WorldWideScience

Sample records for twitcher mice body

  1. Peripheral Neuropathy in the Twitcher Mouse Involves the Activation of Axonal Caspase 3

    Directory of Open Access Journals (Sweden)

    Benjamin Smith

    2011-09-01

    Full Text Available Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine, demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.

  2. Peripheral neuropathy in the Twitcher mouse involves the activation of axonal caspase 3

    Directory of Open Access Journals (Sweden)

    Ernesto R Bongarzone

    2011-10-01

    Full Text Available Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine, demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.

  3. Psychosine-induced alterations in peroxisomes of Twitcher Mouse Liver

    Science.gov (United States)

    Contreras, Miguel Agustin; Haq, Ehtishamul; Uto, Takuhiro; Singh, Inderjit; Singh, Avtar Kaur

    2008-01-01

    Krabbe’s disease is a neuroinflammatory disorder in which galactosylsphingosine (psychosine) accumulates in nervous tissue. To gain insight into whether the psychosine-induced effects in nervous tissue extend to peripheral organs, we investigated the expression of cytokines and their effects on peroxisomal structure/function in twitcher mouse liver (animal model of Krabbe disease). Immunofluorescence analysis demonstrated TNF-α and IL-6 expression, which was confirmed by mRNAs quantitation. Despite the presence of TNF-α, lipidomic analysis did not indicate a significant decrease in sphingomyelin or an increase in ceramide fractions. Ultrastructural analysis of catalase-dependent staining of liver sections showed reduced reactivity without significant changes in peroxisomal contents. This observation was confirmed by assaying catalase activity and quantitation of its mRNA, both of which were found significantly decreased in twitcher mouse liver. Western blot analysis demonstrated a generalized reduction of peroxisomal matrix and membrane proteins. These observations indicate that twitcher mouse pathobiology extends to the liver, where the induction of TNF-α and IL-6 compromise peroxisomal structure and function. PMID:18602885

  4. Factors that affect postnatal bone growth retardation in the twitcher murine model of Krabbe disease

    Science.gov (United States)

    Contreras, Miguel Agustin; Ries, William Louis; Shanmugarajan, Srinivasan; Arboleda, Gonzalo; Singh, Inderjit; Singh, Avtar Kaur

    2010-01-01

    Krabbe disease is an inherited lysosomal disorder in which galactosylsphingosine (psychosine) accumulates mainly in the central nervous system. To gain insight into the possible mechanism(s) that may be participating in the inhibition of the postnatal somatic growth described in the animal model of this disease (twitcher mouse, twi), we studied their femora. This study reports that twi femora are smaller than of those of wild type (wt), and present with abnormality of marrow cellularity, bone deposition (osteoblastic function), and osteoclastic activity. Furthermore, lipidomic analysis indicates altered sphingolipid homeostasis, but without significant changes in the levels of sphingolipid-derived intermediates of cell death (ceramide) or the levels of the osteoclast-osteoblast coupling factor (sphingosine-1-phosphate). However, there was significant accumulation of psychosine in the femora of adult twi animals as compared to wt, without induction of tumor necrosis factor-alpha or interleukin-6. Analysis of insulin-like growth factor-1 (IGF-1) plasma levels, a liver secreted hormone known to play a role in bone growth, indicated a drastic reduction in twi animals when compared to wt. To identify the cause of the decrease, we examined the IGF-1 mRNA expression and protein levels in the liver. The results indicated a significant reduction of IGF-1 mRNA as well as protein levels in the liver from twi as compared to wt littermates. Our data suggest that a combination of endogenous (psychosine) and endocrine (IGF-1) factors play a role in the inhibition of postnatal bone growth in twi mice; and further suggest that derangements of liver function may be contributing, at least in part, to this alteration. PMID:20441793

  5. Accumulation of galactosylsphingosine (psychosine) does not interfere with phosphorylation and methylation of myelin basic protein in the twitcher mouse

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, T.; Kobayashi, T.; Shinnoh, N.; Goto, I. (Kyushu Univ., Fukuoka (Japan))

    1990-10-01

    In attempts to elucidate mechanisms of demyelination in the twitcher mouse (Twi), phosphorylation and methylation of myelin basic protein (MBP) were examined in the brainstem and spinal cord of this species. Phosphorylation of MBP in isolated myelin by an endogenous kinase and an exogenous (32P)ATP was not impaired and protein kinase C activity in the brain cytosol was not reduced. When the methylation of an arginine residue of MBP was examined in slices of the brainstem and spinal cord, using (3H)methionine as a donor of the methyl groups, no difference was found between Twi and the controls. Radioactivity of the (3H) methionine residue of MBP of Twi was also similar to that of the controls. Thus, accumulation of psychosine in Twi does not interfere with the activity of endogenous kinase, methylation of MBP, and the synthesis and transport of MBP into myelin membrane.

  6. Lipid metabolism and body composition in Gclm(-/-) mice

    Energy Technology Data Exchange (ETDEWEB)

    Kendig, Eric L. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Chen, Ying [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045 (United States); Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Genter, Mary Beth; Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Shertzer, Howard G., E-mail: shertzhg@ucmail.uc.edu [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States)

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  7. Body Temperature Measurements for Metabolic Phenotyping in Mice.

    Science.gov (United States)

    Meyer, Carola W; Ootsuka, Youichirou; Romanovsky, Andrej A

    2017-01-01

    Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from

  8. Effect of methergoline on body temperature in mice.

    Science.gov (United States)

    Cardano, C; Strocchi, P; Gonni, D; Walsh, M; Agnati, L F

    1977-03-01

    Serotonin (5-HT) involvement in body temperature regulation has been studied in mice by means of a 5-HT-selective blocking agent (methergoline). This drug causes an effect on body temperature which is dependent on environmental temperature. At environmental temperatures of 25 degrees C and 11 degrees C methergoline has a hypothermic effect, while at 36 degrees C environmental temperature, methergoline has a hyperthermic effect. At 25 degrees C environmental temperature, the hypothermic effect induced by 125 mug/kg i.p. of methergoline could be antagonized by low doses of LAE-32 (80 mug/kg s.c.), while there was not such an antagonism using higher doses of LAE-32 (100 and 300 mug/kg s.c.). This has been explained using Jalfre's hypothesis of the existence of 5-HT inhibitory and excitatory receptors.

  9. Automatic nonrigid registration of whole body CT mice images.

    Science.gov (United States)

    Li, Xia; Yankeelov, Thomas E; Peterson, Todd E; Gore, John C; Dawant, Benoit M

    2008-04-01

    Three-dimensional intra- and intersubject registration of image volumes is important for tasks that include quantification of temporal/longitudinal changes, atlas-based segmentation, computing population averages, or voxel and tensor-based morphometry. While a number of methods have been proposed to address this problem, few have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the majority of registration algorithms have been applied. This article presents a new method for the automatic registration of whole body computed tomography (CT) volumes, which consists of two main steps. Skeletons are first brought into approximate correspondence with a robust point-based method. Transformations so obtained are refined with an intensity-based nonrigid registration algorithm that includes spatial adaptation of the transformation's stiffness. The approach has been applied to whole body CT images of mice, to CT images of the human upper torso, and to human head and neck CT images. To validate the authors method on soft tissue structures, which are difficult to see in CT images, the authors use coregistered magnetic resonance images. They demonstrate that the approach they propose can successfully register image volumes even when these volumes are very different in size and shape or if they have been acquired with the subjects in different positions.

  10. Effect of bifidobacteria implantation on the survival time of whole-body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Yokokura, T.; Onoue, M.; Mutai, M. (Yakult Institute for Microbiological Research)

    1980-01-01

    Letahl dose (2 KR) of gamma-ray was irradiated on the whole bodies of mice. Survival time after irradiation was significantly longer in mice with administration of both Bifidobacterium breve YIT 4008 and transgalactosyl oligosaccharide than in mice with administration of either of the two or nothing.

  11. Early weaning impairs body composition in male mice

    Directory of Open Access Journals (Sweden)

    Maria Carolina Borges

    2009-12-01

    Full Text Available This study aimed to evaluate the effect of early weaning on body composition and on parameters related to nutritional status in mice. The experimental group consisted of male Swiss Webster mice that were weaned early (at postnatal day fourteen and fed an appropriate diet for growing rodents until postnatal day twenty-one (EW group. The control group consisted of male mice breastfed until postnatal day twenty-one (CON group. All animals were sacrificed on the twenty-first day of life. The EW group showed a decrease in liver and muscle protein content and concentration, brain protein concentration, brain DNA content and concentration, as well as liver and muscle protein/RNA ratio (pO presente estudo objetivou avaliar o efeito do desmame precoce sobre a composição corporal e sobre parâmetros indicativos do estado nutricional de camundongos. O grupo experimental consistiu de camundongos Swiss Webster, machos, desmamados precocemente (14º dia de vida e alimentados com ração apropriada para roedores em crescimento até o 21º dia pós-natal (grupo DESM. O grupo controle consistiu de camundongos amamentados até o 21º dia pós-natal (grupo CON. Todos os animais foram sacrificados no 21º dia de vida. O grupo DESM apresentou redução da concentração e conteúdo hepático e muscular de proteínas, da concentração cerebral de proteínas, da concentração e conteúdo cerebral de DNA e da razão proteína/RNA hepática e muscular (p<0,05. Quanto à composição corporal, o grupo DESM apresentou maior conteúdo de umidade, maior percentual de umidade e lipídios e menor conteúdo e percentual de cinzas e proteína na carcaça (p<0,05. Os resultados indicam que o desmame precoce acarreta em prejuízo à composição corporal e a parâmetros indicativos do estado nutricional, o que pode estar relacionado ao retardo do processo de maturação química. Os dados do presente estudo podem contribuir para o entendimento da influência da alimenta

  12. Effects of chronic leptin infusion on subsequent body weight and composition in mice: Can body weight set point be reset?

    Science.gov (United States)

    Ravussin, Y; LeDuc, C A; Watanabe, K; Mueller, B R; Skowronski, A; Rosenbaum, M; Leibel, R L

    2014-07-01

    Circulating leptin concentrations correlate with fat mass and signal the status of somatic energy stores to the brain. Previous studies suggest that diet-induced elevations of body weight increase body weight "set-point". To assess whether chronic hyperleptinemia is responsible for this shift in defended body weight, we elevated circulating leptin concentrations in lean mice to those comparable to diet-induced obese mice for eighteen weeks. We hypothesized that following cessation of leptin infusion, a higher body weight would be defended. Compared to saline-infused controls, leptin-infused mice had elevated circulating leptin concentrations, gained less weight, yet had similar metabolic rates. Following cessation of leptin administration, leptin-infused mice gained some weight yet plateaued at 5-10% below controls. These results suggest that, unlike mice rendered hyperleptinemic by diet-induced weight gain, leptin-infused mice do not subsequently "defend" a higher body weight, suggesting that hyperleptinemia per se does not mimic the CNS consequences of chronic weight gain.

  13. Effects of Zinc Compound on Body Weight and Recovery of Bone Marrow in Mice Treated with Total Body Irradiation

    Directory of Open Access Journals (Sweden)

    Ming-Yii Huang

    2007-09-01

    Full Text Available This study aimed to investigate if zinc compound would have effects on body weight loss and bone marrow suppression induced by total body irradiation (TBI. ICR mice were divided randomly into two groups and treated with test or control compounds. The test compound contained zinc (amino acid chelated with bovine prostate extract, and the control was reverse osmosis pure water (RO water. One week after receiving the treatment, mice were unirradiated, or irradiated with 6 or 3 Gy by 6MV photon beams to the total body. Body weight changes were examined at regular intervals. Three and 5 weeks after the radiation, animals were sacrificed to examine the histologic changes in the bone marrow. Lower body weight in the period of 1-5 weeks after radiation and poor survival rate were found after the 6 Gy TBI, as compared with the 3 Gy groups. The median survival time after 6 Gy and 3 Gy TBI for mice given the test compound were 26 and 76 days, respectively, and the corresponding figures were 14 and 70 days, respectively, for mice given the control compound (p < 0.00001. With zinc supplement, the mean body weight in mice which received the same dose of radiation was 7-8 g heavier than in the water-supplement groups during the second and third weeks (p < 0.05. Hence, there was no statistically significant difference in survival rate between zinc and water supplement in mice given the same dose of irradiation. Histopathologically there was less recovery of bone marrow cells in the 6Gy groups compared with the 3Gy groups. In the 3 Gy water-supplement group, the nucleated cells and megakaryocytes were recovered in the fifth week when recovery was still not seen in the 6Gy group. With zinc supplement, these cells were recovered in the third week. In this study, we found that zinc is beneficial to body weight in mice treated with TBI. Histologic examination of bone marrow showed better recovery of bone marrow cells in groups of mice fed with zinc. This study

  14. EFFECT OF REGULAR GARLIC INGESTION ON BODY WEIGHT AND BLOOD GLUCOSE: A CASE STUDY IN MICE

    Directory of Open Access Journals (Sweden)

    F.T. Djankpa, A. Osonuga*, J. Ekpale, C.E. Quaye, P. Otoo, O.A. Osonuga and S.K. Amoah

    2012-05-01

    Full Text Available Garlic a perennial erect plant is known to have sulphur-containing compounds that act on the hypothalamus increasing the sensitivity of the hypothalamus to leptin which alters the set point at which satiety is reached causing an organism to eat less. Nine mice (six of which were obese were used in this study and grouped into three. Groups A and B were made of 3 obese mice each whereas group C consisted of 3 non-obese mice. For group A and group C mice, 20 ml aqueous garlic extract was added to their feed daily whereas no garlic was added to the feed of group B mice. The study was carried out over a period of 44 days. The weight and blood glucose was measured weekly and the average for each group was computed. Results indicated that Group A mice recorded a reduction in mean body weight by 46.5% (p<0.05. Group B mice had significant increase in mean body weight by 46.2% (p<0.05. The blood glucose level dropped significantly by 18.5% (p<0.05 in group A mice. Garlic had weight loss and hypoglycemic effect in obese mice. These effects were absent in non-obese mice.

  15. Discoidin domain receptor 2 (DDR2) regulates body size and fat metabolism in mice.

    Science.gov (United States)

    Kawai, Ikuma; Matsumura, Hirokazu; Fujii, Wataru; Naito, Kunihiko; Kusakabe, Ken; Kiso, Yasuo; Kano, Kiyoshi

    2014-02-01

    Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens, which act as its endogenous ligand. DDR2 regulates cell proliferation, cell adhesion, migration, extracellular matrix remodeling and reproductive functions. Both DDR2 null allele mice and mice with a recessive, loss-of-function allele for Ddr2 exhibit dwarfing and a reduction in body weight. However, the detailed mechanisms by which DDR2 exerts its positive systemic regulation of whole body size, local skeletal size and fat tissue volume remain to be clarified. To investigate the systemic role of DDR2 in body size regulation, we produced transgenic mice in which the DDR2 protein is overexpressed, then screened the transgenic mice for abnormalities using systematic mouse abnormality screening. The modified-SHIPRA screen revealed that only the parameter of body size was significantly different among the genotypes. We also discovered that the body length was significantly increased, while the body weight was significantly decreased in transgenic mice compared to their littermate controls. We also found that the epididymal fat pads were significantly decreased in transgenic mice compared to normal littermate mice, which may have been the cause of the leptin decrement in the transgenic mice. The new insight that DDR2 might promote metabolism in adipocyte cells is very interesting, but more experiments will be needed to elucidate the direct relation between DDR2 and adipose-derived hormones. Taken together, our data demonstrated that DDR2 might play a systemic role in the regulation of body size thorough skeletal formation and fat metabolism.

  16. Assessment of Routine Procedure Effect on Breathing Parameters in Mice by Using Whole-Body Plethysmography

    Science.gov (United States)

    Raşid, Orhan; Chirita, Daniel; Iancu, Adina D; Stavaru, Crina; Radu, Dorel L

    2012-01-01

    We used whole-body plethysmography to investigate the effect of restraint, ear marking, tail vein and retroorbital blood sampling, and tail clipping on respiration in Balb/c × TCR-HA+/– F1 hybrid mice (F1h). Baseline values of breathing parameters were determined. During the experiment, mice experienced a procedure and then plethysmographic recordings were obtained immediately and at 4, 24, and 48 h afterward. Baseline breathing parameters showed significant differences between sexes. Restraint affected minute volume differently than did handling in male mice and to a lesser extent in female mice. Ear marking significantly changed minute volume compared with handling but not restraint in male mice and in the opposite manner in female mice. Tail vein blood sampling changed minute volume in a significant manner compared with restraint but not compared with handling in both sexes. Retroorbital blood sampling significantly changed minute volume compared with values for both handling and restraint in male mice but only compared with handling in female mice. Tail clipping modified minute volume significantly compared with handling in male mice and compared with restraint in both sexes. Analysis of data showed that routine procedures affect minute volume in mice depending on invasiveness of maneuver and in a sex-biased manner for as long as 24 h after the procedure. Our experiment shows that procedures performed on laboratory mice can change respiratory parameters and can be investigated by plethysmography. PMID:23043813

  17. Asymptotic weight and maturing rate in mice selected for body conformation

    Directory of Open Access Journals (Sweden)

    Di Masso Ricardo J.

    2000-01-01

    Full Text Available Growth patterns of four lines of mice selected for body conformation were analyzed with the logistic function, in order to provide baseline information about the relationship between asymptotic weight and maturing rate of body weight. Two lines were divergently selected favoring the phenotypic correlation between body weight and tail length (agonistic selection: CBi+, high body weight and long tail; CBi-, low body weight and short tail, whereas the other two lines were generated by a disruptive selection performed against the correlation between the aforementioned traits (antagonistic selection: CBi/C, high body weight and short tail; CBi/L, low body weight and long tail. The logistic parameters A (asymptotic weight and k (maturing rate behaved in CBi/C and CBi- mice and in CBi+ females as expected in terms of the negative genetic relationship between mature size and earliness of maturing. An altered growth pattern was found in CBi/L mice and in CBi+ males, because in the former genotype, selected for low body weight, the time taken to mature increased, whereas in the latter, selected for high body weight, there was a non-significant increase in the same trait. In accordance with the selective criterion, different sources of genetic variation for body weight could be exploited: one inversely associated with earliness of maturing (agonistic selection, and the other independent of maturing rate (antagonistic selection, showing that genetic variation of A is partly independent of k.

  18. Total-body skeletal muscle mass determination by D3-creatine dilution in mice

    Directory of Open Access Journals (Sweden)

    Yue-bing WANG

    2017-08-01

    Full Text Available Objective To investigate the potentiality of D3-creatine dilution method to be used in detection of skeletal muscle mass, so as to provide a new method for skeletal muscle mass detection in mice. Methods Four weeks, 10 weeks and 13 months old male C57BL/6 mice (10 each were used in the present study. All mice were fed with a single dose of D3-creatine (2mg/kg after testing body composition by EchoMRITM. Urine was collected at 24h, 48h and 72h after creatine administration, and analyzed by liquid chromatography-tandem mass spectrometry mass spectrometry (LC-MS/MS that was used to determine the creatine pool size. The relationship between creatine pool size and the skeletal muscle mass determined by EchoMRITM was analyzed. Results Both lean body mass and total creatine pool size were aged mice > adult mice > juvenile mice. There was a significant correlation (r=0.687, P=0.000 between the lean body mass measured by EchoMRITM and the total creatine pool size calculated by D3-creatine dilution method. Conclusion The D3-creatine dilution method may be used to determine the skeletal muscle mass of mice. DOI: 10.11855/j.issn.0577-7402.2017.07.10

  19. Effects of GABA agonists on body temperature regulation in GABA(B(1))-/- mice.

    Science.gov (United States)

    Quéva, Christophe; Bremner-Danielsen, Marianne; Edlund, Anders; Ekstrand, A Jonas; Elg, Susanne; Erickson, Sven; Johansson, Thore; Lehmann, Anders; Mattsson, Jan P

    2003-09-01

    1. Activation of GABA(B) receptors evokes hypothermia in wildtype (GABA(B(1))+/+) but not in GABA(B) receptor knockout (GABA(B(1))-/-) mice. The aim of the present study was to determine the hypothermic and behavioural effects of the putative GABA(B) receptor agonist gamma-hydroxybutyrate (GHB), and of the GABA(A) receptor agonist muscimol. In addition, basal body temperature was determined in GABA(B(1))+/+, GABA(B(1))+/- and GABA(B(1))-/- mice. 2. GABA(B(1))-/- mice were generated by homologous recombination in embryonic stem cells. Correct gene targeting was assessed by Southern blotting, PCR and Western blotting. GABA(B) receptor-binding sites were quantified with radioligand binding. Measurement of body temperature was done using subcutaneous temperature-sensitive chips, and behavioural changes after drug administration were scored according to a semiquantitative scale. 3. GABA(B(1))-/- mice had a short lifespan, probably caused by generalised seizure activity. No histopathological or blood chemistry changes were seen, but the expression of GABA(B(2)) receptor protein was below the detection limit in brains from GABA(B(1))-/- mice, in the absence of changes in mRNA levels. 4. GABA(B) receptor-binding sites were absent in brain membranes from GABA(B(1))-/- mice. 5. GABA(B(1))-/- mice were hypothermic by approximately 1 degrees C compared to GABA(B(1))+/+ and GABA(B(1))+/- mice. 6. Injection of baclofen (9.6 mg kg-1) produced a large reduction in body temperature and behavioural effects in GABA(B(1))+/+ and in GABA(B(1))+/- mice, but GABA(B(1))-/- mice were unaffected. The same pattern was seen after administration of GHB (400 mg kg-1). The GABA(A) receptor agonist muscimol (2 mg kg-1), on the other hand, produced a more pronounced hypothermia in GABA(B(1))-/-mice. In GABA(B(1))+/+ and GABA(B(1))+/- mice, muscimol induced sedation and reduced locomotor activity. However, when given to GABA(B(1))-/- mice, muscimol triggered periods of intense jumping and wild

  20. Dehydroepiandrosterone Supplementation Combined with Whole-Body Vibration Training Affects Testosterone Level and Body Composition in Mice

    Science.gov (United States)

    Chen, Wen-Chyuan; Chen, Yi-Ming; Huang, Chi-Chang; Tzeng, Yen-Dun

    2016-01-01

    Dehydroepiandrosterone (DHEA), the most abundant sex steroid, is primarily secreted by the adrenal gland and a precursor hormone used by athletes for performance enhancement. Whole-body vibration (WBV) is a well-known light-resistance exercise by automatic adaptations to rapid and repeated oscillations from a vibrating platform, which is also a simple and convenient exercise for older adults. However, the potential effects of DHEA supplementation combined with WBV training on to body composition, exercise performance, and hormone regulation are currently unclear. The objective of the study is to investigate the effects of DHEA supplementation combined with WBV training on body composition, exercise performance, and physical fatigue-related biochemical responses and testosterone content in young-adult C57BL/6 mice. In this study, male C57BL/6 mice were divided into four groups (n = 8 per group) for 6-weeks treatment: sedentary controls with vehicle (SC), DHEA supplementation (DHEA, 10.2 mg/kg), WBV training (WBV; 5.6 Hz, 2 mm, 0.13 g), and WBV training with DHEA supplementation (WBV+DHEA; WBV: 5.6 Hz, 2 mm, 0.13 g and DHEA: 10.2 mg/kg). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time, as well as changes in body composition and anti-fatigue levels of serum lactate, ammonia, glucose, creatine kinase (CK), and blood urea nitrogen (BUN) after a 15-min swimming exercise. In addition, the biochemical parameters and the testosterone content were measured at the end of the experiment. Six-week DHEA supplementation alone significantly increased mice body weight (BW), muscle weight, testosterone level, and glycogen contents (liver and muscle) when compared with SC group. DHEA supplementation alone had no negative impact on all tissue and biochemical profiles, but could not improve exercise performance. However, WBV+DHEA supplementation also significantly decreased BW, testosterone level and glycogen content of liver, as well as serum

  1. Improved cerebral energetics and ketone body metabolism in db/db mice

    DEFF Research Database (Denmark)

    Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D

    2017-01-01

    It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate...... metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism....

  2. Modulation of Gut Microbiota of Overweight Mice by Agavins and Their Association with Body Weight Loss.

    Science.gov (United States)

    Huazano-García, Alicia; Shin, Hakdong; López, Mercedes G

    2017-08-23

    Agavins consumption has led to accelerated body weight loss in mice. We investigated the changes on cecal microbiota and short-chain fatty acids (SCFA) associated with body weight loss in overweight mice. Firstly, mice were fed with standard (ST5) or high-fat (HF5) diet for five weeks. Secondly, overweight mice were shifted to standard diet alone (HF-ST10) or supplemented with agavins (HF-ST + A10) or oligofructose (HF-ST + O10), for five more weeks. Cecal contents were collected before and after supplementation to determine microbiota and SCFA concentrations. At the end of first phase, HF5 mice showed a significant increase of body weight, which was associated with reduction of cecal microbiota diversity (PD whole tree; non-parametric t test, p 3.0); this enrichment has not been reported previously under a prebiotic treatment. In conclusion, agavins or oligofructose modulated cecal microbiota composition, reduced the extent of diversity, and increased SCFA. Furthermore, identification of bacteria enriched by agavins opens opportunities to explore new probiotics.

  3. Improved cerebral energetics and ketone body metabolism in db/db mice.

    Science.gov (United States)

    Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D; Waagepetersen, Helle S

    2017-03-01

    It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate for cerebral glucose hypometabolism and unravel the functionality of cerebral mitochondria in type 2 diabetes mellitus. Acutely isolated cerebral cortical and hippocampal slices of db/db mice were incubated in media containing [U-(13)C]glucose, [1,2-(13)C]acetate or [U-(13)C]β-hydroxybutyrate and tissue extracts were analysed by mass spectrometry. Oxygen consumption and ATP synthesis of brain mitochondria of db/db mice were assessed by Seahorse XFe96 and luciferin-luciferase assay, respectively. Glucose hypometabolism was observed for both cerebral cortical and hippocampal slices of db/db mice. Significant increased metabolism of [1,2-(13)C]acetate and [U-(13)C]β-hydroxybutyrate was observed for hippocampal slices of db/db mice. Furthermore, brain mitochondria of db/db mice exhibited elevated oxygen consumption and ATP synthesis rate. This study provides evidence of several changes in brain energy metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism.

  4. Beta-carotene reduces body adiposity of mice via BCMO1.

    Directory of Open Access Journals (Sweden)

    Jaume Amengual

    Full Text Available Evidence from cell culture studies indicates that β-carotene-(BC-derived apocarotenoid signaling molecules can modulate the activities of nuclear receptors that regulate many aspects of adipocyte physiology. Two BC metabolizing enzymes, the BC-15,15'-oxygenase (Bcmo1 and the BC-9',10'-oxygenase (Bcdo2 are expressed in adipocytes. Bcmo1 catalyzes the conversion of BC into retinaldehyde and Bcdo2 into β-10'-apocarotenal and β-ionone. Here we analyzed the impact of BC on body adiposity of mice. To genetically dissect the roles of Bcmo1 and Bcdo2 in this process, we used wild-type and Bcmo1(-/- mice for this study. In wild-type mice, BC was converted into retinoids. In contrast, Bcmo1(-/- mice showed increased expression of Bcdo2 in adipocytes and β-10'-apocarotenol accumulated as the major BC derivative. In wild-type mice, BC significantly reduced body adiposity (by 28%, leptinemia and adipocyte size. Genome wide microarray analysis of inguinal white adipose tissue revealed a generalized decrease of mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ target genes. Consistently, the expression of this key transcription factor for lipogenesis was significantly reduced both on the mRNA and protein levels. Despite β-10'-apocarotenoid production, this effect of BC was absent in Bcmo1(-/- mice, demonstrating that it was dependent on the Bcmo1-mediated production of retinoids. Our study evidences an important role of BC for the control of body adiposity in mice and identifies Bcmo1 as critical molecular player for the regulation of PPARγ activity in adipocytes.

  5. Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice.

    Science.gov (United States)

    Zhong, Chun-Yan; Sun, Wei-Wei; Ma, Yinyan; Zhu, Hongling; Yang, Pan; Wei, Hong; Zeng, Ben-Hua; Zhang, Qian; Liu, Yu; Li, Wen-Xia; Chen, Yixin; Yu, Liqing; Song, Zhi-Yuan

    2015-05-27

    We have previously observed that knockout of Niemann-Pick C1-Like 1 (NPC1L1), a cholesterol transporter essential for intestinal cholesterol absorption, reduces the output of dry stool in mice. As the food intake remains unaltered in NPC1L1-knockout (L1-KO) mice, we hypothesized that NPC1L1 deficiency may alter the gut microbiome to reduce stool output. Consistently, here we demonstrate that the phyla of fecal microbiota differ substantially between L1-KO mice and their wild-type controls. Germ-free (GF) mice have reduced stool output. Inhibition of NPC1L1 by its inhibitor ezetimibe reduces stool output in specific pathogen-free (SPF), but not GF mice. In addition, we show that GF versus SPF mice have reduced intestinal absorption and increased fecal excretion of cholesterol, particularly after treatment with ezetimibe. This negative balance of cholesterol in GF mice is associated with reduced plasma and hepatic cholesterol, and likely caused by reduced expression of NPC1L1 and increased expression of ABCG5 and ABCG8 in small intestine. Expression levels of other genes in intestine and liver largely reflect a state of cholesterol depletion and a decrease in intestinal sensing of bile acids. Altogether, our findings reveal a broad role of microbiota in regulating whole-body cholesterol homeostasis and its response to a cholesterol-lowering drug, ezetimibe.

  6. Effects of G6pc2 deletion on body weight and cholesterol in mice.

    Science.gov (United States)

    Boortz, Kayla A; Syring, Kristen E; Pound, Lynley D; Mo, Huan; Bastarache, Lisa; Oeser, James K; McGuinness, Owen P; Denny, Joshua C; O'Brien, Richard M

    2017-04-01

    Genome-wide association study (GWAS) data have linked the G6PC2 gene to variations in fasting blood glucose (FBG). G6PC2 encodes an islet-specific glucose-6-phosphatase catalytic subunit that forms a substrate cycle with the beta cell glucose sensor glucokinase. This cycle modulates the glucose sensitivity of insulin secretion and hence FBG. GWAS data have not linked G6PC2 to variations in body weight but we previously reported that female C57BL/6J G6pc2-knockout (KO) mice were lighter than wild-type littermates on both a chow and high-fat diet. The purpose of this study was to compare the effects of G6pc2 deletion on FBG and body weight in both chow-fed and high-fat-fed mice on two other genetic backgrounds. FBG was reduced in G6pc2 KO mice largely independent of gender, genetic background or diet. In contrast, the effect of G6pc2 deletion on body weight was markedly influenced by these variables. Deletion of G6pc2 conferred a marked protection against diet-induced obesity in male mixed genetic background mice, whereas in 129SvEv mice deletion of G6pc2 had no effect on body weight. G6pc2 deletion also reduced plasma cholesterol levels in a manner dependent on gender, genetic background and diet. An association between G6PC2 and plasma cholesterol was also observed in humans through electronic health record-derived phenotype analyses. These observations suggest that the action of G6PC2 on FBG is largely independent of the influences of environment, modifier genes or epigenetic events, whereas the action of G6PC2 on body weight and cholesterol are influenced by unknown variables. © 2017 Society for Endocrinology.

  7. Metabolism and aging: effects of cold exposure on metabolic rate, body composition, and longevity in mice.

    Science.gov (United States)

    Vaanholt, Lobke M; Daan, Serge; Schubert, Kristin A; Visser, G Henk

    2009-01-01

    The proposition that increased energy expenditure shortens life has a long history. The rate-of-living theory (Pearl 1928 ) states that life span and average mass-specific metabolic rate are inversely proportional. Originally based on interspecific allometric comparisons between species of mammals, the theory was later rejected on the basis of comparisons between taxa (e.g., birds have higher metabolic rates than mammals of the same size and yet live longer). It has rarely been experimentally tested within species. Here, we investigated the effects of increased energy expenditure, induced by cold exposure, on longevity in mice. Longevity was measured in groups of 60 male mice maintained at either 22 degrees C (WW) or 10 degrees C (CC) throughout adult life. Forty additional mice were maintained at both of these temperatures to determine metabolic rate (by stable isotope turnover, gas exchange, and food intake) as well as the mass of body and organs of subsets of animals at four different ages. Because energy expenditure might affect longevity by either accumulating damage or by instantaneously affecting mortality rate, we included a third group of mice exposed to 10 degrees C early in life and to 22 degrees C afterward (CW). Exposure to cold increased mean daily energy expenditure by ca. 48% (from 47.8 kJ d(-1) in WW to 70.6 kJ d(-1) in CC mice, with CW intermediate at 59.9 kJ d(-1)). However, we observed no significant differences in median life span among the groups (WW, 832 d; CC, 834 d; CW, 751 d). CC mice had reduced body mass (lifetime mean 30.7 g) compared with WW mice (33.8 g), and hence their lifetime energy potential (LEP) per gram whole-body mass had an even larger excess than per individual. Greenberg ( 1999 ) has pointed out that the size of the energetically costly organs, rather than that of the whole body, may be relevant for the rate-of-living idea. We therefore expressed LEP also in terms of energy expenditure per gram dry lean mass or per gram

  8. A Cajal body-independent pathway for telomerase trafficking in mice.

    Science.gov (United States)

    Tomlinson, Rebecca L; Li, Jian; Culp, Bradley R; Terns, Rebecca M; Terns, Michael P

    2010-10-15

    The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTR to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.

  9. A Cajal body-independent pathway for telomerase trafficking in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, Rebecca L.; Li, Jian; Culp, Bradley R.; Terns, Rebecca M., E-mail: rterns@bmb.uga.edu; Terns, Michael P., E-mail: mterns@bmb.uga.edu

    2010-10-15

    The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTR to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.

  10. Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles.

    Directory of Open Access Journals (Sweden)

    Sarah K Meadows

    Full Text Available In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI. However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100% compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%, suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.

  11. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain.

    Science.gov (United States)

    Granger, Jill I; Ratti, Pietro-Luca; Datta, Subhash C; Raymond, Richard M; Opp, Mark R

    2013-07-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24-48 h. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6h to 72 h post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are impaired for

  12. Behavioural consequences of an 8 Gy total body irradiation in mice: Regulation by interleukin-4

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meeren, A.; Lebaron-Jacobs, L. [Inst. de Protection et de Surete Nucleaire, Dept. de Protection de la sante de l' Homme et de Dosimetrie, Section Autonome de Radiobiologie Appliquee a la Medecine, IPSN, Fontenay-aux-Roses (France)

    2001-02-01

    The effects of an 8 Gy {gamma} total body irradiation (TBI) on exploration and locomotion activities as well as temperature were studied in C57BL6/J mice. Survival, body weight, and blood cell counts were also assessed in irradiated mice treated with placebo or interleukin (IL)-4. The efficacy of IL-4 treatment on improvement in exploration activity was evaluated. The study was carried out from 3 h to 30 days following exposure. Our results showed a biphasic response to irradiation concerning the exploration activity of mice. Irradiated mice had reduced activity as early as 3 h after exposure, with recovery of activity within 24 h. The exploration activity again decreased 4 days after irradiation and the recovery occurred slowly after day 17. IL-4 ameliorated the exploration status in mice in both phases. The locomotion activity was studied using a telemetry apparatus. A similar pattern to that of the exploration data was observed, with a minimal activity observed between days 13 and 17. A radiation-induced hypothermia was also noticed over the same time period. (author)

  13. Ethanolic extract of Taheebo attenuates increase in body weight and fatty liver in mice fed a high-fat diet.

    Science.gov (United States)

    Choi, Won Hee; Um, Min Young; Ahn, Jiyun; Jung, Chang Hwa; Park, Myung Kyu; Ha, Tae Youl

    2014-10-08

    We evaluated whether intake of an ethanolic extract of Taheebo (TBE) from Tabebuia avellanedae protects against body weight increase and fat accumulation in mice with high-fat diet (HFD)-induced obesity. Four-week old male C57BL/6 mice were fed a HFD (25% fat, w/w) for 11 weeks. The diet of control (HFD) mice was supplemented with vehicle (0.5% sodium carboxymethyl cellulose by gavage); the diet of experimental (TBE) mice was supplemented with TBE (150 mg/kg body weight/day by gavage). Mice administered TBE had significantly reduced body weight gain, fat accumulation in the liver, and fat pad weight, compared to HFD mice. Reduced hypertrophy of fat cells was also observed in TBE mice. Mice administered TBE also showed significantly lower serum levels of triglycerides, insulin, and leptin. Lipid profiles and levels of mRNAs and proteins related to lipid metabolism were determined in liver and white adipose tissue of the mice. Expression of mRNA and proteins related to lipogenesis were decreased in TBE-administered mice compared to mice fed HFD alone. These results suggest that TBE inhibits obesity and fat accumulation by regulation of gene expression related to lipid metabolism in HFD-induced obesity in mice.

  14. Gender-specific effects of HIV protease inhibitors on body mass in mice

    Directory of Open Access Journals (Sweden)

    Rosewell Amanda N

    2007-05-01

    Full Text Available Abstract Protease inhibitors, as part of highly active anti-retroviral therapy (HAART, have significantly increased the lifespan of human immunodeficiency virus (HIV infected patients. Several deleterious side effects including dyslipidemia and lipodystrophy, however, have been observed with HAART. Women are at a higher risk of developing adipose tissue alterations and these alterations have different characteristics as compared to men. We have previously demonstrated that in mice the HIV protease inhibitor, ritonavir, caused a reduction in weight gain in females, but had no effect on male mice. In the present study, we examined the potential causes of this difference in weight gain. Low-density lipoprotein receptor (LDL-R null mice or wild-type C57BL/6 mice, were administered 15 μg/ml ritonavir or vehicle (0.01% ethanol in the drinking water for 6 weeks. The percent of total body weight gained during the treatment period was measured and confirmed that female LDL-R gained significantly less weight with ritonavir treatment than males. In wild type mice, however, there was no effect of ritonavir treatment in either sex. Despite the weight loss in LDL-R null mice, ritonavir increased food intake, but no difference was observed in gonadal fat weight. Serum leptin levels were significantly lower in females. Ritonavir further suppressed leptin levels in (p

  15. Modulation of Gut Microbiota of Overweight Mice by Agavins and Their Association with Body Weight Loss

    Directory of Open Access Journals (Sweden)

    Alicia Huazano-García

    2017-08-01

    Full Text Available Agavins consumption has led to accelerated body weight loss in mice. We investigated the changes on cecal microbiota and short-chain fatty acids (SCFA associated with body weight loss in overweight mice. Firstly, mice were fed with standard (ST5 or high-fat (HF5 diet for five weeks. Secondly, overweight mice were shifted to standard diet alone (HF-ST10 or supplemented with agavins (HF-ST + A10 or oligofructose (HF-ST + O10, for five more weeks. Cecal contents were collected before and after supplementation to determine microbiota and SCFA concentrations. At the end of first phase, HF5 mice showed a significant increase of body weight, which was associated with reduction of cecal microbiota diversity (PD whole tree; non-parametric t test, p < 0.05, increased Firmicutes/Bacteroidetes ratio and reduced SCFA concentrations (t test, p < 0.05. After diet shifting, HF-ST10 normalized its microbiota, increased its diversity, and SCFA levels, whereas agavins (HF-ST + A10 or oligofructose (HF-ST + O10 led to partial microbiota restoration, with normalization of the Firmicutes/Bacteroides ratio, as well as higher SCFA levels (p < 0.1. Moreover, agavins noticeably enriched Klebsiella and Citrobacter (LDA > 3.0; this enrichment has not been reported previously under a prebiotic treatment. In conclusion, agavins or oligofructose modulated cecal microbiota composition, reduced the extent of diversity, and increased SCFA. Furthermore, identification of bacteria enriched by agavins opens opportunities to explore new probiotics.

  16. Caffeine protects mice against whole-body lethal dose of {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    George, K.C.; Hebbar, S.A.; Kale, S.P.; Kesavan, P.C. [Biosciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    1999-06-01

    Administration of caffeine (1,3,7-trimethylxanthine), a major component of coffee, to Swiss mice at doses of 80 or 100 mg/kg body weight 60 min prior to whole-body lethal dose of {gamma}-irradiation (7.5 Gy) resulted in the survival of 70 and 63% of animals, respectively, at the above doses in contrast to absolutely no survivors (LD-100/25 days) in the group exposed to radiation alone. Pre-treatment with a lower concentration of caffeine (50 mg/kg) did not confer any radioprotection. The protection exerted by caffeine (80 mg/kg), however, was reduced from 70 to 50% if administered 30 min prior to irradiation. The trend statistics reveal that a dose of 80 mg/kg administered 60 min before whole-body exposure to 7.5 Gy is optimal for maximal radioprotection. However, caffeine (80 mg/kg) administered within 3 min after irradiation offered no protection. While there is documentation in the literature that caffeine is an antioxidant and radioprotector against the toxic pathway of radiation damage in a wide range of cells and organisms, this is the first report demonstrating unequivocally its potent radioprotective action in terms of survival of lethally whole-body irradiated mice. (author)

  17. Effects of the physical form of the diet on food intake, growth, and body composition changes in mice.

    Science.gov (United States)

    Yan, Lin; Combs, Gerald F; DeMars, Lana C; Johnson, LuAnn K

    2011-07-01

    The present study investigated effects of the physical form of the diet on food intake, growth, and body composition in male C57BL/6 mice. Three-week-old mice were fed isocaloric diets (AIN93G or a modification containing 25% wheat) in powdered or pelleted form. In experiment 1, mice were assigned into 4 groups offered the AIN93G or the wheat-modified diet in powdered or pelleted form. In experiment 2, mice were pair-fed the powdered diets to the ad libitum level of food intake of those fed the pelleted form of the respective diets. Body weight, food intake, and fecal excretion were recorded, and body composition was assessed on mice 1 wk before termination of the experiment. Mice fed the powdered diets showed greater increases in body weight in 2 wk of feeding than did mice fed the pelleted diets. Compared with the pelleted diets, the powdered diets supported an approximately 85% increase in the fat-mass:body-mass ratio and a 2-fold increase in the abdominal-fat-weight:carcass-weight ratio. In addition, mice fed the powdered diet showed significantly greater plasma concentrations of insulin and leptin and significantly lower plasma adiponectin, compared with their pellet-fed counterparts. Food intake of mice fed the powdered diet was 11% greater for the AIN93G and 16% greater for the wheat diet compared with that of the respective pelleted diet. These results demonstrate that C57BL/6 mice responded to the physical form of these diets in terms of food intake, which affected their growth, body composition, and plasma concentrations of insulin and adipocytokines.

  18. Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-PET in mice

    DEFF Research Database (Denmark)

    Willmann, Jürgen K; Cheng, Zhen; Davis, Corrine;

    2008-01-01

    To evaluate in vivo whole-body biodistribution of microbubbles (MBs) targeted to tumor angiogenesis-related vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by using dynamic micro-positron emission tomography (PET) in living mice....

  19. Thylakoids suppress appetite by increasing cholecystokinin resulting in lower food intake and body weight in high-fat fed mice

    DEFF Research Database (Denmark)

    Köhnke, Rickard; Lindqvist, Andreas; Göransson, Nathanael

    2009-01-01

    affect food intake and body weight during long-term feeding in mice. Female apolipoprotein E-deficient mice were fed a high-fat diet containing 41% of fat by energy with and without thylakoids for 100 days. Mice fed the thylakoid-enriched diet had suppressed food intake, body weight gain and body fat...... fat mass. There was no sign of desensitization in the animals treated with thylakoids. The results suggest that thylakoids are useful to suppress appetite and body weight gain when supplemented to a high-fat food during long-term feeding....... compared with the high-fat fed control mice. Reduced serum glucose, serum triglyceride and serum free fatty acid levels were found in the thylakoid-treated animals. The satiety hormone cholecystokinin was elevated, suggesting this hormone mediates satiety. Leptin levels were reduced, reflecting a decreased...

  20. Loss of SFRP4 Alters Body Size, Food Intake, and Energy Expenditure in Diet-Induced Obese Male Mice.

    Science.gov (United States)

    Mastaitis, Jason; Eckersdorff, Mark; Min, Soo; Xin, Yurong; Cavino, Katie; Aglione, Johnpaul; Okamoto, Haruka; Na, Erqian; Stitt, Trevor; Dominguez, Melissa G; Schmahl, Jennifer P; Lin, Calvin; Gale, Nicholas W; Valenzuela, David M; Murphy, Andrew J; Yancopoulos, George D; Gromada, Jesper

    2015-12-01

    Secreted frizzled-related protein 4 (SFRP4) is an extracellular regulator of the wingless-type mouse mammary tumor virus integration site family (WNT) pathway. SFRP4 has been implicated in adipocyte dysfunction, obesity, insulin resistance, and impaired insulin secretion in patients with type 2 diabetes. However, the exact role of SFRP4 in regulating whole-body metabolism and glucose homeostasis is unknown. We show here that male Sfrp4(-/-) mice have increased spine length and gain more weight when fed a high-fat diet. The body composition and body mass per spine length of diet-induced obese Sfrp4(-/-) mice is similar to wild-type littermates, suggesting that the increase in body weight can be accounted for by their longer body size. The diet-induced obese Sfrp4(-/-) mice have reduced energy expenditure, food intake, and bone mineral density. Sfrp4(-/-) mice have normal glucose and insulin tolerance and β-cell mass. Diet-induced obese Sfrp4(-/-) and control mice show similar impairments of glucose tolerance and a 5-fold compensatory expansion of their β-cell mass. In summary, our data suggest that loss of SFRP4 alters body length and bone mineral density as well as energy expenditure and food intake. However, SFRP4 does not control glucose homeostasis and β-cell mass in mice.

  1. Effect of intestinal microflora on the survival time of mice exposed to lethal whole-body. gamma. irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Onoue, M.; Uchida, K.; Yokokura, T.; Takahashi, T.; Mutai, M.

    1981-11-01

    The effect of intestinal microflora on the survival time of mice exposed to 2-kR whole-body ..gamma.. irradiation was studied using germfree, monoassociated, and conventionalized ICR mice. The germfree mice were monoassociated with 1 of 11 bacterial strains, which were isolated from the fresh feces of conventional mice, 2 weeks prior to irradiation. All mice died within 3 weeks after irradiation. Monoassociation with Fusobacterium sp., Streptococcus faecalis, Escherichia coli, or Pseudomonas sp. significantly reduced the mean survival time compared to that of germfree mice. In contrast, monoassociation with Clostridium sp., Bifidobacterium pseudolongum, or Lactobacillus acidophilus significantly prolonged the mean survival time compared to that of germfree mice. This suggests that the latter organisms may perform some activity to protect the mice from radiation injury. In this histopathological autopsy examination, the main lesions were hypocellularity in hematopoietic organs and hemorrhage in various organs. Neither karyorrhexis nor desquamation of intestinal mucosal cells was observed in any mice. From these observations, it is suggested that the death of these mice was related to hematopoietic damage. Bacterial invasion into various organs was observed in conventionalized and Pseudomonas-, E. coli-, or S. faecalis-monoassociated mice but not in Clostridium-, B. pseudolongum-, L. acidophilus-, or Fusobacterium-monoassociated mice.

  2. Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice.

    Science.gov (United States)

    Yang, Yongbin; Smith, Daniel L; Keating, Karen D; Allison, David B; Nagy, Tim R

    2014-10-01

    To investigate the variations in body weight, food intake, and body composition of both male and female C57BL/6J mice during a diet-induced obesity model with high-fat diet (HFD) feeding. Mice were individually housed and fed ad libitum either a low-fat diet (LFD, 10% calories from fat; n = 15 male, n = 15 female) or HFD (45% calories from fat; n = 277 male, n = 278 female) from 8 to 43 weeks of age. Body weight, food intake, and body composition were routinely measured. Body weight was significantly increased with HFD (vs. LFD) in males from week 14 (P = 0.0221) and in females from week 27 (P = 0.0076). Fat mass and fat-free mass of all groups were significantly increased over time (all P weight for both sexes (P weight. Copyright © 2014 The Obesity Society.

  3. Ginseng panaxoside Rb1 reduces body weight in diet-induced obese mice.

    Science.gov (United States)

    Lin, Ning; Cai, Dong-Lian; Jin, Di; Chen, Yi; Shi, Jiao-Jiao

    2014-01-01

    Crude extracts from ginseng demonstrated anti-obesity properties. Ginsenoside Rb1 is the main component of ginseng, however, there are only few studies examining its effects in obesity. In the present study, we evaluated its potential anti-obesity effects in the murine model of diet-induced obesity. Seventy male C57BL/6 mice were randomly divided to consume for 12 weeks either chow diet (N = 8) or high-fat (HF) diet (N = 62). The latter mice were then divided into four groups: diet-induced obesity group (DIO; N = 10), obesity-resistant group (OR; N = 10), HF group (N = 5), and the group whose diet was changed from HF to normal diet (DC; N = 5). Intraperitoneal injections of Rb-1 were administered daily to mice in the DIO and OR groups for 3 weeks. Body weight and energy intake were monitored, and fasting blood glucose, lipids, neuropeptide Y, Y2 receptor, and peptide YY were quantified. Compared with HF group, weight gain and food intake of DIO mice with Rb-1 injection was significantly decreased (p < 0.05). Further, levels of blood glucose and some lipids were also decreased in DIO-Rb1 group compared with HF group. Furthermore, Rb1 was also found to modulate serum levels of PYY and NPY, and mRNA expression of NPY, Y2 receptor and PYY in tissue samples of DIO mice. Taken together, ginsenoside Rb1 may be useful in the treatment of obesity via modifying the serum content and mRNA expression of NPY, Y2 receptor and PYY.

  4. Long-Term Effects of Stem Cells on Total-Body Irradiated Mice

    Science.gov (United States)

    Vyalkina, M. V.; Alchinova, I. B.; Yakovenko, E. N.; Medvedeva, Yu S.; Saburina, I. N.; Karganov, M. Yu

    2017-01-01

    C57Bl/6 mice were exposed to γ-radiation in a sublethal dose of 7.5 Gy. In 3 hours injection 106/mouse of bone marrow multipotent mesenchymal stromal cells stem cells intravenously to experimental group was done. Methods used: body weight measurement, open field behavior, subfraction composition of blood serum (laser correlation spectroscopy, LCS), histological examination of the spleen, liver, and pancreas, count of T and B cells, white blood formula. After 1.5 and 3 months the general trend towards intermediate position of the parameters observed in the experimental between those in intact and irradiated controls attests to partial protective/restorative effects of the injected cells.

  5. Effects of the Physical Form of the Diet on Food Intake, Growth, and Body Composition Changes in Mice

    OpenAIRE

    Yan, Lin; Combs, Gerald F.; Lana C DeMars; LuAnn K. Johnson

    2011-01-01

    The present study investigated effects of the physical form of the diet on food intake, growth, and body composition in male C57BL/6 mice. Three-week-old mice were fed isocaloric diets (AIN93G or a modification containing 25% wheat) in powdered or pelleted form. In experiment 1, mice were assigned into 4 groups offered the AIN93G or the wheat-modified diet in powdered or pelleted form. In experiment 2, mice were pair-fed the powdered diets to the ad libitum level of food intake of those fed t...

  6. Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans

    Science.gov (United States)

    Olszewski, Pawel K.; Rozman, Jan; Jacobsson, Josefin A.; Rathkolb, Birgit; Strömberg, Siv; Hans, Wolfgang; Klockars, Anica; Alsiö, Johan; Risérus, Ulf; Becker, Lore; Hölter, Sabine M.; Elvert, Ralf; Ehrhardt, Nicole; Gailus-Durner, Valérie; Fuchs, Helmut; Fredriksson, Robert; Wolf, Eckhard; Klopstock, Thomas; Wurst, Wolfgang; Levine, Allen S.; Marcus, Claude; Hrabě de Angelis, Martin; Klingenspor, Martin; Schiöth, Helgi B.; Kilimann, Manfred W.

    2012-01-01

    Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity. PMID:22438821

  7. Neonatal and maternal body burdens of hexachlorobenzene (HCB) in mice: gestational exposure and lactational transfer

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, K.D.; Andrews, J.E.

    1985-04-01

    Hexachlorobenzene (HCB), a ubiquitous lipophilic pollutant, was readily transferred in the milk of lactating dams to their suckling neonates. Pregnant CD-1 mice were treated during gestation, and the body burdens of HCB in the neonates and the dams were determined during lactation. Also, neonates from dams treated with HCB during gestation were cross-fostered at birth to dams treated with corn oil during gestation. The body burdens of HCB were greater in the neonates exposed to HCB by lactational transfer than the neonates exposed only by gestational transfer. In many tissues, the concentration of HCB in the pups from full litter was similar to that in pups from litters reduced to two pups per litter. Lactational transfer of HCB from the dams to the pups was a major route of excretion in that 95% of HCB was depleted during 20 days of lactation. HCB depletion was similar in dams with whole litters, and those with litters reduced to two pups.

  8. Subchronic and mild social defeat stress accelerates food intake and body weight gain with polydipsia-like features in mice.

    Science.gov (United States)

    Goto, Tatsuhiko; Kubota, Yoshifumi; Tanaka, Yuki; Iio, Wataru; Moriya, Naoko; Toyoda, Atsushi

    2014-08-15

    Development and characterization of animal models of depression are essential for fully understanding the pathogenesis of depression in humans. We made and analyzed a mouse model exhibiting social deficit and hyperphagia-like behavior using a subchronic and mild social defeat stress (sCSDS) paradigm. The body weight, food and water intake of mice were monitored during a test period, and their behaviors and serum components were analyzed at two stages: immediately after the sCSDS period and 1 month after the sCSDS. The body weight and food intake of defeated mice were significantly higher than control mice at the sCSDS period, and these differences were sustained until 1 month after the sCSDS, whereas the water intake of defeated mice was significantly higher than control mice for the period of sCSDS only. Behavioral analyses revealed that the defeated mice exhibit significant social aversion to unfamiliar mice in a social interaction test and a trend of anxiety-like behavior in an elevated-plus maze test. Possibly due to polydipsia-like symptoms, defeated mice had significantly lower levels of albumin and blood urea nitrogen than control mice immediately after the sCSDS period but not at 1 month after sCSDS. The present study revealed that our sCSDS mice keep much more water in their body than control mice. This study reports the first step toward an understanding of the mechanisms of stress-induced overhydration, over-eating and resultant weight gain.

  9. GPRC6a is not required for the effects of a high-protein diet on body weight in mice.

    Science.gov (United States)

    Kinsey-Jones, James S; Alamshah, Amin; McGavigan, Anne K; Spreckley, Eleanor; Banks, Katherine; Cereceda Monteoliva, Nicholas; Norton, Mariana; Bewick, Gavin A; Murphy, Kevin G

    2015-06-01

    The G-protein coupled receptor family C group 6 member A (GPRC6A) is activated by proteinogenic amino acids and may sense amino acids in the gastrointestinal tract and the brain. The study investigated whether GPRC6A was necessary for the effects of low- and high-protein diets on body weight and food intake in mice. The role of GPRC6A in mediating the effects of a low-protein diet on body weight was investigated in GPRC6a knockout (GPRC6a-KO) and wild-type (WT) mice fed a control diet (18% protein) or a low-protein diet (6% protein) for 9 days. The role of GPRC6A in mediating the effects of a high-protein diet on body weight was investigated in GPRC6a-KO and WT mice fed a control diet (18% protein) or a high-protein diet (50% protein) for 5 weeks. A high-protein diet reduced body weight gain and food intake compared with a control diet in both WT and GPRC6a-KO mice. A low-protein diet decreased body weight gain in GPRC6a-KO mice. GPRC6A was not necessary for the effects of a low- or high-protein diet on body weight and likely does not play a role in protein-induced satiety. © 2015 The Obesity Society.

  10. Adaptive thermoregulation in golden spiny mice: the influence of season and food availability on body temperature.

    Science.gov (United States)

    Levy, Ofir; Dayan, Tamar; Kronfeld-Schor, Noga

    2011-01-01

    We studied the effect of food supplementation during summer and winter in seminatural field conditions on thermoregulation of a desert rodent, the golden spiny mouse Acomys russatus. We hypothesized that (a) under natural food availability (control conditions), mice will use less precise thermoregulation (i.e., an increase in the variance of body temperature [T(b)]) during winter because of low ambient temperatures (T(a)'s) and low food availability and during summer because of low food and water availability; (b) food supplementation will result in more precise thermoregulation during winter, but the effect will be smaller during summer because variation in T(b) in summer is also driven by water availability during that period. We found that under natural food availability, spiny mice thermoregulated more precisely during summer than during winter. They spent more time torpid during summer than during winter even when food was supplemented (although summer nights are shorter), allowing them to conserve water. Supplementing food resulted in more precise thermoregulation in both seasons, and mice spent less time torpid. In summer, thermoregulation at high T(a)'s was less precise, resulting in higher maximum T(b)'s in summer than in winter and when food was supplemented, in accord with the expected effect of water shortage on thermoregulation. Our results suggest that as expected, precise thermoregulation is beneficial when possible and is abandoned only when the costs of homeothermy outweigh the benefits.

  11. A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice.

    Science.gov (United States)

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Poursharifi, Pegah; Zhao, Shangang; Zhang, Dongwei; Morin, Johane; Pineda, Marco; Wang, Shupei; Dumortier, Olivier; Ruderman, Neil B; Mitchell, Grant A; Simons, Brigitte; Madiraju, S R Murthy; Joly, Erik; Prentki, Marc

    2016-12-01

    To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions. Atgl (flox/flox) mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT(/+);Atgl (flox/flox) mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD. ND-fed male B-Atgl-KO mice showed decreased insulinaemia and glucose-induced insulin secretion (GSIS) in vivo. Changes in GSIS correlated with the islet content of long-chain saturated monoacylglycerol (MAG) species that have been proposed to be metabolic coupling factors for insulin secretion. Exogenous MAGs restored GSIS in B-Atgl-KO islets. B-Atgl-KO male mice fed an HFD showed reduced insulinaemia, glycaemia in the fasted and fed states and after glucose challenge, as well as enhanced insulin sensitivity. Moreover, decreased insulinaemia in B-Atgl-KO mice was associated with increased energy expenditure, and lipid metabolism in brown (BAT) and white (WAT) adipose tissues, leading to reduced fat mass and body weight. ATGL in beta cells regulates insulin secretion via the production of signalling MAGs. Decreased insulinaemia due to lowered GSIS protects B-Atgl-KO mice from diet-induced obesity, improves insulin sensitivity, increases lipid mobilisation from WAT and causes BAT activation. The results support the concept that fuel excess can drive obesity and diabetes via hyperinsulinaemia, and that an islet beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion.

  12. Extended lifespan, reduced body size and leg skeletal muscle mass, and decreased mitochondrial function in clk-1 transgenic mice.

    Science.gov (United States)

    Takahashi, Kazuhide; Noda, Yoshihiro; Ohsawa, Ikuroh; Shirasawa, Takuji; Takahashi, Mayumi

    2014-10-01

    Mutational inactivation of clk-1, which encodes an enzyme necessary for the biosynthesis of coenzyme Q (CoQ), extends the lifespan of Caenorhabditis elegans. However, whether mammalian clk-1 regulates the lifespan of mice is not known because clk-1-deficiencies are embryonic lethal. Here, we investigated the lifespan of clk-1 transgenic mice (Tg96/I), which were rescued from embryonic lethality via the transgenic expression of mouse clk-1. Tg96/I mice lived longer and had smaller bodies than wild-type mice, but Tg96/I mice had CoQ levels equivalent to wild-type mice. The small-sized Tg96/I mice exhibited reduced whole-body oxygen consumption (VO2) during the dark period, and lean leg skeletal muscles with reduced mitochondrial VO2 and ATP content compared with wild-type mice. These findings indicate a close relationship between lifespan extension and decreased mitochondrial function, which was induced by the transgenic expression of clk-1, in leg skeletal muscles that exhibit high metabolic activity.

  13. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice.

    Science.gov (United States)

    Szentirmai, Eva; Kapás, Levente; Sun, Yuxiang; Smith, Roy G; Krueger, James M

    2010-02-01

    Behavioral and physiological rhythms can be entrained by daily restricted feeding (RF), indicating the existence of a food-entrainable oscillator (FEO). One manifestation of the presence of FEO is anticipatory activity to regularly scheduled feeding. In the present study, we tested if intact ghrelin signaling is required for FEO function by studying food anticipatory activity (FAA) in preproghrelin knockout (KO) and wild-type (WT) mice. Sleep-wake activity, locomotor activity, body temperature, food intake, and body weight were measured for 12 days in mice on a RF paradigm with food available only for 4 h daily during the light phase. On RF days 1-3, increases in arousal occurred. This response was significantly attenuated in preproghrelin KO mice. There were progressive changes in sleep architecture and body temperature during the subsequent nine RF days. Sleep increased at night and decreased during the light periods while the total daily amount of sleep remained at baseline levels in both KO and WT mice. Body temperature fell during the dark but was elevated during and after feeding in the light. In the premeal hours, anticipatory increases in body temperature, locomotor activity, and wakefulness were present from RF day 6 in both groups. Results indicate that the preproghrelin gene is not required for the manifestation of FAA but suggest a role for ghrelinergic mechanisms in food deprivation-induced arousal in mice.

  14. The effect of fast created inbreeding on litter size and body weights in mice

    Directory of Open Access Journals (Sweden)

    Meuwissen Theo

    2005-09-01

    Full Text Available Abstract This study was designed to reveal any differences in effects of fast created versus total inbreeding on reproduction and body weights in mice. A line selected for large litter size for 124 generations (H and a control line (K maintained without selection for the same number of generations were crossed (HK and used as a basis for the experiment. Within the HK cross, full sib, cousin or random mating were practised for two generations in order to create new inbreeding (IBF at a fast rate. In the first generation of systematic mating, old inbreeding was regenerated in addition to creation of new inbreeding from the mating design giving total inbreeding (IBT. The number of pups born alive (NBA and body weights of the animals were then analysed by a model including both IBT and IBF. The IBT of the dam was in the present study found to reduce the mean NBA with -0.48 (± 0.22 (p F was -0.42 (± 0.27. For the trait NBA per female mated, the effect of IBT was estimated to be -0.45 (± 0.29 per 10% increase in the inbreeding coefficient and the effect of IBF was -0.90 (± 0.37 (p F of the dam could be found on sex-ratio and body weights at three and six weeks of age in a population already adjusted for IBT.

  15. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    Science.gov (United States)

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  16. Effect of carnitine, acetyl-, and propionylcarnitine supplementation on the body carnitine pool, skeletal muscle composition, and physical performance in mice

    OpenAIRE

    Morand, Réjane; Bouitbir, Jamal; Andrea FELSER; Hench, Jürgen; Handschin, Christoph; Frank, Stephan; Krähenbühl, Stephan

    2014-01-01

    Pharmacokinetics and effects on skeletal muscle and physical performance of oral acetylcarnitine and propionylcarnitine are not well characterized. We therefore investigated the influence of oral acetylcarnitine, propionylcarnitine, and carnitine on body carnitine homeostasis, energy metabolism, and physical performance in mice and compared the findings to non-supplemented control animals.; Mice were supplemented orally with 2 mmol/kg/day carnitine, acetylcarnitine, or propionylcarnitine for ...

  17. Effect of carnitine, acetyl-, and propionylcarnitine supplementation on the body carnitine pool, skeletal muscle composition, and physical performance in mice

    OpenAIRE

    Morand, Réjane; Bouitbir, Jamal; Felser, Andrea; Hench, Jürgen; Handschin, Christoph; Frank, Stephan; Krähenbühl, Stephan

    2014-01-01

    Pharmacokinetics and effects on skeletal muscle and physical performance of oral acetylcarnitine and propionylcarnitine are not well characterized. We therefore investigated the influence of oral acetylcarnitine, propionylcarnitine, and carnitine on body carnitine homeostasis, energy metabolism, and physical performance in mice and compared the findings to non-supplemented control animals.; Mice were supplemented orally with 2 mmol/kg/day carnitine, acetylcarnitine, or propionylcarnitine for ...

  18. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD...... within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared...... these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...

  19. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral...

  20. Thrombospondin 2-null mice display an altered brain foreign body response to polyvinyl alcohol sponge implants

    Energy Technology Data Exchange (ETDEWEB)

    Tian Weiming; Kyriakides, Themis R, E-mail: themis.kyriakides@yale.ed [Vascular Biology and Therapeutics Program, Departments of Pathology and Biomedical Engineering, Yale University, New Haven, CT 06519 (United States)

    2009-02-15

    Thrombospondin (TSP)-2 is a matricellular protein that participates in the processes of tissue repair and the foreign body response. In addition, TSP2 has been shown to influence synaptogenesis and recovery of the brain following stroke. In the present study we investigated the response following the implantation of polyvinyl alcohol (PVA) sponges in the brain. PVA sponges were implanted into the brain cortex of wild type and TSP2-null mice for a period of 4 and 8 weeks and the response was analyzed by histochemistry and quantitative immunohistochemistry. TSP2 expression was detected in the interstices of the sponge and co-localized with the extracellular matrix and astrocytes. PVA sponge invasion in TSP2-null mice was characterized by dense deposition of extracellular matrix and increased invasion of reactive astrocytes and macrophages/microglia. Furthermore, the angiogenic response was elevated and the detection of mouse serum albumin (MSA) in the brain cortex indicated excessive vessel leakage, suggesting that TSP2 plays a role in the repair/maintenance of the blood brain barrier. Finally, immunostaining demonstrated an increase in the levels of matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, our observations support a role for TSP2 as critical determinant of the brain response to biomaterials.

  1. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice

    Science.gov (United States)

    Patwardhan, Sachin V.; Bloch, Sharon R.; Achilefu, Samuel; Culver, Joseph P.

    2005-04-01

    We present a fast scanning fluorescence optical tomography system for imaging the kinetics of probe distributions through out the whole body of small animals. Configured in a plane parallel geometry, the system scans a source laser using a galvanometer mirror pair (τswitch~1ms) over flexible source patterns, and detects excitation and emission light using a high frame rate low noise, 5 MHz electron multiplied charge-coupled device (EMCCD) camera. Phantom studies were used to evaluate resolution, linearity, and sensitivity. Time dependent (δt=2.2 min.) in vivo imaging of mice was performed following injections of a fluorescing probe (indocyanine green). The capability to detect differences in probe delivery route was demonstrated by comparing an intravenous injection, versus an injection into a fat pocket (retro orbital injection). Feasibility of imaging the distribution of tumor-targeted molecular probes was demonstrated by imaging a breast tumor-specific near infrared polypeptide in MDA MB 361 tumor bearing nude mice. A tomography scan, at 24 hour post injection, revealed preferential uptake in the tumor relative to surrounding tissue.

  2. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice

    Science.gov (United States)

    Zhang, Yuan; Breevoort, Sarah R.; Angdisen, Jerry; Fu, Mingui; Schmidt, Daniel R.; Holmstrom, Sam R.; Kliewer, Steven A.; Mangelsdorf, David J.; Schulman, Ira G.

    2012-01-01

    Liver X receptors (LXRα and LXRβ) are important regulators of cholesterol and lipid metabolism, and their activation has been shown to inhibit cardiovascular disease and reduce atherosclerosis in animal models. Small molecule agonists of LXR activity are therefore of great therapeutic interest. However, the finding that such agonists also promote hepatic lipogenesis has led to the idea that hepatic LXR activity is undesirable from a therapeutic perspective. To investigate whether this might be true, we performed gene targeting to selectively delete LXRα in hepatocytes. Liver-specific deletion of LXRα in mice substantially decreased reverse cholesterol transport, cholesterol catabolism, and cholesterol excretion, revealing the essential importance of hepatic LXRα for whole body cholesterol homeostasis. Additionally, in a pro-atherogenic background, liver-specific deletion of LXRα increased atherosclerosis, uncovering an important function for hepatic LXR activity in limiting cardiovascular disease. Nevertheless, synthetic LXR agonists still elicited anti-atherogenic activity in the absence of hepatic LXRα, indicating that the ability of agonists to reduce cardiovascular disease did not require an increase in cholesterol excretion. Furthermore, when non-atherogenic mice were treated with synthetic LXR agonists, liver-specific deletion of LXRα eliminated the detrimental effect of increased plasma triglycerides, while the beneficial effect of increased plasma HDL was unaltered. In sum, these observations suggest that therapeutic strategies that bypass the liver or limit the activation of hepatic LXRs should still be beneficial for the treatment of cardiovascular disease. PMID:22484817

  3. Genetic variation for body weight change in mice in response to physical exercise

    Directory of Open Access Journals (Sweden)

    Lightfoot J Timothy

    2009-09-01

    Full Text Available Abstract Background Physical activity is beneficial in reducing the weight gain and associated health problems often experienced by individuals as they age, but the association of weight change with physical activity remains complex. We tested for a possible genetic basis for this association between 9-12-week body weight change (WTC and the distance, duration, and speed voluntarily run by 307 mice in an F2 population produced from an intercross of two inbred strains (C57L/J and C3H/HeJ that differed dramatically in their physical activity levels. Results In this population WTC did show the expected negative association with the physical activity traits, but only the phenotypic correlation of WTC with speed (-0.18 reached statistical significance. Using an interval mapping approach with single-nucleotide polymorphism markers, we discovered five (four suggestive and one significant quantitative trait loci (QTLs affecting body weight change, only one of which appeared to show pleiotropic effects on the physical activity traits as well. Genome-wide epistasis scans also detected several pairwise interactions of QTLs with pleiotropic effects on WTC and the physical activity traits, but these effects made a significant contribution (51% only to the covariance of WTC with speed. Conclusion It was concluded that the genetic contribution to the phenotypic association between WTC and the physical activity traits in this population of mice was primarily epistatic in origin, restricted to one measure of physical activity, and could be quite variable among different populations depending on the genetic background, experimental design and traits assessed.

  4. Impact of Orexin-A Treatment on Food Intake, Energy Metabolism and Body Weight in Mice

    Science.gov (United States)

    Blais, Anne; Drouin, Gaëtan; Chaumontet, Catherine; Voisin, Thierry; Couvelard, Anne; Even, Patrick Christian; Couvineau, Alain

    2017-01-01

    Orexin-A and -B are hypothalamic neuropeptides of 33 and 28-amino acids, which regulate many homeostatic systems including sleep/wakefulness states, energy balance, energy homeostasis, reward seeking and drug addiction. Orexin-A treatment was also shown to reduce tumor development in xenografted nude mice and is thus a potential treatment for carcinogenesis. The aim of this work was to explore in healthy mice the consequences on energy expenditure components of an orexin-A treatment at a dose previously shown to be efficient to reduce tumor development. Physiological approaches were used to evaluate the effect of orexin-A on food intake pattern, energy metabolism body weight and body adiposity. Modulation of the expression of brain neuropeptides and receptors including NPY, POMC, AgRP, cocaine- and amphetamine related transcript (CART), corticotropin-releasing hormone (CRH) and prepro-orexin (HCRT), and Y2 and Y5 neuropeptide Y, MC4 (melanocortin), OX1 and OX2 orexin receptors (Y2R, Y5R, MC4R, OX1R and OX2R, respectively) was also explored. Our results show that orexin-A treatment does not significantly affect the components of energy expenditure, and glucose metabolism but reduces intraperitoneal fat deposit, adiposity and the expression of several brain neuropeptide receptors suggesting that peripheral orexin-A was able to reach the central nervous system. These findings establish that orexin-A treatment which is known for its activity as an inducer of tumor cell death, do have minor parallel consequence on energy homeostasis control. PMID:28085909

  5. Reprogramming of defended body weight after Roux-En-Y gastric bypass surgery in diet-induced obese mice.

    Science.gov (United States)

    Hao, Zheng; Mumphrey, Michael B; Townsend, R Leigh; Morrison, Christopher D; Münzberg, Heike; Ye, Jianping; Berthoud, Hans-Rudolf

    2016-03-01

    Roux-en-Y gastric bypass surgery (RYGB) results in sustained lowering of body weight in most patients, but the mechanisms involved are poorly understood. The aim of this study was to obtain support for the notion that reprogramming of defended body weight, rather than passive restriction of energy intake, is a fundamental mechanism of RYGB. Male C57BL6J mice reaching different degrees of obesity on a high-fat diet either with ad libitum access or with caloric restriction (weight-reduced) were subjected to RYGB. RYGB-induced weight loss and fat mass loss were proportional to pre-surgical levels, with moderately obese mice losing less body weight and fat compared with very obese mice. Remarkably, mice that were weight-reduced to the level of chow controls before surgery immediately gained weight after surgery, exclusively accounted for by lean mass gain. The results provide additional evidence for reprogramming of a new defended body weight as an important principle by which RYGB lastingly suppresses body weight. RYGB appears to selectively abolish defense of a higher fat mass level, while remaining sensitive to the defense of lean mass. The molecular and physiological mechanisms underlying this reprogramming remain to be elucidated. © 2016 The Obesity Society.

  6. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice.

    Science.gov (United States)

    Aqul, Amal; Lopez, Adam M; Posey, Kenneth S; Taylor, Anna M; Repa, Joyce J; Burns, Dennis K; Turley, Stephen D

    2014-10-15

    Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.

  7. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    Science.gov (United States)

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Milk lacking α-casein leads to permanent reduction in body size in mice.

    Directory of Open Access Journals (Sweden)

    Andreas F Kolb

    Full Text Available The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate.We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight.

  9. Coevolution of telomerase activity and body mass in mammals: from mice to beavers.

    Science.gov (United States)

    Gorbunova, Vera; Seluanov, Andrei

    2009-01-01

    Telomerase is repressed in the majority of human somatic tissues. As a result human somatic cells undergo replicative senescence, which plays an important role in suppressing tumorigenesis, and at the same time contributes to the process of aging. Repression of somatic telomerase activity is not a universal phenomenon among mammals. Mice, for example, express telomerase in somatic tissues, and mouse cells are immortal when cultured at physiological oxygen concentration. What is the status of telomerase in other animals, beyond human and laboratory mouse, and why do some species evolve repression of telomerase activity while others do not? Here we discuss the data on telomere biology in various mammalian species, and a recent study of telomerase activity in a large collection of wild rodent species, which showed that telomerase activity coevolves with body mass, but not lifespan. Large rodents repress telomerase activity, while small rodents maintain high levels of telomerase activity in somatic cells. We discuss a model that large body mass presents an increased cancer risk, which drives the evolution of telomerase suppression and replicative senescence.

  10. WHOLE BODY VIBRATION IMPROVES ATTENTION AND MOTOR PERFORMANCE IN MICE DEPENDING ON THE DURATION OF THE WHOLE-BODY VIBRATION SESSION.

    Science.gov (United States)

    Keijser, Jan N; van Heuvelen, Marieke J G; Nyakas, Csaba; Tóth, Kata; Schoemaker, Regien G; Zeinstra, Edzard; van der Zee, Eddy A

    2017-01-01

    Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are well described. However, little is known about the impact of WBV on the brain. Recently, it was shown in humans that WBV improves attention in an acute WBV protocol. Preclinical research is needed to unravel the underlying brain mechanism. As a first step, we examined whether chronic WBV improves attention in mice. A custom made vibrating platform for mice with low intensity vibrations was used. Male CD1 mice (3 months of age) received five weeks WBV (30 Hz; 1.9 G), five days a week with sessions of five (n=12) or 30 (n=10) minutes. Control mice (pseudo-WBV; n=12 and 10 for the five and 30 minute sessions, respectively) were treated in a similar way, but did not receive the actual vibration. Object recognition tasks were used as an attention test (novel and spatial object recognition - the primary outcome measure). A Balance beam was used for motor performance, serving as a secondary outcome measure. WBV sessions of five (but not WBV sessions of 30 minutes) improved balance beam performance (mice gained 28% in time needed to cross the beam) and novel object recognition (mice paid significantly more attention to the novel object) as compared to pseudo WBV, but no change was found for spatial object performance (mice did not notice the relocation). Although 30 minutes WBV sessions were not beneficial, it did not impair either attention or motor performance. These results show that brief sessions of WBV improve, next to motor performance, attention for object recognition, but not spatial cues of the objects. The selective improvement of attention in mice opens the avenue to unravel the underlying brain mechanisms.

  11. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice.

    Science.gov (United States)

    Gallego, Sandra F; Sprenger, Richard R; Neess, Ditte; Pauling, Josch K; Færgeman, Nils J; Ejsing, Christer S

    2017-02-01

    The acyl-CoA binding protein (ACBP) plays a key role in chaperoning long-chain acyl-CoAs into lipid metabolic processes and acts as an important regulatory hub in mammalian physiology. This is highlighted by the recent finding that mice devoid of ACBP suffer from a compromised epidermal barrier and delayed weaning, the physiological process where newborns transit from a fat-based milk diet to a carbohydrate-rich diet. To gain insights into how ACBP impinges on weaning and the concomitant remodeling of whole-body lipid metabolism we performed a comparative lipidomics analysis charting the absolute abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic cholesteryl esters, and that lipids featuring an 18:1 fatty acid moiety are increased in Acbp depleted mice across all tissues investigated. Our results also show that the perturbation of systemic lipid metabolism in Acbp knockout mice is transient and becomes normalized and similar to that of wild type as mice grow older. These findings demonstrate that ACBP serves crucial functions in maintaining lipid metabolic homeostasis in mice during weaning.

  12. Capric Acid Reduces Body Weight in C57BL/6J Mice Fed a High Fat Diet

    Institute of Scientific and Technical Information of China (English)

    Ying-hua LIU; Yong ZHANG; Qing XU; Xin-sheng ZHANG; Jin WANG; Xiao-ming YU; Xue-yan YANG; Chang-yong XUE

    2014-01-01

    Objective To compare the body weight reducing effect of two medium-chain fatty acids (MCFA), capric acid and caprylic acid, and the potential underlying mechanisms in C57BL/6J mice fed a high fat diet.Methods Obese C57BL/6J mice were developed on a high-fat diet containing 2% caprylic acid (C8:0), 2% capric acid (C10:0), or 2% oleic acid (C18:1). Body weight and diet intake were monitored twice a week. After 8 weeks of feeding, body fat composition and the protein or mRNA expression of lipolysis-related genes in the white adipose tissue (WAT) were analyzed.Results In the capric acid group, significant reductions were observed in body weight gain, Lee's index, BMI, and epididymal adipose tissue weight, while increased levels of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), cyclic adenosine monophosphate (cAMP) and beta 3 adrenergic receptor (β3-AR) were found in the adipose tissue, compared to the oleic acid group. No significant differences in these parameters were found between caprylic acid and oleic acid groups.Conclusion Capric acid, but not caprylic acid, is effective in reducing body weight in obese C57BL/6J mice,possibly due to up-regulation of β3-AR, ATGL, and HSL in WAT.

  13. SEM analysis of body hairs and whiskers of heterozygous tortoiseshell (Moto/+) female mice (Mus musculus).

    OpenAIRE

    Sheedlo, H J; Beck, M L

    1982-01-01

    Back hairs of +/+ and Moto/+ female Mus musculus generally exhibited identical form when examined by SEM. However, the hair shafts of Moto/+ female mice were beaded in appearance (monilethrix), twisted (pili torti) or exhibited a rough nodular appearance. Also, some hairs of Moto/+ female mice which were devoid of pigment appeared enlarged and bitubular. The whiskers of +/+ and Moto/+ female mice were identical in form. The hair abnormalities of Moto/+ female mice resulted from a copper defic...

  14. Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice.

    Science.gov (United States)

    Hoek-van den Hil, E F; van Schothorst, E M; van der Stelt, I; Swarts, H J M; Venema, D; Sailer, M; Vervoort, J J M; Hollman, P C H; Rietjens, I M C M; Keijer, J

    2014-09-01

    Dietary flavonoids may protect against cardiovascular diseases (CVD). Increased circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. The aim of this study was to investigate the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with high-fat diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a 40 energy% high-fat diet without or with supplementation of 0.33 % (w/w) quercetin for 12 weeks. Body weight gain was 29 % lower in quercetin fed mice (p lipid accumulation to 29 % of the amount present in the control mice (p lipid profiling revealed that the supplementation significantly lowered serum lipid levels. Global gene expression profiling of liver showed that cytochrome P450 2b (Cyp2b) genes, key target genes of the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3), were downregulated. Quercetin decreased high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels. This was accompanied by regulation of cytochrome P450 2b genes in liver, which are possibly under transcriptional control of CAR. The quercetin effects are likely dependent on the fat content of the diet.

  15. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  16. TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice.

    Science.gov (United States)

    Yabuta, Yukihiro; Ohta, Hiroshi; Abe, Takaya; Kurimoto, Kazuki; Chuma, Shinichiro; Saitou, Mitinori

    2011-03-01

    The Tudor domain-containing proteins (TDRDs) are an evolutionarily conserved family of proteins involved in germ cell development. We show here that in mice, TDRD5 is a novel component of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Tdrd5-deficient males are sterile because of spermiogenic arrest at the round spermatid stage, with occasional failure in meiotic prophase. Without TDRD5, IMCs and CBs are disorganized, with mislocalization of their key components, including TDRD1/6/7/9 and MIWI/MILI/MIWI2. In addition, Tdrd5-deficient germ cells fail to repress LINE-1 retrotransposons with DNA-demethylated promoters. Cyclic adenosine monophosphate response element modulator (CREM) and TRF2, key transcription factors for spermiogenesis, are expressed in Tdrd5-deficient round spermatids, but their targets, including Prm1/Prm2/Tnp1, are severely down-regulated, which indicates the importance of IMC/CB-mediated regulation for postmeiotic gene expression. Strikingly, Tdrd5-deficient round spermatids injected into oocytes contribute to fertile offspring, demonstrating that acquisition of a functional haploid genome may be uncoupled from TDRD5 function.

  17. Differential body weight and feeding responses to high-fat diets in rats and mice lacking cholecystokinin 1 receptors.

    Science.gov (United States)

    Bi, Sheng; Chen, Jie; Behles, R Ryan; Hyun, Jayson; Kopin, Alan S; Moran, Timothy H

    2007-07-01

    Prior data demonstrated differential roles for cholecystokinin (CCK)1 receptors in maintaining energy balance in rats and mice. CCK1 receptor deficiency results in hyperphagia and obesity of Otsuka Long-Evans Tokushima Fatty (OLETF) rats but not in mice. To ascertain the role of CCK1 receptors in high-fat-diet (HFD)-induced obesity, we compared alterations in food intake, body weight, fat mass, plasma glucose, and leptin levels, and patterns of hypothalamic gene expression in OLETF rats and mice lacking CCK1 receptors in response to a 10-wk exposure to HFD. Compared with Long-Evans Tokushima Otsuka (LETO) control rats, OLETF rats on HFD had sustained overconsumption over the 10-wk period. High fat feeding resulted in greater increases in body weight and plasma leptin levels in OLETF than in LETO rats. In situ hybridization determinations revealed that, while HFD reduced neuropeptide Y (NPY) mRNA expression in both the arcuate nucleus (Arc) and the dorsomedial hypothalamus (DMH) of LETO rats, HFD resulted in decreased NPY expression in the Arc but not in the DMH of OLETF rats. In contrast to these results in OLETF rats, HFD increased food intake and induced obesity to an equal degree in both wild-type and CCK1 receptor(-/-) mice. NPY gene expression was decreased in the Arc in response to HFD, but was not detectable in the DMH in both wild-type and CCK1 receptor(-/-) mice. Together, these data provide further evidence for differential roles of CCK1 receptors in the controls of food intake and body weight in rats and mice.

  18. Organ-specific responses of total body irradiated doxycycline-inducible manganese superoxide dismutase Tet/Tet mice.

    Science.gov (United States)

    Rhieu, Byung Han; Shinde, Ashwin; Epperly, Michael W; Dixon, Tracy; Wang, Hong; Chaillet, Richard; Greenberger, Joel S

    2014-01-01

    We evaluated doxycycline-inducible manganese superoxide dismutase (MnSOD(tet/tet)) mice after 9.25 Gy total-body irradiation (TBI) or 20 Gy thoracic irradiation. Six-week-old MnSOD(tet/tet) or control C57BL/6NHsd mice on or off doxycycline (doxy) in food received 9.25 Gy TBI, were sacrificed at day 19 and bone marrow, brain, esophagus, heart, intestine, kidney, liver, lung, spleen and tongue harvested, total RNAs extracted and transcripts for irradiation response genes quantitated by real time-polymerase chain reaction (RT-PCR). MnSOD(tet/tet) mice only survived with daily injections of doxy beginning 5 days after birth until weaning, at which time they were placed on food containing doxy. Manganese superoxide dismutase (MnSOD) transcript levels were reduced in all tissues except the lung. Adult mice survived with low MnSOD levels, but induced by doxy or TBI. Thoracic-irradiated MnSOD(tet/tet) mice survived past day 120. MnSOD(tet/tet) mice should be valuable for elucidating the role of MnSOD in growth and irradiation response. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice

    DEFF Research Database (Denmark)

    Gallego, Sandra F; Sprenger, Richard R; Neess, Ditte

    2017-01-01

    and delayed weaning, the physiological process where newborns transit from a fat-based milk diet to a carbohydrate-rich diet. To gain insights into how ACBP impinges on weaning and the concomitant remodeling of whole-body lipid metabolism we performed a comparative lipidomics analysis charting the absolute......The acyl-CoA binding protein (ACBP) plays a key role in chaperoning long-chain acyl-CoAs into lipid metabolic processes and acts as an important regulatory hub in mammalian physiology. This is highlighted by the recent finding that mice devoid of ACBP suffer from a compromised epidermal barrier...... abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic...

  20. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice

    DEFF Research Database (Denmark)

    Gallego, Sandra Fernandez; Sprenger, Richard; Neess, Ditte;

    2016-01-01

    The acyl-CoA binding protein (ACBP) plays a key role in chaperoning long-chain acyl-CoAs into lipid metabolic processes and acts as an important regulatory hub in mammalian physiology. This is highlighted by the recent finding that mice devoid of ACBP suffer from a compromised epidermal barrier...... and delayed weaning, the physiological process where newborns transit from a fat-based milk diet to a carbohydrate-rich diet. To gain insights into how ACBP impinges on weaning and the concomitant remodeling of whole-body lipid metabolism we performed a comparative lipidomics analysis charting the absolute...... abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic...

  1. (-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice.

    Science.gov (United States)

    Grove, Kimberly A; Sae-tan, Sudathip; Kennett, Mary J; Lambert, Joshua D

    2012-11-01

    Tea (Camellia sinensis, Theaceae) has been shown to have obesity preventive effects in laboratory studies. We hypothesized that dietary epigallocatechin-3-gallate (EGCG) could reverse metabolic syndrome in high fat-fed obese C57bl/6J mice, and that these effects were related to inhibition of pancreatic lipase (PL). Following treatment with 0.32% EGCG for 6 weeks, a 44% decrease in body weight (BW) gain in high fat-fed, obese mice (P EGCG treatment increased fecal lipid content by 29.4% (P fat-fed control, whereas in vitro, EGCG dose-dependently inhibited PL (IC(50) = 7.5 µmol/l) in a noncompetitive manner with respect to substrate concentration. (-)-Epicatechin-3-gallate exhibited similar inhibitory activity, whereas the nonester-containing (-)-epigallocatechin did not. In conclusion, EGCG supplementation reduced final BW and BW gain in obese mice, and some of these effects may be due to inhibition of PL by EGCG.

  2. Feeding of potato, tomato and eggplant alkaloids affects food consumption and body and liver weights in mice.

    Science.gov (United States)

    Friedman, M; Henika, P R; Mackey, B E

    1996-04-01

    Reduced liver weight was used to evaluate the potential toxicity in mice of four naturally occurring steroidal glycoalkaloids: alpha-chaconine and alpha-solanine, alpha-tomatine and solasonine. Increased liver weights was used to evaluate the three corresponding steroidal aglycones: solanidine, tomatidine, and solasodine and the non-alkaloid adrenal steroid dehydroepiandrosterone (DHEA). Adult female Swiss-Webster mice were fed diets containing test compound concentrations of 0 (control), 1.2, 2.4 or 4.8 mmol/kg diet for 7, 14 or 28 d. Absolute liver weights (LW) and relative liver weights (liver weight/body weight x 100, %LW/BW) were determined at autopsy. The %LW/BW was lower than that of controls in mice fed the potato glycoalkaloid alpha-chaconine (-10%, P toxic ++compounds from plant foods. The implications of the results for food safety and health are discussed.

  3. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice.

    Science.gov (United States)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-03-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.

  4. Effects of a nonnutritive sweetener on body adiposity and energy metabolism in mice with diet-induced obesity

    OpenAIRE

    光冨, 公彦

    2015-01-01

    Objective. Nonnutritive sweeteners (NNSs) have been studied in terms of their potential roles in type 2 diabetes, obesity, and related metabolic disorders. Several studies have suggested that NNSs have several specific effects on metabolism such as reduced postprandial hyperglycemia and insulin resistance. However, the detailed effects of NNSs on body adiposity and energy metabolism have not been fully elucidated. We investigated the effects of an NNS on energy metabolism in mice with diet-in...

  5. Over-the-counter analgesics normalize blood glucose and body composition in mice fed a high fat diet.

    Science.gov (United States)

    Kendig, Eric L; Schneider, Scott N; Clegg, Deborah J; Genter, Mary Beth; Shertzer, Howard G

    2008-07-15

    Type 2 diabetes (noninsulin-dependent diabetes mellitus) develops from a pre-diabetic condition that is characterized by insulin resistance and glucose intolerance, and is exacerbated by obesity. In this study, we compared the ability of over-the-counter analgesic drugs (OTCAD) [acetaminophen (APAP); ibuprofen (IBU); naproxen (NAP); aspirin (ASA)], to protect against the development of a pre-diabetic state in mice fed a high fat diet. After 10 weeks on the high fat diet, mice had normal fasting blood glucose (FBG) levels, but exhibited impaired glucose tolerance. Treatment with 20 mg OTCADs/kg body weight improved glucose tolerance, with the order of efficacy, APAP=ASA>IBU, while NAP proved ineffective. Mice fed the high fat diet also exhibited increases in weight gain associated with an increase in body fat. OTCADs prevented in part this increase in body fat, in the order of efficacy, APAP=IBU>NAP=ASA. In isolated liver mitochondria, OTCADs inhibited succinate-dependent H2O2 production, while in white adipose tissue, APAP inhibited NADPH-oxidase mediated H2O2 production and lipid peroxidation. Thus, OTCADs diminish pro-oxidant processes that might otherwise exacerbate inflammation and a pre-diabetic state. We conclude that OTCADs, especially APAP and IBU, may be valuable tools to delay or prevent the development of type 2 diabetes from a pre-diabetic condition.

  6. Cannabidiol-2',6'-dimethyl ether stimulates body weight gain in apolipoprotein E-deficient BALB/c. KOR/Stm Slc-Apoe(shl) mice.

    Science.gov (United States)

    Takeda, Shuso; Hirota, Rena; Teradaira, Sari; Takeda-Imoto, Masumi; Watanabe, Kazuhito; Toda, Akihisa; Aramaki, Hironori

    2015-12-01

    The biological activities of cannabidiol (CBD), a major non-psychotropic constituent of the fiber-type cannabis plant, have been examined in detail (e.g., CBD modulation of body weight in mice and rats). However, few studies have investigated the biological activities of cannabidiol-2',6'-dimethyl ether (CBDD), a dimethyl ether derivative of the parent CBD. We herein focused on the effects of CBDD on body weight changes in mice, and demonstrated that it stimulated body weight gain in apolipoprotein E (ApoE)-deficient BALB/c. KOR/Stm Slc-Apoe(shl) mice, especially between 10 and 20 weeks of age.

  7. Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction.

    Directory of Open Access Journals (Sweden)

    Chikara Komiya

    Full Text Available Type 2 diabetes mellitus (T2DM is associated with a high incidence of non-alcoholic fatty liver disease (NAFLD related to obesity and insulin resistance. Currently, medical interventions for NAFLD have focused on diet control and exercise to reduce body weight, and there is a requirement for effective pharmacological therapies. Sodium-glucose cotransporter 2 (SGLT2 inhibitors are oral antidiabetic drugs that promote the urinary excretion of glucose by blocking its reabsorption in renal proximal tubules. SGLT2 inhibitors lower blood glucose independent of insulin action and are expected to reduce body weight because of urinary calorie loss. Here we show that an SGLT2 inhibitor ipragliflozin improves hepatic steatosis in high-fat diet-induced and leptin-deficient (ob/ob obese mice irrespective of body weight reduction. In the obese mice, ipragliflozin-induced hyperphagia occurred to increase energy intake, attenuating body weight reduction with increased epididymal fat mass. There is an inverse correlation between weights of liver and epididymal fat in ipragliflozin-treated obese mice, suggesting that ipragliflozin treatment promotes normotopic fat accumulation in the epididymal fat and prevents ectopic fat accumulation in the liver. Despite increased adiposity, ipragliflozin ameliorates obesity-associated inflammation and insulin resistance in epididymal fat. Clinically, ipragliflozin improves liver dysfunction in patients with T2DM irrespective of body weight reduction. These findings provide new insight into the effects of SGLT2 inhibitors on energy homeostasis and fat accumulation and indicate their potential therapeutic efficacy in T2DM-associated hepatic steatosis.

  8. Chronic Protein Restriction in Mice Impacts Placental Function and Maternal Body Weight before Fetal Growth.

    Directory of Open Access Journals (Sweden)

    Paula N Gonzalez

    Full Text Available Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein or control isocaloric diet (20% protein. On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth.

  9. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine

    Energy Technology Data Exchange (ETDEWEB)

    Zois, Christos E. [Department of Radiotherapy - Oncology, Democritus University of Thrace, Alexandroupolis 68100 (Greece); Giatromanolaki, Alexandra [Department of Pathology, Democritus University of Thrace, Alexandroupolis (Greece); Kainulainen, Heikki [Department of Biology of Physical Activity, University of Jyvaeskylae (Finland); Botaitis, Sotirios [Department of Experimental Surgery, Democritus University of Thrace, Alexandroupolis (Greece); Torvinen, Sira [Department of Biology of Physical Activity, University of Jyvaeskylae (Finland); Simopoulos, Constantinos [Department of Experimental Surgery, Democritus University of Thrace, Alexandroupolis (Greece); Kortsaris, Alexandros [Department of Biochemistry, Democritus University of Thrace, Alexandroupolis (Greece); Sivridis, Efthimios [Department of Pathology, Democritus University of Thrace, Alexandroupolis (Greece); Koukourakis, Michael I., E-mail: targ@her.forthnet.gr [Department of Radiotherapy - Oncology, Democritus University of Thrace, Alexandroupolis 68100 (Greece)

    2011-01-07

    Research highlights: {yields} We investigated the effect 6 Gy of WBI on the autophagic machinery of normal mouse lung. {yields} Irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. {yields} The membrane bound LC3A-II protein levels increased in the cytosolic fraction (not in the pellet), contrasting the patterns noted after starvation-induced autophagy. {yields} Administration of amifostine, reversed all the LC3A and p62 findings, suggesting protection of the normal autophagic function. -- Abstract: Purpose: The effect of ionizing irradiation on the autophagic response of normal tissues is largely unexplored. Abnormal autophagic function may interfere the protein quality control leading to cell degeneration and dysfunction. This study investigates its effect on the autophagic machinery of normal mouse lung. Methods and materials: Mice were exposed to 6 Gy of whole body {gamma}-radiation and sacrificed at various time points. The expression of MAP1LC3A/LC3A/Atg8, beclin-1, p62/sequestosome-1 and of the Bnip3 proteins was analyzed. Results: Following irradiation, the LC3A-I and LC3A-II protein levels increased significantly at 72 h and 7 days. Strikingly, LC3A-II protein was increased (5.6-fold at 7 days; p < 0.001) only in the cytosolic fraction, but remained unchanged in the membrane fraction. The p62 protein, was significantly increased in both supernatant and pellet fraction (p < 0.001), suggesting an autophagosome turnover deregulation. These findings contrast the patterns of starvation-induced autophagy up-regulation. Beclin-1 levels remained unchanged. The Bnip3 protein was significantly increased at 8 h, but it sharply decreased at 72 h (p < 0.05). Administration of amifostine (200 mg/kg), 30 min before irradiation, reversed all the LC3A and p62 findings on blots, suggesting restoration of the normal autophagic function

  10. Biomedical Analyses of Mice Body Hair Exposed to Long-term Space Flight as a Compliment of Human Research

    Science.gov (United States)

    Mukai, Chiaki

    Polymerase Chain Reaction (RT-PCR) method. DNA is also extracted from the same samples and mitochondrial DNA copy numbers are ex-amined. For mice skin, the examination of the mutation was performed to investigate whether the space flight will cause the visible mutation which may reflect an evidence of promotion step of carcinogenesis by space radiation. Result: Analysis on the specimen is in progress. A brief results will be introduced during the COSPAR meeting. The mice body hair analysis will give us basic information to understand how space environment such as microgravity and radiation affect on the living organisms.

  11. Perilipin1 deficiency in whole body or bone marrow-derived cells attenuates lesions in atherosclerosis-prone mice.

    Directory of Open Access Journals (Sweden)

    Xiaojing Zhao

    Full Text Available The objective of this study is to determine the role of perilipin 1 (Plin1 in whole body or bone marrow-derived cells on atherogenesis.Accumulated evidence have indicated the role of Plin1 in atherosclerosis, however, these findings are controversial. In this study, we showed that Plin1 was assembled and colocalized with CD68 in macrophages in atherosclerotic plaques of ApoE-/- mice. We further found 39% reduction of plaque size in the aortic roots of Plin1 and ApoE double knockout (Plin1-/-ApoE-/- females compared with ApoE-/- female littermates. In order to verify whether this reduction was macrophage-specific, the bone marrow cells from wild-type or Plin1 deficient mice (Plin1-/- were transplanted into LDL receptor deficient mice (LDLR-/-. Mice receiving Plin1-/- bone marrow cells showed also 49% reduction in aortic atherosclerotic lesions compared with LDLR-/- mice received wild-type bone marrow cells. In vitro experiments showed that Plin1-/- macrophages had decreased protein expression of CD36 translocase and an enhanced cholesterol ester hydrolysis upon aggregated-LDL loading, with unaltered expression of many other regulators of cholesterol metabolism, such as cellular lipases, and Plin2 and 3. Given the fundamental role of Plin1 in protecting LD lipids from lipase hydrolysis, it is reasonably speculated that the assembly of Plin1 in microphages might function to reduce lipolysis and hence increase lipid retention in ApoE-/- plaques, but this pro-atherosclerotic property would be abrogated on inactivation of Plin1.Plin1 deficiency in bone marrow-derived cells may be responsible for reduced atherosclerotic lesions in the mice.

  12. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight.

    Directory of Open Access Journals (Sweden)

    Paul A Baldock

    Full Text Available Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY, a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/- mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+ show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/- mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.

  13. Long-term exercise in mice has sex-dependent benefits on body composition and metabolism during aging.

    Science.gov (United States)

    McMullan, Rachel C; Kelly, Scott A; Hua, Kunjie; Buckley, Brian K; Faber, James E; Pardo-Manuel de Villena, Fernando; Pomp, Daniel

    2016-11-01

    Aging is associated with declining exercise and unhealthy changes in body composition. Exercise ameliorates certain adverse age-related physiological changes and protects against many chronic diseases. Despite these benefits, willingness to exercise and physiological responses to exercise vary widely, and long-term exercise and its benefits are difficult and costly to measure in humans. Furthermore, physiological effects of aging in humans are confounded with changes in lifestyle and environment. We used C57BL/6J mice to examine long-term patterns of exercise during aging and its physiological effects in a well-controlled environment. One-year-old male (n = 30) and female (n = 30) mice were divided into equal size cohorts and aged for an additional year. One cohort was given access to voluntary running wheels while another was denied exercise other than home cage movement. Body mass, composition, and metabolic traits were measured before, throughout, and after 1 year of treatment. Long-term exercise significantly prevented gains in body mass and body fat, while preventing loss of lean mass. We observed sex-dependent differences in body mass and composition trajectories during aging. Wheel running (distance, speed, duration) was greater in females than males and declined with age. We conclude that long-term exercise may serve as a preventive measure against age-related weight gain and body composition changes, and that mouse inbred strains can be used to characterize effects of long-term exercise and factors (e.g. sex, age) modulating these effects. These findings will facilitate studies on relationships between exercise and health in aging populations, including genetic predisposition and genotype-by-environment interactions.

  14. Selective Glucocorticoid Receptor (GR-II Antagonist Reduces Body Weight Gain in Mice

    Directory of Open Access Journals (Sweden)

    Tomoko Asagami

    2011-01-01

    Full Text Available Previous research has shown that mifepristone can prevent and reverse weight gain in animals and human subjects taking antipsychotic medications. This proof-of-concept study tested whether a more potent and selective glucocorticoid receptor antagonist could block dietary-induced weight gain and increase insulin sensitivity in mice. Ten-week-old, male, C57BL/6J mice were fed a diet containing 60% fat calories and water supplemented with 11% sucrose for 4 weeks. Groups (=8 received one of the following: CORT 108297 (80 mg/kg QD, CORT 108297 (40 mg/kg BID, mifepristone (30 mg/kg BID, rosiglitazone (10 mg/kg QD, or vehicle. Compared to mice receiving a high-fat, high-sugar diet plus vehicle, mice receiving a high-fat, high-sugar diet plus either mifepristone or CORT 108297 gained significantly less weight. At the end of the four week treatment period, mice receiving CORT 108297 40 mg/kg BID or CORT 108297 80 mg/kg QD also had significantly lower steady plasma glucose than mice receiving vehicle. However, steady state plasma glucose after treatment was not highly correlated with reduced weight gain, suggesting that the effect of the glucocorticoid receptor antagonist on insulin sensitivity may be independent of its mitigating effect on weight gain.

  15. Effects of voluntary running with defined distances on body adiposity and its associated inflammation in mice fed a high-fat diet

    Science.gov (United States)

    Sedentary lifestyle contributes to obesity. This study examined the effect of quantitative voluntary running on body adiposity and its associated inflammation in mice fed a high-fat diet. Male C57BL/6 mice were assigned into six groups and fed the AIN93G (sedentary) or a high-fat diet (sedentary, ...

  16. Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood.

    Science.gov (United States)

    Oosting, Annemarie; Kegler, Diane; Wopereis, Harm J; Teller, Inga C; van de Heijning, Bert J M; Verkade, Henkjan J; van der Beek, Eline M

    2012-10-01

    In addition to contemporary lifestyle factors that contribute to the increased obesity prevalence worldwide, early nutrition is associated with sustained effects on later life obesity. We hypothesized that physical properties of dietary lipids contribute to this nutritional programming. We developed a concept infant formula (IMF) with large, phospholipid-coated lipid droplets (Nuturis; Danone Research, Paris, France) and investigated its programming effect on metabolic phenotype later in life. Male C57Bl/6j mice were fed a control formula (Control IMF) or Nuturis (Concept IMF) diet between postnatal day (PN)16 and PN42. All mice were subsequently fed a Western-style diet (WSD) until PN126. Body composition was monitored repeatedly by dual-energy X-ray absorptiometry between PN42 and PN126. Concept IMF slightly increased lean body mass as compared with Control IMF at PN42 but did not affect fat mass. Upon 84 d of WSD feeding, the Concept IMF group showed reduced fat accumulation as compared with Control IMF. In addition, fasting plasma leptin, resistin, glucose, and lipids were significantly lower in the Concept IMF group. Large phospholipid-coated lipid droplets in young mice reduced fat accumulation and improved metabolic profile in adulthood. These data emphasize that physical properties of early dietary lipids contribute to metabolic programming.

  17. A high-fat diet increases body weight and circulating estradiol concentrations but does not improve bone structural properties in ovariectomized mice.

    Science.gov (United States)

    Cao, Jay J; Gregoire, Brian R

    2016-04-01

    Bone health is influenced by body mass and estrogen. The objective of the study was to determine whether high-fat diet-induced obesity affects bone structure and alters markers of bone turnover in ovariectomized (OVX) mice. We hypothesized that a high-fat diet would increase body weight gain and serum estradiol levels in OVX mice but would not improve bone structural parameter in OVX mice. Thirty-five C57BL/6 mice were either sham operated or OVX at the age of 4 months and then fed either a normal-fat diet (10% energy as fat) or a high-fat diet (45% energy as fat with extra fat from lard) ad libitum for 11 weeks. Ovariectomy increased body weight, serum tartrate-resistant acid phosphatase concentration, and expression of cathepsin K in bone; decreased serum estradiol concentration; and induced significant bone loss manifested by decreased bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number, and trabecular thickness with increased trabecular separation and structural model index (P diet increased body weight (P weight, OVX mice consuming the high-fat diet had lower BV/TV, Conn.D, trabecular number, trabecular thickness, and higher structural model index and trabecular separation than did sham mice fed the normal-fat diet. These findings indicate that increased body weight and elevated serum estradiol concentration induced by a high-fat diet do not mitigate ovariectomy-induced bone loss in mice. Published by Elsevier Inc.

  18. The relationship between the alkaline phosphatase network and the haematopoiesis in mice subjected to whole-body irradiation

    Directory of Open Access Journals (Sweden)

    Almohamad Khaled M.

    2014-08-01

    Full Text Available Purpose: To investigate the relationship between the alkaline phosphatase (ALP network of the marrow stroma and the haematopoietic regeneration after mice whole-body irradiation. Materials and methods: Three groups of mice were irradiated with a non-lethal ionising radiation dose: the fi rst one received an intraperitoneal injection of Levamisole, ALP inhibitor, 24 h before irradiation; the second one received an intraperitoneal injection of Lisinopril, haematopoiesis inhibitor, 24 h before irradiation; the third was left untreated, but irradiated. The fourth group, untreated and not irradiated, was the control. The total surface occupied by ALP positive processes, revealed by means of ALP cytochemistry in the marrow area, was evaluated semi-quantitively. Nucleated bone marrow cells were also counted. Results: ALP network began to increase 24 h after irradiation to reach a maximum after 72 h, when the bone marrow was almost become completely empty of the haematopoietic cells. This increase advances the haematopoietic recovery. This process was substantially delayed when the mice were injected with Levamisole 24 h before irradiation. On the contrary, ALP network increased strongly since the fi rst day after irradiation when the mice were injected with Lisinopril 24 h before irradiation. Conclusions: These data have indicated that the haematopoietic recovery and repopulation of the bone marrow were advanced by the ALP network recovery.

  19. Enhanced elimination of theophylline, phenobarbital and strychnine from the bodies of rats and mice by squalane treatment.

    Science.gov (United States)

    Kamimura, H; Koga, N; Oguri, K; Yoshimura, H

    1992-05-01

    Our previous study suggested that squalane would be a good candidate for an antidote to reduce the toxicity of drug ingested accidentally at a high dose by enhancing the drug elimination from the body. In the present study, we investigated whether squalane given orally could enhance the elimination of theophylline, phenobarbital and strychnine which were administered parenterally to rats or mice. Squalane increased the fecal excretion of theophylline and reduced the serum level of the drug in rats. Squalane accelerated the fecal excretion of strychnine in mice. These results suggest that squalane may stimulate more the elimination of neutral (theophylline) or basic (strychnine) drugs which should be present in unionized form in intestinal lumen, than that of acidic drugs.

  20. Continuous Glucose Monitoring in Female NOD Mice Reveals Daily Rhythms and a Negative Correlation With Body Temperature.

    Science.gov (United States)

    Korstanje, Ron; Ryan, Jennifer L; Savage, Holly S; Lyons, Bonnie L; Kane, Kevin G; Sukoff Rizzo, Stacey J

    2017-09-01

    Previous studies with continuous glucose monitoring in mice have been limited to several days or weeks, with the mouse's physical attachment to the equipment affecting behavior and measurements. In the current study, we measured blood glucose and body temperature at 10-second intervals for 12 weeks in a cohort of NOD/ShiLtJ female mice using wireless telemetry. This allowed us to obtain a high-resolution profile of the circadian rhythm of these two parameters and the onset of hyperglycemic development in real time. The most striking observations were the elevated nocturnal concentrations of glucose into the diabetic range days before elevations in diurnal glucose (when glucose concentrations are historically measured) and the strong, negative correlation between elevated blood glucose concentrations and body temperature with a steady decline of the body temperature with diabetes development. Taken together, this technological advancement provides improved resolution in the study of the disease trajectory of diabetes in mouse models, including relevant translatability to the current technologies of continuous glucose monitoring now regularly used in patients. Copyright © 2017 Endocrine Society.

  1. Whole-Body Vibration Partially Reverses Aging-Induced Increases in Visceral Adiposity and Hepatic Lipid Storage in Mice.

    Directory of Open Access Journals (Sweden)

    Aaffien C Reijne

    Full Text Available At old age, humans generally have declining muscle mass and increased fat deposition, which can increase the risk of developing cardiometabolic diseases. While regular physical activity postpones these age-related derangements, this is not always possible in the elderly because of disabilities or risk of injury. Whole-body vibration (WBV training may be considered as an alternative to physical activity particularly in the frail population. To explore this possibility, we characterized whole-body and organ-specific metabolic processes in 6-month and 25-month old mice, over a period of 14 weeks of WBV versus sham training. WBV training tended to increase blood glucose turnover rates and stimulated hepatic glycogen utilization during fasting irrespective of age. WBV was effective in reducing white fat mass and hepatic triglyceride content only in old but not in young mice and these reductions were related to upregulation of hepatic mitochondrial uncoupling of metabolism (assessed by high-resolution respirometry and increased expression of uncoupling protein 2. Because these changes occurred independent of changes in food intake and whole-body metabolic rate (assessed by indirect calorimetry, the liver-specific effects of WBV may be a primary mechanism to improve metabolic health during aging, rather than that it is a consequence of alterations in energy balance.

  2. Effect of antidepressants on body weight, ethology and tumor growth of human pancreatic carcinoma xenografts in nude mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the effects of mirtazapine and fluoxetine, representatives of the noradrenergic and specific serotonergic antidepressant (NaSSA) and se- lective serotonin reuptake inhibitor (SSRI) antidepres- sant respectively, on body weight, ingestive behavior, locomotor activity and tumor growth of human pancre- atic carcinoma xenografts in nude mice. METHODS: A subcutaneous xenograft model of hu- man pancreatic cancer cell line SW1990 was estab- lished in nude mice. The tumor-bearing mice were ran- domly divided into mirtazapine group [10 mg/(kg'd)], (an equivalent normal saline solution) (7 mice in each group). Doses of all drugs were administered orally, once a day for 42 d. Tumor volume and body weight were measured biweekly. Food intake was recorded once a week. Locomotor activity was detected weekly using an open field test (OFT). RESULTS: Compared to the fluoxetine, mirtazapine significantly increased food intake from d 14 to 42 and attenuated the rate of weight loss from d 28 to 42 (t = 4.38, P = 10.89, P < 0.01). These effects disappeared in the mirtazapine and fluoxetine groups during 2-6 wk. The grooming activity was higher in the mirtazapine group than in the fluoxetine group (10.1 ± 2.1 vs 7.1 ± 1.9 ) (t = 2.40, P < 0.05) in the second week. There was no significant difference in tumor vol- ume and tumor weight of the three groups. CONCLUSION: Mirtazapine and fluoxetine have no effect on the growth of pancreatic tumor. However, mirtazapine can significantly increase food intake and improve nutrition compared with fluoxetine in a pan- creatic cancer mouse model.

  3. Fatty Acid Synthase and Hormone-sensitive Lipase Expression in Liver Are Involved in Zinc-α2-glycoprotein-induced Body Fat Loss in Obese Mice

    Institute of Scientific and Technical Information of China (English)

    Feng-ying Gong; Jie-ying Deng; Hui-juan Zhu; Hui Pan; Lin-jie Wang; Hong-bo Yang

    2010-01-01

    Objective To explore the effects of zinc-a2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HFD)-induced obesity in mice and the possible mechanism.Methods Thirty-six male mice were fed with standard food (SF) (n=9) and HFD (n=27), respec-tively. Five weeks later, 9 mice fed with HFD were subjected to ZAG expression plasmid DNA transfection by liposome transfection method, and another 9 mice to negative control plasmid transfection. Two weeks later, serum ZAG level in the mice was assayed by Western blot, and the effects of ZAG over-expression on body weight, body fat, serum biochemical indexes, and adipose tissue of obese mice were evaluated. The mRNA expressions of fatty acid synthase (FAS) and hormone-sensitive lipase (HSL) in liver tissue were de-termined by reverse transcription-polymerase chain reaction.Results Serum ZAG level significantly lowered in simple HFD-fed mice in comparison to SF-fed mice (0.51±0.10 AU vs. 0.75±0.07 AU, P<0.01). Further statistical analysis demonstrated that ZAG level was negatively correlated with body weight (r =-0.56, P<0.001), epididymal fat mass (r=-0. 67, P<0.001), percentage of epididymal fat (r=-0.65, P<0.001 ), and increased weight (r=-0.57, P<0.001) in simple SF-and HFD-fed mice. ZAG over-expression in obese mice reduced body weight and the percentage of epididy-mal fat. Furthermore, FAS mRNA expression decreased (P<0.01) and HSL mRNA expression increased (P<0.001) in the liver in ZAG over-expressing mice.Conclusions ZAG is closely related to obesity. Serum ZAG level is inversely correlated with body weight and percentage of body fat. The action of ZAG is associated with reduced FAS expression and in-creased HSL expression in the liver of obese mice.

  4. Physical training improves body weight and energy balance but does not protect against hepatic steatosis in obese mice.

    Science.gov (United States)

    Evangelista, Fabiana S; Muller, Cynthia R; Stefano, Jose T; Torres, Mariana M; Muntanelli, Bruna R; Simon, Daniel; Alvares-da-Silva, Mario R; Pereira, Isabel V; Cogliati, Bruno; Carrilho, Flair J; Oliveira, Claudia P

    2015-01-01

    This study sought to determine the role of physical training (PT) on body weight (BW), energy balance, histological markers of nonalcoholic fatty liver disease (NAFLD) and metabolic gene expression in the liver of ob/ob mice. Adult male ob/ob mice were assigned into groups sedentary (S; n = 8) and trained (T; n = 9). PT consisted in running sessions of 60 min at 60% of maximal speed conducted five days per week for eight weeks. BW of S group was higher from the 4(th) to 8(th) week of PT compared to their own BW at the beginning of the experiment. PT decreased daily food intake and increased resting oxygen consumption and energy expenditure in T group. No difference was observed in respiratory exchange ratio, but the rates of carbohydrate and lipids oxidation, and maximal running capacity were greater in T than S group. Both groups showed liver steatosis but not inflammation. PT increased CPT1a and SREBP1c mRNA expression in T group, but did not change MTP, PPAR-α, PPAR-γ, and NFKB mRNA expression. In conclusion, PT prevented body weight gain in ob/ob mice by inducing negative energy balance and increased physical exercise tolerance. However, PT did not change inflammatory gene expression and failed to prevent liver steatosis possible due to an upregulation in the expression of SREBP1c transcription factor. These findings reveal that PT has positive effect on body weight control but not in the liver steatosis in a leptin deficiency condition.

  5. Effect of conjugated linoleic acid mixtures and different edible oils on body composition and lipid regulation in mice

    Directory of Open Access Journals (Sweden)

    María Victoria Scalerandi

    2014-03-01

    Full Text Available Introduction: Evidences suggest that commercial and natural conjugated linoleic acids (CLA differentially affect nutritional status and lipid metabolism. Objective: To investigate the differential effect of two types of CLA preparations supplemented to dietary fats containing different proportions of n-9, n-6 and n-3 fatty acids (FA on body composition, triacylglycerol (TG levels and lipid metabolism in mice. Methods: Growing mice were fed diets containing olive, maize and rapeseed oils supplemented with an equimolecular mixture of CLA (mix-CLA or a rumenic acid (RA-rich oil for 30 days. Body weight gain, carcass composition, tissue weights, plasma and tissue TG levels, and lipid regulation parameters were evaluated. Results: Independently of the dietary fats, mix-CLA decreased body weight gain and fat depots related to lower energy efficiency, hepatomegaly, increase of serum TG and decrease of muscle TG. Rapeseed oil prevented the hepatic steatosis observed with mix-CLA supplementation to olive and maize oils by increasing TG secretion. RA-rich oil supplementation decreased fat depots without hepatomegaly, hepatic steatosis and hypertriglyceridemia. Olive oil, by an equilibrium between FA uptake/oxidation, prevented the increase of muscle TG induced by the RA-rich oil supplementation to maize and rapeseed oils. Discussion and conclusion: The proportions of dietary unsaturated FA modulated the different mix-CLA and RA-rich oil response to lipid metabolism in mice. Finally, rapeseed oil prevented the hepatic steatosis induced by mix-CLA, and the most beneficial effects of RA-rich oil were observed when supplemented to olive oil, due to the reduced lipid accretion without changes in TG levels.

  6. The von Hippel-Lindau Chuvash mutation in mice causes carotid-body hyperplasia and enhanced ventilatory sensitivity to hypoxia.

    Science.gov (United States)

    Slingo, Mary E; Turner, Philip J; Christian, Helen C; Buckler, Keith J; Robbins, Peter A

    2014-04-01

    The hypoxia-inducible factor (HIF) family of transcription factors coordinates diverse cellular and systemic responses to hypoxia. Chuvash polycythemia (CP) is an autosomal recessive disorder in humans in which there is impaired oxygen-dependent degradation of HIF, resulting in long-term systemic elevation of HIF levels at normal oxygen tensions. CP patients demonstrate the characteristic features of ventilatory acclimatization to hypoxia, namely, an elevated baseline ventilation and enhanced acute hypoxic ventilatory response (AHVR). We investigated the ventilatory and carotid-body phenotype of a mouse model of CP, using whole-body plethysmography, immunohistochemistry, and electron microscopy. In keeping with studies in humans, CP mice had elevated ventilation in euoxia and a significantly exaggerated AHVR when exposed to 10% oxygen, with or without the addition of 3% carbon dioxide. Carotid-body immunohistochemistry demonstrated marked hyperplasia of the oxygen-sensing type I cells, and the cells themselves appeared enlarged with more prominent nuclei. This hypertrophy was confirmed by electron microscopy, which also revealed that the type I cells contained an increased number of mitochondria, enlarged dense-cored vesicles, and markedly expanded rough endoplasmic reticulum. The morphological and ultrastructural changes seen in the CP mouse carotid body are strikingly similar to those observed in animals exposed to chronic hypoxia. Our study demonstrates that the HIF pathway plays a major role, not only in regulating both euoxic ventilatory control and the sensitivity of the response to hypoxia, but also in determining the morphology of the carotid body.

  7. Influence of L-dopa and of thymus fraction on the survival rate of whole-body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Busse, E.; Helmholz, M. (Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite))

    1982-06-01

    The survival rate of mice with exposure of the whole body (7 Gy) was hardly changed by one dose as well as several doses of the phosphodiesterase inhibitor amantadine and the interferon inductor measles vaccine. However, the survival rates were increased by one administration of L-dopa or by the long-term therapy using L-dopa at 7 and 9 Gy, resp. The survival rates were also increased at 7 and 9 Gy, resp. if the thymus factor was three times applied to the animals after irradiation. The increased survival rates gained by using L-dopa and thymus factor are correlated with the leukocyte values determined.

  8. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    Science.gov (United States)

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor.

  9. Effects of i.c.v. administration of interleukin-1 on sleep and body temperature of interleukin-6-deficient mice.

    Science.gov (United States)

    Olivadoti, M D; Opp, M R

    2008-04-22

    Cytokines in brain contribute to the regulation of physiological processes and complex behavior, including sleep. The cytokines that have been most extensively studied with respect to sleep are interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-6. Administration of these cytokines into laboratory animals, or in some cases into healthy human volunteers, increases the amount of time spent in non-rapid eye movement (NREM) sleep. Although antagonizing the IL-1 or TNF systems reduces the amount of time laboratory animals spend in NREM sleep, interactions among these three cytokine systems as they pertain to the regulation of physiological NREM sleep are not well understood. To further elucidate mechanisms in brain by which IL-1beta, TNFalpha, and/or IL-6 contribute to NREM sleep regulation, we injected recombinant murine interleukin-1beta (muIL-1beta) into C57BL/6J mice and into IL-6-deficient mice (IL-6 knockout, KO). IL-6 KO (B6.129S6-Il6(tm1Kopf); n=13) and C57BL/6J mice (n=14) were implanted with telemeters to record the electroencephalogram (EEG) and core body temperature, as well as with indwelling guide cannulae targeted to one of the lateral ventricles. After recovery and habituation, mice were injected intracerebroventricularly just prior to dark onset on different days with either 0.5 microl vehicle (pyrogen-free saline; PFS) or with 0.5 microl PFS containing one of four doses of muIL-1beta (2.5 ng, 5 ng, 10 ng, 50 ng). No mouse received more than two doses of muIL-1beta, and administration of muIL-1beta doses was counter-balanced to eliminate potential order effects. Sleep-wake behavior was determined for 24 h after injections. i.c.v. administration of muIL-1beta increased in NREM sleep of both mouse strains in a dose-related fashion, but the maximal increase was of greater magnitude in C57Bl/6J mice. muIL-1beta induced fever in C57Bl/6J mice but not in IL-6 KO mice. Collectively, these data demonstrate IL-6 is necessary for IL-1 to induce

  10. Body Fat of Mice and Men: A Class Exercise in Theory or Practice.

    Science.gov (United States)

    Webb, G. P.; Jakobson, M. E.

    1980-01-01

    Four means of altering fat levels in laboratory mice, contrasting invasive injection techniques with non-invasive dietary and behavioral means, are described. Relates these investigations concerning obesity to the practicality of using animal models as an approach in searching for physiological knowledge about human beings. (CS)

  11. The foreign body reaction to a biodegradable biomaterial differs between rats and mice

    NARCIS (Netherlands)

    Khouw, IMSL; van Wachem, PB; Molema, G; Plantinga, JA; de Leij, LFMH; van Luyn, MJA

    2000-01-01

    Before a biomaterial can be applied in the clinic, biocompatibility must be tested in in vivo models, by monitoring the foreign body reaction. In this study, we compared the foreign body reaction (EBR) to the biodegradable biomaterial hexamethylenediisocyanate crosslinked dermal sheep collagen (HDSC

  12. Topical application of rapamycin ointment ameliorates Dermatophagoides farina body extract-induced atopic dermatitis in NC/Nga mice.

    Science.gov (United States)

    Yang, Fei; Tanaka, Mari; Wataya-Kaneda, Mari; Yang, Lingli; Nakamura, Ayumi; Matsumoto, Shoji; Attia, Mostafa; Murota, Hiroyuki; Katayama, Ichiro

    2014-08-01

    Atopic dermatitis (AD), a chronic inflammatory skin disease characterized by relapsing eczema and intense prurigo, requires effective and safe pharmacological therapy. Recently, rapamycin, an mTOR (mammalian target of rapamycin) inhibitor, has been reported to play a critical role in immune responses and has emerged as an effective immunosuppressive drug. In this study, we assessed whether inhibition of mTOR signalling could suppress dermatitis in mice. Rapamycin was topically applied to inflamed skin in a murine AD model that was developed by repeated topical application of Dermatophagoides farina body (Dfb) extract antigen twice weekly for 7 weeks in NC/Nga mice. The efficacy of topical rapamycin treatment was evaluated immunologically and serologically. Topical application of rapamycin reduced inflammatory cell infiltration in the dermis, alleviated the increase of serum IgE levels and resulted in a significant reduction in clinical skin condition score and marked improvement of histological findings. In addition, increased mTOR phosphorylation in the lesional skin was observed in our murine AD model. Topical application of rapamycin ointment inhibited Dfb antigen-induced dermatitis in NC/Nga mice, promising a new therapy for atopic dermatitis.

  13. Effect of carnitine, acetyl-, and propionylcarnitine supplementation on the body carnitine pool, skeletal muscle composition, and physical performance in mice.

    Science.gov (United States)

    Morand, Réjane; Bouitbir, Jamal; Felser, Andrea; Hench, Jürgen; Handschin, Christoph; Frank, Stephan; Krähenbühl, Stephan

    2014-09-01

    Pharmacokinetics and effects on skeletal muscle and physical performance of oral acetylcarnitine and propionylcarnitine are not well characterized. We therefore investigated the influence of oral acetylcarnitine, propionylcarnitine, and carnitine on body carnitine homeostasis, energy metabolism, and physical performance in mice and compared the findings to non-supplemented control animals. Mice were supplemented orally with 2 mmol/kg/day carnitine, acetylcarnitine, or propionylcarnitine for 4 weeks and studied either at rest or after exhaustive exercise. In the supplemented groups, total plasma and urine carnitine concentrations were significantly higher than in the control group receiving no carnitine, whereas the skeletal muscle carnitine content remained unchanged. The supplemented acylcarnitines were hydrolyzed in intestine and liver and reached the systemic circulation as carnitine. Bioavailability of carnitine and acylcarnitines, determined as the urinary excretion of total carnitine, was in the range of 19 %. Skeletal muscle morphology, including fiber-type composition, was not affected, and oxygen consumption by soleus or gastrocnemius fibers was not different between the groups. Supplementation with carnitine or acylcarnitines had no significant impact on the running capacity, but was associated with lower plasma lactate levels and a higher glycogen content in white skeletal muscle after exhaustive exercise. Oral supplementation of carnitine, acetylcarnitine, or propionylcarnitine in mice is associated with increased plasma and urine total carnitine concentrations, but does not affect the skeletal muscle carnitine content. Despite better preservation of skeletal muscle glycogen and lower plasma lactate levels, physical performance was not improved by carnitine or acylcarnitine supplementation.

  14. Preventive Effects of Chitosan Coacervate Whey Protein on Body Composition and Immunometabolic Aspect in Obese Mice

    OpenAIRE

    Gabriel Inácio de Morais Honorato de Souza; Aline Boveto Santamarina; Aline Alves de Santana; Fábio Santos de Lira; Rachel de Laquila; Mayara Franzoi Moreno; Eliane Beraldi Ribeiro; Claudia Maria da Penha Oller do Nascimento; Bruno Rodrigues; Elisa Esposito; Lila Missae Oyama

    2014-01-01

    Functional foods containing bioactive compounds of whey may play an important role in prevention and treatment of obesity. The aim of this study was to investigate the prospects of the biotechnological process of coacervation of whey proteins (CWP) in chitosan and test its antiobesogenic potential. Methods. CWP (100 mg·kg·day) was administered in mice with diet-induced obesity for 8 weeks. The animals were divided into four groups: control normocaloric diet gavage with water (C) or coacervate...

  15. p38 MAPK Inhibitor Insufficiently Attenuates HSC Senescence Administered Long-Term after 6 Gy Total Body Irradiation in Mice

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2016-06-01

    Full Text Available Senescent hematopoietic stem cells (HSCs accumulate with age and exposure to stress, such as total-body irradiation (TBI, which may cause long-term myelosuppression in the clinic. However, the methods available for long-term myelosuppression remain limited. Previous studies have demonstrated that sustained p38 mitogen-activated protein kinases (p38 MAPK activation in HSCs following exposure to TBI in mice and the administration of its inhibitor twenty-four hours after TBI may partially prevent long-term myelosuppression. However, long-term myelosuppression is latent and identified long after the administration of radiation. In this study, we investigated the effects of SB203580 (a small molecule inhibitor of p38 MAPK on long-term myelosuppression induced by TBI. Mice with hematopoietic injury were injected intraperitoneally with SB203580 every other day five times beginning 70 days after 6 Gy of 137Cs γ ray TBI. Our results at 80 days demonstrated that SB203580 did not significantly improve the TBI-induced long-term reduction of peripheral blood cell and bone marrow nucleated cell (BMNC counts, or defects in hematopoietic progenitor cells (HPCs and HSC clonogenic function. SB203580 reduced reactive oxygen species (ROS production and p-p38 expression; however, SB203580 had no effect on p16 expression in the HSCs of mice. In conclusion, these findings suggest that treatment with SB203580 70 days after TBI in mice inhibits the ROS-p38 oxidative stress pathway; however, it has no therapeutic effect on long-term myelosuppression induced by TBI.

  16. Long-Term High Fat Diet Has a Profound Effect on Body Weight, Hormone Levels, and Estrous Cycle in Mice.

    Science.gov (United States)

    Chakraborty, Tandra R; Donthireddy, Laxminarasimha; Adhikary, Debasis; Chakraborty, Sanjoy

    2016-05-12

    BACKGROUND Obesity causes several health complications along with disruption of the reproductive system. The aim of the current study was to determine how long-term intake of very high fat diet (VHFD) changes the hormonal milieu, affecting the cellular morphology and reproductive cycle in female mice. MATERIAL AND METHODS Mice were fed on normal diet (ND) and VHFD for 2 weeks, 12 weeks, and 25-27 weeks. We assessed changes in body weight, food consumption, energy intake, cellular and tissue morphology, hormonal levels (leptin, insulin, and estradiol), and vaginal smears were performed at various time points to determine the length and cellularity at each stage of the estrous cycle. RESULTS Mice fed on VHFD showed a significant increase in weight gain, reduction in food intake, and increase in energy intake compared to animals fed on ND, indicating that the caloric density of the diet is responsible for the differences in weight gain. Hormonal analysis showed hyperleptinemia, hyperinsulinemia, and increases in estrogen levels, along with increases in size of the islet of Langerhans and adipocytes. After 25-27 weeks, all animals fed on VHFD showed complete acyclicity; elongation of phases (e.g., diestrous), skipping of phases (e.g., metestrous), or a combination of both, indicating disruption in the reproductive cycle. Quantitative analysis showed that in the diestrous phase there was a 70% increase in cell count in VHFD compared to animals fed on ND. CONCLUSIONS The above results show that morphological and hormonal changes caused by VHFD probably act via negative feedback to the hypothalamic-pituitary axis to shut down reproduction, which has a direct effect on the estrous cycle, causing acyclicity in mice.

  17. Lowering body weight in obese mice with diastolic heart failure improves cardiac insulin sensitivity and function: implications for the obesity paradox.

    Science.gov (United States)

    Sankaralingam, Sowndramalingam; Abo Alrob, Osama; Zhang, Liyan; Jaswal, Jagdip S; Wagg, Cory S; Fukushima, Arata; Padwal, Raj S; Johnstone, David E; Sharma, Arya M; Lopaschuk, Gary D

    2015-05-01

    Recent studies suggest improved outcomes and survival in obese heart failure patients (i.e., the obesity paradox), although obesity and heart failure unfavorably alter cardiac function and metabolism. We investigated the effects of weight loss on cardiac function and metabolism in obese heart failure mice. Obesity and heart failure were induced by feeding mice a high-fat (HF) diet (60% kcal from fat) for 4 weeks, following which an abdominal aortic constriction (AAC) was produced. Four weeks post-AAC, mice were switched to a low-fat (LF) diet (12% kcal from fat; HF AAC LF) or maintained on an HF (HF AAC HF) for a further 10 weeks. After 18 weeks, HF AAC LF mice weighed less than HF AAC HF mice. Diastolic function was improved in HF AAC LF mice, while cardiac hypertrophy was decreased and accompanied by decreased SIRT1 expression, increased FOXO1 acetylation, and increased atrogin-1 expression compared with HF AAC HF mice. Insulin-stimulated glucose oxidation was increased in hearts from HF AAC LF mice, compared with HF AAC HF mice. Thus lowering body weight by switching to LF diet in obese mice with heart failure is associated with decreased cardiac hypertrophy and improvements in both cardiac insulin sensitivity and diastolic function, suggesting that weight loss does not negatively impact heart function in the setting of obesity.

  18. Short-term re-feeding of previously energy-restricted C57BL/6 male mice restores body weight and body fat and attenuates the decline in natural killer cell function after primary influenza infection.

    Science.gov (United States)

    Clinthorne, Jonathan F; Adams, Douglas J; Fenton, Jenifer I; Ritz, Barry W; Gardner, Elizabeth M

    2010-08-01

    A hallmark of energy restriction (ER) is a decrease in total body fat, which is thought to increase lifespan and maintain immune function. However, we have shown that during primary influenza infection, ER induces rapid weight loss, impairs natural killer (NK) cell function, and increases mortality in young and aged mice. To determine whether influenza-induced NK cell function could be restored in ER mice, young adult (6 mo) male C57BL/6 mice were fed an ER diet or re-fed (RF) control diet ad libitum for 2 wk before infection with PR8 influenza A. An initial hyperphagic response was observed in RF mice, characterized by increased food intake, rapid weight gain, and restoration of body fat and fat depots by 5-7 d of re-feeding to levels comparable to control ad libitum (AL) mice. Re-feeding improved survival and attenuated the decline in NK cell function during infection, evidenced by increased numbers, percentages, and CD69 expression by d 3 postinfection in RF mice. Interestingly, an altered metabolic phenotype was observed during infection of RF mice, with plasma leptin concentrations greater than in ER mice but less than in AL mice. In contrast, adiponectin concentrations of RF mice were lower than those of both ER and AL mice. These data suggest that re-feeding for a defined period before, and perhaps throughout, influenza season may provide the energy needed to counter the deleterious effects of ER on NK cell function, especially during exposure to newly emerging strains of influenza, for which vaccines are limited or unavailable.

  19. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice.

    Science.gov (United States)

    Bian, Xiaoming; Chi, Liang; Gao, Bei; Tu, Pengcheng; Ru, Hongyu; Lu, Kun

    2017-01-01

    Artificial sweeteners have been widely used in the modern diet, and their observed effects on human health have been inconsistent, with both beneficial and adverse outcomes reported. Obesity and type 2 diabetes have dramatically increased in the U.S. and other countries over the last two decades. Numerous studies have indicated an important role of the gut microbiome in body weight control and glucose metabolism and regulation. Interestingly, the artificial sweetener saccharin could alter gut microbiota and induce glucose intolerance, raising questions about the contribution of artificial sweeteners to the global epidemic of obesity and diabetes. Acesulfame-potassium (Ace-K), a FDA-approved artificial sweetener, is commonly used, but its toxicity data reported to date are considered inadequate. In particular, the functional impact of Ace-K on the gut microbiome is largely unknown. In this study, we explored the effects of Ace-K on the gut microbiome and the changes in fecal metabolic profiles using 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics. We found that Ace-K consumption perturbed the gut microbiome of CD-1 mice after a 4-week treatment. The observed body weight gain, shifts in the gut bacterial community composition, enrichment of functional bacterial genes related to energy metabolism, and fecal metabolomic changes were highly gender-specific, with differential effects observed for males and females. In particular, ace-K increased body weight gain of male but not female mice. Collectively, our results may provide a novel understanding of the interaction between artificial sweeteners and the gut microbiome, as well as the potential role of this interaction in the development of obesity and the associated chronic inflammation.

  20. The effect of study type on body weight and tumor incidence in B6C3F1 mice fed the NTP-2000 diet.

    Science.gov (United States)

    Marino, Dale J

    2012-07-01

    The B6C3F1 mouse is the standard mouse strain used in National Toxicology Program (NTP) carcinogenesis studies. Over time, increased liver tumorigenesis that was correlated with elevated body weights was noted in males and females. NTP therefore replaced the NIH-07 diet with the NTP-2000 diet and returned to group housing of females as lower body weights were noted in group housed mice. However, recent studies reported study-type differences in body weights at 3 months using the NTP-2000 diet with higher weights evident in drinking water and inhalation studies compared to feed studies. Therefore, body weight and tumor incidence data were collected for untreated control mice from all 2-year NTP feed (12), drinking water (8), water gavage (6) and inhalation (10) studies that used the NTP-2000 diet in order to assess the impact of study type on body weights and tumor incidences. Results show statistically significant elevated body weights and liver tumor incidences in males and females from drinking water, water gavage and inhalation studies compared to results from feed studies. Thus, the elevated body weights and liver tumorigenesis noted in mice using the NIH-07 diet were also evident using the NTP-2000 diet, which was introduced to address body weight elevations. Given the study-type dependent effects noted, these results emphasize the importance of carefully selecting historical control data for B6C3F1 mice. Moreover, because of the association between body weight and liver tumorigenesis, these results may have implications regarding dose-level selection for carcinogenicity studies involving B6C3F1 mice based on the maximum tolerated dose.

  1. Erythropoiesis in mice exposed to continuous whole body irradiation of gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Joshima, Hisamasa; Fukutsu, Kumiko; Matsushita, Satoru; Kashima, Masatoshi

    1988-09-01

    The erythropoietic effects of continuous ..gamma..-irradiation with a daily regime of 0.029, 0.083 and 0.374 Gy were studied in mice. Irradiation was performed with /sup 137/Cs ..gamma..-rays for 22 hr/day. The length of irradiation time varied from 3 to 112 days. Erythropoiesis was investigated on the basis of clearance of /sup 59/Fe from the circulation and of incorporation of /sup 59/Fe into circulating erythrocytes and erythropoietic tissue. A chemical method for the separation of heme and nonheme iron-containing fractions was employed to examine the uptake of /sup 59/Fe into both the heme and nonheme iron fractions. Daily exposure to 0.029 and 0.083 Gy caused no significant changes in erythropoiesis. Daily exposure to 0.374 Gy caused some significant changes in erythropoiesis. On day 7 of continuous irradiation, the amount of /sup 59/Fe incorporated into erythrocytes decreased, but the values returned to normal on day 14 and 28 of continuous irradiation, indicating recovery within erythropoietic tissues at earlier time. On day 56, depressed incorporation of /sup 59/Fe into erythrocytes with normal rate of disappearance of /sup 59/Fe from the circulation and increased heme level of /sup 59/Fe in the femoral marrow were observed. Results observed on day 56 may suggest the possibility of ineffective erythropoiesis during the continuous irradiation. On day 112, some mice showed almost the same changes in erythropoiesis as those mice exposed to acute X-rays radiation.

  2. Taeyeumjoweetang Affects Body Weight and Obesity-Related Genes in Mice

    Directory of Open Access Journals (Sweden)

    Si-Woo Lee

    2009-01-01

    Full Text Available Taeyeumjoweetang (TYJWT is a herbal medication that was mentioned in Jema Lee's Donguisusebowon, which is a book about Sasang constitutional medicine. Tae-eumnis, one of the four constitutions, tend to suffer from metabolic diseases such as obesity and diabetes. It is widely used to treat the digestive problems and obesity of Tae-eumins. We divided mice that were fed a normal diet for 48 days into control, TYJWT 250 mg kg-1 and TYJWT 500 mg kg-1 groups. After carrying out the experiments, the serum levels of leptin, adiponectin, ghrelin and resistin were measured. The results showed that TYJWT significantly reduced the weights of mice that were fed a normal diet, and that this was due to a decrease in food intake. Also, the two TYJWT groups had lower serum levels of leptin compared to the control group, and the ghrelin levels were proportionately increased by the dosage of TYJWT given. These results show that TYJWT has obesity-suppressing effects similar to those previously reported using high fat diets. In addition, these results also provide evidence that TYJWT has anti-obesity effects.

  3. Genotype x diet interactions in mice predisposed to mammary cancer. I. Body weight and fat

    DEFF Research Database (Denmark)

    Gordon, Ryan R; Hunter, Kent W; Sørensen, Peter;

    2008-01-01

    of the F(2) population (n = 615) which resulted from a cross between the polygenic obesity model M16i and FVB/NJ-TgN (MMTV-PyMT)(634Mul), effects of diet on growth and body composition, and QTL and QTL x diet and/or gender interaction effects for growth and obesity-related phenotypes. We identified 38 QTL...

  4. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K

    2001-01-01

    the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate...

  5. Restrained whole body plethysmography for measure of strain-specific and allergen-induced airway responsiveness in conscious mice.

    Science.gov (United States)

    Lofgren, Jennifer L S; Mazan, Melissa R; Ingenito, Edward P; Lascola, Kara; Seavey, Molly; Walsh, Ashley; Hoffman, Andrew M

    2006-11-01

    The mouse is the most extensively studied animal species in respiratory research, yet the technologies available to assess airway function in conscious mice are not universally accepted. We hypothesized that whole body plethysmography employing noninvasive restraint (RWBP) could be used to quantify specific airway resistance (sRaw-RWBP) and airway responsiveness in conscious mice. Methacholine responses were compared using sRaw-RWBP vs. airway resistance by the forced oscillation technique (Raw-FOT) in groups of C57, A/J, and BALB/c mice. sRaw-RWBP was also compared with sRaw derived from double chamber plethysmography (sRaw-DCP) in BALB/c. Finally, airway responsiveness following allergen challenge in BALB/c was measured using RWBP. sRaw-RWBP in C57, A/J, and BALB/c mice was 0.51 +/- 0.03, 0.68 +/- 0.03, and 0.63 +/- 0.05 cm/s, respectively. sRaw derived from Raw-FOT and functional residual capacity (Raw*functional residual capacity) was 0.095 cm/s, approximately one-fifth of sRaw-RWBP in C57 mice. The intra- and interanimal coefficients of variations were similar between sRaw-RWBP (6.8 and 20.1%) and Raw-FOT (3.4 and 20.1%, respectively). The order of airway responsiveness employing sRaw-RWBP was AJ > BALBc > C57 and for Raw-FOT was AJ > BALB/c = C57. There was no difference between the airway responsiveness assessed by RWBP vs. DCP; however, baseline sRaw-RWBP was significantly lower than sRaw-DCP. Allergen challenge caused a progressive decrease in the provocative concentration of methacholine that increased sRaw to 175% postsaline values based on sRaw-RWBP. In conclusion, the technique of RWBP was rapid, reproducible, and easy to perform. Airway responsiveness measured using RWBP, DCP, and FOT was equivalent. Allergen responses could be followed longitudinally, which may provide greater insight into the pathogenesis of chronic airway disease.

  6. Quantitative trait loci that control body weight and obesity in an F2 intercross between C57BL/6J and DDD.Cg-Ay mice.

    Science.gov (United States)

    Suto, Jun-ichi

    2011-07-01

    I have developed a congenic mouse strain for the A(y) allele at the agouti locus in an inbred DDD/Sgn strain, DDD.Cg-A(y). DDD.Cg-A(y) females are extremely obese and significantly heavier than B6.Cg-A(y) females. The objectives of this study were to determine the genetic basis of obesity in DDD.Cg-A(y) mice, and to determine whether or not their high body weight was due to the presence of DDD background-specific modifiers. I performed quantitative trait locus (QTL) analyses for body weight and body mass index in two types of F(2) mice [F2 A(y) (F(2) mice carrying the A(y) allele) and F(2) non-A(y) (F2 mice without the A(y) allele)] produced by crossing C57BL/6J females and DDD.Cg-A(y) males. The results of the QTL analysis of F(2) A(y) mice were very similar to those obtained for F(2) non-A(y) mice. It was unlikely that the high body weight of DDD.Cg-A(y) mice was due to the presence of specific modifiers. When both F(2) datasets were merged and analyzed, four significant body weight QTLs were identified on chromosomes 6, 9, and 17 (2 loci) and four significant obesity QTLs were identified on chromosomes 1, 6, 9, and 17. Although the presence of DDD background-specific modifiers was not confirmed, a multifactorial basis of obesity in DDD.Cg-A(y) females was thus revealed.

  7. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol.

    Directory of Open Access Journals (Sweden)

    Nina L Cluny

    Full Text Available Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO and lean mice.Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week. Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally.THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice.Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.

  8. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol.

    Science.gov (United States)

    Cluny, Nina L; Keenan, Catherine M; Reimer, Raylene A; Le Foll, Bernard; Sharkey, Keith A

    2015-01-01

    Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice. Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally. THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice. Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.

  9. Exercise and diet affect quantitative trait loci for body weight and composition traits in an advanced intercross population of mice.

    Science.gov (United States)

    Leamy, Larry J; Kelly, Scott A; Hua, Kunjie; Pomp, Daniel

    2012-12-01

    Driven by the recent obesity epidemic, interest in understanding the complex genetic and environmental basis of body weight and composition is great. We investigated this by searching for quantitative trait loci (QTLs) affecting a number of weight and adiposity traits in a G(10) advanced intercross population produced from crosses of mice in inbred strain C57BL/6J with those in a strain selected for high voluntary wheel running. The mice in this population were fed either a high-fat or a control diet throughout the study and also measured for four exercise traits prior to death, allowing us to test for pre- and postexercise QTLs as well as QTL-by-diet and QTL-by-exercise interactions. Our genome scan uncovered a number of QTLs, of which 40% replicated QTLs previously found for similar traits in an earlier (G(4)) generation. For those replicated QTLs, the confidence intervals were reduced from an average of 19 Mb in the G(4) to 8 Mb in the G(10). Four QTLs on chromosomes 3, 8, 13, and 18 were especially prominent in affecting the percentage of fat in the mice. About of all QTLs showed interactions with diet, exercise, or both, their genotypic effects on the traits showing a variety of patterns depending on the diet or level of exercise. It was concluded that the indirect effects of these QTLs provide an underlying genetic basis for the considerable variability in weight or fat loss typically found among individuals on the same diet and/or exercise regimen.

  10. AgRP Neuron-Specific Deletion of Glucocorticoid Receptor Leads to Increased Energy Expenditure and Decreased Body Weight in Female Mice on a High-Fat Diet.

    Science.gov (United States)

    Shibata, Miyuki; Banno, Ryoichi; Sugiyama, Mariko; Tominaga, Takashi; Onoue, Takeshi; Tsunekawa, Taku; Azuma, Yoshinori; Hagiwara, Daisuke; Lu, Wenjun; Ito, Yoshihiro; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Oiso, Yutaka; Arima, Hiroshi

    2016-04-01

    Agouti-related protein (AgRP) expressed in the arcuate nucleus is a potent orexigenic neuropeptide, which increases food intake and reduces energy expenditure resulting in increases in body weight (BW). Glucocorticoids, key hormones that regulate energy balance, have been shown in rodents to regulate the expression of AgRP. In this study, we generated AgRP-specific glucocorticoid receptor (GR)-deficient (knockout [KO]) mice. Female and male KO mice on a high-fat diet (HFD) showed decreases in BW at the age of 6 weeks compared with wild-type mice, and the differences remained significant until 16 weeks old. The degree of resistance to diet-induced obesity was more robust in female than in male mice. On a chow diet, the female KO mice showed slightly but significantly attenuated weight gain compared with wild-type mice after 11 weeks, whereas there were no significant differences in BW in males between genotypes. Visceral fat pad mass was significantly decreased in female KO mice on HFD, whereas there were no significant differences in lean body mass between genotypes. Although food intake was similar between genotypes, oxygen consumption was significantly increased in female KO mice on HFD. In addition, the uncoupling protein-1 expression in the brown adipose tissues was increased in KO mice. These data demonstrate that the absence of GR signaling in AgRP neurons resulted in increases in energy expenditure accompanied by decreases in adiposity in mice fed HFD, indicating that GR signaling in AgRP neurons suppresses energy expenditure under HFD conditions.

  11. Of mice, men and elephants: the relation between articular cartilage thickness and body mass.

    Directory of Open Access Journals (Sweden)

    Jos Malda

    Full Text Available Mammalian articular cartilage serves diverse functions, including shock absorption, force transmission and enabling low-friction joint motion. These challenging requirements are met by the tissue's thickness combined with its highly specific extracellular matrix, consisting of a glycosaminoglycan-interspersed collagen fiber network that provides a unique combination of resilience and high compressive and shear resistance. It is unknown how this critical tissue deals with the challenges posed by increases in body mass. For this study, osteochondral cores were harvested post-mortem from the central sites of both medial and lateral femoral condyles of 58 different mammalian species ranging from 25 g (mouse to 4000 kg (African elephant. Joint size and cartilage thickness were measured and biochemical composition (glycosaminoclycan, collagen and DNA content and collagen cross-links densities were analyzed. Here, we show that cartilage thickness at the femoral condyle in the mammalian species investigated varies between 90 µm and 3000 µm and bears a negative allometric relationship to body mass, unlike the isometric scaling of the skeleton. Cellular density (as determined by DNA content decreases with increasing body mass, but gross biochemical composition is remarkably constant. This however need not affect life-long performance of the tissue in heavier mammals, due to relatively constant static compressive stresses, the zonal organization of the tissue and additional compensation by joint congruence, posture and activity pattern of larger mammals. These findings provide insight in the scaling of articular cartilage thickness with body weight, as well as in cartilage biochemical composition and cellularity across mammalian species. They underscore the need for the use of appropriate in vivo models in translational research aiming at human applications.

  12. Metabolic changes in serum steroids induced by total-body irradiation of female C57B/6 mice.

    Science.gov (United States)

    Moon, Ju-Yeon; Shin, Hee-June; Son, Hyun-Hwa; Lee, Jeongae; Jung, Uhee; Jo, Sung-Kee; Kim, Hyun Sik; Kwon, Kyung-Hoon; Park, Kyu Hwan; Chung, Bong Chul; Choi, Man Ho

    2014-05-01

    The short- and long-term effects of a single exposure to gamma radiation on steroid metabolism were investigated in mice. Gas chromatography-mass spectrometry was used to generate quantitative profiles of serum steroid levels in mice that had undergone total-body irradiation (TBI) at doses of 0Gy, 1Gy, and 4Gy. Following TBI, serum samples were collected at the pre-dose time point and 1, 3, 6, and 9 months after TBI. Serum levels of progestins, progesterone, 5β-DHP, 5α-DHP, and 20α-DHP showed a significant down-regulation following short-term exposure to 4Gy, with the exception of 20α-DHP, which was significantly decreased at each of the time points measured. The corticosteroids 5α-THDOC and 5α-DHB were significantly elevated at each of the time points measured after exposure to either 1 or 4Gy. Among the sterols, 24S-OH-cholestoerol showed a dose-related elevation after irradiation that reached significance in the high dose group at the 6- and 9-month time points.

  13. Loss of UCP1 exacerbates Western diet-induced glycemic dysregulation independent of changes in body weight in female mice.

    Science.gov (United States)

    Winn, Nathan C; Vieira-Potter, Victoria J; Gastecki, Michelle L; Welly, Rebecca J; Scroggins, Rebecca J; Zidon, Terese M; Gaines, T'Keaya L; Woodford, Makenzie L; Karasseva, Natalia G; Kanaley, Jill A; Sacks, Harold S; Padilla, Jaume

    2017-01-01

    We tested the hypothesis that female mice null for uncoupling protein 1 (UCP1) would have increased susceptibility to Western diet-induced "whitening" of brown adipose tissue (AT) and glucose intolerance. Six-week-old C57BL/6J wild-type (WT) and UCP1 knockout (UCP1(-/-)) mice, housed at 25°C, were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 28 wk. Loss of UCP1 had no effect on energy intake, energy expenditure, spontaneous physical activity, weight gain, or visceral white AT mass. Despite similar susceptibility to weight gain compared with WT, UCP1(-/-) exhibited whitening of brown AT evidenced by a striking ~500% increase in mass and appearance of large unilocular adipocytes, increased expression of genes related to inflammation, immune cell infiltration, and endoplasmic reticulum/oxidative stress (P diet (P diet. Collectively, these findings demonstrate that loss of UCP1 exacerbates Western diet-induced whitening of brown AT, glucose intolerance, and induces liver steatosis. Notably, the adverse metabolic manifestations of UCP1(-/-) were independent of changes in body weight, visceral adiposity, and energy expenditure. These novel findings uncover a previously unrecognized metabolic protective role of UCP1 that is independent of its already established role in energy homeostasis. Copyright © 2017 the American Physiological Society.

  14. The Effect of PPARα, PPARδ, PPARγ, and PPARpan Agonists on Body Weight, Body Mass, and Serum Lipid Profiles in Diet-Induced Obese AKR/J Mice

    Directory of Open Access Journals (Sweden)

    W. Wallace Harrington

    2007-01-01

    Full Text Available Activation of peroxisome proliferator-activated receptor (PPAR α, δ, and γ subtypes increases expression of genes involved in fatty acid transport and oxidation and alters adiposity in animal models of obesity and type-2 diabetes. PPARpan agonists which activate all three receptor subtypes have antidiabetic activity in animal models without the weight gain associated with selective PPARγ agonists. Herein we report the effects of selective PPAR agonists (GW9578, a PPARα agonist, GW0742, a PPARδ agonist, GW7845, a PPARγ agonist, combination of PPARα and δ agonists, and PPARpan (PPARα/γ/δ activators (GW4148 or GW9135 on body weight (BW, body composition, food consumption, fatty acid oxidation, and serum chemistry of diet-induced obese AKR/J mice. PPARα or PPARδ agonist treatment induced a slight decrease in fat mass (FM while a PPARγ agonist increased BW and FM commensurate with increased food consumption. The reduction in BW and food intake after cotreatment with PPARα and δ agonists appeared to be synergistic. GW4148, a PPARpan agonist, induced a significant and sustained reduction in BW and FM similar to an efficacious dose of rimonabant, an antiobesity compound. GW9135, a PPARpan agonist with weak activity at PPARδ, induced weight loss initially followed by rebound weight gain reaching vehicle control levels by the end of the experiment. We conclude that PPARα and PPARδ activations are critical to effective weight loss induction. These results suggest that the PPARpan compounds may be expected to maintain the beneficial insulin sensitization effects of a PPARγ agonist while either maintaining weight or producing weight loss.

  15. Preventive Effects of Chitosan Coacervate Whey Protein on Body Composition and Immunometabolic Aspect in Obese Mice

    Directory of Open Access Journals (Sweden)

    Gabriel Inácio de Morais Honorato de Souza

    2014-01-01

    Full Text Available Functional foods containing bioactive compounds of whey may play an important role in prevention and treatment of obesity. The aim of this study was to investigate the prospects of the biotechnological process of coacervation of whey proteins (CWP in chitosan and test its antiobesogenic potential. Methods. CWP (100 mg·kg·day was administered in mice with diet-induced obesity for 8 weeks. The animals were divided into four groups: control normocaloric diet gavage with water (C or coacervate (C-CWP, and high fat diet gavage with water (HF or coacervate (HF-CWP. Results. HF-CWP reduced weight gain and serum lipid fractions and displayed reduced adiposity and insulin. Adiponectin was significantly higher in HF-CWP group when compared to the HF. The level of LPS in HF-W group was significantly higher when compared to HF-CWP. The IL-10 showed an inverse correlation between the levels of insulin and glucose in the mesenteric adipose tissue in the HF-CWP group. CWP promoted an increase in both phosphorylation AMPK and the amount of ATGL in the mesenteric adipose tissue in HF-CWP group. Conclusion. CWP was able to modulate effects, possibly due to its high biological value of proteins. We observed a protective effect against obesity and improved the inflammatory milieu of white adipose tissue.

  16. Effects of intracerebroventricular administration of N-acetylhistamine on body temperature in mice.

    Science.gov (United States)

    Onodera, K; Shinoda, H; Imaizumi, M; Hiraki-Sakurai, E; Yamatodani, A

    1994-10-01

    The purpose of this study was to examine the effects of intracerebroventricular (i.c.v.) administration of N-acetylhistamine on rectal temperature, histamine level, histidine decarboxylase (HDC) activity, and the turnover rate of monoamines in mice. More than 60 micrograms of N-acetylhistamine induced hypothermia. The maximum effect of hypothermia was observed 20 min after administration of N-acetylhistamine (60-120 micrograms/mouse). A significant drop in rectal temperature of 3 degrees C was induced by 120 micrograms of N-acetylhistamine. Concurrent with the appearance of hypothermia, the histamine levels were increased. However, both histamine H1 and H2 antagonists did not prevent hypothermia. The i.c.v. administration of N-acetylhistamine inhibited HDC activity, but had no effect on the turnover rates of monoamines. These data confirmed that endogenous N-acetylhistamine may be a metabolite which lacks significant physiological roles, and demonstrated that exogenous N-acetylhistamine is not a good pharmacological tool for the study of the functions of the brain histaminergic system in mammals.

  17. Early micro-rheological consequences of single fraction total body low-dose photon irradiation in mice.

    Science.gov (United States)

    Szluha, Kornelia; Lazanyi, Kornelia; Furka, Andrea; Kiss, Ferenc; Szabo, Imre; Pintye, Eva; Miko, Iren; Nemeth, Norbert

    2014-01-01

    Despite of the studies on widespread biological effects of irradiation, surprisingly only little number of papers can be found dealing with its in vivo hemorheological impact. Furthermore, other studies suggested that low-dose irradiation might differ from high-dose in more than linear ways. On Balb/c Jackson female adult mice hematological and hemorheological impacts of total body irradiation were investigated 1 hour following 0.002, 0.005, 0.01, 0.02, 0.05 and 0.1 Gy dose irradiation. In case of 0.01 Gy further groups were analyzed 30 minutes, 2, 4, 6, 24 and 48 h after irradiation. According to the results, it seems that the dose-dependent changes of blood micro-rheological parameters are not linear. The irradiation dose of 0.01 Gy acted as a point of 'inflexion', because by this dose we found the most expressed changes in hematological parameters, as well as in red blood cell aggregation, deformability and osmoscan data. The time-dependent changes showed progressive decrease in pH, rise in lactate concentration, further decrease in erythrocyte aggregation index and deformability, with moderate shifting of the optimal osmolarity point and modulation in membrane stability. As conclusion, low-dose total body irradiation may cause micro-rheological changes, being non-linearly correlated with the irradiation dose.

  18. Optimization of a Pain Model: Effects of Body Temperature and Anesthesia on Bladder Nociception in Mice

    Science.gov (United States)

    Sadler, Katelyn E.; Stratton, Jarred M.; DeBerry, Jennifer J.; Kolber, Benedict J.

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5

  19. Optimization of a pain model: effects of body temperature and anesthesia on bladder nociception in mice.

    Science.gov (United States)

    Sadler, Katelyn E; Stratton, Jarred M; DeBerry, Jennifer J; Kolber, Benedict J

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5

  20. Pemberian Ekstrak Metanol Akar Pasak Bumi Mempertahankan Bobot Badan Induk Mencit Selama Menyusui (ADMINISTRATION OF EURYCOMA LONGIFOLIA EXTRACTS STABILIZED THE BODY WEIGHT OF LACTATING MICE

    Directory of Open Access Journals (Sweden)

    Ruqiah Ganda Putri Panjaitan

    2016-01-01

    Full Text Available This research aim is to study the effect of E. longifolia Jack. roots methanol extract and its derivedfraction (n-hexane, chloroform, ethyl acetate, and methanol-water on body weight of lactating mice. Thetreatment groups were administered 14 mg/20 g body weight of E. longifolia Jack. roots methanol extractand its derived fractions for 21 consecutive days. As a control are without treatment and placebo whichreceived aquadest at dose 0.056 ml/20 g body weight. The administration of E. longifolia Jack rootsmethanol extract showed the smallest change of body weight 29,63 g at the 3rd day and 29,31 g at the 21stday. Compared without treatment and placebo, oral administration of E. longifolia Jack. roots methanolextract and its derived fractions had no significant effects on body weight lactating mice at the 3rd and 21stdays in lactation period (p>0.05. It is concluded that the consumption of E. longifolia Jack. roots methanolextract and its derived fraction during lactation period not influence body weight of lactating mice.

  1. Dietary supplementation of β-guanidinopropionic acid (βGPA) reduces whole-body and skeletal muscle growth in young CD-1 mice.

    Science.gov (United States)

    Baumgarner, Bradley L; Nagle, Alison M; Quinn, Meagan R; Farmer, A Elaine; Kinsey, Stephen T

    2015-05-01

    Increased AMP-activated protein kinase (AMPK) activity leads to enhanced fatty acid utilization, while also promoting increased ubiquitin-dependent proteolysis (UDP) in mammalian skeletal muscle. β-guanidinopropionic acid (βGPA) is a commercially available dietary supplement that has been shown to promote an AMPK-dependent increase in fatty acid utilization and aerobic capacity in mammals by compromising creatine kinase function. However, it remains unknown if continuous βGPA supplementation can negatively impact skeletal muscle growth in a rapidly growing juvenile. The current study was conducted to examine the effect of βGPA supplementation on whole-body and skeletal muscle growth in juvenile and young adult mice. Three-week old, post weanling CD-1 mice were fed a standard rodent chow that was supplemented with either 2% (w/w) α-cellulose (control) or βGPA. Control and βGPA-fed mice (n = 6) were sampled after 2, 4, and 8 weeks. Whole-body and hindlimb muscle masses were significantly (P muscle-specific ubiquitin ligase MAFbx/Atrogin-1 protein and total protein ubiquitination in the gastrocnemius of βGPA versus control mice at the 8-week time point. Our data indicate that feeding juvenile mice a βGPA-supplemented diet significantly reduced whole-body and skeletal muscle growth that was due, at least in part, to an AMPK-independent increase in UDP.

  2. Antibiotic radioprotection of mice exposed to supralethal whole-body irradiation independent of antibacterial activity. [Gamma radiation, streptomycin, kanamycin, neomycin, gentamycin

    Energy Technology Data Exchange (ETDEWEB)

    Mastromarino, A.; Wilson, R.

    1976-11-01

    Oral administration of streptomycin, kanamycin, neomycin, or gentamicin to specific pathogen-free C57 x Af mice in their drinking water (4 mg/ml) for 2 weeks before supralethal whole-body irradiation very significantly prolonged their mean survival times (8.2 to 8.9 days vs 6.9 for controls) to values which exceed those reported for germ-free mice (7.3 days). The total fecal concentrations of aerobes and anaerobes were reduced by kanamycin, neomycin, and gentamicin. Streptomycin reduced the anaerobes significantly, but not the aerobes. Unlike germ-free mice, these antibiotic-treated mice did excrete free bile acids, products of bacterial action. Oral antibiotic treatment was ineffective in altering the transit time of the intestinal mucosal cells. Previously reported studies had indicated a correlation between decreased transit time and increased survival after irradiation. No significant correlation between mean survival time after irradiation and mucosal transit time was observed. The data demonstrate that certain antibiotics alter the character of the intestinal bacterial flora and increase protection against supralethal doses of whole-body irradiation. It is concluded that the mechanisms of radioresistance in antibiotic-treated mice and germ-free mice are different and that in both groups radioresistance is the result of more than elimination of postirradiation infection.

  3. High levels of whole-body energy expenditure are associated with a lower coupling of skeletal muscle mitochondria in C57Bl/6 mice

    NARCIS (Netherlands)

    Berg, S.A.A. van den; Nabben, M.; Bijland, S.; Voshol, P.J.; Klinken, J.B. van; Havekes, L.M.; Romijn, J.A.; Hoeks, J.; Hesselink, M.K.; Schrauwen, P.; Dijk, K.W. van

    2010-01-01

    Considerable variation in energy expenditure is observed in C57Bl/6 mice on a high-fat diet. Because muscle tissue is a major determinant of whole-body energy expenditure, we set out to determine the variation in energy expenditure and its possible association with skeletal muscle mitochondrial func

  4. Surfactant protein D of the innate immune defence is inversely associated with human obesity and SP-D deficiency infers increased body weight in mice

    DEFF Research Database (Denmark)

    Sorensen, G.L.; Hjelmborg, J.V.B.; Leth-Larsen, R.

    2006-01-01

    of the present study was to describe the association between serum SP-D and weight, waist circumference or BMI, and furthermore to observe body weight development in SP-D-deficient (Spd-/-) mice. As a part of the Danish population-based twin study (GEMINAKAR) on the metabolic syndrome, we analysed 1476 Danish...

  5. EFFECT OF CHRONIC INGESTION OF WINE ON THE GLYCEMIC, LIPID AND BODY WEIGHT HOMEOSTASIS IN MICE.

    Science.gov (United States)

    Brito-Filho, Sebastião Barreto de; Moura, Egberto Gaspar de; Santos, Orlando José Dos; Sauaia-Filho, Euler Nicolau; Amorim, Elias; Santana, Ewaldo Eder Carvalho; Barros-Filho, Allan Kardec Dualibe; Santos, Rennan Abud Pinheiro

    2016-01-01

    The health benefits associated with moderate wine consumption, as with ethanol and phenolic compounds, include different mechanisms still little understandable. Evaluate glycemic and weight variations, and the deposit of triglycerides, cholesterol and liver glycogen with red wine consumption. 60 ApoE knockout mice were divided into three groups of 20: Wine Group (WG), Ethanol Group (EG) and Water Group (WAG). They received daily: WG 50 ml of wine and 50 ml water; EG 6 ml ethanol and WAG 94 ml of water. All groups were followed for four months. The food intake was monitored daily, in the period from eight to ten hours and held every five days. The measurement of water intake was also made every five days. The weighing of the animals took place every ten days. The WG had higher weight increase as compared to the other groups. The concentration of hepatic triglyceride was higher in WG (57%) and the EG group was lower (31.6%, pcolesterol e glicogênio hepático com o uso de vinho tinto. Sessenta camundongos ApoE knockout foram divididos em três grupos de 20: Grupo do Vinho (WG), grupo do Etanol (EG) Grupo Água (WAG). Cada grupo recebeu diariamente: WG 50 ml de vinho e 50 ml de água; EG 6 ml de etanol e WAG 94 ml de água. O WG teve aumento de peso mais elevado em comparação com os outros grupos. A concentração de triglicerídeos foi maior no WG (57%) e no grupo EG inferior (31,6%) do que no controle (p colesterol foi inferior no WG (23,6%) e no EG (24,5%, pcolesterol diminuiu no WAG. Os triglicerídeos podem ter aumentado devido ao alto valor calórico do vinho ou alguma propriedade desconhecida que levou ao aumento significativo da gordura subcutânea e retroperitoneal nos camundongos.

  6. Tracing Mercox Injected at Acupuncture Points Under the Protocol of Partial Body Macerations in Mice.

    Science.gov (United States)

    Kim, Jungdae; Stefanov, Miroslav; Nam, Min-Ho; Kim, Sungchul

    2015-12-01

    We used for the first time a vascular casting material to take advantage of a simple tracing procedure and to isolate the peculiar features of acupuncture point injections. The polymer Mercox was injected into the skin of a dead mouse at acupuncture points along the bladder meridian lines. After a partial maceration of the whole body with a potassium-hydroperoxide solution, we anatomized it under a stereomicroscope to trace the injected Mercox. Many organs were checked to determine whether or not they contained some Mercox tracing. Connections between the injection sites along the acupuncture points were observed. Two to three layers of Mercox in a plate shape were found under the skin at the acupuncture points, and Mercox travelled throughout the adipose tissue, the fascia, and the parietal and visceral serous membranes inside the organ's parenchyma. The casting material Mercox used with a modified partial maceration procedure is a promising method for visualizing the routes of the meridian system and the primo vascular system. The routes for Mercox are different from those of the blood and lymphatic vessels.

  7. Targeted deletion of one or two copies of the G protein β subunit Gβ5 gene has distinct effects on body weight and behavior in mice.

    Science.gov (United States)

    Wang, Qiang; Levay, Konstantin; Chanturiya, Tatyana; Dvoriantchikova, Galina; Anderson, Karen L; Bianco, Suzy D C; Ueta, Cintia B; Molano, R Damaris; Pileggi, Antonello; Gurevich, Eugenia V; Gavrilova, Oksana; Slepak, Vladlen Z

    2011-11-01

    We investigated the physiological role of Gβ5, a unique G protein β subunit that dimerizes with regulators of G protein signaling (RGS) proteins of the R7 family instead of Gγ. Gβ5 is essential for stability of these complexes, so that its knockout (KO)causes degradation of the entire Gβ5-R7 family. We report that the Gβ5-KO mice remain leaner than the wild type (WT) throughout their lifetime and are resistant to a high-fat diet. They have a 5-fold increase in locomotor activity, increased thermogenesis, and lower serum insulin, all of which correlate with a higher level of secreted epinephrine. Heterozygous (HET) mice are 2-fold more active than WT mice. Surprisingly, with respect to body weight, the HET mice display a phenotype opposite to that of the KO mice: by the age of 6 mo, they are ≥ 15% heavier than the WT and have increased adiposity, insulin resistance, and liver steatosis. These changes occur in HET mice fed a normal diet and without apparent hyperphagia, mimicking basic characteristics of human metabolic syndrome. We conclude that even a partial reduction in Gβ5-R7 level can perturb normal animal metabolism and behavior. Our data on Gβ5 haploinsufficient mice may explain earlier observations of genetic linkage between R7 family mutations and obesity in humans.

  8. Whole body periodic acceleration is an effective therapy to ameliorate muscular dystrophy in mdx mice.

    Science.gov (United States)

    Altamirano, Francisco; Perez, Claudio F; Liu, Min; Widrick, Jeffrey; Barton, Elisabeth R; Allen, Paul D; Adams, Jose A; Lopez, Jose R

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca(2+) and Na(+) overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca(2+) and Na(+) overload, diminished abnormal sarcolemmal Ca(2+) entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway.

  9. Early cognitive changes due to whole body γ-irradiation: a behavioral and diffusion tensor imaging study in mice.

    Science.gov (United States)

    Kumar, Mayank; Haridas, Seenu; Trivedi, Richa; Khushu, Subhash; Manda, Kailash

    2013-10-01

    Radiation-induced aberration in the neuronal integrity and cognitive functions are well known. However, there is a lacuna between sparsely reported immediate effects and the well documented delayed effects of radiation on cognitive functions. The present study was aimed at investigating the radiation-dose dependent incongruities in the early cognitive changes, employing two approaches, behavioral functions and diffusion tensor imaging (DTI). Six-month old female C57BL/6 mice were exposed to whole-body doses of 2, 5 and 8 Gy of γ-radiation and 24 h after exposure, the stress and anxiety levels were examined in the open-field test (OFT). Forty-eight hours after irradiation, the hippocampal dependent recognition memory was observed by the novel object recognition task (NORT), and the cognitive functions related to memory processing and recall were tested using the elevated plus maze (EPM). Magnetic resonance imaging, including diffusion tensor imaging (DTI) was done at 48-hour post-irradiation to visualize microstructural damage in brain parenchyma. Our results indicate a complex dose independent effect on the cognitive functions immediately after exposure to gamma rays. Radiation exposure caused short-term memory dysfunctions at lower doses, which were seen to be abrogated at higher doses, but the long-term memory processing was disrupted at higher doses. The hippocampus emerged as one of the sensitive regions to be affected by whole-body exposure to gamma rays, which led to profound immediate alterations in cognitive functions. Furthermore, the results indicate a cognitive recovery process, which might be dependent on the extent of damage to the hippocampal region. The present study also emphasizes the importance of further research to unravel the complex pattern of neurobehavioral responses immediately following ionizing radiation exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1G93A amyotrophic lateral sclerosis mice

    Directory of Open Access Journals (Sweden)

    Rachael Bartlett

    2017-03-01

    Full Text Available Background Amyotrophic lateral sclerosis (ALS is a rapidly progressive neurodegenerative disease characterised by the accumulation of aggregated proteins, microglia activation and motor neuron loss. The mechanisms underlying neurodegeneration and disease progression in ALS are unknown, but the ATP-gated P2X7 receptor channel is implicated in this disease. Therefore, the current study aimed to examine P2X7 in the context of neurodegeneration, and investigate whether the P2X7 antagonist, Brilliant Blue G (BBG, could alter disease progression in a murine model of ALS. Methods Human SOD1G93A transgenic mice, which normally develop ALS, were injected with BBG or saline, three times per week, from pre-onset of clinical disease (62–64 days of age until end-stage. During the course of treatment mice were assessed for weight, clinical score and survival, and motor coordination, which was assessed by rotarod performance. Various parameters from end-stage mice were assessed as follows. Motor neuron loss and microgliosis were assessed by immunohistochemistry. Relative amounts of lumbar spinal cord SOD1 and P2X7 were quantified by immunoblotting. Serum monocyte chemoattractant protein-1 was measured by ELISA. Splenic leukocyte populations were assessed by flow cytometry. Relative expression of splenic and hepatic P2X7 mRNA was measured by quantitative real-time PCR. Lumbar spinal cord SOD1 and P2X7 were also quantified by immunoblotting in untreated female SOD1G93A mice during the course of disease. Results BBG treatment reduced body weight loss in SOD1G93A mice of combined sex, but had no effect on clinical score, survival or motor coordination. BBG treatment reduced body weight loss in female, but not male, SOD1G93A mice. BBG treatment also prolonged survival in female, but not male, SOD1G93A mice, extending the mean survival time by 4.3% in female mice compared to female mice treated with saline. BBG treatment had no effect on clinical score or motor

  11. P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1G93A amyotrophic lateral sclerosis mice

    Science.gov (United States)

    Bartlett, Rachael; Sluyter, Vanessa; Watson, Debbie

    2017-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterised by the accumulation of aggregated proteins, microglia activation and motor neuron loss. The mechanisms underlying neurodegeneration and disease progression in ALS are unknown, but the ATP-gated P2X7 receptor channel is implicated in this disease. Therefore, the current study aimed to examine P2X7 in the context of neurodegeneration, and investigate whether the P2X7 antagonist, Brilliant Blue G (BBG), could alter disease progression in a murine model of ALS. Methods Human SOD1G93A transgenic mice, which normally develop ALS, were injected with BBG or saline, three times per week, from pre-onset of clinical disease (62–64 days of age) until end-stage. During the course of treatment mice were assessed for weight, clinical score and survival, and motor coordination, which was assessed by rotarod performance. Various parameters from end-stage mice were assessed as follows. Motor neuron loss and microgliosis were assessed by immunohistochemistry. Relative amounts of lumbar spinal cord SOD1 and P2X7 were quantified by immunoblotting. Serum monocyte chemoattractant protein-1 was measured by ELISA. Splenic leukocyte populations were assessed by flow cytometry. Relative expression of splenic and hepatic P2X7 mRNA was measured by quantitative real-time PCR. Lumbar spinal cord SOD1 and P2X7 were also quantified by immunoblotting in untreated female SOD1G93A mice during the course of disease. Results BBG treatment reduced body weight loss in SOD1G93A mice of combined sex, but had no effect on clinical score, survival or motor coordination. BBG treatment reduced body weight loss in female, but not male, SOD1G93A mice. BBG treatment also prolonged survival in female, but not male, SOD1G93A mice, extending the mean survival time by 4.3% in female mice compared to female mice treated with saline. BBG treatment had no effect on clinical score or motor coordination in

  12. Reproducibility and accuracy of body composition assessments in mice by dual energy x-ray absorptiometry and time domain nuclear magnetic resonance.

    Science.gov (United States)

    Halldorsdottir, Solveig; Carmody, Jill; Boozer, Carol N; Leduc, Charles A; Leibel, Rudolph L

    2009-01-01

    OBJECTIVE: To assess the accuracy and reproducibility of dual-energy absorptiometry (DXA; PIXImus(™)) and time domain nuclear magnetic resonance (TD-NMR; Bruker Optics) for the measurement of body composition of lean and obese mice. SUBJECTS AND MEASUREMENTS: Thirty lean and obese mice (body weight range 19-67 g) were studied. Coefficients of variation for repeated (x 4) DXA and NMR scans of mice were calculated to assess reproducibility. Accuracy was assessed by comparing DXA and NMR results of ten mice to chemical carcass analyses. Accuracy of the respective techniques was also assessed by comparing DXA and NMR results obtained with ground meat samples to chemical analyses. Repeated scans of 10-25 gram samples were performed to test the sensitivity of the DXA and NMR methods to variation in sample mass. RESULTS: In mice, DXA and NMR reproducibility measures were similar for fat tissue mass (FTM) (DXA coefficient of variation [CV]=2.3%; and NMR CV=2.8%) (P=0.47), while reproducibility of lean tissue mass (LTM) estimates were better for DXA (1.0%) than NMR (2.2%) (advantages compared to DXA, such as speed of measurement and the ability to scan unanesthetized animals.

  13. Repeated sensory contact with aggressive mice rapidly leads to an anticipatory increase in core body temperature and physical activity that precedes the onset of aversive responding.

    Science.gov (United States)

    Pardon, Marie-Christine; Kendall, David A; Pérez-Diaz, Fernando; Duxon, Mark S; Marsden, Charles A

    2004-08-01

    The present study investigated whether the 'psychological threat' induced by sensory contact with an aggressive conspecific would be a sufficient factor in inducing behavioural and physiological disturbances. Repeated sensory contact with an aggressive mouse (social threat) in a partitioned cage was compared with repeated exposure to a novel partitioned cage in male NMRI mice. We first examined parameters of stress responsiveness (body weight, plasma corticosterone levels, frequency of self-grooming and defecation). The temperature and physical activity responses to stress were also recorded during and after the 4 weeks of stress using radiotelemetry. Finally, cognitivo-emotional performance was assessed after acute stress and 2 and 4 weeks of stress by measuring decision making, sequential alternation performance and behaviour in the elevated T-maze. Social threat had a greater impact than novel cage exposure on most parameters of stress responsiveness, although mice did not habituate to either stressor. Social threat rapidly led to an anticipatory rise in core body temperature and physical activity before the scheduled stress sessions. Such anticipation developed within the first week and persisted for 9 days after ending the stress procedure. Some memory impairment in the sequential alternation test was found in stressed mice, independent of the stressor. After 4 weeks of stress, inhibitory avoidance in the elevated T-maze was enhanced in socially stressed mice and reduced in novel cage mice. The sustained anticipation of stress in the social threat group preceded aversive responding. It remains to be established whether anticipation contributes to the development of aversive responses.

  14. Glucosamine enhances body weight gain and reduces insulin response in mice fed chow diet but mitigates obesity, insulin resistance and impaired glucose tolerance in mice high-fat diet.

    Science.gov (United States)

    Hwang, Ji-Sun; Park, Ji-Won; Nam, Moon-Suk; Cho, Hyeongjin; Han, Inn-Oc

    2015-03-01

    This study investigated the potential of glucosamine (GlcN) to affect body weight gain and insulin sensitivity in mice normal and at risk for developing diabetes. Male C57BL/6J mice were fed either chow diet (CD) or a high fat diet (HFD) and the half of mice from CD and HFD provided with a solution of 10% (w/v) GlcN. Total cholesterol and nonesterified free fatty acid levels were determined. Glucose tolerance test and insulin tolerance test were performed. HepG2 human hepatoma cells or differentiated 3T3-L1 adipocytes were stimulated with insulin under normal (5 mM) or high glucose (25 mM) conditions. Effect of GlcN on 2-deoxyglucose (2-DG) uptake was determined. JNK and Akt phosphorylation and nucleocytoplasmic protein O-GlcNAcylation were assayed by Western blotting. GlcN administration stimulated body weight gain (6.58±0.82 g vs. 11.1±0.42 g), increased white adipose tissue fat mass (percentage of bodyweight, 3.7±0.32 g vs. 5.61±0.34 g), and impaired the insulin response in livers of mice fed CD. However, GlcN treatment in mice fed HFD led to reduction of body weight gain (18.02±0.66 g vs. 16.22±0.96 g) and liver weight (2.27±0.1 vs. 1.85±0.12 g). Furthermore, obesity-induced insulin resistance and impaired Akt insulin signaling in the liver were alleviated by GlcN administration. GlcN inhibited the insulin response under low (5 mM) glucose conditions, whereas it restored the insulin response for Akt phosphorylation under high (25 mM) glucose conditions in HepG2 and 3T3-L1 cells. Uptake of 2-DG increased upon GlcN treatment under 5 mM glucose compared to control, whereas insulin-stimulated 2-DG uptake decreased under 5 mM and increased under 25 mM glucose in differentiated 3T3-L1 cells. Our results show that GlcN increased body weight gain and reduced the insulin response for glucose maintenance when fed to normal CD mice, whereas it alleviated body weight gain and insulin resistance in HFD mice. Therefore, the current data support the integrative

  15. Effects of Dietary Glutamine Supplementation on the Body Composition and Protein Status of Early-Weaned Mice Inoculated with Mycobacterium bovis Bacillus Calmette-Guerin

    Science.gov (United States)

    Rogero, Marcelo Macedo; Borges, Maria Carolina; de Castro, Inar Alves; Pires, Ivanir S. O.; Borelli, Primavera; Tirapegui, Julio

    2011-01-01

    Glutamine, one of the most abundant amino acids found in maternal milk, favors protein anabolism. Early-weaned babies are deprived of this source of glutamine, in a period during which endogenous biosynthesis may be insufficient for tissue needs in states of metabolic stress, mainly during infections. The objective of this study was to verify the effects of dietary glutamine supplementation on the body composition and visceral protein status of early-weaned mice inoculated with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Mice were weaned early on their 14th day of life and seperated into two groups, one of which was fed a glutamine-free diet (n = 16) and the other a glutamine-supplemented diet (40 g/kg diet) (n = 16). At 21 days of age, some mice were intraperitoneally injected with BCG. Euthanasia was performed at the 28th day of age. BCG inoculation significantly reduced body weight (P < 0.001), lean mass (P = 0.002), water (P = 0.006), protein (P = 0.007) and lipid content (P = 0.001) in the carcass. Dietary glutamine supplementation resulted in a significant increase in serum IGF-1 (P = 0.019) and albumin (P = 0.025) concentration, muscle protein concentration (P = 0.035) and lipid content (P = 0.002) in the carcass. In conclusion, dietary glutamine supplementation had a positive influence on visceral protein status but did not affect body composition in early-weaned mice inoculated with BCG. PMID:22254124

  16. Effects of dietary glutamine supplementation on the body composition and protein status of early-weaned mice inoculated with Mycobacterium bovis Bacillus Calmette-Guerin.

    Science.gov (United States)

    Rogero, Marcelo Macedo; Borges, Maria Carolina; de Castro, Inar Alves; Pires, Ivanir S O; Borelli, Primavera; Tirapegui, Julio

    2011-09-01

    Glutamine, one of the most abundant amino acids found in maternal milk, favors protein anabolism. Early-weaned babies are deprived of this source of glutamine, in a period during which endogenous biosynthesis may be insufficient for tissue needs in states of metabolic stress, mainly during infections. The objective of this study was to verify the effects of dietary glutamine supplementation on the body composition and visceral protein status of early-weaned mice inoculated with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Mice were weaned early on their 14th day of life and seperated into two groups, one of which was fed a glutamine-free diet (n = 16) and the other a glutamine-supplemented diet (40 g/kg diet) (n = 16). At 21 days of age, some mice were intraperitoneally injected with BCG. Euthanasia was performed at the 28th day of age. BCG inoculation significantly reduced body weight (P glutamine supplementation resulted in a significant increase in serum IGF-1 (P = 0.019) and albumin (P = 0.025) concentration, muscle protein concentration (P = 0.035) and lipid content (P = 0.002) in the carcass. In conclusion, dietary glutamine supplementation had a positive influence on visceral protein status but did not affect body composition in early-weaned mice inoculated with BCG.

  17. Effects of Dietary Glutamine Supplementation on the Body Composition and Protein Status of Early-Weaned Mice Inoculated with Mycobacterium bovis Bacillus Calmette-Guerin

    Directory of Open Access Journals (Sweden)

    Ivanir S. O. Pires

    2011-08-01

    Full Text Available Glutamine, one of the most abundant amino acids found in maternal milk, favors protein anabolism. Early-weaned babies are deprived of this source of glutamine, in a period during which endogenous biosynthesis may be insufficient for tissue needs in states of metabolic stress, mainly during infections. The objective of this study was to verify the effects of dietary glutamine supplementation on the body composition and visceral protein status of early-weaned mice inoculated with Mycobacterium bovis Bacillus Calmette-Guérin (BCG. Mice were weaned early on their 14th day of life and seperated into two groups, one of which was fed a glutamine-free diet (n = 16 and the other a glutamine-supplemented diet (40 g/kg diet (n = 16. At 21 days of age, some mice were intraperitoneally injected with BCG. Euthanasia was performed at the 28th day of age. BCG inoculation significantly reduced body weight (P < 0.001, lean mass (P = 0.002, water (P = 0.006, protein (P = 0.007 and lipid content (P = 0.001 in the carcass. Dietary glutamine supplementation resulted in a significant increase in serum IGF-1 (P = 0.019 and albumin (P = 0.025 concentration, muscle protein concentration (P = 0.035 and lipid content (P = 0.002 in the carcass. In conclusion, dietary glutamine supplementation had a positive influence on visceral protein status but did not affect body composition in early-weaned mice inoculated with BCG.

  18. Effects of p-nonylphenol and resveratrol on body and organ weight and in vivo fertility of outbred CD-1 mice

    Directory of Open Access Journals (Sweden)

    Boubelik Michael

    2003-03-01

    Full Text Available Abstract The aim of this study was to analyse the multigenerational effects of para-nonylphenol (NP and resveratrol (RES on the body weight, organ weight and reproductive fitness of outbred CD-1 mice. The data indicate that in male mice, NP had an effect on the weight of selected reproductive organs and the kidneys in the parental (P generation males. Effects on selected reproductive organs, the liver and kidneys in the F1-generation males were also seen. In females, effects of NP on body weight and kidney weight were seen in the P generation, but no effects on any measured parameter were seen in the F1 generation. RES had no effect on body weight but did have some effect on selected male and female reproductive organs in the P generation. RES altered the spleen and liver weights of P-generation males and the kidney weight of F1-generation males. Acrosomal integrity (using a monoclonal antibody against intra-acrosomal sperm proteins was assessed for both generations of NP- and RES-treated mice. A significant reduction in acrosomal integrity was seen in both generations of NP-treated, but not in RES-treated, mice. Fewer offspring were observed in the second litter of the F2 generation of mice treated with NP; no similar effect was seen in RES-treated mice. The litter sex ratio was not different from controls. Unlike RES, NP had a negative effect on spermatogenesis and sperm quality with a resultant impact on in vivo fertility.

  19. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies

    Directory of Open Access Journals (Sweden)

    Mantis John G

    2004-10-01

    Full Text Available Abstract Background The high fat, low carbohydrate ketogenic diet (KD was developed as an alternative to fasting for seizure management. While the mechanisms by which fasting and the KD inhibit seizures remain speculative, alterations in brain energy metabolism are likely involved. We previously showed that caloric restriction (CR inhibits seizure susceptibility by reducing blood glucose in the epileptic EL mouse, a natural model for human multifactorial idiopathic epilepsy. In this study, we compared the antiepileptic and anticonvulsant efficacy of the KD with that of CR in adult EL mice with active epilepsy. EL mice that experienced at least 15 recurrent complex partial seizures were fed either a standard diet unrestricted (SD-UR or restricted (SD-R, and either a KD unrestricted (KD-UR or restricted (KD-R. All mice were fasted for 14 hrs prior to diet initiation. A new experimental design was used where each mouse in the diet-restricted groups served as its own control to achieve a 20–23% body weight reduction. Seizure susceptibility, body weights, and the levels of plasma glucose and β-hydroxybutyrate were measured once/week over a nine-week treatment period. Results Body weights and blood glucose levels remained high over the testing period in the SD-UR and the KD-UR groups, but were significantly (p Conclusions The results indicate that seizure susceptibility in EL mice is dependent on plasma glucose levels and that seizure control is more associated with the amount than with the origin of dietary calories. Also, CR underlies the antiepileptic and anticonvulsant action of the KD in EL mice. A transition from glucose to ketone bodies for energy is predicted to manage EL epileptic seizures through multiple integrated changes of inhibitory and excitatory neural systems.

  20. Allogeneic compact bone-derived mesenchymal stem cell transplantation increases survival of mice exposed to lethal total body irradiation: a potential immunological mechanism

    Institute of Scientific and Technical Information of China (English)

    Qiao Shukai; Ren Hanyun; Shi Yongjin; Liu Wei

    2014-01-01

    Background Radiation-induced injury after accidental or therapeutic total body exposure to ionizing radiation has serious pathophysiological consequences,and currently no effective therapy exists.This study was designed to investigate whether transplantation of allogeneic murine compact bone derived-mesenchymal stem cells (CB-MSCs) could improve the survival of mice exposed to lethal dosage total body irradiation (TBI),and to explore the potential immunoprotective role of MSCs.Methods BALB/c mice were treated with 8 Gy TBI,and then some were administered CB-MSCs isolated from C57BL/6 mice.Survival rates and body weight were analyzed for 14 days post-irradiation.At three days post-irradiation,we evaluated IFN-Y and IL-4 concentrations; CD4+CD25+Foxp3+ regulatory T cell (Treg) percentage; CXCR3,CCR5,and CCR7 expressions on CD3+T cells; and splenocyte T-bet and GATA-3 mRNA levels.CB-MSC effects on bone marrow hemopoiesis were assessed via colony-forming unit granulocyte/macrophage (CFU-GM) assay.Results After lethal TBI,compared to non-transplanted mice,CB-MSC-transplanted mice exhibited significantly increased survival,body weight,and CFU-GM counts of bone marrow cells (P<0.05),as well as higher Treg percentages,reduced IFN-Y,CXCR3 and CCR5 down-regulation,and CCR7 up-regulation.CB-MSC transplantation suppressed Th1 immunity.Irradiated splenocytes directly suppressed CFU-GM formation from bone marrow cells,and CB-MSC co-culture reversed this inhibition.Conclusion Allogeneic CB-MSC transplantation attenuated radiation-induced hematopoietic toxicity,and provided immunoprotection by alleviating lymphocyte-mediated CFU-GM inhibition,expanding Tregs,regulating T cell chemokine receptor expressions,and skewing the Th1/Th2 balance toward anti-inflammatory Th2 polarization.

  1. Studies on immunity to Schistosoma mansoni in vivo: whole-body irradiation has no effect on vaccine-induced resistance in mice

    Energy Technology Data Exchange (ETDEWEB)

    Vignali, D.A.A.; Bickle, Q.D.; Taylor, M.G.

    1988-02-01

    Actively immunized mice, whole-body irradiated with 650 or 525 rad., manifested comparable levels of resistance to Schistosoma mansoni compared with unirradiated, immunized mice in spite of a marked reduction in circulating leucocytes and platelets, and despite an abrogation of delayed-type hypersensitivity (DTH) (Type IV) reponse to schistosomular antigens. However, limited histopathological comparison of lung sections from irradiated and unirradiated mice 7 days post-challenge showed that cellular reactions ('foci') around parasites were similar in size and cellular composition except that in irradiated mice, eosinophils were poorly represented both in the foci and in lung tissue in general. Neither presumed immune complex-mediated (Type III, Arthus reaction) hypersensitivity nor serum anti-schistosomulum extract antibody levels were affected. The pattern of /sup 125/I-labelled schistosomular surface antigens immunoprecipitated with serum from irradiated and unirradiated mice was essentially similar. These results are consistent with antibody playing an important role in vaccine-induced immunity in mice but suggest that radiosensitive T cell function and radiosensitive cells, such as platelets and polymorphonuclear cells, including eosinophils, may not be essential.

  2. Evaluation of Methionine Content in a High-Fat and Choline-Deficient Diet on Body Weight Gain and the Development of Non-Alcoholic Steatohepatitis in Mice.

    Science.gov (United States)

    Chiba, Tsuyoshi; Suzuki, Sachina; Sato, Yoko; Itoh, Tatsuki; Umegaki, Keizo

    2016-01-01

    Non-alcoholic steatohepatitis (NASH) is a globally recognized liver disease. A methionine- and choline-deficient diet is used to induce NASH in mice; however, this diet also causes severe body weight loss. To resolve this issue, we examined the effects of methionine content in a high-fat and choline-deficient (HFCD) diet on body weight and the development of NASH in mice. C57BL/6J mice (male, 10 weeks of age) were fed an L-amino acid rodent (control) diet, high-fat (HF) diet, or HFCD diet containing various amounts of methionine (0.1-0.6% (w/w)) for 12 weeks. Plasma lipid levels, hepatic lipid content and inflammatory marker gene expression were measured, and a pathological analysis was conducted to evaluate NASH. The 0.1% methionine in HFCD diet suppressed body weight gain, which was lower than that with control diet. On the other hand, the 0.2% methionine in HFCD diet yielded similar body weight gains as the control diet, while more than 0.4% methionine showed the same body weight gains as the HF diet. Liver weights and hepatic lipid contents were the greatest with 0.1% methionine and decreased in a methionine dose-dependent manner. Pathological analysis, NAFLD activity scores and gene expression levels in the liver revealed that 0.1% and 0.2% methionine for 12 weeks induced NASH, whereas 0.4% and 0.6% methionine attenuated the induction of NASH by HFCD diet. However, the 0.2% methionine in HFCD diet did not induce insulin resistance, despite the body weight gain. The 0.2% methionine in HFCD diet for 12 weeks was able to induce NASH without weight loss.

  3. Adipocyte-specific deficiency of Janus kinase (JAK) 2 in mice impairs lipolysis and increases body weight, and leads to insulin resistance with ageing.

    Science.gov (United States)

    Shi, Sally Yu; Luk, Cynthia T; Brunt, Jara J; Sivasubramaniyam, Tharini; Lu, Shun-Yan; Schroer, Stephanie A; Woo, Minna

    2014-05-01

    The growing obesity epidemic necessitates a better understanding of adipocyte biology and its role in metabolism. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway mediates signalling by numerous cytokines and hormones that regulate adipocyte function, illustrating the physiological importance of adipose JAK-STAT. The aim of this study was to investigate potential roles of adipocyte JAK2, an essential player in the JAK-STAT pathway, in adipocyte biology and metabolism. We generated adipocyte-specific Jak2 knockout (A-Jak2 KO) mice using the Cre-loxP system with Cre expression driven by the Ap2 (also known as Fabp4) promoter. Starting at 2-3 months of age, male and female A-Jak2 KO mice gradually gained more body weight than control littermates primarily due to increased adiposity. This was associated with reduced energy expenditure in A-Jak2 KO mice. In perigonadal adipose tissue, the expression of numerous genes involved in lipid metabolism was differentially regulated. In addition, adipose tissue from A-Jak2 KO mice displayed impaired lipolysis in response to isoprenaline, growth hormone and leptin stimulation, suggesting that adipose JAK2 directly modulates the lipolytic program. Impaired lipid homeostasis was also associated with disrupted adipokine secretion. Accordingly, while glucose metabolism was normal at 2 months of age, by 5-6 months of age, A-Jak2 KO mice had whole-body insulin resistance. Our results suggest that adipocyte JAK2 plays a critical role in the regulation of adipocyte biology and whole-body metabolism. Targeting of the JAK-STAT pathway could be a novel therapeutic option for the treatment of obesity and type 2 diabetes.

  4. Decreased body fat, elevated plasma transforming growth factor-β levels, and impaired BMP4-like signaling in biglycan-deficient mice.

    Science.gov (United States)

    Tang, Tao; Thompson, Joel C; Wilson, Patricia G; Nelson, Christina; Williams, Kevin Jon; Tannock, Lisa R

    2013-01-01

    Biglycan (BGN), a small leucine-rich proteoglycan, binds the pro-fibrotic cytokine transforming growth factor β (TGFβ) and inhibits its bioactivity in vitro. Nevertheless, it is controversial whether BGN plays an inhibitory role in vivo. Therefore, the purpose of this study was to evaluate the effect of BGN deficiency on TGFβ activity in vivo by studying 1-year-old Bgn null and wild-type (WT) mice on an Ldlr-null background. Phenotypic and metabolic characterization showed that the Bgn null mice had lower body weight, shorter body length, and shorter femur length (all p kidney histology. Overall, we propose that this unexpected phenotype arises from the effects of BGN deficiency in vivo to elevate TGFβ levels while decreasing bone morphogenetic protein 4-like signaling.

  5. A disputed evidence on obesity: comparison of the effects of Rcan2 −/− and Rps6kb1 −/− mutations on growth and body weight in C57BL/6J mice* #

    Science.gov (United States)

    Zhao, Jing; Li, Shi-wei; Gong, Qian-qian; Ding, Ling-cui; Jin, Ye-cheng; Zhang, Jian; Gao, Jian-gang; Sun, Xiao-yang

    2016-01-01

    It is widely accepted that body weight and adipose mass are tightly regulated by homeostatic mechanisms, in which leptin plays a critical role through hypothalamic pathways, and obesity is a result of homeostatic disorder. However, in C57BL/6J mice, we found that Rcan2 increases food intake and plays an important role in the development of age-and diet-induced obesity through a leptin-independent mechanism. RCAN2 was initially identified as a thyroid hormone (T3)-responsive gene in human fibroblasts. Expression of RCAN2 is regulated by T3 through the PI3K-Akt/PKB-mTOR-Rps6kb1 signaling pathway. Intriguingly, both Rcan2 −/− and Rps6kb1 −/− mutations were reported to result in lean phenotypes in mice. In this study we compared the effects of these two mutations on growth and body weight in C57BL/6J mice. We observed reduced body weight and lower fat mass in both Rcan2 −/− and Rps6kb1 −/− mice compared to the wild-type mice, and we reported other differences unique to either the Rcan2 −/− or Rps6kb1 −/− mice. Firstly, loss of Rcan2 does not directly alter body length; however, Rcan2 −/− mice exhibit reduced food intake. In contrast, Rps6kb1 −/− mice exhibit abnormal embryonic development, which leads to smaller body size and reduced food intake in adulthood. Secondly, when fed a normal chow diet, Rcan2 −/− mice weigh significantly more than Rps6kb1 −/− mice, but both Rcan2 −/− and Rps6kb1−/− mice develop similar amounts of epididymal fat. On a high-fat diet, Rcan2 −/− mice gain body weight and fat mass at slower rates than Rps6kb1 −/− mice. Finally, using the double-knockout mice (Rcan2 −/− Rps6kb1 −/−), we demonstrate that concurrent loss of Rcan2 and Rps6kb1 has an additive effect on body weight reduction in C57BL/6J mice. Our data suggest that Rcan2 and Rps6kb1 mutations both affect growth and body weight of mice, though likely through different mechanisms. PMID:27604858

  6. Effects of Agave tequilana fructans with different degree of polymerization profiles on the body weight, blood lipids and count of fecal Lactobacilli/Bifidobacteria in obese mice.

    Science.gov (United States)

    Márquez-Aguirre, Ana Laura; Camacho-Ruiz, Rosa Maria; Arriaga-Alba, Myriam; Padilla-Camberos, Eduardo; Kirchmayr, Manuel Reinhart; Blasco, José Luis; González-Avila, Marisela

    2013-08-01

    Fructans are dietary fibers with beneficial effects on the gastrointestinal physiology and offer a promising approach for the treatment of some metabolic disorders associated with obesity. In vitro and in vivo studies were developed to test the safety of fructans obtained from Agave tequilana Weber var. azul. Additionally, an in vivo experiment using a diet-induced obesity model was performed to compare the effect of agave fructans with different degree of polymerization (DP) profiles: agave fructans with DP > 10 (LcF), agave FOS with DP agave fructans with and without demineralization (dTF, TF) versus commercial chicory fructans (OraftiSynergy1™) on the body weight change, fat, total cholesterol, triglycerides and count of fecal Lactobacillus spp. and Bifidobacterium spp. Results showed that A. tequilana fructans were not mutagenic and were safe even at a dose of 5 g per kg b.w. Obese mice that received ScF showed a significant decrease in body weight gain, fat tissue and total cholesterol without increasing the count of fecal Bifidobacteria. Whereas, obese mice that received LcF and TF showed decreased triglycerides and an increased count of fecal Bifidobacteria. Interestingly, although obese mice that received dTF did not show changes in body weight gain, fat tissue, total cholesterol or triglycerides, they showed an increase in the count of Bifidobacteria. These results demonstrate that both the degree of polymerization and the demineralization process can influence the biological activity of agave fructans.

  7. Decreased body weight and hepatic steatosis with altered fatty acid ethanolamide metabolism in aged L-Fabp -/- mice.

    Science.gov (United States)

    Newberry, Elizabeth P; Kennedy, Susan M; Xie, Yan; Luo, Jianyang; Crooke, Rosanne M; Graham, Mark J; Fu, Jin; Piomelli, Daniele; Davidson, Nicholas O

    2012-04-01

    The tissue-specific sources and regulated production of physiological signals that modulate food intake are incompletely understood. Previous work showed that L-Fabp(-/-) mice are protected against obesity and hepatic steatosis induced by a high-fat diet, findings at odds with an apparent obesity phenotype in a distinct line of aged L-Fabp(-/-) mice. Here we show that the lean phenotype in L-Fabp(-/-) mice is recapitulated in aged, chow-fed mice and correlates with alterations in hepatic, but not intestinal, fatty acid amide metabolism. L-Fabp(-/-) mice exhibited short-term changes in feeding behavior with decreased food intake, which was associated with reduced abundance of key signaling fatty acid ethanolamides, including oleoylethanolamide (OEA, an agonist of PPARα) and anandamide (AEA, an agonist of cannabinoid receptors), in the liver. These reductions were associated with increased expression and activity of hepatic fatty acid amide hydrolase-1, the enzyme that degrades both OEA and AEA. Moreover, L-Fabp(-/-) mice demonstrated attenuated responses to OEA administration, which was completely reversed with an enhanced response after administration of a nonhydrolyzable OEA analog. These findings demonstrate a role for L-Fabp in attenuating obesity and hepatic steatosis, and they suggest that hepatic fatty acid amide metabolism is altered in L-Fabp(-/-) mice.

  8. Agavins from Agave angustifolia and Agave potatorum affect food intake, body weight gain and satiety-related hormones (GLP-1 and ghrelin) in mice.

    Science.gov (United States)

    Santiago-García, Patricia Araceli; López, Mercedes G

    2014-12-01

    Agavins act as a fermentable dietary fiber and have attracted attention due to their potential for reducing the risk of disease. Therefore, we evaluated the effect of supplementation using 10% agavins with a short-degree of polymerization (SDP) from Agave angustifolia Haw. (AASDP) or Agave potatorum Zucc. (APSDP) along with chicory fructans (RSE) as a reference for 5 weeks, on the energy intake, body weight gain, satiety-related hormones from the gut and blood (GLP-1 and ghrelin), blood glucose and lipids, and short-chain fatty acids (SCFAs) from the gut of ad libitum-fed mice. We evaluated the energy intake daily and weight gain every week. At the end of the experiment, portal vein blood samples as well as intestinal segments and the stomach were collected to measure glucagon-like peptide-1 (GLP-1) and ghrelin using RIA and ELISA kits, respectively. Colon SCFAs were measured using gas chromatography. The energy intake, body weight gain, and triglycerides were lower in the fructan-fed mice than in the STD-fed mice. The AASDP, APSDP, and RSE diets increased the serum levels of GLP-1 (40, 93, and 16%, respectively vs. STD) (P ≤ 0.05), whereas ghrelin was decreased (16, 38, and 42%, respectively) (P ≤ 0.05). Butyric acid increased significantly in the APSDP-fed mice (26.59 mmol g(-1), P ≤ 0.001) compared with that in the AASDP- and RSE-fed mice. We concluded that AASDP and APSDP are able to promote the secretion of the peptides involved in appetite regulation, which might help to control obesity and its associated metabolic disorder.

  9. Long-chain SFA at the sn-1, 3 positions of TAG reduce body fat deposition in C57BL/6 mice.

    Science.gov (United States)

    Gouk, Shiou Wah; Cheng, Sit Foon; Mok, Josephine Shiueh Lian; Ong, Augustine Soon Hock; Chuah, Cheng Hock

    2013-12-14

    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.

  10. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice.

    Science.gov (United States)

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA1c, triglyceride and free fatty acid serum concentrations (p body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects.

  11. The effect of dietary prebiotics and probiotics on body weight, large intestine indices, and fecal bile acid profile in wild type and IL10-/- mice.

    Directory of Open Access Journals (Sweden)

    Shiu-Ming Kuo

    Full Text Available Previous studies have suggested roles of probiotics and prebiotics on body weight management and intestinal function. Here, the effects of a dietary prebiotic, inulin (50 mg/g diet, and probiotic, Bfidobacterium animalis subsp. lactis (Bb12 (final dose verified at 10(5 colony forming unit (cfu/g diet, comparable to human consumption, were determined separately and in combination in mice using cellulose-based AIN-93G diets under conditions allowed for the growth of commensal bacteria. Continuous consumption of Bb12 and/or inulin did not affect food intake or body, liver, and spleen weights of young and adult mice. Fecal bile acid profiles were determined by nanoESI-MS/MS tandem mass spectrometry. In the presence of inulin, more bacterial deconjugation of taurine from primary bile acids was observed along with an increased cecal weight. Consumption of inulin in the absence or presence of Bb12 also increased the villus cell height in the proximal colon along with a trend of higher bile acid sulfation by intestinal cells. Feeding Bb12 alone at the physiological dose did not affect bile acid deconjugation and had little effect on other intestinal indices. Although interleukin (IL10-null mice are susceptible to enterocolitis, they maintained the same body weight as the wild type mice under our specific pathogen-free housing condition and showed no signs of inflammation. Nevertheless, they had smaller cecum suggesting a mildly compromised intestinal development even before the disease manifestation. Our results are consistent with the notion that dietary factors such as prebiotics play important roles in the growth of intestinal microbiota and may impact on the intestinal health. In addition, fecal bile acid profiling could potentially be a non-invasive tool in monitoring the intestinal environment.

  12. Technical Note: Partial body irradiation of mice using a customized PMMA apparatus and a clinical 3D planning/LINAC radiotherapy system

    Energy Technology Data Exchange (ETDEWEB)

    Karagounis, Ilias V.; Koukourakis, Michael I., E-mail: targ@her.forthnet.gr, E-mail: mkoukour@med.duth.gr [Department of Radiotherapy–Oncology, Radiopathology and Radiobiology Unit, Medical School, Democritus University of Thrace, Alexandroupolis 68100 (Greece); Abatzoglou, Ioannis M., E-mail: abadzoglou@yahoo.gr [Medical Physics Department, University General Hospital of Alexandroupolis, Alexandroupolis 68100 (Greece)

    2016-05-15

    Purpose: In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. Methods: The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housing an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Results: Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. Conclusions: The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.

  13. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice.

    Science.gov (United States)

    Murase, Takatoshi; Misawa, Koichi; Minegishi, Yoshihiko; Aoki, Masafumi; Ominami, Hideo; Suzuki, Yasuto; Shibuya, Yusuke; Hase, Tadashi

    2011-01-01

    The prevalence of obesity is increasing globally, and obesity is a major risk factor for type 2 diabetes and cardiovascular disease. We investigated the effects of coffee polyphenols (CPP), which are abundant in coffee and consumed worldwide, on diet-induced body fat accumulation. C57BL/6J mice were fed either a control diet, a high-fat diet, or a high-fat diet supplemented with 0.5 to 1.0% CPP for 2-15 wk. Supplementation with CPP significantly reduced body weight gain, abdominal and liver fat accumulation, and infiltration of macrophages into adipose tissues. Energy expenditure evaluated by indirect calorimetry was significantly increased in CPP-fed mice. The mRNA levels of sterol regulatory element-binding protein (SREBP)-1c, acetyl-CoA carboxylase-1 and -2, stearoyl-CoA desaturase-1, and pyruvate dehydrogenase kinase-4 in the liver were significantly lower in CPP-fed mice than in high-fat control mice. Similarly, CPP suppressed the expression of these molecules in Hepa 1-6 cells, concomitant with an increase in microRNA-122. Structure-activity relationship studies of nine quinic acid derivatives isolated from CPP in Hepa 1-6 cells suggested that mono- or di-caffeoyl quinic acids (CQA) are active substances in the beneficial effects of CPP. Furthermore, CPP and 5-CQA decreased the nuclear active form of SREBP-1, acetyl-CoA carboxylase activity, and cellular malonyl-CoA levels. These findings indicate that CPP enhances energy metabolism and reduces lipogenesis by downregulating SREBP-1c and related molecules, which leads to the suppression of body fat accumulation.

  14. The effect of dietary prebiotics and probiotics on body weight, large intestine indices, and fecal bile acid profile in wild type and IL10-/- mice.

    Science.gov (United States)

    Kuo, Shiu-Ming; Merhige, Patricia M; Hagey, Lee R

    2013-01-01

    Previous studies have suggested roles of probiotics and prebiotics on body weight management and intestinal function. Here, the effects of a dietary prebiotic, inulin (50 mg/g diet), and probiotic, Bfidobacterium animalis subsp. lactis (Bb12) (final dose verified at 10(5) colony forming unit (cfu)/g diet, comparable to human consumption), were determined separately and in combination in mice using cellulose-based AIN-93G diets under conditions allowed for the growth of commensal bacteria. Continuous consumption of Bb12 and/or inulin did not affect food intake or body, liver, and spleen weights of young and adult mice. Fecal bile acid profiles were determined by nanoESI-MS/MS tandem mass spectrometry. In the presence of inulin, more bacterial deconjugation of taurine from primary bile acids was observed along with an increased cecal weight. Consumption of inulin in the absence or presence of Bb12 also increased the villus cell height in the proximal colon along with a trend of higher bile acid sulfation by intestinal cells. Feeding Bb12 alone at the physiological dose did not affect bile acid deconjugation and had little effect on other intestinal indices. Although interleukin (IL)10-null mice are susceptible to enterocolitis, they maintained the same body weight as the wild type mice under our specific pathogen-free housing condition and showed no signs of inflammation. Nevertheless, they had smaller cecum suggesting a mildly compromised intestinal development even before the disease manifestation. Our results are consistent with the notion that dietary factors such as prebiotics play important roles in the growth of intestinal microbiota and may impact on the intestinal health. In addition, fecal bile acid profiling could potentially be a non-invasive tool in monitoring the intestinal environment.

  15. The Effect of Dietary Prebiotics and Probiotics on Body Weight, Large Intestine Indices, and Fecal Bile Acid Profile in Wild Type and IL10−/− Mice

    Science.gov (United States)

    Kuo, Shiu-Ming; Merhige, Patricia M.; Hagey, Lee R.

    2013-01-01

    Previous studies have suggested roles of probiotics and prebiotics on body weight management and intestinal function. Here, the effects of a dietary prebiotic, inulin (50 mg/g diet), and probiotic, Bfidobacterium animalis subsp. lactis (Bb12) (final dose verified at 105 colony forming unit (cfu)/g diet, comparable to human consumption), were determined separately and in combination in mice using cellulose-based AIN-93G diets under conditions allowed for the growth of commensal bacteria. Continuous consumption of Bb12 and/or inulin did not affect food intake or body, liver, and spleen weights of young and adult mice. Fecal bile acid profiles were determined by nanoESI-MS/MS tandem mass spectrometry. In the presence of inulin, more bacterial deconjugation of taurine from primary bile acids was observed along with an increased cecal weight. Consumption of inulin in the absence or presence of Bb12 also increased the villus cell height in the proximal colon along with a trend of higher bile acid sulfation by intestinal cells. Feeding Bb12 alone at the physiological dose did not affect bile acid deconjugation and had little effect on other intestinal indices. Although interleukin (IL)10-null mice are susceptible to enterocolitis, they maintained the same body weight as the wild type mice under our specific pathogen-free housing condition and showed no signs of inflammation. Nevertheless, they had smaller cecum suggesting a mildly compromised intestinal development even before the disease manifestation. Our results are consistent with the notion that dietary factors such as prebiotics play important roles in the growth of intestinal microbiota and may impact on the intestinal health. In addition, fecal bile acid profiling could potentially be a non-invasive tool in monitoring the intestinal environment. PMID:23555939

  16. Hyperplasia and hypertrophy of pulmonary neuroepithelial bodies, presumed airway hypoxia sensors, in hypoxia-inducible factor prolyl hydroxylase-deficient mice.

    Science.gov (United States)

    Pan, Jie; Bishop, Tammie; Ratcliffe, Peter J; Yeger, Herman; Cutz, Ernest

    2016-01-01

    Pulmonary neuroepithelial bodies (NEBs), presumed polymodal airway sensors, consist of innervated clusters of amine (serotonin) and peptide-producing cells. While NEB responses to acute hypoxia are mediated by a membrane-bound O2 sensor complex, responses to sustained and/or chronic hypoxia involve a prolyl hydroxylase (PHD)-hypoxia-inducible factor-dependent mechanism. We have previously reported hyperplasia of NEBs in the lungs of Phd1-/- mice associated with enhanced serotonin secretion. Here we use a novel multilabel immunofluorescence method to assess NEB distribution, frequency, and size, together with the number and size of NEB cell nuclei, and to colocalize multiple cytoplasmic and nuclear epitopes in the lungs of Phd1-/-, Phd2+/-, and Phd3-/- mice and compare them with wild-type controls. To define the mechanisms of NEB cell hyperplasia, we used antibodies against Mash1 and Prox1 (neurogenic genes involved in NEB cell differentiation/maturation), hypoxia-inducible factor-1alpha, and the cell proliferation marker Ki67. Morphometric analysis of (% total lung area) immunostaining for synaptophysin (% synaptophysin), a cytoplasmic marker of NEB cells, was significantly increased in Phd1-/- and Phd3-/- mice compared to wild-type mice. In addition, NEB size and the number and size of NEB nuclei were also significantly increased, indicating that deficiency of Phds is associated with striking hyperplasia and hypertrophy of NEBs. In Phd2+/- mice, while mean % synaptophysin was comparable to wild-type controls, the NEB size was moderately increased, suggesting an effect even in heterozygotes. NEBs in all Phd-deficient mice showed increased expression of Mash1, Prox1, Ki67, and hypoxia-inducible factor-1alpha, in keeping with enhanced differentiation from precursor cells and a minor component of cell proliferation. Since the loss of PHD activity mimics chronic hypoxia, our data provide critical information on the potential role of PHDs in the pathobiology and

  17. Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat

    DEFF Research Database (Denmark)

    Hidalgo, Juan; Florit, Sergi; Giralt, Mercedes

    2010-01-01

    Interleukin-6 (IL-6) is a major cytokine involved in both normal physiological brain functions and underlying significant neuropathology. IL-6 has been suggested to play a role in the control of body weight but the results are somewhat controversial. In this study we have challenged transgenic mi......-fat diet feeding. In summary, the present results demonstrate that brain-specific IL-6 controls body weight which may be a significant factor in physiological conditions and/or in diseases causing neuroinflammation....

  18. Medium-Chain Enriched Diacylglycerol (MCE-DAG) Oil Decreases Body Fat Mass in Mice by Increasing Lipolysis and Thermogenesis in Adipose Tissue.

    Science.gov (United States)

    Kim, Haeun; Choe, Jee-Hwan; Choi, Jong Hun; Kim, Hun Jung; Park, Soo Hyun; Lee, Moon Won; Kim, Wooki; Go, Gwang-Woong

    2017-08-01

    Medium chain fatty acid (MCFA) escapes the formation of chylomicrons in the small intestine, resulting in energy expenditure through beta-oxidation. Diacylglycerol (DAG) is susceptible to oxidation rather than being stored in the adipose tissue. This study was conducted to verify the effect of MCE-DAG oil on body fat mass in vivo. Male C57BL/6 mice were randomly assigned to four groups (n = 12) as follows: (1) normal diet (18% kcal from fat), (2) canola oil as a control (40% kcal from canola oil), (3) MCE-DAG10 (10% kcal from MCE-DAG + 30% kcal from canola oil), and (4) MCE-DAG20 (20% kcal from MCE-DAG + 20% kcal from canola oil). The body weight and fat mass of MCE-DAG20 group mice were decreased relative to those of control mice (P lipase (HSL) and adipose triglyceride lipase (ATGL) were increased in the MCE-DAG20 group relative to the control in white adipose tissue (WAT) (P adipose tissue (BAT) (P lipolysis in WAT and thermogenesis in BAT.

  19. Acute toxicity impacts of Euphorbia hirta L extract on behavior, organs body weight index and histopathology of organs of the mice and Artemia salina

    Directory of Open Access Journals (Sweden)

    Mohammad Abu Basma Rajeh

    2012-01-01

    Full Text Available Background: The methanol extract of Euphorbia hirta L (Euphorbiaceae, which is used in traditional medicines, was tested for in vivo toxicity. Materials and Methods: In vivo brine shrimp lethality assay and oral acute toxicity study at single high dose of 5000 mg/kg and observation for 14 days in mice were used to study the toxic effect of E. hirta. Results: Brine shrimp lethality assay was used to calculate the median lethal concentration (LC 50 of E. hirta (for leaves, stems, flowers and roots methanolic extracts at concentrations from 100 to 0.07 mg/ml. The LC 50 values of 1.589, 1.420, 0.206 and 0.0827 mg/ml were obtained for stems, leaves, flowers and roots, respectively. Potassium dichromate (the positive control had LC 50 value of 0.00758 mg/ml. The acute oral toxicity study of the leaf extract resulted in one third mortality and mild behavioral changes among the treated mice. No significant statistical differences found between body weight, relative (% and absolute (g organ weights of treated and untreated groups (P> 0.05. Gross and microscopic examination of the vital organ tissues revealed no differences between control and treated mice. All the tissues appeared normal. Conclusions : E. hirta leaves methanol extract has exhibited mild toxic effects in mice.

  20. Differential impact of hepatic deficiency and total body inhibition of MTP on cholesterol metabolism and RCT in mice.

    Science.gov (United States)

    Dikkers, Arne; Annema, Wijtske; de Boer, Jan Freark; Iqbal, Jahangir; Hussain, M Mahmood; Tietge, Uwe J F

    2014-05-01

    Because apoB-containing lipoproteins are pro-atherogenic and their secretion by liver and intestine largely depends on microsomal triglyceride transfer protein (MTP) activity, MTP inhibition strategies are actively pursued. How decreasing the secretion of apoB-containing lipoproteins affects intracellular rerouting of cholesterol is unclear. Therefore, the aim of the present study was to determine the effects of reducing either systemic or liver-specific MTP activity on cholesterol metabolism and reverse cholesterol transport (RCT) using a pharmacological MTP inhibitor or a genetic model, respectively. Plasma total cholesterol and triglyceride levels were decreased in both MTP inhibitor-treated and liver-specific MTP knockout (L-Mttp(-/-)) mice (each P small but significant decrease in fecal bile acid excretion was observed in inhibitor-treated mice (P excretion was substantially increased by 75% (P intestinal absorption. In contrast, in L-Mttp(-/-) mice both fecal neutral sterol and bile acid excretion remained unchanged. However, while total RCT increased in inhibitor-treated mice (P < 0.01), it surprisingly decreased in L-Mttp(-/-) mice (P < 0.05). These data demonstrate that: i) pharmacological MTP inhibition increases RCT, an effect that might provide additional clinical benefit of MTP inhibitors; and ii) decreasing hepatic MTP decreases RCT, pointing toward a potential contribution of hepatocyte-derived VLDLs to RCT.

  1. Immunological network activation by low-dose rate irradiation. Analysis of cell populations and cell surface molecules in whole body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Ina, Yasuhiro; Sakai, Kazuo [Central Research Inst. of Electric Power Industry, Low Dose Radiation Research Center, Komae, Tokyo (Japan)

    2003-07-01

    The effects of low-dose rate whole body irradiation on biodefense and immunological systems were investigated using female C57BL/6 (B6) mice. These B6 mice were exposed continuously to {gamma}-rays from a {sup 137}Cs source in the long-term low-dose rate irradiation facility at CRIEPI for 0 - 12 weeks at a dose rate of 0.95 mGy/hr. In the bone marrow, thymus, spleen, lymph nodes, and peripheral blood of the irradiated mice, changes in cell populations and cell surface molecules were examined. The cell surface functional molecules (CD3, CD4, CD8, CD19, CD45R/B220, ICAM-1, Fas, NK-1.1, CXCR4, and CCR5), and activation molecules (THAM, CD28, CD40, CD44H, CD70, B7-1, B7-2, OX-40 antigen, CTLA-4, CD30 ligand, and CD40 ligand) were analyzed by flow cytometry. The percentage of CD4{sup +} T cells and cell surface CD8 molecule expressions on the CD8{sup +} T cells increased significantly to 120-130% after 3 weeks of the irradiation, compared to non-irradiated control mice. On the other hand, the percentage of CD45R/B220{sup +} CD40{sup +} B cells, which is one of the immunological markers of inflammation, infection, tumor, and autoimmune disease, decreased significantly to 80-90% between the 3rd to 5th week of irradiation. There was no significant difference in other cell population rates and cell surface molecule expression. Furthermore, abnormal T cells bearing mutated T cell receptors induced by high-dose rate irradiation were not observed throughout this study. These results suggest that low-dose rate irradiation activates the immunological status of the whole body. (author)

  2. COH-SR4 reduces body weight, improves glycemic control and prevents hepatic steatosis in high fat diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    James Lester Figarola

    Full Text Available Obesity is a chronic metabolic disorder caused by imbalance between energy intake and expenditure, and is one of the principal causative factors in the development of metabolic syndrome, diabetes and cancer. COH-SR4 ("SR4" is a novel investigational compound that has anti-cancer and anti-adipogenic properties. In this study, the effects of SR4 on metabolic alterations in high fat diet (HFD-induced obese C57BL/J6 mice were investigated. Oral feeding of SR4 (5 mg/kg body weight. in HFD mice for 6 weeks significantly reduced body weight, prevented hyperlipidemia and improved glycemic control without affecting food intake. These changes were associated with marked decreases in epididymal fat mass, adipocyte hypertrophy, increased plasma adiponectin and reduced leptin levels. SR4 treatment also decreased liver triglycerides, prevented hepatic steatosis, and normalized liver enzymes. Western blots demonstrated increased AMPK activation in liver and adipose tissues of SR4-treated HFD obese mice, while gene analyses by real time PCR showed COH-SR4 significantly suppressed the mRNA expression of lipogenic genes such as sterol regulatory element binding protein-1c (Srebf1, acetyl-Coenzyme A carboxylase (Acaca, peroxisome proliferator-activated receptor gamma (Pparg, fatty acid synthase (Fasn, stearoyl-Coenzyme A desaturase 1 (Scd1, carnitine palmitoyltransferase 1a (Cpt1a and 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr, as well as gluconeogenic genes phosphoenolpyruvate carboxykinase 1 (Pck1 and glucose-6-phosphatase (G6pc in the liver of obese mice. In vitro, SR4 activates AMPK independent of upstream kinases liver kinase B1 (LKB1 and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ. Together, these data suggest that SR4, a novel AMPK activator, may be a promising therapeutic compound for treatment of obesity, fatty liver disease, and related metabolic disorders.

  3. COH-SR4 reduces body weight, improves glycemic control and prevents hepatic steatosis in high fat diet-induced obese mice.

    Science.gov (United States)

    Figarola, James Lester; Singhal, Preeti; Rahbar, Samuel; Gugiu, Bogdan Gabriel; Awasthi, Sanjay; Singhal, Sharad S

    2013-01-01

    Obesity is a chronic metabolic disorder caused by imbalance between energy intake and expenditure, and is one of the principal causative factors in the development of metabolic syndrome, diabetes and cancer. COH-SR4 ("SR4") is a novel investigational compound that has anti-cancer and anti-adipogenic properties. In this study, the effects of SR4 on metabolic alterations in high fat diet (HFD)-induced obese C57BL/J6 mice were investigated. Oral feeding of SR4 (5 mg/kg body weight.) in HFD mice for 6 weeks significantly reduced body weight, prevented hyperlipidemia and improved glycemic control without affecting food intake. These changes were associated with marked decreases in epididymal fat mass, adipocyte hypertrophy, increased plasma adiponectin and reduced leptin levels. SR4 treatment also decreased liver triglycerides, prevented hepatic steatosis, and normalized liver enzymes. Western blots demonstrated increased AMPK activation in liver and adipose tissues of SR4-treated HFD obese mice, while gene analyses by real time PCR showed COH-SR4 significantly suppressed the mRNA expression of lipogenic genes such as sterol regulatory element binding protein-1c (Srebf1), acetyl-Coenzyme A carboxylase (Acaca), peroxisome proliferator-activated receptor gamma (Pparg), fatty acid synthase (Fasn), stearoyl-Coenzyme A desaturase 1 (Scd1), carnitine palmitoyltransferase 1a (Cpt1a) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr), as well as gluconeogenic genes phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc) in the liver of obese mice. In vitro, SR4 activates AMPK independent of upstream kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). Together, these data suggest that SR4, a novel AMPK activator, may be a promising therapeutic compound for treatment of obesity, fatty liver disease, and related metabolic disorders.

  4. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    Energy Technology Data Exchange (ETDEWEB)

    Hesselbarth, Nico; Pettinelli, Chiara [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Gericke, Martin [Institute of Anatomy, University of Leipzig, D-04103 Leipzig (Germany); Berger, Claudia [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany); Kunath, Anne [German Center for Diabetes Research (DZD), Leipzig (Germany); Stumvoll, Michael; Blüher, Matthias [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Klöting, Nora, E-mail: nora.kloeting@medizin.uni-leipzig.de [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany)

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  5. Treatment of genetically obese mice with the iminosugar N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin reduces body weight by decreasing food intake and increasing fat oxidation.

    Science.gov (United States)

    Langeveld, Mirjam; van den Berg, Sjoerd A A; Bijl, Nora; Bijland, Silvia; van Roomen, Cindy P; Houben-Weerts, Judith H; Ottenhoff, Roelof; Houten, Sander M; van Dijk, Ko Willems; Romijn, Johannes A; Groen, Albert K; Aerts, Johannes M; Voshol, Peter J

    2012-01-01

    Obesity and its associated conditions such as type 2 diabetes mellitus are major causes of morbidity and mortality. The iminosugar N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin (AMP-DNM) improves insulin sensitivity in rodent models of insulin resistance and type 2 diabetes mellitus. In the current study, we characterized the impact of AMP-DNM on substrate oxidation patterns, food intake, and body weight gain in obese mice. Eight ob/ob mice treated with 100 mg/(kg d) AMP-DNM mixed in the food and 8 control ob/ob mice were placed in metabolic cages during the first, third, and fifth week of the experiment for measurement of substrate oxidation rates, energy expenditure, activity, and food intake. Mice were killed after 6 weeks of treatment. Initiation of treatment with AMP-DNM resulted in a rapid increase in fat oxidation by 129% (P = .05), a decrease in carbohydrate oxidation by 35% (P = .01), and a reduction in food intake by approximately 26% (P fat oxidation rates, increased hepatic carnitine palmitoyl transferase 1a expression. Treatment with AMP-DNM increased plasma levels of the appetite-regulating peptide YY compared with control mice. Treatment with AMP-DNM rapidly reduces food intake and increases fat oxidation, resulting in improvement of the obese phenotype. These features of AMP-DNM, together with its insulin-sensitizing capacity, make it an attractive candidate drug for the treatment of obesity and its associated metabolic derangements. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Regeneration of hemopoietic and lymphoid tissues following total-body irradiation and therapeutic administration of thiamin diphosphate. [Mice, gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vavrova, J.; Nouza, K.; Petjrek, P.

    1977-01-01

    Analysis was made of the mechanism of therapeutic application of thiamine diphosphate (TDP) in radiation sickness in mice. This agent increased the number of endogenous colonies in the spleen and incorporation of /sup 59/Fe in spleen and bone marrow with sublethal doses of radiation (500 and 600 R) and has no effect with a lethal dose (750 R). After administration of TDP to mice exposed to 500 R radiation, there is faster DNA synthesis in the spleen, thymus and bone marrow, as well as reliable increase in number of nuclear cells in femoral marrow.

  7. Effects of whole body exposure to threshold levels of 50Hz electromagnetic fields on the intramicrovascular leukocyte adhesion in conscious mice

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, A.; Ohkubo, C. [National Institute of Public Health, Tokyo (Japan)

    2002-07-01

    Whole body exposure effects to threshold levels of 50 Hz electromagnetic fields (3.0, 10.0, 30.0 mT for acute exposure and 0.3, 1.0, 3.0 mT for subchronic exposure) on intramicrovascular behavior of leukocytes in the cutaneous microcirculation was evaluated by a dorsal skinfold chamber technique in mice under conscious conditions. The results indicated that the exposure intensity at 3.0 mT is a threshold level for increasing leukocyte adhesion to the endothelial walls.

  8. Surfactant protein D of the innate immune defence is inversely associated with human obesity and SP-D deficiency infers increased body weight in mice

    DEFF Research Database (Denmark)

    Sorensen, G.L.; Hjelmborg, J.V.B.; Leth-Larsen, R.

    2006-01-01

    Surfactant protein D (SP-D) is a key regulator of pathogen-induced inflammation. SP-D is further involved in lipid homeostasis in mouse lung and circulation and recent data have demonstrated that the body mass index (BMI; in kg/m(2)) is influenced by genes in common with SP-D. The objective of th.......0001) in males on normal chow. Fat percentage was significantly increased by 17% in the Spd-/- male mice (P = 0.003). We conclude, that there is an association between low levels or absent SP-D and obesity....

  9.  Surfactant Protein D of the Innate Immune Defence is Inversely Associated with Human Obesity and SP-D Deficiency Infers Increased Body Weight in Mice

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Hjelmborg, Jacob v. B.; Leth-Larsen, Rikke

    2006-01-01

    of the present study was to describe the association between serum SP-D and weight, waist circumference or BMI, and furthermore to observe body weight development in SP-D-deficient (Spd-/-) mice. As a part of the Danish population-based twin study (GEMINAKAR) on the metabolic syndrome, we analysed 1476 Danish...... twins for serum SP-D and investigated associations with weight, waist circumference and BMI by multiple regression analysis. Serum SP-D was significantly and inversely associated with weight (P = 0.001) and waist circumference in men (P

  10. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors

    NARCIS (Netherlands)

    Mikkers, H; Nawijn, M; Allen, J; Brouwers, C; Verhoeven, E; Jonkers, J; Berns, A

    2004-01-01

    The Pim family of proto-oncogenes encodes a distinct class of serine/threonine kinases consisting of PIM1, PIM2, and PIM3. Although the Pim genes are evolutionarily highly conserved, the contribution of PIM proteins to mammalian development is unclear. PIM1-deficient mice were previously described b

  11. Foreign-body reaction to dermal sheep collagen in interferon-gamma-receptor knock-out mice

    NARCIS (Netherlands)

    Khouw, IMSL; van Wachem, PB; Plantinga, JA; Haagmans, BL; de Leij, LFMH; van Luyn, MJA

    2000-01-01

    This study was performed to gain more insight into the role of interferon-gamma (IFN-gamma), a potent macrophage activator, in the foreign-body reaction to hexamethylenediisocyanate-crosslinked dermal sheep collagen (HDSC). Because the results of earlier studies aimed at modulating the foreign-body

  12. High fat diet attenuates hyperglycemia, body composition changes, and bone loss in male streptozotocin-induced type 1 diabetic mice.

    Science.gov (United States)

    Carvalho, Adriana Lelis; DeMambro, Victoria E; Guntur, Anyonya R; Le, Phuong; Nagano, Kenichi; Baron, Roland; de Paula, Francisco José Albuquerque; Motyl, Katherine J

    2017-06-20

    There is a growing and alarming prevalence of obesity and the metabolic syndrome in type I diabetic patients (T1DM), particularly in adolescence. In general, low bone mass, higher fracture risk, and increased marrow adipose tissue (MAT) are features of diabetic osteopathy in insulin-deficient subjects. On the other hand, type 2 diabetes (T2DM) is associated with normal or high bone mass, a greater risk of peripheral fractures, and no change in MAT. Therefore, we sought to determine the effect of weight gain on bone turnover in insulin-deficient mice. We evaluated the impact of a 6-week high-fat (HFD) rich in medium chain fatty acids or low-fat diet (LFD) on bone mass and MAT in a streptozotocin (STZ)-induced model using male C57BL/6J mice at 8 weeks of age. Dietary intervention was initiated after diabetes confirmation. At the endpoint, lower non-fasting glucose levels were observed in diabetic mice fed with high fat diet compared to diabetic mice fed the low fat diet (STZ-LFD). Compared to euglycemic controls, the STZ-LFD had marked polydipsia and polyphagia, as well as reduced lean mass, fat mass, and bone parameters. Interestingly, STZ-HFD mice had higher bone mass, namely less cortical bone loss and more trabecular bone than STZ-LFD. Thus, we found that a HFD, rich in medium chain fatty acids, protects against bone loss in a T1DM mouse model. Whether this may also translate to T1DM patients who are overweight or obese in respect to maintenance of bone mass remains to be determined through longitudinal studies. © 2017 Wiley Periodicals, Inc.

  13. Whole-body aerosol exposure of cadmium chloride (CdCl2) and tetrabromobisphenol A (TBBPA) induced hepatic changes in CD-1 male mice.

    Science.gov (United States)

    Chen, Yuanhong; Hu, Yabing; Liu, Shuyun; Zheng, Huiying; Wu, Xiaojuan; Huang, Zhengyu; Li, Hao; Peng, Baoqi; Long, Jinlie; Pan, Bishu; Huang, Changjiang; Dong, Qiaoxiang

    2016-11-15

    Cadmium (Cd) and tetrabromobisphenol A (TBBPA) are two prevalent contaminants in e-waste recycling facilities. However, the potential adversely health effect of co-exposure to these two types of pollutants in an occupational setting is unknown. In this study, we investigated co-exposure of these two pollutants on hepatic toxicity in CD-1 male mice through a whole-body aerosol inhalation route. Specifically, mice were exposed to solvent control (5% DMSO), Cd (8μg/m(3)), TBBPA (16μg/m(3)) and Cd/TBBPA mixture for 8h/day and 6days a week for 60 days. Hepatic changes include increased organ weight, focal necrosis, and elevated levels of liver enzymes in serum. These changes were most severe in mice exposed to TBBPA, followed by Cd/TBBPA mixture and Cd. These chemicals also led to suppressed antioxidant defensive mechanisms and increased oxidative stress. Further, these chemicals induced gene expression of apoptosis-related genes, activated genes encoding for phase I detoxification enzymes and inhibited genes encoding for phase II detoxification enzymes. These findings indicate that the hepatic damages induced by subchronic aerosol exposure of Cd and TBBPA may result from the oxidative damages caused by excessive ROS production when these chemicals were metabolized in the liver.

  14. Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation.

    Science.gov (United States)

    Balter, Vincent; Lamboux, Aline; Zazzo, Antoine; Télouk, Philippe; Leverrier, Yann; Marvel, Jacqueline; Moloney, Aidan P; Monahan, Frank J; Schmidt, Olaf; Albarède, Francis

    2013-11-01

    We report Cu, Fe, and Zn natural isotope compositions in organs, body fluids, diets and feces of mice and sheep. Large and systematic isotope variability is observed, notably in the δ(66)Zn in liver and δ(65)Cu in kidneys, but significant differences exist between mice, sheep and humans, especially in the δ(66)Zn value of blood. The results are interpreted with reference to current knowledge of metal trafficking and redox conditions in cells. In general, the light isotopes preferentially fractionate into 'softer' bonds involving sulfur such as cysteine and glutathione, whereas heavy isotopes fractionate into 'harder' bonds involving nitrogen (histidine) and even more oxygen, notably hydroxides, phosphates, and carbonates. Bonds involving the reduced forms Cu(+) and Fe(2+) are enriched in the light isotopes relative to bonds involving the oxidized Cu(2+) and Fe(3+) forms. Differences in blood Zn isotope abundances between mice, sheep and humans may reflect a different prevalence of Zn ZIP transporters. The isotopically heavy Cu in the kidneys may reflect isotope fractionation during redox processes and may be relevant to ascorbate degradation into oxalate.

  15. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Choi, Hyeong-Jwa [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Na, Tae-Young [College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-741 (Korea, Republic of); Nemeno, Judee Grace E.; Lee, Jeong Ik [Regenerative Medicine Laboratory, Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701 (Korea, Republic of); Yoon, Taek Joon [Department of Food and Nutrition, Yuhan College, Bucheon, Gyeonggi-do, 422-749 (Korea, Republic of); Choi, In-Soo [Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Lee, Minyoung [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Lee, Jae-Seon [Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 400-712 (Korea, Republic of); Kang, Young-Sun, E-mail: kangys1967@naver.com [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of)

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  16. Implantation of radiotelemetry transmitters yielding data on ECG, heart rate, core body temperature and activity in free-moving laboratory mice.

    Science.gov (United States)

    Cesarovic, Nikola; Jirkof, Paulin; Rettich, Andreas; Arras, Margarete

    2011-11-21

    The laboratory mouse is the animal species of choice for most biomedical research, in both the academic sphere and the pharmaceutical industry. Mice are a manageable size and relatively easy to house. These factors, together with the availability of a wealth of spontaneous and experimentally induced mutants, make laboratory mice ideally suited to a wide variety of research areas. In cardiovascular, pharmacological and toxicological research, accurate measurement of parameters relating to the circulatory system of laboratory animals is often required. Determination of heart rate, heart rate variability, and duration of PQ and QT intervals are based on electrocardiogram (ECG) recordings. However, obtaining reliable ECG curves as well as physiological data such as core body temperature in mice can be difficult using conventional measurement techniques, which require connecting sensors and lead wires to a restrained, tethered, or even anaesthetized animal. Data obtained in this fashion must be interpreted with caution, as it is well known that restraining and anesthesia can have a major artifactual influence on physiological parameters. Radiotelemetry enables data to be collected from conscious and untethered animals. Measurements can be conducted even in freely moving animals, and without requiring the investigator to be in the proximity of the animal. Thus, known sources of artifacts are avoided, and accurate and reliable measurements are assured. This methodology also reduces interanimal variability, thus reducing the number of animals used, rendering this technology the most humane method of monitoring physiological parameters in laboratory animals. Constant advancements in data acquisition technology and implant miniaturization mean that it is now possible to record physiological parameters and locomotor activity continuously and in realtime over longer periods such as hours, days or even weeks. Here, we describe a surgical technique for implantation of a

  17. Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice.

    Science.gov (United States)

    Hashish, A H; El-Missiry, M A; Abdelkader, H I; Abou-Saleh, R H

    2008-11-01

    The question whether static magnetic fields (SMFs) and extremely low frequency electromagnetic fields (ELF-EMF) cause biological effects is of special interest. We investigated the effects of continuous whole body exposure to both fields for 30 days on some liver and blood parameters in mice. Two exposure systems were designed; the first produced a gradient SMF while the second generated uniform 50 Hz ELF-EMF. The results showed a gradual body weight loss when mice were exposed to either field. This is coupled with a significant decrease (Pglutathione-S-transferase activity and lipid peroxidation level in the liver were significantly increased while a significant decrease in hepatic gluthathione content was recorded. A significant decrease in the counts of monocytes, platelets, peripheral lymphocytes as well as splenic total, T and B lymphocytes levels was observed for SMF and ELF-EMF exposed groups. The granulocytes percentage was significantly increased. The results indicate that there is a relation between the exposure to SMF or ELF-EMF and the oxidative stress through distressing redox balance leading to physiological disturbances.

  18. Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice.

    Science.gov (United States)

    Peng, Wei-Hau; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2016-01-01

    Arecoline, a major alkaloid in areca nuts, is involved in the pathogenesis of oral diseases. Mammalian taste buds are the structural unit for detecting taste stimuli in the oral cavity. The effects of arecoline on taste bud morphology are poorly understood. Arecoline was injected intraperitoneally (IP) into C57BL/6 mice twice daily for 1-4 weeks. After arecoline treatment, the vallate papillae were processed for electron microscopy and immunohistochemistry analysis of taste receptor proteins (T1R2, T1R3, T1R1, and T2R) and taste associated proteins (α-gustducin, PLCβ2, and SNAP25). Body weight, food intake and water consumption were recorded. A 2-bottle preference test was also performed. The results demonstrated that 1) arecoline treatment didn't change the number and size of the taste buds or taste bud cells, 2) electron microscopy revealed the change of organelles and the accumulation of autophagosomes in type II cells, 3) immunohistochemistry demonstrated a decrease of taste receptor T1R2- and T1R3-expressing cells, 4) the body weight and food intake were markedly reduced, and 5) the sweet preference behavior was reduced. We concluded that the long-term injection of arecoline alters the morphology of type II taste bud cells, retards the growth of mice, and affects discrimination competencies for sweet tastants. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Thermoneutrality results in prominent diet-induced body weight differences in C57BL/6J mice, not paralleled by diet-induced metabolic differences.

    Science.gov (United States)

    Hoevenaars, Femke P M; Bekkenkamp-Grovenstein, Melissa; Janssen, Rolf J R J; Heil, Sandra G; Bunschoten, Annelies; Hoek-van den Hil, Elise F; Snaas-Alders, Sophie; Teerds, Katja; van Schothorst, Evert M; Keijer, Jaap

    2014-04-01

    Mice are usually housed at 20-24 °C. At thermoneutrality (28 °C) larger diet-induced differences in obesity are seen. We tested whether this leads to large differences in metabolic health parameters. We performed a 14-wk dietary intervention in C57BL/6J mice at 28 °C and assessed adiposity and metabolic health parameters for a semipurified low fat (10 energy%) diet and a moderate high fat (30 energy%) diet. A large and significant diet-induced differential increase in body weight, adipose tissue mass, adipocyte size, serum leptin level, and, to some extent, cholesterol level was observed. No adipose tissue inflammation was seen. No differential effect of the diets on serum glucose, free fatty acids, triacylglycerides, insulin, adiponectin, resistin, PAI-1, MMP-9, sVCAM-1, sICAM-1, sE-selectin, IL-6, ApoE, fibrinogen levels, or HOMA index was observed. Also in muscle no differential effect on mitochondrial density, mitochondrial respiratory control ratio, or mRNA expression of metabolic genes was found. Finally, in liver no differential effect on weight, triacylglycerides level, aconitase/citrate synthase activity ratio was seen. Low fat diet and moderate high fat diet induce prominent body weight differences at thermoneutrality, which is not paralleled by metabolic differences. Our data rather suggest that thermoneutrality alters metabolic homeostasis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Relationships among body mass, brain size, gut length, and blood tryptophan and serotonin in young wild-type mice

    OpenAIRE

    2009-01-01

    Abstract Background The blood hyperserotonemia of autism is one of the most consistent biological findings in autism research, but its causes remain unclear. A major difficulty in understanding this phenomenon is the lack of information on fundamental interactions among the developing brain, gut, and blood in the mammalian body. We therefore investigated relationships among the body mass, the brain mass, the volume of the hippocampal complex, the gut length, and the whole-blood levels of tryp...

  1. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity

    Science.gov (United States)

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature ( T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures ( T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  2. Whole-body aerosol exposure of cadmium chloride (CdCl{sub 2}) and tetrabromobisphenol A (TBBPA) induced hepatic changes in CD-1 male mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanhong; Hu, Yabing; Liu, Shuyun; Zheng, Huiying; Wu, Xiaojuan; Huang, Zhengyu; Li, Hao; Peng, Baoqi; Long, Jinlie [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Pan, Bishu [Taizhou Center for Disease Control and Prevention, Taizhou 318000 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Dong, Qiaoxiang, E-mail: dqxdong@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China)

    2016-11-15

    Highlights: • Hepatotoxicity of TBBPA and Cd aerosol co-exposure was evaluated in CD-1 male mice. • Hepatic changes include focal necrosis, increased organ weight, and elevated enzymes. • TBBPA group exhibited highest hepatic toxicity followed by co-exposure and Cd groups. • We did not observe any synergistic effect of hepatic toxicity between TBBPA and Cd. • TBBPA/Cd suppressed antioxidant defensive mechanisms and increased oxidative stress. - Abstract: Cadmium (Cd) and tetrabromobisphenol A (TBBPA) are two prevalent contaminants in e-waste recycling facilities. However, the potential adversely health effect of co-exposure to these two types of pollutants in an occupational setting is unknown. In this study, we investigated co-exposure of these two pollutants on hepatic toxicity in CD-1 male mice through a whole-body aerosol inhalation route. Specifically, mice were exposed to solvent control (5% DMSO), Cd (8 μg/m{sup 3}), TBBPA (16 μg/m{sup 3}) and Cd/TBBPA mixture for 8 h/day and 6 days a week for 60 days. Hepatic changes include increased organ weight, focal necrosis, and elevated levels of liver enzymes in serum. These changes were most severe in mice exposed to TBBPA, followed by Cd/TBBPA mixture and Cd. These chemicals also led to suppressed antioxidant defensive mechanisms and increased oxidative stress. Further, these chemicals induced gene expression of apoptosis-related genes, activated genes encoding for phase I detoxification enzymes and inhibited genes encoding for phase II detoxification enzymes. These findings indicate that the hepatic damages induced by subchronic aerosol exposure of Cd and TBBPA may result from the oxidative damages caused by excessive ROS production when these chemicals were metabolized in the liver.

  3. Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice.

    Science.gov (United States)

    Lee, Mak-Soon; Kim, Chong-Tai; Kim, Yangha

    2009-01-01

    The aim of this study was to investigate the antiobesity effect of (-)-epigallocatechin-3-gallate (EGCG) in diet-induced obese mice. Male C57BL/6J mice were fed on a high-fat diet for 8 weeks to induce obesity. Subsequently they were divided into 3 groups and were maintained on a high-fat control diet or high-fat diets supplemented with 0.2 or 0.5% EGCG (w/w) for a further 8 weeks. Changes in the expression of genes related to lipid metabolism and fatty acid oxidation were analyzed in white adipose tissue, together with biometric and blood parameters. Experimental diets supplemented with EGCG resulted in reduction of body weight and mass of various adipose tissues in a dose-dependent manner. EGCG diet also considerably lowered the levels of plasma triglyceride and liver lipid. In the epididymal white adipose tissue of EGCG diet-fed mice, the mRNA levels of adipogenic genes such as peroxisome proliferator-activated receptor-gamma (PPAR-gamma), CCAAT enhancer-binding protein-alpha (C/EBP-alpha), regulatory element-binding protein-1c (SREBP-1c), adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL) and fatty acid synthase (FAS) were significantly decreased. However, the mRNA levels of carnitine palmitoyl transferase-1 (CPT-1) and uncoupling protein 2 (UCP2), as well as lipolytic genes such as hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), were significantly increased. These results suggest that green tea EGCG effectively reduces adipose tissue mass and ameliorates plasma lipid profiles in high-fat diet-induced obese mice. These effects might be at least partially mediated via regulation of the expression of multiple genes involved in adipogenesis, lipolysis, beta-oxidation and thermogenesis in white adipose tissue. 2009 S. Karger AG, Basel.

  4. Relationship between FAT/CD36 Protein in Skeletal Muscle and Whole-body Fat Oxidation in Endurance-trained Mice.

    Science.gov (United States)

    Kim, Jisu; Lim, Kiwon

    2016-12-31

    We investigated the effects of endurance training on the expression of long-chain fatty acid transport proteins in the skeletal muscle and whole-body fat oxidation during endurance exercise. Seven-week-old male ICR mice (n = 12) were divided into 2 groups, namely, Sed (sedentary; non-trained) and Tr (endurance-trained) groups. The Tr group was adapted to treadmill training at a fixed intensity (15 m/min, 8° slope) for 3 days. Next, the exercise intensity was increased while maintaining the 8° slope. In the last week of training, the exercise intensity was set at 25 m/min for 50 min (about 70-75% maximal oxygen uptake for 4 weeks). After the protocol ended, the mice were sacrificed, and tissues were collected for western blot analysis. Four weeks of endurance training resulted in a significant increase in the protein levels of FAT/CD36 and CPTІ. The FAT/ CD36 protein level in the Tr group was about 1.3-fold greater than that in the Sed group (p increased CPTІ indicated higher activity (19% upregulation) in the Tr group compared to the Sed group (p FAT/CD36 protein level and the estimated whole-body fat oxidation rate during 1-h exercise were found to be significantly correlated (r = 0.765, p increase in FAT/CD36 protein in skeletal muscle by endurance training might be positively associated with whole-body fat oxidation, which might enhance endurance exercise capacity.

  5. CNX-012-570, a direct AMPK activator provides strong glycemic and lipid control along with significant reduction in body weight; studies from both diet-induced obese mice and db/db mice models.

    Science.gov (United States)

    Anil, Tharappel M; Harish, Chandrashekaran; Lakshmi, Mudigere N; Harsha, Krishnareddy; Onkaramurthy, Mallappa; Sathish Kumar, Venkatesh; Shree, Nitya; Geetha, Venkatachalaiah; Balamurali, Gundalmandikal V; Gopala, Aralakuppe S; Madhusudhan Reddy, Bobbili; Govind, Madabosse K; Anup, Mammen O; Moolemath, Yoganand; Venkataranganna, Marikunte V; Jagannath, Madanahalli R; Somesh, Baggavalli P

    2014-01-25

    AMP activated protein kinase (AMPK) regulates the coordination of anabolic and catabolic processes and is an attractive therapeutic target for T2DM, obesity and metabolic syndrome. We report the anti-hyperglycemic and anti-hyperlipidemic effects of CNX-012-570 is an orally bioavailable small molecule (molecular weight of 530 Daltons) that directly activates AMPK in DIO and db/db animal models of diabetes. Activity and efficacy of the compound was tested in cell based as well as cell free systems in vitro. Male C57BL/6 mice fed with high fat diet (HFD) were assigned to either vehicle or CNX-012-570 (3 mg/kg, orally once a day) for 8 weeks (n = 8). Genetically diabetic db/db mice on chow diet were dosed with vehicle control or CNX-012-570 (2.5 mg/kg, orally once a day) for 6 weeks (n = 8). CNX-012-570 is a highly potent and orally bioavailable compound activating AMPK in both cell and cell free systems. It inhibits lipolysis (33%) and gluconeogenesis (28%) in 3T3L1 cells and rat primary hepatocytes respectively. The efficacy of the molecule was translated to both DIO and db/db animal models of diabetes. CNX-012-570 has reduced fasting blood glucose levels by 14%, body weight by 24% and fasting serum triglycerides (TG) by 24%. CNX-012-570 showed a 22% reduction in fed serum cholesterol levels and 19% increase in HDL levels.In db/db mice model, CNX-012-570 has shown 18% decrease in fed glucose and 32% decrease in fasting glucose with a 2.57% reduction in absolute HbA1c. Decrease in serum insulin and glucose AUC indicates the increased insulin sensitivity. Body weight was reduced by 13% with increased browning of adipose tissue and decreased inguinal and mesenteric fat mass. There was significant reduction in liver TG and liver total cholesterol. CNX-012-570 has the potential to control hyperglycemia and hyperlipidemia. It also reduces body weight gain with an additional benefit of minimizing cardiovascular risks in diabetics.

  6. Noninvasive assessment of cutaneous alterations in mice exposed to whole body gamma irradiation using optical imaging techniques.

    Science.gov (United States)

    Sharma, P; Sahu, K; Kushwaha, P K; Kumar, S; Swami, M K; Kumawat, J; Patel, H S; Kher, S; Sahani, P K; Haridas, G; Gupta, P K

    2017-07-11

    We report the results of a study carried out to investigate the potential of optical techniques such as optical coherence tomography, Mueller matrix spectroscopy, and cross-polarization imaging for noninvasive monitoring of the ionizing radiation exposure-induced alterations in cutaneous tissue of mice. Radiation dose-dependent changes were observed in tissue microvasculature and tissue optical parameters like retardance and depolarization as early as 1 h post radiation exposure. Results suggest that these optical techniques may allow early detection of radiation dose-dependent alterations which could help in screening of population exposed to radiation.

  7. Effects of Portabella mushrooms on collagen-induced arthritis, inflammatory cytokines, and body composition in dilute brown non-agouti (DBA1 mice

    Directory of Open Access Journals (Sweden)

    Stanley A. Lightfoot

    2011-09-01

    Full Text Available Background:Exotic mushrooms have long been used in Asia for treatment and/or prevention of chronic diseases due to their immunomodulatory properties. However, the health benefits of portabella mushrooms (PM (brown Agaricus bisporous, on collagen-induced arthritis (CIA and associated complications, (i.e. loss of lean mass, increased fat mass and inflammatory cytokines, have not been previously investigated.Methods:We investigated CIA pathogenesis, body composition and plasma levels of IL- 6, TNF-α and sICAM1 in DBA1 female mice fed either the AIN76 diet or the same diet fortified with 5% lyophilized PM (n=19-20/group. Ten mice/group were immunized with 100 μg bovine collagen type II on day 42 of the protocol, followed by 50 μg lipopolysaccharides on day 62, and euthanized on day 73-74. Cytokines were measured by ELISA.Results:Compared to baseline diet, PM had: no protective effect from CIA since all collagen-immunized mice developed severe edema, bone erosion, and mononuclear cell infiltration in paws. In mice with and those without CIA, feeding a PM-fortified diet resulted in higher percent of body fat than feeding the baseline diet (p<0.05. After CIA induction, PM provided the followingFunctional Foods in Health and Disease 2011; 9:279-296beneficial effects: (a a smaller reduction in lean mass and absolute thymus weight; (b a higher fat mass loss; and (c lower plasma TNF-α levels (p <0.05. PM-fortification did not alter plasma IL-6 and sICAM1 regardless of CIA status; but it increased in vitro IL-6 secretion by mitogen-treated spleen cells.Conclusion:Our data suggest that PM may reduce plasma TNF-α, attenuate lean mass loss and thymus atrophy associated with arthritis, and protect spleen cell function assessed by IL-6 secretion. However, PM-fortification did not attenuate overall CIA pathogenesis which may be due to lack of effect on plasma IL-6. Decreased TNF-α without alterations in IL-6 may reduce the risk of other conditions

  8. Genetic background (DDD/Sgn versus C57BL/6J) strongly influences postnatal growth of male mice carrying the Ay allele at the agouti locus: identification of quantitative trait loci associated with diabetes and body weight loss

    Science.gov (United States)

    2013-01-01

    Background Mice carrying the Ay allele at the agouti locus become obese and are heavier than their non-Ay littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-Ay females are heavier than DDD females, whereas DDD.Cg-Ay males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-Ay males. Results Growth curves of DDD.Cg-Ay mice were analyzed and compared with those of B6.Cg-Ay mice from 5 to 25 weeks. In DDD.Cg-Ay males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-Ay) F1-Ay mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the Ay allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC Ay males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-Ay males. Conclusions The lower body weight of DDD.Cg-Ay male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes

  9. Genetic background (DDD/Sgn versus C57BL/6J) strongly influences postnatal growth of male mice carrying the A(y) allele at the agouti locus: identification of quantitative trait loci associated with diabetes and body weight loss.

    Science.gov (United States)

    Suto, Jun-ichi; Satou, Kunio

    2013-05-04

    Mice carrying the A(y) allele at the agouti locus become obese and are heavier than their non-A(y) littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-A(y) females are heavier than DDD females, whereas DDD.Cg-A(y) males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-A(y) males. Growth curves of DDD.Cg-A(y) mice were analyzed and compared with those of B6.Cg-A(y) mice from 5 to 25 weeks. In DDD.Cg-A(y) males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-A(y)) F(1)-A(y) mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the A(y) allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC A(y) males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-A(y) males. The lower body weight of DDD.Cg-A(y) male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes. This QTL

  10. Hypoglycemic Activity through a Novel Combination of Fruiting Body and Mycelia of Cordyceps militaris in High-Fat Diet-Induced Type 2 Diabetes Mellitus Mice

    Directory of Open Access Journals (Sweden)

    Sung-Hsun Yu

    2015-01-01

    Full Text Available Diabetes mellitus (DM is currently ranked among leading causes of death worldwide in which type 2 DM is reaching an epidemic proportion. Hypoglycemic medications for type 2 DM have either proven inadequate or posed adverse effects; therefore, the Chinese herbal products are under investigation as an alternative treatment. In this study, a novel combination of fruiting body and mycelia powder of herbal Cordyceps militaris number 1 (CmNo1 was administered to evaluate their potential hypoglycemic effects in high-fat diet- (HFD- induced type 2 DM in C57BL/6J mice. Body weight, fasting blood glucose (FBG, oral glucose tolerance test (OGTT, and blood biochemistry indexes were measured. Results indicated that CmNo1 lowered the blood glucose level by increasing insulin sensitivity, while no change in body weight was observed. Increased protein expression of IRS-1, pIRS-1, AKT, pAKT, and GLUT-4 in skeletal muscle and adipose tissue was found indicating restoration of insulin signaling. Additionally, PPAR-γ expression in adipose tissue restored the triglyceride and cholesterol levels. Finally, our results suggest that CmNo1 possesses strong hypoglycemic, anticholesterolemic, and antihypertriglyceridemic actions and is more economical alternate for DM treatment.

  11. Hypoglycemic Activity through a Novel Combination of Fruiting Body and Mycelia of Cordyceps militaris in High-Fat Diet-Induced Type 2 Diabetes Mellitus Mice

    Science.gov (United States)

    Yu, Sung-Hsun; Chen, Szu-Yu Tina; Li, Wei-Shan; Dubey, Navneet Kumar; Chen, Wei-Hong; Chuu, Jiunn-Jye; Leu, Sy-Jye; Deng, Win-Ping

    2015-01-01

    Diabetes mellitus (DM) is currently ranked among leading causes of death worldwide in which type 2 DM is reaching an epidemic proportion. Hypoglycemic medications for type 2 DM have either proven inadequate or posed adverse effects; therefore, the Chinese herbal products are under investigation as an alternative treatment. In this study, a novel combination of fruiting body and mycelia powder of herbal Cordyceps militaris number 1 (CmNo1) was administered to evaluate their potential hypoglycemic effects in high-fat diet- (HFD-) induced type 2 DM in C57BL/6J mice. Body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and blood biochemistry indexes were measured. Results indicated that CmNo1 lowered the blood glucose level by increasing insulin sensitivity, while no change in body weight was observed. Increased protein expression of IRS-1, pIRS-1, AKT, pAKT, and GLUT-4 in skeletal muscle and adipose tissue was found indicating restoration of insulin signaling. Additionally, PPAR-γ expression in adipose tissue restored the triglyceride and cholesterol levels. Finally, our results suggest that CmNo1 possesses strong hypoglycemic, anticholesterolemic, and antihypertriglyceridemic actions and is more economical alternate for DM treatment. PMID:26258146

  12. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets.

    Directory of Open Access Journals (Sweden)

    Marie H Larsson

    Full Text Available The calcium activated cation channel transient receptor potential channel type M5 (TRPM5 is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.

  13. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets.

    Science.gov (United States)

    Larsson, Marie H; Håkansson, Pernilla; Jansen, Frank P; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.

  14. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets

    Science.gov (United States)

    Larsson, Marie H.; Håkansson, Pernilla; Jansen, Frank P.; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance. PMID:26397098

  15. Switching from high-fat to low-fat diet normalizes glucose metabolism and improves glucose-stimulated insulin secretion and insulin sensitivity but not body weight in C57BL/6J mice.

    Science.gov (United States)

    Agardh, Carl-David; Ahrén, Bo

    2012-03-01

    Environmental factors such as a high-fat diet contribute to type 2 diabetes and obesity. This study examined glycemia, insulin sensitivity, and β-cell function after switching from a high-fat diet to a low-fat diet in mice. C57BL/6J mice were fed a high-fat diet or low-fat diet for 18 months, after which mice on the high-fat diet either maintained this diet or switched to a low-fat diet for 4 weeks. Body weight and glucose and insulin responses to intraperitoneal glucose were determined. Insulin secretion (insulinogenic index: the 10-minute insulin response divided by the 10-minute glucose level) and insulin sensitivity (1 divided by basal insulin) were determined. After 18 months on a high-fat diet, mice had glucose intolerance, marked hyperinsulinemia, and increased body weight compared to mice on a low-fat diet (P diet to low-fat diet normalized glucose tolerance, reduced but not normalized body weight (P diet to low-fat diet normalizes glucose tolerance and improves but not normalizes insulin secretion and insulin sensitivity. These effects are more pronounced than the reduced body weight.

  16. Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice.

    Science.gov (United States)

    Iffiú-Soltész, Zsuzsa; Wanecq, Estelle; Lomba, Almudena; Portillo, Maria P; Pellati, Federica; Szöko, Eva; Bour, Sandy; Woodley, John; Milagro, Fermin I; Alfredo Martinez, J; Valet, Philippe; Carpéné, Christian

    2010-04-01

    Benzylamine is found in Moringa oleifera, a plant used to treat diabetes in traditional medicine. In mammals, benzylamine is metabolized by semicarbazide-sensitive amine oxidase (SSAO) to benzaldehyde and hydrogen peroxide. This latter product has insulin-mimicking action, and is involved in the effects of benzylamine on human adipocytes: stimulation of glucose transport and inhibition of lipolysis. This study examined whether chronic, oral administration of benzylamine could improve glucose tolerance and the circulating lipid profile without increasing oxidative stress in overweight and pre-diabetic mice. The benzylamine diffusion across the intestine was verified using everted gut sacs. Then, glucose handling and metabolic markers were measured in mice rendered insulin-resistant when fed a high-fat diet (HFD) and receiving or not benzylamine in their drinking water (3600micromol/(kgday)) for 17 weeks. HFD-benzylamine mice showed lower body weight gain, fasting blood glucose, total plasma cholesterol and hyperglycaemic response to glucose load when compared to HFD control. In adipocytes, insulin-induced activation of glucose transport and inhibition of lipolysis remained unchanged. In aorta, benzylamine treatment partially restored the nitrite levels that were reduced by HFD. In liver, lipid peroxidation markers were reduced. Resistin and uric acid, surrogate plasma markers of metabolic syndrome, were decreased. In spite of the putative deleterious nature of the hydrogen peroxide generated during amine oxidation, and in agreement with its in vitro insulin-like actions found on adipocytes, the SSAO-substrate benzylamine could be considered as a potential oral agent to treat metabolic syndrome.

  17. Adjuvant-enhanced antibody and cellular responses to inclusion bodies expressing FhSAP2 correlates with protection of mice to Fasciola hepatica.

    Science.gov (United States)

    Rivera, Francheska; Espino, Ana M

    2016-01-01

    Fasciola hepatica saposin-like protein-2 (FhSAP2) is a protein differentially expressed in various developmental stages of F. hepatica. Recombinant FhSAP2 has demonstrated the induction of partial protection in mice and rabbits when it is administered subcutaneously (SC) in Freund's adjuvant. Because FhSAP2 is overexpressed in bacteria in the form of inclusion bodies (IBs), we isolated IBs expressing FhSAP2 and tested their immunogenicity when administered SC in mice emulsified in two different adjuvants: QS-21 and Montanide TM ISA720. Animals received three injections containing 20 μg of protein two weeks apart and 4 weeks after the third injection, mice were infected with 10 F. hepatica metacercariae by oral route. The percentages of protection induced by FhSAP2-IBs were estimated to be between 60.0 and 62.5% when compared with adjuvant-vaccinated, infected controls. By determining the levels of IgG1 and IgG2a antibodies and IL-4 and IFNγ cytokines in the serum of experimental animals, it was found that both Th1 and Th2 immune responses were significantly increased in the FhSAP2-IBs vaccinated groups compared with the adjuvant-vaccinated, infected control groups. The adjuvant-vaccinated groups had significantly lower IgG1 to IgG2a ratios and lower IL-4 to IFNγ ratios than the FhSAP2-IBs vaccinated animals, which is indicative of higher levels of Th2 immune responses. Irrespective to the adjuvant used, animals vaccinated with FhSAP2-IBs exhibited significantly higher survival percentage and less liver damage than the adjuvant-control groups. This study suggests that FhSAP2 has potential as vaccine against F. hepatica and that the protection elicited by this molecule could be linked to a mechanism driven by the CD4-Th1 cells.

  18. The impact of beta-adrenergic blockade on daily rhythms of melatonin and body temperature of golden spiny mice Acomys russatus.

    Science.gov (United States)

    Haim, A; Zisapel, N

    1997-01-01

    Beta-adrenergic stimulation induces melatonin synthesis and non-shivering thermogenesis (NST) in rodents. The golden spiny mouse, Acomys russatus is a nocturnal species capable of diurnal activity when coexisting with its congenitor the common spiny mouse A. cahirinus. We have investigated the impact of beta-adrenergic blockade on 6-sulphatoxymelatonin (6-SMT--a metabolite and index of melatonin production) and body temperature (Tb) daily rhythms in male A. russatus. Mice were acclimated to an ambient temperature (Ta) of 28 degrees C, under two photoperiod regimes (16L:8D; 8L:16D). The daily rhythms of Tb and urinary 6-SMT were measured for a period of 30 h at intervals of 4 h. Propranolol (4.5 mg/kg, i.p.) was administered one hour before lights went off (i.e. when beta blockade does not affect NST in this species) and both variables were measured for another 30 h. The beta blocker markedly augmented melatonin output of A. russatus under both photoperiod regimes. The elevation in melatonin secretion was accompanied with an increase in Tb of only 16L:8D-acclimated mice (i.e. shorten duration of melatonin peak). However, in 8L:16D-acclimated mice, a phase advance of about 4 h was noted in 6-SMT daily rhythm. These results indicate that the role of sympathetic innervation in regulation of melatonin synthesis in A. russatus differs from that in the rat. In addition, these data are compatible with the hyperthermic action of melatonin in this species. Therefore, it is suggested that in A. russatus, other neural pathways are involved in its pineal regulation.

  19. Central Administration of 1-Deoxynojirimycin Attenuates Hypothalamic Endoplasmic Reticulum Stress and Regulates Food Intake and Body Weight in Mice with High-Fat Diet-Induced Obesity.

    Science.gov (United States)

    Kim, Jongwan; Yun, Eun-Young; Quan, Fu-Shi; Park, Seung-Won; Goo, Tae-Won

    2017-01-01

    The α-glucosidase inhibitor, 1-deoxynojirimycin (DNJ), is widely used for its antiobesity and antidiabetic effects. Researchers have demonstrated that DNJ regulates body weight by increasing adiponectin levels, which affects energy intake and prevents diet-induced obesity. However, the mechanism by which centrally administered DNJ exerts anorexigenic effects has not been studied until now. We investigated the effect of DNJ in the hypothalamus of mice with high-fat diet-induced obesity. Results showed that intracerebroventricular (ICV) administration of DNJ reduced hypothalamic ER stress, which activated the leptin-induced Janus-activated kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) signaling pathway to cause appetite suppression. We conclude that DNJ may reduce obesity by moderating feeding behavior and ER stress in the hypothalamic portion of the central nervous system (CNS).

  20. Central Administration of 1-Deoxynojirimycin Attenuates Hypothalamic Endoplasmic Reticulum Stress and Regulates Food Intake and Body Weight in Mice with High-Fat Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Jongwan Kim

    2017-01-01

    Full Text Available The α-glucosidase inhibitor, 1-deoxynojirimycin (DNJ, is widely used for its antiobesity and antidiabetic effects. Researchers have demonstrated that DNJ regulates body weight by increasing adiponectin levels, which affects energy intake and prevents diet-induced obesity. However, the mechanism by which centrally administered DNJ exerts anorexigenic effects has not been studied until now. We investigated the effect of DNJ in the hypothalamus of mice with high-fat diet-induced obesity. Results showed that intracerebroventricular (ICV administration of DNJ reduced hypothalamic ER stress, which activated the leptin-induced Janus-activated kinase 2 (JAK2/signal transducers and activators of transcription 3 (STAT3 signaling pathway to cause appetite suppression. We conclude that DNJ may reduce obesity by moderating feeding behavior and ER stress in the hypothalamic portion of the central nervous system (CNS.

  1. Atherosclerosis and cardiac function assessment in low-density lipoprotein receptor-deficient mice undergoing body weight cycling

    OpenAIRE

    McMillen, T S; Minami, E. [UNIFESP; LeBoeuf, R C

    2013-01-01

    Background: Obesity has become an epidemic in many countries and is supporting a billion dollar industry involved in promoting weight loss through diet, exercise and surgical procedures. Because of difficulties in maintaining body weight reduction, a pattern of weight cycling often occurs (so called ‘yo-yo' dieting) that may result in deleterious outcomes to health. There is controversy about cardiovascular benefits of yo-yo dieting, and an animal model is needed to better understand the cont...

  2. Pathways analysis of differential gene expression induced by engrafting doses of total body irradiation for allogeneic bone marrow transplantation in mice.

    Science.gov (United States)

    Chen, Xinjian; Wang, Yuanyuan; Li, Qiuxia; Tsai, Schickwann; Thomas, Alun; Shizuru, Judith A; Cao, Thai M

    2013-08-01

    A major challenge in allogeneic bone marrow (BM) transplantation is overcoming engraftment resistance to avoid the clinical problem of graft rejection. Identifying gene pathways that regulate BM engraftment may reveal molecular targets for overcoming engraftment barriers. Previously, we developed a mouse model of BM transplantation that utilizes recipient conditioning with non-myeloablative total body irradiation (TBI). We defined TBI doses that lead to graft rejection, that conversely are permissive for engraftment, and mouse strain variation with regards to the permissive TBI dose. We now report gene expression analysis, using Agilent Mouse 8x60K microarrays, in spleens of mice conditioned with varied TBI doses for correlation to the expected engraftment phenotype. The spleens of mice given engrafting doses of TBI, compared with non-engrafting TBI doses, demonstrated substantially broader gene expression changes, significant at the multiple testing-corrected P change ≥2. Functional analysis revealed significant enrichment for a down-regulated canonical pathway involving B-cell development. Genes enriched in this pathway suggest that suppressing donor antigen processing and presentation may be pivotal effects conferred by TBI to enable engraftment. Regardless of TBI dose and recipient mouse strain, pervasive genomic changes related to inflammation was observed and reflected by significant enrichment for canonical pathways and association with upstream regulators. These gene expression changes suggest that macrophage and complement pathways may be targeted to overcome engraftment barriers. These exploratory results highlight gene pathways that may be important in mediating BM engraftment resistance.

  3. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway.

    Science.gov (United States)

    Abdelhamed, Zakia A; Natarajan, Subaashini; Wheway, Gabrielle; Inglehearn, Christopher F; Toomes, Carmel; Johnson, Colin A; Jagger, Daniel J

    2015-06-01

    Ciliopathies are a group of developmental disorders that manifest with multi-organ anomalies. Mutations in TMEM67 (MKS3) cause a range of human ciliopathies, including Meckel-Gruber and Joubert syndromes. In this study we describe multi-organ developmental abnormalities in the Tmem67(tm1Dgen/H1) knockout mouse that closely resemble those seen in Wnt5a and Ror2 knockout mice. These include pulmonary hypoplasia, ventricular septal defects, shortening of the body longitudinal axis, limb abnormalities, and cochlear hair cell stereociliary bundle orientation and basal body/kinocilium positioning defects. The basal body/kinocilium complex was often uncoupled from the hair bundle, suggesting aberrant basal body migration, although planar cell polarity and apical planar asymmetry in the organ of Corti were normal. TMEM67 (meckelin) is essential for phosphorylation of the non-canonical Wnt receptor ROR2 (receptor-tyrosine-kinase-like orphan receptor 2) upon stimulation with Wnt5a-conditioned medium. ROR2 also colocalises and interacts with TMEM67 at the ciliary transition zone. Additionally, the extracellular N-terminal domain of TMEM67 preferentially binds to Wnt5a in an in vitro binding assay. Cultured lungs of Tmem67 mutant mice failed to respond to stimulation of epithelial branching morphogenesis by Wnt5a. Wnt5a also inhibited both the Shh and canonical Wnt/β-catenin signalling pathways in wild-type embryonic lung. Pulmonary hypoplasia phenotypes, including loss of correct epithelial branching morphogenesis and cell polarity, were rescued by stimulating the non-canonical Wnt pathway downstream of the Wnt5a-TMEM67-ROR2 axis by activating RhoA. We propose that TMEM67 is a receptor that has a main role in non-canonical Wnt signalling, mediated by Wnt5a and ROR2, and normally represses Shh signalling. Downstream therapeutic targeting of the Wnt5a-TMEM67-ROR2 axis might, therefore, reduce or prevent pulmonary hypoplasia in ciliopathies and other congenital conditions.

  4. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway

    Directory of Open Access Journals (Sweden)

    Zakia A. Abdelhamed

    2015-06-01

    Full Text Available Ciliopathies are a group of developmental disorders that manifest with multi-organ anomalies. Mutations in TMEM67 (MKS3 cause a range of human ciliopathies, including Meckel-Gruber and Joubert syndromes. In this study we describe multi-organ developmental abnormalities in the Tmem67tm1Dgen/H1 knockout mouse that closely resemble those seen in Wnt5a and Ror2 knockout mice. These include pulmonary hypoplasia, ventricular septal defects, shortening of the body longitudinal axis, limb abnormalities, and cochlear hair cell stereociliary bundle orientation and basal body/kinocilium positioning defects. The basal body/kinocilium complex was often uncoupled from the hair bundle, suggesting aberrant basal body migration, although planar cell polarity and apical planar asymmetry in the organ of Corti were normal. TMEM67 (meckelin is essential for phosphorylation of the non-canonical Wnt receptor ROR2 (receptor-tyrosine-kinase-like orphan receptor 2 upon stimulation with Wnt5a-conditioned medium. ROR2 also colocalises and interacts with TMEM67 at the ciliary transition zone. Additionally, the extracellular N-terminal domain of TMEM67 preferentially binds to Wnt5a in an in vitro binding assay. Cultured lungs of Tmem67 mutant mice failed to respond to stimulation of epithelial branching morphogenesis by Wnt5a. Wnt5a also inhibited both the Shh and canonical Wnt/β-catenin signalling pathways in wild-type embryonic lung. Pulmonary hypoplasia phenotypes, including loss of correct epithelial branching morphogenesis and cell polarity, were rescued by stimulating the non-canonical Wnt pathway downstream of the Wnt5a-TMEM67-ROR2 axis by activating RhoA. We propose that TMEM67 is a receptor that has a main role in non-canonical Wnt signalling, mediated by Wnt5a and ROR2, and normally represses Shh signalling. Downstream therapeutic targeting of the Wnt5a-TMEM67-ROR2 axis might, therefore, reduce or prevent pulmonary hypoplasia in ciliopathies and other congenital

  5. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism.

    Science.gov (United States)

    Kumar, Anil; Lawrence, John C; Jung, Dae Young; Ko, Hwi Jin; Keller, Susanna R; Kim, Jason K; Magnuson, Mark A; Harris, Thurl E

    2010-06-01

    Rictor is an essential component of mammalian target of rapamycin (mTOR) complex (mTORC) 2, a kinase that phosphorylates and activates Akt, an insulin signaling intermediary that regulates glucose and lipid metabolism in adipose tissue, skeletal muscle, and liver. To determine the physiological role of rictor/mTORC2 in insulin signaling and action in fat cells, we developed fat cell-specific rictor knockout (FRic(-/-)) mice. Insulin signaling and glucose and lipid metabolism were studied in FRic(-/-) fat cells. In vivo glucose metabolism was evaluated by hyperinsulinemic-euglycemic clamp. Loss of rictor in fat cells prevents insulin-stimulated phosphorylation of Akt at S473, which, in turn, impairs the phosphorylation of downstream targets such as FoxO3a at T32 and AS160 at T642. However, glycogen synthase kinase-3beta phosphorylation at S9 is not affected. The signaling defects in FRic(-/-) fat cells lead to impaired insulin-stimulated GLUT4 translocation to the plasma membrane and decreased glucose transport. Furthermore, rictor-null fat cells are unable to suppress lipolysis in response to insulin, leading to elevated circulating free fatty acids and glycerol. These metabolic perturbations are likely to account for defects observed at the whole-body level of FRic(-/-) mice, including glucose intolerance, marked hyperinsulinemia, insulin resistance in skeletal muscle and liver, and hepatic steatosis. Rictor/mTORC2 in fat cells plays an important role in whole-body energy homeostasis by mediating signaling necessary for the regulation of glucose and lipid metabolism in fat cells.

  6. Fat Cell–Specific Ablation of Rictor in Mice Impairs Insulin-Regulated Fat Cell and Whole-Body Glucose and Lipid Metabolism

    Science.gov (United States)

    Kumar, Anil; Lawrence, John C.; Jung, Dae Young; Ko, Hwi Jin; Keller, Susanna R.; Kim, Jason K.; Magnuson, Mark A.; Harris, Thurl E.

    2010-01-01

    OBJECTIVE Rictor is an essential component of mammalian target of rapamycin (mTOR) complex (mTORC) 2, a kinase that phosphorylates and activates Akt, an insulin signaling intermediary that regulates glucose and lipid metabolism in adipose tissue, skeletal muscle, and liver. To determine the physiological role of rictor/mTORC2 in insulin signaling and action in fat cells, we developed fat cell–specific rictor knockout (FRic−/−) mice. RESEARCH DESIGN AND METHODS Insulin signaling and glucose and lipid metabolism were studied in FRic−/− fat cells. In vivo glucose metabolism was evaluated by hyperinsulinemic-euglycemic clamp. RESULTS Loss of rictor in fat cells prevents insulin-stimulated phosphorylation of Akt at S473, which, in turn, impairs the phosphorylation of downstream targets such as FoxO3a at T32 and AS160 at T642. However, glycogen synthase kinase-3β phosphorylation at S9 is not affected. The signaling defects in FRic−/− fat cells lead to impaired insulin-stimulated GLUT4 translocation to the plasma membrane and decreased glucose transport. Furthermore, rictor-null fat cells are unable to suppress lipolysis in response to insulin, leading to elevated circulating free fatty acids and glycerol. These metabolic perturbations are likely to account for defects observed at the whole-body level of FRic−/− mice, including glucose intolerance, marked hyperinsulinemia, insulin resistance in skeletal muscle and liver, and hepatic steatosis. CONCLUSIONS Rictor/mTORC2 in fat cells plays an important role in whole-body energy homeostasis by mediating signaling necessary for the regulation of glucose and lipid metabolism in fat cells. PMID:20332342

  7. Interaction of mescaline with phenothiazines: effect on behavior, body temperature, and tissue levels of hallucinogen in mice.

    Science.gov (United States)

    Shah, N S; Jacobs, J R; Jones, J T; Hedden, M P

    1975-10-01

    Mescaline (25 mg/kg; 66 muc/kg) was injected (ip) in mice 45 min before chlorpromazine (CPZ, 2.5, 5, 15 mg/kg), thioridazine (10, 30, 45 mg/kg), or chlorpromazine-sulfoxide (CPZ-SO, 15 mg/kg). Excitement, agitation, slight increase in ventilation and occasional head-shaking were seen 30 min after mescaline and continued for 30-45 min thereafter; locomotor activity and the number of scratching events were significantly increased during this period. CPZ (2.5, 5, 15 mg/kg) and thioridazine (10, 30, 45 mg/kg) partially or completely blocked mescaline-induced gross behavior; CPZ-SO (15 mg/kg) was not effective. Increased scratching responses and locomotor activity induced by mescaline were antagonized by all doses of CPZ and thioridazine; at higher doses, both CPZ (7.5, 15 mg/kg) and thioridazine (45 mg/kg) induced cataleptic-like condition and marked hypothermia. Tissue levels of mescaline, examined 3 hr after its administration, were increased by all doses of CPZ and a higher dose of thioridazine (45 mg/kg); CPZ-SO and lower doses of thioridazine had no effect.

  8. A Novel Selective Inhibitor of Delta-5 Desaturase Lowers Insulin Resistance and Reduces Body Weight in Diet-Induced Obese C57BL/6J Mice.

    Science.gov (United States)

    Yashiro, Hiroaki; Takagahara, Shuichi; Tamura, Yumiko Okano; Miyahisa, Ikuo; Matsui, Junji; Suzuki, Hideo; Ikeda, Shota; Watanabe, Masanori

    2016-01-01

    Obesity is now recognized as a state of chronic low-grade inflammation and is called as metabolic inflammation. Delta-5 desaturase (D5D) is an enzyme that metabolizes dihomo-γ-linolenic acid (DGLA) to arachidonic acid (AA). Thus, D5D inhibition increases DGLA (precursor to anti-inflammatory eicosanoids) while decreasing AA (precursor to pro-inflammatory eicosanoids), and could result in synergistic improvement in the low-grade inflammatory state. Here, we demonstrate reduced insulin resistance and the anti-obesity effect of a D5D selective inhibitor (compound-326), an orally active small-molecule, in a high-fat diet-induced obese (DIO) mouse model. In vivo D5D inhibition was confirmed by determining changes in blood AA/DGLA profiles. In DIO mice, chronic treatment with compound-326 lowered insulin resistance and caused body weight loss without significant impact on cumulative calorie intake. Decreased macrophage infiltration into adipose tissue was expected from mRNA analysis. Increased daily energy expenditure was also observed following administration of compound-326, in line with sustained body weight loss. These data indicate that the novel D5D selective inhibitor, compound-326, will be a new class of drug for the treatment of obese and diabetic patients.

  9. The formation of multivesicular bodies in activated blastocysts is influenced by autophagy and FGF signaling in mice

    Science.gov (United States)

    Shin, Hyejin; Bang, Soyoung; Kim, Jiyeon; Jun, Jin Hyun; Song, Haengseok; Lim, Hyunjung Jade

    2017-01-01

    Dormant blastocysts during delayed implantation undergo autophagic activation, which is an adaptive response to prolonged survival in utero during less favorable environment. We observed that multivesicular bodies (MVBs) accumulate in the trophectoderm of dormant blastocysts upon activation for implantation. Since autophagosomes are shown to fuse with MVBs and efficient autophagic degradation requires functional MVBs, we examined if MVB formation in activated blastocysts are associated with protracted autophagic state during dormancy. We show here that autophagic activation during dormancy is one precondition for MVB formation in activated blastocysts. Furthermore, the blockade of FGF signaling with PD173074 partially interferes with MVB formation in these blastocysts, suggesting the involvement of FGFR signaling in this process. We believe that MVB formation in activated blastocysts after dormancy is a potential mechanism of clearing subcellular debris accumulated during prolonged autophagy. PMID:28155881

  10. The Application of Flow Cytometry to Examine Damage Clearance in Stem Cells From Whole-Body Irradiated Mice

    Energy Technology Data Exchange (ETDEWEB)

    Marples, Brian; Kovalchuk, Olga; McGonagle, Michele; Martinez, Alvaro; Wilson, George, D.

    2010-02-26

    The bone marrow contains many types of cells. Approximately 1-2% of these cells are critical for life, these are the so-called ‘bone marrow stem cells’ which divide indefinitely to produce platelets, red blood cells and white blood cells. Death of the bone marrow stem cells results in a diminished ability of the organism to make new blood cell components and can be fatal without medical intervention, such as a bone marrow transplant. Bone marrow stem cells are considered to be particularly sensitive to radiation injury. Therefore, it is important to understand how these cells response to total body radiation exposure and how these cells can be protected from radiation damage. The aim of this project was to determine if these critical cells in the bone marrow are susceptible to short-term and long-term injury after a whole-body exposure to a sub-lethal low dose of ionizing radiation. The overall aims were to determine if the extent of injury produced by the sub-lethal radiation exposure would be cleared from the stem cells and therefore present no long- term genetic risk to the organism, or if the radiation injury persisted and had an adverse long-term consequences for the cell genome. This research question is of interest in order to define the risks to exposed persons after occupational, accidental or terrorism-related sub-lethal low-dose radiation exposures. The novel aspect of this project was the methodology used to obtain the bone marrow stem cell-like cells and examining the outcomes of sub-lethal low-dose radiation in a mammalian animal model. Four radiation treatments were used: single treatments of 0.01Gy, 0.1 Gy, 1 Gy and ten treatments of 0.1 Gy given over 10 days. Bone marrow stem cell-like cells were then harvested 6 hours, 24 hours and 24 days later. The levels of radiation-induced cell death, damage to DNA and permanent changes to cellular DNA were measured in the isolated stem cell-like cells after each radiation treatment and time point and

  11. Circulating interleukin-18 as a biomarker of total-body radiation exposure in mice, minipigs, and nonhuman primates (NHP.

    Directory of Open Access Journals (Sweden)

    Cam T Ha

    Full Text Available We aim to develop a rapid, easy-to-use, inexpensive and accurate radiation dose-assessment assay that tests easily obtained samples (e.g., blood to triage and track radiological casualties, and to evaluate the radioprotective and therapeutic effects of radiation countermeasures. In the present study, we evaluated the interleukin (IL-1 family of cytokines, IL-1β, IL-18 and IL-33, as well as their secondary cytokines' expression and secretion in CD2F1 mouse bone marrow (BM, spleen, thymus and serum in response to γ-radiation from sublethal to lethal doses (5, 7, 8, 9, 10, or 12 Gy at different time points using the enzyme-linked immune sorbent assay (ELISA, immunoblotting, and cytokine antibody array. Our data identified increases of IL-1β, IL-18, and/or IL-33 in mouse thymus, spleen and BM cells after total-body irradiation (TBI. However, levels of these cytokines varied in different tissues. Interestingly, IL-18 but not IL-1β or IL-33 increased significantly (2.5-24 fold and stably in mouse serum from day 1 after TBI up to 13 days in a radiation dose-dependent manner. We further confirmed our finding in total-body γ-irradiated nonhuman primates (NHPs and minipigs, and demonstrated that radiation significantly enhanced IL-18 in serum from NHPs 2-4 days post-irradiation and in minipig plasma 1-3 days post-irradiation. Finally, we compared circulating IL-18 with the well known hematological radiation biomarkers lymphocyte and neutrophil counts in blood of mouse, minipigs and NHPs and demonstrated close correlations between these biomarkers in response to radiation. Our results suggest that the elevated levels of circulating IL-18 after radiation proportionally reflect radiation dose and severity of radiation injury and may be used both as a potential biomarker for triage and also to track casualties after radiological accidents as well as for therapeutic radiation exposure.

  12. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood.

    Science.gov (United States)

    Baars, Annemarie; Oosting, Annemarie; Engels, Eefje; Kegler, Diane; Kodde, Andrea; Schipper, Lidewij; Verkade, Henkjan J; van der Beek, Eline M

    2016-06-01

    Epidemiological studies have demonstrated protective effects of breast-feeding on childhood obesity. Differences between human milk and infant milk formula (IMF) in dietary lipid structure may contribute to this effect. In our mouse model, feeding a diet containing large lipid droplets coated with phospholipids (PL) (Nuturis®; PL of milk fat globule membrane (MFGM) fraction origin) in early life protected against excessive body fat accumulation following a diet challenge in adult life. We now set out to determine the relevance of increased droplet size and/or MFGM lipid droplet coating to the observed anti-obesogenic effects in adult life. From day 16 to 42, male mouse pups were exposed to diets with small (S) or large (L) lipid droplets (0·3 v. 2·9 µm average mode diameter, respectively), either without MFGM or with MFGM coating around the lipid droplet, resulting in four groups: S (control diet), L, Scoating and Lcoating (Nuturis® IMF diet). Mice were subsequently challenged with a Western-style diet until dissection at postnatal day 98. A non-challenged group served as reference (REF). We repeatedly determined body composition between postnatal day 42 and 98. At day 98 plasma and gene expression measurements were performed. Only the Nuturis® IMF diet (Lcoating) in early life containing MFGM-coated large lipid droplets reduced body fat mass to a level comparable with the REF group. These data support the notion that the structural aspects of lipids in human milk, for example, both lipid droplet size as well as the MFGM coating, may contribute to its reported protective effect against obesity in later life.

  13. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice.

    Science.gov (United States)

    Wang, Bing; Tanaka, Kaoru; Ji, Bin; Ono, Maiko; Fang, Yaqun; Ninomiya, Yasuharu; Maruyama, Kouichi; Izumi-Nakajima, Nakako; Begum, Nasrin; Higuchi, Makoto; Fujimori, Akira; Uehara, Yoshihiko; Nakajima, Tetsuo; Suhara, Tetsuya; Ono, Tetsuya; Nenoi, Mitsuru

    2014-01-01

    The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with (11)C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice.

  14. Interruption of Ghrelin Signaling in the PVN Increases High-Fat Diet Intake and Body Weight in Stressed & Non-Stressed C57BL6J Male Mice

    Directory of Open Access Journals (Sweden)

    Zachary Robert Patterson

    2013-09-01

    Full Text Available Chronic social stress has been associated with increased caloric intake and adiposity. These effects have been linked to stress induced changes in the secretion of ghrelin, a hormone that targets a number of brain regions to increase food intake and energy expenditure and promote increased body fat content. One of the brain sites targeted by ghrelin is the hypothalamic paraventricular nucleus (PVN, a region critical for both the regulation of the stress response and the regulation of energy balance. Given these data, we examined the contribution of ghrelin receptors in the PVN to the metabolic and behavioral changes that are seen during chronic social stress in mice. To do this, mice were implanted with cannulae attached to osmotic minipumps and delivering either vehicle or the ghrelin receptor (growth hormone secretagogue receptor antagonist [D-Lys-3]-GHRP-6 (20nmol/day/mouse. Following a week of recovery, half of the animals in each group were exposed to chronic social defeat stress for a period of three weeks whereas the other half were left undisturbed. During this time, all animals were given ad libitum access to standard laboratory chow and presented a high-fat diet for 4 hours during the day. Results showed that the ghrelin receptor antagonism did not decrease stressed induced caloric intake, but paradoxically increased the intake of the high fat diet. This would suggest that ghrelin acts on the PVN to promote the intake of carbohydrate rich diets while decreasing fat intake and blockade of ghrelin receptors in the PVN leads to more consumption of foods that are high in fat.

  15. Effects and Mechanism of Resveratrol on Body weight and Adipose Tissue Distribution of KKAy Mice%白藜芦醇对KKAy小鼠体质量和脂肪分布的影响及机制

    Institute of Scientific and Technical Information of China (English)

    孙延双; 陈思凡; 朱伟; 郑琳; 张子丽; 凌文华; 冯翔

    2011-01-01

    目的:观察白藜芦醇(resveratrol,res)对KKAy小鼠体质量和脂肪分布的影响,并探讨其中机制。方法:将36只8周龄KKAy小鼠分成3组,其中两组KKAy小鼠分别饲喂添加白藜芦醇(以饲料质量2、4g/kg添加)的AIN93G饲料,另外以12只同周龄C57BL/6J小鼠为对照。观察干预12周后白藜芦醇对小鼠体质量及皮下脂肪、附睾脂肪分布的影响;Western blot实验检测不同组小鼠附睾及皮下脂肪组织中沉默信息调节因子1(silent information regulator 1,sirt-1%Objective:To explore the effect and mechanism of resveratrol on the body weight and adipose tissue distribution of KKAy mice.Methods:Totally 36 8-week-old KKAy mice were randomly divided into 3 groups,and fed a standard AIN93G diet or a standard AIN93G diet supplemented with resveratrol at the dose of 2 or 4 g/kg.A total of 12 C57BL/6J mice fed the standard diet were chosen as the control.The body weight,subcutaneous fat and epididymal fat of the mice were measured.The expression of silent information regulator(sirt-1),peroxisome proliferator-activated receptor γ(PPARγ) and CCAAT/enhancer-binding protein α(C/EBPα) in the adipose tissue of rats were evaluated by Western blot.Results:Resveratrol could reduce the body weight of KKAy mice without dependence on food intake.Body weight and adipose tissue weight was much lower mice in the high-dose group when compared with the model group.In addition,resveratrol also enhanced the expression level of sirt-1 and inhibited the expression of PPARγ and C/EBPα in the adipose tissue of mice.Conclusion:Resveratol can ameliorate body adiposity in mice due to its promoting effect on the expression of sirt-1 in the adipose tissue and suppressive function on the expression of proteins related to lipogenesis and adipocyte differentiation.

  16. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    Science.gov (United States)

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.

  17. [The efficiency and direction of thymus changes after whole-body exposure of mice to the weak electromagnetic field are determined by the initial status of the thymus].

    Science.gov (United States)

    Semin, Iu A; Zhavoronkov, L P; Voron'ko, Ia V; Shvartsburg, L K; Rozhkova, O M

    2003-01-01

    The work presents results of the experimental study on thymus changes developing after whole-body exposure of mice to ultralow power pulse-modulated electromagnetic field (carrying frequency 2.39 GHz, modulating pulses with frequency 4 Hz, duration of impulses 0.025 sec, average power density 60 mW/cm2, absorbed dose 0.086 J/g or 0.172 J/g). It was shown that a percent of the microwave induced increase or decrease of thymus mass and the number of cells in the organ (y) are determined by the initial mass or number of cells in thymus accordingly to equation of linear regression: (yx = 215-2.25x, where x is the thymus mass of control animals (in a range 31-63 mg) and (yx = 178.6-41x, where x is the initial number of cells in thymus (in a range 0.6 x 10(8)-2.6 x 10(8)) reduced by a factor of 10(8).

  18. Integrated analysis of genetic, behavioral, and biochemical data implicates neural stem cell-induced changes in immunity, neurotransmission and mitochondrial function in Dementia with Lewy Body mice.

    Science.gov (United States)

    Lakatos, Anita; Goldberg, Natalie R S; Blurton-Jones, Mathew

    2017-03-10

    We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.

  19. Proteomic Profiling of Hematopoietic Stem/Progenitor Cells after a Whole Body Exposure of CBA/CaJ Mice to Titanium (48Ti Ions

    Directory of Open Access Journals (Sweden)

    Kanokporn Noy Rithidech

    2015-07-01

    Full Text Available Myeloid leukemia (ML is one of the major health concerns from exposure to radiation. However, the risk assessment for developing ML after exposure to space radiation remains uncertain. To reduce the uncertainty in risk prediction for ML, a much increased understanding of space radiation-induced changes in the target cells, i.e., hematopoietic stem/progenitor cells (HSPCs, is critically important. We used the label-free quantitative mass spectrometry (LFQMS proteomic approach to determine the expression of protein in HSPC-derived myeloid colonies obtained at an early time-point (one week and a late time-point (six months after an acute whole body exposure of CBA/CaJ mice to a total dose of 0, 0.1, 0.25, or 0.5 Gy of heavy-ion titanium (48Ti ions, which are the important component of radiation found in the space environment. Mice exposed to 0 Gy of 48Ti ions served as non-irradiated sham controls. There were five mice per treatment groups at each harvest time. The Trans-Proteomic Pipeline (TPP was used to assign a probability of a particular protein being in the sample. A proof-of-concept based Ingenuity Pathway Analysis (IPA was used to characterize the functions, pathways, and networks of the identified proteins. Alterations of expression levels of proteins detected in samples collected at one week (wk post-irradiation reflects acute effects of exposure to 48Ti ions, while those detected in samples collected at six months (mos post-irradiation represent protein expression profiles involved in the induction of late-occurring damage (normally referred to as genomic instability. Our results obtained by using the IPA analyses indicate a wide array of signaling pathways involved in response to 1 GeV/n 48Ti ions at both harvest times. Our data also demonstrate that the patterns of protein expression profiles are dose and time dependent. The majority of proteins with altered expression levels are involved in cell cycle control, cellular growth and

  20. Whole-body skeletal imaging in mice utilizing microPET: optimization of reproducibility and applications in animal models of bone disease

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Frank [The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California School of Medicine, 700 Westwood Blvd., Los Angeles, CA 90095 (United States); Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich (Germany); Lee, Yu-Po; Lieberman, Jay R. [Department of Orthopedic Surgery, University of California School of Medicine, Los Angeles, California (United States); Loening, Andreas M.; Chatziioannou, Arion [The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California School of Medicine, 700 Westwood Blvd., Los Angeles, CA 90095 (United States); Freedland, Stephen J.; Belldegrun, Arie S. [Department of Urology, University of California School of Medicine, Los Angeles, California (United States); Leahy, Richard [University of Southern California School of Bioengineering, Los Angeles, California (United States); Sawyers, Charles L. [Department of Medicine, University of California School of Medicine, Los Angeles, California (United States); Gambhir, Sanjiv S. [The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California School of Medicine, 700 Westwood Blvd., Los Angeles, CA 90095 (United States); UCLA-Jonsson Comprehensive Cancer Center and Department of Biomathematics, University of California School of Medicine, Los Angeles, California (United States)

    2002-09-01

    The aims were to optimize reproducibility and establish [{sup 18}F]fluoride ion bone scanning in mice, using a dedicated small animal positron emission tomography (PET) scanner (microPET) and to correlate functional findings with anatomical imaging using computed tomography (microCAT). Optimal tracer uptake time for [{sup 18}F]fluoride ion was determined by performing dynamic microPET scans. Quantitative reproducibility was measured using region of interest (ROI)-based counts normalized to (a) the injected dose, (b) integral of the heart time-activity curve, or (c) ROI over the whole skeleton. Bone lesions were repetitively imaged. Functional images were correlated with X-ray and microCAT. The plateau of [{sup 18}F]fluoride uptake occurs 60 min after injection. The highest reproducibility was achieved by normalizing to an ROI over the whole skeleton, with a mean percent coefficient of variation [(SD/mean) x 100] of <15%-20%. Benign and malignant bone lesions were successfully repetitively imaged. Preliminary correlation of microPET with microCAT demonstrated the high sensitivity of microPET and the ability of microCAT to detect small osteolytic lesions. Whole-body [{sup 18}F]fluoride ion bone imaging using microPET is reproducible and can be used to serially monitor normal and pathological changes to the mouse skeleton. Morphological imaging with microCAT is useful to display correlative changes in anatomy. Detailed in vivo studies of the murine skeleton in various small animal models of bone diseases should now be possible. (orig.)

  1. Effect of selection for growth on normal and reduced protein diets on weight gain, feed intake, feed efficiency and body composition in mice.

    Science.gov (United States)

    Nielsen, V H; Korsgaard, I R

    2006-12-01

    Mice selected for weight gain from 3 to 9 weeks of age on a normal (N) protein diet containing 19.3% protein and a reduced (R) protein diet with 5.1% protein were reared on both diets in generations 7 and 9. The lines NH, NC, NL, RH, RC and RL (H, high; C, control; L, low) were tested for weight gain on diet N and R and for feed intake and feed efficiency on diet N in generation 7. In generation 9, the lines were tested for body composition traits (fat, protein and water percentage) at 3, 6, 9 and 12 weeks of age on both diets. A significant (p < 0.0001) genotype x environment interaction for growth rate was observed in generation 7. Weight gain at both the protein levels was best improved by selection at the protein level itself. Furthermore, the ranking of the lines on diet N was similar for weight gain, feed intake and feed efficiency. In generation 9 at 9 weeks of age, the ranking of the lines for fat percentage was equal to the ranking for weight gain in generation 7 on both test-diets. The association between weight gain and protein or water percentage was less pronounced, particularly on diet R. These results suggest that the largest genetic improvement in growth rate is obtained when the protein content of the feed is the same in selection and production. However, when selection is carried out in one environment while the animals have to perform under conditions with varying nutrient protein contents, selection in an inferior environment may be advantageous.

  2. Metabolic responses to high-fat diets rich in n-3 or n-6 long-chain polyunsaturated fatty acids in mice selected for either high body weight or leanness explain different health outcomes

    Directory of Open Access Journals (Sweden)

    Nuernberg Karin

    2011-08-01

    Full Text Available Abstract Background Increasing evidence suggests that diets high in polyunsaturated fatty acids (PUFA confer health benefits by improving insulin sensitivity and lipid metabolism in liver, muscle and adipose tissue. Methods The present study investigates metabolic responses in two different lines of mice either selected for high body weight (DU6 leading to rapid obesity development, or selected for high treadmill performance (DUhTP leading to a lean phenotype. At 29 days of age the mice were fed standard chow (7.2% fat, 25.7% protein, or a high-fat diet rich in n-3 PUFA (n-3 HFD, 27.7% fat, 19% protein or a high-fat diet rich in n-6 PUFA (n-6 HFD, 27.7% fat, 18.6% protein for 8 weeks. The aim of the study was to determine the effect of these PUFA-rich high-fat diets on the fatty acid profile and on the protein expression of key components of insulin signalling pathways. Results Plasma concentrations of leptin and insulin were higher in DU6 in comparison with DUhTP mice. The high-fat diets stimulated a strong increase in leptin levels and body fat only in DU6 mice. Muscle and liver fatty acid composition were clearly changed by dietary lipid composition. In both lines of mice n-3 HFD feeding significantly reduced the hepatic insulin receptor β protein concentration which may explain decreased insulin action in liver. In contrast, protein kinase C ζ expression increased strongly in abdominal fat of n-3 HFD fed DUhTP mice, indicating enhanced insulin sensitivity in adipose tissue. Conclusions A diet high in n-3 PUFA may facilitate a shift from fuel deposition in liver to fuel storage as fat in adipose tissue in mice. Tissue specific changes in insulin sensitivity may describe, at least in part, the health improving properties of dietary n-3 PUFA. However, important genotype-diet interactions may explain why such diets have little effect in some population groups.

  3. Effects of total body irradiation on b16f10 melanoma-bearing mice%全身放射线照射对 B16 F10黑色素瘤小鼠的影响

    Institute of Scientific and Technical Information of China (English)

    王冰; 屈朋欢; 王艳华; 崔乃鹏; 蔡建辉; 陈保平

    2015-01-01

    目的:观察全身放射线照射( TBI)对B16F10黑色素瘤小鼠移植肿瘤生长及小鼠存活的影响。方法建立C57BL/6小鼠B16F10黑色素瘤移植肿瘤模型,采用不同剂量分别对小鼠进行TBI,观察小鼠移植肿瘤的生长和小鼠的存活情况;检测放疗后小鼠外周血白细胞水平。结果不同剂量TBI对各组小鼠肿瘤面积及存活率无影响(P均>0.05)。给予7 Gy TBI 10 d后,B16F10荷瘤小鼠外周血白细胞水平下降(P<0.05)。结论 TBI不影响B16 F10黑色素瘤小鼠移植肿瘤生长及荷瘤小鼠的生存;7 Gy TBI可改变荷瘤小鼠外周血白细胞水平,有利于肿瘤免疫治疗。%Objective To investigate effects of total body irradiation (TBI) on tumor growth and B16F10 melanoma-bearing mice survival.Methods C57BL/6 mice bearing B16-melanoma tumors were irradiated with 0, 5, or 7 Gy total body irradiation ( TBI) , or 7 Gy TBI pus bone marrow transplantation .Tumor areas were measured every 3 days to assess the influences of irradiation treatment on tumor regression .B16-melanoma bearing mice were irradiated with 7 Gy TBI and peripheral blood were harvested at days 1, 3, 5, 7, 9, 11 and 13 after irradiation to test WBC levels .Results TBI with variant dosage on the B 16-melanoma-bearing mice did not influence tumor regression compared with control group ( all P>0.05).WBC levels significantly decreased in the B16F10 melanoma-bearing mice on 10 d after 7 Gy TBI(P<0.05). Conclusion TBI dose do not influence tumor growth and survival of B 16F10 melanoma-bearing mice.Seven Gy TBI can alter WBC levels of peripheral bloods in B 16F10 melanoma-bearing mice, which helps to tumor immunotherapy .

  4. Co-agonist of glucagon and GLP-1 reduces cholesterol and improves insulin sensitivity independent of its effect on appetite and body weight in diet-induced obese C57 mice.

    Science.gov (United States)

    Patel, Vishal; Joharapurkar, Amit; Dhanesha, Nirav; Kshirsagar, Samadhan; Patel, Kartik; Bahekar, Rajesh; Shah, Gaurang; Jain, Mukul

    2013-12-01

    Dual agonism of glucagon and glucagon-like peptide-1 (GLP-1) receptors reduce body weight without inducing hyperglycemia in rodents. However, the effect of a co-agonist on insulin sensitivity and lipid metabolism has not been thoroughly assessed. Diet-induced obese (DIO) mice received 0.5 mg·kg(-1) of co-agonist or 2.5 mg·kg(-1) of glucagon or 8 μg·kg(-1) of exendin-4 by subcutaneous route, twice daily, for 28 days. A separate group of mice was pair-fed to the co-agonist-treated group for 28 days. Co-agonist treatment reduced food intake and reduced body weight up to 28 days. In addition, it reduced leptin levels and increased fibroblast growth factor 21 (FGF21) levels in plasma, when compared with control and pair-fed groups. Co-agonist treatment decreased triglyceride levels in serum and liver and reduced serum cholesterol, mainly due to reduction in low-density lipoprotein (LDL) cholesterol. These changes were not seen with pair-fed controls. Co-agonist treatment improved glucose tolerance and increased insulin sensitivity, as observed during glucose and insulin-tolerance test, hyperinsulinemic clamp, and reduced gluconeogenesis, as observed in pyruvate-tolerance test. The effects on insulin sensitivity and lipid levels are mostly independent of the food intake or body weight lowering effect of the co-agonist.

  5. Humanized Chronic Graft-versus-Host Disease in NOD-SCID il2rγ-/- (NSG Mice with G-CSF-Mobilized Peripheral Blood Mononuclear Cells following Cyclophosphamide and Total Body Irradiation.

    Directory of Open Access Journals (Sweden)

    Hisaki Fujii

    Full Text Available Chronic graft-versus-host disease (cGvHD is the major source of late phase morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Humanized acute GvHD (aGvHD in vivo models using NOD-SCID il2rγ-/- (NSG mice are well described and are important tools for investigating pathogenicity of human cells in vivo. However, there have been only few reported humanized cGvHD mouse models. We evaluated if prolonged inflammation driven by low dose G-CSF-mobilized human PBMCs (G-hPBMCs would lead to cGvHD following cyclophosphamide (CTX administration and total body irradiation (TBI in NSG mice. Engraftment was assessed in peripheral blood (PB and in specific target organs by either flow cytometry or immunohistochemistry (IHC. Tissue samples were harvested 56 days post transplantation and were evaluated by a pathologist. Some mice were kept for up to 84 days to evaluate the degree of fibrosis. Mice that received CTX at 20mg/kg did not show aGvHD with stable expansion of human CD45+ CD3+ T-cells in PB (mean; 5.8 to 23.2%. The pathology and fibrosis scores in the lung and the liver were significantly increased with aggregation of T-cells and hCD68+ macrophages. There was a correlation between liver pathology score and the percentage of hCD68+ cells, suggesting the role of macrophage in fibrogenesis in NSG mice. In order to study long-term survival, 6/9 mice who survived more than 56 days showed increased fibrosis in the lung and liver at the endpoint, which suggests the infiltrating hCD68+ macrophages may be pathogenic. It was shown that the combination of CTX and TBI with a low number of G-hPBMCs (1x106 leads to chronic lung and liver inflammation driven by a high infiltration of human macrophage and mature human T cells from the graft, resulting in fibrosis of lung and liver in NSG mice. In conclusion this model may serve as an important pre-clinical model to further current understanding of the roles of human macrophages in cGvHD.

  6. Humanized Chronic Graft-versus-Host Disease in NOD-SCID il2rγ-/- (NSG) Mice with G-CSF-Mobilized Peripheral Blood Mononuclear Cells following Cyclophosphamide and Total Body Irradiation.

    Science.gov (United States)

    Fujii, Hisaki; Luo, Zhi-Juan; Kim, Hye Jin; Newbigging, Susan; Gassas, Adam; Keating, Armand; Egeler, R Maarten

    2015-01-01

    Chronic graft-versus-host disease (cGvHD) is the major source of late phase morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Humanized acute GvHD (aGvHD) in vivo models using NOD-SCID il2rγ-/- (NSG) mice are well described and are important tools for investigating pathogenicity of human cells in vivo. However, there have been only few reported humanized cGvHD mouse models. We evaluated if prolonged inflammation driven by low dose G-CSF-mobilized human PBMCs (G-hPBMCs) would lead to cGvHD following cyclophosphamide (CTX) administration and total body irradiation (TBI) in NSG mice. Engraftment was assessed in peripheral blood (PB) and in specific target organs by either flow cytometry or immunohistochemistry (IHC). Tissue samples were harvested 56 days post transplantation and were evaluated by a pathologist. Some mice were kept for up to 84 days to evaluate the degree of fibrosis. Mice that received CTX at 20mg/kg did not show aGvHD with stable expansion of human CD45+ CD3+ T-cells in PB (mean; 5.8 to 23.2%). The pathology and fibrosis scores in the lung and the liver were significantly increased with aggregation of T-cells and hCD68+ macrophages. There was a correlation between liver pathology score and the percentage of hCD68+ cells, suggesting the role of macrophage in fibrogenesis in NSG mice. In order to study long-term survival, 6/9 mice who survived more than 56 days showed increased fibrosis in the lung and liver at the endpoint, which suggests the infiltrating hCD68+ macrophages may be pathogenic. It was shown that the combination of CTX and TBI with a low number of G-hPBMCs (1x106) leads to chronic lung and liver inflammation driven by a high infiltration of human macrophage and mature human T cells from the graft, resulting in fibrosis of lung and liver in NSG mice. In conclusion this model may serve as an important pre-clinical model to further current understanding of the roles of human macrophages in cGvHD.

  7. Age-Related Declines in General Cognitive Abilities of Balb/C Mice and General Activity Are Associated with Disparities in Working Memory, Body Weight, and General Activity

    Science.gov (United States)

    Matzel, Louis D.; Grossman, Henya; Light, Kenneth; Townsend, David; Kolata, Stefan

    2008-01-01

    A defining characteristic of age-related cognitive decline is a deficit in general cognitive performance. Here we use a testing and analysis regimen that allows us to characterize the general learning abilities of young (3-5 mo old) and aged (19-21 mo old) male and female Balb/C mice. Animals' performance was assessed on a battery of seven diverse…

  8. Liposomal Nanoparticles of a Spleen Tyrosine Kinase P-Site Inhibitor Amplify the Potency of Low Dose Total Body Irradiation Against Aggressive B-Precursor Leukemia and Yield Superior Survival Outcomes in Mice.

    Science.gov (United States)

    Uckun, Fatih M; Myers, Dorothea E; Cheng, Jianjun; Qazi, Sanjive

    2015-06-01

    This study was designed to improve the efficacy of radiation therapy against radiation-resistant leukemia. We report that the potency of low dose radiation therapy against B-precursor acute lymphoblastic leukemia (BPL) can be markedly enhanced by combining radiation with a liposomal nanoparticle (LNP) formulation of the SYK-P-site inhibitor C61 ("C61-LNP"). C61-LNP plus low dose total body irradiation (TBI) was substantially more effective than TBI alone or C61-LNP alone in improving the event-free survival outcome NOD/SCID mice challenged with an otherwise invariably fatal dose of human ALL xenograft cells derived from relapsed BPL patients. C61-LNP plus low dose TBI also yielded progression-free survival, tumor-free survival and overall survival outcomes in CD22ΔE12 × BCR-ABL double transgenic mice with advanced stage, radiation-resistant BPL with lymphomatous features that were significantly superior to those of mice treated with TBI alone or C61-LNP alone.

  9. Whole Body Inhalation Exposure to 1-Bromopropane Suppresses the IgM Response to Sheep Red Blood Cells in Female B6C3F1 Mice and Fisher 344/N Rats

    Science.gov (United States)

    Anderson, Stacey. E.; Munson, Albert E.; Butterworth, Leon F.; Germolec, Dori; Morgan, Daniel L.; Roycroft, Joseph A.; Dill, Jeffrey; Meade, B. J.

    2010-01-01

    1-Bromopropane (1-BP) is categorized as a high-production volume chemical currently used in the manufacture of pharmaceuticals, pesticides and other chemicals. Its usage is estimated to be around 5 million pounds/year resulting in the potential for widespread exposure in the workplace. Case reports and animal studies have suggested exposure to this compound may cause adverse reproductive and neurological effects. Using a battery of immunological assays, the immunotoxicity of 1-BP after whole body inhalation exposure in both mice and rats was evaluated. Significant decreases in the spleen IgM response to SRBC were observed in both mice (125-500 ppm) and rats (1000 ppm) after exposure to 1-BP for 10 weeks. In addition, total spleen cells and T-cells were significantly decreased after approximately 4 weeks of 1-BP exposure in both mice (125-500 ppm) and rats (1000 ppm). No change in natural killer (NK) cell activity was observed. The observed alterations in spleen cellularity, phenotypic subsets and impairment of humoral immune function across species, raises further concern about human exposure to 1-BP and demonstrates the need for additional investigations into potential adverse health effects. PMID:20041805

  10. Whole-body inhalation exposure to 1-bromopropane suppresses the IgM response to sheep red blood cells in female B6C3F1 mice and Fisher 344/N rats.

    Science.gov (United States)

    Anderson, Stacey E; Munson, Albert E; Butterworth, Leon F; Germolec, Dori; Morgan, Daniel L; Roycroft, Joseph A; Dill, Jeffrey; Meade, B J

    2010-02-01

    1-Bromopropane (1-BP) is categorized as a high-production-volume chemical and is currently used in the manufacture of pharmaceuticals, pesticides, and other chemicals. Its usage is estimated to be around 5 million pounds per year, resulting in the potential for widespread exposure in the workplace. Case reports and animal studies have suggested exposure to this compound may cause adverse reproductive and neurological effects. Using a battery of immunological assays, the immunotoxicity of 1-BP after whole body inhalation exposure in both mice and rats was evaluated. Significant decreases in the spleen immunoglobulin (Ig) M response to sheep red blood cells (SRBC) were observed in both mice (125-500 ppm) and rats (1000 ppm) after exposure to 1-BP for 10 wk. In addition, total spleen cells and T cells were significantly decreased after approximately 4 wk of 1-BP exposure in both mice (125-500 ppm) and rats (1000 ppm). No change in natural killer (NK) cell activity was observed. The observed alterations in spleen cellularity, phenotypic subsets, and impairment of humoral immune function across species raise further concern about human exposure to 1-BP and demonstrate the need for additional investigations into potential adverse health effects.

  11. Mango Supplementation Modulates Gut Microbial Dysbiosis and Short-Chain Fatty Acid Production Independent of Body Weight Reduction in C57BL/6 Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Ojo, Babajide; El-Rassi, Guadalupe Davila; Payton, Mark E; Perkins-Veazie, Penelope; Clarke, Stephen; Smith, Brenda J; Lucas, Edralin A

    2016-08-01

    High-fat (HF) diet-induced obesity is associated with changes in the gut microbiota. Fiber and other bioactive compounds in plant-based foods are suggested to prevent gut dysbiosis brought on by HF feeding. Mango is high in fiber and has been reported to have anti-obesogenic, hypoglycemic, and immunomodulatory properties. We investigated the effects of freeze-dried mango pulp combined with an HF diet on the cecal microbial population and its relation to body composition, lipids, glucose parameters, short-chain fatty acid (SCFA) production, and gut inflammatory markers in a mouse model of diet-induced obesity. Six-wk-old male C57BL/6 mice were randomly assigned to 1 of 4 dietary treatment groups: control (AIN-93M, 10% fat kcal), HF (60% fat kcal), and HF + 1% or 10% mango (HF+1%M or HF+10%M, wt:wt) for 12 wk. The cecal microbial population was assessed by use of 16S rDNA sequencing. Body composition, plasma glucose and lipids, cecal and fecal SCFAs, and mRNA abundance of inflammatory markers in the ileum and colonic lamina propria were assessed. Compared with the control group, HF feeding significantly reduced (P diet modulated the gut microbiota and production of SCFAs in C57BL/6 mice; these changes may improve gut tolerance to the insult of an HF diet. © 2016 American Society for Nutrition.

  12. Intraventricular administration of Tenebrio molitor larvae extract regulates food intake and body weight in mice with high-fat diet-induced obesity.

    Science.gov (United States)

    Seo, Minchul; Kim, Jongwan; Moon, Seong-Su; Hwang, Jae-Sam; Kim, Mi-Ae

    2017-08-01

    We recently reported the in vitro and in vivo antiobesity effects of Tenebrio molitor larvae, a traditional food in many countries, but it remains unknown how the larvae affect appetite regulation in mice with diet-induced obesity. We hypothesized that the extract of T molitor larvae mediates appetite by regulating neuropeptide expression. We investigated T molitor larvae extract's (TME's) effects on anorexigenesis and endoplasmic reticulum (ER) stress-induced orexigenic neuropeptide expression in the hypothalami of obese mice. Intracerebroventricular TME administration suppressed feeding by down-regulating the expression of the orexigenic neuropeptides neuropeptide Y and agouti-related protein. T molitor larvae extract significantly reduced the expression of ER stress response genes. These results suggest that TME and its bioactive components are potential therapeutics for obesity and ER stress-driven disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Single administration of p2TA (AB103, a CD28 antagonist peptide, prevents inflammatory and thrombotic reactions and protects against gastrointestinal injury in total-body irradiated mice.

    Directory of Open Access Journals (Sweden)

    Salida Mirzoeva

    Full Text Available The goal of this study was to elucidate the action of the CD28 mimetic peptide p2TA (AB103 that attenuates an excessive inflammatory response in mitigating radiation-induced inflammatory injuries. BALB/c and A/J mice were divided into four groups: Control (C, Peptide (P; 5 mg/kg of p2TA peptide, Radiation (R; total body irradiation with 8 Gy γ-rays, and Radiation + Peptide (RP; irradiation followed by p2TA peptide 24 h later. Gastrointestinal tissue damage was evaluated by analysis of jejunum histopathology and immunohistochemistry for cell proliferation (Cyclin D1 and inflammation (COX-2 markers, as well as the presence of macrophages (F4/80. Pro-inflammatory cytokines IL-6 and KC as well as fibrinogen were quantified in plasma samples obtained from the same mice. Our results demonstrated that administration of p2TA peptide significantly reduced the irradiation-induced increase of IL-6 and fibrinogen in plasma 7 days after exposure. Seven days after total body irradiation with 8 Gy of gamma rays numbers of intestinal crypt cells were reduced and villi were shorter in irradiated animals compared to the controls. The p2TA peptide delivery 24 h after irradiation led to improved morphology of villi and crypts, increased Cyclin D1 expression, decreased COX-2 staining and decreased numbers of macrophages in small intestine of irradiated mice. Our study suggests that attenuation of CD28 signaling is a promising therapeutic approach for mitigation of radiation-induced tissue injury.

  14. Diabetic mice exhibited a peculiar alteration in body composition with exaggerated ectopic fat deposition after muscle injury due to anomalous cell differentiation.

    Science.gov (United States)

    Mogi, Masaki; Kohara, Katsuhiko; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Wang, Xiao-Li; Chisaka, Toshiyuki; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Miki, Tetsuro; Horiuchi, Masatsugu

    2016-05-01

    Sarcopenic obesity, age-related muscle loss, which is compensated by an increase in fat mass, impairs quality of life in elderly people. Although the increase in intramuscular fat is associated with decreased insulin sensitivity and increased metabolic risk factors, the origin of diabetes-associated intramuscular fat has not been elucidated. Here, we investigated intramuscular fat deposition using a muscle injury model in type 2 diabetic mice. Male 8-week-old C57BL/6 and 8-week-old and 26-week-old KKAy underwent intramuscular injection of cardiotoxin (Ctx) (100 μL/10 μM) into the tibialis anterior (TA) muscles. After 2 weeks, the muscles were removed and evaluated. KKAy exhibited impaired muscle regeneration and ectopic fat deposition. Such impairment was more marked in older KKAy. These changes were also observed in another diabetic mouse model, db/db and diet-induced obese mice but not in streptozocin-induced diabetic mice. Deposited fat was platelet-derived growth factor (PDGF) receptor alpha positive and its cytoskeleton was stained with Masson's trichrome, indicating it to be of fibro-adipocyte progenitor cell origin. Expression of a myogenic marker, myoD, was lower and that of PDGF receptor alpha and CCAAT/enhancer binding protein (CEBP) alpha was higher in Ctx-injured TA of KKAy compared with that of C57BL/6. Peroxisome proliferator-activated receptor γ (PPARγ) was highly expressed in fat-forming lesions in older KKAy. Treatment with all-trans retinoic acid prevented the formation of intramuscular fat; however, treatment with GW9662, a PPARγ antagonist, increased the fibrotic change in muscle. Diabetic mice showed impaired muscle regeneration with fat deposition, suggesting that diabetes may enhance sarcopenic obesity through a mechanism involving anomalous fibro-adipocyte progenitor cell differentiation.

  15. Effect of Enteromorpha on Body Weight Loss in Nutritionally Obese Mice%浒苔对营养性肥胖小鼠减肥功能的研究

    Institute of Scientific and Technical Information of China (English)

    禹海文; 李妍妍; 苏秀榕

    2012-01-01

    目的:研究浒苔对营养性肥胖小鼠的减肥作用。方法:用营养饲料建立肥胖模型,造模成功小鼠分为模型组,浒苔高、中、低剂量组和阳性对照组。模型组小鼠喂以基础饲料并灌胃清水,浒苔高、中、低剂量组分别喂以添加质量分数30%、20%、10%浒苔的基础饲料并灌胃清水,阳性对照组喂以基础饲料并灌胃50mg/(100g·d)(以体质量计)的左旋肉碱。49d后眼球取血,测定小鼠体质量、Lee^2s指数、脂肪系数及血清总胆固醇(TC)、甘油三脂(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)含量和丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)活性。结果:高、中、低剂量浒苔及左旋肉碱均能有效降低雌性与雄性营养性肥胖小鼠体质量、Lee^2S指数、脂肪系数及血清TC、TG、LDL-C含量和ALT、AST活性,升高HDL-C含量和HDL-C含量/TC含量。结论:浒苔具有良好的减肥功能,其机理可能是抑制脂肪生成、调节血脂、保护肝功能。%Objective: To explore the body weight-reducing effect of Enteromorpha in nutritionally obese mice. Methods: A nutritionally obese mouse model was established by oral administration of a nutritional diet. The mice were divided into five groups including model group (T-cont group), Enteromorpha groups at high, medium and low dosages (T-high group, T-med group and T-low group) and positive control group (P-cont group). The mice from T-cont group were fed a basal diet. The mice from T-high group, T-med group and T-low group were fed a basal diet with the addition of 30%, 20% and 10% Enteromorpha, respectively. The mice from P-cont group were fed a basal diet supplemented with L-carnitine at 50 mg/(100 g· d). After administration for 49 days, blood was drawn from mouse eyeballs. The contents of serum TC, TG, LDL-C and HDL-C, the activities of serum

  16. Protective effects of a preparation(hemoHIM) of herb mixture on self-renewal tissues and immune system in whole body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Ran; Oh, Heon; Jo, Sung-Kee [Korea Atomic Energy Research Institute, Daejon (Korea, Republic of); Kim, Sung-Ho [Chonnam National Univ., Kwangju (Korea, Republic of); Yee, Sung-Tae [Sunchon National Univ., Sunchon (Korea, Republic of)

    2002-07-01

    A preparation (HemoHIM) of herb mixture was designed to protect the gastrointestine and hematopoietic organs and to promote recovery of the immune system against radiation damage. The mixture of 3 edible medicinal herbs (Angelica gagantis Radix, etc.) was decocted with hot water and the extract was fractionated with ethanol. The preparation HemoHIM was made up with addition of ethanol- insoluble fraction yielded from one half of the total water extract to the other half of the total water extract. In vitro, lymphocytes were protected by HemoHIM, its polysaccharide and ethanol fractions against radiation. The proliferation of lymphocytes and bone marrow cells by HemoHIM was due to its polysaccharide fraction. In mice administered with the preparation (HemoHIM) before gamma- irradiation, the jejunal crypt survival was increased and the apoptosis of crypt cells was decreased. HemoHIM administration increased the survival of bone marrow stem cells and promoted the repopulation of blood cells following irradiation. In the analysis of the repopulated lymphocyte subsets, B cells were firstly regenerated and then T cells were recovered in mice administrated with HemoHIM. The antibody production against T-dependent antigen DNP-KLH was augmented by HemoHIM in irradiated mice. These results indicated that HemoHIM, a preparation of the herb mixture, protected the stem cells of self-renewal tissues and hematopoietic organs and promoted recovery of the immune system against radiation damage. Since the preparation of herb mixture is a relatively nontoxic natural product, it might be a useful modifier for prevention and control of radiation damages.

  17. Differential susceptibility of C57BL/6NCr and B6.Cg-Ptprca mice to commensal bacteria after whole body irradiation in translational bone marrow transplant studies

    Directory of Open Access Journals (Sweden)

    Toubai Tomomi

    2008-02-01

    Full Text Available Abstract Background The mouse is an important and widely utilized animal model for bone marrow transplant (BMT translational studies. Here, we document the course of an unexpected increase in mortality of congenic mice that underwent BMT. Methods Thirty five BMTs were analyzed for survival differences utilizing the Log Rank test. Affected animals were evaluated by physical examination, necropsy, histopathology, serology for antibodies to infectious disease, and bacterial cultures. Results Severe bacteremia was identified as the main cause of death. Gastrointestinal (GI damage was observed in histopathology. The bacteremia was most likely caused by the translocation of bacteria from the GI tract and immunosuppression caused by the myeloablative irradiation. Variability in groups of animals affected was caused by increased levels of gamma and X-ray radiation and the differing sensitivity of the two nearly genetically identical mouse strains used in the studies. Conclusion Our retrospective analysis of thirty five murine BMTs performed in three different laboratories, identified C57BL/6NCr (Ly5.1 as being more radiation sensitive than B6.Cg-Ptprca/NCr (Ly5.2. This is the first report documenting a measurable difference in radiation sensitivity and its effects between an inbred strain of mice and its congenic counterpart eventually succumbing to sepsis after BMT.

  18. Rice koji reduced body weight gain, fat accumulation, and blood glucose level in high-fat diet-induced obese mice

    Directory of Open Access Journals (Sweden)

    Yumiko Yoshizaki

    2014-08-01

    Full Text Available Rice koji is considered a readily accessible functional food that may have health-promoting effects. We investigated whether white, yellow, and red koji have the anti-obesity effect in C57BL/6J mice fed a high-fat diet (HFD, which is a model for obesity. Mice were fed HFD containing 10% (w/w of rice koji powder or steamed rice for 4 weeks. Weight gain, epididymal white adipose tissue, and total adipose tissue weight were significantly lower in all rice koji groups than in the HFD-rice group after 4 weeks. Feed efficiency was significantly reduced in the yellow koji group. Blood glucose levels were significantly lower in the white and red koji groups with HOMA-R and leptin levels being reduced in the white koji group. White and red koji increased glucose uptake and GLUT4 protein expression in L6 myotube cells. These results showed that all rice koji have the anti-obesity or anti-diabetes effects although the mechanisms may differ depending on the type of rice koji consumed.

  19. Lower hepatic iron storage associated with obesity in mice can be restored by decreasing body fat mass through feeding a low-fat diet.

    Science.gov (United States)

    Chung, Hak; Wu, Dayong; Smith, Donald; Meydani, Simin Nikbin; Han, Sung Nim

    2016-09-01

    High-fat diet (HFD)-induced obesity has been reported to result in low hepatic iron storage. In the current study, we tested the hypothesis that these obesity-related changes in hepatic iron status could be reversed by decreasing adiposity by feeding a low-fat diet. Five-week-old C57BL/6 mice were assigned to 3 groups: the LL group was fed a control diet for 31 weeks, the HH group was fed a HFD for 31 weeks, and the HL group was fed the HFD for 15 weeks and then switched to the control diet for 16 weeks. The fat mass of the HL group decreased by 3.2 g from the 14th to the 30th weeks. Fat mass was significantly different among the groups (11.4, 15.8, and 37.5 g in the LL, HH, and HL groups, respectively; Pfat mass through feeding a lower-fat diet to HFD-induced obese mice restores liver iron storage.

  20. Growth factor treatment prior to low-dose total body irradiation increases donor cell engraftment after bone marrow transplantation in mice

    NARCIS (Netherlands)

    Noach, EJK; Ausema, A; Dillingh, JH; Dontje, B; Weersing, E; Akkerman, [No Value; Vellenga, E; Haan, GC

    2002-01-01

    Low-toxicity conditioning regimens prior to bone marrow transplantation (BMT) are widely explored. We developed a new protocol using hematopoietic growth factors prior to low-dose total body irradiation (TBI) in recipients of autologous transplants to establish high levels of long-term donor cell en

  1. Cryo-sectioning of mice for whole-body imaging of drugs and metabolites with desorption electrospray ionization mass spectrometry imaging - a simplified approach

    DEFF Research Database (Denmark)

    Okutan, Seda; Hansen, Harald S; Janfelt, Christian

    2016-01-01

    bodyweight which is comparable to the normal prescribed human dose. The simultaneous imaging of endogenous and exogenous compounds facilitates registration of the drug images to certain organs in the body by colored-overlay of the two types of images. The method represents a relatively low-cost approach...

  2. Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy

    Science.gov (United States)

    Zhang, Xiaofeng; Badea, Cristian T.; Johnson, G. Allan

    2009-11-01

    We present a 3-D image reconstruction method for free-space fluorescence tomography of mice using hybrid anatomical prior information. Specifically, we use an optically reconstructed surface of the experimental animal and a digital mouse atlas to approximate the anatomy of the animal as structural priors to assist image reconstruction. Experiments are carried out on a cadaver of a nude mouse with a fluorescent inclusion (2.4-mm-diam cylinder) implanted in the chest cavity. Tomographic fluorescence images are reconstructed using an iterative algorithm based on a finite element method. Coregistration of the fluorescence reconstruction and micro-CT (computed tomography) data acquired afterward show good localization accuracy (localization error 1.2+/-0.6 mm). Using the optically reconstructed surface, but without the atlas anatomy, image reconstruction fails to show the fluorescent inclusion correctly. The method demonstrates the utility of anatomical priors in support of free-space fluorescence tomography.

  3. Allomyrina Dichotoma Larvae Regulate Food Intake and Body Weight in High Fat Diet-Induced Obese Mice Through mTOR and Mapk Signaling Pathways.

    Science.gov (United States)

    Kim, Jongwan; Yun, Eun-Young; Park, Seong-Won; Goo, Tae-Won; Seo, Minchul

    2016-02-18

    Recent evidence has suggested that the Korean horn beetle (Allomyrina dichotoma) has anti-hepatofibrotic, anti-neoplastic, and antibiotic effects and is recognized as a traditional medicine. In our previous works, Allomyrina dichotoma larvae (ADL) inhibited differentiation of adipocytes both in vitro and in vivo. However, the anorexigenic and endoplasmic reticulum(ER) stress-reducing effects of ADL in obesity has not been examined. In this study, we investigated the anorexigenic and ER stress-reducing effects of ADL in the hypothalamus of diet-induced obese (DIO) mice. Intracerebroventricular (ICV) administration of ethanol extract of ADL (ADE) suggested that an antagonizing effect on ghrelin-induced feeding behavior through the mTOR and MAPK signaling pathways. Especially, ADE resulted in strong reduction of ER stress both in vitro and in vivo. These findings strongly suggest that ADE and its constituent bioactive compounds are available and valuable to use for treatment of various diseases driven by prolonged ER stress.

  4. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet.

    Science.gov (United States)

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-05-01

    Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo.

  5. Genetic variation in body weight gain and composition in the intercross of Large (LG/J and Small (SM/J inbred strains of mice

    Directory of Open Access Journals (Sweden)

    Kramer Melissa G.

    1998-01-01

    Full Text Available Strain intercross experiments provide a powerful means for mapping genes affecting complex quantitative traits. We report on the genetic variability of the intercross of the Large (LG/J and Small (SM/J inbred mouse strains as a guide to gene mapping studies. Ten SM/J males were crossed to 10 LG/J females, after which animals were randomly mated to produce F1, F2, and F3 intercross generations. The 1632 F3 animals from 200 full-sib families were used to estimate heritabilities and genetic correlations of the traits measured. A subset of families was cross-fostered at birth to allow measurement of the importance of post-natal maternal effects. Data was collected on weekly body weight from one to 10 weeks and on organ weights, body weight, reproductive fat pad weight, and tail length at necropsy in the intercross generations. There was no heterosis for age-specific weights or necropsy traits, except that one-week weight was the highest in the F2 generation, indicating heterosis for maternal effect in the F1 mothers. We found moderate to high heritability for most age-specific weights and necropsy traits. Maternal effects were significant for age-specific weights from one to four weeks but disappeared completely at ten-week weight. Maternal effects for necropsy traits were low and not statistically significant. Age-specific weights showed a typical correlation pattern, with correlation declining as the difference in ages increased. Among necropsy traits, reproductive fat pad and body weights were very highly genetically correlated. Most other genetic correlations were low to moderate. The intercross between SM/J and LG/J inbred mouse strains provides a valuable resource for mapping quantitative trait loci for body size, composition, and morphology

  6. Low Dose Total Body Irradiation Combined With Recombinant CD19-Ligand × Soluble TRAIL Fusion Protein is Highly Effective Against Radiation-resistant B-precursor Acute Lymphoblastic Leukemia in Mice

    Directory of Open Access Journals (Sweden)

    Fatih M. Uckun

    2015-04-01

    Full Text Available In high-risk remission B-precursor acute lymphoblastic leukemia (BPL patients, relapse rates have remained high post-hematopoietic stem cell transplantation (HSCT even after the use of very intensive total body irradiation (TBI-based conditioning regimens, especially in patients with a high “minimal residual disease” (MRD burden. New agents capable of killing radiation-resistant BPL cells and selectively augmenting their radiation sensitivity are therefore urgently needed. We report preclinical proof-of-principle that the potency of radiation therapy against BPL can be augmented by combining radiation with recombinant human CD19-Ligand × soluble TRAIL (“CD19L–sTRAIL” fusion protein. CD19L–sTRAIL consistently killed radiation-resistant primary leukemia cells from BPL patients as well as BPL xenograft cells and their leukemia-initiating in vivo clonogenic fraction. Low dose total body irradiation (TBI combined with CD19L–sTRAIL was highly effective against (1 xenografted CD19+ radiochemotherapy-resistant human BPL in NOD/SCID (NS mice challenged with an otherwise invariably fatal dose of xenograft cells derived from relapsed BPL patients as well as (2 radiation-resistant advanced stage CD19+ murine BPL with lymphomatous features in CD22ΔE12xBCR-ABL double transgenic mice. We hypothesize that the incorporation of CD19L–sTRAIL into the pre-transplant TBI regimens of patients with very high-risk BPL will improve their survival outcome after HSCT.

  7. The combination of conjugated linoleic acid (CLA) and extra virgin olive oil increases mitochondrial and body metabolism and prevents CLA-associated insulin resistance and liver hypertrophy in C57Bl/6 mice.

    Science.gov (United States)

    Baraldi, Flávia G; Vicentini, Tatiane M; Teodoro, Bruno G; Dalalio, Felipe M; Dechandt, Carlos R P; Prado, Ieda M R; Curti, Carlos; Cardoso, Fernanda C; Uyemura, Sergio A; Alberici, Luciane C

    2016-02-01

    Clinical conditions associated with obesity can be improved by daily intake of conjugated linoleic acid (CLA) or extra virgin olive oil (EVOO). Here we investigated whether dietary supplementation with CLA and EVOO, either alone or in combination, changes body metabolism associated with mitochondrial energetics. Male C57Bl/6 mice were divided into one of four groups: CLA (1:1 cis-9, trans-11:trans-10, cis-12; 18:2 isomers), EVOO, CLA plus EVOO or control (linoleic acid). Each mouse received 3 g/kg body weight of the stated oil by gavage on alternating days for 60 days. Dietary supplementation with CLA, alone or in combination with EVOO: (a) reduced the white adipose tissue gain; (b) increased body VO2 consumption, VCO2 production and energy expenditure; (c) elevated uncoupling protein (UCP)-2 expression and UCP activity in isolated liver mitochondria. This organelle, when energized with NAD(+)-linked substrates, produced high amounts of H2O2 without inducing oxidative damage. Dietary supplementation with EVOO alone did not change any metabolic parameter, but supplementation with CLA itself promoted insulin resistance and elevated weight, lipid content and acetyl-CoA carboxylase-1 expression in liver. Interestingly, the in vivo antioxidant therapy with N-acetylcysteine abolished the CLA-induced rise of body metabolism and liver UCP expression and activity, while the in vitro antioxidant treatment with catalase mitigated the CLA-dependent UCP-2 expression in hepatocytes; these findings suggest the participation of an oxidative-dependent pathway. Therefore, this study clarifies the mechanisms by which CLA induces liver UCP expression and activity, and demonstrates for the first time the beneficial effects of combined CLA and EVOO supplementation.

  8. MPD in Telomerase Null Mice

    Science.gov (United States)

    2007-09-01

    telomere dysfunctional mice will further fuel the genomic instability generated from progressive Figure 5 5FU treated telomere dysfunction bone...marrow has increased megakaryocytic colonies. Equal number of bone marrow cells from the 5FU treated mice of the various indicated cohorts are...We treated the cohorts of the G4 mTerc mutant mice with telomere dysfunction and normal G0 controls with 5FU at (50mg/kg body weight) once every

  9. Allomyrina Dichotoma Larvae Regulate Food Intake and Body Weight in High Fat Diet-Induced Obese Mice Through mTOR and Mapk Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jongwan Kim

    2016-02-01

    Full Text Available Recent evidence has suggested that the Korean horn beetle (Allomyrina dichotoma has anti-hepatofibrotic, anti-neoplastic, and antibiotic effects and is recognized as a traditional medicine. In our previous works, Allomyrina dichotoma larvae (ADL inhibited differentiation of adipocytes both in vitro and in vivo. However, the anorexigenic and endoplasmic reticulum(ER stress-reducing effects of ADL in obesity has not been examined. In this study, we investigated the anorexigenic and ER stress-reducing effects of ADL in the hypothalamus of diet-induced obese (DIO mice. Intracerebroventricular (ICV administration of ethanol extract of ADL (ADE suggested that an antagonizing effect on ghrelin-induced feeding behavior through the mTOR and MAPK signaling pathways. Especially, ADE resulted in strong reduction of ER stress both in vitro and in vivo. These findings strongly suggest that ADE and its constituent bioactive compounds are available and valuable to use for treatment of various diseases driven by prolonged ER stress.

  10. Maternal high fat feeding and gestational dietary restriction: effects on offspring body weight, food intake and hypothalamic gene expression over three generations in mice.

    Science.gov (United States)

    Giraudo, Silvia Q; Della-Fera, Mary Anne; Proctor, Lindsey; Wickwire, Kathie; Ambati, Suresh; Baile, Clifton A

    2010-11-01

    Excessive gestational weight gain and maternal obesity have both been associated with increased incidence of obesity and metabolic disorder in offspring in both humans and animal models. The objectives of this study were to determine (1) whether mild gestational food restriction during the third trimester (GFR) would alter food intake and growth parameters of offspring, (2) whether effects of GFR depended on diet (high fat [HF] vs chow), (3) whether effects of excessive gestational weight gain (WG) would become magnified across generations, and (4) whether diet and GFR would alter hypothalamic gene expression in adult offspring. Three generations of female C57BL/6 mice were fed chow or HF diet, mated at 11 weeks of age and assigned to ad libitum feeding or 25% GFR. Offspring were fed the same diet as their mothers. Results showed (1) maternal gestational WG was positively correlated with offspring WG. (2) HF offspring weighed less (pfood restriction of obese mothers during pregnancy may have beneficial effects in reducing the risk or degree of obesity in offspring. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Ketone Bodies Mediate Antiseizure Effects

    Directory of Open Access Journals (Sweden)

    Jena M. Krueger

    2015-10-01

    Full Text Available Investigators from The Barrow Neurological Institute, Creighton University, University of Kentucky and the University of Calgary Faculty of Medicine investigated the effect of ketone bodies and the ketogenic diet on epileptic Kcna1-null mice.

  12. Supplementation of a Fermented Soybean Extract Reduces Body Mass and Prevents Obesity in High Fat Diet-Induced C57BL/6J Obese Mice

    Science.gov (United States)

    Lee, Jae Yeon; Aravinthan, Adithan; Park, Young Shik; Hwang, Kyo Yeol; Seong, Su-Il; Hwang, Kwontack

    2016-01-01

    Obesity is a growing health problem that many countries face, mostly due to the consumption of a Westernized diet. In this present study we observed the effects of a soybean extract fermented by Bacillus subtilis MORI (BTD-1) containing 1-deoxynojirimycin against high fat diet-induced obesity. The results obtained from this study indicated that BTD-1 reduced body weight, regulated hepatic lipid content and adipose tissue, and also affected liver antioxidant enzymes and glucose metabolism. These results suggest that administration of BTD-1 affects obesity by inhibiting hyperglycemia and free radical-mediated stress; it also reduces lipid accumulation. Therefore, BTD-1 may be potentially useful for the prevention of obesity and its related secondary complications. PMID:27752494

  13. Long-term sustained release of salicylic acid from cross-linked biodegradable polyester induces a reduced foreign body response in mice.

    Science.gov (United States)

    Chandorkar, Yashoda; Bhaskar, Nitu; Madras, Giridhar; Basu, Bikramjit

    2015-02-09

    There has been a continuous surge toward developing new biopolymers that exhibit better in vivo biocompatibility properties in terms of demonstrating a reduced foreign body response (FBR). One approach to mitigate the undesired FBR is to develop an implant capable of releasing anti-inflammatory molecules in a sustained manner over a long time period. Implants causing inflammation are also more susceptible to infection. In this article, the in vivo biocompatibility of a novel, biodegradable salicylic acid releasing polyester (SAP) has been investigated by subcutaneous implantation in a mouse model. The tissue response to SAP was compared with that of a widely used biodegradable polymer, poly(lactic acid-co-glycolic acid) (PLGA), as a control over three time points: 2, 4, and 16 weeks postimplantation. A long-term in vitro study illustrates a continuous, linear (zero order) release of salicylic acid with a cumulative mass percent release rate of 7.34 × 10(-4) h(-1) over ∼1.5-17 months. On the basis of physicochemical analysis, surface erosion for SAP and bulk erosion for PLGA have been confirmed as their dominant degradation modes in vivo. On the basis of the histomorphometrical analysis of inflammatory cell densities and collagen distribution as well as quantification of proinflammatory cytokine levels (TNF-α and IL-1β), a reduced foreign body response toward SAP with respect to that generated by PLGA has been unambiguously established. The favorable in vivo tissue response to SAP, as manifest from the uniform and well-vascularized encapsulation around the implant, is consistent with the decrease in inflammatory cell density and increase in angiogenesis with time. The above observations, together with the demonstration of long-term and sustained release of salicylic acid, establish the potential use of SAP for applications in improved matrices for tissue engineering and chronic wound healing.

  14. [{sup 131}I]Iodoazomycin arabinoside for low-dose-rate isotope radiotherapy: radiolabeling, stability, long-term whole-body clearance and radiation dosimetry estimates in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Piyush [Department of Oncologic Imaging, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada); McQuarrie, Steven A. [Department of Oncologic Imaging, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada); Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada); Zhou, Aihya [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada); McEwan, Alexander J.B. [Department of Oncologic Imaging, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada); Wiebe, Leonard I. [Department of Oncologic Imaging, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada) and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada)]. E-mail: leonard.wiebe@ualberta.ca

    2005-08-01

    Background: The preliminary characterization of [{sup 131}I]iodoazomycin arabinoside ([{sup 131}I]IAZA) as a potential radiotherapeutic radiopharmaceutical is described. Methods: High-specific-activity [{sup 131}I]IAZA was prepared in therapeutic doses (up to 3 GBq per batch) by isotope exchange in pivalic acid melt and was purified on Sep-Pak cartridges. Stability in 15% ethanol in saline at 4 deg C was determined by high-performance liquid chromatography. IAZA cytotoxicity (IC{sub 50}, {approx}0.1 mM) against both murine (EMT-6) and human (143B, 143B-LTK) tumor cells determined by MTT test was in the range previously reported for EMT-6 cells using a clonogenic assay. Tissue radioactivity levels were measured in a murine tumor model for the 24- to 168-h postinjection period. Radiation dose estimates obtained from the tissue activity levels for this period were calculated from pharmacokinetic (WinNonlin) and dosimetry (MIRD and RAdiation Dose Assessment Resource) parameters. Results: The radioiodination efficiency was >90%, but with systematic losses during Sep-Pak purification, the recovered yields of [{sup 131}I]IAZA were {approx}75%. The product (specific activity, 4.6-6.4 GBq/{mu}mol) was stable for at least 2 weeks, with only {approx}6% degradation over this storage period. Extended biodistribution studies in Balb/c mice bearing implanted EMT-6 tumors showed that the highest tumor/blood radioactivity ratio (T/B; 4.8) occurred 24 h after dosing; the T/B ratio was {approx}1.5 at the end of the 7-day study. The 24- to 168-h tissue radioactivity data fit a one-compartment model except for liver data, which best fit a two-compartment model. Dosimetry estimates showed a tumor self-dose of 7.4 mGy/MBq, which is several-fold higher than for the liver or the kidney. Conclusions: [{sup 131}I]IAZA can be efficiently radiolabeled at high specific activity, purified by a simple Sep-Pak technique and stored with little radiolysis or chemical decomposition at these specific

  15. 石灰、蒌叶处理槟榔对小鼠生殖毒性及体温的影响%Influence of Lime,Piper betle Processing Betelnut on Mice' Genital Toxicity and Body Temperature

    Institute of Scientific and Technical Information of China (English)

    刘书伟; 王燕; 都二霞; 胡劲召

    2016-01-01

    To explore the toxic effects of betelnut after Piper betle and lime were added,the KM mice of SPF were intragastricly administered with water extract solution from Piper betle+betelnut,lime+betelnut, Piper betle+lime+betelnut and betelnut once a day and observed for 14 d. Spermatogenic cell index,Bcl-2,Bax and body temperature of mice were measured. The results showed that spermatogenic cell apoptosis index of treatments were increased and had a significant difference with the control,in which the betelnut treatment was the biggest and was 2 . 6 times of Piper betle + lime + betelnut treatment that was the smallest,and lime + betelnut was between them. The positive expression level of Bax protein of the treatments were up regulated,but Bcl-2 protein was down regulated significantly,which betelnut treatment changed was the biggest,and Piper betle+lime+betelnut was minimum,but the Bcl-2/Bax of the laterwas 1. 41 times of the former. Body temperature of mice in four treatments were lower than CK an showed a trend of decline, Piper betle +lime +betelnut treatment ' s temperature was relatively higher and the smallest decrease,in contrast with betelnut. In short,adding Piper betle or lime to betelnut could weaken genital toxicity in mice.%为探索添加蒌叶和石灰对槟榔毒副作用的影响,设置蒌叶+槟榔、石灰+槟榔、蒌叶+石灰+槟榔、槟榔4个处理及空白对照(蒸馏水),分别将不同处理的水提液(蒸馏水)对SPF级KM小鼠进行灌胃处理,每天1次,连续灌胃14 d,测定小鼠的生精细胞凋亡指数、Bcl-2与Bax蛋白表达量及体温.结果表明,与空白对照相比,各处理的睾丸曲细精管中生精细胞凋亡指数均增高且差异显著,其中槟榔处理的凋亡指数最大,其次是槟榔+石灰,槟榔+蒌叶+石灰处理最小,槟榔处理的凋亡指数是槟榔+蒌叶+石灰处理的2.6倍;各处理的Bax蛋白表达阳性率均增高,Bcl-2蛋白表达阳性率均降低,其中槟榔处理变化幅度

  16. Body Image

    Science.gov (United States)

    ... About Us Contact Us Text size | Print | Body Image Developing a positive body image and a healthy mental attitude is crucial to ... on for tips to have a healthy body image. Topics About body image When you look in ...

  17. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    Zhao-Wei ZENG

    2005-01-01

    Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.

  18. Ntp technical report on toxicity, reproductive, and developmental studies of 60-Hz magnetic fields, administered by whole body exposure to F344/N rats, Sprague-Dawley rats, and B6C3F1 mice. Toxicity report series

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, G.A.

    1996-09-01

    Electric and magnetic fields are associated with the production, transmission, and use of electricity; thus the potential for human exposure is high. These electric and magnetic fields are predominantly of low frequency (60 Hz) and generally of low intensity. The prevailing view among physicists is that exposure to these low-frequency, low-intensity fields does not pose a health hazard. However, this view has been challenged by reports linking magnetic field exposure to the development of leukemia and other cancers. Because multiple epidemiologic studies suggested a potential for increased cancer rates with increasing exposure, and because of public concern, the effects of 60-Hz magnetic field exposure were examined in F344/N rats and B6C3F1 mice in 8-week full-body-exposure studies. Animals were evaluated for hematology and clinical chemistry (rats only) parameters, pineal gland hormone concentrations, and histopathology. Additional studies were performed in Sprague-Dawley rats to examine teratologic and reproductive effects of magnetic field exposure.

  19. 低剂量辐射对荷S180肉瘤小鼠肿瘤的抑制作用及信号传导影响%The effect of low-dose total body irradiation on tumor-inhibition and signal transduction in tumor tissues of mice bearing S180 sarcoma

    Institute of Scientific and Technical Information of China (English)

    Hongsheng Yu; Weihua Sun; Ning Liu

    2011-01-01

    Objective: By studying the influence of low-dose total body irradiation to proliferating cell nuclear antigens (PCNA), epidermal growth factor receptor (EGFR), erythropoietin (EPO) and vascular endothelial growth factor receptor (VEGFR) of tumor tissues in mice bearing S180 sarcoma, to further explore the mechanism of low doses radiation. Methods: S180 sarcoma cells were implanted subcutaneously into 58 male Kunming mice. Randomly these mice were divided into sham-irradiation (S) group and low-dose radiation (LDR) group. 12 days after implantation, the mice in LDR group were once delivered 75 mGy total-body 60Co γ-ray irradiation, while the mice in S group were left without irradiation. Then the mice in LDR group were executed at 6 h (LDR-6h group), 12 h (LDR-12 h group), 24 h (LDR-24 h group), 48 h (LDR-48 h group) and 72 h (LDR-72h group) after irradiation. Tumor tissues were weighed and histological observed. Immunohistochemical stain-ing was used to detect the expression of PCNA, VEGF, EPO and VEGFR of tumor tissues. Results: Though there was no significant difference between LDR group and S group in tumor weight, after irradiation the expression of PCNA and EPO of tumor tissues in LDR group decreased with time. LDR-24h, LDR-48h and LDR-72h groups were all statistically significantly different from S group. The expression of EGFR and VEGFR also decreased, and LDR-24h group was the lowest (P < 0.05). Conclusion: Seventy-two h after low-dose total body irradiation, there was no significant change in tumor size of mice bear-ing S180 sarcoma. Low-dose total body radiation decreased the expression of PCNA inhibiting tumor growth; reduced the expression of EGFR in tumor tissue impacting the signal transduction of tumor cells. The study also indicated that low-dose total body irradiation, within a certain period of time, can decrease the expression of hypoxia factor EPO and VEGFR, which may improve the situation of tumor hypoxia and radiosensitivity of tumor itself.

  20. 不同脂肪酸对高胆固醇血症小鼠体质量和血脂的影响%Effects of different fatty acids on body weight and blood lipid in hypercholesterolemia mice

    Institute of Scientific and Technical Information of China (English)

    张荣欣; 于晓明; 薛长勇; 李婧; 刘钊; 杨雪艳; 刘英华; 徐庆; 张永; 张新胜; 王觐

    2014-01-01

    目的:比较6种脂肪酸对高胆固醇血症小鼠体质量和血脂的影响。方法建立C57BL/6J小鼠高胆固醇血症模型,分别用含2%的辛酸(C8∶0)、癸酸(C10∶0)、油酸(C18∶1)、α-亚麻酸(C18∶3)、棕榈酸(C16∶0)和硬脂酸(C18∶0)高胆固醇饲料喂养12周,12周时检测血脂及脂蛋白相关指标。结果研究12周后各组小鼠体质量均显著增加,辛酸(C8∶0)、癸酸(C10∶0)、油酸(C18∶1)对控制体质量增加的作用较棕榈酸(C16∶0)和硬脂酸(C18∶0)差异显著(P<0.05);6种脂肪酸均显示出不同程度血总胆固醇(total cholesterol,TC)和低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)降低,高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)与低密度脂蛋白胆固醇比值(HDL-C/LDL-C)增加的作用。辛酸(C8∶0)、癸酸(C10∶0)和α-亚麻酸(C18∶3)降低TC和LDL-C及升高HDL-C/LDL-C比值的作用比油酸、棕榈酸和硬脂酸显著(P<0.05)。结论中链的饱和脂肪酸(saturated fatty acid,SFA)较长链的SFA降低小鼠体质量和血脂的作用显著。%Objective To compare the effects of 6 fatty acids on body weight and blood lipid in hypercholesterolemia mice. Methods A hypercholesterolemia model of C57BL/6J mice was established. Twelve weeks after the animals were fed with high cholesterol diets containing 2%caprylic acid (C8 ∶ 0), capric acid (C10 ∶ 0), palmitic acid (C16 ∶ 0), oleic acid(C18 ∶ 1),α-linolenic acid(C18∶3) or stearic acid (C18∶0) , their blood lipid and lipoprotein levels were measured. Results The body weight increased significantly in different groups 12 weeks after they were fed with different fatty acids, and was significantly higher in animals fed with C8∶0, C10:0 and C18∶1 than in those fed with C16∶0 and C18∶0 group (P<0.05). The 6 fatty acids decreased the serum TC and LDL-C levels and increased the serum HDL-C and LDL-C levels. The serum TC and

  1. Body Clock

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2000-01-01

    Body clocks” are biological methods of controling body activities.Every living thing has one. In humans, a body clock controls normal periods of sleeping and waking. It controls the time swhen you are most likely to feel pain.Eating, sleeping and exercising at about the same time each day will help keep body activities normal. But changes in your life, a new job, for example, destroy the balance and thus cause health problems.

  2. Body contact and body language

    DEFF Research Database (Denmark)

    Winther, Helle Dagmar

    2008-01-01

    Body contact and body language are unique and existential and, although culturally dependent and socially embodied, they are also universal communication forms. For small children all over the world, warm, close and nourishing body contact is fundamental to their embodied experi­ence of themselve...

  3. Bog bodies

    DEFF Research Database (Denmark)

    Lynnerup, Niels

    2015-01-01

    the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma...

  4. Body punk

    DEFF Research Database (Denmark)

    Mogensen, Kevin

    BODYPUNK - A Treatise on male body builders and the meaning of the body in the shadow of an Anti Doping Campaign Based on a qualitative study, the thesis investigates the visual representation of the male bodybuilder found in the national anti doping campaign: ‗ "The hunt has begun" along...

  5. Body Basics

    Science.gov (United States)

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System Heart and Circulatory System Immune ...

  6. Body Language

    Institute of Scientific and Technical Information of China (English)

    JosephDeVeto

    2004-01-01

    When we speak,we use much more than just words. We also communicate with our face. our hands,and even our own body. This Kind of communication ean be called “body language” or “non-verbal eommunieation”. Non-verbal

  7. Relação entre a patogenicidade do Schistosoma mansoni em camundongos e a susceptibilidade do molusco vetor: III. Mortalidade, pesos corporal e das vísceras Relationship between the pathogenicity of Schistosoma mansoni in mice and the susceptibility of the vector mollusc: III. Mortality, body weight and viscera weights

    Directory of Open Access Journals (Sweden)

    Eliana Maria Zanotti-Magalhães

    1995-08-01

    Full Text Available Estudou-se a relação entre o desenvolvimento da hepatomegalia, da esplenomegalia, peso corporal e taxa de mortalidade em camundongos experimentalmente infectados por Schistosoma mansoni com o grau de susceptibilidade de Biomphalaria glahrata e B. tenagophila nas quais se desenvolveram as cercárias infectantes respectivamente, das linhagens BH e SJ. Foram utilizados como hospedeiro definitivo camundongos Swiss, SPF e como hospedeiros intermediários populações de moluscos selecionados geneticamente para o caráter susceptibilidade. Foram observados menores pesos corporais e das visceras em camundongos infectados com cercárias provenientes de moluscos que apresentaram elevado grau de susceptibilidade. A maior susceptibilidade dos moluscos à infecção pelo S. mansoni correspondeu a uma menor sobrevivência dos camundongos infectados. Os resultados fazem crer que a maior adaptação do parasita ao hospedeiro intermediário, traduzidos pelas taxas mais elevadas de susceptibilidade, pode levar a um comportamento diferente deste parasita no hospedeiro definitivo.The relationship between the development of hepatomegaly, splenomegaly, body weight and mortality rate and the degree of susceptibility of Biomphalaria glabrata and B. tenagophila at which infective cercariae developed was studied. The study utilized Swiss mice, SPF, as definitive hosts and populations of snails genetically selected for character susceptibility as intermediate hosts. Low body weight and smaller viscera were observed in infected mice with cercariae originating from snails that showed a high degree of susceptibility. The higher susceptibility of molluscs infected with S. mansoni corresponded to a lower survival of the infected mice. These results lead to the conclusion that the higher degree of adaptation of the parasite to its intermediate hosts, evidenced by the high indexes of susceptibility, leads to different behaviour on the part of this parasite in its definitive

  8. Body Piercing

    Science.gov (United States)

    ... most common body piercing. Other common places to pierce include the eyebrow, nose, tongue, lip, belly button, nipples, and genitals. Some people also pierce their ear cartilage (the hard part of the ...

  9. BODY CONDITION

    African Journals Online (AJOL)

    Andrew Taylor

    seasonal variation that could be used in management decisions. ... To assess muscle and fat content, the leg was completely separated into meat, bone, ..... The seasonal variation in body condition of mountain reedbuck can be explained by ...

  10. Body Language

    Institute of Scientific and Technical Information of China (English)

    王芳

    2008-01-01

    @@ For Teachers: The Wordless Language Spoken by Everyone by Pamela Osment An old saying goes:"Actions speak louder than words."That's true according to communication experts.Some studies show that up to 90 percent of communication is nonverbal.Though you might say one thing,your body movements may indicate something entirely different.This nonverbal way of communicating is called body language.The Universal(通用的)Language

  11. Comparative study of interphase cell death and severity of bone marrow aplasia in bank voles of the Moscow suburbs and C57B1 mice under the influence of ionizing radiation. [Whole-body x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Samokhvalova, N.S.; Popova, M.F.; Domareva, O.P.; Suvorova, E.A.

    1978-01-01

    Interphase of bone marrow cells, which may reach significant dimensions according to some researchers, is one of the criteria of radiation lesion to the marrow. The method of estimating the total number of nuclear cells in animal bone marrow also makes it possible to gain an idea about the severity of tissue destruction. The objective of this work was to study interphase cell death and severity of aplasia in the bone marrow of bank voles of the Moscow suburbs and C57B1 mice after exposing these animals to x rays.

  12. Body Imaging

    Science.gov (United States)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.

  13. Signifying Bodies

    DEFF Research Database (Denmark)

     In our everyday lives we strive to stay healthy and happy, while we live as our selves, engage with each other, and discover an infinite world of possibilities. Health arises and diminishes as human beings draw on a vibrant ecology of actions, interactions and coactions. Intricate processes...... of biosemiosis connect signifying bodies with their natural surroundings, cultural activities and subjective experiences. Health stretches all the way from the ecosocial surroundings, through the skin and into the self-organizing processes of every living cell. Signifying Bodies lays out a new approach to health...... and health care. Eschewing all forms of dualism, the authors emphasise the interdependency of how we act, think, feel and function. They advocate a relational turn in health care, in which bodies live and learn from suffering and care. In this view, health is inseparable from both living beings...

  14. Body Rainbow

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Phubu did not know how long hehad walked after leaving Baxoi, buthe did know that he was halfwaybetween home and Lhasa. Feelingthe weight of the sack containingPhumo's body on his back, Fhubuhad calmed down from the grief anddesperation. He had just one wish:to carry Phumo to Lhasa. He knewthat Phumo had gone, and her soulwas no longer in this body. But hewas determined to finish the trip, notonly because he had promised so, butalso that he believed that it would beredemption for him.

  15. Body parts

    Science.gov (United States)

    Ayiter, Elif

    2010-01-01

    In this project, the artist wishes to examine corporeality in the virtual realm, through the usage of the (non)-physical body of the avatar. An art installation created in the virtual world of Second Life, which is meant to be accessed with site specific avatars, will provide the creative platform whereby this investigation is undertaken. Thus, "body parts" seeks to challenge the residents of virtual environments into connecting with the virtual manifestations, i.e., avatars of others in an emotionally expressive/intimate manner.

  16. Body Language.

    Science.gov (United States)

    Pollard, David E.

    1993-01-01

    Discusses how the use of body language in Chinese fiction strikes most Westerners as unusual, if not strange. Considers that, although this may be the result of differences in gestures or different conventions in fiction, it is a problem for translators, who handle the differences by various strategies, e.g., omission or expansion. (NKA)

  17. Mice Do Not Habituate to Metabolism Cage Housing

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Jacobsen, Kirsten Rosenmaj; Darusman, Huda Shalahudin;

    2013-01-01

    state of the mice also indicated impaired well-being in the metabolism cage housed mice. However, monitoring body weight and feed intake was found misleading in assessing the wellbeing of mice over a longer time course, and the forced swim test was found poorly suited for studying chronic stress in mice...... of abnormality were monitored. Forced swim tests were conducted to determine whether the animals experienced behavioral despair and the serotonergic integrity was tested using an 8-OH-DPAT challenge. The metabolism cage housed mice excreted approximately tenfold higher amounts of corticosterone metabolites...

  18. Body distribution and hepatic targeting of CM-PLGA-TPGS-NPs in mice%姜黄素 PLGA -TPGS 纳米粒在小鼠体内分布及肝靶向性研究

    Institute of Scientific and Technical Information of China (English)

    孙晓红; 李德壮; 高萌; 郭佳毅; 赵丹凤; 迟焙元; 巩童童; 刘航; 田燕

    2015-01-01

    目的:研究姜黄素PLGA-TPGS纳米粒( Curcumin-loaded PLGA-TPGS Nanoparticles,CPTN)在小鼠体内的分布及对肝脏的靶向性。方法经小鼠尾静脉注射CPTN和姜黄素溶液( Curcumin solutions,CS),采用反相高效液相色谱法测定不同时间时姜黄素在小鼠血浆、肝、心、脾、肺、肾中的浓度。用靶向指数( targeting index,TI)、选择性指数(selective index,SI)、相对靶向效率(relative targeting efficiency,Re)和靶向效率(targeting efficiency,Te)4个指标全面评价CPTN对肝脏的靶向性。结果 CPTN组1、2、4 h时肝内药物浓度远高于血浆、脾、肺(P<0.05)和心、肾(P<0.01),药物持续作用时间明显长于CS组;TI和SI值均>1(SI在0.08 h和0.5 h除外),CPTN在肝中的AUC是CS在肝中AUC的31.6倍,且CPTN组的Te值均>3。结论 CPTN对肝脏有良好的靶向作用。%Objective To study the distribution of Curcumin-loaded polylactic-co-glycolic acid-D-α-tocopherol polyethylene glycol 1000 succinate nanoparticles ( CPTN) and the liver targeting in mice.Methods The mice were given CPTN and Curcumin solutions ( CS) by tail vein injection.The concentration changes of Curcumin in plasma,liver,heart, spleen,lung,kidney of mice were determined at different time by reverse phase-high performance liquid chromatography ( RP-HPLC) ,and evaluated using TI,SI,Re and Te four index to evaluate the hepatic targeting of CPTN.Results Intrahe-patic drug concentration of CPTN at 1, 2, 4 h was higher than that of plasma, spleen, lung (P3. Conclusion CPTN has good targeting property in vivo for the liver.

  19. Sacralising Bodies

    DEFF Research Database (Denmark)

    Kaur, Ravinder

    2010-01-01

    In post-revolution Iran, the sacred notion of martyrdom has been transformed into a routine act of government – a moral sign of order and state sovereignty. Moving beyond the debates of the secularisation of the sacred and the making sacred of the secular, this article argues that the moment...... of sacralisation is realised through co-production within a social setting when the object of sacralisation is recognised as such by others. In contemporary Iran, however, the moment of sacralising bodies by the state is also the moment of its own subversion as the political-theological field of martyrdom......-sacrifice became central to the mass mobilisation against the monarchy. Once the revolutionary government came into existence, this sacred tradition was regulated to create ‘martyrs’ as a fixed category, in order to consolidate the legacy of the revolution. In this political theatre, the dead body is a site...

  20. True Niacin Deficiency in Quinolinic Acid Phosphoribosyltransferase (QPRT) Knockout Mice.

    Science.gov (United States)

    Shibata, Katsumi

    2015-01-01

    Pyridine nucleotide coenzymes (PNCs) are involved in over 500 enzyme reactions. PNCs are biosynthesized from the amino acid L-tryptophan (L-Trp), as well as the vitamin niacin. Hence, "true" niacin-deficient animals cannot be "created" using nutritional techniques. We wanted to establish a truly niacin-deficient model animal using a protocol that did not involve manipulating dietary L-Trp. We generated mice that are missing the quinolinic acid phosphoribosyltransferase (QPRT) gene. QPRT activity was not detected in qprt(-/-)mice. The qprt(+/+), qprt(+/-) or qprt(-/-) mice (8 wk old) were fed a complete diet containing 30 mg nicotinic acid (NiA) and 2.3 g L-Trp/kg diet or an NiA-free diet containing 2.3 g L-Trp/kg diet for 23 d. When qprt(-/-)mice were fed a complete diet, food intake and body weight gain did not differ from those of the qprt(+/+) and the qprt(+/-) mice. On the other hand, in the qprt(-/-) mice fed the NiA-free diet, food intake and body weight were reduced to 60% (pniacin such as blood and liver NAD concentrations were also lower in the qprt(-/-) mice than in the qprt(+/+) and the qprt(+/-) mice. Urinary excretion of quinolinic acid was greater in the qprt(-/-) mice than in the qprt(+/+) and the qprt(+/-) mice (pniacin-deficient mice.

  1. Metabolic characteristics of long-lived mice

    Directory of Open Access Journals (Sweden)

    Andrzej eBartke

    2012-12-01

    Full Text Available Genetic suppression of insulin/insulin-like growth factor signaling (IIS can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor (IGF-1. Long-lived GH-resistant GHRKO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1df and Snell dwarf (Pit1dw mice lacking GH (along with prolactin and TSH, are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHRKO mice. Indirect calorimetry revealed that both Ames dwarf and GHRKO mice utilize more oxygen per gram (g of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient (RQ, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO2 were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO2 did not differ between GHRKO and normal mice. Thus, the increased metabolic rate of the GHRKO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of

  2. Body contact and body language

    DEFF Research Database (Denmark)

    Winther, Helle Dagmar

    2008-01-01

    and the boundaries between self and world. In western societies, the modern premises for contact are in some ways developing from close contact to virtual communication. With this breadth of perspective in mind, the ques­tion is whether conscious and experimental work with body contact and body language in move......­ment psychology and education provide potential for intense personal develop­ment as well as for social and cultural learning processes. This performative research project originates from the research project entitled, Movement Psy­chol­ogy: The Language of the Body and the Psy­chol­ogy of Movement based...... on the Dance Therapy Form Dansergia. The author, who is a practi­tioner-researcher, is methodologically inspir­ed by phenomenology, performative methods and a narrative and auto-ethnographic approach. The project will be presented in an organic, cre­at­ive and performative way. Through a moving dia...

  3. Quantitative, functional and biochemical alterations in the peritoneal cells of mice exposed to whole-body gamma-irradiation. 1. Changes in cellular protein, adherence properties and enzymatic activities associated with platelet-activating factor formation and inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Steel, L.K.; Hughes, H.N.; Walden, T.L. Jr.

    1988-06-01

    Changes in total number, differentials, cell protein, adherence properties, acetyl-CoA transferase and acetylhydrolase activities, prostaglandin E/sub 2/ and leukotriene C/sub 4/ production, as well as Ca/sup 2+/ ionophore A23187 stimulation were examined in resident peritoneal cells isolated from mice 2 h to 10 days postexposure to a single dose (7, 10 or 12 Gy) of gamma-radiation. Radiation dose-related reductions in macrophage and lymphocyte numbers and increases in cellular protein and capacity to adhere to plastic surfaces were evident. In vivo irradiation also elevated the activities of acetyltransferase and acetyl-CoA hydrolase (catalysing platelet-activating factor biosynthesis and inactivation, respectively) in adherent and nonadherent peritoneal cells, particularly 3-4 days postexposure. Blood plasma from irradiated animals did not reflect the increased cellular acetyl-hydrolase activity. Prostaglandin E/sub 2/ and leukotriene C/sub 4/ synthesis were elevated postexposure, suggesting increased substrate (arachidonate) availability and increased cyclooxygenase and lipoxygenase activities. Ionophore stimulation of enzyme activities and eicosanoid release also differed in irradiated peritoneal cells.

  4. Body weight reducing effect of oral boric acid intake.

    Science.gov (United States)

    Aysan, Erhan; Sahin, Fikrettin; Telci, Dilek; Yalvac, Mehmet Emir; Emre, Sinem Hocaoglu; Karaca, Cetin; Muslumanoglu, Mahmut

    2011-01-01

    Boric acid is widely used in biology, but its body weight reducing effect is not researched. Twenty mice were divided into two equal groups. Control group mice drank standard tap water, but study group mice drank 0.28mg/250ml boric acid added tap water over five days. Total body weight changes, major organ histopathology, blood biochemistry, urine and feces analyses were compared. Study group mice lost body weight mean 28.1% but in control group no weight loss and also weight gained mean 0.09% (pboric acid intake cause serious body weight reduction. Blood and urine analyses support high glucose, lipid and middle protein catabolisms, but the mechanism is unclear.

  5. Increased adiposity in annexin A1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Rand T Akasheh

    Full Text Available Production of Annexin A1 (ANXA1, a protein that mediates the anti-inflammatory action of glucocorticoids, is altered in obesity, but its role in modulation of adiposity has not yet been investigated. The objective of this study was to investigate modulation of ANXA1 in adipose tissue in murine models of obesity and to study the involvement of ANXA1 in diet-induced obesity in mice. Significant induction of ANXA1 mRNA was observed in adipose tissue of both C57BL6 and Balb/c mice with high fat diet (HFD-induced obesity versus mice on chow diet. Upregulation of ANXA1 mRNA was independent of leptin or IL-6, as demonstrated by use of leptin-deficient ob/ob mice and IL-6 KO mice. Compared to WT mice, female Balb/c ANXA1 KO mice on HFD had increased adiposity, as indicated by significantly elevated body weight, fat mass, leptin levels, and adipocyte size. Whereas Balb/c WT mice upregulated expression of enzymes involved in the lipolytic pathway in response to HFD, this response was absent in ANXA1 KO mice. A significant increase in fasting glucose and insulin levels as well as development of insulin resistance was observed in ANXA1 KO mice on HFD compared to WT mice. Elevated plasma corticosterone levels and blunted downregulation of 11-beta hydroxysteroid dehydrogenase type 1 in adipose tissue was observed in ANXA1 KO mice compared to diet-matched WT mice. However, no differences between WT and KO mice on either chow or HFD were observed in expression of markers of adipose tissue inflammation. These data indicate that ANXA1 is an important modulator of adiposity in mice, with female ANXA1 KO mice on Balb/c background being more susceptible to weight gain and diet-induced insulin resistance compared to WT mice, without significant changes in inflammation.

  6. Signifying Bodies

    DEFF Research Database (Denmark)

     In our everyday lives we strive to stay healthy and happy, while we live as our selves, engage with each other, and discover an infinite world of possibilities. Health arises and diminishes as human beings draw on a vibrant ecology of actions, interactions and coactions. Intricate processes...... and health care. Eschewing all forms of dualism, the authors emphasise the interdependency of how we act, think, feel and function. They advocate a relational turn in health care, in which bodies live and learn from suffering and care. In this view, health is inseparable from both living beings...... of, for example, how rheumatoid arthritis sufferers view their treatment, how decisions are made in simulated emergencies, and how therapists and homeopaths use distributed language and cognition with their clients....

  7. [Multifaceted body. I. The bodies of medicine].

    Science.gov (United States)

    Saraga, M; Bourquin, C; Wykretowicz, H; Stiefel, F

    2015-02-11

    The human body is the object upon which medicine is acting, but also lived reality, image, symbol, representation and the object of elaboration and theory. All these elements which constitute the body influence the way medicine is treating it. In this series of three articles, we address the human body from various perspectives: medical (1), phenomenological (2), psychosomatic and socio-anthropological (3). This first article discusses four distinct types of representation of the body within medicine, each related to a specific epistemology and shaping a distinct kind of clinical legitimacy: the body-object of anatomy, the body-machine of physiology, the cybernetic body of biology, the statistical body of epidemiology.

  8. Technique for measuring carbon monoxide uptake in mice

    Energy Technology Data Exchange (ETDEWEB)

    Depledge, M.H.; Collis, C.H.; Chir, B.; Barrett, A.

    1981-04-01

    A new method has been developed for measuring carbon monoxide (CO) uptake in mice. Each animal was placed in a syringe and allowed to rebreathe a mixture of CO and helium (He) for 60 s. CO uptake was detemined from a comparison of CO and He concentrations before and after rebreathing. Weight specific CO uptake increased with body weight in CBA mice weighing between 20 to 35 gr. In larger mice, size dependence was less marked, although a slight fall in CO uptake was observed in older animals. Anaesthesia reduced ventilatory rate and CO uptake to a variable extent. The method is reproducible, non-invasive and does not require anaesthesia; consequently, it can be used to study serial changes in lung function. It is sensitive enough to detect lung damage in CBA mice following 16 Gy total body irradiation. Values of diffusing capacity obtained for mice using this method are consistent with published values.

  9. Dietary CLA-induced lipolysis is delayed in soy oil-fed mice compared to coconut oil-fed mice.

    Science.gov (United States)

    Ippagunta, S; Angius, Z; Sanda, M; Barnes, K M

    2013-11-01

    Conjugated linoleic acid (CLA) has been shown to cause a reduction in obesity in several species. CLA-induced body fat loss is enhanced when mice are fed coconut oil (CO) and involves increased lipolysis. The objective of this paper was to determine if the CLA-induced lipolysis in mice fed with different oil sources was time-dependent. Mice were fed 7 % soybean oil (SO) or CO diets for 6 week and then supplemented with 0 or 0.5 % CLA for 3, 7, 10 or 14 days. Body fat and ex-vivo lipolysis was determined. Body fat was reduced by CO on day 7 (P Lipolysis was increased by CLA in CO-fed mice (P lipolysis in both CO- and SO-fed mice (P lipolysis and lipogenesis was determined by western blotting and real-time PCR, respectively. No significant differences were detected in protein expression. CO-fed mice had greater fatty acid synthase and stearyl CoA desaturase 1 mRNA expression and less acetyl CoA carboxylase mRNA expression (P lipolysis occurs more rapidly in CO vs SO-fed mice and lipogenesis is decreased in CO-fed mice with CLA supplementation.

  10. Body Image and Body Contouring Procedures.

    Science.gov (United States)

    Sarwer, David B; Polonsky, Heather M

    2016-10-01

    Dissatisfaction with physical appearance and body image is a common psychological phenomena in Western society. Body image dissatisfaction is frequently reported by those who have excess body weight, but also is seen in those of normal body weight. For both groups of individuals, this dissatisfaction impacts self-esteem and quality of life. Furthermore, it is believed to be the motivational catalyst to a range of appearance-enhancing behaviors, including weight loss efforts and physical activity. Body image dissatisfaction is also believed to play a role in the decision to seek the wide range of body contouring procedures offered by aesthetic physicians. Individuals who seek these procedures typically report increased body image dissatisfaction, focus on the feature they wish to alter with treatment, and often experience improvement in body image following treatment. At the same time, extreme body image dissatisfaction is a symptom of a number of recognized psychiatric disorders. These include anorexia nervosa, bulimia nervosa, and body dysmorphic disorder (BDD), all of which can contraindicate aesthetic treatment. This special topic review paper provides an overview of the relationship between body image dissatisfaction and aesthetic procedures designed to improve body contouring. The review specifically focuses on the relationship of body image and body weight, as well as the presentation of body image psychopathology that would contraindicate aesthetic surgery. The overall goal of the paper is to highlight the clinical implications of the existing research and provide suggestions for future research on the psychological aspects of body contouring procedures.

  11. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... percent of foreign body ingestions occur among children. Most foreign bodies pass through the gastrointestinal tract without ... fainting and shock. Foreign bodies in the airway: Most foreign bodies in the airway are usually expelled ...

  12. Lipid transport in cholecystokinin knockout mice.

    Science.gov (United States)

    King, Alexandra; Yang, Qing; Huesman, Sarah; Rider, Therese; Lo, Chunmin C

    2015-11-01

    Cholecystokinin (CCK) is released in response to lipid feeding and regulates pancreatic digestive enzymes vital to the absorption of nutrients. Our previous reports demonstrated that cholecystokinin knockout (CCK-KO) mice fed for 10 weeks of HFD had reduced body fat mass, but comparable glucose uptake by white adipose tissues and skeletal muscles. We hypothesized that CCK is involved in energy homeostasis and lipid transport from the small intestine to tissues in response to acute treatment with dietary lipids. CCK-KO mice with comparable fat absorption had increased energy expenditure and were resistant to HFD-induced obesity. Using intraduodenal infusion of butter fat and intravenous infusion using Liposyn III, we determined the mechanism of lipid transport from the small intestine to deposition in lymph and adipocytes in CCK-KO mice. CCK-KO mice had delayed secretion of Apo B48-chylomicrons, lipid transport to the lymphatic system, and triglyceride (TG)-derived fatty acid uptake by epididymal fat in response to acute treatment of intraduodenal lipids. In contrast, CCK-KO mice had comparable TG clearance and lipid uptake by white adipocytes in response to TGs in chylomicron-like emulsion. Thus, we concluded that CCK is important for lipid transport and energy expenditure to control body weight in response to dietary lipid feeding.

  13. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  14. EFFECT OF GREEN TEA AND ITS COMPONENTS ON BODY WEIGHT, FAT ACCUMULATION AND ACTIVITY OF HEPATIC FAT METABOLISM RELATED ENZYMES IN MICE%绿茶及其成分对小鼠体重、脂肪沉积和肝脏脂肪代谢酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    郑国栋; 黎冬明; 张清峰

    2012-01-01

    Objective To investigate the anti-obesity mechanism of green tea and its components in mice. Method Fifty female Kunming mice were randomly assigned to 5 groups and fed on commercial powder diets containing none (control), 2% green tea, 0.05% caffeine, 0.3% catechins and 0.05% caffeine + 0.3% catechins for 8 w respectively. Liver and intraperitoneal adipose tissues (IPAT) were weighed at the end of experiment. Serum levels of glucose, triglycerides (TG), total cholesterols, leptin and insulin, and lipids in liver were measured. Fatty acid synthese (FAS), carnitine acyltransferase (CAT) and acyl-CoA oxidase (ACO) in liver were determined. Results The body weight gain and IPAT weight were significantly reduced by green tea, caffeine and caffeine + catechins. Serum TG and leptin concentrations were significantly decreased by caffeine + catechins. Green tea, catechins and caffeine + catechins reduced TG level in liver. Caffeine + catechins significantly reduced FAS activity, and remarkably increased CAT and ACO activities in liver. Conclusion Caffeine + catechins can inhibit fat accumulation and body weight gain in mice through regulating fat metabolism related enzymes activities. Moreover, caffeine and catechins possess synergistic anti-obesity effect.%目的 研究绿茶及其成分的减肥作用机制.方法 50只雌性昆明小鼠随机分成5组,分别为对照组、2%绿茶组、0.05%咖啡碱组、0.3%儿茶素组及0.05%咖啡碱+0.3%儿茶素组.混合饲料投喂8w后,摘取肝脏和腹腔脂肪(IPAT)并称重.分析血清中血糖、甘油三酯(TG)、总胆固醇、瘦素及胰岛素浓度和肝脏中脂类含量.测定肝脏中脂肪酸合成酶(FAS)、肉毒碱脂酰转移酶(CAT)和酰基辅酶A氧化酶(ACO)的活性.结果 绿茶、咖啡碱、咖啡碱+儿茶素组体重增加和IPAT重量比对照组明显减少,特别是咖啡碱+儿茶素效果极显著.咖啡碱+儿茶素显著降低血中TG和瘦素浓度.绿茶、儿茶素、咖啡

  15. Reduced activity without hyperphagia contributes to obesity in Tubby mutant mice

    OpenAIRE

    Coyle, Christopher A.; Strand, Sarah C.; Deborah J Good

    2008-01-01

    The Tub gene was originally identified as a spontaneous mutation in C57Bl/6J mice, and associated with adult-onset obesity (Tub MUT mice). Although the original Tub MUT mouse was identified over 15 years ago, there have been few reports on the animal’s food intake, body fat percentage or energy expenditure. In this study, we report food intake, body weight from 5–20 weeks, body fat, body temperature and three different measures of physical activity behavior. Tub MUT mice display reduced food ...

  16. Diet-induced obese mice retain endogenous leptin action.

    Science.gov (United States)

    Ottaway, Nickki; Mahbod, Parinaz; Rivero, Belen; Norman, Lee Ann; Gertler, Arieh; D'Alessio, David A; Perez-Tilve, Diego

    2015-06-02

    Obesity is characterized by hyperleptinemia and decreased response to exogenous leptin. This has been widely attributed to the development of leptin resistance, a state of impaired leptin signaling proposed to contribute to the development and persistence of obesity. To directly determine endogenous leptin activity in obesity, we treated lean and obese mice with a leptin receptor antagonist. The antagonist increased feeding and body weight (BW) in lean mice, but not in obese models of leptin, leptin receptor, or melanocortin-4 receptor deficiency. In contrast, the antagonist increased feeding and BW comparably in lean and diet-induced obese (DIO) mice, an increase associated with decreased hypothalamic expression of Socs3, a primary target of leptin. These findings demonstrate that hyperleptinemic DIO mice retain leptin suppression of feeding comparable to lean mice and counter the view that resistance to endogenous leptin contributes to the persistence of DIO in mice.

  17. The effects of G-CSF combined with SB203580 on the immune system of mice received 4 Gy total body irradiation%G-CSF联合SB203580对4Gy照射小鼠免疫系统的作用

    Institute of Scientific and Technical Information of China (English)

    李德冠; 路璐; 吴红英; 张俊伶; 孟爱民

    2014-01-01

    Objective To observe the effects of G-CSF combined with SB203580(SB) on the immune system of mice received 4 Gy total body irradiation (TBI).Methods Thirty male C57BL/6 mice were randomly divided into control group,irradiated group,combined group.The mice in irradiated and combined group received 4 Gy TBI.In combined group,G-CSF (1 μg/each) was intraperitoneally (ip) injected twice one day for 5 days,SB (15 mg/kg) was ip injected every other day after 4 Gy TBI for 5 times.After 4 Gy TBI 10 days,the peripheral bloods were counted,the CD4,CD8,B220 cells in WBC and CD4,CD8 in thymocytes were analyzed by flowcytometry.The reactive oxygen species levels (ROS) of bone marrow cells were detected by microplate reader.Results Compared to the control group,the proportion of CD8,B220 and WBC in the irradiated mice significantly decreased,CD4+CD8+ thymocytes and ROS levels of bone marrow cells increased significantly.Compared to irradiation group,red blood,platelet,CD4 and CD8 cells in peripheral blood,CD4+CD8+ thymocytes decreased in the combined group.Conclusion G-CSF combined with SB has protective effects on the radiation-induced injury in immune system.%目的 研究G-CSF联合p38抑制剂SB203580 (SB)对免疫细胞辐射损伤的作用.方法 C57BL/6雄性小鼠按体质量随机分为对照组、照射组和给药组.照射组和给药组给予4 Gy全身照射.给药组小鼠给予腹腔注射G-CSF和SB,G-CSF于4Gy照射后2h和6h给药(1μg/只),每天2次,连续给药5d,SB于照射后24h给药(15 mg/kg),隔日给药,共给药5次.照射后10d测外周血计数,进行白细胞CD4、CD8、B220检测、胸腺细胞CD4、CD8检测和骨髓细胞活性氧检测.结果 照射组外周血计数和CD8、B220比例下降,而胸腺细胞中CD4+CD8+细胞比例及骨髓细胞活性氧水平显著增加.与照射组相比,联合给药组外周血红细胞数、血小板、CD4、CD8细胞比例升高,胸腺细胞中CD4+CD8+细胞比例下降.结论 G-CSF联合SB对4 Gy照射

  18. Palmoplantar keratoderma in Slurp2-deficient mice

    Science.gov (United States)

    Allan, Christopher M.; Procaccia, Shiri; Tran, Deanna; Tu, Yiping; Barnes, Richard H.; Larsson, Mikael; Allan, Bernard B.; Young, Lorraine C.; Hong, Cynthia; Tontonoz, Peter; Fong, Loren G.; Young, Stephen G.; Beigneux, Anne P.

    2015-01-01

    SLURP1, a member of the Ly6 protein family, is secreted by suprabasal keratinocytes. Mutations in SLURP1 cause a palmoplantar keratoderma (PPK) known as mal de Meleda. Another secreted Ly6 protein, SLURP2, is encoded by a gene located ~20 kb downstream from SLURP1. SLURP2 is produced by suprabasal keratinocytes. To investigate the importance of SLURP2, we first examined Slurp2 knockout mice in which exon 2–3 sequences had been replaced with lacZ and neo cassettes. Slurp2−/− mice exhibited hyperkeratosis on the volar surface of the paws (i.e., PPK), increased keratinocyte proliferation, and an accumulation of lipid droplets in the stratum corneum. They also exhibited reduced body weight and hind limb clasping. These phenotypes are very similar to those of Slurp1−/− mice. To solidify a link between Slurp2 deficiency and PPK and to be confident that the disease phenotypes in Slurp2−/− mice were not secondary to the effects of the lacZ and neo cassettes on Slurp1 expression, we created a new line of Slurp2 knockout mice (Slurp2X−/−) in which Slurp2 was inactivated with a simple nonsense mutation. Slurp2X−/− mice exhibited the same disease phenotypes. Thus, Slurp2 deficiency and Slurp1 deficiencies cause the same disease phenotypes. PMID:26967477

  19. Effects of early-onset voluntary exercise on adult physical activity and associated phenotypes in mice.

    Science.gov (United States)

    Acosta, Wendy; Meek, Thomas H; Schutz, Heidi; Dlugosz, Elizabeth M; Vu, Kim T; Garland, Theodore

    2015-10-01

    The purpose of this study was to evaluate the effects of early-life exercise on adult physical activity (wheel running, home-cage activity), body mass, food consumption, and circulating leptin levels in males from four replicate lines of mice selectively bred for high voluntary wheel running (High Runner or HR) and their four non-selected control (C) lines. Half of the mice were given wheel access shortly after weaning for three consecutive weeks. Wheel access was then removed for 52 days, followed by two weeks of adult wheel access for all mice. A blood sample taken prior to adult wheel testing was analyzed for circulating leptin concentration. Early-life wheel access significantly increased adult voluntary exercise on wheels during the first week of the second period of wheel access, for both HR and C mice, and HR ran more than C mice. During this same time period, activity in the home cages was not affected by early-age wheel access, and did not differ statistically between HR and C mice. Throughout the study, all mice with early wheel access had lower body masses than their sedentary counterparts, and HR mice had lower body masses than C mice. With wheel access, HR mice also ate significantly more than C mice. Early-life wheel access increased plasma leptin levels (adjusted statistically for fat-pad mass as a covariate) in C mice, but decreased them in HR mice. At sacrifice, early-life exercise had no statistically significant effects on visceral fat pad, heart (ventricle), liver or spleen masses (all adjusted statistically for variation in body mass). Results support the hypothesis that early-age exercise in mice can have at least transitory positive effects on adult levels of voluntary exercise, in addition to reducing body mass, and may be relevant for the public policy debates concerning the importance of physical education for children. Copyright © 2015. Published by Elsevier Inc.

  20. [Multifaceted body. 2. The lived body].

    Science.gov (United States)

    Wykretowicz, H; Saraga, M; Bourquin, C; Stiefel, F

    2015-02-11

    The human body is the object upon which medicine is acting, but also lived reality, image, symbol, representation and the object of elaboration and theory. All these elements which constitute the body influence the way medicine is treating it. In this series of three articles, we address the human body from various perspectives: medical (1), phenomenological (2), psychosomatic and socio-anthropological (3). This second article distinguishes between the body as an object of knowledge or representation and the way the body is lived. This distinction which originates in phenomenological psychiatry aims to understand how the patient experiences his body and to surpass the classical somatic and psychiatric classifications.

  1. Genetics of Rapid and Extreme Size Evolution in Island Mice.

    Science.gov (United States)

    Gray, Melissa M; Parmenter, Michelle D; Hogan, Caley A; Ford, Irene; Cuthbert, Richard J; Ryan, Peter G; Broman, Karl W; Payseur, Bret A

    2015-09-01

    Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F(2) intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature. Copyright © 2015 by the Genetics Society of America.

  2. Subchronic exposure of mice to Love Canal soil contaminants.

    Science.gov (United States)

    Silkworth, J B; McMartin, D N; Rej, R; Narang, R S; Stein, V B; Briggs, R G; Kaminsky, L S

    1984-04-01

    The health hazard potential of soil collected from the surface of the Love Canal chemical dump site in Niagara Falls, New York, was assessed in 90-day exposure studies. Female CD-1 mice were exposed to two concentrations of the volatile components of 1 kg of soil with and without direct soil contact. Control mice were identically housed but without soil. The soil was replaced weekly and 87 compounds were detected in the air in the cages above fresh and 7-day-old soil as analyzed by gas chromatography/mass spectrometry. The concentration of many of these compounds decreased during the 7-day exposure cycle. Histopathologic, hematologic, and serum enzyme studies followed necropsy of all mice. There was no mortality of mice exposed for up to 90 days under any condition. Thymus and spleen weights relative to body weight were increased after 4 weeks of exposure by inhalation but not after 8 or 12 weeks of exposure. alpha-, beta-, and delta- Benzenehexachlorides , pentachlorobenzene, and hexachlorobenzene were detected in liver tissue from these animals. Mice exposed to 5- to 10-fold elevated concentration of volatiles had increased body and relative kidney weights. There was no chemically induced lesion in any animal exposed only to the volatile soil contaminants. Mice exposed by direct contact with the soil without elevated volatile exposure had increased body (10%) and relative liver weights (169%). Centrolobular hepatocyte hypertrophy, which involved 40 to 70% of the lobules, was observed in all mice in this group.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. 脂肪细胞型脂肪酸结合蛋白疫苗对高脂喂养雌鼠体重和糖耐量的影响%Effect of Vaccination Against Adipocyte Fatty Acid Binding Protein on Body Weight and Glucose Tolerance in Female Mice with High-Fat Diet

    Institute of Scientific and Technical Information of China (English)

    金昕晔; 邹大进

    2012-01-01

    目的:构建能诱导出针对脂肪细胞型脂肪酸结合蛋白(FABP4)特异性中和抗体的疫苗,为高脂诱导下肥胖和胰岛素抵抗的防治新途径提供理论和实验依据.方法:野生型C57BL/6J雌鼠随机分为疫苗组(n=10,高脂饲养)、佐剂组(n=10,高脂饲养)和空白对照组(n=10,普通饲养),分别予以皮下注射生物合成的FABP4蛋白、佐剂和磷酸盐缓冲液,观察比较各组抗体滴度、安全耐受性和体重、摄食量、空腹血糖、胰岛素抵抗指数(HOMA-IR)、糖耐量实验血糖曲线下面积(AUC)等指标.结果:疫苗组小鼠产生了高滴度的FABP4特异性抗体,并于第3轮加强免疫后达到平衡状态.首次免疫16周后,疫苗组小鼠体重高于空白对照组,但明显低于佐剂组(P<0.05);日平均摄食量高于空白对照组(P<0.05),与佐剂组无差异(P>0.05);空腹血糖、HOMA-IR、腹腔葡萄糖耐量实验AUC均明显低于佐剂组(P<0.05),与对照组无统计学差异(P>0.05).结论:以FABP4作为抗原免疫小鼠,可产生高滴度特异性抗体IgG,有效降低高脂喂养野生型雌性小鼠体重、空腹血糖、HOMA-IR和血糖AUC等指标,为高脂诱导的肥胖和胰岛素抵抗的治疗提供了新的途径和初步证据,可进行深入研究.%Objective: To construct vaccine against adipocyte fatty acid binding protein(FABP4) in order to give theoretical and experimental evidence on prevention and cure of high-fat-induced obesity and insulin resistance. Methods: 30 wild-type female C57BL/6J mice were randomly divided into vaccine group(VG, n=10, with high-fat diet), adjuvant group(AG, n=10, with high-fat diet) and control group(CG, n=10, with normal diet), and were sub-cutaneously injected with biosynthetic FABP4, adjuvant, and phosphate buffered solution, respectively. Several indexes were observed, including antibody titers, security and tolerance, body weight, food intake, fasting blood glucose, homeostasis model of assessment

  4. Metabolic effects of intra-abdominal fat in GHRKO mice

    Science.gov (United States)

    Masternak, Michal M.; Bartke, Andrzej; Wang, Feiya; Spong, Adam; Gesing, Adam; Fang, Yimin; Salmon, Adam B.; Hughes, Larry F.; Liberati, Teresa; Boparai, Ravneet; Kopchick, John J.; Westbrook, Reyhan

    2011-01-01

    SUMMARY Mice with targeted deletion of the growth hormone receptor (GHRKO mice) are GH resistant, small, obese, hypoinsulinemic, highly insulin sensitive and remarkably long-lived. To elucidate the unexpected coexistence of adiposity with improved insulin sensitivity and extended longevity, we examined effects of surgical removal of visceral (epididymal and perinephric) fat on metabolic traits related to insulin signaling and longevity. Comparison of results obtained in GHRKO mice and in normal animals from the same strain revealed disparate effects of visceral fat removal (VFR) on insulin and glucose tolerance, adiponectin levels, accumulation of ectopic fat, phosphorylation of insulin signaling intermediates, body temperature and respiratory quotient (RQ). Overall, VFR produced the expected improvements in insulin sensitivity and reduced body temperature and RQ in normal mice and had opposite effects in GHRKO mice. Some of the examined parameters were altered by VFR in opposite directions in GHRKO and normal mice, others were affected in only one genotype or exhibited significant genotype × treatment interactions. Functional differences between visceral fat of GHRKO and normal mice were confirmed by measurements of adipokine secretion, lipolysis and expression of genes related to fat metabolism. We conclude that in the absence of GH signaling the secretory activity of visceral fat is profoundly altered and unexpectedly promotes enhanced insulin sensitivity. The apparent beneficial effects of visceral fat in GHRKO mice may also explain why reducing adiposity by calorie restriction fails to improve insulin signaling or further extend longevity in these animals. PMID:22040032

  5. 2-BODY AND 3-BODY PARQUET THEORY

    NARCIS (Netherlands)

    LANDE, A; SMITH, RA

    1992-01-01

    One of the fundamental approaches to microscopic many-body theory is through the use of perturbation theory. This paper presents a clear derivation of the equations that sum the two-body and three body reducible diagrams that are generated from some input set of irreducible diagrams (typically the b

  6. Ghrelin reverses experimental diabetic neuropathy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kyoraku, Itaru; Shiomi, Kazutaka [Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Kangawa, Kenji [Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565 (Japan); Nakazato, Masamitsu, E-mail: nakazato@med.miyazaki-u.ac.jp [Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan)

    2009-11-20

    Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin {alpha}, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.

  7. Influence of sex and age on the biological half-life of cadmium in mice

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, T. (Kochi Medical School, Nangoku-shi, Japan); Suzuki, S.

    1981-02-01

    The influence of age on the whole-body biological half-life of /sup 109/Cd was studied in male mice following ip injection. The influence of sex on whole-body and organ retention was ascertained after sc injection. The whole-body biological half-life of /sup 109/Cd of the older mice was more than twice that of the younger mice, and that of the female mice was longer than that of the males. These differences demonstrate a biological difference between males and females with respect to whole-body half-life of /sup 109/Cd. The effects of age and sex on the biological half-life of Cd in mice are assessed quantitatively.

  8. MICE IN CHINA

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The MICE (Meetings, Incentives, Conventions, and Exhibitions) industry has exploded worldwide over the past decade. The benefits brought by meetings, incentives, conventions, and exhibitions are also benefiting other sectors involved in MICE events, including hotels, travel, and retail. Industry analysts estimate that the income from the global MICE industry will soon exceed USD 220 billion, and is expected to increase by 8-10% each year.

  9. Differential androgenesis in gamma irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihyang; Yoon, Yongdal [Hanyang Univ., Seoul (Korea, Republic of); Kim, Jin Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2002-07-01

    The Leydig cells of the testis account for at least 75% of the total testosterone produced in the normal adult male. Whereas the production of estrogen from androgen is catalyzed by aromatase cytochrome P450, which is found in many tissues, including gonad, brain, adipose tissue, bone, and heart. The gamma-irradiation causes the impairment of spermatogenesis and steroidogenesis in male mice. The present study was performed to analyze changes in testosterone concentrations and expression of steroidogenic enzyme of mice after whole body gamma-irradiation. Eight-week-old male ICR mice were irradiated with 6.5 or 10 Gy. At days 1, 2, 3, 4, and 5 after irradiation, testes were removed and processed for paraffin sections and isolation of mRNA. We calculated the gonad index from body and testis weight, and checked the testis volume. Hormonal analysis was performed by means of radioimmunoassay (RIA) in serum and intratesticular fluid. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate the expression kinetics of the apoptotic gene and the cytochrome P450 aromatase gene after irradiation. In gamma-irradiated mice, the body weight reduced in comparison to that of the control group. Therefore, gonad indices increased. The testosterone concentrations in serum and intratesticular fluid were significantly reduced. RT- PCR data represented that the expression of Fas, Fas ligand, and aromatase cytochrome P450 showed the specific patterns against control groups. These results indicated that gamma- irradiation of adult mice induced the alteration of androgenesis and suggested that might counteract the spermatogenesis.

  10. Altered motivation masks appetitive learning potential of obese mice

    Directory of Open Access Journals (Sweden)

    Mazen R. Harb

    2014-10-01

    Full Text Available Eating depends strongly on learning processes which, in turn, depend on motivation. Conditioned learning, where individuals associate environmental cues with receipt of a reward, forms an important part of hedonic mechanisms; the latter contribute to the development of human overweight and obesity by driving excessive eating in what may become a vicious cycle. Although mice are commonly used to explore the regulation of human appetite, it is not known whether their conditioned learning of food rewards varies as a function of body mass. To address this, groups of adult male mice of differing body weights were tested two appetitive conditioning paradigms (pavlovian and operant as well as in food retrieval and hedonic preference tests in an attempt to dissect the respective roles of learning/motivation and energy state in the regulation of feeding behavior. We found that i the rate of pavlovian conditioning to an appetitive reward develops as an inverse function of body weight; ii higher body weight associates with increased latency to collect food reward; and iii mice with lower body weights are more motivated to work for a food reward, as compared to animals with higher body weights. Interestingly, as compared to controls, overweight and obese mice consumed smaller amounts of palatable foods (isocaloric milk or sucrose, in either the presence or absence of their respective maintenance diets: standard, low fat-high carbohydrate or high fat-high carbohydrate. Notably, however, all groups adjusted their consumption of the different food types, such that their body weight-corrected daily intake of calories remained constant. Thus, overeating in mice does not reflect a reward deficiency syndrome and, in contrast to humans, mice regulate their caloric intake according to metabolic status rather than to the hedonic properties of a particular food. Together, these observations demonstrate that excess weight masks the capacity for appetitive learning in

  11. [Perspectives on body: embodiment and body image].

    Science.gov (United States)

    Chang, Shiow-Ru; Chao, Yu-Mei Yu

    2007-06-01

    "Body" is a basic concept of both the natural and human sciences. This extensive review of the literature explores the various philosophical approaches to the body, including empiricism, idealism, existentialism and phenomenology, as well as the relationship between body and mind. Embodiment and body image are the two main concepts of body addressed in this article. Merleau-Ponty's perspective on embodiment, an important new area of theory development, emphasizes that embodiment research must focus on life experiences, such as the study of body image. Using Schilder's framework of psychosocialology, this article provides a comprehensive understanding of the concept of body image and women's perspectives on the "body" in both Western culture and Eastern cultures. Body size and shape significantly influence the self-image of women. Body image is something that develops and changes throughout one's life span and is continually being constructed, destructed, and reconstructed. Personal body image has important psychological effects on the individual, especially women. This integrative review can make a significant contribution to knowledge in this area and, consequently, to related practice and research.

  12. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... 80 percent of foreign body ingestions occur among children. Most foreign bodies pass through the gastrointestinal tract ... blockages that may require surgical removal of magnets. Children account for about 80 percent of foreign body ...

  13. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... limitations of foreign body detection and removal? What is Foreign Body Retrieval? Foreign body retrieval involves the ... or computed tomography (CT). top of page How is the procedure performed? There are a number of ...

  14. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Removal of a foreign body will reduce ... good tool for guiding foreign body removal procedures. Risks While foreign body removal procedures are safe and ...

  15. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... soft tissues. About 80 percent of foreign body ingestions occur among children. Most foreign bodies pass through ... account for about 80 percent of foreign body ingestions. Sometimes problems occur when button batteries are swallowed ...

  16. Lewy Body Disease

    Science.gov (United States)

    Lewy body disease is one of the most common causes of dementia in the elderly. Dementia is the loss ... enough to affect normal activities and relationships. Lewy body disease happens when abnormal structures, called Lewy bodies, ...

  17. Bone metabolism and formation generation bred mice in a 2G environment

    Science.gov (United States)

    Kita, S.; Iwasaki, K.; Shibata, S.; Onishi, R.; Ito, M.

    We examined the influence of G-force on bone formation (Exp.1) and bone metabolism (Exp.2) on generation bred mice in a 2G environment. [Materials and Method] We made the centrifugation G load breeding machine that we can breed mouse in G load environment. Exp.1: We measured the body length, length of thighbone and pelvis, width of thighbone, pelvis and fourth cervical vertebra in mature mice from the photograph of mice by X-ray. Exp.2: Calcium, phosphorus, magnesium and strontium were analyzed on thighbone, cervical vertebrae and lumbar vertebrae respectively. [Results] Exp.1: The result showed that the average of body length of control mice was 107.9+/-1.5 mm, a decrease approximately 7.9mm in body length in the G-forced mice. Length and width of thighbone and pelvis were miniaturized (length: 1.6%, width: 7.7% respectively) in the G-forced mice. However, width of cervical vertebrae in the Gforced mice was not different in control mice. Exp.2: The concentration of calcium and phosphorus of the thighbone in the G-forced mice was less than the control mice. However, that of the cervical vertebrae in G-forced mice was not different from the control mice. [Conclusion] Bone of mice adapted in a 2G environment. The results showed that the body length, thighbone and pelvis were miniaturized in the G-force mice. However, there were not any differences in the size of cervical vertebra. And cervical vertebra was promoted mineralization.

  18. Influence of Aging and Gender Differences on Feeding Behavior and Ghrelin-Related Factors during Social Isolation in Mice.

    Science.gov (United States)

    Yamada, Chihiro; Saegusa, Yayoi; Nahata, Miwa; Sadakane, Chiharu; Hattori, Tomohisa; Takeda, Hiroshi

    2015-01-01

    Psychological stress due to social isolation is known to cause abnormal feeding behaviors, but the influences of gender and aging on subchronic stress-induced changes in feeding behaviors are unknown. Thus, we examined the changes in body weight, food intake, and orexigenic ghrelin-related factors during 2 weeks of isolation stress in young and aged mice. Food intake increased significantly in young mice in the isolation group compared with the group-housed control throughout the experimental period. This isolation-induced increase in food intake was not observed in aged mice. In young mice, there were no significant differences in body weight between the isolated group and group-housed control up to 2 weeks. However, aged male mice exhibited significant weight loss at 2 weeks and a similar tendency was observed in aged female mice. Young male mice, but not female mice, had significantly increased (2.2-fold) plasma acylated ghrelin levels after 1 week of isolation compared with the group-housed control. A significant but lower increase (1.3-fold) was also observed in aged male mice. Hypothalamic preproghrelin gene expression decreased significantly with isolation in young male mice, whereas it increased significantly in female mice. The expression levels of NPY and AGRP in the hypothalamus, which are transmitted by elevated peripheral ghrelin signals, increased significantly in isolated young male mice, whereas the AGRP expression levels decreased significantly in young female mice. Isolation caused no significant differences in the expression levels of these genes in aged mice. In isolation, young female mice exhibited markedly increased dark- and light-phase locomotor activities compared with male mice, whereas male and female aged mice exhibited no obvious increases in activity immediately after the dark phase started. We conclude that the gender-specific homeostatic regulatory mechanisms required to maintain body weight operated during subchronic psychological

  19. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    Directory of Open Access Journals (Sweden)

    Chise Tateno

    Full Text Available We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID. We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and

  20. Dietary conjugated linoleic acid induces lipolysis in adipose tissue of coconut oil-fed mice but not soy oil-fed mice.

    Science.gov (United States)

    Ippagunta, S; Hadenfeldt, T J; Miner, J L; Hargrave-Barnes, K M

    2011-09-01

    Mice fed diets containing conjugated linoleic acid (CLA) are leaner than mice not fed CLA. This anti-obesity effect is amplified in mice fed coconut oil-containing or fat free diets, compared to soy oil diets. The present objective was to determine if CLA alters lipolysis in mice fed different base oils. Mice were fed diets containing soy oil (SO), coconut oil (CO), or fat free (FF) for 6 weeks, followed by 10 or 12 days of CLA or no CLA supplementation. Body fat, tissue weights, and ex vivo lipolysis were determined. Relative protein abundance and activation of perilipin, hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL), and adipose differentiation related protein (ADRP) were determined by western blotting. CLA feeding caused mice to have less (P oil source, P oil source interaction on lipolysis as CO + CLA and FF + CLA-fed mice had increased (P < 0.05) rates of lipolysis but SO + CLA-fed mice did not. However, after 12 days of CLA consumption, activated perilipin was increased (P < 0.05) only in SO + CLA-fed mice and total HSL and ATGL were decreased (P < 0.05) in CO + CLA-fed mice. Therefore, the enhanced CLA-induced body fat loss in CO and FF-fed mice appears to involve increased lipolysis but this effect may be decreasing by 12 days of CLA consumption.

  1. HEAVY METALS INDUCE APOPTOSIS IN LIVER OF MICE

    Directory of Open Access Journals (Sweden)

    Khalid H. Gathwan

    2012-05-01

    Full Text Available Cadmium (C d and zinc (Zn are an industrial and environmental pollutant of aquatic system has attracted the attention of research's all over the world. In the present study the toxic effects of zinc (Zn and Cadmium (C d on the liver of male mice. Male Balb /c mice weighing 32-34 gm, 70 days old, were treated orally with (1-10 mg/kg body wt. CdCl2 and 1-8 mg/kg body wt. ZnCl2. The body weight, liver weight, histological examination of liver, along with DNA ladder for apoptosis was studied. Cadmium and zinc induced both a time, and dose dependent increase in apoptotic, severity of necrosis. Liver weight, body weight decreased with increase of dose. It has been concluded that cadmium and zinc caused necrotic effect in liver and apoptotic as well as decrease body weight and liver weight.

  2. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... denotes child-specific content. Related Articles and Media Computed Tomography (CT) - Body Magnetic Resonance Imaging (MRI) - Body General Ultrasound Contrast Materials Anesthesia ...

  3. Foreign body orbital cyst

    DEFF Research Database (Denmark)

    Yazdanfard, Younes; Heegard, Steffen; Fledelius, Hans C.

    2001-01-01

    Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology......Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology...

  4. FGF21 promotes metabolic homeostasis via white adipose and leptin in mice.

    Science.gov (United States)

    Véniant, Murielle M; Hale, Clarence; Helmering, Joan; Chen, Michelle M; Stanislaus, Shanaka; Busby, Jim; Vonderfecht, Steven; Xu, Jing; Lloyd, David J

    2012-01-01

    Fibroblast growth factor 21 (FGF21) is a potent metabolic regulator, and pharmacological administration elicits glucose and lipid lowering responses in mammals. To delineate if adipose tissue is the predominant organ responsible for anti-diabetic effects of FGF21, we treated mice with reduced body fat (lipodystrophy mice with adipose specific expression of active sterol regulatory element binding protein 1c; Tg) with recombinant murine FGF21 (rmuFGF21). Unlike wildtype (WT) mice, Tg mice were refractory to the beneficial effects of rmuFGF21 on body weight, adipose mass, plasma insulin and glucose tolerance. To determine if adipose mass was critical for these effects, we transplanted WT white adipose tissue (WAT) into Tg mice and treated the mice with rmuFGF21. After transplantation, FGF21 responsiveness was completely restored in WAT transplanted Tg mice compared to sham Tg mice. Further, leptin treatment alone was sufficient to restore the anti-diabetic effects of rmuFGF21 in Tg mice. Molecular analyses of Tg mice revealed normal adipose expression of Fgfr1, Klb and an 8-fold over-expression of Fgf21. Impaired FGF21-induced signaling indicated that residual adipose tissue of Tg mice was resistant to FGF21, whilst normal FGF21 signaling was observed in Tg livers. Together these data suggest that adipose tissue is required for the triglyceride and glucose, but not the cholesterol lowering efficacy of FGF21, and that leptin and FGF21 exert additive anti-diabetic effects in Tg mice.

  5. Cacao polyphenols ameliorate autoimmune myocarditis in mice.

    Science.gov (United States)

    Zempo, Hirofumi; Suzuki, Jun-ichi; Watanabe, Ryo; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Komuro, Issei; Isobe, Mitsuaki

    2016-04-01

    Myocarditis is a clinically severe disease; however, no effective treatment has been established. The aim of this study was to determine whether cacao bean (Theobroma cacao) polyphenols ameliorate autoimmune myocarditis. We used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. Mice with induced EAM were treated with a cacao polyphenol extract (CPE, n=12) or vehicle (n=12). On day 21, hearts were harvested and analyzed. Elevated heart weight to body weight and fibrotic area ratios as well as high cardiac cell infiltration were observed in the vehicle-treated EAM mice. However, these increases were significantly suppressed in the CPE-treated mice. Reverse transcriptase-PCR revealed that mRNA expressions of interleukin (Il)-1β, Il-6, E-selectin, vascular cell adhesion molecule-1 and collagen type 1 were lower in the CPE group compared with the vehicle group. The mRNA expressions of nicotinamide adenine dinucleotide phosphate-oxidase (Nox)2 and Nox4 were increased in the vehicle-treated EAM hearts, although CPE treatment did not significantly suppress the transcription levels. However, compared with vehicle treatment of EAM hearts, CPE treatment significantly suppressed hydrogen peroxide concentrations. Cardiac myeloperoxidase activity, the intensity of dihydroethidium staining and the phosphorylation of nuclear factor-κB p65 were also lower in the CPE group compared with the vehicle group. Our data suggest that CPE ameliorates EAM in mice. CPE is a promising dietary supplement to suppress cardiovascular inflammation and oxidative stress.

  6. After a cold conditioning swim, UCP2-deficient mice are more able to defend against the cold than wild type mice.

    Science.gov (United States)

    Abdelhamid, Ramy E; Kovács, Katalin J; Nunez, Myra G; Larson, Alice A

    2014-08-01

    Uncoupling protein 2 (UCP2) is widely distributed throughout the body including the brain, adipose tissue and skeletal muscles. In contrast to UCP1, UCP2 does not influence resting body temperature and UCP2-deficient (-/-) mice have normal thermoregulatory responses to a single exposure to cold ambient temperatures. Instead, UCP2-deficient mice are more anxious, exhibit anhedonia and have higher circulating corticosterone than wild type mice. To test the possible role of UCP2 in depressive behavior we exposed UCP2-deficient and wild type mice to a cold (26°C) forced swim and simultaneously measured rectal temperatures during and after the swim. The time that UCP2-deficient mice spent immobile did not differ from wild type mice and all mice floated more on day 2. However, UCP2-deficient mice were more able to defend against the decrease in body temperature during a second daily swim at 26°C than wild type mice (area under the curve for wild type mice: 247.0±6.4; for UCP2-deficient mice: 284.4±3.8, Pswim at 26°C correlated with their greater immobility whereas defense against the warmth during a swim at 41°C correlated better with greater immobility of UCP2-deficient mice. Together these data indicate that while the lack of UCP2 has no acute effect on body temperature, UCP2 may inhibit rapid improvements in defense against cold, in contrast to UCP1, whose main function is to promote thermogenesis.

  7. Lovastatin protects against experimental plague in mice.

    Directory of Open Access Journals (Sweden)

    Saravanan Ayyadurai

    Full Text Available BACKGROUND: Plague is an ectoparasite-borne deadly infection caused by Yersinia pestis, a bacterium classified among the group A bioterrorism agents. Thousands of deaths are reported every year in some African countries. Tetracyclines and cotrimoxazole are used in the secondary prophylaxis of plague in the case of potential exposure to Y. pestis, but cotrimoxazole-resistant isolates have been reported. There is a need for additional prophylactic measures. We aimed to study the effectiveness of lovastatin, a cholesterol-lowering drug known to alleviate the symptoms of sepsis, for plague prophylaxis in an experimental model. METHODOLOGY: Lovastatin dissolved in Endolipide was intraperitoneally administered to mice (20 mg/kg every day for 6 days prior to a Y. pestis Orientalis biotype challenge. Non-challenged, lovastatin-treated and challenged, untreated mice were also used as control groups in the study. Body weight, physical behavior and death were recorded both prior to infection and for 10 days post-infection. Samples of the blood, lungs and spleen were collected from dead mice for direct microbiological examination, histopathology and culture. The potential antibiotic effect of lovastatin was tested on blood agar plates. CONCLUSIONS/SIGNIFICANCE: Lovastatin had no in-vitro antibiotic effect against Y. pestis. The difference in the mortality between control mice (11/15; 73.5% and lovastatin-treated mice (3/15; 20% was significant (P<0.004; Mantel-Haenszel test. Dead mice exhibited Y. pestis septicemia and inflammatory destruction of lung and spleen tissues not seen in lovastatin-treated surviving mice. These data suggest that lovastatin may help prevent the deadly effects of plague. Field observations are warranted to assess the role of lovastatin in the prophylaxis of human plague.

  8. Of mice and men

    CERN Multimedia

    1973-01-01

    At the end of March , sixty mice were irradiated at the synchro-cyclotron in the course of an experimental programme studying radiation effects on mice and plants (Vicia faba bean roots) being carried out by the CERN Health Physics Group.

  9. A Family of Mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ 一、故事内容 There is a family of mice in my house. They are father mouse, mother mouse and baby mouse. Baby mouse likes dancing. He is very cute. Father mouse likes watching TV. He likes the sports on TV best. These three mice are clever.

  10. Effects of Cow's Milk on Reproduction in ICR Male Mice

    Institute of Scientific and Technical Information of China (English)

    YU-XIA MA; NAOYUKI EBINE; KAZUO AOKI; MASAHIRO KUSUNOKI; JUNICHI MISUMI

    2009-01-01

    Objective To study the effects of Cow's milk on the reproduction in male mice. Methods Twenty-four male mice were divided randomly into two groups: milk group (M) and control group (C). Each mouse was given 10 mL milk per day from 4 to 16 weeks in the group M. At the age of 17 weeks, all the mice were sacrificed. Results Serum testosterone was decreased in the group M (P=0.037). No significant difference was found in weight of testes, seminal vesicle or adrenal gland of mice between the groups C and M. However, the weight of seminal vesicle decreased when expressed in g/100g body weight in the group M. Epididymal sperm concentration, motility, morphology, and sperm head number were not affected by milk. Conclusion Cow's milk has adverse effects on the reproductive system in ICR male mice. Further studies are needed to clarify the specific effects of milk on reproductive health.

  11. Determination of Star Bodies from -Centroid Bodies

    Indian Academy of Sciences (India)

    Lujun Guo; Gangsong Leng

    2013-11-01

    In this paper, we prove that an origin-symmetric star body is uniquely determined by its -centroid body. Furthermore, using spherical harmonics, we establish a result for non-symmetric star bodies. As an application, we show that there is a unique member of $_p\\langle K \\rangle$ characterized by having larger volume than any other member, for all real ≥ 1 that are not even natural numbers, where $_p\\langle K \\rangle$ denotes the -centroid equivalence class of the star body .

  12. [Multifaceted body. 3. The contextualised body].

    Science.gov (United States)

    Bourquin, C; Wykretowicz, H; Saraga, M; Stiefel, F

    2015-02-11

    The human body is the object upon which medicine is acting, but also lived reality, image, symbol, representation and the object of elaboration and theory. All these elements which constitute the body influence the way medicine is treating it. In this series of three articles, we address the human body from various perspectives: medical (1), phenomenological (2), psychosomatic and socio-anthropological (3). This third and last article focuses on the psychosomatic and socio-anthropological facets of the body and their contribution to its understanding.

  13. Circadian aspects of hyperthermia in mice induced by Aconitum napellus

    OpenAIRE

    Salvador Sánchez de la Peña; Sothern, Robert B; Fernando Santillán López; Irene Mendoza Lujambio; José Waizel-Bucay; Carolina Olarte Sánchez; Claudia Pérez Monroy; Eduardo Tena Betancourt

    2011-01-01

    Background: Aconitum napellus (Acn) is used topically to relieve pain, itching and inflammation, and internally to reduce febrile states, among others. Any circadian time-related consequences of Acn administration are unknown. The objective of this study was to explore the effects of two doses of Acn on body temperature (BT) of mice treated at six different times over 24 hours. Materials and Methods: BALB/c female mice were housed in six chambers (six mice each) with air temperature 24 ± 3°C,...

  14. Long-term toxicity of diethyl carbonate in mice.

    Science.gov (United States)

    Brown, D; Gaunt, I F; Hardy, J; Kiss, I S; Butterworth, K R

    1978-07-01

    Groups of 48 male and 50 female mice were given drinking-water containing 0, 50, 250 or 1000 ppm diethyl carbonate for 83 weeks. There was no effect on mortality, rate of body-weight gain or the incidence of histopathological findings, including tumors. There were isolated differences between treated and control mice in the findings of the haematological examinations and in the liver weights of female mice but these were not considered to be related treatment. It is concluded that no carcinogenic effect could be detected and that the no-untoward-effect level is 1000 ppm (approx. 140 mg/kg/day).

  15. Impact of taurine depletion on glucose control and insulin secretion in mice.

    Science.gov (United States)

    Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W

    2015-09-01

    Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  16. Heparanase affects food intake and regulates energy balance in mice.

    Directory of Open Access Journals (Sweden)

    Linda Karlsson-Lindahl

    Full Text Available Mutation of the melanocortin-receptor 4 (MC4R is the most frequent cause of severe obesity in humans. Binding of agouti-related peptide (AgRP to MC4R involves the co-receptor syndecan-3, a heparan sulfate proteoglycan. The proteoglycan can be structurally modified by the enzyme heparanase. Here we tested the hypothesis that heparanase plays a role in food intake behaviour and energy balance regulation by analysing body weight, body composition and food intake in genetically modified mice that either lack or overexpress heparanase. We also assessed food intake and body weight following acute central intracerebroventricular administration of heparanase; such treatment reduced food intake in wildtype mice, an effect that was abolished in mice lacking MC4R. By contrast, heparanase knockout mice on a high-fat diet showed increased food intake and maturity-onset obesity, with up to a 40% increase in body fat. Mice overexpressing heparanase displayed essentially the opposite phenotypes, with a reduced fat mass. These results implicate heparanase in energy balance control via the central melanocortin system. Our data indicate that heparanase acts as a negative modulator of AgRP signaling at MC4R, through cleavage of heparan sulfate chains presumably linked to syndecan-3.

  17. Adolescence and Body Image.

    Science.gov (United States)

    Weinshenker, Naomi

    2002-01-01

    Discusses body image among adolescents, explaining that today's adolescents are more prone to body image distortions and dissatisfaction than ever and examining the historical context; how self-image develops; normative discontent; body image distortions; body dysmorphic disorder (BDD); vulnerability of boys (muscle dysmorphia); who is at risk;…

  18. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...

  19. Zooplankton body composition

    OpenAIRE

    Kiørboe, Thomas

    2013-01-01

    I compiled literature on zooplankton body composition, from protozoans to gelatinous plankton, and report allometric relations and average body composition. Zooplankton segregate into gelatinous and non-gelatinousforms, with few intermediate taxa (chaetognaths, polychaetes, and pteropods). In most groups body composition is size independent. Exceptions are protozoans, chaetognaths, and pteropods, where larger individuals becomeincreasingly watery. I speculate about the dichotomy in body compo...

  20. Resveratrol Protects the Brain of Obese Mice from Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Shraddha D. Rege

    2013-01-01

    Full Text Available Resveratrol (3,5,4′-trihydroxy-trans-stilbene is a polyphenolic phytoalexin that exerts cardioprotective, neuroprotective, and antioxidant effects. Recently it has been shown that obesity is associated with an increase in cerebral oxidative stress levels, which may enhance neurodegeneration. The present study evaluates the neuroprotective action of resveratrol in brain of obese (ob/ob mice. Resveratrol was administered orally at the dose of 25 mg kg−1 body weight daily for three weeks to lean and obese mice. Resveratrol had no effect on body weight or blood glucose levels in obese mice. Lipid peroxides were significantly increased in brain of obese mice. The enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and nonenzymatic antioxidants tocopherol, ascorbic acid, and glutathione were decreased in obese mice brain. Administration of resveratrol decreased lipid peroxide levels and upregulated the antioxidant activities in obese mice brain. Our findings indicate a neuroprotective effect of resveratrol by preventing oxidative damage in brain tissue of obese mice.

  1. Perilipin overexpression in mice protects against diet-induced obesity

    Science.gov (United States)

    Miyoshi, Hideaki; Souza, Sandra C.; Endo, Mikiko; Sawada, Takashi; Perfield, James W.; Shimizu, Chikara; Stancheva, Zlatina; Nagai, So; Strissel, Katherine J.; Yoshioka, Narihito; Obin, Martin S.; Koike, Takao; Greenberg, Andrew S.

    2010-01-01

    Perilipin A is the most abundant phosphoprotein on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Perilipin null mice exhibit diminished adipose tissue, elevated basal lipolysis, reduced catecholamine-stimulated lipolysis, and increased insulin resistance. To understand the physiological consequences of increased perilipin expression in vivo, we generated transgenic mice that overexpressed either human or mouse perilipin using the adipocyte-specific aP2 promoter/enhancer. Phenotypes of female transgenic and wild-type mice were characterized on chow and high-fat diets (HFDs). When challenged with an HFD, transgenic mice exhibited lower body weight, fat mass, and adipocyte size than wild-type mice. Expression of oxidative genes was increased and lipogenic genes decreased in brown adipose tissue of transgenic mice. Basal and catecholamine-stimulated lipolysis was decreased and glucose tolerance significantly improved in transgenic mice fed a HFD. Perilipin overexpression in adipose tissue protects against HFD-induced adipocyte hypertrophy, obesity, and glucose intolerance. Alterations in brown adipose tissue metabolism may mediate the effects of perilipin overexpression on body fat, although the mechanisms by which perilipin overexpression alters brown adipose tissue metabolism remain to be determined. Our findings demonstrate a novel role for perilipin expression in adipose tissue metabolism and regulation of obesity and its metabolic complications. PMID:19797618

  2. First attempt to produce experimental Campylobacter concisus infection in mice

    Institute of Scientific and Technical Information of China (English)

    Rune Aabenhus; Unne Stenram; Leif Percival Andersen; Henrik Permin; Asa Ljungh

    2008-01-01

    AIM: To infect mice with atypical Campylobacter concisus (C. concisus) for the first time.METHODS: Three separate experiments were conducted in order to screen the ability of five clinical C concisus isolates of intestinal origin and the ATCC 33237 type strain of oral origin to colonize and produce infection in immunocompetent BALB/cA mice.The majority of the BALB/cA mice were treated with cyclophosphamide prior to C. concisus inoculation to suppress immune functions. Inoculation of C. concisus was performed by the gastric route.RESULTS: C concisus was isolated from the liver, ileum and jejunum of cyclophosphamide-treated mice in the first experiment. No C concisus strains were isolated in the two subsequent experiments. Mice infected with C concisus showed a significant loss of body weight from day two through to day five of infection but this decreased at the end of the first week. Histopathological examination did not consistently find signs of inflammation in the gut, but occasionally microabscesses were found in the liver of infected animals.CONCLUSION: Transient colonization with C. concisua was observed in mice with loss of body weight. Future studies should concentrate on the first few days after inoculation and in other strains of mice.

  3. db/db Mice Exhibit Features of Human Type 2 Diabetes That Are Not Present in Weight-Matched C57BL/6J Mice Fed a Western Diet

    Directory of Open Access Journals (Sweden)

    Susan J. Burke

    2017-01-01

    Full Text Available To understand features of human obesity and type 2 diabetes mellitus (T2D that can be recapitulated in the mouse, we compared C57BL/6J mice fed a Western-style diet (WD to weight-matched genetically obese leptin receptor-deficient mice (db/db. All mice were monitored for changes in body composition, glycemia, and total body mass. To objectively compare diet-induced and genetic models of obesity, tissue analyses were conducted using mice with similar body mass. We found that adipose tissue inflammation was present in both models of obesity. In addition, distinct alterations in metabolic flexibility were evident between WD-fed mice and db/db mice. Circulating insulin levels are elevated in each model of obesity, while glucagon was increased only in the db/db mice. Although both WD-fed and db/db mice exhibited adaptive increases in islet size, the db/db mice also displayed augmented islet expression of the dedifferentiation marker Aldh1a3 and reduced nuclear presence of the transcription factor Nkx6.1. Based on the collective results put forth herein, we conclude that db/db mice capture key features of human T2D that do not occur in WD-fed C57BL/6J mice of comparable body mass.

  4. General -Harmonic Blaschke Bodies

    Indian Academy of Sciences (India)

    Yibin Feng; Weidong Wang

    2014-02-01

    Lutwak introduced the harmonic Blaschke combination and the harmonic Blaschke body of a star body. Further, Feng and Wang introduced the concept of the -harmonic Blaschke body of a star body. In this paper, we define the notion of general -harmonic Blaschke bodies and establish some of its properties. In particular, we obtain the extreme values concerning the volume and the -dual geominimal surface area of this new notion.

  5. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    Directory of Open Access Journals (Sweden)

    Huan Cai

    Full Text Available Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT, ghrelin knockout (ghrelin(-/-, and GOAT knockout (GOAT(-/- mice. Ghrelin(-/- mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/- mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/- and GOAT(-/- mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/- mice, yet potentiated in GOAT(-/- mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/- mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/- and GOAT(-/- mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  6. Paradoxical effects of partial leptin deficiency on bone in growing female mice.

    Science.gov (United States)

    Philbrick, Kenneth A; Turner, Russell T; Branscum, Adam J; Wong, Carmen P; Iwaniec, Urszula T

    2015-12-01

    Morbidly obese, leptin-deficient ob/ob mice display low bone mass, mild osteoclast-rich osteopetrosis, and increased bone marrow adiposity. While partial leptin deficiency results in increased weight, the skeletal manifestations of partial leptin deficiency are less well defined. We therefore analyzed femora and lumbar vertebrae in growing (7-week-old) female C57BL/6 wildtype (WT) mice, partial leptin-deficient ob/+ mice, and leptin-deficient ob/ob mice. The bones were evaluated by dual energy absorptiometry, microcomputed tomography and histomorphometry. As expected, ob/+ mice were heavier, had more white adipose tissue, and lower serum leptin than WT mice, but were lighter and had less white adipose tissue than ob/ob mice. With a few exceptions, cancellous bone architecture, cell (osteoblast, osteoclast, and adipocyte), and dynamic measurements did not differ between WT and ob/+ mice. In contrast, compared to WT and ob/+ mice, ob/ob mice had lower cancellous bone volume fraction, and higher bone marrow adiposity in the femur metaphysis, and higher cancellous bone volume fraction in lumbar vertebra. Paradoxically, ob/+ mice had greater femoral bone volume than either WT or ob/ob mice. There was a positive correlation between body weight and femur volume in all three genotypes. However, the positive effect of weight on bone occurred with lower body weight in leptin-producing mice. The paradoxical differences in bone size among WT, ob/+, and ob/ob mice may be explained if leptin, in addition to stimulating bone growth and cancellous bone turnover, acts to lower the set-point at which increased body weight leads to a commensurate increase in bone size. © 2015 Wiley Periodicals, Inc.

  7. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    Science.gov (United States)

    Cai, Huan; Cong, Wei-Na; Daimon, Caitlin M; Wang, Rui; Tschöp, Matthias H; Sévigny, Jean; Martin, Bronwen; Maudsley, Stuart

    2013-01-01

    Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin(-/-)), and GOAT knockout (GOAT(-/-)) mice. Ghrelin(-/-) mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/-) mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/-) and GOAT(-/-) mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/-) mice, yet potentiated in GOAT(-/-) mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/-) mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/-) and GOAT(-/-) mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  8. Analysis of metabolic effects of menthol on WFS1-deficient mice.

    Science.gov (United States)

    Ehrlich, Marite; Ivask, Marilin; Raasmaja, Atso; Kõks, Sulev

    2016-01-01

    In this study, we investigated the physiological regulation of energy metabolism in wild-type (WT) and WFS1-deficient (Wfs1KO) mice by measuring the effects of menthol treatment on the O2 consumption, CO2 production, rectal body temperature, and heat production. The basal metabolism and behavior was different between these genotypes as well as TRP family gene expressions. Wfs1KO mice had a shorter life span and weighed less than WT mice. The food and water intake of Wfs1KO mice was lower as well as the body temperature when compared to their WT littermates. Furthermore, Wfs1KO mice had higher basal O2 consumption, and CO2 and heat production than WT mice. In addition, Wfs1KO mice showed a higher response to menthol administration in comparison to WT mice. The strongest menthol effect was seen on different physiological measures 12 h after oral administration. The highest metabolic response of Wfs1KO mice was seen at the menthol dose of 10 mg/kg. Menthol increased O2 consumption, and CO2 and heat production in Wfs1KO mice when compared to their WT littermates. In addition, the expression of Trpm8 gene was increased. In conclusion, our results show that the Wfs1KO mice develop a metabolic phenotype characterized with several physiological dysfunctions.

  9. Establishment of true niacin deficiency in quinolinic acid phosphoribosyltransferase knockout mice.

    Science.gov (United States)

    Terakata, Miki; Fukuwatari, Tsutomu; Sano, Mitsue; Nakao, Natsuki; Sasaki, Ryuzo; Fukuoka, Shin-Ichi; Shibata, Katsumi

    2012-12-01

    Pyridine nucleotide coenzymes are involved in >500 enzyme reactions and are biosynthesized from the amino acid L-tryptophan (L-Trp) as well as the vitamin niacin. Hence, "true" niacin-deficient animals cannot be "created" using nutritional techniques. We wanted to establish a truly niacin-deficient model animal using a protocol that did not involve manipulating dietary L-Trp. We generated mice that are missing the quinolinic acid (QA) phosphoribosyltransferase (QPRT) gene. QPRT activity was not detected in qprt(-/-)mice. The qprt(+/+), qprt(+/-), or qprt(-/-) mice (8 wk old) were fed a complete diet containing 30 mg nicotinic acid (NiA) and 2.3 g L-Trp/kg diet or an NiA-free diet containing 2.3 g L-Trp/kg diet for 23 d. When qprt(-/-)mice were fed a complete diet, food intake and body weight gain did not differ from those of the qprt(+/+) and qprt(+/-) mice. On the contrary, in the qprt(-/-) mice fed the NiA-free diet, food intake and body weight were reduced to 60% (P niacin, such as blood and liver NAD concentrations, were also lower in the qprt(-/-) mice than in the qprt(+/+) and the qprt(+/-) mice. Urinary excretion of QA was greater in the qprt(-/-) mice than in the qprt(+/+) and qprt(+/-) mice (P niacin-deficient mice.

  10. Written on the Body

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    may choose to alter how we are perceived and to at least some extent control the discontent we may project onto our own body. Through body modification, we can alter the impression of our personality and express a cultural solidarity, as Chris Rojek points out. Tattoos, piercings and other body...... modifications become ways to express a difference from or identification with, a particular cultural segment. Body modification marks a personal subjectivity, just as it marks a border around those who participate. A distinctive bodily border is formed through the use of body modifications, and it can be viewed......Our bodies define a border between ourselves and the world around us. However we might feel about our body, it is what we present to the world. Victoria L. Blum in her book Flesh Wounds discusses how bodies are a form of inkblots, where discontent is projected onto. As bodies can be modified, we...

  11. Does eating good-tasting food influence body weight?

    Science.gov (United States)

    Tordoff, Michael G; Pearson, Jordan A; Ellis, Hillary T; Poole, Rachel L

    2017-03-01

    Does eating good-tasting food influence body weight? To investigate, we first established some concentrations of sucralose and mineral oil in chow that mice strongly preferred. Then, in Experiment 1, we compared groups of 16 mice fed plain chow (i.e., chow with no additives) to groups fed chow with added (a) sucralose, (b) mineral oil, (c) sucralose and mineral oil, or (d) sucralose on odd days and mineral oil on even days. During a 6-week test, the body weights and body compositions of the five groups never differed. In Experiment 2, we compared groups of 18 mice fed plain chow or plain high-fat diet to groups fed these diets with added sucralose. During a 9-week test, the high-fat diet caused weight gain, but the body weights of mice fed the sucralose-sweetened diets did not differ from those fed the corresponding plain versions. Two-cup choice tests conducted at the end of each experiment showed persisting strong preferences for the diets with added sucralose and/or mineral oil. In concert with earlier work, our results challenge the hypothesis that the orosensory properties of a food influence body weight gain. A good taste can stimulate food intake acutely, and guide selection toward nutrient-dense foods that cause weight gain, but it does not determine how much is eaten chronically.

  12. Bone growth and turnover in progesterone receptor knockout mice.

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O' Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  13. Transmission of multiple system atrophy prions to transgenic mice.

    Science.gov (United States)

    Watts, Joel C; Giles, Kurt; Oehler, Abby; Middleton, Lefkos; Dexter, David T; Gentleman, Steve M; DeArmond, Stephen J; Prusiner, Stanley B

    2013-11-26

    Prions are proteins that adopt alternative conformations, which become self-propagating. Increasing evidence argues that prions feature in the synucleinopathies that include Parkinson's disease, Lewy body dementia, and multiple system atrophy (MSA). Although TgM83(+/+) mice homozygous for a mutant A53T α-synuclein transgene begin developing CNS dysfunction spontaneously at ∼10 mo of age, uninoculated TgM83(+/-) mice (hemizygous for the transgene) remain healthy. To determine whether MSA brains contain α-synuclein prions, we inoculated the TgM83(+/-) mice with brain homogenates from two pathologically confirmed MSA cases. Inoculated TgM83(+/-) mice developed progressive signs of neurologic disease with an incubation period of ∼100 d, whereas the same mice inoculated with brain homogenates from spontaneously ill TgM83(+/+) mice developed neurologic dysfunction in ∼210 d. Brains of MSA-inoculated mice exhibited prominent astrocytic gliosis and microglial activation as well as widespread deposits of phosphorylated α-synuclein that were proteinase K sensitive, detergent insoluble, and formic acid extractable. Our results provide compelling evidence that α-synuclein aggregates formed in the brains of MSA patients are transmissible and, as such, are prions. The MSA prion represents a unique human pathogen that is lethal upon transmission to Tg mice and as such, is reminiscent of the prion causing kuru, which was transmitted to chimpanzees nearly 5 decades ago.

  14. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice.

    Science.gov (United States)

    Duan, Yanmei; Liu, Jie; Ma, Linglan; Li, Na; Liu, Huiting; Wang, Jue; Zheng, Lei; Liu, Chao; Wang, Xuefeng; Zhao, Xiaoyang; Yan, Jingying; Wang, Sisi; Wang, Han; Zhang, Xueguang; Hong, Fashui

    2010-02-01

    In an effort to examine liver injury, immune response, and other physiological effects in mice caused by intragastric administration of nanoparticulate anatase titanium dioxide (5nm), we assessed T lymphocytes, B lymphocyte and NK lymphocyte counts, hematological indices, biochemical parameters of liver functions, and histopathological changes in nanoparticulate titanium dioxide -treated mice. Indeed, mice treated with higher dose nanoparticulate titanium dioxide displayed a reduction in body weight, an increase in coefficients of the liver and histopathological changes in the liver. Specifically, in these nanoparticulate titanium dioxide -treated mice, interleukin-2 activity, white blood cells, red blood cells, haemoglobin, mean corpuscular haemoglobin concentration, thrombocytes, reticulocytes, T lymphocytes (CD3(+), CD4(+), CD8(+)), NK lymphocytes, B lymphocytes, and the ratio of CD4 to CD8 of mice were decreased, whereas NO level, mean corpuscular volume, mean corpuscular haemoglobin, red (cell) distribution width, platelets, hematocrit, mean platelet volume of mice were increased. Furthermore, liver functions were also disrupted, as evidenced by the enhanced activities of alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase and cholinesterase, an increase of the total protein, and the reduction of ratio of albumin to globulin, the total bilirubin, triglycerides, and the total cholesterol levels. These results suggested that the liver function damage observed in mice treated with higher dose nanoparticulate titanium dioxide is likely associated with the damage of haemostasis blood system and immune response. However, low dose nanoparticulate anatase TiO(2) has little influences on haemostasis blood system and immune response in mice.

  15. Altered food consumption in mice lacking lysophosphatidic acid receptor-1.

    Science.gov (United States)

    Dusaulcy, R; Daviaud, D; Pradère, J P; Grès, S; Valet, Ph; Saulnier-Blache, J S

    2009-12-01

    The release of lysophosphatidic acid (LPA) by adipocytes has previously been proposed to play a role in obesity and associated pathologies such as insulin resistance and diabetes. In the present work, the sensitivity to diet-induced obesity was studied in mice lacking one of the LPA receptor subtype (LPA1R). Conversely to what was observed in wild type (WT) mice, LPA1R-KO-mice fed a high fat diet (HFD) showed no significant increase in body weight or fat mass when compared to low fat diet (LFD). In addition, in contrast to what was observed in WT mice, LPA1R-KO mice did not exhibit over-consumption of food associated with HFD. Surprisingly, when fed a LFD, LPA1R-KO mice exhibited significant higher plasma leptin concentration and higher level of adipocyte leptin mRNA than WT mice. In conclusion, LPA1R-KO mice were found to be resistant to diet-induced obesity consecutive to a resistance to fat-induced over-consumption of food that may result at least in part from alterations in leptin expression and production.

  16. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice

    OpenAIRE

    Le Roy, Tiphaine; Llopis, Marta; Lepage, Patricia; Bruneau, Aurelia; Rabot, Sylvie; Bevilacqua, Claudia; Martin, Patrice; Philippe, Catherine; Walker, Francine; Bado, Andre; Perlemuter, Gabriel; Cassard-Doulcier, Anne-Marie

    2013-01-01

    Objective: Non-alcoholic fatty liver disease (NAFLD) is prevalent among obese people and is considered the hepatic manifestation of metabolic syndrome. However, not all obese individuals develop NAFLD. Our objective was to demonstrate the role of the gut microbiota in NAFLD development using transplantation experiments in mice. [br/] Design: Two donor C57BL/6J mice were selected on the basis of their responses to a high-fat diet (HFD). Although both mice displayed similar body weight gain, on...

  17. Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice ubiquitously overexpressing murine γaminobutyric acid transporter subtype I were created. Unexpectedly, these mice markedly exhibited heritable obesity,which features significantly increased body weight and fat deposition. Behavioral examination revealed that transgenic mice have slightly reduced spontaneous locomotive capacity and altered feeding pattern. This preliminary finding indicates that the inappropriate level of γ-aminobutyric acid transporters may be directly or indirectly involved in the pathogenic mechanism underlying certain types of obesity.

  18. CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment.

    Directory of Open Access Journals (Sweden)

    Kosuke Tanegashima

    Full Text Available BACKGROUND: CXCL14 is a chemoattractant for macrophages and immature dendritic cells. We recently reported that CXCL14-deficient (CXCL14(-/- female mice in the mixed background are protected from obesity-induced hyperglycemia and insulin resistance. The decreased macrophage infiltration into visceral adipose tissues and the increased insulin sensitivity of skeletal muscle contributed to these phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a comprehensive study for the body weight control of CXCL14(-/- mice in the C57BL/6 background. We show that both male and female CXCL14(-/- mice have a 7-11% lower body weight compared to CXCL14(+/- and CXCL14(+/+ mice in adulthood. This is mainly caused by decreased food intake, and not by increased energy expenditure or locomotor activity. Reduced body weight resulting from the CXCL14 deficiency was more pronounced in double mutant CXCL14(-/-ob/ob and CXCL14(-/-A(y mice. In the case of CXCL14(-/-A(y mice, oxygen consumption was increased compared to CXCL14(+/-A(y mice, in addition to the reduced food intake. In CXCL14(-/- mice, fasting-induced up-regulation of Npy and Agrp mRNAs in the hypothalamus was blunted. As intracerebroventricular injection of recombinant CXCL14 did not change the food intake of CXCL14(-/- mice, CXCL14 could indirectly regulate appetite. Intriguingly, the food intake of CXCL14(-/- mice was significantly repressed when mice were transferred to a novel environment. CONCLUSIONS/SIGNIFICANCE: We demonstrated that CXCL14 is involved in the body weight control leading to the fully obese phenotype in leptin-deficient or A(y mutant mice. In addition, we obtained evidence indicating that CXCL14 may play an important role in central nervous system regulation of feeding behavior.

  19. Disposition of Perfluorooctanoic Acid (PFOA) in Pregnant and Lactating CD-1 Mice and Their Pups

    Science.gov (United States)

    Previous studies in mice prenatally-exposed to PFOA demonstrate growth and developmental effects, including impaired body weight gain and mammary gland development, delayed eye opening, and increased mortality. Those dose dependent effects appeared to worsen if offspring exposed ...

  20. Procedures for behavioral experiments in head-fixed mice.

    Directory of Open Access Journals (Sweden)

    Zengcai V Guo

    Full Text Available The mouse is an increasingly prominent model for the analysis of mammalian neuronal circuits. Neural circuits ultimately have to be probed during behaviors that engage the circuits. Linking circuit dynamics to behavior requires precise control of sensory stimuli and measurement of body movements. Head-fixation has been used for behavioral research, particularly in non-human primates, to facilitate precise stimulus control, behavioral monitoring and neural recording. However, choice-based, perceptual decision tasks by head-fixed mice have only recently been introduced. Training mice relies on motivating mice using water restriction. Here we describe procedures for head-fixation, water restriction and behavioral training for head-fixed mice, with a focus on active, whisker-based tactile behaviors. In these experiments mice had restricted access to water (typically 1 ml/day. After ten days of water restriction, body weight stabilized at approximately 80% of initial weight. At that point mice were trained to discriminate sensory stimuli using operant conditioning. Head-fixed mice reported stimuli by licking in go/no-go tasks and also using a forced choice paradigm using a dual lickport. In some cases mice learned to discriminate sensory stimuli in a few trials within the first behavioral session. Delay epochs lasting a second or more were used to separate sensation (e.g. tactile exploration and action (i.e. licking. Mice performed a variety of perceptual decision tasks with high performance for hundreds of trials per behavioral session. Up to four months of continuous water restriction showed no adverse health effects. Behavioral performance correlated with the degree of water restriction, supporting the importance of controlling access to water. These behavioral paradigms can be combined with cellular resolution imaging, random access photostimulation, and whole cell recordings.

  1. Study on the Effect of Asparagus Extracts on Promoting Metabolism of the Body

    Directory of Open Access Journals (Sweden)

    Li Xiaohong

    2016-12-01

    Full Text Available This study aims to analyze the effective ingredients of asparagus extracts and the changes of vitamins content in mice body after the intake of asparagus extracts, thus to conclude the effect of asparagus extracts on body metabolism during exercises. Extracts were made into different concentrations of solution and given to the mice by intragastric administration. The content of micro-elements and vitamin groups in the mice body before and after the drug administration were detected respectively and biochemical index parameter values before and after swimming were measured respectively. Results showed that, 20 min after the drug administration, the content of blood lactic acid of the mice in the swimming experiment group decreased significantly. Besides, the content of muscle glycogen decreased and correspondingly the content of hepatic glycogen increased significantly (experiment group one and two: p < 0.01; experiment group 3: p < 0.05. Thus the ethanol extract solution of asparagus can effectively improve body metabolism.

  2. Diet-induced Obesity Alters Bone Remodeling Leading to Decreased Femoral Trabecular Bone Mass in Mice

    Science.gov (United States)

    Body mass derived from an obesity condition may be detrimental to bone health but the mechanism is unknown. This study was to examine changes in bone structure and serum cytokines related to bone metabolism in obese mice induced by a high-fat diet(HFD). Mice fed the HFD were obese and had higher ser...

  3. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice

    NARCIS (Netherlands)

    HogenEsch, H.; Gijbels, M.J.J.; Offerman, E.; Hooft, J. van; Bekkum, D.W. van; Zurcher, C.

    1993-01-01

    Chronic proliferative dermatitis is a new spontaneous mutation in C57BL/Ka mice. Breeding results suggest an autosomal recessive mode of inheritance. Mutant mice develop skin lesions at the age of 5 to 6 weeks. The lesions occur in the ventral and dorsal skin of the body, whereas ears, footpads, and

  4. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor

    DEFF Research Database (Denmark)

    Stefaneanu, L; Kovacs, K; Horvath, E

    1989-01-01

    The effect of protracted GH-releasing factor (GRF) stimulation on adenohypophysial morphology was investigated in six mice transgenic for human GRF (hGRF). All animals had significantly higher plasma levels of GH and GRF and greater body weights than controls. Eight-month-old mice were killed...

  5. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice

    NARCIS (Netherlands)

    HogenEsch, H.; Gijbels, M.J.J.; Offerman, E.; Hooft, J. van; Bekkum, D.W. van; Zurcher, C.

    1993-01-01

    Chronic proliferative dermatitis is a new spontaneous mutation in C57BL/Ka mice. Breeding results suggest an autosomal recessive mode of inheritance. Mutant mice develop skin lesions at the age of 5 to 6 weeks. The lesions occur in the ventral and dorsal skin of the body, whereas ears, footpads, and

  6. Autonomic changes associated with enhanced anxiety in 5-HT(1A) receptor knockout mice.

    NARCIS (Netherlands)

    Pattij, T.; Groenink, L.; Hijzen, T.H.; Oosting, R.S.; Maes, R.A.A.; Gugten, J. van der; Olivier, B.

    2002-01-01

    5-HT(1A) receptor knockout (KO) mice have been described as more anxious in various anxiety paradigms. Because anxiety is often associated with autonomic changes like elevated body temperature and tachycardia, radiotelemetry was used to study these parameters in wild type (WT) and KO mice in stress-

  7. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then listens for the returning echoes from the tissues in the body. The principles are similar to ...

  8. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Foreign body retrieval is used to remove ... the foreign body. top of page What does the equipment look like? A variety of x-ray ...

  9. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... Us News Physician Resources Professions Site Index A-Z Foreign Body Retrieval Foreign body retrieval is the ... may undergo an ultrasound, x-ray or CT scan to locate and remove the object. Tell your ...

  10. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... but the foreign body remains trapped in the lung. This typically occurs in children and requires removal ... the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. Common equipment for ...

  11. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ... through the body, recording an image on photographic film or a special detector. Many foreign bodies, like ...

  12. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... body ingestions occur among children. Most foreign bodies pass through the gastrointestinal tract without complication, and endoscopic ... be dislodged rather than removed so that they pass safely through the digestive system. top of page ...

  13. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... bodies. top of page How does the procedure work? Your physician may use an x-ray or ...

  14. Media and Body Image

    Science.gov (United States)

    ... Media Programs for Girls www.womensmediacenter.com/pages/media-programs-for-girls Glossary Anorexia Nervosa: An eating disorder in which distorted body image leads a person to diet excessively. Body Mass Index (BMI): A number calculated from height and ...

  15. Zooplankton body composition

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2013-01-01

    I compiled literature on zooplankton body composition, from protozoans to gelatinous plankton, and report allometric relations and average body composition. Zooplankton segregate into gelatinous and non-gelatinous forms, with few intermediate taxa (chaetognaths, polychaetes, and pteropods). In most...

  16. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...... and surrounds an internal volume of the body, a distance member that is connected to the facing inside the body and extends from the facing and into the internal volume of the body, and at least one reinforcing member that operates in tension for reinforcing the facing against inward deflections...... and that is connected to the facing inside the internal volume of the body at the same side of the profile chord as the connection of the distance member to the facing and to the distance member at a distance from the facing....

  17. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... is located near vital structures like nerves and blood vessels, so your physician may choose to leave it ... other areas of the body, or enter your blood vessels. Removal of larger foreign bodies will ensure that ...

  18. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Foreign body retrieval is used to remove ... the foreign body. top of page What does the equipment look like? A variety of x-ray ...

  19. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... surrounding tissues. top of page What are some common uses of the procedure? Foreign body retrieval is ... air-filled lungs, are poorly suited for ultrasound. Common equipment for identifying and removing foreign bodies from ...

  20. Long-term effects of ovariectomy on osteoporosis and obesity in estrogen-receptor-β-deleted mice.

    Science.gov (United States)

    Seidlova-Wuttke, Dana; Nguyen, Ba Tiep; Wuttke, Wolfgang

    2012-02-01

    Untreated BERKO mice demonstrate few abnormalities in bone phenotype and recent ovariectomy has few effects on various bone characteristics in these mice. Long-term studies on the bone phenotype of intact and ovariectomized mice are unavailable. Using quantitative computed tomography (qCT), we determined various parameters of the metaphysis of the tibia in sham-ovariectomized (intact) and ovariectomized BERKO and wildtype mice. Body weight and estrogen-regulated fat were also measured. Mice underwent surgery (ovariectomy or sham) at 3 mo of age, and qCT analysis was performed every 2 to 4 mo until mice were 12 mo old. Ovariectomized wildtype mice gained body weight and their fat depot increased in size within 2 mo after ovariectomy. Obesity developed later in ovariectomized BERKO mice, which became significantly heavier than their wildtype counterparts. Ovariectomized wildtype mice lost trabecular density more rapidly than did ovariectomized BERKO mice, which did not show similar loss in trabecular density until at least 7 mo after ovariectomy. At the latest studied time point (9 mo after surgery), cortical area was significantly larger in ovariectomized BERKO mice than ovariectomized wildtype mice. The absence of ERβ in ovariectomized BERKO mice during the first 3 to 5 mo after ovariectomy had protective effects against obesity and trabecular rarification; this protective effect disappeared at later time points.

  1. Age and sex differences in immune response following LPS treatment in mice.

    Science.gov (United States)

    Cai, Kyle Chiman; van Mil, Spencer; Murray, Emma; Mallet, Jean-François; Matar, Chantal; Ismail, Nafissa

    2016-11-01

    Puberty is an important developmental event that is marked by the reorganizing and remodeling of the brain. Exposure to stress during this critical period of development can have enduring effects on both reproductive and non-reproductive behaviors. The purpose of this study was to investigate age and sex differences in immune response by examining sickness behavior, body temperature changes, and serum cytokine levels following an immune challenge. The effects of circulating gonadal hormones on age and sex differences in immune response were also examined. Results showed that male mice display more sickness behavior and greater fluctuations in body temperature following LPS treatment than female mice. Moreover, adult male mice display more sickness behavior and a greater drop in body temperature following LPS treatment compared to pubertal male mice. Following gonadectomy, pubertal and adult males displayed steeper and prolonged drops in body temperature compared to sham-operated counterparts. Gonadectomy did not eliminate sex differences in LPS-induced body temperature changes, suggesting that additional factors contribute to the observed differences. LPS treatment increased cytokine levels in all mice. However, the increase in pro-inflammatory cytokines was higher in adult compared to pubertal mice, while the increase in anti-inflammatory cytokines was greater in pubertal than in adult mice. Our findings contribute to a better understanding of age and sex differences in acute immune response following LPS treatment and possible mechanisms involved in the enduring alterations in behavior and brain function following pubertal exposure to LPS.

  2. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1, the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  3. Unexpected regeneration in middle-aged mice.

    Science.gov (United States)

    Reines, Brandon; Cheng, Lily I; Matzinger, Polly

    2009-02-01

    Complete regeneration of damaged extremities, including both the epithelium and the underlying tissues, is thought to occur mainly in embryos, fetuses, and juvenile mammals, but only very rarely in adult mammals. Surprisingly, we found that common strains of mice are able to regenerate all of the tissues necessary to completely fill experimentally punched ear holes, but only if punched at middle age. Although young postweaning mice regrew the epithelium without typical pre-scar granulation tissue, they showed only minimal regeneration of connective tissues. In contrast, mice punched at 5-11 months of age showed true amphibian-like blastema formation and regrowth of cartilage, fat, and dermis, with blood vessels, sebaceous glands, hair follicles, and, in black mice, melanocytes. These data suggest that at least partial appendage regeneration may be more common in adult mammals than previously thought and call into question the common view that regenerative ability is lost with age. The data suggest that the age at which various inbred mouse strains become capable of epimorphic regeneration may be correlated with adult body weight.

  4. [Foreign Body in Esophagus].

    Science.gov (United States)

    Domeki, Yasushi; Kato, Hiroyuki

    2015-07-01

    An esophageal foreign body is the term for a foreign body in the esophagus. The 2 age groups most prone to this condition are children age 9 and under (and especially toddlers age 4 and under) and elderly individuals age 70 and over. A foreign body often lodges where the esophagus is most constricted. In toddlers, the foreign body is often currency or coins or a toy. In adults, the body is often a piece of fish, dentures, a piece of meat, a pin or needle, or a drug in its blister pack packaging. In children, an esophageal foreign body is treated by fluoroscopically guided removal of the body with a balloon catheter or magnetic catheter or removal of the body via endoscopy or direct esophagoscopy under general anesthesia. In adults, the best choice for treating an esophageal foreign body is removing the body with an endoscope but there are instances where surgery is performed because the body is hard to remove endoscopically, a puncture has occurred, or empyema or mediastinitis has developed. This paper reviews the diagnosis and treatment of an esophageal foreign body.

  5. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a ...

  6. Literacies in the Body

    Science.gov (United States)

    Jones, Stephanie

    2013-01-01

    In this commentary, the author invites readers to consider the body and its central place in literacy pedagogy, practice and research. She emphasizes two interrelated paths for teachers and researchers interested in literacies to tend to the body: (1) the ways literacies are engaged and cultivated for making sense of bodies, and (2) the literacies…

  7. Defending body mass during food restriction in Acomys russatus: a desert rodent that does not store food.

    Science.gov (United States)

    Gutman, Roee; Choshniak, Itzhak; Kronfeld-Schor, Noga

    2006-04-01

    Golden spiny mice, which inhabit rocky deserts and do not store food, must therefore employ physiological means to cope with periods of food shortage. Here we studied the physiological means used by golden spiny mice for conserving energy during food restriction and refeeding and the mechanism by which food consumption may influence thermoregulatory mechanisms and metabolic rate. As comparison, we studied the response to food restriction of another rocky desert rodent, Wagner's gerbil, which accumulates large seed caches. Ten out of 12 food-restricted spiny mice (resistant) were able to defend their body mass after an initial decrease, as opposed to Wagner's gerbils (n = 6). Two of the spiny mice (nonresistant) kept losing weight, and their food restriction was halted. In four resistant and two nonresistant spiny mice, we measured heart rate, body temperature, and oxygen consumption during food restriction. The resistant spiny mice significantly (P < 0.05) reduced energy expenditure and entered daily torpor. The nonresistant spiny mice did not reduce their energy expenditure. The gerbils' response to food restriction was similar to that of the nonresistant spiny mice. Resistant spiny mice leptin levels dropped significantly (n = 6, P < 0.05) after 24 h of food restriction, and continued to decrease throughout food restriction, as did body fat. During refeeding, although the golden spiny mice gained fat, leptin levels were not correlated with body mass (r(2) = 0.014). It is possible that this low correlation allows them to continue eating and accumulate fat when food is plentiful.

  8. Effects of γ-ray total body irradiation from a 60Co source on expression level of intrathymic forkhead box protein N1 in mice%60Coγ射线全身照射对小鼠胸腺中叉状头转录因子N1表达水平的影响

    Institute of Scientific and Technical Information of China (English)

    孙玉琦; 武育菁; 刘洁; 潘彬; 徐开林

    2016-01-01

    delta样配体(DLL)4、自身免疫调节蛋白(Aire)与骨形成蛋白(BMP)4 mRNA相对表达水平相比,差异均有统计学意义(CCL25 mRNA相对表达水平:11.2±1.5、11.4±1.2、1.0±0.1,DLL4 mRNA相对表达水平:7.3±0.9、6.3±0.3、1.0±0.1,Aire mRNA相对表达水平:5.1±1.0、5.0±0.1、1.0±0.1,BMP4 mRNA相对表达水平:4.4±1.4、3.6±0.5、1.0±0.1;F=148.862、197.667、73.911、21.471,P=0.000、0.000、0.000、0.000);3组中Foxn1上游基因同源框蛋白(Hox)a3 mRNA相对表达水平相比,差异却无统计学意义(1.4±0.4、0.8±0.3、1.0±0.1相比;F=5.368,P=0.221).与对照组相比,L-TBI 5 d组中Foxn1下游基因CCL25、DLL4与Aire的mRNA相对表达水平均显著增高(p=0.000、0.000、0.000);SL-TBI 5 d组中CCL25、DLL4与Aire mRNA相对表达水平亦显著增高(P=0.000、0.000、0.000).同时,与对照组相比,L-TBI 5 d组、SL-TBI 5 d组中BMP4mRNA相对表达水平存在一定程度的增高,且差异亦有统计学意义(P=0.000、0.000).结论 60C0γ射线TBI可导致小鼠胸腺中Foxn1mRNA表达水平增高,Foxn1表达水平上调及其相关基因表达水平的变化与胸腺受损程度的关系密切.%Objectives To explore the influence of γ-ray total body irradiation (TBI) from a 60Co source induced mice thymus injury on expression levels of forkhead box protein N (Foxn) 1 and related genes,and to analyze the correlation between expression levels of Foxn1,related genes and thymus injury.Methods Sixty five male C57BL/6 mice were chosen as subjects during November and December 2014.Inclusion criteria for choosing mice:all these mice are 6-8 weeks old specific pathogen free (SPF) animals,and weighting between 18.0-21.0 g.Thirty-five mice were randomly devided into 4 groups:① Lethal total body irradiation (L-TBI) 5 d group (n=10),mice received a total dose of 7.5 Gy γ-ray TBI from a 60Co source;② Sublethal total body irradiation (SL-TBI) 5 d group (n=10),mice received a total dose of 5.5 Gy TBI;③SL-TBI 24 d group (n =10),mice

  9. ADAM 12 protease induces adipogenesis in transgenic mice

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Xu, Xiufeng; Tajima, Rie

    2002-01-01

    in the perivascular space in muscle tissue of 1- to 2-week-old transgenic mice whereas mature lipid-laden adipocytes were seen at 3 to 4 weeks. Moreover, female transgenics expressing ADAM 12-S exhibited increases in body weight, total body fat mass, abdominal fat mass, and herniation, but were normoglycemic and did......-anchored protein, ADAM 12-L, and a shorter secreted form, ADAM 12-S. Here we report the occurrence of adipocytes in the skeletal muscle of transgenic mice in which overexpression of either form is driven by the muscle creatine kinase promoter. Cells expressing a marker of early adipogenesis were apparent...... not exhibit increased serum insulin, cholesterol, or triglycerides. Male transgenics were slightly overweight and also developed herniation but did not become obese. Transgenic mice expressing a truncated form of ADAM 12-S lacking the prodomain and the metalloprotease domain did not develop this adipogenic...

  10. Regulation of direct transintestinal cholesterol excretion in mice

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Vrins, Carlos L. J.; van den Oever, Karin; Seemann, Ingar; Elferink, Ronald P. J. Oude; van Eck, Miranda; Kuipers, Folkert; Groen, Albert K.

    2008-01-01

    Biliary secretion is generally considered to be an obligate step in the pathway of excess cholesterol excretion from the body. We have recently shown that an alternative route exists. Direct transintestinal cholesterol efflux ( TICE) contributes significantly to cholesterol removal in mice. Our aim

  11. The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice.

    Directory of Open Access Journals (Sweden)

    Brie K Fuqua

    Full Text Available Hephaestin is a vertebrate multicopper ferroxidase important for the transfer of dietary iron from intestinal cells to the blood. Hephaestin is mutated in the sex-linked anemia mouse, resulting in iron deficiency. However, sex-linked anemia mice still retain some hephaestin ferroxidase activity. They survive, breed, and their anemia improves with age. To gain a better understanding of the role of hephaestin in iron homeostasis, we used the Cre-lox system to generate knockout mouse models with whole body or intestine-specific (Villin promoter ablation of hephaestin. Both types of mice were viable, indicating that hephaestin is not essential and that other mechanisms, multicopper ferroxidase-dependent or not, must compensate for hephaestin deficiency. The knockout strains, however, both developed a microcytic, hypochromic anemia, suggesting severe iron deficiency and confirming that hephaestin plays an important role in body iron acquisition. Consistent with this, the knockout mice accumulated iron in duodenal enterocytes and had reduced intestinal iron absorption. In addition, the similarities of the phenotypes of the whole body and intestine-specific hephaestin knockout mice clarify the important role of hephaestin specifically in intestinal enterocytes in maintaining whole body iron homeostasis. These mouse models will serve as valuable tools to study the role of hephaestin and associated proteins in iron transport in the small intestine and other tissues.

  12. The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice.

    Science.gov (United States)

    Fuqua, Brie K; Lu, Yan; Darshan, Deepak; Frazer, David M; Wilkins, Sarah J; Wolkow, Natalie; Bell, Austin G; Hsu, JoAnn; Yu, Catherine C; Chen, Huijun; Dunaief, Joshua L; Anderson, Gregory J; Vulpe, Chris D

    2014-01-01

    Hephaestin is a vertebrate multicopper ferroxidase important for the transfer of dietary iron from intestinal cells to the blood. Hephaestin is mutated in the sex-linked anemia mouse, resulting in iron deficiency. However, sex-linked anemia mice still retain some hephaestin ferroxidase activity. They survive, breed, and their anemia improves with age. To gain a better understanding of the role of hephaestin in iron homeostasis, we used the Cre-lox system to generate knockout mouse models with whole body or intestine-specific (Villin promoter) ablation of hephaestin. Both types of mice were viable, indicating that hephaestin is not essential and that other mechanisms, multicopper ferroxidase-dependent or not, must compensate for hephaestin deficiency. The knockout strains, however, both developed a microcytic, hypochromic anemia, suggesting severe iron deficiency and confirming that hephaestin plays an important role in body iron acquisition. Consistent with this, the knockout mice accumulated iron in duodenal enterocytes and had reduced intestinal iron absorption. In addition, the similarities of the phenotypes of the whole body and intestine-specific hephaestin knockout mice clarify the important role of hephaestin specifically in intestinal enterocytes in maintaining whole body iron homeostasis. These mouse models will serve as valuable tools to study the role of hephaestin and associated proteins in iron transport in the small intestine and other tissues.

  13. Comprehensive Energy Balance Measurements in Mice.

    Science.gov (United States)

    Moir, Lee; Bentley, Liz; Cox, Roger D

    2016-09-01

    In mice with altered body composition, establishing whether it is food intake or energy expenditure, or both, that is the major determinant resulting in changed energy balance is important. In order to ascertain where the imbalance is, the acquisition of reproducible data is critical. Therefore, here we provide detailed descriptions of how to determine energy balance in mice. This encompasses protocols for establishing energy intake from home cage measurement of food intake, determining energy lost in feces using bomb calorimetry, and using equations to calculate parameters such as energy intake (EI), digested energy intake (DEI), and metabolisable energy intake (MEI) to determine overall energy balance. We also discuss considerations that should be taken into account when planning these experiments, including diet and sample sizes. © 2016 by John Wiley & Sons, Inc.

  14. TLR7 Deficiency Leads to TLR8 Compensative Regulation of Immune Response against JEV in Mice

    Science.gov (United States)

    Awais, Muhammad; Wang, Ke; Lin, Xianwu; Qian, Wenjie; Zhang, Nan; Wang, Chong; Wang, Kunlun; Zhao, Ling; Fu, Zhen F.; Cui, Min

    2017-01-01

    Japanese encephalitis virus (JEV) is a highly fatal pathogen to human beings. Toll-like receptor 7 (TLR7) plays a role as the first host defense against most single-stranded RNA flaviviruses. This study aims to investigate the role of TLR7 in inducing adaptive immune response in mice against JEV. In vitro and in vivo studies were conducted to examine the expression of toll-like receptors (TLRs) in mice. After JEV infection, physical parameters of mice (survival rate and body weight) were evaluated, and organs or cells were collected for further analysis. The expression of TLR7 was increased significantly as compare to other TLR molecules post-JEV infection. The expression of CD80, CD86, and CD273 on bone marrow-derived dendritic cells was increased significantly in TLR7−/− mice. Furthermore, viral load was also increased significantly in TLR7−/− mice as compare to C57BL/6 mice. But there was no significant difference among survival rate and body weight in TLR7−/− mice as compare to C57BL/6. Interestingly, we also found that TLR8 was upregulated in TLR7−/− mice. The study concluded that TLR8 was upregulated in TLR7-deficient mice, and it might play a compensatory role in the immune response in TLR7−/− mice.

  15. [Disorders of body schema].

    Science.gov (United States)

    Tsuruya, Natsuko; Kobayakawa, Mutsutaka

    2014-04-01

    A variety of disorders have been associated with the concept of body schema. However, this concept has been interpreted in many ways, and there is no consensus on the nature and cognitive mechanisms of body schema. Historically, two major issues have been discussed. One was the body-specificity of the body schema, and the other was the relationship between input and output modality. Autotopagnosia, an inability to localize and orient different parts of the body, has been a focus of attention because it is thought to provide insight into the function of body schema. Although there have not been many cases of pure autotopagnosia, a double dissociation indicating the independence of body-specific system. There are a few working hypotheses for cognitive models of body schema, which can explain the different types of autotopagnosia. One model includes multiple representation subsystems for body processing, while another assumes the use of intrinsic and extrinsic egocentric coordinates to maintain on-line processing for body state. The consistency of these accounts should be examined in light of extensive neuroimaging and psychological data, to construct a plausible model for body schema.

  16. The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice

    Directory of Open Access Journals (Sweden)

    Kopecky Jan

    2011-08-01

    Full Text Available Abstract Background Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA of marine origin exert multiple beneficial effects on health. Our previous study in mice showed that reduction of adiposity by LC n-3 PUFA was associated with both, a shift in adipose tissue metabolism and a decrease in tissue cellularity. The aim of this study was to further characterize the effects of LC n-3 PUFA on fat cell proliferation and differentiation in obese mice. Methods A model of inducible and reversible lipoatrophy (aP2-Cre-ERT2 PPARγL2/L2 mice was used, in which the death of mature adipocytes could be achieved by a selective ablation of peroxisome proliferator-activated receptor γ in response to i.p. injection of tamoxifen. Before the injection, obesity was induced in male mice by 8-week-feeding a corn oil-based high-fat diet (cHF and, subsequently, mice were randomly assigned (day 0 to one of the following groups: (i mice injected by corn-oil-vehicle only, i.e."control" mice, and fed cHF; (ii mice injected by tamoxifen in corn oil, i.e. "mutant" mice, fed cHF; (iii control mice fed cHF diet with15% of dietary lipids replaced by LC n-3 PUFA concentrate (cHF+F; and (iv mutant mice fed cHF+F. Blood and tissue samples were collected at days 14 and 42. Results Mutant mice achieved a maximum weight loss within 10 days post-injection, followed by a compensatory body weight gain, which was significantly faster in the cHF as compared with the cHF+F mutant mice. Also in control mice, body weight gain was depressed in response to dietary LC n-3 PUFA. At day 42, body weights in all groups stabilized, with no significant differences in adipocyte size between the groups, although body weight and adiposity was lower in the cHF+F as compared with the cHF mice, with a stronger effect in the mutant than in control mice. Gene expression analysis documented depression of adipocyte maturation during the reconstitution of adipose tissue in the cHF+F mutant mice. Conclusion

  17. Absence of intestinal microbiota does not protect mice from diet-induced obesity.

    Science.gov (United States)

    Fleissner, Christine K; Huebel, Nora; Abd El-Bary, Mohamed Mostafa; Loh, Gunnar; Klaus, Susanne; Blaut, Michael

    2010-09-01

    The gut microbiota has been implicated in host nutrient absorption and energy homeostasis. We studied the influence of different diets on body composition in germ-free (GF) and conventional (CV) mice. GF and CV male adult C3H mice were fed ad libitum a semi-synthetic low-fat diet (LFD; carbohydrate-protein-fat ratio: 41:42:17; 19.8 kJ/g), a high-fat diet (HFD; 41:16:43; 21.4 kJ/g) or a commercial Western diet (WD; 41:19:41; 21.5 kJ/g). There was no difference in body weight gain between GF and CV mice on the LFD. On the HFD, GF mice gained more body weight and body fat than CV mice, and had lower energy expenditure. GF mice on the WD gained significantly less body fat than GF mice on the HFD. GF mice on both HFD and WD showed increased intestinal mRNA expression of fasting-induced adipose factor/angiopoietin-like protein 4 (Fiaf/Angptl4), but they showed no major changes in circulating Fiaf/Angptl4 compared with CV mice. The faecal microbiota composition of the CV mice differed between diets: the proportion of Firmicutes increased on both HFD and WD at the expense of the Bacteroidetes. This increase in the Firmicutes was mainly due to the proliferation of one family within this phylum: the Erysipelotrichaceae. We conclude that the absence of gut microbiota does not provide a general protection from diet-induced obesity, that intestinal production of Fiaf/Angptl4 does not play a causal role in gut microbiota-mediated effects on fat storage and that diet composition affects gut microbial composition to larger extent than previously thought.

  18. Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans

    Directory of Open Access Journals (Sweden)

    Denny Christine A

    2006-05-01

    Full Text Available Abstract Background Caloric restriction (CR has long been recognized as a dietary therapy that improves health and increases longevity. Little is known about the persistent effects of CR on plasma biomarkers (glucose, ketone bodies, and lipids following re-feeding in mice. It is also unclear how these biomarker changes in calorically restricted mice relate to those observed previously in calorically restricted humans. Results Three groups of individually housed adult female C57BL/6J (B6 mice (n = 4/group were fed a standard rodent chow diet either: (1 unrestricted (UR; (2 restricted for three weeks to reduce body weight by approximately 15–20% (R; or (3 restricted for three weeks and then re-fed unrestricted (ad libitum for an additional three weeks (R-RF. Body weight and food intake were measured throughout the study, while plasma lipids and levels of glucose and ketone bodies (β-hydroxybutyrate were measured at the termination of the study. Plasma glucose, phosphatidylcholine, cholesterol, and triglycerides were significantly lower in the R mice than in the UR mice. In contrast, plasma fatty acids and β-hydroxybutyrate were significantly higher in the R mice than in the UR mice. CR had no effect on plasma phosphatidylinositol levels. While body weight and plasma lipids of the R-RF mice returned to unrestricted levels upon re-feeding, food intake and glucose levels remained significantly lower than those prior to the initiation of CR. Conclusion CR establishes a new homeostatic state in B6 mice that persists for at least three weeks following ad libitum re-feeding. Moreover, the plasma biomarker changes observed in B6 mice during CR mimic those reported in humans on very low calorie diets or during therapeutic fasting.

  19. Doxorubicin-induced cardiotoxicity in mice; protection by silymarin

    Directory of Open Access Journals (Sweden)

    Heba Abdelnasser Aniss a, Ashraf El Metwally Said b, Ibrahim Helmy El Sayed c, Camelia AdLy

    2012-07-01

    Full Text Available Background: despite its vast utility in clinical oncology, the use of doxorubicin is limited by a potentially fatal cardiomyopathy and congestive heart failure. Free radical formation and antioxidants depletion are mechanisms proposed for this cardiomyopathy. The aim of this study is to compare the potential antioxidative protective effect of silymarin on doxorubicin-induced cardiotoxicity in experimental mice. Materials and methods: four groups (ten animals in each group of experimental mice were used as follows: Group 1, mice received only saline (intraperitoneally and served as a negative control group; Group 2, mice received doxorubicin (intraperitoneally, 5 mg/kg body weight in three equal injections over a period of two weeks for a cumulative dose of 15 mg/kg body weight; Group 3, mice orally administrated silymarin (200 mg/day/kg body weight respectively, through an intragastric feeding tube over a period of three weeks; Group 4, mice treated orally with silymarin plus intraperitoneally doxorubicin administration with the same protocol of groups 3 and 4. Serum lactate dehydrogenase (LDH, creatine phosphokinase (CPK, aspartate aminotransferase (ASAT, alanine aminotransferase (ALAT, malondialdehyde (MDA, total nitric oxide (NO, cardiac reduced glutathione (GSH, superoxide dismutase (SOD, glutathione peroxidase (GPx and catalase (CAT were measured in all tested groups. Results: doxorubicin elevated the activities of LDH, CPK, AST, ALT, MDA and NO in the cardiac tissue. Cardiac antioxidant enzymes activities SOD and CAT also increased while GPx activity was decreased. Pre-co-treatment with silymarin prevented the changes induced by doxorubicin administration. These findings demonstrate the cardio-protective effect of silymarin on cardiac antioxidant status during doxorubicin induced cardiac damage in mice. Conclusion: silymarin could be recommended for further investigation as potentially new indication for clinical application.

  20. Hepatobiliary and intestinal clearance of amphiphilic cationic drugs in mice in which both mdr1a and mdr1b genes have been disrupted

    NARCIS (Netherlands)

    Smit, JW; Schinkel, AH; Weert, B; Meijer, DKF

    1998-01-01

    1 We have used mice with homozygously disrupted mdr1a and mdr1b genes (mdr1a/1b (-/-) mice) to study the role of the mdr1-type beta-glycoprotein (P-gp) in the elimination of cationic amphiphilic compounds from the body. These mice lack drug-transporting P-gps, but show no physiological abnormalities

  1. CCK Response Deficiency in Synphilin-1 Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Wanli W Smith

    Full Text Available Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1, in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK, amylin, and the glucagon like peptide-1 (GLP-1 receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1-10 nmol/kg significantly reduced glucose intake in wild type (WT mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.

  2. Age-related retinopathy in NRF2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zhenyang Zhao

    Full Text Available BACKGROUND: Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD. Nuclear factor erythroid 2-related factor 2 (NRF2 is a transcription factor that plays key roles in retinal antioxidant and detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-like retinal pathology with aging and to explore the underlying mechanisms. METHODS AND FINDINGS: Eyes of both wild type and Nrf2(-/- mice were examined in vivo by fundus photography and electroretinography (ERG. Structural changes of the outer retina in aged animals were examined by light and electron microscopy, and immunofluorescence labeling. Our results showed that Nrf2(-/- mice developed age-dependent degenerative pathology in the retinal pigment epithelium (RPE. Drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovascularization (CNV and sub-RPE deposition of inflammatory proteins were present in Nrf2(-/- mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron microscopy both within the RPE and in Bruch's membrane of aged Nrf2(-/- mice. CONCLUSIONS: Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf2(-/- mice can provide a novel model for mechanistic and translational research on AMD.

  3. CCK Response Deficiency in Synphilin-1 Transgenic Mice.

    Science.gov (United States)

    Smith, Wanli W; Smith, Megan; Yang, Dejun; Choi, Pique P; Moghadam, Alexander; Li, Tianxia; Moran, Timothy H

    2015-01-01

    Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1), in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK), amylin, and the glucagon like peptide-1 (GLP-1) receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1-10 nmol/kg significantly reduced glucose intake in wild type (WT) mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.

  4. Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice.

    Science.gov (United States)

    Liu, Jing-yu; Feng, Cui-ping; Li, Xing; Chang, Ming-chang; Meng, Jun-long; Xu, Li-jing

    2016-05-01

    To evaluate the immune activation and reactive oxygen species scavenging activity of Cordyceps militaris polysaccharides (CMP) in vivo, 24 male and 24 female Kunming mice were randomly divided into four groups. The mice in the four experimental groups were administered 0 (normal control), 50, 100, or 200mg/kg/d body weight CMP via gavage. After 30 days, the viscera index, leukocyte count, differential leukocyte count, immunoglobulin (IgG) levels, and biochemical parameters were measured. The effect of CMP on the expression of tumor necrosis (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-1β in the spleens of experimental mice was investigated by real-time polymerase chain reaction. The results showed that the administration of CMP improved the immune function in mice, significantly increased the spleen and thymus indices, the spleen lymphocyte activity, the total quantity of white blood cells, and IgG function in mice serum. CMP exhibited significant antioxidative activity in mice, and decreased malondialdehyde levels in vivo. CMP upregulated the expression of TNF-α, IFN-γ, and IL-1β mRNA in high-dose groups compared to that observed for the control mice. We can thus conclude that CMP effectively improved the immune function through protection against oxidative stress. CMP thus shows potential for development as drugs and health supplements. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Executive functions of postweaning protein malnutrition in mice.

    Science.gov (United States)

    Sato, Shoko; Nakagawasai, Osamu; Tan-No, Koichi; Niijima, Fukie; Suzuki, Tsuneyoshi; Tadano, Takeshi

    2011-01-01

    It is well known that nutritional status during the fetal and/or lactation period is important for the development of the central nervous system (CNS). In contrast, the effect of malnutrition on postweaning development has not yet been thoroughly investigated. In the present study, we analyzed the behavioral and neuroanatomical effects of protein malnutrition (PM) postweaning in mice. Starting at 20-21 d of age, male ddY mice were maintained on a 5% casein diet (PM group) or 20% casein diet (control group) for 20 d. On the 20th d, body and brain weights of PM mice were lower than those of the control group. PM mice exhibited excessive alertness and spontaneous activity under novel conditions in the Irwin test. In addition, PM mice showed increased open arm exploration in the elevated plus maze compared to control mice. These results suggest that hyperactivity and reduced anxiety behavior or higher impulsiveness in PM mice could be due to an immature brain.

  6. Lung function changes in mice sensitized to ammonium hexachloroplatinate.

    Science.gov (United States)

    Williams, W C; Lehmann, J R; Boykin, E; Selgrade, M K; Lehmann, D M

    2015-01-01

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. The risk to the general population that may result from the use of platinum in catalytic converters and its emerging use as a diesel fuel additive is unclear. To investigate pulmonary responses to platinum, we developed a mouse model of platinum hypersensitivity. Mice were sensitized through application of ammonium hexachloroplatinate (AHCP) to the shaved back on days 0, 5 and 19, and to each ear on days 10, 11 and 12. On days 24 and 29, mice were challenged by oropharyngeal aspiration with AHCP in saline. Before and immediately after challenge, pulmonary responses were assessed using whole body plethysmography (WBP). A dose-dependent increase in immediate responses was observed in AHCP-sensitized and challenged mice. On days 26 and 31, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP; dose-dependent increases in Mch responsiveness occurred in sensitized mice. Lymph node cell counts indicate a proliferative response in lymph nodes draining the sites of application. Bronchoalveolar lavage fluid harvested from sensitized mice contained an average of 5% eosinophils compared to less than 0.5% in non-sensitized mice (p sensitized mice. Although a second airway challenge on day 29 affected some results, only one airway challenge was needed to observe changes in lung function.

  7. MICE Particle Identification System

    CERN Document Server

    Bogomilov, M

    2010-01-01

    The Muon Ionization Cooling Experiment, MICE, at the ISIS accelerator lo- cated at the Rutherford Appleton Laboratory, UK, will be the first experiment to study muon cooling at high precision. Demonstration of muon ionization cooling is an essential step towards the construction of a neutrino factory or a muon collider. Muons are produced by pion decay in a superconducting solenoid and reach MICE with a range of emittances and momenta. The purity of the muon beam is ensured by a system of particle detectors we will briefly describe here.

  8. The Body Collected

    DEFF Research Database (Denmark)

    Skeletons, organs, tissue and blood samples from newborn babies. There are arge amounts of human material collected in hospitals, research institutes and museums. Both from the patients of the past, and from our own bodies. The exhibition The Body Collected at Medical Museion charts how doctors...... and researchers have collected, preserved and stored this material to map and understand the human body and its diseases. And how the body has been used to generate medical knowledge. Layer by layer, the body has been laid bare and investigated: cut up during dissection, magnified under microscopes, and analysed...... the collection of human tissue continues to play a crucial role. Here samples of human tissue and blood provide the raw materials for understanding the body and developing new diagnostic methods and treatments. The vast majority of us have provided a tissue or blood sample that is now stored in a biobank...

  9. Ediacaran Macro Body Fossils

    OpenAIRE

    Huang, Timothy D.; Jei-Fu Shaw; Liang Zheng; Chun-Lan Huang; YiLung Chang; ChuanWei Yang

    2010-01-01

    This paper, Ediacaran Macro Body Fossils, reports a new discovery of well preserved three dimensional macro body fossils of the Ediacaran Period in central YunNan province in the People's Republic of China. These body fossils will enable more detailed and in-depth exploration of the evolution of multi-cellular macro organisms on this planet, whereas in the past, researches could only rely on cast or imprint fossils.

  10. The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice.

    Science.gov (United States)

    Fagman, Johan B; Wilhelmson, Anna S; Motta, Benedetta M; Pirazzi, Carlo; Alexanderson, Camilla; De Gendt, Karel; Verhoeven, Guido; Holmäng, Agneta; Anesten, Fredrik; Jansson, John-Olov; Levin, Malin; Borén, Jan; Ohlsson, Claes; Krettek, Alexandra; Romeo, Stefano; Tivesten, Åsa

    2015-04-01

    Androgens have important cardiometabolic actions in males, but their metabolic role in females is unclear. To determine the physiologic androgen receptor (AR)-dependent actions of androgens on atherogenesis in female mice, we generated female AR-knockout (ARKO) mice on an atherosclerosis-prone apolipoprotein E (apoE)-deficient background. After 8 weeks on a high-fat diet, but not on a normal chow diet, atherosclerosis in aorta was increased in ARKO females (+59% vs. control apoE-deficient mice with intact AR gene). They also displayed increased body weight (+18%), body fat percentage (+62%), and hepatic triglyceride levels, reduced insulin sensitivity, and a marked atherogenic dyslipidemia (serum cholesterol, +52%). Differences in atherosclerosis, body weight, and lipid levels between ARKO and control mice were abolished in mice that were ovariectomized before puberty, consistent with a protective action of ovarian androgens mediated via the AR. Furthermore, the AR agonist dihydrotestosterone reduced atherosclerosis (-41%; thoracic aorta), subcutaneous fat mass (-44%), and cholesterol levels (-35%) in ovariectomized mice, reduced hepatocyte lipid accumulation in hepatoma cells in vitro, and regulated mRNA expression of hepatic genes pivotal for lipid homeostasis. In conclusion, we demonstrate that the AR protects against diet-induced atherosclerosis in female mice and propose that this is mediated by modulation of body composition and lipid metabolism. © FASEB.

  11. Manipulation of Ovarian Function Significantly Influenced Sarcopenia in Postreproductive-Age Mice

    Directory of Open Access Journals (Sweden)

    Rhett L. Peterson

    2016-01-01

    Full Text Available Previously, transplantation of ovaries from young cycling mice into old postreproductive-age mice increased life span. We anticipated that the same factors that increased life span could also influence health span. Female CBA/J mice received new (60 d ovaries at 12 and 17 months of age and were evaluated at 16 and 25 months of age, respectively. There were no significant differences in body weight among any age or treatment group. The percentage of fat mass was significantly increased at 13 and 16 months of age but was reduced by ovarian transplantation in 16-month-old mice. The percentages of lean body mass and total body water were significantly reduced in 13-month-old control mice but were restored in 16- and 25-month-old recipient mice by ovarian transplantation to the levels found in six-month-old control mice. In summary, we have shown that skeletal muscle mass, which is negatively influenced by aging, can be positively influenced or restored by reestablishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.

  12. Manipulation of Ovarian Function Significantly Influenced Sarcopenia in Postreproductive-Age Mice

    Science.gov (United States)

    Peterson, Rhett L.

    2016-01-01

    Previously, transplantation of ovaries from young cycling mice into old postreproductive-age mice increased life span. We anticipated that the same factors that increased life span could also influence health span. Female CBA/J mice received new (60 d) ovaries at 12 and 17 months of age and were evaluated at 16 and 25 months of age, respectively. There were no significant differences in body weight among any age or treatment group. The percentage of fat mass was significantly increased at 13 and 16 months of age but was reduced by ovarian transplantation in 16-month-old mice. The percentages of lean body mass and total body water were significantly reduced in 13-month-old control mice but were restored in 16- and 25-month-old recipient mice by ovarian transplantation to the levels found in six-month-old control mice. In summary, we have shown that skeletal muscle mass, which is negatively influenced by aging, can be positively influenced or restored by reestablishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females. PMID:27747096

  13. Body, biometrics and identity.

    Science.gov (United States)

    Mordini, Emilio; Massari, Sonia

    2008-11-01

    According to a popular aphorism, biometrics are turning the human body into a passport or a password. As usual, aphorisms say more than they intend. Taking the dictum seriously, we would be two: ourself and our body. Who are we, if we are not our body? And what is our body without us? The endless history of identification systems teaches that identification is not a trivial fact but always involves a web of economic interests, political relations, symbolic networks, narratives and meanings. Certainly there are reasons for the ethical and political concerns surrounding biometrics but these reasons are probably quite different from those usually alleged.

  14. 60Coγ射线半身照射对非照射区域骨髓造血组织基质细胞衍生因子1表达的影响%Influences of 60Coγray irradiation on expression stromal cell derived factor-1 in bone marrow hematopoietic tissue of non-irradiation area in left-half-body ionizing irradiated mice

    Institute of Scientific and Technical Information of China (English)

    高作文; 杨龙; 陈乐如; 娄金书; 张国强; 李开信; 程天民

    2013-01-01

    Objective To invesligale the mouse bone marrow hemalopoielic functions in non-irradiation area after irradiated by way of left-half- body. Methods The 6-8-week male Kunming strain mice were randomly divided into normal control( NC) , total-body-irradiated( TBI) , left-half-body-irradiated( LHBI) , and total-body-shield-irradia-ted( TBSI) groups. Left-half-body-irradiated group was treated with two pieces of 5 cm x 8 cm x 16 cm overlapped lead bricks shielding right-side body and irradiated with 8. 0 Gy60Coγ-ray. The leukocyte in peripheral blood and the number of bone marrow hematopoietic cells( BMHCs) were studied, the concentration of SOD, MDA in mouse serum were measured, and the expression SDF-1 in bone marrow hematopoietic tissues were observed by the Western blotting method and laser scanning confocal microscope combined with immunohistochemistry. Results In the left-half-body irradiated condition, the leucocyte in peripheral blood and the BMHCs were diminished, the concentration of MDA was increased and the SOD was decreased in the mouse serum remarkably ( compared with NC, P <0. 01) ; In non-irradiation area, the SDF-1-positive cells and the expression SDF-1 in bone marrow hematopoietic tissues were reduced significantly. Conclusion Our study suggested that the local irradiation resulted in the decrease of SDF-1-positive cells and the decline expression SDF-1 in bone marrow hematopoietic tissues in non-irradiation area, and the increase of reactive oxygen or free radicals might play an important role in the abnormal expression of SDF-1 in BMHT and the injury of hematopoietic microenvironment.%目的 探讨局部电离辐射对小鼠非照射区域骨髓造血组织基质细胞衍生因子-1(SDF-1)表达的影响.方法 将6~8周龄雄性昆明小鼠随机分为健康对照组、全身照射组、全身屏蔽照射组以及左半身照射组4组,用铅屏蔽建立半身照射模型,以8.0 Gy 60Co γ射线照射,观察小鼠外周血白细胞和骨髓有核

  15. Alleviation of high fat diet-induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum.

    Science.gov (United States)

    Woting, Anni; Pfeiffer, Nora; Hanske, Laura; Loh, Gunnar; Klaus, Susanne; Blaut, Michael

    2015-11-01

    Diet-induced obesity is associated with changes in the gut microbiota and low-grade inflammation. Oligofructose was reported to ameliorate high fat diet-induced metabolic disorders in mice by restoring the number of intestinal bifidobacteria. However, this has not been experimentally demonstrated. We fed conventional mice, germfree mice, mice associated with a simplified human gut microbiota composed of eight bacterial species including Bifidobacterium longum (SIHUMI), and mice associated with SIHUMI without B. longum a low fat diet (LFD), a high fat diet (HFD), or a HFD containing 10% oligofructose (HFD + OFS) for five weeks. We assessed body composition, bacterial cell numbers and metabolites, markers of inflammation, and gut permeability. Conventional mice fed HFD or HFD + OFS did not differ in body weight gain and glucose tolerance. The gnotobiotic mouse groups fed LFD or HFD + OFS gained less body weight and body fat, and displayed an improved glucose tolerance compared with mice fed HFD. These differences were not affected by the presence of B. longum. Mice fed HFD showed no signs of inflammation or increased intestinal permeability. The ability of oligofructose to reduce obesity and to improve glucose tolerance in gnotobiotic mice fed HFD was independent of the presence of B. longum. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Alleviation of high fat diet‐induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum

    Science.gov (United States)

    Pfeiffer, Nora; Hanske, Laura; Loh, Gunnar; Klaus, Susanne; Blaut, Michael

    2015-01-01

    Scope Diet‐induced obesity is associated with changes in the gut microbiota and low‐grade inflammation. Oligofructose was reported to ameliorate high fat diet‐induced metabolic disorders in mice by restoring the number of intestinal bifidobacteria. However, this has not been experimentally demonstrated. Methods and results We fed conventional mice, germfree mice, mice associated with a simplified human gut microbiota composed of eight bacterial species including Bifidobacterium longum (SIHUMI), and mice associated with SIHUMI without B. longum a low fat diet (LFD), a high fat diet (HFD), or a HFD containing 10% oligofructose (HFD + OFS) for five weeks. We assessed body composition, bacterial cell numbers and metabolites, markers of inflammation, and gut permeability. Conventional mice fed HFD or HFD + OFS did not differ in body weight gain and glucose tolerance. The gnotobiotic mouse groups fed LFD or HFD + OFS gained less body weight and body fat, and displayed an improved glucose tolerance compared with mice fed HFD. These differences were not affected by the presence of B. longum. Mice fed HFD showed no signs of inflammation or increased intestinal permeability. Conclusion The ability of oligofructose to reduce obesity and to improve glucose tolerance in gnotobiotic mice fed HFD was independent of the presence of B. longum. PMID:26202344

  17. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Ta [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Li, Hui-Chun [Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China); Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China)

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  18. Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice

    DEFF Research Database (Denmark)

    Jall, Sigrid; Sachs, Stephan; Clemmensen, Christoffer

    2017-01-01

    . RESULTS: Our results show that GLP-1/GIP/glucagon triple agonism inhibits food intake and decreases body weight and body fat mass with comparable potency in male and female mice that have been matched for body fat mass. Treatment improved dyslipidemia in both sexes and reversed diet......OBJECTIVE: Obesity is a major health threat that affects men and women equally. Despite this fact, weight-loss potential of pharmacotherapies is typically first evaluated in male mouse models of diet-induced obesity (DIO). To address this disparity we herein determined whether a monomeric peptide...... mice and a cohort of fatmass-matched C57BL/6J male mice were treated for 27 days via subcutaneous injections with either the GLP-1/GIP/glucagon triagonist or PBS. A second cohort of C57BL/6J male mice was included to match the females in the duration of the high-fat, high-sugar diet (HFD) exposure...

  19. Fatness rather than leptin sensitivity determines the timing of puberty in female mice.

    Science.gov (United States)

    Bohlen, Tabata M; Silveira, Marina A; Zampieri, Thais T; Frazão, Renata; Donato, Jose

    2016-03-05

    Leptin is a permissive factor for the onset of puberty. However, changes in adiposity frequently influence leptin sensitivity. Thus, the objective of the present study was to investigate how changes in body weight, fatness, leptin levels and leptin sensitivity interact to control the timing of puberty in female mice. Pre-pubertal obesity, induced by raising C57BL/6 mice in small litters, led to an early puberty onset. Inactivation of Socs3 gene in the brain or exclusively in leptin receptor-expressing cells reduced the body weight and leptin levels at pubertal onset, and increased leptin sensitivity. Notably, these female mice exhibited significant delays in vaginal opening, first estrus and onset of estrus cyclicity. In conclusion, our findings suggest that increased leptin sensitivity did not play an important role in favoring pubertal onset in female mice. Rather, changes in pubertal body weight, fatness and/or leptin levels were more important in influencing the timing of puberty.

  20. Of mice and men

    DEFF Research Database (Denmark)

    Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

    2014-01-01

    CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes...

  1. Colorful Kindergarten Mice

    Science.gov (United States)

    Bobick, Bryna; Wheeler, Elizabeth

    2008-01-01

    Developing kindergarten lessons can be very challenging, especially at the beginning of the school year when many students are just learning to cut paper and hold crayons. The author's favorite beginning unit of the year is "mice paintings," a practical introduction to drawing, color theory, and painting. This unit also incorporates children's…

  2. Body-Worn Antennas for Body-Centric Wireless Communications

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Ôzden, Sinasi ̈

    2014-01-01

    Ear-to-ear (E2E) on-body propagation and on-body antennas for body-centric wireless communications are presented.......Ear-to-ear (E2E) on-body propagation and on-body antennas for body-centric wireless communications are presented....

  3. Guy's Guide to Body Image

    Science.gov (United States)

    ... Healthy Breakfasts Shyness A Guy's Guide to Body Image KidsHealth > For Teens > A Guy's Guide to Body ... image can be a problem. Why Is Body Image Important? Body image is a person's opinions, thoughts, ...

  4. Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan-induced diabetic mice.

    Science.gov (United States)

    Ravi, Bindhu; Renitta, R Emilin; Prabha, M Lakshmi; Issac, Reya; Naidu, Shanti

    2013-02-01

    To study the antidiabetic activity of Pleurotus ostreatus in normal and alloxan-induced diabetic mice. Ethanolic extract of fruiting bodies of P. ostreatus was tested for their antidiabetic activity. BALB/C mice (25-30 g) were divided into four groups of six animals each normal control mice, diabetic control mice, diabetic mice posttreated with standard drug glibenclamide and diabetic mice treated with P. ostreatus ethanolic extract. Blood glucose level, biochemical parameters such as serum total cholesterol, LDL, HDL, VLDL, triglyceride creatinine, urea, and Serum glutamate oxaloacetate transaminase and Serum glutamate pyruvate transaminase were studied in alloxan-induced diabetic mice after 15 days of treatment. Animals treated with the ethanolic extract of P. ostreatus showed a significant decrease in serum glucose level (p ostreatus extract reduced serum cholesterol, triglyceride and LDL-cholesterol. The serum HDL cholesterol was significantly increased in posttreated groups. The serum creatinine, urea levels were significantly reduced in posttreated group, whereas the decrease in the body weight was arrested by administration of P. ostreatus extract to the animals. The consumption of P. ostreatus produced a significant hypoglycemic effect in diabetic mice and it is capable of improving hyperlipidemia and the impaired kidney functions in alloxan-induced diabetic mice. Thus, indicating that the ethanolic extract of P. ostreatus could be added in the list of medicinal preparations beneficial in diabetes mellitus.

  5. Effect of Magnetospirillum gryphiswaldense on serum iron levels in mice

    Directory of Open Access Journals (Sweden)

    Tahereh Setayesh

    2012-09-01

    Full Text Available Background and Objectives: The Magnetotactic bacteria Magnetospirillum gryphiswaldense (MSR-1 mineralizes the magnetite (Fe3 O4 crystals and organizes a highly ordered intracellular structure, called the magnetosome. Iron transport system supports the biogenesis of magnetite. Although iron is an essential trace element for many metabolic pathways of the body, increase or decrease in iron will cause many diseases. Mice were infected by MSR-1 to study survival of bacteria in mice when injected by different routes. The aim of this study was to investigate whether bacterial magnetite formation could take up Fe2+ ions from the blood an animal model.Materials and Methods: In this study, MSR-1 at a dose lower than LD50 in 200 μl volume of PBS buffer was injected as intravascular (i.v, peritoneal (i.p and subcutaneous (s.c in mice. Number of viable bacterial was determined in organs such as liver, spleen and lymph node by measuring colony-forming unit (CFU. Moreover, serum iron level was evaluated by using commercial kits.Results and Conclusion: According to CFU measurements, after 96 hours, mice can clear MSR-1 from their body with different routes of injection. We have also shown that MSR-1 bacteria can affect the blood iron level in mice. The serum iron level decreased from control level in the first 24 h after i.v injection (P < 0.05. Our research on optimizing the biological magnetic system is still continuing.

  6. Moro orange juice prevents fatty liver in mice

    Institute of Scientific and Technical Information of China (English)

    Federico Salamone; Marco Giorgio; Fabio Galvano; Giovanni Li Volti; Lucilla Titta; Lidia Puzzo; Ignazio Barbagallo; Francesco La Delia; Shira Zelber-Sagi; Michele Malaguarnera; Pier Giuseppe Pelicci

    2012-01-01

    AIM:To establish if the juice of Moro,an anthocyaninrich orange,may improve liver damage in mice with diet-induced obesity.METHODS:Eight-week-old mice were fed a high-fat diet (HFD) and were administrated water or Moro juice for 12 wk.Liver morphology,gene expression of lipid transcription factors,and metabolic enzymes were assessed.RESULTS:Mice fed HFD displayed increased body weight,insulin resistance and dyslipidemia.Moro juice administration limited body weight gain,enhanced insulin sensitivity,and decreased serum triglycerides and total cholesterol.Mice fed HFD showed liver steatosis associated with ballooning.Dietary Moro juice markedly improved liver steatosis by inducing the expression of peroxisome proliferator-activated receptor-a and its target gene acylCoA-oxidase,a key enzyme of lipid oxidation.Consistently,Moro juice consumption suppressed the expression of liver X receptor-o and its target gene fatty acid synthase,and restored liver glycerol-3-phosphate acyltransferase 1 activity.CONCLUSION:Moro juice counteracts liver steatogenesis in mice with diet-induced obesity and thus may represent a promising dietary option for the prevention of fatty liver.

  7. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... by probing the wound. Additional tests may include magnetic resonance imaging (MRI) or computed tomography (CT). top of page How ... Related Articles and Media Computed Tomography (CT) - Body Magnetic Resonance Imaging (MRI) - Body General Ultrasound Contrast Materials Anesthesia Safety ...

  8. Disorders of body temperature.

    Science.gov (United States)

    Gomez, Camilo R

    2014-01-01

    The human body generates heat capable of raising body temperature by approximately 1°C per hour. Normally, this heat is dissipated by means of a thermoregulatory system. Disorders resulting from abnormally high or low body temperature result in neurologic dysfunction and pose a threat to life. In response to thermal stress, maintenance of normal body temperature is primarily maintained by convection and evaporation. Hyperthermia results from abnormal temperature regulation, leading to extremely elevated body temperature while fever results from a normal thermoregulatory mechanism operating at a higher set point. The former leads to specific clinical syndromes with inability of the thermoregulatory mechanism to maintain a constant body temperature. Heat related illness encompasses heat rash, heat cramps, heat exhaustion and heat stroke, in order of severity. In addition, drugs can induce hyperthermia and produce one of several specific clinical syndromes. Hypothermia is the reduction of body temperature to levels below 35°C from environmental exposure, metabolic disorders, or therapeutic intervention. Management of disorders of body temperature should be carried out decisively and expeditiously, in order to avoid secondary neurologic injury. © 2014 Elsevier B.V. All rights reserved.

  9. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Many ... and then place the transducer firmly against your body, moving it back ... until the desired images are captured. There is usually no discomfort from ...

  10. Body and Hope

    DEFF Research Database (Denmark)

    Teglbjærg, Johanne Stubbe

    In this book, Johanne Stubbe Teglbjærg Kristensen analyses the relationship between body and hope. She critically investigates the eschatologies of Paul Tillich, Jürgen Moltmann and Wolfhart Pannenberg from the perspective of the phenomenology of the body represented by Maurice Merleau-Ponty...

  11. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... by probing the wound. Additional tests may include magnetic resonance imaging (MRI) or computed tomography (CT). top of page ... Related Articles and Media Computed Tomography (CT) - Body Magnetic Resonance Imaging (MRI) - Body General Ultrasound Contrast Materials Anesthesia Safety ...

  12. Body Basics Library

    Science.gov (United States)

    ... Sport for You Shyness About the Body Basics Library KidsHealth > For Teens > About the Body Basics Library Print A A A Did you ever wonder ... system, part, and process works. Use this medical library to find out about basic human anatomy, how ...

  13. Body Basics Library

    Science.gov (United States)

    ... of Healthy Breakfasts Shyness About the Body Basics Library KidsHealth > For Teens > About the Body Basics Library A A A Did you ever wonder what ... system, part, and process works. Use this medical library to find out about basic human anatomy, how ...

  14. Monitoring the normal body

    DEFF Research Database (Denmark)

    Nissen, Nina Konstantin; Holm, Lotte; Baarts, Charlotte

    2015-01-01

    Introduction : An extensive body of literature is concerned with obese people, risk, and weight management. However, little is known about weight management among people not belonging to the extreme BMI categories. Management of weight among normal-weight and moderately overweight individuals...... provides us with knowledge about how to prevent future overweight or obesity. This paper investigates body size ideals and monitoring practices among normal-weight and moderately overweight people. Methods : The study is based on in-depth interviews combined with observations. 24 participants were...... of practices for monitoring their bodies based on different kinds of calculations of weight and body size, observations of body shape, and measurements of bodily firmness. Biometric measurements are familiar to them as are health authorities' recommendations. Despite not belonging to an extreme BMI category...

  15. The Mallory body

    DEFF Research Database (Denmark)

    Jensen, K; Gluud, C

    1994-01-01

    Drawing on data from a previously published literature survey on the clinical and experimental epidemiology of the Mallory body, we discuss current theories on its development in a pro et contra manner. Conclusions have been largely left open to the interpretations of the reader because many...... are still speculative. The main results of this study characterize Mallory bodies as stereotypical histological byproducts to diverse hepatic injuries (mostly alcohol associated) of questionable pathogenic importance. The temporal characteristics of Mallory bodies cast doubt on their role in hepatic...... of defective protein systems in Mallory body pathogenesis. Disproportionate hepatic copper accumulation seems both epidemiologically and topographically associated with Mallory bodies, but these connections are largely unsupported by exposure studies. Many arguments still downplay the importance...

  16. Pseudotumor of Ciliary Body

    Directory of Open Access Journals (Sweden)

    Mary Varghese

    2014-01-01

    Full Text Available Orbital pseudotumor is a benign disease involving the orbital structures. Pseudotumor of the ciliary body is rare. We present a case of a 27-year-old male who presented with gradual visual loss, pain, and redness in his left eye. On examination he was found to have a yellowish white mass at the periphery of anterior chamber in his left eye and ultrasound biomicroscopy (UBM revealed a ciliary body mass in the same eye. He was treated with systemic steroids, which was tapered over a period of 8 weeks. His symptoms improved and the ciliary body mass disappeared with no recurrence over the next 6 months. UBM is an important diagnostic tool for diagnosing ciliary body mass. Early diagnosis and prompt treatment with systemic steroids may help resolve pseudotumor of the ciliary body.

  17. The Mallory body

    DEFF Research Database (Denmark)

    Jensen, K; Gluud, C

    1994-01-01

    ): Indian childhood cirrhosis (73%), alcoholic hepatitis (65%), alcoholic cirrhosis (51%), Wilson's disease (25%), primary biliary cirrhosis (24%), nonalcoholic cirrhosis (24%), hepatocellular carcinoma (23%), morbid obesity (8%) and intestinal bypass surgery (6%). Studies in alcoholic hepatitis strongly...... suggest a hit-and-run effect of alcohol, whereas other chronic liver diseases show evidence of gradual increase in prevalence of Mallory bodies with severity of hepatic pathology. Mallory bodies in cirrhosis do not imply alcoholic pathogenesis. Obesity, however, is associated with alcoholism and diabetes......, and Mallory bodies are only present in diabetic patients if alcoholism or obesity complicates the condition. In addition, case studies on diseases in which Mallory bodies have been identified, along with pharmacological side effects and experimental induction of Mallory bodies by various antimitotic...

  18. Intravenous injections in neonatal mice.

    Science.gov (United States)

    Gombash Lampe, Sara E; Kaspar, Brian K; Foust, Kevin D

    2014-11-11

    Intravenous injection is a clinically applicable manner to deliver therapeutics. For adult rodents and larger animals, intravenous injections are technically feasible and routine. However, some mouse models can have early onset of disease with a rapid progression that makes administration of potential therapies difficult. The temporal (or facial) vein is just anterior to the ear bud in mice and is clearly visible for the first two days after birth on either side of the head using a dissecting microscope. During this window, the temporal vein can be injected with volumes up to 50 μl. The injection is safe and well tolerated by both the pups and the dams. A typical injection procedure is completed within 1-2 min, after which the pup is returned to the home cage. By the third postnatal day the vein is difficult to visualize and the injection procedure becomes technically unreliable. This technique has been used for delivery of adeno-associated virus (AAV) vectors, which in turn can provide almost body-wide, stable transgene expression for the life of the animal depending on the viral serotype chosen.

  19. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  20. Modeling Energy Dynamics in Mice with Skeletal Muscle Hypertrophy Fed High Calorie Diets.

    Science.gov (United States)

    Bond, Nichole D; Guo, Juen; Hall, Kevin D; McPherron, Alexandra C

    2016-01-01

    Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain.

  1. Effects of canagliflozin on weight loss in high-fat diet-induced obese mice

    OpenAIRE

    Ji, Wenjun; Zhao, Mei; Wang, Meng; Yan, Wenhui; Liu, Yuan; Ren, Shuting; Lu, Jun; Wang, Bing; Chen, Lina

    2017-01-01

    Canagliflozin, an inhibitor of sodium glucose co-transporter (SGLT) 2, has been shown to reduce body weight during the treatment of type 2 diabetes mellitus (T2DM). In this study, we sought to determine the role of canagliflozin in body weight loss and liver injury in obesity. C57BL/6J mice were fed a high-fat diet to simulate diet-induced obesity (DIO). Canagliflozin (15 and 60 mg/kg) was administered to DIO mice for 4 weeks. Orlistat (10 mg/kg) was used as a positive control. The body weigh...

  2. Loss of resistin ameliorates hyperlipidemia and hepatic steatosis in leptin-deficient mice

    Science.gov (United States)

    Singhal, Neel S.; Patel, Rajesh T.; Qi, Yong; Lee, Yun-Sik; Ahima, Rexford S.

    2008-01-01

    Resistin has been linked to components of the metabolic syndrome, including obesity, insulin resistance, and hyperlipidemia. We hypothesized that resistin deficiency would reverse hyperlipidemia in genetic obesity. C57Bl/6J mice lacking resistin [resistin knockout (RKO)] had similar body weight and fat as wild-type mice when fed standard rodent chow or a high-fat diet. Nonetheless, hepatic steatosis, serum cholesterol, and very low-density lipoprotein (VLDL) secretion were decreased in diet-induced obese RKO mice. Resistin deficiency exacerbated obesity in ob/ob mice, but hepatic steatosis was drastically attenuated. Moreover, the levels of triglycerides, cholesterol, insulin, and glucose were reduced in ob/ob-RKO mice. The antisteatotic effect of resistin deficiency was related to reductions in the expression of genes involved in hepatic lipogenesis and VLDL export. Together, these results demonstrate a crucial role of resistin in promoting hepatic steatosis and hyperlipidemia in obese mice. PMID:18505833

  3. Mice Drawer System

    Science.gov (United States)

    Cancedda, Ranieri

    2008-01-01

    The Mice Drawer System (MDS) is an Italian Space Agency (ASI) facility which is able to support mice onboard the International Space Station during long-duration exploration missions (from 100 to 150-days) by living space, food, water, ventilation and lighting. Mice can be accommodated either individually (maximum 6) or in groups (4 pairs). MDS is integrated in the Space Shuttle middeck during transportation (uploading and downloading) to the ISS and in an EXPRESS Rack in Destiny, the US Laboratory during experiment execution. Osteoporosis is a debilitating disease that afflicts millions of people worldwide. One of the physiological changes experienced by astronauts during space flight is the accelerated loss of bone mass due to the lack of gravitational loading on the skeleton. This bone loss experienced by astronauts is similar to osteoporosis in the elderly population. MDS will help investigate the effects of unloading on transgenic (foreign gene that has been inserted into its genome to exhibit a particular trait) mice with the Osteoblast Stimulating Factor-1, OSF-1, a growth and differentiation factor, and to study the genetic mechanisms underlying the bone mass pathophysiology. MDS will test the hypothesis that mice with an increased bone density are likely to be more protected from osteoporosis, when the increased bone mass is a direct effect of a gene involved in skeletogenesis (skeleton formation). Osteoporosis is a debilitating disease that afflicts millions worldwide. One of the physiological changes experienced by astronauts during space flight is the accelerated loss of bone mass due to the lack of gravitational loading on the skeleton, a loss that is similar to osteoporosis in the elderly population on Earth. Osteoblast Stimulating Factor-1 (OSF-1), also known as pleiotrophin (PTN) or Heparin-Binding Growth- Associated Molecule (HB-GAM) belongs to a family of secreted heparin binding proteins..OSF-1 is an extracellular matrix-associated growth and

  4. Photodynamic Therapy for Acinetobacter baumannii Burn Infections in Mice

    Science.gov (United States)

    2009-06-29

    PerkinElmer Life and Analytical Sciences Inc., Wellesley, MA). Introduction of bioluminescence genes into the clinical isolate of A. bauman- nii. The...the National Institutes of Health. The mice received buprenorphine (0.03 mg/kg of body weight subcutaneously twice a day) for 3 days after the burn for...log units higher than that of the treated mouse burn (2.73 104 RLU). The burned areas of the two mice were then excised. Half of each excised burn

  5. Hydrolyzed casein reduces diet-induced obesity in male C57BL/6J mice

    DEFF Research Database (Denmark)

    Lillefosse, Haldis Haukås; Tastesen, Hanne Sørup; Du, Zhen-Yu;

    2013-01-01

    The digestion rate of dietary protein is a regulating factor for postprandial metabolism both in humans and animal models. However, few data exist about the habitual consumption of proteins with different digestion rates with regard to the development of body mass and diet-induced obesity. Here, we...... used a factorial ANOVA design to investigate the effects of protein form (intact vs. hydrolyzed casein) and protein level (16 vs. 32 energy percent protein) on body mass gain and adiposity in obesity-prone male C57BL/6J mice fed Western diets with 35 energy percent fat. Mice fed the hydrolyzed casein...... by hydrolyzed casein ingestion translated into decreased body and adipose tissue masses. We conclude that chronic consumption of extensively hydrolyzed casein reduces body mass gain and diet-induced obesity in male C57BL/6J mice....

  6. The body as art.

    Science.gov (United States)

    Barker, D J; Barker, M J

    2002-07-01

    For millennia people have altered the appearance of their bodies with cosmetics, jewellery, tattoos, piercings, and other surgical procedures. It would appear that they wish to conform to a perceived 'ideal body', although the actual appearance of such a body is subject to temporal, cultural and geographical change. In contemporary society the media are largely responsible for providing the yardsticks against which individual body shape is measured. Today the desired form is generally young, slim, tanned and blemish-free. Sadly, dissatisfaction with body image can be the source of great unhappiness and may even lead to suicide. Interested scholars have debated the meaning of beauty for centuries but it seems that every human society has its own standards. At the simplest it would appear that youth and symmetry are the most highly prized ingredients. There is no doubt that those who fit the conventional standards of attractiveness are treated better by society. Individuals have an inalienable right to their own body appearance, and to alter it as they see fit, however such modifications may not always be in their own best interests. Practitioners of cosmetic procedures must be alert to clients with histories of weight fluctuation, unrealistic body image, or low self-esteem. Psychological disorders may present with dysmorphophobic symptoms. Doctors providing cosmetic services need to be adept at diagnosing psychological illness.

  7. Scurfy mice: A model for autoimmune disease

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, V.L.

    1993-01-01

    Autoimmune disease-the condition in which the body attacks its own tissue-has been an object of public concern recently. Former President George Bush and his wife Barbara both are afflicted with Graves' disease in which the body's own immune system attakcs the thyroid gland. The safety of breast implants was called into question because of evidence that some recipients had developed autoimmune disorders such a rheumatoid arthritis, systemic lupus erythematosus, and scleroderma. Women, the media pointed out, have a higher-than-average incidence of many autoimmune disorders. These events suggest the need to know more about what makes the immune system work so well and what makes it go awry. At ORNL's Biology Division, progress is being in understanding the underlying causes of immune disease by studying mice having a disease that causes them to be underdeveloped; to have scaly skin, small ears, and large spleens; to open their eyes late; and to die early. These [open quotes]scurfy[close quotes]mice are helping us better understand the role of the thymus gland in autoimmune disease.

  8. Heart rate reduction and longevity in mice.

    Science.gov (United States)

    Gent, Sabine; Kleinbongard, Petra; Dammann, Philip; Neuhäuser, Markus; Heusch, Gerd

    2015-03-01

    Heart rate correlates inversely with life span across all species, including humans. In patients with cardiovascular disease, higher heart rate is associated with increased mortality, and such patients benefit from pharmacological heart rate reduction. However, cause-and-effect relationships between heart rate and longevity, notably in healthy individuals, are not established. We therefore prospectively studied the effects of a life-long pharmacological heart rate reduction on longevity in mice. We hypothesized, that the total number of cardiac cycles is constant, and that a 15% heart rate reduction might translate into a 15% increase in life span. C57BL6/J mice received either placebo or ivabradine at a dose of 50 mg/kg/day in drinking water from 12 weeks to death. Heart rate and body weight were monitored. Autopsy was performed on all non-autolytic cadavers, and parenchymal organs were evaluated macroscopically. Ivabradine reduced heart rate by 14% (median, interquartile range 12-15%) throughout life, and median life span was increased by 6.2% (p = 0.01). Body weight and macroscopic findings were not different between placebo and ivabradine. Life span was not increased to the same extent as heart rate was reduced, but nevertheless significantly prolonged by 6.2%.

  9. Daily rhythms of body temperature in Acomys russatus: the response to chemical signals released by Acomys cahirinus.

    Science.gov (United States)

    Fluxman, S; Haim, A

    1993-06-01

    Two species of spiny mice of the genus Acomys--the golden spiny A. russatus and the common spiny A. cahirinus--are sympatric in the arid and hot parts of the Rift Valley in Israel. The coexistence of these two species is due to exclusion of A. russatus mice by A. cahirinus mice from nocturnal activity. The aim of this research was to study if odor signals released by A. cahirinus mice can play a role in the exclusion of A. russatus mice. A. russatus mice with an implanted transmitter recording body temperature (Tb) were kept alone in a metabolic chamber under constant conditions of ambient temperature (27 degrees C) and photoperiod (12 h light:12 h dark). After 5 days of recording, chemical signals from an A. cahirinus mouse were added through the air tube going into the metabolic chamber of the A. russatus mice. This treatment caused a shift of approximately 2 h in Tb daily rhythm of the naive tested A. russatus mice, whereas no shift was observed in A. russatus mice that had been kept in the same room with the A. cahirinus mouse before measurements. These results strongly support the idea that chemical signals released by A. cahirinus mice can entrain the Tb rhythms of A. russatus mice. Therefore, it may be assumed that the exclusion of A. russatus mice from nocturnal activity by A. cahirinus mice could be achieved through the odor released by the latter.

  10. Minding the Body

    Directory of Open Access Journals (Sweden)

    Anastasia Ioanna Kayiatos

    2015-05-01

    Full Text Available In the Fall of 2013 we team-taught a disability studies course for a small group of first-year students. The course, Minding the Body, integrated scholarship from disability studies, feminist/queer studies, psychology, and Russian Studies. Originally envisioned and taught independently in the Fall of 2012 by Joan Ostrove and focused entirely on the U.S., Anastasia Kayiatos's arrival in the Department of German and Russian Studies at Macalester College afforded us an opportunity for collaboration and co-instruction that we found invigorating, compelling, and transformative. Grounded from the outset in disability studies, the course asked students to interrogate such questions as: What is a "normal" body? A "beautiful" body? Why do we feel the way we do about our bodies? How are bodies objectified, exploited, and regulated? How and why do we discriminate against people with non-normative bodies? How do people represent the experience of having a disabled body? How can we think critically about the various ways in which people change, regulate, and enhance their bodies? How do sexism, racism, classism, colonialism, homophobia, transphobia and other forms of oppression influence how different bodies are viewed, treated, educated, and experienced? The integration of Russian Studies importantly allowed us to ask how these questions and ideas change when we travel across time and geographical space. In our paper we will reflect on our experience of co-authoring the syllabus (we will include both the solo-taught and co-taught versions of the syllabus in an appendix; outline some of our techniques for team-teaching; and analyze an exemplary assignment and class meeting. We will conclude with a final word about the unique forms of teaching and learning that happened in our class as a consequence of its collaborative and interdisciplinary approach, which opened up new perspectives in disability studies not only for our students but also for us.

  11. Genetic dissection of theta rhythm heterogeneity in mice.

    Science.gov (United States)

    Shin, Jonghan; Kim, Daesoo; Bianchi, Riccardo; Wong, Robert K S; Shin, Hee-Sup

    2005-12-13

    Rhythmic oscillatory activities at the theta frequency (4-12 Hz) in the hippocampus have long-attracted attention because they have been implicated in diverse brain functions, including spatial cognition. Although studies based on pharmacology and lesion experiments suggested heterogeneity of these rhythms and their behavioral correlates, controversies are abundant on these issues. Here we show that mice harboring a phospholipase C (PLC)-beta1(-/-) mutation (PLC-beta1(-/-) mice) lack one subset of theta rhythms normally observed during urethane anesthesia, alert immobility, and passive whole-body rotation. In contrast, the other subset of theta rhythms observed during walking or running was intact in these mutant mice. PLC-beta1(-/-) mice also have somewhat disrupted theta activity during paradoxical sleep but do have an atropine-resistant component of theta rhythm. In addition, carbachol-induced oscillations were obliterated in hippocampal slices of PLC-beta1(-/-) mice. Interestingly, PLC-beta1(-/-) mice showed deficits in a hidden platform version of the Morris water maze yet performed well in motor coordination tests and a visual platform version of the Morris water maze. The results genetically define the existence of at least two subtypes of theta rhythms and reveal their association with different behaviors.

  12. Respiratory and sniffing behaviors throughout adulthood and aging in mice

    Science.gov (United States)

    Wesson, Daniel W.; Varga-Wesson, Adrienn G.; Borkowski, An