristic problems that would be deep enough and specific enough to represent a variety of TMB themes. As the most appealing to the broad TMB community, the following problems were selected: hydrodynamic instabilities in plasmas, fluids and materials, including interfacial instabilities of Kelvin-Helmholtz, Rayleigh-Taylor, Richtmyer-Meshkov, Landau-Darrieus, and magneto-rotational types; interactions of eddies and structures with waves and the relationship between discrete and continuous spectra, especially for astrophysical and geophysical flows and atmosphere; dynamics of plasmas and magneto-hydrodynamics under high and low energy density conditions; connection of kinetic processes to dynamics of continuous media under non-equilibrium conditions from atomistic to macro scales beyond the limits of the quasistatic Boltzmann equation with an emphasis on reactive flows and material science; Lagrangian versus Eulerian descriptions, including flow-particle interactions and environmental problems; unsteady flows and multi-phase flows in aeronautics and aerodynamics, including non-canonical boundary layers, hypersonic and supersonic flows, and shock-turbulence interaction; mathematical aspects, including modeling of statistically unsteady processes and understanding structure

  4. 3rd International Conference on Turbulent Mixing and Beyond

    Science.gov (United States)

    Abarzhi, Snezhana I.; Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.

    2013-07-01

    National Academies of Sciences and Engineering, and including researchers at experienced and early stages of their careers from leading scientific institutions in academia, national laboratories, corporations and industry, from developed and developing countries across five continents. The success of TMB-2011 consisted from the successful work of the conference participants, who were responsible professionals caring for the quality of their research and sharing their scientific vision. The level of presentations was high, and 205 presentations included about 50 invited lectures, nearly 70 oral talks (3500 min of talks in total), some 90 posters and one round table. The special course on 'Turbulence and Waves' was organized at TMB-2011 with the support of the US Office of Naval Research Global, and included nearly 40 lectures and talks (960 minutes of talks in total). TMB-2011 covered 16 different topics, maintaining the scope and the interdisciplinary character of the meeting and at the same time keeping the focus on a fundamental scientific problem of non-equilibrium processes and on the conference objectives. The topics included: • Canonical turbulent and turbulent mixing: invariant, scaling, spectral properties, scalar transports, convection. • Wall-bounded flows: structure and fundamentals, non-canonical turbulent boundary layers, including unsteady and transitional flows, supersonic and hypersonic flows, shock-boundary layer interactions. • Non-equilibrium processes: unsteady, multiphase and shock-driven turbulent flows, anisotropic non-local dynamics, connection of continuous description at macro-scales to kinetic processes at atomistic scales. • Interfacial dynamics: the instabilities of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov, Landau-Darrieus, Saffmann-Taylor. • High energy density physics: inertial confinement and heavy-ion fusion, Z-pinches, light-material and laser-plasma interaction, non-equilibrium heat transfer. • Material science