WorldWideScience

Sample records for twisted intramolecular charge

  1. Hydrogen bond strengthening induces fluorescence quenching of PRODAN derivative by turning on twisted intramolecular charge transfer

    Science.gov (United States)

    Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai

    2017-12-01

    Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54 nm compared to PD. This red-shift increases to 66 nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.

  2. Fluorescent Polystyrene Films for the Detection of Volatile Organic Compounds Using the Twisted Intramolecular Charge Transfer Mechanism.

    Science.gov (United States)

    Borelli, Mirko; Iasilli, Giuseppe; Minei, Pierpaolo; Pucci, Andrea

    2017-08-06

    Thin films of styrene copolymers containing fluorescent molecular rotors were demonstrated to be strongly sensitive to volatile organic compounds (VOCs). Styrene copolymers of 2-[4-vinyl(1,1'-biphenyl)-4'-yl]-cyanovinyljulolidine (JCBF) were prepared with different P(STY- co -JCBF)(m) compositions (m% = 0.10-1.00) and molecular weights of about 12,000 g/mol. Methanol solutions of JCBF were not emissive due to the formation of the typical twisted intramolecular charge transfer (TICT) state at low viscosity regime, which formation was effectively hampered by adding progressive amounts of glycerol. The sensing performances of the spin-coated copolymer films (thickness of about 4 µm) demonstrated significant vapochromism when exposed to VOCs characterized by high vapour pressure and favourable interaction with the polymer matrix such as THF, CHCl₃ and CH₂Cl₂. The vapochromic response was also reversible and reproducible after successive exposure cycles, whereas the fluorescence variation scaled linearly with VOC concentration, thus suggesting future applications as VOC optical sensors.

  3. Twisted intramolecular charge transfer investigation of semi organic L-Glutamic acid hydrochloride single crystal for organic light-emitting and optical limiting applications

    Science.gov (United States)

    Joy, Lija K.; George, Merin; Alex, Javeesh; Aravind, Arun; Sajan, D.; Vinitha, G.

    2018-03-01

    Single crystals of L-Glutamic acid hydrochloride (LGHCl) were grown by slow evaporation solution technique and good crystalline perfection was confirmed by Powder X-ray diffraction studies. The complete vibrational studies of the compound were analyzed by FT-IR, FT-Raman and UV-visible spectra combined with Normal Coordinate Analysis (NCA) following the scaled quantum mechanical force field methodology and density functional theory (DFT). Twisted Intramolecular Charge Transfer (ICT) occurs due to the presence of strong ionic intra-molecular Nsbnd H⋯O hydrogen bonding was confirmed by Hirshfeld Surface analysis. The existence of intermolecular Nsbnd H⋯Cl hydrogen bonds due to the interaction between the lone pair of oxygen with the antibonding orbital was established by NBO analysis. The Z-scan result indicated that the title molecule exhibits saturable absorption behavior. The attractive third-order nonlinear properties suggest that LGHCl can be a promising candidate for the design and development devices for optical limiting applications. LGHCL exhibits distinct emission in the blue region of the fluorescence lifetime which proves to be a potential candidate for blue- Organic light-emitting diodes (OLEDs) fabrication.

  4. Discrete and continuum modeling of solvent effects in a twisted intramolecular charge transfer system: The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule.

    Science.gov (United States)

    Modesto-Costa, Lucas; Borges, Itamar

    2018-08-05

    The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule is a prototypical system displaying twisted intramolecular (TICT) charge transfer effects. The ground and the first four electronic excited states (S 1 -S 4 ) in gas phase and upon solvation were studied. Charge transfer values as function of the torsion angle between the donor group (dimethylamine) and the acceptor moiety (benzonitrile) were explicitly computed. Potential energy curves were also obtained. The algebraic diagrammatic construction method at the second-order [ADC(2)] ab initio wave function was employed. Three solvents of increased polarities (benzene, DMSO and water) were investigated using discrete (average solvent electrostatic configuration - ASEC) and continuum (conductor-like screening model - COSMO) models. The results for the S 3 and S 4 excited states and the S 1 -S 4 charge transfer curves were not previously available in the literature. Electronic gas phase and solvent vertical spectra are in good agreement with previous theoretical and experimental results. In the twisted (90°) geometry the optical oscillator strengths have negligible values even for the S 2 bright state. Potential energy curves show two distinct pairs of curves intersecting at decreasing angles or not crossing in the more polar solvents. Charge transfer and electric dipole values allowed the rationalization of these results. The former effects are mostly independent of the solvent model and polarity. Although COSMO and ASEC solvent models mostly lead to similar results, there is an important difference: some crossings of the excitation energy curves appear only in the ASEC solvation model, which has important implications to the photochemistry of DMABN. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Twisted intra-molecular charge transfer investigations of semiorganic triglycine phosphate single crystal for non linear optical applications

    Science.gov (United States)

    Meera, M. R.; Joselin Beaula, T.; Rayar, S. L.; Bena Jothy, V.

    2017-09-01

    NLO materials are gaining importance in technologies such as optical communication, optical computing and dynamic image processing. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. A semi organic Single crystal of Triglycine Phosphate (TGP) which was grown and spectral analysis have been using FTIR and Raman spectral analysis. Natural Bond Orbital Analysis and the atomic natural charges are also predicted. HOMO LUMO energy gap value suggests the possibility of charge transfer within the molecule.

  6. Two-State Intramolecular Charge Transfer (ICT) with 3,5-Dimethyl-4-(dimethylamino)benzonitrile (MMD) and Its Meta-Isomer mMMD. Ground State Amino Twist Not Essential for ICT.

    Science.gov (United States)

    Druzhinin, Sergey I; Galievsky, Victor A; Demeter, Attila; Kovalenko, Sergey A; Senyushkina, Tamara; Dubbaka, Srinivas R; Knochel, Paul; Mayer, Peter; Grosse, Christian; Stalke, Dietmar; Zachariasse, Klaas A

    2015-12-10

    From X-ray structure analysis, amino twist angles of 90.0° for 2,4-dimethyl-3-(dimethylamino)benzonitrile (mMMD), 82.7° for 4-(di-tert-butylamino)benzonitrile (DTABN), and 88.7° for 6-cyanobenzoquinuclidine (CBQ) are determined, all considerably larger than the 57.4° of 3,5-dimethyl-4-(dimethylamino)benzonitrile (MMD). This large twist leads to lengthening of the amino-phenyl bond, 143.5 pm (mMMD), 144.1 pm (DTABN), 144.6 pm (CBQ), and 141.4 pm (MMD), as compared with 136.5 pm for the planar 4-(dimethylamino)benzonitrile (DMABN). As a consequence, the electronic coupling between the amino and phenyl subgroups in mMMD, DTABN, CBQ, and MMD is much weaker than in DMABN, as seen from the strongly reduced molar absorption coefficients. The fluorescence spectrum of MMD in n-hexane at 25 °C consists of two emissions, from a locally excited (LE) and an intramolecular charge transfer (ICT) state, with a fluorescence quantum yield ratio Φ'(ICT)/Φ(LE) of 12.8. In MeCN, a single ICT emission is found. With mMMD in n-hexane, in contrast, only LE fluorescence is observed, whereas the spectrum in MeCN originates from the ICT state. These differences are also seen from the half-widths of the overall fluorescence bands, which in n-hexane are larger for MMD than for mMMD, decreasing with solvent polarity for MMD and increasing for mMMD, reflecting the disappearance of LE and the onset of ICT in the overall spectra, respectively. From solvatochromic measurements the dipole moments μe(ICT) of MMD (16 D) and mMMD (15 D) are obtained. Femtosecond excited state absorption (ESA) spectra at 22 °C, together with the dual (LE + ICT) fluorescence, reveal that MMD in n-hexane undergoes a reversible LE ⇄ ICT reaction, with LE as the precursor, with a forward rate constant ka = 5.6 × 10(12) s(-1) and a back-reaction kd ∼ 0.05 × 10(12) s(-1). With MMD in the strongly polar solvent MeCN, ICT is faster: ka = 10 × 10(12) s(-1). In the case of mMMD in n-hexane, the ESA spectra show

  7. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  8. Effects of acid concentration on intramolecular charge transfer ...

    Indian Academy of Sciences (India)

    rate. Time-dependent density functional theory calculations have been performed to understand the observed spectroscopic results. Keywords. Intramolecular charge transfer; absorption and fluorescence; time resolved fluorescence measurements; acid concentration dependence; time-dependent density functional theory.

  9. Evaluation of intramolecular charge transfer state of 4-N, N ...

    Indian Academy of Sciences (India)

    Abstract. Intramolecular charge transfer of 4-N,N-dimethylamino cinnamaldehyde (DMACA) in vacuum and in five different aprotic solvents has been studied by using time-dependent density functional theory. (TDDFT). Polarizable continuum model (PCM) was employed to consider solvent–solute interactions. The potential ...

  10. Detection of Intramolecular Charge Transfer and Dynamic Solvation in Eosin B by Femtosecond Two-Dimensional Electronic Spectroscopy

    Science.gov (United States)

    Ghosh, Soumen; Roscioli, Jerome D.; Beck, Warren F.

    2014-06-01

    We have employed 2D electronic photon echo spectroscopy to study intramolecular charge-transfer dynamics in eosin B. After preparation of the first excited singlet state (S_1) with 40-fs excitation pulses at 520 nm, the nitro group (--NO_2) in eosin B undergoes excited state torsional motion towards a twisted intramolecular charge transfer (TICT) state. As the viscosity of the surrounding solvent increases, the charge-transfer rate decreases because the twisting of the --NO_2 group is hindered. These conclusions are supported by the time evolution of the 2D spectrum, which provides a direct measure of the the ground-to-excited-state energy gap time-correlation function, M(t). In comparison to the inertial and diffusive solvation time scales exhibited by eosin Y, which lacks the nitro group, the M(t) function for eosin B exhibits under the same conditions an additional component on the 150-fs timescale that arises from quenching of the S_1 state by crossing to the TICT state. These results indicate that 2D electronic spectroscopy can be used as a sensitive probe of the rate of charge transfer in a molecular system and of the coupling to the motions of the surrounding solvent. (Supported by grant DE-SC0010847 from the Department of Energy, Office of Basic Energy Sciences, Photosynthetic Systems program.)

  11. Dynamics of the excited state intramolecular charge transfer

    International Nuclear Information System (INIS)

    Joo, T.; Kim, C.H.

    2006-01-01

    The 6-dodecanoyl-2-dimethylaminonaphtalene (laurdan), a derivative of 6-propanoyl- 2-dimethylaminonaphthalene (prodan), has been used as a fluorescent probe in cell imaging, especially in visualizing the lipid rafts by the generalized polarization (GP) images, where GP=(I 440 -I 490 )/(I 440 +I 490 ) with I being the fluorescence intensity. The fluorescence spectrum of laurdan is sensitive to its dipolar environment due to the intramolecular charge transfer (ICT) process in S 1 state, which results in a dual emission from the locally excited (LE) and the ICT states. The ICT process and the solvation of the ICT state are very sensitive to the dipolar nature of the environment. In this work, the ICT of laurdan in ethanol has been studied by femtosecond time resolved fluorescence (TRF), especially TRF spectra measurement without the conventional spectral reconstruction method. TRF probes the excited states exclusively, a unique advantage over the pump/probe transient absorption technique, although time resolution of the TRF is generally lower than transient absorption and the TRF spectra measurement was possible only though the spectral reconstruction. Over the years, critical advances in TRF technique have been made in our group to achieve <50 fs time resolution with direct full spectra measurement capability. Detailed ICT and the subsequent solvation processes can be visualized unambiguously from the TRF spectra. Fig. 1 shows the TRF spectra of laurdan in ethanol at several time delays. Surprisingly, two bands at 433 and 476 nm are clearly visible in the TRF spectra of laurdan even at T = 0 fs. As time increases, the band at 476 nm shifts to the red while its intensity increases. The band at 433 nm also shifts slightly to the red, but loses intensity as time increases. The intensity of the 476 nm band reaches maximum at around 5 ps, where it is roughly twice as intense as that at 0 fs, and stays constant until lifetime decay is noticeable. The spectra were fit by

  12. Twisted intra-molecular electron transfer phenomenon of dansyl immobilized on chitosan film and its sensing property to the composition of ethanol-water mixtures

    International Nuclear Information System (INIS)

    Ding Liping; Fang Yu; Jiang Linling; Gao Lining; Yin Xiong

    2005-01-01

    A new fluorescent chitosan film bearing dansyl as a fluorophore has been prepared. The film shows dual fluorescence phenomenon due to twisted intra-molecular charge transfer (TICT) in the excited state of the fluorophore. The position of the maximum emission of the film depends on the polarity of the medium, and it shifts from 460 nm in ethanol to 505 nm in water. The two emissions have been attributed to the emission from the 'locally excited' state or non-charge transfer excited state of dansyl and that from the TICT excited state of the fluorophore, respectively. Existence of TICT phenomenon of the immobilized dansyl has been confirmed and studied by various fluorescence techniques, such as fluorescence lifetime measurement, steady-state and time-resolved fluorescence emission spectroscopy measurements, etc. The ratio, I 505 /I 460 , of the intensities of the two emission bands depends linearly on the concentration of water in ethanol-water mixture provided the concentration is less than 40%. Furthermore, the sensing property of the film to the mixture is reversible

  13. Twisted intra-molecular electron transfer phenomenon of dansyl immobilized on chitosan film and its sensing property to the composition of ethanol-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ding Liping [School of Chemistry and Materials Science, Shaanxi Normal University, Changan Road No. 199, Xi' an 710062 (China); Fang Yu [School of Chemistry and Materials Science, Shaanxi Normal University, Changan Road No. 199, Xi' an 710062 (China)]. E-mail: yfang@snnu.edu.cn; Jiang Linling [School of Chemistry and Materials Science, Shaanxi Normal University, Changan Road No. 199, Xi' an 710062 (China); Gao Lining [School of Chemistry and Materials Science, Shaanxi Normal University, Changan Road No. 199, Xi' an 710062 (China); Yin Xiong [School of Chemistry and Materials Science, Shaanxi Normal University, Changan Road No. 199, Xi' an 710062 (China)

    2005-05-01

    A new fluorescent chitosan film bearing dansyl as a fluorophore has been prepared. The film shows dual fluorescence phenomenon due to twisted intra-molecular charge transfer (TICT) in the excited state of the fluorophore. The position of the maximum emission of the film depends on the polarity of the medium, and it shifts from 460 nm in ethanol to 505 nm in water. The two emissions have been attributed to the emission from the 'locally excited' state or non-charge transfer excited state of dansyl and that from the TICT excited state of the fluorophore, respectively. Existence of TICT phenomenon of the immobilized dansyl has been confirmed and studied by various fluorescence techniques, such as fluorescence lifetime measurement, steady-state and time-resolved fluorescence emission spectroscopy measurements, etc. The ratio, I {sub 505}/I {sub 460}, of the intensities of the two emission bands depends linearly on the concentration of water in ethanol-water mixture provided the concentration is less than 40%. Furthermore, the sensing property of the film to the mixture is reversible.

  14. Photoinduced intramolecular charge transfer (ICT) reaction in trans-methyl p-(dimethylamino) cinnamate: A combined fluorescence measurement and quantum chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Amrita [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India); Kar, Samiran [Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Guchhait, Nikhil [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India)], E-mail: nikhilg@postmark.net

    2006-01-05

    The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate (t-MDMAC) donor-acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters ({alpha}). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (-NMe{sub 2}) and acceptor (-CH = CHCOOMe) sites shows stabilization of S{sub 1} state and destabilization S{sub 2} and S{sub 0} states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S{sub 1} state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90 deg. twisted configuration. The S{sub 1} energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model.

  15. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.; Patel, Niral M.; Roberts, Sean T.; Allen, Kathryn; Djurovich, Peter I.; Bradforth, Stephen E.; Thompson, Mark E.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  16. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    Science.gov (United States)

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  17. Evidence for excited state intramolecular charge transfer reaction in donor-acceptor molecule 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid methyl ester: Experimental and quantum chemical approach

    International Nuclear Information System (INIS)

    Kumar Paul, Bijan; Samanta, Anuva; Kar, Samiran; Guchhait, Nikhil

    2010-01-01

    Intramolecular charge transfer (ICT) reaction has been investigated in 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid methyl ester (DPDAME) using spectroscopic techniques. The molecule DPDAME shows local emission in non-polar solvent and dual emission in polar solvents. Solvatochromic effects on the Stokes shifted emission band clearly demonstrate the charge transfer character of the excited state. Quantum chemical calculations have been performed at Hartree-Fock (HF) and density functional theoretical (DFT) levels to correlate the experimental findings. Potential energy curves (PECs) for the ICT reaction have been evaluated along the donor twist angle at DFT and time dependent density functional theory (TDDFT) levels for the ground and excited states, respectively, using B3LYP hybrid functional and 6-31G** basis set. The solvent effects on the spectral properties have been explored theoretically at the same level with time dependent density functional theory-polarized continuum model (TDDFT-PCM) and the theoretical results are found to well substantiate the solvent polarity dependent Stokes shifted emission of DPDAME. Huge enhancement of dipole moment (Δμ=16.42 D) of the molecule following photoexcitation dictates the highly polar character of the excited state. Although elucidation of PECs does not exactly predict the operation of ICT according to twisted intramolecular charge transfer (TICT) model in DPDAME, lowering of vertical transition energy as a function of the donor twist coordinate scripts the occurrence of red shifted emission as observed experimentally.

  18. Specific optical signalling of anions via intramolecular charge transfer pathway based on acridinedione fluorophore

    International Nuclear Information System (INIS)

    Thiagarajan, Viruthachalam; Ramamurthy, Perumal

    2007-01-01

    We present a simple but highly specific acridinedione fluorophore (ADD-1) that acts both as a fluorescent and colorimetric sensor for anions in acetonitrile. The specific optical signalling of ADD-1 is due to the formation of new distinct intramolecular charge transfer (ICT) emitting states in the presence of AcO - (490 nm), H 2 PO 4 - (440 nm), and F - (510 nm) over other anions. Presence of F - shows a colour change that is perceptible to the naked eye, from colourless to an intense fluorescent green due to the deprotonation of acridinedione ring amino hydrogen

  19. Slow wave structures using twisted waveguides for charged particle applications

    Science.gov (United States)

    Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.

    2012-12-11

    A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.

  20. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroanilin

    DEFF Research Database (Denmark)

    Eriksen, J.J.; Sauer, S.P.A.; Mikkelsen, K.V.

    2013-01-01

    We investigate the failure of Time{Dependent Density Functional Theory (TDDFT) with the CAM{B3LYP exchange{correlation (xc) functional coupled to the Polarizable Embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge{transfer excitation in para...... the electric dipole moments in the gas phase and for 100 solvent congurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic...... to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge{transfer excitations in molecular systems similar to pNA against higher{level ab initio wave function methods, like, e.g., CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure...

  1. Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qinghe [Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China; Zhao, Donglin [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Goldey, Matthew B. [Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Filatov, Alexander S. [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Sharapov, Valerii [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Colón, Yamil J. [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Cai, Zhengxu [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Chen, Wei [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; de Pablo, Juan [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Galli, Giulia [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Yu, Luping [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States

    2018-03-02

    Two types of electron acceptors were synthesized by coupling two kinds of electron-rich cores with four equivalent perylene diimides (PDIs) at the a position. With fully aromatic cores, TPB and TPSe have pi-orbitals spread continuously over the whole aromatic conjugated backbone, unlike TPC and TPSi, which contain isolated PDI units due to the use of a tetrahedron carbon or silicon linker. Density functional theory calculations of the projected density of states showed that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for TPB are localized in separate regions of space. Further, the LUMO of TPB shows a greater contribution from the orbitals belonging to the connective core of the molecules than that of TPC. Overall, the properties of the HOMO and LUMO point at increased intra-molecular delocalization of negative charge carriers for TPB and TPSe than for TPC and TPSi and hence at a more facile intra-molecular charge transfer for the former. The film absorption and emission spectra showed evidences for the inter -molecular electron delocalization in TPB and TPSe, which is consistent with the network structure revealed by X-ray diffraction studies on single crystals of TPB. These features benefit the formation of charge transfer states and/or facilitate charge transport. Thus, higher electron mobility and higher charge dissociation probabilities under J(sc) condition were observed in blend films of TPB:PTB7-Th and TPSe:PTB7-Th than those in TPC:PTB7Th and TPSi:PTB7-Th blend films. As a result, the J(sc) and fill factor values of 15.02 mA/cm(2), 0.58 and 14.36 mA/cm(2), 0.55 for TPB- and TPSe-based solar cell are observed, whereas those for TPC and TPSi are 11.55 mA/cm2, 0.47 and 10.35 mA/cm(2), 0.42, respectively.

  2. Spectroscopic and theoretical investigations on intramolecular charge transfer phenomenon in 1-3-dioxolane derivative

    Science.gov (United States)

    Zhang, Zhiyong; Zhang, Zhongzhi; Luo, Yijing; Sun, Shanshan; Zhang, Guangqing

    2018-02-01

    High fluorescence quantum yield (FQY) and large Stokes shift (SS) cannot be easily achieved simultaneously by traditional PICT or TICT fluorescent probe. However, an 1-3-dioxolane derivative named 5-methyl-8,9-dihydro-5H-[1,3]dioxolo[4,5-b]carbazol-6(7H)-one (MDDCO) features both high FQY and large SS. The purpose of this study is to search the mechanism behind this phenomenon by theoretical method. Simulated structure changes and charge transfer suggest ICT process in MDDCO is similar to PLICT (Planarized Intramolecular Charge Transfer) process. Calculated UV-Vis spectra and fluorescence spectra show that PLICT-like state (S1 state) of MDDCO leads to large SS. Computed transient-absorption spectra and radiative decay rates indicate that PLICT-like state is key factor for high FQY of MDDCO. These findings suggest that PLICT-like state in 1,3-dioxolane derivatives can achieve both large SS and high FQY, which presents a new method for high-performance fluorescent probe design.

  3. Charge transport properties of a twisted DNA molecule: A renormalization approach

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.L. de; Ourique, G.S.; Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Moura, F.A.B.F. de; Lyra, M.L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2016-10-20

    In this work we study the charge transport properties of a nanodevice consisting of a finite segment of the DNA molecule sandwiched between two metallic electrodes. Our model takes into account a nearest-neighbor tight-binding Hamiltonian considering the nucleobases twist motion, whose solutions make use of a two-steps renormalization process to simplify the algebra, which can be otherwise quite involved. The resulting variations of the charge transport efficiency are analyzed by numerically computing the main features of the electron transmittance spectra as well as their I × V characteristic curves.

  4. Absence of Intramolecular Singlet Fission in Pentacene-Perylenediimide Heterodimers: The Role of Charge Transfer State.

    Science.gov (United States)

    Wang, Long; Wu, Yishi; Chen, Jianwei; Wang, Lanfen; Liu, Yanping; Yu, Zhenyi; Yao, Jiannian; Fu, Hongbing

    2017-11-16

    A new class of donor-acceptor heterodimers based on two singlet fission (SF)-active chromophores, i.e., pentacene (Pc) and perylenediimide (PDI), was developed to investigate the role of charge transfer (CT) state on the excitonic dynamics. The CT state is efficiently generated upon photoexcitation. However, the resulting CT state decays to different energy states depending on the energy levels of the CT state. It undergoes extremely rapid deactivation to the ground state in polar CH 2 Cl 2 , whereas it undergoes transformation to a Pc triplet in nonpolar toluene. The efficient triplet generation in toluene is not due to SF but CT-mediated intersystem crossing. In light of the energy landscape, it is suggested that the deep energy level of the CT state relative to that of the triplet pair state makes the CT state actually serve as a trap state that cannot undergoes an intramolecular singlet fission process. These results provide guidance for the design of SF materials and highlight the requisite for more widely applicable design principles.

  5. Intramolecular charge separation in spirobifluorene-based donor–acceptor compounds adsorbed on Au and indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Heredia, Daniel; Otero, Luis; Gervaldo, Miguel; Fungo, Fernando; Dittrich, Thomas; Lin, Chih-Yen; Chi, Liang-Chen; Fang, Fu-Chuan; Wong, Ken-Tsung

    2013-01-01

    Surface photovoltage (SPV) measurements were performed with a Kelvin-probe in spirobifluorene-based donor (diphenylamine)–acceptor (dicyano or cyanoacrylic acid moieties) compounds adsorbed from highly diluted solutions onto Au and indium tin oxide electrode surfaces. Strong intramolecular charge separation (negative SPV signals up to more than 0.1 V) due to directed molecule adsorption was observed only for spirobifluorene donor–acceptor compounds with carboxylic acid moiety. SPV signals and onset energies of electronic transitions depended on ambience conditions. - Highlights: ► Fluorene donor–acceptor derivatives were adsorbed at Au and indium tin oxide. ► Surface photovoltage measurements were performed with a Kelvin-probe. ► Strong intra-molecular charge separation was observed. ► SPV signals depended on ambience conditions

  6. Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes.

    Science.gov (United States)

    Santos, Fabiano da Silveira; Descalzo, Rodrigo Roceti; Gonçalves, Paulo Fernando Bruno; Benvenutti, Edilson Valmir; Rodembusch, Fabiano Severo

    2012-08-21

    Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

  7. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events.

    Science.gov (United States)

    Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak

    2015-07-07

    We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.

  8. Ultrafast intramolecular charge transfer with N-(4-cyanophenyl)carbazole. Evidence for a LE precursor and dual LE + ICT fluorescence.

    Science.gov (United States)

    Galievsky, Victor A; Druzhinin, Sergey I; Demeter, Attila; Mayer, Peter; Kovalenko, Sergey A; Senyushkina, Tamara A; Zachariasse, Klaas A

    2010-12-09

    The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ⇄ ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ∼4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE

  9. Effect of base-pair inhomogeneities on charge transport along the DNA molecule, mediated by twist and radial polarons

    International Nuclear Information System (INIS)

    Palmero, F; Archilla, J F R; Hennig, D; Romero, F R

    2004-01-01

    Some recent results for a three-dimensional, semi-classical, tight-binding model for DNA show that there are two types of polarons, namely radial and twist polarons, which can transport charge along the DNA molecule. However, the existence of two types of base pairs in real DNA makes it crucial to find out if charge transport also exists in DNA chains with different base pairs. In this paper, we address this problem in its simple case, a homogeneous chain except for a single different base pair, which we call a base-pair inhomogeneity, and its effect on charge transport. Radial polarons experience either reflection or trapping. However, twist polarons are good candidates for charge transport along real DNA. This transport is also very robust with respect to weak parametric and diagonal disorder

  10. The low-lying πσ* state and its role in the intramolecular charge transfer of aminobenzonitriles and aminobenzethyne

    International Nuclear Information System (INIS)

    Lee, Jae-Kwang; Fujiwara, Takashige; Kofron, William G.; Zgierski, Marek Z.; Lim, Edward C.

    2008-01-01

    Electronic absorption spectra of the low-lying ππ* and πσ* states of several aminobenzonitriles and 4-dimethylaminobenzethyne have been studied by time-resolved transient absorption and time-dependent density functional theory calculation. In acetonitrile, the lifetime of the πσ*-state absorption is very short (picoseconds or subpicosecond) for molecules that exhibit intramolecular charge transfer (ICT), and very long (nanoseconds) for those that do not. Where direct comparison of the temporal characteristics of the πσ*-state and the ICT-state transients could be made, the formation rate of the ICT state is identical to the decay rate of the πσ* state within the experimental uncertainty. These results are consistent with the πσ*-mediated ICT mechanism, L a (ππ*)→πσ*→ICT, in which the decay rate of the πσ* state is determined by the rate of the solvent-controlled πσ*→ICT charge-shift reaction. The ππ*→πσ* state crossing does not occur in 3-dimethylaminobenzonitrile or 2-dimethylaminobenzonitrile, as predicted by the calculation, and 4-aminobenzonitrile and 4-dimethylaminobenzethyne does not exhibit the ICT reaction, consistent with the higher energy of the ICT state relative to the πσ* state

  11. Charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion

    Energy Technology Data Exchange (ETDEWEB)

    Rahmi, Kinanti Aldilla, E-mail: kinanti.aldilla@ui.ac.id; Yudiarsah, Efta [Physics Department, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia)

    2016-04-19

    By using tight binding Hamiltonian model, charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion is studied. The DNA chain used is 32 base pairs long poly(dA)-poly(dT) molecule. The molecule is contacted to electrode at both ends. The influence of environment on charge transport in DNA is modeled as variation of backbone disorder. The twisting motion amplitude is taking into account by assuming that the twisting angle distributes following Gaussian distribution function with zero average and standard deviation proportional to square root of temperature and inversely proportional to the twisting motion frequency. The base-pair twisting motion influences both the onsite energy of the bases and electron hopping constant between bases. The charge transport properties are studied by calculating current using Landauer-Buttiker formula from transmission probabilities which is calculated by transfer matrix methods. The result shows that as the backbone disorder increases, the maximum current decreases. By decreasing the twisting motion frequency, the current increases rapidly at low voltage, but the current increases slower at higher voltage. The threshold voltage can increase or decrease with increasing backbone disorder and increasing twisting frequency.

  12. An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells.

    Science.gov (United States)

    Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua

    2017-01-01

    It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Dual Mechanism of an Intramolecular Charge Transfer (ICT)-FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide.

    Science.gov (United States)

    Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing

    2017-12-14

    A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Excited state intramolecular charge transfer reaction in binary mixtures of water and tertiary butanol (TBA): alcohol mole fraction dependence.

    Science.gov (United States)

    Pradhan, Tuhin; Ghoshal, Piue; Biswas, Ranjit

    2008-02-07

    The excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) has been studied in water-tertiary butanol (TBA) mixtures at different alcohol mole fractions by using steady state and time-resolved fluorescence spectroscopy. The ratio between the areas under the locally excited (LE) and charge transferred (CT) emission bands is found to exhibit a sharp rise at alcohol mole fraction approximately 0.04, a value at which several thermodynamic properties of this mixture is known to show anomalous change due to the enhancement of H-bonding network. The radiative rate associated with the LE emission also shows a maximum at this TBA mole fraction. Although the structural transition from the water-like tetrahedral network to the alcohol-like chain is reflected in the red shift of the absorption spectrum up to TBA mole fraction approximately 0.10, the emission bands (both LE and CT) show the typical nonideal alcohol mole fraction dependence at all TBA mole fractions. Quantum yield, CT radiative rate as well as transition moments also exhibit a nonideal alcohol mole fraction dependence. The time-resolved emission decay of P4C has been found to be biexponential at all TBA mole fractions, regardless of emission collection around either the LE or the CT bands. The time constant associated with the slow component (tau(slow)) shows a minimum at TBA mole fraction approximately 0.04, whereas such a minimum for the fast time constant, tau(fast) (representing the rate of LE --> CT conversion reaction) is not observed. The nonobservation of the minimum in tau(fast) might be due to the limited time resolution employed in our experiments.

  15. `Twisted' electrons

    Science.gov (United States)

    Larocque, Hugo; Kaminer, Ido; Grillo, Vincenzo; Leuchs, Gerd; Padgett, Miles J.; Boyd, Robert W.; Segev, Mordechai; Karimi, Ebrahim

    2018-04-01

    Electrons have played a significant role in the development of many fields of physics during the last century. The interest surrounding them mostly involved their wave-like features prescribed by the quantum theory. In particular, these features correctly predict the behaviour of electrons in various physical systems including atoms, molecules, solid-state materials, and even in free space. Ten years ago, new breakthroughs were made, arising from the new ability to bestow orbital angular momentum (OAM) to the wave function of electrons. This quantity, in conjunction with the electron's charge, results in an additional magnetic property. Owing to these features, OAM-carrying, or twisted, electrons can effectively interact with magnetic fields in unprecedented ways and have motivated materials scientists to find new methods for generating twisted electrons and measuring their OAM content. Here, we provide an overview of such techniques along with an introduction to the exciting dynamics of twisted electrons.

  16. Flexible Faraday Cage with a Twist: Surface Charge on a Möbius Strip

    Science.gov (United States)

    Stewart, Seán

    2007-05-01

    Once an intriguing topological novelty known only to mathematicians, the Möbius strip has become a source of fascination and inspiration to the layperson and artist alike. Principal among its features are the two strange properties that the Möbius strip is a surface with only one side and one edge. A Möbius strip is readily formed by taking a long rectangular strip of paper and giving one of its ends a half twist before joining it to its other end (see Fig. 1). Given its simplicity, I hoped to profit from its appealing yet counterintuitive nature by designing a simple demonstration experiment that would reveal the intrinsic physical difference between one- and two-sided surfaces.

  17. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan

    2017-01-01

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  18. Competitive photocyclization/rearrangement of 4-aryl-1,1-dicyanobutenes controlled by intramolecular charge-transfer interaction. Effect of medium polarity, temperature, pressure, excitation wavelength, and confinement.

    Science.gov (United States)

    Ito, Tadashi; Nishiuchi, Emi; Fukuhara, Gaku; Inoue, Yoshihisa; Mori, Tadashi

    2011-09-01

    A series of 4-aryl-1,1-dicyanobutenes (1a-1f) with different substituents were synthesized to control the intramolecular donor-acceptor or charge-transfer (C-T) interactions in the ground state. Photoexcitation of these C-T substrates led to competitive cyclization and rearrangement, the ratio being critically controlled by various environmental factors, such as solvent polarity, temperature and static pressure, and also by excitation wavelength and supramolecular confinement (polyethylene voids). In non-polar solvents, the rearrangement was dominant (>10 : 1) for all examined substrates, while the cyclization was favoured in polar solvents, in particular at low temperatures. Selective excitation at the C-T band further enhanced the cyclization up to >50 : 1 ratios. More importantly, the cyclization/rearrangement ratio was revealed to be a linear function of the C-T transition energy. However, the substrates with a sterically demanding or highly electron-donating substituent failed to give the cyclization product.

  19. Cold-fluid theory of equilibrium and stability of a high-intensity periodically twisted ellipse-shaped charged-particle beam

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2006-03-01

    Full Text Available It is shown that there exists an exact paraxial cold-fluid equilibrium of a high-intensity, space-charge-dominated charged-particle beam with a periodically twisted elliptic cross section in a nonaxisymmetric periodic magnetic field. Generalized envelope equations, which determine the beam envelopes, ellipse orientation, density, and internal flow velocity profiles, are derived. Nonrelativistic and relativistic examples of such beam equilibria are presented. The equilibrium and stability of such beams are demonstrated by self-consistent particle-in-cell (PIC simulations.

  20. A novel chalcone-analogue as an optical sensor based on ground and excited states intramolecular charge transfer: A combined experimental and theoretical study

    International Nuclear Information System (INIS)

    Fayed, Tarek A.

    2006-01-01

    Steady-state absorption and emission spectroscopic techniques as well as semiempirical quantum calculations at the AM1 and ZINDO/S levels have been used to investigate the intramolecular charge transfer (ICT) behaviour of a novel chalcone namely; 1-(2-pyridyl)-5-(4-dimethylaminophenyl)-penta-2,4-diene-1-one, DMAC. The ground state DMAC has a significant ICT character and a great sensitivity to the hydrogen bond donating ability of the medium as reflected from the change of the absorption spectra in pure and mixed organic solvents. On the other hand, its excited singlet state exhibits high ICT characters as manifested by the drastic solvatochromic effects. These results are consistent with the data of charge density calculations in both the ground and excited state, which indicates enhancement of the charge transfer from the dimethyl-amino group to the carbonyl oxygen upon excitation. Also, the dipole moment calculations indicates a highly dipolar excited singlet state (Δμ eg = 15.5 D). The solvent dependence of the fluorescence quantum yield of DMAC was interpreted on the basis of positive and negative solvatokinetic as well as the hydrogen bonding effects. Incorporation of the 2-pyridyl group in the chemical structure of the present DMAC led to design of a potential optical sensor for probing acidity of the medium and metal cations such as Zn 2+ , Cd 2+ and Hg 2+ . This was concluded from the high acidochromic and metallochromic behaviour of DMAC on adding such cations to its acetonitrile solutions

  1. Twisted light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-12-01

    Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...

  2. An intramolecular charge transfer state of carbonyl carotenoids: implications for excited state dynamics of apo-carotenals and retinal

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Kaligotla, S.; Chábera, P.; Frank, H.A.

    2011-01-01

    Roč. 13, č. 22 (2011), s. 1463-9076 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoid * retinal * excited-state dynamics * charge-transfer state Subject RIV: BO - Biophysics Impact factor: 3.573, year: 2011

  3. Evaluation of the Intramolecular Charge-Transfer Properties in Solvatochromic and Electrochromic Zinc Octa(carbazolyl)phthalocyanines.

    Science.gov (United States)

    Majeed, Shereen A; Ghazal, Basma; Nevonen, Dustin E; Goff, Philip C; Blank, David A; Nemykin, Victor N; Makhseed, Saad

    2017-10-02

    2,3,9,10,16,17,23·24-Octakis-(9H-carbazol-9-yl) phthalocyaninato zinc(II) (3) and 2,3,9,10,16,17,23·24-octakis-(3,6-di-tert-butyl-9H-carbazole) phthalocyaninato zinc(II) (4) complexes were prepared and characterized by NMR and UV-vis spectroscopies, magnetic circular dichroism (MCD), matrix-assisted laser desorption ionization mass spectrometry, and X-ray crystallography. UV-vis and MCD data are indicative of the interligand charge-transfer nature of the broad band observed in 450-500 nm range for 3 and 4. The redox properties of 3 and 4 were probed by electrochemical and spectro-electrochemical methods, which are suggestive of phthalocyanine-centered first oxidation and reduction processes. Photophysics of 3 and 4 were investigated by steady-state fluorescence and time-resolved transient absorption spectroscopy demonstrating the influence of the carbazole substituents on deactivation from the first excited state in 3 and 4. Protonation of the meso-nitrogen atoms in 3 results in much faster deactivation kinetics from the first excited state. Spectroscopic data were correlated with density functional theory (DFT) and time-dependent DFT calculations on 3 and 4.

  4. Silver colloidal effects on excited-state structure and intramolecular charge transfer of p-N, N-dimethylaminobenzoic acid in aqueous cyclodextrin solutions

    International Nuclear Information System (INIS)

    Choi, Jung Kwon; Kim, Yang Hee; Yoon, Min Joong; Lee, Seung Joon; Kim, Kwan; Jeoung, Sae Chae

    2001-01-01

    The silver colloidal effects on the excited-state structure and intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABA) in aqueous cyclodextrin (CD) solutions have been investigated by UV-VIS absorption, steady-state and time-resolved fluorescence, and transient Raman spectroscopy. As the concentration of silver colloids increases, the ratio of the ICT emission to the normal emission (I a /I b ) of DMABA in the aqueous α-CD solutions are greatly decreased while the I a /I b values in the aqueous β-CD solutions are significantly enhanced. It is also noteworthy that the ICT emission maxima are red-shifted by 15-40 nm upon addition of silver colloids, implying that DMABA encapsulated in α-CD or β-CD cavity is exposed to more polar environment. The transient resonance Raman spectra of DMABA in silver colloidal solutions demonstrate that DMABA in the excited-state is desorbed from silver colloidal surfaces as demonstrated by the disappearance of v s (CO 2 - )(1380 cm -1 ) with appearance of v (C-OH)(1280 cm -1 ) band, respectively. Thus, in the aqueous β-CD solutions the carboxylic acid group of DMABA in the excited-state can be readily hydrogen bonded with the secondary hydroxyl group of β-CD while in aqueous and α-CD solutions the carboxylic acid group of DMABA has the hydrogen-bonding interaction with water. Consequently, in the aqueous β-CD solutions the enhancement of the I a /I b value arises from the intermolecular hydrogen-bonding interaction between DMABA and the secondary hydroxyl group of β-CD as well as the lower polarity of the rim of the β-CD cavity compared to bulk water. This is also supported by the increase of the association constant for DMABA/β-CD complex in the presence of silver colloids

  5. Selective Complexation of Cyanide and Fluoride Ions with Ammonium Boranes: A Theoretical Study on Sensing Mechanism Involving Intramolecular Charge Transfer and Configurational Changes.

    Science.gov (United States)

    Bhat, Haamid R; Jha, Prakash C

    2017-05-18

    The anion binding selectivity and the recognition mechanism of two isomeric boranes, namely, 4-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline ([p-(Mes 2 B)C 6 H 4 (NMe 3 )] + , 1, where "Mes" represents mesitylene and "Me" represents methyl) and 2-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline ([o-(Mes 2 B)C 6 H 4 (NMe 3 )] + , 2) has been investigated using density functional theory (DFT) and time dependent-density functional theory (TD-DFT) methods. Natural population analysis indicates that the central boron atoms in 1 and 2 are the most active centers for nucleophilic addition of anions. The negative magnitude of free energy changes (ΔG) reveals that out of CN - , F - , Cl - , Br - , NO 3 - , and HSO 4 - only the binding of CN - and F - with 1 and 2 is thermodynamically feasible and spontaneous. In addition, the calculated binding energies reveal that the CN - is showing lesser binding affinity than F - both with 1 and 2, while other ions, viz. NO 3 - , HSO 4 - , Br - , and Cl - , either do not bind at all or show very insignificant binding energy. The first excited states (S 1 ) of 1 and 2 are shown to be the local excited states with π → σ* transition by frontier molecular orbital analysis, whereas fourth excited states (S 4 ) of 4-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline cyanide ([p-(Mes 2 B)C 6 H 4 (NMe 3 )] CN, 1CN, the cyano form of 1) and 4-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline fluoride ([p-(Mes 2 B)C 6 H 4 (NMe 3 )] F, 1F, the fluoro form of 1) and fifth excited state (S 5 ) of 2-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline fluoride ([o-(Mes 2 B)C 6 H 4 (NMe 3 )] F, 2F, the fluoro form of 2) are charge separation states that are found to be responsible for the intramolecular charge transfer (ICT) process. The synergistic effect of ICT and partial configuration changes induce fluorescence quenching in 1CN, 1F, and 2F after a significant internal conversion (IC) from S 4 and

  6. Effect of Viscosity and Polar Properties of Solvent on Dynamics of Photoinduced Charge Transfer in BTA-1 Cation — Derivative of Thioflavin T

    Science.gov (United States)

    Gogoleva, S. D.; Stsiapura, V. I.

    2018-05-01

    It was found that the spectral and fluorescent properties of BTA-1C cation in protic and aprotic solvents differ. It was shown that for solutions in long-chain alcohols viscosity is the main factor that determines the dynamics of intramolecular charge transfer in the excited state of the BTA-1C molecule. In the case of aprotic solvents a correlation was found between the rate constant of twisted intramolecular charge transfer (TICT) during rotation of fragments of the molecule in relation to each other in the excited state and the solvent relaxation rate: k TICT 1/τ S .

  7. Oliver Twist

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and

  8. Photoinduced intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye. Picosecond and nanosecond laser spectroscopy, high-performance liquid chromatography, and nuclear magnetic resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Mialocq, J.C.; Perly, B. (CNRS, Gif-sur-Yvette (France))

    1990-01-11

    The photoexcitation of 4-(dicyanomethylene)-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran (DCM) induces a large intramolecular charge transfer (ICT) from the dimethylamino electron-donor group to the dicyanomethylene acceptor group. The dramatic effect of the solvent polarity on the absorption and fluorescence spectra on the one hand and the competition between the nonradiative S{sub 1} {yields} S{sub 0} deactivation and trans {yields} cis isomerization processes on the other hand has been examined. Our results clearly show that DCM isomerization efficiency is very low in the more polar solvents. The S{sub 1} {yields} S{sub 0} internal conversion may intervene at a torsional angle smaller than 90{degree} before reaching the perpendicular configuration.

  9. Intramolecular, Exciplex-Mediated, Proton-Coupled, Charge-Transfer Processes in N,N-Dimethyl-3-(1-pyrenyl)propan-1-ammonium Cations: Influence of Anion, Solvent Polarity, and Temperature.

    Science.gov (United States)

    Safko, Trevor M; Faleiros, Marcelo M; Atvars, Teresa D Z; Weiss, Richard G

    2016-06-16

    An intramolecular exciplex-mediated, proton-coupled, charge-transfer (PCCT) process has been investigated for a series of N,N-dimethyl-3-(1-pyrenyl)propan-1-ammonium cations with different anions (PyS) in solvents of low to intermediate polarity over a wide temperature range. Solvent mediates both the equilibrium between conformations of the cation that place the pyrenyl and ammonium groups in proximity (conformation C) or far from each other (conformation O) and the ability of the ammonium group to transfer a proton adiabatically in the PyS excited singlet state. Thus, exciplex emission, concurrent with the PCCT process, was observed only in hydrogen-bond accepting solvents of relatively low polarity (tetrahydrofuran, ethyl acetate, and 1,4-dioxane) and not in dichloromethane. From the exciplex emission and other spectroscopic and thermodynamic data, the acidity of the ammonium group in conformation C of the excited singlet state of PyS (pKa*) has been estimated to be ca. -3.4 in tetrahydrofuran. The ratios between the intensities of emission from the exciplex and the locally excited state (IEx/ILE) appear to be much more dependent on the nature of the anion than are the rates of exciplex formation and decay, although the excited state data do not provide a quantitative measure of the anion effect on the C-O equilibrium. The activation energies associated with exciplex formation in THF are calculated to be 0.08 to 0.15 eV lower than for the neutral amine, N,N-dimethyl-3-(1-pyrenyl)propan-1-amine. Decay of the exciplexes formed from the deprotonation of PyS is hypothesized to occur through charge-recombination processes. To our knowledge, this is the first example in which photoacidity and intramolecular exciplex formation (i.e., a PCCT reaction) are coupled.

  10. On the twist-2 and twist-3 contributions to the spin-dependent electroweak structure functions

    International Nuclear Information System (INIS)

    Bluemlein, J.; Kochelev, N.

    1997-01-01

    The twist-2 and twist-3 contributions of the polarized deep-inelastic structure functions are calculated both for neutral and charged current interactions using the operator product expansion in lowest order in QCD. The relations between the different structure functions are determined. New integral relations are derived between the twist-2 contributions of the structure functions g 3 (x,Q 2 ) and g 5 (x,Q 2 ) and between combinations of the twist-3 contributions to the structure functions g 2 (x,Q 2 ) and g 3 (x,Q 2 ). The sum rules for polarized deep-inelastic scattering are discussed in detail. (orig.)

  11. Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO 2 Anchoring Characteristics for Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jacqueline M. [Cavendish; ISIS; Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Department; Blood-Forsythe, Martin A. [Cavendish; Lin, Tze-Chia [Cavendish; Pattison, Philip [Swiss; Gong, Yun [Cavendish; Vázquez-Mayagoitia, Álvaro [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Waddell, Paul G. [Cavendish; Australian Centre for Neutron Scattering, Australian Nuclear Science; Zhang, Lei [Cavendish; Koumura, Nagatoshi [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Mori, Shogo [Division

    2017-07-25

    Donor-pi-acceptor dyes containing thiophenyl pi-conjugated units and cyanoacrylate acceptor groups are among the best-performing organic chromophores used in dye-sensitized solar cell (DSC) applications. Yet, the molecular origins of their high photovoltaic output have remained unclear until now. This synchrotron-based X-ray diffraction study elucidates these origins for the high-performance thiophenylcyanoacrylate-based dye MK-2 (7.7% DSC device efficiency) and its molecular building block, MK-44. The crystal structures of MK-2 and MK-44 are both determined, while a high-resolution charge-density mapping of the smaller molecule was also possible, enabling the nature of its bonding to be detailed. A strong S center dot center dot center dot C equivalent to N intramolecular interaction is discovered, which bears a bond critical point, thus proving that this interaction should be formally classified as a chemical bond. A topological analysis of the pi-conjugated portion of MK-44 shows that this S center dot center dot center dot C equivalent to N bonding underpins the highly efficient intramolecular charge transfer(ICT) in thiophenylcyanoacrylate dyes. This manifests as two bipartite ICT pathways bearing carboxylate and nitrile end points. In turn, these pathways dictate a preferred COO/CN anchoring mode for the dye as it adsorbs onto TiO2 surfaces, to form the dye TiO2 interface that constitutes the DSC working electrode. These results corroborate a recent proposal that all cyanoacrylate groups anchor onto TiO2 in this COO/CN binding configuration. Conformational analysis of the MK-44 and MK-2 crystal structures reveals that this S center dot center dot center dot C equivalent to N bonding will persist in MK-2. Accordingly, this newly discovered bond affords a rational explanation for the attractive photovoltaic properties of,MK-2. More generally, this study provides the first unequivocal evidence for an S center dot center dot center dot C equivalent to N

  12. Twisted supersymmetry: Twisted symmetry versus renormalizability

    International Nuclear Information System (INIS)

    Dimitrijevic, Marija; Nikolic, Biljana; Radovanovic, Voja

    2011-01-01

    We discuss a deformation of superspace based on a Hermitian twist. The twist implies a *-product that is noncommutative, Hermitian and finite when expanded in a power series of the deformation parameter. The Leibniz rule for the twisted supersymmetry transformations is deformed. A minimal deformation of the Wess-Zumino action is proposed and its renormalizability properties are discussed. There is no tadpole contribution, but the two-point function diverges. We speculate that the deformed Leibniz rule, or more generally the twisted symmetry, interferes with renormalizability properties of the model. We discuss different possibilities to render a renormalizable model.

  13. Intramolecular and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  14. Intramolecular charge transfer of 4-(dimethylamino)benzonitrile probed by time-resolved fluorescence and transient absorption: No evidence for two ICT states and a πσ* reaction intermediate

    International Nuclear Information System (INIS)

    Zachariasse, Klaas A.; Druzhinin, Sergey I.; Senyushkina, Tamara; Kovalenko, Sergey A.

    2009-01-01

    For the double exponential fluorescence decays of the locally excited (LE) and intramolecular charge transfer (ICT) states of 4-(dimethylamino)benzonitrile (DMABN) in acetonitrile (MeCN) the same times τ 1 and τ 2 are observed. This means that the reversible LE ICT reaction, starting from the initially excited LE state, can be adequately described by a two state mechanism. The most important factor responsible for the sometimes experimentally observed differences in the nanosecond decay time, with τ 1 (LE) 1 (ICT), is photoproduct formation. By employing a global analysis of the LE and ICT fluorescence response functions with a time resolution of 0.5 ps/channel in 1200 channels reliable kinetic and thermodynamic data can be obtained. The arguments presented in the literature in favor of a πσ* state with a bent CN group as an intermediate in the ICT reaction of DMABN are discussed. From the appearance of an excited state absorption (ESA) band in the spectral region between 700 and 800 nm in MeCN for N,N-dimethylanilines with CN, Br, F, CF 3 , and C(=O)OC 2 H 2 p-substituents, it is concluded that this ESA band cannot be attributed to a πσ * state, as only the C-C≡N group can undergo the required 120 deg. bending.

  15. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    International Nuclear Information System (INIS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-01-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT

  16. New stereoselective intramolecular

    Science.gov (United States)

    Alajarin; Vidal; Tovar; Ramirez De Arellano MC; Cossio; Arrieta; Lecea

    2000-11-03

    Efficient 1,4-asymmetric induction has been achieved in the highly stereocontrolled intramolecular [2 + 2] cycloadditions between ketenimines and imines, leading to 1,2-dihydroazeto[2, 1-b]quinazolines. The chiral methine carbon adjacent to the iminic nitrogen controls the exclusive formation of the cycloadducts with relative trans configuration at C2 and C8. The stepwise mechanistic model, based on theoretical calculations, fully supports the stereochemical outcome of these cycloadditions.

  17. The effect of twisted D–D–π–A configuration on electron transfer and photo-physics characteristics

    Science.gov (United States)

    Liu, Yunpeng; Li, Yuanzuo; Song, Peng; Ma, Fengcai; Yang, Yanhui

    2018-05-01

    Two D-D-π-A organic dyes (M45, M46) with dithieno[3,2-b:2‧,3‧-d]pyrrole (DTP) units as election donors in two perpendicular directions, were investigated using density functional theory (DFT) and time-dependent DFT. The ground-state geometries, the absorption, the electronic structures, the charge density difference and molecular electrostatic potential were obtained. To simulate a more realistic performance, all calculations were based on gas condition and dichloromethane solvent. Photoelectric parameters were evaluated by the following factors: the light harvesting efficiency, electron injection driving force, the excited lifetime and vertical dipole moment. Meanwhile, the polarisability and hyperpolarisability were investigated to further explain the relationship between non-linear optical properties and efficiency. The direction of the DTP obviously affects the twisted degree of molecule, forming a better coplanarity on the donor 2 of M45, which results in stronger charge transfer interactions. Furthermore, M45 possesses significant advantages in geometric structure, absorption band and intramolecular charge transfer mechanism. These critical parameters supported the higher performance of M45 in comparison with M46. Moreover, four dyes were designed by the substitution of donor 2, which further verify the influence of the twisted donor 2 on electron transfer and photoelectric properties of D-D-π-A configuration.

  18. Photophysics of internal twisting

    International Nuclear Information System (INIS)

    Heisel, F.; Miehe, J.A.; Lippert, E.; Rettig, W.; Bonacic-Koutecky, V.

    1987-01-01

    The formation and characteristics of the ''twisted intermolecular charge transfer'' is studied. Basic concepts on dual fluorescence, steady-state fluorescence, kinetic investigations and cage effects are discussed. The theoretical treatment on the electronic structure of the bonded π - donor - π acceptor pairs is outlined. The two-electron, two-orbital model, the ab initio CI models of simple double, charged and dative π - bonds as well as complex dative π - bonds and the origin of the dual fluorescence of 9.9'-Bianthryl are shown. Concerning the stochastic description of chemical reactions, Master equation, Markov, Birth-Death and Diffusion processes, Kramers-Moyal expansion, Langevin equation, Kramers' approach to steady-state rates of reaction and its extension to non-Markovian processes, and also unimolecular reactions in the absence of potential barrier are considered. Experimental results and interpretation on dynamics of DMABN in the excited state, kinetics of other dialkylanilines, extended donor-acceptor systems with anomalous fluorescence and donor-acceptor systems without anomalous fluorescence are given

  19. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  20. Twisted network programming essentials

    CERN Document Server

    Fettig, Abe

    2005-01-01

    Twisted Network Programming Essentials from O'Reilly is a task-oriented look at this new open source, Python-based technology. The book begins with recommendations for various plug-ins and add-ons to enhance the basic package as installed. It then details Twisted's collection simple network protocols, and helper utilities. The book also includes projects that let you try out the Twisted framework for yourself. For example, you'll find examples of using Twisted to build web services applications using the REST architecture, using XML-RPC, and using SOAP. Written for developers who want to s

  1. Twisted classical Poincare algebras

    International Nuclear Information System (INIS)

    Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.

    1993-11-01

    We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

  2. WORKSHOP: Let's twist again..

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos Baillie, Orlando

    1988-12-15

    In the quantum chromodynamics (QCD) candidate theory of interquark forces, calculations involve summing the effects from many different possible quark/gluon interactions. In addition to the 'leading term' frequently used as the basis for QCD calculations, additional contributions — so-called 'higher twists' — are modulated by powers of kinematical factors. An illuminating international workshop to discuss higher twist QCD was held at the College de France, Paris, from 21-23 September.

  3. A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures

    KAUST Repository

    Chen, Xiankai

    2017-10-17

    In the traditional molecular design of thermally activated delayed fluorescence (TADF) emitters composed of electron-donor and electron-acceptor moieties, achieving a small singlet-triplet energy gap (ΔEST ) in strongly twisted structures usually translates into a small fluorescence oscillator strength, which can significantly decrease the emission quantum yield and limit efficiency in organic light-emitting diode devices. Here, based on the results of quantum-chemical calculations on TADF emitters composed of carbazole donor and 2,4,6-triphenyl-1,3,5-triazine acceptor moieties, a new strategy is proposed for the molecular design of efficient TADF emitters that combine a small ΔEST with a large fluorescence oscillator strength. Since this strategy goes beyond the traditional framework of structurally twisted, charge-transfer type emitters, importantly, it opens the way for coplanar molecules to be efficient TADF emitters. Here, a new emitter, composed of azatriangulene and diphenyltriazine moieties, is theoretically designed, which is coplanar due to intramolecular H-bonding interactions. The synthesis of this hexamethylazatriangulene-triazine (HMAT-TRZ) emitter and its preliminary photophysical characterizations point to HMAT-TRZ as a potential efficient TADF emitter.

  4. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  5. A Transformation Called "Twist"

    Science.gov (United States)

    Hwang, Daniel

    2010-01-01

    The transformations found in secondary mathematics curriculum are typically limited to stretches and translations (e.g., ACARA, 2010). Advanced students may find the transformation, twist, to be of further interest. As most available resources are written for professional-level readers, this article is intended to be an introduction accessible to…

  6. SpaceTwist

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Jensen, Christian Søndergaard; Xuegang, Huang

    2008-01-01

    -based matching generally fall short in offering practical query accuracy guarantees. Our proposed framework, called SpaceTwist, rectifies these shortcomings for k nearest neighbor (kNN) queries. Starting with a location different from the user's actual location, nearest neighbors are retrieved incrementally...

  7. Twisting the Mirror TBA

    NARCIS (Netherlands)

    Arutyunov, G.E.; de Leeuw, M.; van Tongeren, S.J.

    2010-01-01

    We study finite-size corrections to the magnon dispersion relation in three models which differ from string theory on AdS5 x S5 in their boundary conditions. Asymptotically, this is accomplished by twisting the transfer matrix in a way which manifestly preserves integrability. In model I all

  8. Electronic and Optical Properties of Twisted Bilayer Graphene

    Science.gov (United States)

    Huang, Shengqiang

    symmetry is broken with an external electric field. We observe a double-line profile of these states on the domain walls, only occurring when the AB and BA regions are gaped. These states give rise to channels that could transport charge in a dissipationless manner making twisted bilayer graphene a promising platform to realize controllable topological networks for future applications.

  9. Twisted boundary states in c=1 coset conformal field theories

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Yamaguchi, Atsushi

    2003-01-01

    We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the charge-conjugation modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n) 1 +so(2n) 1 /so(2n) 2 , which is equivalent to the orbifold S 1 /Z 2 at a particular radius. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield conformal boundary states that preserve only the Virasoro algebra. (author)

  10. Twisted quantum doubles

    Directory of Open Access Journals (Sweden)

    Daijiro Fukuda

    2004-01-01

    Full Text Available Using diagrammatic pictures of tensor contractions, we consider a Hopf algebra (Aop⊗ℛλA** twisted by an element ℛλ∈A*⊗Aop corresponding to a Hopf algebra morphism λ:A→A. We show that this Hopf algebra is quasitriangular with the universal R-matrix coming from ℛλ when λ2=idA, generalizing the quantum double construction which corresponds to the case λ=idA.

  11. Twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Shindler, A.

    2007-07-01

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  12. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  13. Twist limits for late twisting double somersaults on trampoline.

    Science.gov (United States)

    Yeadon, M R; Hiley, M J

    2017-06-14

    An angle-driven computer simulation model of aerial movement was used to determine the maximum amount of twist that could be produced in the second somersault of a double somersault on trampoline using asymmetrical movements of the arms and hips. Lower bounds were placed on the durations of arm and hip angle changes based on performances of a world trampoline champion whose inertia parameters were used in the simulations. The limiting movements were identified as the largest possible odd number of half twists for forward somersaulting takeoffs and even number of half twists for backward takeoffs. Simulations of these two limiting movements were found using simulated annealing optimisation to produce the required amounts of somersault, tilt and twist at landing after a flight time of 2.0s. Additional optimisations were then run to seek solutions with the arms less adducted during the twisting phase. It was found that 3½ twists could be produced in the second somersault of a forward piked double somersault with arms abducted 8° from full adduction during the twisting phase and that three twists could be produced in the second somersault of a backward straight double somersault with arms fully adducted to the body. These two movements are at the limits of performance for elite trampolinists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Intramolecular Association within the SAFT Framework

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Chapman, Walter G.

    2011-01-01

    A general theory for modelling intramolecular association within the SAFT framework is proposed. Sear and Jackson [Phys. Rev. E. 50 (1), 386 (1994)] and Ghonasgi and Chapman [J. Chem. Phys. 102 (6), 2585 (1995)] have previously extended SAFT to include intramolecular association for chains with two...... the contribution to the Helmholtz free energy from association (inter- as well as intramolecularly) at equilibrium. Sear and Jackson rederived the contribution to the Helmholtz free energy from association from the theory by Wertheim [J. Stat. Phys. 42 (3–4), 459 (1986)] with inclusion of intramolecular...

  15. Symmetry of quantum intramolecular dynamics

    International Nuclear Information System (INIS)

    Burenin, Alexander V

    2002-01-01

    The paper reviews the current progress in describing quantum intramolecular dynamics using merely symmetry principles as a basis. This closed qualitative approach is of particular interest because it is the only method currently available for a broad class of topical problems in the internal dynamics of molecules. Moreover, a molecule makes a physical system whose collective internal motions are geometrically structured, so that its description by perturbation methods requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed. In particular, the point group of a molecule is of this type. (methodological notes)

  16. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  17. TEK twisted gradient flow running coupling

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori

    2014-01-01

    We measure the running of the twisted gradient flow coupling in the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions in the large N limit.

  18. Teaching Spatial Awareness for Better Twisting Somersaults.

    Science.gov (United States)

    Hennessy, Jeff T.

    1985-01-01

    The barani (front somersault with one-half twist) and the back somersault with one twist are basic foundation skills necessary for more advanced twisting maneuvers. Descriptions of these movements on a trampoline surface are offered. (DF)

  19. On reflection algebras and twisted Yangians

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2005-01-01

    It is well known that integrable models associated to rational R matrices give rise to certain non-Abelian symmetries known as Yangians. Analogously boundary symmetries arise when general but still integrable boundary conditions are implemented, as originally argued by Delius, Mackay, and Short from the field theory point of view, in the context of the principal chiral model on the half-line. In the present study we deal with a discrete quantum mechanical system with boundaries, that is the N site gl(n) open quantum spin chain. In particular, the open spin chain with two distinct types of boundary condition known as soliton preserving and soliton nonpreserving is considered. For both types of boundaries we present a unified framework for deriving the corresponding boundary nonlocal charges directly at the quantum level. The nonlocal charges are simply coproduct realizations of particular boundary quantum algebras called boundary or twisted Yangians, depending on the choice of boundary conditions. Finally, with the help of linear intertwining relations between the solutions of the reflection equation and the generators of the boundary or twisted Yangians we are able to exhibit the exact symmetry of the open spin chain, namely we show that a number of the boundary nonlocal charges are in fact conserved quantities

  20. Twisting perturbed parafermions

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-07-01

    Full Text Available The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang–Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6 nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current–current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3 sigma model which is reformulated as perturbed parafermions.

  1. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  2. How to Twist a Knot

    DEFF Research Database (Denmark)

    Randrup, Thomas; Røgen, Peter

    1997-01-01

    is an invariant of ambient isotopy measuring the topological twist of the closed strip. We classify closed strips in euclidean 3-space by their knots and their twisting number. We prove that this classification exactly divides closed strips into isotopy classes. Using this classification we point out how some...

  3. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...... beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps...

  4. Theoretical investigation of the charge-transfer properties in different meso-linked zinc porphyrins for highly efficient dye-sensitized solar cells.

    Science.gov (United States)

    Namuangruk, Supawadee; Sirithip, Kanokkorn; Rattanatwan, Rattanawelee; Keawin, Tinnagon; Kungwan, Nawee; Sudyodsuk, Taweesak; Promarak, Vinich; Surakhot, Yaowarat; Jungsuttiwong, Siriporn

    2014-06-28

    The charge transfer effect of different meso-substituted linkages on porphyrin analogue 1 (A1, B1 and C1) was theoretically investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The calculated geometry parameters and natural bond orbital analysis reveal that the twisted conformation between porphyrin macrocycle and meso-substituted linkages leads to blocking of the conjugation of the conjugated backbone, and the frontier molecular orbital plot shows that the intramolecular charge transfer of A1, B1 and C1 hardly takes place. In an attempt to improve the photoinduced intramolecular charge transfer ability of the meso-linked zinc porphyrin sensitizer, a strong electron-withdrawing group (CN) was introduced into the anchoring group of analogue 1 forming analogue 2 (A2, B2 and C2). The density difference plot of A2, B2 and C2 shows that the charge transfer properties dramatically improved. The electron injection process has been performed using TDDFT; the direct charge-transfer transition in the A2-(TiO2)38 interacting system takes place; our results strongly indicated that introducing electron-withdrawing groups into the acceptor part of porphyrin dyes can fine-tune the effective conjugation length of the π-spacer and improve intramolecular charge transfer properties, consequently inducing the electron injection process from the anchoring group of the porphyrin dye to the (TiO2)38 surface which may improve the conversion efficiency of the DSSCs. Our calculated results can provide valuable information and a promising outlook for computation-aided sensitizer design with anticipated good properties in further experimental synthesis.

  5. Nature of weak inter- and intramolecular interactions in crystals. Communication 5. Interactions Na...H-B in a crystal of sodium salt of charge compensated nido-carborane [9-SMe2-7,8-C2B9H10]-

    International Nuclear Information System (INIS)

    Lysenko, K.A.; Golovanov, D.G.; Meshcheryakov, V.I.; Kudinov, A.R.; Antipin, M.Yu.

    2005-01-01

    The character of electron density distribution in the C 2 B 3 open face, the influence of the SMe 2 group on the character of electron density distribution, and the nature of the sodium-anion interaction were studied based on the data of high-resolution X-ray diffraction study of crystals of the sodium salt of charge-compensated nido-carborane [9-SMe 2 -7,8- C 2 B 9 H 10 ] - and quantum-chemical calculations for the Na...H-B-bonded dimer, the isolated [9-SMe 2 -7,8-C 2 B 9 H 10 ] - anion, and the [7,8-C 2 B 9 H 10 ] 2- dianion. The character of electron density distribution in the C 2 B 3 open face is analogous to the electron distribution in the cyclopentadienyl ligand. In nido-carborane, a substantial charge redistribution takes place compared to that observed in the closo analogs. The topological analysis of the electron density distribution function demonstrated that the cation-anion interactions are determined predominantly by Na...H-B contacts. The total energy of these contacts in the {[9-SMe 2 -7,8-C 2 B 9 H 10 ]Na(thf) 2 } 2 dimer estimated from X-ray diffraction data is 11.74 kcal mol -1 [ru

  6. Partial twisting for scalar mesons

    International Nuclear Information System (INIS)

    Agadjanov, Dimitri; Meißner, Ulf-G.; Rusetsky, Akaki

    2014-01-01

    The possibility of imposing partially twisted boundary conditions is investigated for the scalar sector of lattice QCD. According to the commonly shared belief, the presence of quark-antiquark annihilation diagrams in the intermediate state generally hinders the use of the partial twisting. Using effective field theory techniques in a finite volume, and studying the scalar sector of QCD with total isospin I=1, we however demonstrate that partial twisting can still be performed, despite the fact that annihilation diagrams are present. The reason for this are delicate cancellations, which emerge due to the graded symmetry in partially quenched QCD with valence, sea and ghost quarks. The modified Lüscher equation in case of partial twisting is given

  7. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  8. Windings of twisted strings

    Science.gov (United States)

    Casali, Eduardo; Tourkine, Piotr

    2018-03-01

    Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.

  9. Influence of Intramolecular Charge Transfer and Nuclear Quantum Effects on Intramolecular Hydrogen Bonds in Azopyrimidines

    Czech Academy of Sciences Publication Activity Database

    Bártová, Kateřina; Čechová, Lucie; Procházková, Eliška; Socha, Ondřej; Janeba, Zlatko; Dračínský, Martin

    2017-01-01

    Roč. 82, č. 19 (2017), s. 10350-10359 ISSN 0022-3263 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : pyrimidines * NMR spectroscopy * DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.849, year: 2016

  10. Structural and electronic transformation in low-angle twisted bilayer graphene

    Science.gov (United States)

    Gargiulo, Fernando; Yazyev, Oleg V.

    2018-01-01

    Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.

  11. Twisting the N=2 string

    International Nuclear Information System (INIS)

    Ketov, S.V.; Lechtenfeld, O.; Parkes, A.J.

    1993-12-01

    The most general homogeneous monodromy conditions in N= 2 string theory are classified in terms of the conjugacy classes of the global symmetry group U(1, 1) x Z 2 . For classes which generate a discrete subgroup Γ, the corresponding target space backgrounds C 1,1 /Γ include half spaces, complex orbifolds and tori. We propose a generalization of the intercept formula to matrix-valued twists, and find massless physical states in a number of twisted cases. In particular, the sixteen Z 2 -twisted sectors of the N = 2 string are investigated, and the corresponding ground states are identified via bosonization and BRST cohomology. We find enough room for an extended multiplet of 'spacetime' supersymmetry, with the number of supersymmetries being dependent on global 'spacetime' topology. Unfortunately, world-sheet locality for the chiral vertex operators does not permit interactions for the massless 'spacetime' fermions; however possibly, an asymmetric GSO projection could evade this problem. (orig.)

  12. Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Ichiyanagi, Kouhei; Sasaki, Yuji C. [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Sekiguchi, Hiroshi; Hoshino, Masato; Kajiwara, Kentaro; Senba, Yasunori; Ohashi, Haruhiko; Ohta, Noboru [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Hoshisashi, Kentaro; Jae-won, Chang; Tokue, Maki; Matsushita, Yufuku [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Nishijima, Masaki; Inoue, Yoshihisa [Department of Applied Chemistry and Office for University-Industry Collaboration, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yagi, Naoto [Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-10-15

    Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 10–20 keV (△E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.

  13. Introduction to twisted conformal fields

    International Nuclear Information System (INIS)

    Kazama, Y.

    1988-01-01

    A pedagogical account is given of the recent developments in the theory of twisted conformal fields. Among other things, the main part of the lecture concerns the construction of the twist-emission vertex operator, which is a generalization of the fermion emission vertex in the superstring theory. Several different forms of the vertex are derived and their mutural relationships are clarified. In this paper, the authors include a brief survey of the history of the fermion emission vertex, as it offers a good perspective in which to appreciate the logical development

  14. Regular non-twisting S-branes

    International Nuclear Information System (INIS)

    Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.

    2004-01-01

    We construct a family of time and angular dependent, regular S-brane solutions which corresponds to a simple analytical continuation of the Zipoy-Voorhees 4-dimensional vacuum spacetime. The solutions are asymptotically flat and turn out to be free of singularities without requiring a twist in space. They can be considered as the simplest non-singular generalization of the singular S0-brane solution. We analyze the properties of a representative of this family of solutions and show that it resembles to some extent the asymptotic properties of the regular Kerr S-brane. The R-symmetry corresponds, however, to the general lorentzian symmetry. Several generalizations of this regular solution are derived which include a charged S-brane and an additional dilatonic field. (author)

  15. Separation of minimum and higher twist in photoproduction of high-pT mesons

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Flower, P.S.; Hallewell, G.; Morris, J.A.G.; Morris, J.V.; Paterson, C.N.; Sharp, P.H.; Atkinson, M.; Brook, N.; Coyle, P.; Dickinson, B.; Donnachie, A.; Doyle, A.T.; Ellison, R.J.; Foster, J.M.; Hughes-Jones, R.E.; Ibbotson, M.; Kolya, S.D.; Lafferty, G.D.; McCann, H.; McManus, C.; Mercer, D.; Ottewell, P.J.; Reid, D.; Thompson, R.J.; Waterhouse, J.; Barberis, D.; Davenport, M.; Eades, J.; Ingelman, G.; McClatchey, R.; Brodbeck, T.J.; Charity, T.; Clegg, A.B.; Henderson, R.C.W.; Hickman, M.T.; Keemer, N.R.; Newton, D.; O'Connor, A.; Wilson, G.W.; Danaher, S.; Galbraith, W.; Thacker, N.A.; Thompson, L.; Diekmann, B.; Gapp, C.; Gebert, F.; Heinloth, K.; Hoeger, K.C.; Holzkamp, A.; Holzkamp, S.; Jakob, H.P.; Joseph, D.; Kingler, J.; Koersgen, G.; Oedingen, R.; Paul, E.; Rotscheidt, H.; Soeldner-Rembold, S.; Weigend, A.S.

    1991-01-01

    Photo- and hadroproduction data in the beam energy range 65-175 GeV have been studied with a view to isolating higher-twist processes in photoproduction from other point-like and hadron-like contributions. With selection of charged tracks having p T >2 GeV/c and 0.28 F <0.84 indications of a higher twist contribution have been found at a level that is consistent with QCD expectations. (orig.)

  16. Waveguides with asymptotically diverging twisting

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David

    2015-01-01

    Roč. 46, AUG (2015), s. 7-10 ISSN 0893-9659 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguide * exploding twisting * Quasi-bounded * Quasi-cylindrical * discrete spectrum Subject RIV: BE - Theoretical Physics Impact factor: 1.659, year: 2015

  17. Obstructions for twist star products

    Science.gov (United States)

    Bieliavsky, Pierre; Esposito, Chiara; Waldmann, Stefan; Weber, Thomas

    2018-05-01

    In this short note, we point out that not every star product is induced by a Drinfel'd twist by showing that not every Poisson structure is induced by a classical r-matrix. Examples include the higher genus symplectic Pretzel surfaces and the symplectic sphere S^2.

  18. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    cal reactions to the determination of paleotempera- tures from isotopic ... ordered liquid than H2O due to stronger H-bond in- teractions in the deuterated water ... layer chromatography and monitoring the excitation wavelength dependence of ...

  19. Excited state intramolecular charge transfer reaction in non-aqueous ...

    Indian Academy of Sciences (India)

    polar phase and thus leading to less swelling of reverse .... ues were restricted up to the limit at which no phase separation was ..... The lower panel of figure 1 also indicates that the slopes of ... probe in its ground and excited states.55.

  20. Photoinduced intramolecular charge-transfer reactions in 4-amino-3 ...

    Indian Academy of Sciences (India)

    TECS

    cooled molecular beams. Theoretical calculations using density functional theory help to determine structure, vibrational modes, potential energy surface, transition energy and oscillator strength for correlating experimental findings.

  1. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  2. Twist deformations of the supersymmetric quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Castro, P.G.; Chakraborty, B.; Toppan, F., E-mail: pgcastro@cbpf.b, E-mail: biswajit@bose.res.i, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2009-07-01

    The N-extended supersymmetric quantum mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its universal enveloping superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed. (author)

  3. Noncommutative geometry and twisted conformal symmetry

    International Nuclear Information System (INIS)

    Matlock, Peter

    2005-01-01

    The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra

  4. Photochemical Dynamics of Intramolecular Singlet Fission

    Science.gov (United States)

    Lin, Zhou; Iwasaki, Hikari; Van Voorhis, Troy

    2017-06-01

    Singlet fission (SF) converts a singlet exciton (S_1) into a pair of triplet ones (T_1) via a ``multi-exciton'' (ME) intermediate: S_1 \\longleftrightarrow ^1ME \\longleftrightarrow ^1(T_1T_1) \\longrightarrow 2T_1. In exothermic cases, e.g., crystalline pentacene or its derivatives, the quantum yield of SF can reach 200%. With SF doubling the electric current generated by an incident high-energy photon, the solar conversion efficiency in pentacene-based organic photovoltaics (OPVs) can exceed the Shockley-Queisser limit of 33.7%. The ME state is popularly considered to be a dimeric state with significant charge transfer (CT) character that is strongly coupled to both S_1 and ^1(T_1T_1), while this local model lacks strong support from full quantum dynamics studies. Intramolecular SF (ISF) occurring to covalently-bound dimers in the solution phase is an excellent model for a straightforward dynamics simulation of local excitons. In the present study, we investigate the ISF mechanisms for three covalently-bound dimers of pentacene derivatives, including ortho-, meta-, and para-bis(6,13-bis(triisopropylsilylethynyl)pentacene)benzene, in non-protic solvents. Specifically, we propagate the real-time, non-adiabatic quantum mechanical/molecular mechanical (QM/MM) dynamics on the potential energy surfaces associated with the states of S_1, ^1(T_1T_1) and CT. We explore how the energies of these ISF-relevant states and the non-adiabatic couplings between each other fluctuate with time and the instantaneous molecular configuration (e.g., intermonomer distance and orientation). We also quantitatively compare Condon and non-Condon ISF dynamics with solution-phase spectroscopic data. Our results allow us to understand the roles of CT energy levels in the ISF mechanism and propose a design strategy to maximize ISF efficiency. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010). W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). T. C. Berkelbach, M. S. Hybertsen

  5. Renormalization constants for 2-twist operators in twisted mass QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Constantinou, M.; Panagopoulos, H.; Stylianou, F.; Korzec, T.

    2011-01-01

    Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to β=3.9, 4.05, 4.20. Subtraction of O(a 2 ) terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to O(a 2 ). The renormalization conditions are defined in the RI ' -MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.

  6. Solvent control of intramolecular proton transfer

    DEFF Research Database (Denmark)

    Manolova, Y.; Marciniak, Heinz; Tschierlei, S.

    2017-01-01

    of molecules in the enol and zwitterionic proton transfer (PT) form exists in the ground state. However, the zwitterion is the energetically favored one in the electronically excited state. Optical excitation of the enol form results in intramolecular proton transfer and formation of the PT form within 1.4 ps...

  7. INTRAMOLECULAR ISOTOPE EFFECTS IN HYDROCARBON MASS SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, D. P.; Schachtschneider, J. H.

    1963-07-15

    Approximate calculations based on the quasi-equilibrium rate theory of the origin of mass spectra are shown to lead to an approximately correct magnitude for the intramolecular ( pi /sup -/) isotope effect on C--H bond dissociation probabilities of various deuterohydrocarbons. (auth)

  8. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.

    2010-01-01

    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of

  9. Effective potentials for twisted fields

    International Nuclear Information System (INIS)

    Banach, R.

    1981-01-01

    Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)

  10. Twisting formula of epsilon factors

    Indian Academy of Sciences (India)

    Sazzad Ali Biswas

    2017-08-07

    Aug 7, 2017 ... In this article, we give a generalized twisting formula for ϵ(χ1χ2,ψ), when both χ1 and χ2 are ramified via the following local Jacobi sums. Let UF be the group of units in OF (ring of integers of F). For characters χ1, χ2 of F. × and a positive integer n, we define the local Jacobi sum. Jt(χ1,χ2, n) = ∑ x∈UF. Un.

  11. Level-rank duality of untwisted and twisted D-branes

    International Nuclear Information System (INIS)

    Naculich, Stephen G.; Schnitzer, Howard J.

    2006-01-01

    Level-rank duality of untwisted and twisted D-branes of WZW models is explored. We derive the relation between D0-brane charges of level-rank dual untwisted D-branes of su-bar (N) K and sp-bar (n) k , and of level-rank dual twisted D-branes of su-bar (2n+1) 2k+1 . The analysis of level-rank duality of twisted D-branes of su-bar (2n+1) 2k+1 is facilitated by their close relation to untwisted D-branes of sp-bar (n) k . We also demonstrate level-rank duality of the spectrum of an open string stretched between untwisted or twisted D-branes in each of these cases

  12. New twist on artificial muscles.

    Science.gov (United States)

    Haines, Carter S; Li, Na; Spinks, Geoffrey M; Aliev, Ali E; Di, Jiangtao; Baughman, Ray H

    2016-10-18

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.

  13. Modeling and control of active twist aircraft

    Science.gov (United States)

    Cramer, Nicholas Bryan

    The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.

  14. Twisting dependent properties of twisted carbon nanotube fibers: microstructure and strain transfer factors

    International Nuclear Information System (INIS)

    Zhou, Jinyuan; Xie, Erqing; Sun, Gengzhi; Zhan, Zhaoyao; Zheng, Lianxi

    2014-01-01

    The dependences of twisting parameters on the electric and mechanical properties of twisted CNT fibers were systematically studied. Results from electric and mechanical measurements showed that twisting intensity is very effective to improve the electric and mechanical properties of CNT fibers. Further calculations combined with Raman results indicate that the twisting treatments, to a certain extent, can greatly enhance the strain transfer factors of the samples, which dominates the mechanical properties of CNT fibers. In addition, studies on the effect of twisting speeds suggested that lower twisting speed can lead to higher uniformity but lower performances in the electric and mechanical properties, higher twisting speed to higher Young’s modulus and higher conductance but lower uniformities. Ultra-strong uniform CNT fibers need to be prepared with a suitable twisting speed. (paper)

  15. Highly efficient induction of chirality in intramolecular

    Science.gov (United States)

    Cossio; Arrieta; Lecea; Alajarin; Vidal; Tovar

    2000-06-16

    Highly stereocontrolled, intramolecular [2 + 2] cycloadditions between ketenimines and imines leading to 1,2-dihydroazeto[2, 1-b]quinazolines have been achieved. The source of stereocontrol is a chiral carbon atom adjacent either to the iminic carbon or nitrogen atom. In the first case, the stereocontrol stems from the preference for the axial conformer in the first transition structure. In the second case, the origin of the stereocontrol lies on the two-electron stabilizing interaction between the C-C bond being formed and the sigma orbital corresponding to the polar C-X bond, X being an electronegative atom. These models can be extended to other related systems for predicting the stereochemical outcome in this intramolecular reaction.

  16. Intramolecular and Transannular Diels-Alder Reactions

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Ascic, Erhad

    2014-01-01

    Few reactions can compete with the Diels-Alder (DA) [4+2] cycloaddition for the rapid and efficient generation of molecular complexity. The DA reaction is atom-economic and stereospecific, as well as diastereo- and regioselective. The intramolecular version (IMDA) of the DA cycloaddition and its...... and dienophile, methods for acceleration of IMDA reactions (such as use of high pressure) and catalysis (using oxophilic or carbophilic metal complexes, Brønsted acids, and enzymes). The use of furans as diene components (IMDAF), intramolecular hetero-DA (IMHDA) and IMDA reactions with inverse electron demand...... are also covered. Applications of IMDA to asymmetric synthesis (from substrate control through to enantioselective catalysis, including organocatalysis) are presented, along with tandem sequences involving IMDA cycloaddition. A theme pervading the whole chapter is the use of IMDA reactions for the total...

  17. Remarks on twisted noncommutative quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2006-04-15

    We review recent results on twisted noncommutative quantum field theory by embedding it into a general framework for the quantization of systems with a twisted symmetry. We discuss commutation relations in this setting and show that the twisted structure is so rigid that it is hard to derive any predictions, unless one gives up general principles of quantum theory. It is also shown that the twisted structure is not responsible for the presence or absence of UV/IR-mixing, as claimed in the literature. (Orig.)

  18. DVCS amplitude with kinematical twist-3 terms

    International Nuclear Information System (INIS)

    Radyushkin, A.V.; Weiss, C.

    2000-01-01

    The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term

  19. Structural, photophysical, and theoretical studies of imidazole-based excited-state intramolecular proton transfer molecules

    Science.gov (United States)

    Somasundaram, Sivaraman; Kamaraj, Eswaran; Hwang, Su Jin; Park, Sanghyuk

    2018-02-01

    Imidazole-based excited state intramolecular proton transfer (ESIPT) blue fluorescent molecules, 2-(1-(4-chlorophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (BHPI-Cl) and 2-(1-(4-bromophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (BHPI-Br) were designed and synthesized by Debus-Radziszewski method through a one-pot multicomponent reaction in high yield. The synthesized compounds were fully characterized by 1H NMR, 13C NMR, FT-IR, FT-Raman, GC-Mass, and elemental analysis. The molecular structures in single crystal lattice were studied by X-ray crystallographic analysis. Because of the intramolecular hydrogen bonding, hydroxyphenyl group is planar to the central imidazole ring, while the other phenyl rings gave distorted conformations to the central heterocyclic ring. BHPI-Cl and BHPI-Br molecules showed intense ESIPT fluorescence at 480 nm, because the two twisted phenyl rings on 4- and 5-positions have reduced intermolecular interaction between adjacent molecules in each crystal through a head-to-tail packing manner. Quantum chemical calculations of energies were carried out by (TD-)DFT using B3LYP/6-31G(d, p) basis set to predict the electronic absorption spectra of the compounds, and they showed good agreement between the computational and the experimental values. The thermal analyses of the synthesized molecules were also carried out by TGA/DSC method.

  20. Device for measuring well twistings

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu S; Golubin, S V; Keller, V F; Merzheyevskiy, A B; Zdorov, V P

    1982-01-01

    The device for measuring the well twistings with the use of fluids (poured into a vessel and which leave an imprint on the walls), containing a housing and adapter, is distinguished by the fact that in order to improve the accuracy of measurement by obtaining a clear imprint, it is equipped with cylinder that is spring-loaded in relation to the adapter, forming a vessel for fluid with the adapter. The adapter is made of two parts, one of which is made of neutral metal in relation to the fluid, and the other, from active in relation to the same fluid.

  1. Pulse radiolytic and electrochemical investigations of intramolecular electron transfer in carotenoporphyrins and carotenoporphyrin-quinone triads

    International Nuclear Information System (INIS)

    Land, E.J.; Lexa, D.; Bensasson, R.V.; Gust, D.; Moore, T.A.; Moore, A.L.; Liddell, P.A.; Nemeth, G.A.

    1987-01-01

    Thermodynamic and kinetic aspects of intramolecular electron-transfer reactions in carotenoporphyrin dyads and carotenoid-porphyrin-quinone triads have been studied by using pulse radiolysis and cyclic voltammetry. Rapid (<1 μs) electron transfer from carotenoid radical anions to attached porphyrins has been inferred. Carotenoid cations, on the other hand, do not readily accept electrons from attached porphyrins or pyropheophorbides. Electrochemical studies provide the thermodynamic basis for these observations and also allow estimation of the energetics of photoinitiated two-step electron transfer and two-step charge recombination in triad models for photosynthetic charge separation

  2. Localized topological states in Bragg multihelicoidal fibers with twist defects

    Science.gov (United States)

    Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.

    2016-06-01

    We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.

  3. Twisted boundary states and representation of generalized fusion algebra

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Tani, Taro

    2006-01-01

    The mutual consistency of boundary conditions twisted by an automorphism group G of the chiral algebra is studied for general modular invariants of rational conformal field theories. We show that a consistent set of twisted boundary states associated with any modular invariant realizes a non-negative integer matrix representation (NIM-rep) of the generalized fusion algebra, an extension of the fusion algebra by representations of the twisted chiral algebra associated with the automorphism group G. We check this result for several concrete cases. In particular, we find that two NIM-reps of the fusion algebra for su(3) k (k=3,5) are organized into a NIM-rep of the generalized fusion algebra for the charge-conjugation automorphism of su(3) k . We point out that the generalized fusion algebra is non-commutative if G is non-Abelian and provide some examples for G-bar S 3 . Finally, we give an argument that the graph fusion algebra associated with simple current extensions coincides with the generalized fusion algebra for the extended chiral algebra, and thereby explain that the graph fusion algebra contains the fusion algebra of the extended theory as a subalgebra

  4. Wrinkles, loops, and topological defects in twisted ribbons

    Science.gov (United States)

    Chopin, Julien

    Nature abounds with elastic ribbon like shapes including double-stranded semiflexible polymers, graphene and metal oxide nanoribbons which are examples of elongated elastic structures with a strongly anisotropic cross-section. Due to this specific geometry, it is far from trivial to anticipate if a ribbon should be considered as a flat flexible filament or a narrow thin plate. We thus perform an experiment in which a thin elastic ribbon is loaded using a twisting and traction device coupled with a micro X-ray computed tomography machine allowing a full 3D shape reconstruction. A wealth of morphological behaviors can be observed including wrinkled helicoids, curled and looped configurations, and faceted ribbons. In this talk, I will show that most morphologies can be understood using a far-from-threshold approach and simple scaling arguments. Further, we find that the various shapes can be organized in a phase diagram using the twist, the tension, and the geometry of the ribbon as control parameters. Finally, I will discuss the spontaneous formation of topological defects with negatively-signed Gaussian charge at large twist and small but finite stretch.

  5. Complex Toda theories and twisted reality conditions

    International Nuclear Information System (INIS)

    Evans, J.M.

    1993-01-01

    The Toda equations (based on a finite-dimensional or affine Lie algebra of superalgebra) are discussed as integrable non-linear differential equations for a set of complex scalar fields. We show that such complex Toda fields can either be restricted to take real values in the standard way or else they can be subjected to a 'twisted' reality condition associated to any Z 2 symmetry of the Cartan matrix or Dynkin diagram of the underlying algebra. Different reality conditions give rise to different lagrangian field theories. In the conformal case, however, these theories have the same central charge, while in the affine case they have the same mass spectrum. The construction of N=2 superconformal theories based on the superalgebras A(n, n-1) is clarified, and a new class of conformal field theories with positive kinetic energy based on the superalgebras C(n) is presented. The ideas developed are also relevant to understanding solition solutions in affine Toda theories with imaginary coupling constant. (orig.)

  6. Twist-stretch profiles of DNA chains

    Science.gov (United States)

    Zoli, Marco

    2017-06-01

    Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule’s free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.

  7. Nucleon form factors with NF=2 twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, C.; Korzec, T.; Brinet, M.; Carbonell, J.; Harraud, P.A.; Jansen, K.

    2009-10-01

    We present results on the electromagnetic and axial nucleon form factors using two degenerate flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing of about 0.09 fm. We consider pion masses in the range of 260-470MeV.We chirally extrapolate results on the nucleon axial charge, the isovector Dirac and Pauli root mean squared radii and magnetic moment to the physical point and compare to experiment. (orig.)

  8. Google and the "Twisted Cyber Spy" Affair: US-Chinese Communication in an Age of Globalization

    Science.gov (United States)

    Hartnett, Stephen John

    2011-01-01

    The "twisted cyber spy" affair began in 2010, when Google was attacked by Chinese cyber-warriors charged with stealing Google's intellectual property, planting viruses in its computers, and hacking the accounts of Chinese human rights activists. In the ensuing international embroglio, the US mainstream press, corporate leaders, and White…

  9. On combinatorial properties of elementary intramolecular operations

    Directory of Open Access Journals (Sweden)

    Vladimir Rogojin

    2014-11-01

    Full Text Available Here we tackle a problem from biology in terms of discrete mathematics. We are interested in a complex DNA manipulation process happening in eukaryotic organisms of a subclass of ciliate species called {\\it Stichotrichia} during so-called gene assembly. This process is in particular interesting since one can interpret gene assembly in ciliates as sorting of permutations. We survey here results related to studies on sorting permutations with some specific rewriting rules that formalize elementary intramolecular gene assembly operations. The research question is ``what permutation may be sorted with our operations?"

  10. Femtosecond laser studies of ultrafast intramolecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, C. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  11. Quantisation of monotonic twist maps

    International Nuclear Information System (INIS)

    Boasman, P.A.; Smilansky, U.

    1993-08-01

    Using an approach suggested by Moser, classical Hamiltonians are generated that provide an interpolating flow to the stroboscopic motion of maps with a monotonic twist condition. The quantum properties of these Hamiltonians are then studied in analogy with recent work on the semiclassical quantization of systems based on Poincare surfaces of section. For the generalized standard map, the correspondence with the usual classical and quantum results is shown, and the advantages of the quantum Moser Hamiltonian demonstrated. The same approach is then applied to the free motion of a particle on a 2-torus, and to the circle billiard. A natural quantization condition based on the eigenphases of the unitary time--development operator is applied, leaving the exact eigenvalues of the torus, but only the semiclassical eigenvalues for the billiard; an explanation for this failure is proposed. It is also seen how iterating the classical map commutes with the quantization. (authors)

  12. Lattice study of D and D{sub s} meson form factors with twisted boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning; Wu, Ya-Jie [Xi' an Technological University, School of Science, Xi' an (China)

    2017-03-15

    We present results on the D and D{sub s} meson electromagnetic form factors using N{sub f} = 2 twisted mass Lattice Quantum Chromodynamics (LQCD) gauge configurations. In this simulation, to access spatial components of momenta that are different from the integer multiples of 2π/L, we apply twisted boundary conditions to compute corresponding correlation functions. Electromagnetic form factors with more small four-momentum transfer are determined, and further we fit the electromagnetic charge radius for D and D{sub s} mesons, respectively. (orig.)

  13. Naked eye picometer resolution in a Michelson interferometer using conjugated twisted beams.

    Science.gov (United States)

    Emile, Olivier; Emile, Janine

    2017-01-15

    Michelson interferometry is one of the most widely used techniques for accuracy measurements. Its main characteristic feature is to infer a displacement in one of the arms of the interferometer from a phase measurement. Two different twisted beams, also called vortex beams, with opposite twisted rotations in each arm of the interferometer interfere in a daisy flower-like pattern. The number of petals is twice the topological charge. Their position depends on the relative phase of the beams. Naked eye detection of 44 pm displacements is achieved. The sensitivity of such an interferometer together with possible further improvements, and applications are then discussed.

  14. Four-point functions with a twist

    Energy Technology Data Exchange (ETDEWEB)

    Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2017-01-15

    We study the OPE of correlation functions of local operators in planar N=4 super Yang-Mills theory. The considered operators have an explicit spacetime dependence that is defined by twisting the translation generators with certain R-symmetry generators. We restrict to operators that carry a small number of excitations above the twisted BMN vacuum. The OPE limit of the four-point correlator is dominated by internal states with few magnons on top of the vacuum. The twisting directly couples all spacetime dependence of the correlator to these magnons. We analyze the OPE in detail, and single out the extremal states that have to cancel all double-trace contributions.

  15. Euclidean supersymmetry, twisting and topological sigma models

    International Nuclear Information System (INIS)

    Hull, C.M.; Lindstroem, U.; Santos, L. Melo dos; Zabzine, M.; Unge, R. von

    2008-01-01

    We discuss two dimensional N-extended supersymmetry in Euclidean signature and its R-symmetry. For N = 2, the R-symmetry is SO(2) x SO(1, 1), so that only an A-twist is possible. To formulate a B-twist, or to construct Euclidean N = 2 models with H-flux so that the target geometry is generalised Kahler, it is necessary to work with a complexification of the sigma models. These issues are related to the obstructions to the existence of non-trivial twisted chiral superfields in Euclidean superspace.

  16. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  17. Topological twist in four dimensions, R-duality and hyperinstantons

    International Nuclear Information System (INIS)

    Anselmi, D.; Fre, P.

    1993-01-01

    In this paper we continue the programme of topologically twisting N=2 theories in D=4, focusing on the coupling of vector multiplets to N=2 supergravity. We show that in the minimal case, namely when the special gometry prepotential F(X) is a quadratic polynomial, the theory has a so far unknown on-shell U(1) symmetry, that we name R-duality. R-duality is a generalization of the chiral-dual on-shell symmetry of N=2 pure supergravity and of the R-symmetry of N=2 super Yang-Mills theory. Thanks to this, the theory can be topologically twisted and topologically shifted, precisely as pure N=2 supergravity, to yield a natural coupling of topological gravity to topological Yang-Mills theory. The gauge-fixing condition that emerges from the twisting is the self-duality condition on the gauge field strength and on the spin connection. Hence our theory reduces to intersection theory in the moduli-space of gauge instantons living in gravitational instanton backgrounds. We remark that, for deep properties of the parent N=2 theory, the topological Yang-Mills theory we obtain by taking the flat space limit of our gravity-coupled lagrangian is different from the Donaldson theory constructed by Witten. Whether this difference is substantial and what its geometrical implications may be is yet to be seen. We also discuss the topological twist of the hypermultiplets leading to topological quaternionic sigma-models. The instantons of these models, named by us hyperinstantons, correspond to a notion of triholomorphic mappings discussed in the paper. In all cases the new ghost number is the sum of the old ghost number plus the R-duality charge. The observables described by the theory are briefly discussed. In conclusion, the topological twist of the complete N=2 theory defines intersection theory in the moduli-space of gauge instantons plus gravitational instantons plus hyperinstantons. This is possibly a new subject for further mathematical investigation. (orig.)

  18. Twisted Vector Bundles on Pointed Nodal Curves

    Indian Academy of Sciences (India)

    Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.

  19. Twisted covariant noncommutative self-dual gravity

    International Nuclear Information System (INIS)

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.

    2008-01-01

    A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the θ expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in θ for the Plebanski action is explicitly obtained.

  20. Nonlinear physics of twisted magnetic field lines

    International Nuclear Information System (INIS)

    Yoshida, Zensho

    1998-01-01

    Twisted magnetic field lines appear commonly in many different plasma systems, such as magnetic ropes created through interactions between the magnetosphere and the solar wind, magnetic clouds in the solar wind, solar corona, galactic jets, accretion discs, as well as fusion plasma devices. In this paper, we study the topological characterization of twisted magnetic fields, nonlinear effect induced by the Lorentz back reaction, length-scale bounds, and statistical distributions. (author)

  1. OAM mode converter in twisted fibers

    DEFF Research Database (Denmark)

    Usuga Castaneda, Mario A.; Beltran-Mejia, Felipe; Cordeiro, Cristiano

    2014-01-01

    We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA.......We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA....

  2. Further Generalisations of Twisted Gabidulin Codes

    DEFF Research Database (Denmark)

    Puchinger, Sven; Rosenkilde, Johan Sebastian Heesemann; Sheekey, John

    2017-01-01

    We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes.......We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes....

  3. Use of ionic model for analysis of intramolecular movement in alkali metal metaborate molecules

    International Nuclear Information System (INIS)

    Ezhov, Yu.S.; Vinogradov, V.S.

    1978-01-01

    To clear out the peculiarities of intramolecular movement in MBO 2 (where M=Li, Na, K, Rb, Cs) molecules the energy dependence of cation electrostatic interaction with BO 2 anion on the charge value of oxygen, values of the MOB valence angle and internuclear distance r(M-O) is calculated. The calculation results on the base of ionic model show that the minimum of potential energy function corresponds to angular configuration of the MBO 2 molecules. Parameters of potential function of deformation oscillation connected with the change of MOB angle, are evaluated

  4. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    Science.gov (United States)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  5. Soft tissue twisting injuries of the knee

    International Nuclear Information System (INIS)

    Magee, T.; Shapiro, M.

    2001-01-01

    Twisting injuries occur as a result of differential motion of different tissue types in injuries with some rotational force. These injuries are well described in brain injuries but, to our knowledge, have not been described in the musculoskeletal literature. We correlated the clinical examination and MR findings of 20 patients with twisting injuries of the soft tissues around the knee. Design and patients: We prospectively followed the clinical courses of 20 patients with knee injuries who had clinical histories and MR findings to suggest twisting injuries of the subcutaneous tissues. Patients with associated internal derangement of the knee (i.e., meniscal tears, ligamentous or bone injuries) were excluded from this study. MR findings to suggest twisting injuries included linear areas of abnormal dark signal on T1-weighted sequences and abnormal bright signal on T2-weighted or short tau inversion recovery (STIR) sequences and/or signal to suggest hemorrhage within the subcutaneous tissues. These MR criteria were adapted from those established for indirect musculotendinous junction injuries. Results: All 20 patients presented with considerable pain that suggested internal derangement on physical examination by the referring orthopedic surgeons. All presented with injuries associated with rotational force. The patients were placed on a course of protected weight-bearing of the affected extremity for 4 weeks. All patients had pain relief by clinical examination after this period of protected weight-bearing. Twisting injuries of the soft tissues can result in considerable pain that can be confused with internal derangement of the knee on physical examination. Soft tissue twisting injuries need to be recognized on MR examinations as they may be the cause of the patient's pain despite no MR evidence of internal derangement of the knee. The demonstration of soft tissue twisting injuries in a patient with severe knee pain but no documented internal derangement on MR

  6. Maximally twisted mass lattice QCD at the physical pion mass

    International Nuclear Information System (INIS)

    Kostrzewa, Bartosz

    2016-01-01

    In computer simulations of Lattice Quantum Chromodynamics, the usage of unphysically large quark masses and the subsequent extrapolation of results to the physical value of the quark masses are major sources of systematic uncertainty. In this thesis, the feasibility and practicality of numerical simulations of Quantum Chromodynamics with physically light up and down quarks using the Wilson twisted mass quark discretisation are explored. Working in this regime is complicated firstly by the numerical expense of these simulations and secondly by the presence of potentially large lattice artefacts. The twisted mass discretisation is affected by an unphysical mass difference between the charged and neutral pions, rendering simulations at the physical charged pion mass infeasible if this mass splitting is too large. With the aim of reducing it, the Sheikholeslami-Wohlert term is added to the twisted mass fermion action and simulations with mass degenerate up and down quarks are then performed as a proof of concept. It is demonstrated that these simulations are stable and that the parameters of the lattice theory can be successfully tuned to correspond to the physical charged pion mass. Subsequently, the parameter tuning for simulations with mass degenerate up and down quarks as well as strange and charm quarks is explored and it is shown that it can be carried out in steps. As benchmark observables, the masses and decay constants of pseudoscalar mesons with light, strange and charm valence quarks are calculated and seen to largely reproduce their phenomenological values, even though continuum and infinite volume extrapolations are not performed. Light, strange and charm quark mass estimates are determined based on this data and also seen to coincide with phenomenological and other lattice determinations. In this analysis, a particular emphasis is placed on the systematic error due to the choice of fit range for pseudoscalar correlation functions and a weighting method is

  7. Twisted electron-acoustic waves in plasmas

    International Nuclear Information System (INIS)

    Aman-ur-Rehman; Ali, S.; Khan, S. A.; Shahzad, K.

    2016-01-01

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q_e_f_f accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  8. Beams made of twisted atoms: A theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hayrapetyan, Armen [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, 69120 Heidelberg (Germany); Matula, Oliver [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, 69120 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Surzhykov, Andrey [Helmholtz-Institut Jena, 07743 Jena (Germany); Fritzsche, Stephan [Helmholtz-Institut Jena, 07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena, 07743 Jena (Germany)

    2014-07-01

    We have analyzed Bessel beams of two-level atoms that are driven by a linearly polarized laser light. Based on the Schroedinger equation for two-level systems, we first determine the states of two-level atoms in a plane-wave field by taking into account propagation directions both of the atom and the field. For such laser-driven two-level atoms, we construct Bessel beams by going beyond the typical paraxial approximation. In particular, we show that the probability density of these atomic beams exhibits a non-trivial, Bessel-squared-type behavior. The profile of such twisted atoms is affected by atom and laser parameters, such as the nuclear charge, atom velocity, laser frequency, and propagation geometry of the atom and laser beams. Moreover, we spatially and temporally characterize the beam of hydrogen and selected (neutral) alkali-metal atoms that carry non-zero orbital angular momentum (OAM). The proposed spatiotemporal Bessel states (i) are able to describe twisted states of any two-level system which is driven by the radiation field and (ii) have potential applications in atomic and nuclear processes as well as in quantum communication.

  9. Intramolecularly Hydrogen-Bonded Polypyrroles as Electro-Optical Sensors

    National Research Council Canada - National Science Library

    Nicholson, Jesse

    2001-01-01

    We have developed a new class of polypyrroles bearing both hydrogen-bond acceptor and hydrogen-donor groups such that the intramolecular hydrogen bonding holds the system planar enhancing conjugation...

  10. Molecular structures and intramolecular dynamics of pentahalides

    Science.gov (United States)

    Ischenko, A. A.

    2017-03-01

    This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.

  11. Monopole scattering with a twist

    International Nuclear Information System (INIS)

    Houghton, C.J.; Sutcliffe, P.M.

    1996-01-01

    By imposing certain combined inversion and rotation symmetries on the rational maps for SU(2) BPS monopoles we construct geodesics in the monopole moduli space. In the moduli space approximation these geodesics describe a novel kind of monopole scattering. During these scattering processes axial symmetry is instantaneously attained and, in some, monopoles with the symmetries of the regular solids are formed. The simplest example corresponds to a charge three monopole invariant under a combined inversion and 90 circle rotation symmetry. In this example three well-separated collinear unit charge monopoles coalesce to form first a tetrahedron, then a torus, then the dual tetrahedron and finally separate again along the same axis of motion. We explicitly construct the spectral curves in this case and use a numerical ADHMN construction to compute the energy density at various times during the motion. We find that the dynamics of the zeros of the Higgs field is extremely rich and we discover a new phenomenon; there exist charge k SU(2) BPS monopoles with more than k zeros of the Higgs field. (orig.)

  12. Electrically Controllable Magnetism in Twisted Bilayer Graphene.

    Science.gov (United States)

    Gonzalez-Arraga, Luis A; Lado, J L; Guinea, Francisco; San-Jose, Pablo

    2017-09-08

    Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.

  13. Spectral analysis and quantum chemical studies of chair and twist-boat conformers of cycloheximide in gas and solution phases

    Science.gov (United States)

    Tokatli, A.; Ucun, F.; Sütçü, K.; Osmanoğlu, Y. E.; Osmanoğlu, Ş.

    2018-02-01

    In this study the conformational behavior of cycloheximide in the gas and solution (CHCl3) phases has theoretically been investigated by spectroscopic and quantum chemical properties using density functional theory (wB97X-D) method with 6-31++G(d,p) basis set, for the first time. The calculated IR results reveal that in the ground state the molecule exits as a mixture of the chair and twist-boat conformers in the gas phase, while the calculated NMR results reveal that it only exits as the chair conformer in the solution phase. In order to obtain the contributions coming from intramolecular interactions to the stability of the conformers in the gas and solution phases, the quantum theory of atoms in molecules (QTAIM), noncovalent interactions (NCI) method, and natural bond orbital analysis (NBO) have been employed. The QTAIM and NCI methods indicated that by intramolecular interactions with bond critical point (BCP) the twist-boat conformer is more stabilized than the chair conformer, while by steric interactions it is more destabilized. Considering that these interactions balance each other, the stabilities of the conformers are understood to be dictated by the van der Waals interactions. The NBO analyses show that the hyperconjugative and steric effects play an important role in the stabilization in the gas and solution phases. Furthermore, to get a better understanding of the chemical behavior of this important antibiotic drug we have evaluated and, commented the global and local reactivity descriptors of the both conformers. Finally, the EPR analysis of γ-irradiated cycloheximide has been done. The comparison of the experimental and calculated data have showed the inducement of a radical structure of (CH2)2ĊCH2 in the molecule. The experimental EPR spectrum has also confirmed that the molecule simultaneously exists in the chair and twist-boat conformers in the solid phase.

  14. Higher-twist correlations in polarized hadrons

    International Nuclear Information System (INIS)

    Tangerman, R.D.

    1996-01-01

    In this thesis we studied the response of polarized hadrons to several high-energy probes, working in the framework of the field theoretic model. Emphasis is laid upon higher-twist effects such as quark transverse momentum. The inclusive DIS process is very well suited to study QCD. From general principles we were able to derive four positivity constraints on the structure functions without invoking the helicity formalism. The on-shell quark model is used to illustrate these constraints. Subseqeuently, we concentrated on the higher-twist structure function g 2 (x,Q 2 ). (orig./HSI)

  15. Factorising the 3D topologically twisted index

    Science.gov (United States)

    Cabo-Bizet, Alejandro

    2017-04-01

    We explore the path integration — upon the contour of hermitian (non-auxliary) field configurations — of topologically twisted N=2 Chern-Simons-matter theory (TTCSM) on {S}_2 times a segment. In this way, we obtain the formula for the 3D topologically twisted index, first as a convolution of TTCSM on {S}_2 times halves of {S}_1 , second as TTCSM on {S}_2 times {S}_1 — with a puncture, — and third as TTCSM on {S}_2× {S}_1 . In contradistinction to the first two cases, in the third case, the vector multiplet auxiliary field D is constrained to be anti-hermitian.

  16. On the twisted N=2 superconformal structure in 2d gravity coupled to matter

    International Nuclear Information System (INIS)

    Panda, S.; Roy, S.

    1993-05-01

    It is shown that the two dimensional gravity, described either in the conformal gauge (Liouville theory) or in the light cone gauge, when coupled to matter processes an infinite number of twisted N=2 superconformal symmetries. The central charges of the N=2 algebra for the two gauge choices are in general different. Further, it is argued that the physical states in the light cone gauge theory can be obtained from the Liouville theory by a field redefinition. (author). 18 refs

  17. A higher twist correction to heavy quark production

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Gunion, J.F.; Soper, D.E.

    1987-06-01

    The leading twist prediction for heavy quark production and a model for a higher twist correction that may be important for charm production was discussed. The correction arises from the interaction of the charm quark with spectator quarks

  18. Electrospinning of continuous poly (L-lactide) yarns : Effect of twist on the morphology, thermal properties and mechanical behavior

    NARCIS (Netherlands)

    Maleki, H.; Gharehaghaji, A.A.; Dijkstra, P. J.

    2017-01-01

    Electrospinning PLLA solutions from two oppositely charged nozzles gives a triangle of fibers, also called E-triangle, that assemble into yarns at the convergence point. The formed yarn at the E-triangle was taken up by a unit comprising a take up roller and coupled twister plate, which twist rate

  19. Twisted condensates of quantized fields

    International Nuclear Information System (INIS)

    Gallone, F.; Sparzani, A.; Ubertone, G.; Streater, R.F.

    We construct some quasi-free pure states of free quantized fields in 1+1 dimensions, that are localized in the sense of Knight. We consider massless or massive Dirac fields forming a U(n), n >= 1, multiplet and subject it to a local gauge transformation. We also subject a doublet of massive Klein-Gordon fields to local SO(2) transformations. We find the conditions that the resulting automorphism is spatial in Fock space. In some cases the conditions turn out to require that certain parameters, identified as the winding numbers of the gauge, are integers. It is argued that this integer labels states of various charge. (orig.)

  20. Rubrene: The interplay between intramolecular and intermolecular interactions determines the planarization of its tetracene core in the solid state

    KAUST Repository

    Sutton, Christopher

    2015-06-15

    Rubrene is one of the most studied molecular semiconductors; its chemical structure consists of a tetracene backbone with four phenyl rings appended to the two central fused rings. Derivatization of these phenyl rings can lead to two very different solid-state molecular conformations and packings: One in which the tetracene core is planar and there exists substantive overlap among neighboring π-conjugated backbones; and another where the tetracene core is twisted and the overlap of neighboring π-conjugated backbones is completely disrupted. State-of-the-art electronic-structure calculations show for all isolated rubrene derivatives that the twisted conformation is more favorable (by -1.7 to -4.1 kcal mol-1), which is a consequence of energetically unfavorable exchange-repulsion interactions among the phenyl side groups. Calculations based on available crystallographic structures reveal that planar conformations of the tetracene core in the solid state result from intermolecular interactions that can be tuned through well-chosen functionalization of the phenyl side groups, and lead to improved intermolecular electronic couplings. Understanding the interplay of these intramolecular and intermolecular interactions provides insight into how to chemically modify rubrene and similar molecular semiconductors to improve the intrinsic materials electronic properties.

  1. Excited-state intramolecular proton transfer and photoswitching in hydroxyphenyl-imidazopyridine derivatives: A theoretical study

    Science.gov (United States)

    Omidyan, Reza; Iravani, Maryam

    2016-11-01

    The MP2/CC2 and CASSCF theoretical approaches have been employed to determine the excited state proton transfer and photophysical nature of the four organic compounds, having the main frame of hydroxyphenyl-imidzaopyridine (HPIP). The nitrogen insertion effect, in addition to amine (-NH2) substitution has been investigated extensively by following the transition energies and deactivation pathways of resulted HPIP derivatives. It has been predicted that the excited state intramolecular proton transfer with or without small barrier is the most important feature of these compounds. Also, for all of the considered HPIP derivatives, a conical intersection (CI) between ground and the S1 excited state has been predicted. The strong non-adiabatic coupling in the CI (S1/S0), drives the system back to the ground state in which the proton may either return to the phenoxy unit and thus close the photocycle, or the system can continue the twisting motion that results in formation of a γ-photochromic species. This latter species can be responsible for photochromism of HPIP derivative systems.

  2. Twist operators in N=4 beta-deformed theory

    NARCIS (Netherlands)

    de Leeuw, M.; Łukowski, T.

    2010-01-01

    In this paper we derive both the leading order finite size corrections for twist-2 and twist-3 operators and the next-to-leading order finite-size correction for twist-2 operators in beta-deformed SYM theory. The obtained results respect the principle of maximum transcendentality as well as

  3. Nucleon structure by Lattice QCD computations with twisted mass fermions

    International Nuclear Information System (INIS)

    Harraud, P.A.

    2010-11-01

    Understanding the structure of the nucleon from quantum chromodynamics (QCD) is one of the greatest challenges of hadronic physics. Only lattice QCD allows to determine numerically the values of the observables from ab-initio principles. This thesis aims to study the nucleon form factors and the first moments of partons distribution functions by using a discretized action with twisted mass fermions. As main advantage, the discretization effects are suppressed at first order in the lattice spacing. In addition, the set of simulations allows a good control of the systematical errors. After reviewing the computation techniques, the results obtained for a wide range of parameters are presented, with lattice spacings varying from 0.0056 fm to 0.089 fm, spatial volumes from 2.1 up to 2.7 fm and several pion masses in the range of 260-470 MeV. The vector renormalization constant was determined in the nucleon sector with improved precision. Concerning the electric charge radius, we found a finite volume effect that provides a key towards an explanation of the chiral dependence of the physical point. The results for the magnetic moment, the axial charge, the magnetic and axial charge radii, the momentum and spin fractions carried by the quarks show no dependence on the lattice spacing nor volume. In our range of pion masses, their values show a deviation from the experimental values. Their chiral behaviour do not exhibit the curvature predicted by the chiral perturbation theory which could explain the apparent discrepancy. (author)

  4. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  5. Twisted Frobenius Identities from Vertex Operator Superalgebras

    Directory of Open Access Journals (Sweden)

    Alexander Zuevsky

    2017-01-01

    Full Text Available In consideration of the continuous orbifold partition function and a generating function for all n-point correlation functions for the rank two free fermion vertex operator superalgebra on the self-sewing torus, we introduce the twisted version of Frobenius identity.

  6. Magnetization Modeling of Twisted Superconducting Filaments

    CERN Document Server

    Satiramatekul, T; Devred, Arnaud; Leroy, Daniel

    2007-01-01

    This paper presents a new Finite Element numerical method to analyze the coupling between twisted filaments in a superconducting multifilament composite wire. To avoid the large number of elements required by a 3D code, the proposed method makes use of the energy balance principle in a 2D code. The relationship between superconductor critical current density and local magnetic flux density is implemented in the program for the Bean and modified Kim models. The modeled wire is made up of six filaments twisted together and embedded in a lowresistivity matrix. Computations of magnetization cycle and of the electric field pattern have been performed for various twist pitch values in the case of a pure copper matrix. The results confirm that the maximum magnetization depends on the matrix conductivity, the superconductor critical current density, the applied field frequency, and the filament twist pitch. The simulations also lead to a practical criterion for wire design that can be used to assess whether or not th...

  7. Hilbert's Grand Hotel with a series twist

    Science.gov (United States)

    Wijeratne, Chanakya; Mamolo, Ami; Zazkis, Rina

    2014-08-01

    This paper presents a new twist on a familiar paradox, linking seemingly disparate ideas under one roof. Hilbert's Grand Hotel, a paradox which addresses infinite set comparisons is adapted and extended to incorporate ideas from calculus - namely infinite series. We present and resolve several variations, and invite the reader to explore his or her own variations.

  8. On the Compton Twist-3 Asymmetries

    International Nuclear Information System (INIS)

    Korotkiyan, V.M.; Teryaev, O.V.

    1994-01-01

    The 'fermionic poles' contribution to the twist-3 single asymmetry in the gluon Compton process is calculated. The 'gluonic poles' existence seems to contradict the density matrix positivity. Qualitative predictions for the direct photon and jets asymmetries are presented. 13 refs., 2 figs

  9. Generalized Weyl modules for twisted current algebras

    Science.gov (United States)

    Makedonskyi, I. A.; Feigin, E. B.

    2017-08-01

    We introduce the notion of generalized Weyl modules for twisted current algebras. We study their representation-theoretic and combinatorial properties and also their connection with nonsymmetric Macdonald polynomials. As an application, we compute the dimension of the classical Weyl modules in the remaining unknown case.

  10. Hardy Inequalities in Globally Twisted Waveguides

    Czech Academy of Sciences Publication Activity Database

    Briet, Ph.; Hammedi, H.; Krejčiřík, David

    2015-01-01

    Roč. 105, č. 7 (2015), s. 939-958 ISSN 0377-9017 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguides * twisted tubes * Dirichlet Laplacian * Hardy inequality Subject RIV: BE - Theoretical Physics Impact factor: 1.517, year: 2015

  11. Morphing wing structure with controllable twist based on adaptive bending-twist coupling

    Science.gov (United States)

    Raither, Wolfram; Heymanns, Matthias; Bergamini, Andrea; Ermanni, Paolo

    2013-06-01

    A novel semi-passive morphing airfoil concept based on variable bending-twist coupling induced by adaptive shear center location and torsional stiffness is presented. Numerical parametric studies and upscaling show that the concept relying on smart materials permits effective twist control while offering the potential of being lightweight and energy efficient. By means of an experimental characterization of an adaptive beam and a scaled adaptive wing structure, effectiveness and producibility of the structural concept are demonstrated.

  12. Morphing wing structure with controllable twist based on adaptive bending–twist coupling

    International Nuclear Information System (INIS)

    Raither, Wolfram; Heymanns, Matthias; Ermanni, Paolo; Bergamini, Andrea

    2013-01-01

    A novel semi-passive morphing airfoil concept based on variable bending–twist coupling induced by adaptive shear center location and torsional stiffness is presented. Numerical parametric studies and upscaling show that the concept relying on smart materials permits effective twist control while offering the potential of being lightweight and energy efficient. By means of an experimental characterization of an adaptive beam and a scaled adaptive wing structure, effectiveness and producibility of the structural concept are demonstrated. (paper)

  13. Charge orders in organic charge-transfer salts

    International Nuclear Information System (INIS)

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  14. A novel role for Twist-1 in pulp homeostasis.

    Science.gov (United States)

    Galler, K M; Yasue, A; Cavender, A C; Bialek, P; Karsenty, G; D'Souza, R N

    2007-10-01

    The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/-) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.

  15. Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal.

    Science.gov (United States)

    Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru

    2018-05-08

    We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.

  16. Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.

    Science.gov (United States)

    Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S

    2017-09-28

    High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .

  17. A New Twisting Somersault: 513XD

    Science.gov (United States)

    Tong, William; Dullin, Holger R.

    2017-12-01

    We present the mathematical framework of an athlete modelled as a system of coupled rigid bodies to simulate platform and springboard diving. Euler's equations of motion are generalised to non-rigid bodies and are then used to innovate a new dive sequence that in principle can be performed by real-world athletes. We begin by assuming that shape changes are instantaneous so that the equations of motion simplify enough to be solved analytically, and then use this insight to present a new dive (513XD) consisting of 1.5 somersaults and five twists using realistic shape changes. Finally, we demonstrate the phenomenon of converting pure somersaulting motion into pure twisting motion by using a sequence of impulsive shape changes, which may have applications in other fields such as space aeronautics.

  18. Chiral tunneling in a twisted graphene bilayer.

    Science.gov (United States)

    He, Wen-Yu; Chu, Zhao-Dong; He, Lin

    2013-08-09

    The perfect transmission in a graphene monolayer and the perfect reflection in a Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in a twisted graphene bilayer show an adjustable probability of chiral tunneling for normal incidence: they can be changed from perfect tunneling to partial or perfect reflection, or vice versa, by controlling either the height of the barrier or the incident energy. As well as addressing basic physics about how the chiral fermions with different chiralities tunnel through a barrier, our results provide a facile route to tune the electronic properties of the twisted graphene bilayer.

  19. Factorising the 3D topologically twisted index

    Energy Technology Data Exchange (ETDEWEB)

    Cabo-Bizet, Alejandro [Instituto de Astronomía y Física del Espacio (CONICET-UBA),Ciudad Universitaria, C.P. 1428, Buenos Aires (Argentina)

    2017-04-20

    We explore the path integration — upon the contour of hermitian (non-auxliary) field configurations — of topologically twisted N=2 Chern-Simons-matter theory (TTCSM) on S{sub 2} times a segment. In this way, we obtain the formula for the 3D topologically twisted index, first as a convolution of TTCSM on S{sub 2} times halves of S{sub 1}, second as TTCSM on S{sub 2} times S{sub 1} — with a puncture, — and third as TTCSM on S{sub 2}×S{sub 1}. In contradistinction to the first two cases, in the third case, the vector multiplet auxiliary field D is constrained to be anti-hermitian.

  20. IRONY IN CHARLES DICKEN'S OLIVER TWIST

    Directory of Open Access Journals (Sweden)

    Ika Kana Trisnawati

    2016-05-01

    Full Text Available This paper describes the types of irony used by Charles Dickens in his notable early work, Oliver Twist, as well as the reasons the irony was chosen. As a figurative language, irony is utilized to express one’s complex feelings without truly saying them. In Oliver Twist, Dickens brought the readers some real social issues wrapped in dark, deep written expressions of irony uttered by the characters of his novel. Undoubtedly, the novel had left an impact to the British society at the time. The irony Dickens displayed here includes verbal, situational, and dramatic irony. His choice of irony made sense as he intended to criticize the English Poor Laws and to touch the public sentiment. He wanted to let the readers go beyond what was literally written and once they discovered what the truth was, they would eventually understand Dickens’ purposes.

  1. Leibniz algebroids, twistings and exceptional generalized geometry

    Science.gov (United States)

    Baraglia, D.

    2012-05-01

    We investigate a class of Leibniz algebroids which are invariant under diffeomorphisms and symmetries involving collections of closed forms. Under appropriate assumptions we arrive at a classification which in particular gives a construction starting from graded Lie algebras. In this case the Leibniz bracket is a derived bracket and there are higher derived brackets resulting in an L∞-structure. The algebroids can be twisted by a non-abelian cohomology class and we prove that the twisting class is described by a Maurer-Cartan equation. For compact manifolds we construct a Kuranishi moduli space of this equation which is shown to be affine algebraic. We explain how these results are related to exceptional generalized geometry.

  2. Valve-aided twisted Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Rajkumar, M.; Saha, U.K.

    2006-05-15

    Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].

  3. Chiral Tunnelling in Twisted Graphene Bilayer

    OpenAIRE

    He, Wen-Yu; Chu, Zhao-Dong; He, Lin

    2013-01-01

    The perfect transmission in graphene monolayer and the perfect reflection in Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in twisted graphene bilayer shows adjustable probability of chiral tunnelling for normal incidence: they can be changed fr...

  4. Vacuum expectation value of twist fields

    Science.gov (United States)

    Belitsky, A. V.

    2017-09-01

    Twist fields emerge in a number of physical applications ranging from entanglement entropy to scattering amplitudes in four-dimensional gauge theories. In this work, their vacuum expectation values are studied in the path integral framework. By performing a gauge transformation, their correlation functions are reduced to field theory of matter fields in external Aharonov-Bohm vortices. The resulting functional determinants are then analyzed within the zeta-function regularization for the spectrum of Bessel zeros, and concise formulas are derived.

  5. Leibniz algebroids, twistings and exceptional generalized geometry

    OpenAIRE

    Baraglia, David

    2011-01-01

    We investigate a class of Leibniz algebroids which are invariant under diffeomorphisms and symmetries involving collections of closed forms. Under appropriate assumptions we arrive at a classification which in particular gives a construction starting from graded Lie algebras. In this case the Leibniz bracket is a derived bracket and there are higher derived brackets resulting in an $L_\\infty$-structure. The algebroids can be twisted by a non-abelian cohomology class and we prove that the twis...

  6. Exploring exotic states with twisted boundary conditions

    International Nuclear Information System (INIS)

    Agadjanov, Dimitri

    2017-01-01

    he goal of this thesis is to develop methods to study the nature and properties of exotic hadrons from lattice simulations. The main focus lies in the application of twisted boundary conditions. The thesis consists of a general introduction and the collection of three papers, represented respectively in three chapters. The introduction of the thesis reviews the theoretical background, which is further used in the rest of the thesis. Further implementing partially twisted boundary conditions in the scalar sector of lattice QCD is studied. Then we develop a method to study the content of the exotic hadrons by determining the wave function renormalization constant from lattice simulations, exploiting the dependence of the spectrum on the twisted boundary conditions. The final chapter deals with a novel method to study the multi-channel scattering problem in a finite volume, which is relevant for exotic states. Its key idea is to extract the complex hadron-hadron optical potential, avoiding the difficulties, associated with the solution of the multi-channel Luescher equation.

  7. Exploring exotic states with twisted boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Agadjanov, Dimitri

    2017-09-11

    he goal of this thesis is to develop methods to study the nature and properties of exotic hadrons from lattice simulations. The main focus lies in the application of twisted boundary conditions. The thesis consists of a general introduction and the collection of three papers, represented respectively in three chapters. The introduction of the thesis reviews the theoretical background, which is further used in the rest of the thesis. Further implementing partially twisted boundary conditions in the scalar sector of lattice QCD is studied. Then we develop a method to study the content of the exotic hadrons by determining the wave function renormalization constant from lattice simulations, exploiting the dependence of the spectrum on the twisted boundary conditions. The final chapter deals with a novel method to study the multi-channel scattering problem in a finite volume, which is relevant for exotic states. Its key idea is to extract the complex hadron-hadron optical potential, avoiding the difficulties, associated with the solution of the multi-channel Luescher equation.

  8. Transverse kink oscillations in the presence of twist

    Science.gov (United States)

    Terradas, J.; Goossens, M.

    2012-12-01

    Context. Magnetic twist is thought to play an important role in coronal loops. The effects of magnetic twist on stable magnetohydrodynamic (MHD) waves is poorly understood because they are seldom studied for relevant cases. Aims: The goal of this work is to study the fingerprints of magnetic twist on stable transverse kink oscillations. Methods: We numerically calculated the eigenmodes of propagating and standing MHD waves for a model of a loop with magnetic twist. The azimuthal component of the magnetic field was assumed to be small in comparison to the longitudinal component. We did not consider resonantly damped modes or kink instabilities in our analysis. Results: For a nonconstant twist the frequencies of the MHD wave modes are split, which has important consequences for standing waves. This is different from the degenerated situation for equilibrium models with constant twist, which are characterised by an azimuthal component of the magnetic field that linearly increases with the radial coordinate. Conclusions: In the presence of twist standing kink solutions are characterised by a change in polarisation of the transverse displacement along the tube. For weak twist, and in the thin tube approximation, the frequency of standing modes is unaltered and the tube oscillates at the kink speed of the corresponding straight tube. The change in polarisation is linearly proportional to the degree of twist. This has implications with regard to observations of kink modes, since the detection of this variation in polarisation can be used as an indirect method to estimate the twist in oscillating loops.

  9. Examination of higher-order twist contributions in parity-violating deep-inelastic electron-deuteron scattering

    International Nuclear Information System (INIS)

    Mantry, Sonny; Ramsey-Musolf, Michael J.; Sacco, Gian Franco

    2010-01-01

    We show that parity-violating deep-inelastic scattering (PVDIS) of longitudinally polarized electrons from deuterium can in principle be a relatively clean probe of higher twist quark-quark correlations beyond the parton model. As first observed by Bjorken and Wolfenstein, the dominant contribution to the electron polarization asymmetry, proportional to the axial vector electron coupling, receives corrections at twist four from the matrix element of a single four-quark operator. We reformulate the Bjorken-Wolfenstein argument in a matter suitable for the interpretation of experiments planned at the Thomas Jefferson National Accelerator Facility (JLab). In particular, we observe that because the contribution of the relevant twist-four operator satisfies the Callan-Gross relation, the ratio of parity-violating longitudinal and transverse cross sections, R γZ , is identical to that for purely electromagnetic scattering, R γ , up to perturbative and power-suppressed contributions. This result simplifies the interpretation of the asymmetry in terms of other possible novel hadronic and electroweak contributions. We use the results of MIT Bag Model calculations to estimate contributions of the relevant twist-four operator to the leading term in the asymmetry as a function of Bjorken x and Q 2 . We compare these estimates with possible leading twist corrections from violation of charge symmetry in the parton distribution functions.

  10. Atomic spectroscopy with twisted photons: Separation of M 1 -E 2 mixed multipoles

    Science.gov (United States)

    Afanasev, Andrei; Carlson, Carl E.; Solyanik, Maria

    2018-02-01

    We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity E 2 -M 1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photoexcitation rate as a function of the atom's position (or impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the target's atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical examples are presented for Boron-like highly charged ions.

  11. Separation of minimum and higher twist in the photoproduction of mesons with large transverse momenta

    International Nuclear Information System (INIS)

    Hoeger, K.C.

    1990-10-01

    Higher-twist effects in point-like photon interactions on hydrogen have been studied in xF-distributions of charged particles for -0.2 2.0 GeV/c. Data were taken with a tagged photon beam with energies between 70 and 170 GeV and a pion/kaon beam at fixed energies of 80 and 140 GeV using the same setup of detectors at the CERN-Ω-spectrometer (WA69 experiment). The pion and kaon interactions were used to obtain an estimate of the hadron-like photon component. A first estimation of Higher-Twist cross sections in photoproduction of mesons at high pT has been obtained that is consistent with QCD-expectations. (orig.) [de

  12. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  13. Simulating QCD at the physical point with Nf=2 Wilson twisted mass fermions at maximal twist

    International Nuclear Information System (INIS)

    Abdel-Rehim, A.; Alexandrou, C.; Cyprus Univ. Nicosia; Burger, F.

    2015-12-01

    We present simulations of QCD using N f =2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at a∼0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces O(a 2 ) cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.

  14. Intramolecular inverse electron demand Diels-Alder reactions of pyrimidines

    NARCIS (Netherlands)

    Frissen, A.E.

    1990-01-01

    This thesis deals with the intramolecular inverse electron demand Diels-Alder reaction of pyrimidines. The main objective of the study was to investigate the synthetic applicability of this reaction and to get more insight in the electronic and steric effects which determine the reactivity

  15. OH stretching frequencies in systems with intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens; Hansen, Bjarke Knud Vilster; Hansen, Poul Erik

    2011-01-01

    OH stretching wavenumbers were investigated for 30 species with intramolecularly hydrogen bonded hydroxyl groups, covering the range from 3600 to ca. 1900 cm-1. Theoretical wavenumbers were predicted with B3LYP/6-31G(d) density functional theory using the standard harmonic approximation, as well...

  16. Preparation of CN /Carbon Nanotube Intramolecular Junctions by ...

    African Journals Online (AJOL)

    NICO

    intramolecular junctions composed of CNx with a bamboo-like structure and empty hollow carbon nanotubes were observed, ... and excellent thermal and mechanical properties.1,2 In recent .... tion of hexane, and the other segment with a curved compart- ... by an arrow lies at the interface of the junction between 'b' and.

  17. Femtosecond dynamics of a non-steroidal anti-inflammatory drug (piroxicam) in solution: The involvement of twisting motion

    Science.gov (United States)

    Gil, Michał; Douhal, Abderrazzak

    2008-06-01

    In this contribution, we report on fast and ultrafast dynamics of a non-steroidal anti-inflammatory drug, piroxicam (PX), in methyl acetate (MAC) and triacetin (TAC), two solvents of different viscosities. The enol form of PX undergoes a femtosecond (shorter than 100 fs) electronically excited state intramolecular proton-transfer reaction to produce keto tautomers. These structures exhibit an internal twisting motion to generate keto rotamers in ˜2-5 ps, a time being longer in TAC. The transient absorption/emission spectrum is very broad indicating that the potential-energy surface at the electronically excited state is very flat, and reflecting the involvement of several coordinates along which the wavepacket of the fs-produced structures evolve.

  18. Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations

    KAUST Repository

    Chen, Xiankai

    2017-12-18

    The large voltage losses usually encountered in organic solar cells significantly limit the power conversion efficiencies (PCEs) of these devices, with the result that the current highest PCE values in single-junction organic photovoltaic remain smaller than for other solar cell technologies, such as crystalline silicon or perovskite solar cells. In particular, the nonradiative recombinations to the electronic ground state from the lowest-energy charge-transfer (CT) states at the donor-acceptor interfaces in the active layer of organic devices, are responsible for a significant part of the voltage losses. Here, to better comprehend the nonradiative voltage loss mechanisms, a fully quantum-mechanical rate formula is employed within the framework of time-dependent perturbation theory, combined with density functional theory. The objective is to uncover the specific contributions of intramolecular vibrations to the CT-state nonradiative recombinations in several model systems, which include small-molecule and polymer donors as well as fullerene and nonfullerene acceptors.

  19. Ten helical twist angles of B-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Kabsch, W; Sander, C; Trifonov, E N

    1982-01-01

    On the assumption that the twist angles between adjacent base-pairs in the DNA molecule are additive a linear system of 40 equations was derived from experimental measurements of the total twist angles for different pieces of DNA of known sequences. This system of equations is found to be statistically consistent providing a solution for all ten possible twist angles of B-DNA by a least squares fitting procedure. Four of the calculated twist angles were not known before. The other six twist angles calculated are very close to the experimentally measured ones. The data used were obtained by the electrophoretic band-shift method, crystallography and nuclease digestion of DNA adsorbed to mica or Ca-phosphate surface. The validity of the principle of additivity of the twist angles implies that the angle between any particular two base-pairs is a function of only these base-pairs, independent of nearest neighbors.

  20. Twisted Vanes Would Enhance Fuel/Air Mixing In Turbines

    Science.gov (United States)

    Nguyen, H. Lee; Micklow, Gerald J.; Dogra, Anju S.

    1994-01-01

    Computations of flow show performance of high-shear airblast fuel injector in gas-turbine engine enhanced by use of appropriately proportioned twisted (instead of flat) dome swirl vanes. Resultant more nearly uniform fuel/air mixture burns more efficiently, emitting smaller amounts of nitrogen oxides. Twisted-vane high-shear airblast injectors also incorporated into paint sprayers, providing advantages of low pressure drop characteristic of airblast injectors in general and finer atomization of advanced twisted-blade design.

  1. Twisted rudder for reducing fuel-oil consumption

    Directory of Open Access Journals (Sweden)

    Jung-Hun Kim

    2014-09-01

    Full Text Available Three twisted rudders fit for large container ships have been developed; 1 the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2 the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3 the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed.

  2. Higher twist contributions to deep-inelastic structure functions

    International Nuclear Information System (INIS)

    Bluemlein, J.; Boettcher, H.

    2008-07-01

    We report on a recent extraction of the higher twist contributions to the deep inelastic structure functions F ep,ed 2 (x,Q 2 ) in the large x region. It is shown that the size of the extracted higher twist contributions is strongly correlated with the higher order corrections applied to the leading twist part. A gradual lowering of the higher twist contributions going from NLO to N 4 LO is observed, where in the latter case only the leading large x terms were considered. (orig.)

  3. Twisted sigma-model solitons on the quantum projective line

    Science.gov (United States)

    Landi, Giovanni

    2018-04-01

    On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.

  4. Bound states on the lattice with partially twisted boundary conditions

    International Nuclear Information System (INIS)

    Agadjanov, D.; Guo, F.-K.; Ríos, G.; Rusetsky, A.

    2015-01-01

    We propose a method to study the nature of exotic hadrons by determining the wave function renormalization constant Z from lattice simulations. It is shown that, instead of studying the volume-dependence of the spectrum, one may investigate the dependence of the spectrum on the twisting angle, imposing twisted boundary conditions on the fermion fields on the lattice. In certain cases, e.g., the case of the DK bound state which is addressed in detail, it is demonstrated that the partial twisting is equivalent to the full twisting up to exponentially small corrections.

  5. Twisting and Writhing with George Ellery Hale

    Science.gov (United States)

    Canfield, Richard C.

    2013-06-01

    Early in his productive career in astronomy, George Ellery Hale developed innovative solar instrumentation that allowed him to make narrow-band images. Among the solar phenomena he discovered were sunspot vortices, which he attributed to storms akin to cyclones in our own atmosphere. Using the concept of magnetic helicity, physicists and mathematicians describe the topology of magnetic fields, including twisting and writhing. Our contemporary understanding of Hale's vortices as a consequence of large-scale twist in sunspot magnetic fields hinges on a key property of helicity: conservation. I will describe the critical role that this property plays, when applied to twist and writhe, in a fundamental aspect of global solar magnetism: the hemispheric and solar cycle dependences of active region electric currents with respect to magnetic fields. With the advent of unbroken sequences of high-resolution magnetic images, such as those presently available from the Helioseismic and Magnetic Imager on Solar Dynamics Observatory, the flux of magnetic helicity through the photosphere can be observed quantitatively. As magnetic flux tubes buoy up through the convection zone, buffeted and shredded by turbulence, they break up into fragments by repeated random bifurcation. We track these rising flux fragments in the photosphere, and calculate the flux of energy and magnetic helicity there. Using a quantitative model of coronal currents, we also track connections between these fragments to calculate the energy and magnetic helicity stored at topological interfaces that are in some ways analogous to the storage of stress at faults in the Earth's crust. Comparison of these values to solar flares and interplanetary coronal mass ejections implies that this is the primary storage mechanism for energy and magnetic helicity released in those phenomena, and suggests a useful tool for quantitative prediction of geomagnetic storms.

  6. Charge migration and charge transfer in molecular systems

    Directory of Open Access Journals (Sweden)

    Hans Jakob Wörner

    2017-11-01

    Full Text Available The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.

  7. Twisted Polynomials and Forgery Attacks on GCM

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey

    2015-01-01

    Polynomial hashing as an instantiation of universal hashing is a widely employed method for the construction of MACs and authenticated encryption (AE) schemes, the ubiquitous GCM being a prominent example. It is also used in recent AE proposals within the CAESAR competition which aim at providing...... in an improved key recovery algorithm. As cryptanalytic applications of our twisted polynomials, we develop the first universal forgery attacks on GCM in the weak-key model that do not require nonce reuse. Moreover, we present universal weak-key forgeries for the nonce-misuse resistant AE scheme POET, which...

  8. NMSBA - Twist Resist - Rotational Exercise Module

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Aaron [Twist Resist, Albuquerque, NM (United States); Reece, Blake D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berger, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guido, Steven Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Linker, Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-01

    This report contains a summary of the work completed to develop a modular, rotational exercise device. In the report are images, diagrams, and explanations of the efforts contributed to the project since its inception. The purpose of this document is to provide a walk-through of the progress on this project, from the initial design concepts to the final design and work done, so that the customer (Twist Resist), or individuals/firms who work on this project in the future will have a springboard of ideas/concepts to work from.

  9. Processing mechanics of alternate twist ply (ATP) yarn technology

    Science.gov (United States)

    Elkhamy, Donia Said

    Ply yarns are important in many textile manufacturing processes and various applications. The primary process used for producing ply yarns is cabling. The speed of cabling is limited to about 35m/min. With the world's increasing demands of ply yarn supply, cabling is incompatible with today's demand activated manufacturing strategies. The Alternate Twist Ply (ATP) yarn technology is a relatively new process for producing ply yarns with improved productivity and flexibility. This technology involves self plying of twisted singles yarn to produce ply yarn. The ATP process can run more than ten times faster than cabling. To implement the ATP process to produce ply yarns there are major quality issues; uniform Twist Profile and yarn Twist Efficiency. The goal of this thesis is to improve these issues through process modeling based on understanding the physics and processing mechanics of the ATP yarn system. In our study we determine the main parameters that control the yarn twist profile. Process modeling of the yarn twist across different process zones was done. A computational model was designed to predict the process parameters required to achieve a square wave twist profile. Twist efficiency, a measure of yarn torsional stability and bulk, is determined by the ratio of ply yarn twist to singles yarn twist. Response Surface Methodology was used to develop the processing window that can reproduce ATP yarns with high twist efficiency. Equilibrium conditions of tensions and torques acting on the yarns at the self ply point were analyzed and determined the pathway for achieving higher twist efficiency. Mechanistic modeling relating equilibrium conditions to the twist efficiency was developed. A static tester was designed to zoom into the self ply zone of the ATP yarn. A computer controlled, prototypic ATP machine was constructed and confirmed the mechanistic model results. Optimum parameters achieving maximum twist efficiency were determined in this study. The

  10. Some exact computations on the twisted butterfly state in string field theory

    International Nuclear Information System (INIS)

    Okawa, Yuji

    2004-01-01

    The twisted butterfly state solves the equation of motion of vacuum string field theory in the singular limit. The finiteness of the energy density of the solution is an important issue, but possible conformal anomaly resulting from the twisting has prevented us from addressing this problem. We present a description of the twisted regulated butterfly state in terms of a conformal field theory with a vanishing central charge which consists of the ordinary bc ghosts and a matter system with c=26. Various quantities relevant to vacuum string field theory are computed exactly using this description. We find that the energy density of the solution can be finite in the limit, but the finiteness depends on the sub leading structure of vacuum string field theory. We further argue, contrary to our previous expectation, that contributions from sub leading terms in the kinetic term to the energy density can be of the same order as the contribution from the leading term which consists of the midpoint ghost insertion. (author)

  11. How the embryonic brain tube twists

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Forsch, Nickolas; Taber, Larry

    2014-03-01

    During early development, the tubular brain of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This deformation is one of the major organ-level symmetry-breaking events in development. Available evidence suggests that bending is caused by differential growth, but the mechanism for torsion remains poorly understood. Since the heart almost always loops in the same direction that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is virtually nonexistent, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. In addition, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model is used to interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''.

  12. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  13. Strong CP, flavor, and twisted split fermions

    International Nuclear Information System (INIS)

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri

    2005-01-01

    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)

  14. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.; Alghamdi, Miasser; Poater, Albert; Falivene, Laura; Scaranto, Jessica; Beetstra, Dirk J.; Morton, Jason G.; Cavallo, Luigi

    2015-01-01

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  15. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-11-13

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  16. Intramolecular electron transfer in single-site-mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; Pascher, T

    1993-01-01

    . Natl. Acad. Sci. U.S.A. 86, 6968-6972]. The RSSR- radical produced in the above reaction was reoxidized in a slower intramolecular electron-transfer process (30-70 s-1 at 298 K) concomitant with a further reduction of the Cu(II) ion. The temperature dependence of the latter rates was determined......, lambda = 135 kJ mol-1 for the reorganization energy was derived. When Trp48, situated midway between the donor and the acceptor, was replaced by Leu or Met, only a small change in the rate of intramolecular electron transfer was observed, indicating that the aromatic residue in this position...... is apparently only marginally involved in electron transfer in wild-type azurin. Pathway calculations also suggest that a longer, through-backbone path is more efficient than the shorter one involving Trp48. The former pathway yields an exponential decay factor, beta, of 6.6 nm-1. Another mutation, raising...

  17. Structure and Intramolecular Proton Transfer of Alanine Radical Cations

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2012-01-01

    The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the NH 2 group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [NH 3 + -CHCH 3 -COO·], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol

  18. Quadratic Twists of Rigid Calabi–Yau Threefolds Over

    DEFF Research Database (Denmark)

    Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko

    2013-01-01

    of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...

  19. Bend-twist coupling potential of wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Berggreen, Christian

    2014-01-01

    -twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling...

  20. A twisted generalization of Novikov-Poisson algebras

    OpenAIRE

    Yau, Donald

    2010-01-01

    Hom-Novikov-Poisson algebras, which are twisted generalizations of Novikov-Poisson algebras, are studied. Hom-Novikov-Poisson algebras are shown to be closed under tensor products and several kinds of twistings. Necessary and sufficient conditions are given under which Hom-Novikov-Poisson algebras give rise to Hom-Poisson algebras.

  1. Twisted Acceleration-Enlarged Newton-Hooke Hopf Algebras

    International Nuclear Information System (INIS)

    Daszkiewicz, M.

    2010-01-01

    Ten Abelian twist deformations of acceleration-enlarged Newton-Hooke Hopf algebra are considered. The corresponding quantum space-times are derived as well. It is demonstrated that their contraction limit τ → ∞ leads to the new twisted acceleration-enlarged Galilei spaces. (author)

  2. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    user

    enhancement of heat transfer with twisted tape inserts as compared to plain ... studies for heat transfer and pressure drop of laminar flow in horizontal tubes ... flow in rectangular and square plain ducts and ducts with twisted-tape inserts .... presence of the insert in the pipe causes resistance to flow and increases turbulence.

  3. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires

    OpenAIRE

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current?voltage (I-V) characteristics show two distinct power law regions from 360 down to 60?K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100?K, and the correspondi...

  4. Intramolecular Diels-Alder Reactions in Organic Synthesis

    OpenAIRE

    Sizemore, Nicholas Blandford Luke

    2014-01-01

    Intramolecular Diels-Alder (IMDA) reactions are an important class of reactions in synthetic organic chemistry for the rapid construction of polycyclic frameworks. Three classes of IMDA reactions were investigated synthetically and computationally: 1) all-carbon type 1 IMDA reactions, 2) N-acylnitroso type 2 IMDA reactions, and 3) cyano-azadiene IMDA reactions. The first class was implemented in research toward the total synthesis of maoecrystal Z and isopalhinine A. The second class was stud...

  5. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon; Hoke, Eric T.; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D.; Bré das, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-01-01

    and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased

  6. Duality and braiding in twisted quantum field theory

    International Nuclear Information System (INIS)

    Riccardi, Mauro; Szabo, Richard J.

    2008-01-01

    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality

  7. Analysis list: Twist1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Twist1 Embryo,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Tw...ist1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Twist1.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/target/Twist1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Twist1.Embryo.tsv,http://dbarchive.bioscien...cedbc.jp/kyushu-u/mm9/colo/Twist1.Neural.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Embryo.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Neural.gml ...

  8. On the performance analysis of Savonius rotor with twisted blades

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Rajkumar, M. Jaya [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781 039 (India)

    2006-09-15

    The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0{sup o}). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle. (author)

  9. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    Directory of Open Access Journals (Sweden)

    Peter I. Nagy

    2014-10-01

    Full Text Available A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011 or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic in acid-base complexes have been surveyed.

  10. TD-DFT investigation of the potential energy surface for Excited-State Intramolecular Proton Transfer (ESIPT) reaction of 10-hydroxybenzo[h]quinoline: Topological (AIM) and population (NBO) analysis of the intramolecular hydrogen bonding interaction

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-01-01

    Here, we report a Density Functional Theoretical (DFT) study on the photophysics of a potent Excited-State Intramolecular Proton Transfer (ESIPT) molecular system, viz., 10-hydroxybenzo[h]quinoline (HBQ). Particular emphasis has been rendered on the assessment of the proton transfer reaction in HBQ in the ground and excited-states through elucidation and a careful perusal of the potential energy surfaces (PES). The non-viability of Ground-State Intramolecular Proton Transfer (GSIPT) process is dictated by a high-energy barrier coupled with no energy minimum for the proton transferred (K-form) form at the ground-state (S 0 ) PES. Remarkable reduction of the barrier along with thermodynamic stability inversion between the enol (E-form) and the keto forms (K-form) of HBQ upon photoexcitation from S 0 to the S 1 -state advocate for the operation of ESIPT process. These findings have been cross-validated on the lexicon of analysis of optimized geometry parameters, Mulliken's charge distribution on the heavy atoms, and molecular orbitals (MO) of the E- and the K-forms of HBQ. Our computational results also corroborate to experimental observations. From the modulations in optimized geometry parameters in course of the PT process a critical assessment has been endeavoured to delve into the movement of the proton during the process. Additional stress has been placed on the analysis of the intramolecular hydrogen bonding (IMHB) interaction in HBQ. The IMHB interaction has been explored by calculation of electron density ρ(r) and the Laplacian ∇ 2 ρ(r) at the bond critical point (BCP) using Atoms-In-Molecule (AIM) method and by calculation of interaction between σ* of OH with the lone pair of the nitrogen atom using Natural Bond Orbital (NBO) analysis. - Highlights: → Theoretical modelling of the photophysics of an ESIPT probe 10-hydroxybenzo[h]quinoline (HBQ). → Calculation of intramolecular hydrogen bond (IMHB) energy. → Role of hyperconjugative charge transfer

  11. Bianisotropic metamaterials based on twisted asymmetric crosses

    International Nuclear Information System (INIS)

    Reyes-Avendaño, J A; Sampedro, M P; Juárez-Ruiz, E; Pérez-Rodríguez, F

    2014-01-01

    The effective bianisotropic response of 3D periodic metal-dielectric structures, composed of crosses with asymmetrically-cut wires, is investigated within a general homogenization theory using the Fourier formalism and the form-factor division approach. It is found that the frequency dependence of the effective permittivity for a system of periodically-repeated layers of metal crosses exhibits two strong resonances, whose separation is due to the cross asymmetry. Besides, bianisotropic metamaterials, having a base of four twisted asymmetric crosses, are proposed. The designed metamaterials possess negative refractive index at frequencies determined by the cross asymmetry, the gap between the arms of adjacent crosses lying on the same plane, and the type of Bravais lattice. (papers)

  12. Band engineering in twisted molybdenum disulfide bilayers

    Science.gov (United States)

    Zhao, Yipeng; Liao, Chengwei; Ouyang, Gang

    2018-05-01

    In order to explore the theoretical relationship between interlayer spacing, interaction and band offset at the atomic level in vertically stacked two-dimensional (2D) van der Waals (vdW) structures, we propose an analytical model to address the evolution of interlayer vdW coupling with random stacking configurations in MoS2 bilayers based on the atomic-bond-relaxation correlation mechanism. We found that interlayer spacing changes substantially with respect to the orientations, and the bandgap increases from 1.53 eV (AB stacking) to 1.68 eV (AA stacking). Our results reveal that the evolution of interlayer vdW coupling originates from the interlayer interaction, leading to interlayer separations and electronic properties changing with stacking configurations. Our predictions constitute a demonstration of twist engineering the band shift in the emergent class of 2D crystals, transition-metal dichalcogenides.

  13. Unusual presentation of twisted ovarian cyst

    Directory of Open Access Journals (Sweden)

    Vineet V Mishra

    2016-01-01

    Full Text Available Ovarian torsion (also termed as adnexal torsion refers to partial or complete rotation of the ovary and a portion of fallopian tube along its supplying vascular pedicle. It occurs commonly in reproductive age group; more on the right side (60% and often presents with acute lower abdominal pain lasting for few hours and up to 24 h, accounting for 2.7% of acute gynecological conditions. It is one of the devastating conditions, hampering blood supply of ovary which may lead to total necrosis of ovarian tissue and complications, if not diagnosed and managed in time. Hence, we present a case on a twisted ovarian cyst in postmenopausal woman with unusual symptomatology leading to delayed diagnosis and loss of an ovary.

  14. Dynamical twisted mass fermions and baryon spectroscopy

    International Nuclear Information System (INIS)

    Drach, V.

    2010-06-01

    The aim of this work is an ab initio computation of the baryon masses starting from quantum chromodynamics (QCD). This theory describes the interaction between quarks and gluons and has been established at high energy thanks to one of its fundamental properties: the asymptotic freedom. This property predicts that the running coupling constant tends to zero at high energy and thus that perturbative expansions in the coupling constant are justified in this regime. On the contrary the low energy dynamics can only be understood in terms of a non perturbative approach. To date, the only known method that allows the computation of observables in this regime together with a control of its systematic effects is called lattice QCD. It consists in formulating the theory on an Euclidean space-time and to evaluating numerically suitable functional integrals. First chapter is an introduction to the QCD in the continuum and on a discrete space time. The chapter 2 describes the formalism of maximally twisted fermions used in the European Twisted Mass (ETM) collaboration. The chapter 3 deals with the techniques needed to build hadronic correlator starting from gauge configuration. We then discuss how we determine hadron masses and their statistical errors. The numerical estimation of functional integral is explained in chapter 4. It is stressed that it requires sophisticated algorithm and massive parallel computing on Blue-Gene type architecture. Gauge configuration production is an important part of the work realized during my Ph.D. Chapter 5 is a critical review on chiral perturbation theory in the baryon sector. The two last chapter are devoted to the analysis in the light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed. (author)

  15. Bioinspired twisted composites based on Bouligand structures

    Science.gov (United States)

    Pinto, F.; Iervolino, O.; Scarselli, G.; Ginzburg, D.; Meo, M.

    2016-04-01

    The coupling between structural support and protection makes biological systems an important source of inspiration for the development of advanced smart composite structures. In particular, some particular material configurations can be implemented into traditional composites in order to improve their impact resistance and the out-of-plane properties, which represents one of the major weakness of commercial carbon fibres reinforced polymers (CFRP) structures. Based on this premise, a three-dimensional twisted arrangement shown in a vast multitude of biological systems (such as the armoured cuticles of Scarabei, the scales of Arapaima Gigas and the smashing club of Odontodactylus Scyllarus) has been replicated to develop an improved structural material characterised by a high level of in-plane isotropy and a higher interfacial strength generated by the smooth stiffness transition between each layer of fibrils. Indeed, due to their intrinsic layered nature, interlaminar stresses are one of the major causes of failure of traditional CFRP and are generated by the mismatch of the elastic properties between plies in a traditional laminate. Since the energy required to open a crack or a delamination between two adjacent plies is due to the difference between their orientations, the gradual angle variation obtained by mimicking the Bouligand Structures could improve energy absorption and the residual properties of carbon laminates when they are subjected to low velocity impact event. Two different bioinspired laminates were manufactured following a double helicoidal approach and a rotational one and were subjected to a complete test campaign including low velocity impact loading and compared to a traditional quasi-isotropic panel. Fractography analysis via X-Ray tomography was used to understand the mechanical behaviour of the different laminates and the residual properties were evaluated via Compression After Impact (CAI) tests. Results confirmed that the biological

  16. Fast intramolecular electron transfer and dual fluorescence. Configurational change of the amino nitrogen (pyramidal→planar)

    International Nuclear Information System (INIS)

    Haar, Th. von der; Hebecker, A.; Il'Ichev, Yu.; Kuehnle, W.; Zachariasse, K. A.

    1996-01-01

    The fast excited state intramolecular charge transfer (ICT) and dual fluorescence observed with several 4-aminobenzonitriles is discussed. It is shown that the magnitude of the energy gap between the two lowest excited states determines the occurrence or absence of ICT. The photophysical behavior of a series of four 4-aminobenzonitriles in which the amino nitrogen atom is part of a four- to seven-membered heterocyclic ring, P4C to P7C, is studied by using time-resolved fluorescence measurements. The ICT rate constant strongly decreases with decreasing ring size. With P4C in diethyl ether ICT does not occur. This is attributed to the increase of the amino nitrogen inversion barrier with decreasing ring size. The change of the amino nitrogen from pyramidal to planar is considered to be an important reaction coordinate. The photophysics of the 4-aminobenzonitriles is different from that of other ICT systems such as donor/acceptor-substituted stilbenes and 9,9'-bianthryl, which are governed by the charge distribution and macroscopic Coulombic interaction in their CT states

  17. Conical twist fields and null polygonal Wilson loops

    Science.gov (United States)

    Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide

    2018-06-01

    Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.

  18. Conformal invariance and pion wave functions of nonleading twist

    International Nuclear Information System (INIS)

    Braun, V.M.; Filyanov, I.E.

    1989-01-01

    The restrictions are studied for the general structure of pion wave functions of twist 3 and twist 4 imposed by the conformal symmetry and the equations of motion. A systematic expansion of wave functions in the conformal spin is built and the first order corrections to asymptotic formulae are calculated by the QCD sum rule method. In particular, we have found a multiplicatively renormalizable contribution into the two-particle wave function of twist 4 which cannot be expanded in a finite set of Gegenbauer polynomials. 19 refs.; 5 figs

  19. Quantum communication through a spin ring with twisted boundary conditions

    International Nuclear Information System (INIS)

    Bose, S.; Jin, B.-Q.; Korepin, V.E.

    2005-01-01

    We investigate quantum communication between the sites of a spin ring with twisted boundary conditions. Such boundary conditions can be achieved by a magnetic flux through the ring. We find that a nonzero twist can improve communication through finite odd-numbered rings and enable high-fidelity multiparty quantum communication through spin rings (working near perfectly for rings of five and seven spins). We show that in certain cases, the twist results in the complete blockage of quantum-information flow to a certain site of the ring. This effect can be exploited to interface and entangle a flux qubit and a spin qubit without embedding the latter in a magnetic field

  20. TWIST1 promotes invasion through mesenchymal change in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wakimoto Hiroaki

    2010-07-01

    Full Text Available Abstract Background Tumor cell invasion into adjacent normal brain is a mesenchymal feature of GBM and a major factor contributing to their dismal outcomes. Therefore, better understandings of mechanisms that promote mesenchymal change in GBM are of great clinical importance to address invasion. We previously showed that the bHLH transcription factor TWIST1 which orchestrates carcinoma metastasis through an epithelial mesenchymal transition (EMT is upregulated in GBM and promotes invasion of the SF767 GBM cell line in vitro. Results To further define TWIST1 functions in GBM we tested the impact of TWIST1 over-expression on invasion in vivo and its impact on gene expression. We found that TWIST1 significantly increased SNB19 and T98G cell line invasion in orthotopic xenotransplants and increased expression of genes in functional categories associated with adhesion, extracellular matrix proteins, cell motility and locomotion, cell migration and actin cytoskeleton organization. Consistent with this TWIST1 reduced cell aggregation, promoted actin cytoskeletal re-organization and enhanced migration and adhesion to fibronectin substrates. Individual genes upregulated by TWIST1 known to promote EMT and/or GBM invasion included SNAI2, MMP2, HGF, FAP and FN1. Distinct from carcinoma EMT, TWIST1 did not generate an E- to N-cadherin "switch" in GBM cell lines. The clinical relevance of putative TWIST target genes SNAI2 and fibroblast activation protein alpha (FAP identified in vitro was confirmed by their highly correlated expression with TWIST1 in 39 human tumors. The potential therapeutic importance of inhibiting TWIST1 was also shown through a decrease in cell invasion in vitro and growth of GBM stem cells. Conclusions Together these studies demonstrated that TWIST1 enhances GBM invasion in concert with mesenchymal change not involving the canonical cadherin switch of carcinoma EMT. Given the recent recognition that mesenchymal change in GBMs is

  1. Full quantum treatment of charge dynamics in amorphous molecular semiconductors

    Science.gov (United States)

    de Vries, Xander; Friederich, Pascal; Wenzel, Wolfgang; Coehoorn, Reinder; Bobbert, Peter A.

    2018-02-01

    We present a treatment of charge dynamics in amorphous molecular semiconductors that accounts for the coupling of charges to all intramolecular phonon modes in a fully quantum mechanical way. Based on ab initio calculations, we derive charge transfer rates that improve on the widely used semiclassical Marcus rate and obtain benchmark results for the mobility and energetic relaxation of electrons and holes in three semiconductors commonly applied in organic light-emitting diodes. Surprisingly, we find very similar results when using the simple Miller-Abrahams rate. We conclude that extracting the disorder strength from temperature-dependent charge transport studies is very possible but extracting the reorganization energy is not.

  2. Quantitative analysis of intramolecular exciplex and electron transfer in a double-linked zinc porphyrin-fullerene dyad.

    Science.gov (United States)

    Al-Subi, Ali Hanoon; Niemi, Marja; Tkachenko, Nikolai V; Lemmetyinen, Helge

    2012-10-04

    Photoinduced charge transfer in a double-linked zinc porphyrin-fullerene dyad is studied. When the dyad is excited at the absorption band of the charge-transfer complex (780 nm), an intramolecular exciplex is formed, followed by the complete charge separated (CCS) state. By analyzing the results obtained from time-resolved transient absorption and emission decay measurements in a range of solvents with different polarities, we derived a dependence between the observable lifetimes and internal parameters controlling the reaction rate constants based on the semiquantum Marcus electron-transfer theory. The critical value of the solvent polarity was found to be ε(r) ≈ 6.5: in solvents with higher dielectric constants, the energy of the CCS state is lower than that of the exciplex and the relaxation takes place via the CCS state predominantly, whereas in solvents with lower polarities the energy of the CCS state is higher and the exciplex relaxes directly to the ground state. In solvents with moderate polarities the exciplex and the CCS state are in equilibrium and cannot be separated spectroscopically. The degree of the charge shift in the exciplex relative to that in the CCS state was estimated to be 0.55 ± 0.02. The electronic coupling matrix elements for the charge recombination process and for the direct relaxation of the exciplex to the ground state were found to be 0.012 ± 0.001 and 0.245 ± 0.022 eV, respectively.

  3. The controlled formation and cleavage of an intramolecular d8-d8 Pt-Pt interaction in a dinuclear cycloplatinated molecular "pivot-hinge".

    Science.gov (United States)

    Koo, Chi-Kin; Wong, Ka-Leung; Lau, Kai-Cheung; Wong, Wai-Yeung; Lam, Michael Hon-Wah

    2009-08-03

    The bis(diphenylphosphino)methane (dppm)-bridged dinuclear cycloplatinated complex {[Pt(L)](2)(mu-dppm)}(2+) (Pt(2)dppm; HL: 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine) demonstrates interesting reversible "pivot-hinge"-like intramolecular motions in response to the protonation/deprotonation of L. In its protonated "closed" configuration, the two platinum(II) centers are held in position by intramolecular d(8)-d(8) Pt-Pt interaction. In its deprotonated "open" configuration, such Pt-Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)](2)(mu-dchpm)}(2+) (Pt(2)dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic pi-pi interactions between the phenyl moieties of the mu-dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt-Pt interaction in Pt(2)dppm. In the case of Pt(2)dchpm, spectroscopic and spectrofluorometric titrations as well as X-ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room-temperature triplet metal-metal-to-ligand charge-transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1-pyrazolyl-N moiety and the methylene CH and phenyl C-H of the mu-dppm. The "open" configuration of the deprotonated Pt(2)dppm was estimated to be 19 kcal mol(-1) more stable than its alternative "closed" configuration. On the other hand, the open configuration of the deprotonated Pt(2)dchpm was 6 kcal mol(-1) less stable than its alternative closed configuration.

  4. Intramolecular ketenimine-ketenimine [2 + 2] and [4 + 2] cycloadditions.

    Science.gov (United States)

    Alajarín, Mateo; Bonillo, Baltasar; Sanchez-Andrada, Pilar; Vidal, Angel; Bautista, Delia

    2007-07-20

    Bis(ketenimines), in which the two heterocumulenic functions are placed in close proximity on a carbon skeleton to allow their mutual interaction, show a rich and not easily predictable chemistry. Intramolecular [2 + 2] or [4 + 2] cycloadditions are, respectively, observed when both ketenimine functions are supported on either ortho-benzylic or 2,2'-biphenylenic scaffolds. In addition, nitrogen-to-carbon [1,3] and [1,5] shifts of arylmethyl groups in N-arylmethyl-C,C-diphenyl ketenimines are also disclosed.

  5. Intramolecular photoinduced electron-transfer in azobenzene-perylene diimide

    International Nuclear Information System (INIS)

    Feng Wen-Ke; Wang Shu-Feng; Gong Qi-Huang; Feng Yi-Yu; Feng Wei; Yi Wen-Hui

    2010-01-01

    This paper studies the intramolecular photoinduced electron-transfer (PET) of covalent bonded azobenzene-perylene diimide (AZO-PDI) in solvents by using steady-state and time-resolved fluorescence spectroscopy together with ultrafast transient absorption spectroscopic techniques. Fast fluorescence quenching is observed when AZO-PDI is excited at characteristic wavelengths of AZO and perylene moieties. Reductive electron-transfer with transfer rate faster than 10 11 s −1 is found. This PET process is also consolidated by femtosecond transient absorption spectra

  6. Synthesis of anatoxin a via intramolecular cyclization of iminium salts

    International Nuclear Information System (INIS)

    Bates, H.A.; Rapoport, H.

    1979-01-01

    Anatoxin a (1) has been synthesized by exploiting intramolecular cyclization between an iminium salt and a nucleophilic carbon to construct the 9-azabicyclo[4.2.1]nonane ring system. Cyclization of malonate iminiumsalt 16 at alkaline pH afforded a low yield of bicyclic malonate 18 owing to an unfavorable equilibrium constant and lability of the iminium salt in base. In contrast, cyclization of ketoiminium salt 31 afforded a good yield of bicyclic ketone 34 in acidic methanol. Dihydropyrrolium salts 16 and 31 were generated quantitatively by decarbonylation of substituted N-methylprolines 15 and 30b, obtained by reduction of the corresponding pyrroles

  7. Intramolecular Hydrogen Bonding in (2-Hydroxybenzoyl)benzoylmethane Enol

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Winther, Morten; Spanget-Larsen, Jens

    2014-01-01

    , and the dienol form of 1,3-dibenzoylacetone. But in these examples the two H-bonds are equivalent, while in the case of OHDBM they are chemically different, involving one enolic and one phenolic hydroxy group. OHDBM is thus an interesting model compound with two competing H-bonds to the same carbonyl group......In the stable enol tautomer of the title compound (OHDBM), one carbonyl group is flanked by two β-hydroxy groups, giving rise to bifold intramolecular H-bonding. A similar situation is found in other β,β'-dihydroxy carbonyl compounds like chrysazin, anthralin, 2,2'-dihydroxybenzophenone...

  8. Renormalization of quark propagator, vertex functions, and twist-2 operators from twisted-mass lattice QCD at Nf=4

    Science.gov (United States)

    Blossier, Benoît.; Brinet, Mariane; Guichon, Pierre; Morénas, Vincent; Pène, Olivier; Rodríguez-Quintero, Jose; Zafeiropoulos, Savvas

    2015-06-01

    We present a precise nonperturbative determination of the renormalization constants in the mass independent RI'-MOM scheme. The lattice implementation uses the Iwasaki gauge action and four degenerate dynamical twisted-mass fermions. The gauge configurations are provided by the ETM Collaboration. Renormalization constants for scalar, pseudoscalar, vector and axial operators, as well as the quark propagator renormalization, are computed at three different values of the lattice spacing, two volumes and several twisted-mass parameters. The method we developed allows for a precise cross-check of the running, thanks to the particular proper treatment of hypercubic artifacts. Results for the twist-2 operator O44 are also presented.

  9. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... experimental investigations of the augmentation of turbulent flow heat transfer in a horizontal tube by means of varying width twisted tape inserts with air as the working fluid.

  10. Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)

    2010-05-15

    In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)

  11. The geometric Langlands twist in five and six dimensions

    International Nuclear Information System (INIS)

    Bak, Dongsu; Gustavsson, Andreas

    2015-01-01

    Abelian 6d (2,0) theory has SO(5) R symmetry. We twist this theory by identifying the R symmetry group with the SO(5) subgroup of the SO(1,5) Lorentz group. This twisted theory can be put on any five-manifold M, times R, while preserving one scalar supercharge. We subsequently assume the existence of one unit normalized Killing vector field on M, and we find a corresponding SO(4) twist that preserves two supercharges and is a generalization of the geometric Langlands twist of 4d SYM. We generalize the story to non-Abelian gauge group for the corresponding 5d SYM theories on M. We derive a vanishing theorem for BPS contact instantons by identifying the 6d potential energy and its BPS bound, in the 5d theory. To this end we need to perform a Wick rotation that complexifies the gauge field.

  12. Static-light meson masses from twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Jansen, Karl; Michael, Chris; Shindler, Andrea; Wagner, Marc

    2008-08-01

    We compute the static-light meson spectrum using two-flavor Wilson twisted mass lattice QCD. We have considered five different values for the light quark mass corresponding to 300 MeV PS S mesons. (orig.)

  13. Higher-Twist Dynamics in Large Transverse Momentum Hadron Production

    International Nuclear Information System (INIS)

    Francois, Alero

    2009-01-01

    A scaling law analysis of the world data on inclusive large-p # perpendicular# hadron production in hadronic collisions is carried out. A significant deviation from leading-twist perturbative QCD predictions at next-to-leading order is reported. The observed discrepancy is largest at high values of x # perpendicular# = 2p # perpendicular#/√s. In contrast, the production of prompt photons and jets exhibits the scaling behavior which is close to the conformal limit, in agreement with the leading-twist expectation. These results bring evidence for a non-negligible contribution of higher-twist processes in large-p # perpendicular# hadron production in hadronic collisions, where the hadron is produced directly in the hard subprocess rather than by gluon or quark jet fragmentation. Predictions for scaling exponents at RHIC and LHC are given, and it is suggested to trigger the isolated large-p # perpendicular# hadron production to enhance higher-twist processes.

  14. Flux Density through Guides with Microstructured Twisted Clad DB Medium

    Directory of Open Access Journals (Sweden)

    M. A. Baqir

    2014-01-01

    Full Text Available The paper deals with the study of flux density through a newly proposed twisted clad guide containing DB medium. The inner core and the outer clad sections are usual dielectrics, and the introduced twisted windings at the core-clad interface are treated under DB boundary conditions. The pitch angle of twist is supposed to greatly contribute towards the control over the dispersion characteristics of the guide. The eigenvalue equation for the guiding structure is deduced, and the analytical investigations are made to explore the propagation patterns of flux densities corresponding to the sustained low-order hybrid modes under the situation of varying pitch angles. The emphasis has been put on the effects due to the DB twisted pitch on the propagation of energy flux density through the guide.

  15. Õnnetu saatusega Oliver Twist Polanski meelevallas / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2005-01-01

    Mängufilm Charles Dickensi romaani järgi "Oliver Twist" : stsenarist Ronald Harwood : režissöör Roman Polanski : nimiosas Barney Clark, Fagin - Ben Kingsley : Suurbritannia - Tšehhi - Prantsusmaa - Itaalia 2005

  16. Investigation of Shielding Properties of Yarns, Twisted with Metal Wire

    Directory of Open Access Journals (Sweden)

    Sandra VARNAITĖ-ŽURAVLIOVA

    2014-04-01

    Full Text Available The development level of the modern techniques and information technologies creates diverse nature electromagnetic fields and electric field accumulations in the human environment. Electrically conductive textiles that protect against electromagnetic waves and electric charge accumulations can be usable as protective covers for work in computer equipment rooms, measuring stands, air and gas filters and so on. One of the methods used in increase of electrical conductivity in textiles is the development of their specific structures (including the development of threads with the metal component. In this paper, unlike the currently used in the world conductive material production method, where different metal fibres are used as an additives to the main fibre composition in order to create a variety of fibres and yarns, a spun yarn with metal wire was prototyped as samples for this research and the parameters of protective properties of these samples were investigated (such as surface resistivity, vertical resistance, etc.. The protective and shielding properties of woven network with prototyped twisted electro conductive thread with a wire (metal wire diameter of 15 microns were investigated. During the investigation the influence of the following factors, such as conductive fibre composition, electrically conductive thread distribution frequency of the longitudinal and transverse direction, on the protective shielding properties of conductive network were analyzed. The research enabled the assessment of influence of electrically conductive fibre yarn composition and its distribution in the woven mesh on protective shielding properties. DOI: http://dx.doi.org/10.5755/j01.ms.20.1.2492

  17. Study of twist boundaries in aluminium. Structure and intergranular diffusion

    International Nuclear Information System (INIS)

    Lemuet, Daniel

    1981-01-01

    This research thesis addresses the study of grain boundaries in oriented crystals, and more particularly the systematic calculation of intergranular structures and energies of twist boundaries of <001> axis in aluminium, the determination of intergranular diffusion coefficients of zinc in a set of twist bi-crystals of same axis encompassing a whole range of disorientations, and the search for a correlation between these experimental results and calculated structures

  18. 'Twisted' strings and higher level Kac-Moody representations

    International Nuclear Information System (INIS)

    Horvath, Z.; Palla, L.

    1989-01-01

    Using an orbifold-like construction the twisted sector of a closed string moving on GxG (with G simply laced) is determined. A level-two G current operating there is constructed explicitly. The decomposition of the twisted sector into products between appropriate conformal and level-two G representations is given if 2 rank G-2 dim G/(2+g)<1. (orig.)

  19. New look at the dynamics of twisted accretion disks

    International Nuclear Information System (INIS)

    Hatchett, S.P.; Begelman, M.C.; Sarazin, C.L.

    1981-01-01

    We reexamine the dynamic response of a thin, accretion disk to twisting torques, guided by the earlier analyses by Bardeen and Petterson. We make several corrections to this earlier work, and present a new version of the twist equations consistent with their physical assumptions. By describing the distortion of the disk in terms Cartesian direction cosines rather than the Euler angles used by the earlier authors, we are able to transform the twist equations from a pair of coupled, nonlinear, partial differential equations to a single, linear, complex one. We write down formulae for the external twisting torques likley to be encountered in astrophysic, and we show that even with these driving torques our twist equation remains linear. We find exact, analytic solutions for steady state structure of a disk subject to Lense-Thirring torques by a nonaligned central Kerr black hole and also for the time-dependent problem of the structure of a slaved disk with its oscillating boundary conditions. Finally, we discuss the stability of disks against twisting modes and show that undriven disks and disks subject to time-independent driving torques are stable

  20. Observations on discretization errors in twisted-mass lattice QCD

    International Nuclear Information System (INIS)

    Sharpe, Stephen R.

    2005-01-01

    I make a number of observations concerning discretization errors in twisted-mass lattice QCD that can be deduced by applying chiral perturbation theory including lattice artifacts. (1) The line along which the partially conserved axial current quark mass vanishes in the untwisted-mass-twisted-mass plane makes an angle to the twisted-mass axis which is a direct measure of O(a) terms in the chiral Lagrangian, and is found numerically to be large; (2) Numerical results for pionic quantities in the mass plane show the qualitative properties predicted by chiral perturbation theory, in particular, an asymmetry in slopes between positive and negative untwisted quark masses; (3) By extending the description of the 'Aoki regime' (where m q ∼a 2 Λ QCD 3 ) to next-to-leading order in chiral perturbation theory I show how the phase-transition lines and lines of maximal twist (using different definitions) extend into this region, and give predictions for the functional form of pionic quantities; (4) I argue that the recent claim that lattice artifacts at maximal twist have apparent infrared singularities in the chiral limit results from expanding about the incorrect vacuum state. Shifting to the correct vacuum (as can be done using chiral perturbation theory) the apparent singularities are summed into nonsingular, and furthermore predicted, forms. I further argue that there is no breakdown in the Symanzik expansion in powers of lattice spacing, and no barrier to simulating at maximal twist in the Aoki regime

  1. Twisting short dsDNA with applied tension

    Science.gov (United States)

    Zoli, Marco

    2018-02-01

    The twisting deformation of mechanically stretched DNA molecules is studied by a coarse grained Hamiltonian model incorporating the fundamental interactions that stabilize the double helix and accounting for the radial and angular base pair fluctuations. The latter are all the more important at short length scales in which DNA fragments maintain an intrinsic flexibility. The presented computational method simulates a broad ensemble of possible molecule conformations characterized by a specific average twist and determines the energetically most convenient helical twist by free energy minimization. As this is done for any external load, the method yields the characteristic twist-stretch profile of the molecule and also computes the changes in the macroscopic helix parameters i.e. average diameter and rise distance. It is predicted that short molecules under stretching should first over-twist and then untwist by increasing the external load. Moreover, applying a constant load and simulating a torsional strain which over-twists the helix, it is found that the average helix diameter shrinks while the molecule elongates, in agreement with the experimental trend observed in kilo-base long sequences. The quantitative relation between percent relative elongation and superhelical density at fixed load is derived. The proposed theoretical model and computational method offer a general approach to characterize specific DNA fragments and predict their macroscopic elastic response as a function of the effective potential parameters of the mesoscopic Hamiltonian.

  2. Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene

    Science.gov (United States)

    Zuo, Wei-Jie; Qiao, Jia-Bin; Ma, Dong-Lin; Yin, Long-Jing; Sun, Gan; Zhang, Jun-Yang; Guan, Li-Yang; He, Lin

    2018-01-01

    Twist, as a simple and unique degree of freedom, could lead to enormous novel quantum phenomena in bilayer graphene. A small rotation angle introduces low-energy van Hove singularities (VHSs) approaching the Fermi level, which result in unusual correlated states in the bilayer graphene. It is reasonable to expect that the twist could also affect the electronic properties of few-layer graphene dramatically. However, such an issue has remained experimentally elusive. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we systematically studied a twisted trilayer graphene (TTG) with two different small twist angles between adjacent layers. Two sets of VHSs, originating from the two twist angles, were observed in the TTG, indicating that the TTG could be simply regarded as a combination of two different twisted bilayers of graphene. By using high-resolution STS, we observed a split of the VHSs and directly imaged the spatial symmetry breaking of electronic states around the VHSs. These results suggest that electron-electron interactions play an important role in affecting the electronic properties of graphene systems with low-energy VHSs.

  3. Heterocycles by Transition Metals Catalyzed Intramolecular Cyclization of Acetylene Compounds

    International Nuclear Information System (INIS)

    Vizer, S.A.; Yerzhanov, K.B.; Dedeshko, E.C.

    2003-01-01

    Review shows the new strategies in the synthesis of heterocycles, having nitrogen, oxygen and sulfur atoms, via transition metals catalyzed intramolecular cyclization of acetylenic compounds on the data published at the last 30 years, Unsaturated heterocyclic compounds (pyrroles and pyrroline, furans, dihydro furans and benzofurans, indoles and iso-indoles, isoquinolines and isoquinolinones, aurones, iso coumarins and oxazolinone, lactams and lactones with various substitutes in heterocycles) are formed by transition metals, those salts [PdCl 2 , Pd(OAc) 2 , HgCl 2 , Hg(OAc) 2 , Hg(OCOCF 3 ) 2 , AuCl 3 ·2H 2 O, NaAuCl 4 ·2H 2 O, CuI, CuCl], oxides (HgO) and complexes [Pd(OAc) 2 (PPh 3 )2, Pd(PPh 3 ) 4 , PdCl 2 (MeCN) 2 , Pd(OAc ) 2 /TPPTS] catalyzed intramolecular cyclization of acetylenic amines, amides, ethers, alcohols, acids, ketones and βdiketones. More complex hetero polycyclic systems typical for natural alkaloids can to obtain similar. Proposed mechanisms of pyrroles, isoquinolines, iso indoles and indoles, benzofurans and iso coumarins, thiazolopyrimidinones formation are considered. (author)

  4. Flux compactifications, twisted tori and doubled geometry

    International Nuclear Information System (INIS)

    Reid-Edwards, R.A.

    2009-01-01

    In [1] an O(D,D)-covariant sigma model describing the embedding of a closed world-sheet into the 2D-dimensional twisted torus X was proposed. Such sigma models provide a universal description of string theory with target spaces related by the action of T-duality. In this article a six-dimensional toy example is studied in detail. Different polarisations of the six-dimensional target space give different three-dimensional string backgrounds including a nilmanifold with H-flux, a T-fold with R-flux and a new class of T-folds. Global issues and connections with the doubled torus formalism are discussed. Finally, the sigma model introduced in [1], describing the embedding of a world-sheet into X, is generalised to one describing a target space which is a bundle of X over a base M d , allowing for a more complete description of the associated gauged supergravity from the world-sheet perspective to be given.

  5. Twisted conformal field theories and Morita equivalence

    Energy Technology Data Exchange (ETDEWEB)

    Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy)], E-mail: adelenaddeo@yahoo.it

    2009-04-01

    The Morita equivalence for field theories on noncommutative two-tori is analysed in detail for rational values of the noncommutativity parameter {theta} (in appropriate units): an isomorphism is established between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space. We focus on a particular conformal field theory (CFT), the one obtained by means of the m-reduction procedure [V. Marotta, J. Phys. A 26 (1993) 3481; V. Marotta, Mod. Phys. Lett. A 13 (1998) 853; V. Marotta, Nucl. Phys. B 527 (1998) 717; V. Marotta, A. Sciarrino, Mod. Phys. Lett. A 13 (1998) 2863], and show that it is the Morita equivalent of a NCFT. Finally, the whole m-reduction procedure is shown to be the image in the ordinary space of the Morita duality. An application to the physics of a quantum Hall fluid at Jain fillings {nu}=m/(2pm+1) is explicitly discussed in order to further elucidate such a correspondence and to clarify its role in the physics of strongly correlated systems. A new picture emerges, which is very different from the existing relationships between noncommutativity and many body systems [A.P. Polychronakos, arXiv: 0706.1095].

  6. How the embryonic chick brain twists.

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A

    2016-11-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain. © 2016 The Author(s).

  7. The Latest Twists in Chromatin Remodeling.

    Science.gov (United States)

    Blossey, Ralf; Schiessel, Helmut

    2018-01-05

    In its most restrictive interpretation, the notion of chromatin remodeling refers to the action of chromatin-remodeling enzymes on nucleosomes with the aim of displacing and removing them from the chromatin fiber (the effective polymer formed by a DNA molecule and proteins). This local modification of the fiber structure can have consequences for the initiation and repression of the transcription process, and when the remodeling process spreads along the fiber, it also results in long-range effects essential for fiber condensation. There are three regulatory levels of relevance that can be distinguished for this process: the intrinsic sequence preference of the histone octamer, which rules the positioning of the nucleosome along the DNA, notably in relation to the genetic information coded in DNA; the recognition or selection of nucleosomal substrates by remodeling complexes; and, finally, the motor action on the nucleosome exerted by the chromatin remodeler. Recent work has been able to provide crucial insights at each of these three levels that add new twists to this exciting and unfinished story, which we highlight in this perspective. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules - Synthesis and Characterization

    Science.gov (United States)

    2016-04-12

    Bello 2800 Santiago, Chile 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL/AFOSR IOS 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL-AFOSR-CL-TR-2016-0012   12...properties are of interest because polarized light emitters or light absorption devices, such as OLEDS, solar cells or wave guides, filters and Faraday...DSC) analyses were carried out on a DuPont 951 instrument under nitrogen at a heating rate of 10 °C/min. Small and wide angle X ray scattering

  9. Ultrafast intramolecular charge transfer in tetrapyrazinoporphyrazines controls the quantum yields of fluorescence and singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Nováková, V.; Zimčík, P.; Miletín, M.; Váchová, L.; Kopecký, K.; Lang, Kamil; Chábera, P.; Polívka, T.

    2010-01-01

    Roč. 12, č. 11 (2010), s. 2555-2563 ISSN 1463-9076 R&D Projects: GA ČR GA203/07/1424 Institutional research plan: CEZ:AV0Z40320502 Keywords : photoinduced electron-transfer * phthalocyanine -fullerene ensembles * nonlinear-optical properties Subject RIV: CA - Inorganic Chemistry Impact factor: 3.454, year: 2010

  10. Lie n-algebras of BPS charges

    Energy Technology Data Exchange (ETDEWEB)

    Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)

    2017-03-16

    We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.

  11. TDDFT study on excited state intramolecular proton transfer mechanism in 2-amino-3-(2‧-benzazolyl)-quinolines

    Science.gov (United States)

    Jia, Xueli; Li, Chaozheng; Li, Donglin; Liu, Yufang

    2018-03-01

    The intramolecular proton transfer reaction of the 2-amino-3-(2‧-benzoxazolyl)-quinoline (ABO) and 2-amino-3-(2‧-benzothiazolyl)-quinoline (ABT) molecules in both S0 and S1 states at B3LYP/6-311 ++G(d,p) level in ethanol solvent have been studied to reveal the deactivation mechanism of the tautomers of the two molecules from the S1 state to the S0 state. The results show that the tautomers of ABO and ABT molecules may return to the S0 state by emitting fluorescence. In addition, the bond lengths, angles and infrared spectra are analyzed to confirm the hydrogen bonds strengthened upon photoexcitation, which can facilitate the proton transfer process. The frontier molecular orbitals (MOs) and natural bond orbital (NBO) are also calculated to indicate the intramolecular charge transfer which can be used to explore the tendency of ESIPT reaction. The potential energy surfaces of the ABO and ABT molecules in the S0 and S1 states have been constructed. According to the energy potential barrier of 9.12 kcal/mol for ABO molecule and 5.96 kcal/mol for ABT molecule, it can be indicated that the proton transfer may occur in the S1 state.

  12. Twisting null geodesic congruences and the Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Newman, Ezra T; Silva-Ortigoza, Gilberto

    2006-01-01

    In a recent article, we returned to the study of asymptotically flat solutions of the vacuum Einstein equations with a rather unconventional point of view. The essential observation in that work was that from a given asymptotically flat vacuum spacetime with a given Bondi shear, one can find a class of asymptotically shear-free (but, in general, twisting) null geodesic congruences where the class was uniquely given up to the arbitrary choice of a complex analytic 'worldline' in a four-dimensional complex space. By imitating certain terms in the Weyl tensor that are found in the algebraically special type II metrics, this complex worldline could be made unique and given-or assigned-the physical meaning as the complex centre of mass. Equations of motion for this case were found. The purpose of the present work is to extend those results to asymptotically flat solutions of the Einstein-Maxwell equations. Once again, in this case, we get a class of asymptotically shear-free null geodesic congruences depending on a complex worldline in the same four-dimensional complex space. However in this case there will be, in general, two distinct but uniquely chosen worldlines, one of which can be assigned as the complex centre of charge while the other could be called the complex centre of mass. Rather than investigating the situation where there are two distinct complex worldlines, we study instead the special degenerate case where the two worldlines coincide, i.e., where there is a single unique worldline. This mimics the case of algebraically special Einstein-Maxwell fields where the degenerate principle null vector of the Weyl tensor coincides with a Maxwell principle null vector. Again we obtain equations of motion for this worldline-but explicitly found here only in an approximation. Though there are ambiguities in assigning physical meaning to different terms it appears as if reliance on the Kerr and charged Kerr metrics and classical electromagnetic radiation theory helps

  13. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    Science.gov (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  14. Studies on the separation between higher-twist and minimum-twist in the photoproduction experiment WA69 at the CERN-OMEGA spectrometer

    International Nuclear Information System (INIS)

    Kingler, J.

    1990-01-01

    A Lund type Monte Carlo program (LUCIFER) is used to describe in perturbative QCD the pointlike component of the photon interacting on a hydrogen target. Kinematical and topological variables are developed to enhance higher twist events on the lowest order minimum twist background. The emphasis is laid on π ± , K ± higher twist mesons. (orig.)

  15. Spontaneous Self-Assembly of Fully Protected Ester 1:1 [α/α-Nα-Bn-hydrazino] Pseudodipeptides into a Twisted Parallel β-Sheet in the Crystal State.

    Science.gov (United States)

    Romero, Eugénie; Moussodia, Ralph-Olivier; Kriznik, Alexandre; Wenger, Emmanuel; Acherar, Samir; Jamart-Grégoire, Brigitte

    2016-10-07

    Previous studies have demonstrated that amidic α/β-pseudodipeptides, 1:1 [α/α-N α -Bn-hydrazino], have the ability to fold via a succession of γ-turn (C 7 pseudocycle) and hydrazinoturn in CDCl 3 solution, their amide terminals enabling the formation of an intramolecular H-bond network. Despite their lack of a primary amide terminals allowing the formation of the hydrazinoturn, their ester counterparts 1-4 were proven to self-assemble into C 6 and C 7 pseudocycles by intramolecular H-bonds in solution state and into an uncommon twisted parallel β-sheet through intermolecular H-bonding in the crystal state to form a supramolecular helix, with eight molecules needed to complete a full 360° rotation. Such self-organization (with eight molecules) has only been observed in a specific α/α-pseudodipeptide, depsipeptide (Boc-Leu-Lac-OEt). Relying on IR absorption, NMR, X-ray diffraction, and CD analyses, the aim of this study was to demonstrate that stereoisomers of ester 1:1 [α/α-N α -Bn-hydrazino] pseudodipeptides 1-4 are able to self-assemble into this β-helical structure. The absolute configuration of the asymmetric C α -atom of the α-amino acid residue influences the left- or right-handed twist without changing the pitch of the formed helix.

  16. Charge imbalance

    International Nuclear Information System (INIS)

    Clarke, J.

    1981-01-01

    This article provides a long theoretical development of the main ideas of charge imbalance in superconductors. Concepts of charge imbalance and quasiparticle charge are introduced, especially in regards to the use of tunnel injection in producing and detecting charge imbalance. Various mechanisms of charge relaxation are discussed, including inelastic scattering processes, elastic scattering in the presence of energy-gap anisotropy, and various pair-breaking mechanisms. In each case, present theories are reviewed in comparison with experimental data

  17. Phosphorylation of basic helix-loop-helix transcription factor Twist in development and disease.

    Science.gov (United States)

    Xue, Gongda; Hemmings, Brian A

    2012-02-01

    The transcription factor Twist plays vital roles during embryonic development through regulating/controlling cell migration. However, postnatally, in normal physiological settings, Twist is either not expressed or inactivated. Increasing evidence shows a strong correlation between Twist reactivation and both cancer progression and malignancy, where the transcriptional activities of Twist support cancer cells to disseminate from primary tumours and subsequently establish a secondary tumour growth in distant organs. However, it is largely unclear how this signalling programme is reactivated or what signalling pathways regulate its activity. The present review discusses recent advances in Twist regulation and activity, with a focus on phosphorylation-dependent Twist activity, potential upstream kinases and the contribution of these factors in transducing biological signals from upstream signalling complexes. The recent advances in these areas have shed new light on how phosphorylation-dependent regulation of the Twist proteins promotes or suppresses Twist activity, leading to differential regulation of Twist transcriptional targets and thereby influencing cell fate.

  18. A theoretical investigation on the regioselectivity of the intramolecular hetero Diels-Alder and 1,3-dipolar cycloaddition of 2-vinyloxybenzaldehyde derivatives

    Directory of Open Access Journals (Sweden)

    Hamzehloueian Mahshid

    2014-01-01

    Full Text Available The present study reports a systematic computational analysis of the two possible pathways, fused and bridged, for an intramolecular hetero Diels-Alder (IMHDA and an intramolecular 1,3-dipolar cycloaddition (IMDCA of 2-vinyloxybenzaldehyde derivatives. The potential energy surface analysis for both reactions is in agreement with experimental observations. The activation energies associated with the two regioisomeric channels in IMHDA reaction show that the bridged product is favored, although in IMDCA, the most stable TS results the fused product. The global electronic properties of fragments within each molecule were studied to discuss the reactivity patterns and charge transfer direction in the intramolecular processes. The asynchronicity of the bond formation and aromaticity of the optimized TSs in the Diels-Alder reaction as well as cycloaddition reaction were evaluated. Finally, 1H NMR chemical shifts of the possible regioisomers have been calculated using the GIAO method which of the most stable products are in agreement with the experimental data in the both reaction.

  19. Intra-molecular selectivity of muonium towards chlorinated aromatic compounds

    International Nuclear Information System (INIS)

    Venkateswaran, K.; Stadlbauer, J.M.; Laing, M.E.; Klugkist, J.; Chong, D.P.; Porter, G.B.; Walker, D.C.

    1994-01-01

    Muon resonance studies show that muonium atoms (Mu) in ethanol add selectively to certain C-sites of aromatic compounds containing -Cl and -OH substituents. The sites chosen seem to be those carrying the lowest electron density. This helps to characterize Mu as a nucleophile in addition reactions and, in this respect, Mu differs from ordinary H-atoms. The study shows no apparent inter-molecular selectivity between a pair of aromatic solutes in an equimolar mixture, but strong intra-molecular selectivity in an ether composed of those two aromatic rings. This difference between intra- and inter-molecular selectivity is interpreted as kinetic in origin - arising from the 'caging effect' of the solvent and peculiar to reactions close to the diffusion-controlled limit. (orig.)

  20. Insights into the Intramolecular Properties of η6-Arene-Ru-Based Anticancer Complexes Using Quantum Calculations

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2013-01-01

    Full Text Available The factors that determine the stability and the effects of noncovalent interaction on the η6-arene ruthenium anticancer complexes are determined using DFT method. The intramolecular and intra-atomic properties were computed for two models of these half-sandwich ruthenium anticancer complexes and their respective hydrated forms. The results showed that the stability of these complexes depends largely on the network of hydrogen bonds (HB, strong nature of charge transfer, polarizability, and electrostatic energies that exist within the complexes. The hydrogen bonds strength was found to be related to the reported anticancer activities and the activation of the complexes by hydration. The metal–ligand bonds were found to be closed shell systems that are characterised by high positive Laplacian values of electron density. Two of the complexes are found to be predominantly characterised by LMCT while the other two are predominately characterised by MLCT.

  1. Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)

    International Nuclear Information System (INIS)

    Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.

    1999-01-01

    Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2ν 1 to 5ν 1 ) and free-jet action spectra of the second through the fourth overtones (3ν 1 to 5ν 1 ) of the N - H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N - H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with ab initio calculations of East, Johnson, and Allen [J. Chem. Phys. 98, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N - H stretching zero-order states are ones with a quantum of N - H stretching excitation (ν 1 ) replaced by different combinations of N - C - O asymmetric or symmetric stretching excitation (ν 2 or ν 3 ) and trans-bending excitation (ν 4 ). The two strongest couplings of the nν 1 state are to the states (n-1)ν 1 +ν 2 +ν 4 and (n-1)ν 1 +ν 3 +2ν 4 , and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N - H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. copyright 1999 American Institute of Physics

  2. Extension-twist coupling of composite circular tubes with application to tilt rotor blade design

    Science.gov (United States)

    Nixon, Mark W.

    1987-01-01

    This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.

  3. Finite element and analytical models for twisted and coiled actuator

    Science.gov (United States)

    Tang, Xintian; Liu, Yingxiang; Li, Kai; Chen, Weishan; Zhao, Jianguo

    2018-01-01

    Twisted and coiled actuator (TCA) is a class of recently discovered artificial muscle, which is usually made by twisting and coiling polymer fibers into spring-like structures. It has been widely studied since discovery due to its impressive output characteristics and bright prospects. However, its mathematical models describing the actuation in response to the temperature are still not fully developed. It is known that the large tensile stroke is resulted from the untwisting of the twisted fiber when heated. Thus, the recovered torque during untwisting is a key parameter in the mathematical model. This paper presents a simplified model for the recovered torque of TCA. Finite element method is used for evaluating the thermal stress of the twisted fiber. Based on the results of the finite element analyses, the constitutive equations of twisted fibers are simplified to develop an analytic model of the recovered torque. Finally, the model of the recovered torque is used to predict the deformation of TCA under varying temperatures and validated against experimental results. This work will enhance our understanding of the deformation mechanism of TCAs, which will pave the way for the closed-loop position control.

  4. AKT-ions with a TWIST between EMT and MET.

    Science.gov (United States)

    Tang, Huifang; Massi, Daniela; Hemmings, Brian A; Mandalà, Mario; Hu, Zhengqiang; Wicki, Andreas; Xue, Gongda

    2016-09-20

    The transcription factor Twist is an important regulator of cranial suture during embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular transition from an epithelial to mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in cell motility. In the absence of Twist activity, EMT and associated phenotypic changes in cell morphology and motility can also be induced, albeit moderately, by other transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist in human mammary tumour cells was first reported to drive metastasis to the lung in a metastatic breast cancer model. Subsequent analysis of many types of carcinoma demonstrated overexpression of these unique EMT transcription factors, which statistically correlated with worse outcome, indicating their potential as biomarkers in the clinic. However, the mechanisms underlying their activation remain unclear. Interestingly, increasing evidence indicates they are selectively activated by distinct intracellular kinases, thereby acting as downstream effectors facilitating transduction of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-epithelial transition (MET) transcription to control cell plasticity. Understanding these relationships and emerging data indicating differential phosphorylation of Twist leads to complex and even paradoxical functionalities, will be vital to unlocking their potential in clinical settings.

  5. The Twist Tensor Nuclear Norm for Video Completion.

    Science.gov (United States)

    Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui

    2017-12-01

    In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.

  6. Progress in simulations with twisted mass fermions at the physical point

    International Nuclear Information System (INIS)

    Abdel-Rehim, A.

    2014-11-01

    In this contribution, results from N f =2 lattice QCD simulations at one lattice spacing using twisted mass fermions with a clover term at the physical pion mass are presented. The mass splitting between charged and neutral pions (including the disconnected contribution) is shown to be around 20(20) MeV. Further, a first measurement using the clover twisted mass action of the average momentum fraction of the pion is given. Finally, an analysis of pseudoscalar meson masses and decay constants is presented involving linear interpolations in strange and charm quark masses. Matching to meson mass ratios allows the calculation of quark mass ratios: μ s /μ l =27.63(13), μ c /μ l =339.6(2.2) and μ c /μ s =12.29(10). From this mass matching the quantities f K =153.9(7.5) MeV, f D =219(11) MeV, f D s =255(12) MeV and M D s =1894(93) MeV are determined without the application of finite volume or discretization artefact corrections and with errors dominated by a preliminary estimate of the lattice spacing.

  7. Non-destructive splitter of twisted light

    OpenAIRE

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2015-01-01

    Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spe...

  8. Fast Torsional Artificial Muscles from NiTi Twisted Yarns.

    Science.gov (United States)

    Mirvakili, Seyed M; Hunter, Ian W

    2017-05-17

    Torsional artificial muscles made of multiwalled carbon nanotube/niobium nanowire yarns have shown remarkable torsional speed and gravimetric torque. The muscle structure consists of a twisted yarn with half of its length infiltrated with a stimuli-responsive guest material such as paraffin wax. The volumetric expansion of the guest material creates the torsional actuation in the yarn. In the present work, we show that this type of actuation is not unique to wax-infiltrated carbon multiwalled nanotube (MWCNT) or niobium nanowire yarns and that twisted yarn of NiTi alloy fibers also produces fast torsional actuation. By gold-plating half the length of a NiTi twisted yarn and Joule heating it, we achieved a fully reversible torsional actuation of up to 16°/mm with peak torsional speed of 10 500 rpm and gravimetric torque of 8 N·m/kg. These results favorably compare to those of MWCNTs and niobium nanowire yarns.

  9. From starproducts to Drinfeld-twists. Present and future applications

    International Nuclear Information System (INIS)

    Koch, Florian

    2008-01-01

    Physics comes up with models that invoke noncommutative structures in configuration space. Such structures are dual to the deformed coalgebra sector of a represented symmetry algebra. In the mean time such deformations are performed in terms of the symmetry algebra itself via twists or quasitriangular structures. One might thus find oneself in the bad situation that the symmetry algebra is not large enough to provide the required twist that dually matches the noncommutative structure found. It thus has to remain in the unpleasant state of being without any notion of symmetry. We show how starproducts can be pushed to twists by introducing a larger algebra that accommodates any finite dimensional representation of a Lie-algebra. This new algebra is similar to a Heisenberg-algebra but in contrast to the latter can be enhanced to a Hopf-algebra. Some Examples are given. (author)

  10. Twisted vertex algebras, bicharacter construction and boson-fermion correspondences

    International Nuclear Information System (INIS)

    Anguelova, Iana I.

    2013-01-01

    The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras

  11. Iterative methods for overlap and twisted mass fermions

    International Nuclear Information System (INIS)

    Chiarappa, T.; Jansen, K.; Shindler, A.; Wetzorke, I.; Scorzato, L.; Urbach, C.; Wenger, U.

    2006-09-01

    We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

  12. Iterative methods for overlap and twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa, T. [Univ. di Milano Bicocca (Italy); Jansen, K.; Shindler, A.; Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Nagai, K.I. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy); Scorzato, L. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), Villazzano (Italy); Urbach, C. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Wenger, U. [ETH Zuerich (Switzerland). Inst. fuer Theoretische Physik

    2006-09-15

    We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

  13. Template preparation of twisted nanoparticles of mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen

    2011-01-01

    Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.

  14. Twisted spin Sutherland models from quantum Hamiltonian reduction

    International Nuclear Information System (INIS)

    Feher, L; Pusztai, B G

    2008-01-01

    Recent general results on Hamiltonian reductions under polar group actions are applied to study some reductions of the free particle governed by the Laplace-Beltrami operator of a compact, connected, simple Lie group. The reduced systems associated with arbitrary finite-dimensional irreducible representations of the group by using the symmetry induced by twisted conjugations are described in detail. These systems generically yield integrable Sutherland-type many-body models with spin, which are called twisted spin Sutherland models if the underlying twisted conjugations are built on non-trivial Dynkin diagram automorphisms. The spectra of these models can be calculated, in principle, by solving certain Clebsch-Gordan problems, and the result is presented for the models associated with the symmetric tensorial powers of the defining representation of SU(N)

  15. Reversible Twisting of Primary Amides via Ground State N-C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides.

    Science.gov (United States)

    Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2018-01-17

    Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.

  16. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2′:5′,2′′- terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C 71-butyric acid methyl ester (PC 71BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current. © 2012 American

  17. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    Science.gov (United States)

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  18. Intramolecular addition of benzylic radicals onto ketenimines. Synthesis of 2-alkylindoles.

    Science.gov (United States)

    Alajarín, Mateo; Vidal, Angel; Ortín, María-Mar

    2003-12-07

    The inter- and intramolecular addition of free radicals onto ketenimines is studied. All the attempts to add intermolecularly several silicon, oxygen or carbon centered radicals to N-(4-methylphenyl)-C,C-diphenyl ketenimine were unsuccessful. In contrast, the intramolecular addition of benzylic radicals, generated from xanthates, onto the central carbon of a ketenimine function with its N atom linked to the ortho position of the aromatic ring occurred under a variety of reaction conditions. These intramolecular cyclizations provide a novel radical-mediated synthesis of 2-alkylindoles.

  19. Borel resummation of soft gluon radiation and higher twists

    International Nuclear Information System (INIS)

    Forte, Stefano; Ridolfi, Giovanni; Rojo, Joan; Ubiali, Maria

    2006-01-01

    We show that the well-known divergence of the perturbative expansion of resummed results for processes such as deep-inelastic scattering and Drell-Yan in the soft limit can be treated by Borel resummation. The divergence in the Borel inversion can be removed by the inclusion of suitable higher twist terms. This provides us with an alternative to the standard 'minimal prescription' for the asymptotic summation of the perturbative expansion, and it gives us some handle on the role of higher twist corrections in the soft resummation region

  20. Modeling higher twist contributions to deep inelastic scattering with diquarks

    International Nuclear Information System (INIS)

    Anselmino, M.

    1994-01-01

    The most recent detailed data on the unpolarized nucleon structure functions allow a precise determination of higher twist contributions. Quark-quark correlations induced by color forces are expected to be a natural explanation for such effects; indeed, a quark-diquark picture of the nucleon, previously introduced in the description of several exclusive processes at intermediate Q 2 values, is found to model the proton higher twist data with great accuracy. The resulting parameters are consistent with the diquark properties suggested by other experimental and theoretical analyses. (author)

  1. Modelling higher twist contributions to deep inelastic scattering with diquarks

    International Nuclear Information System (INIS)

    Anselmino, M.; Caruso, F.; Penna Firme, A.; Soares, J.; Mello Neto, J.R.T. de

    1994-08-01

    The most recent detailed data on the unpolarized nucleon structure functions allow a precise determination of higher twist contributions. Quark-quark correlations induced by colour forces are expected to be a natural explanation for such effects: indeed, a quark-diquark picture of the nucleon, previously introduced in the description of several exclusive processes at intermediate Q 2 values, is found to model the proton higher twist data with great accuracy. The resulting parameters are consistent with the diquark properties suggested by other experimental and theoretical analyses. (author). 15 refs, 5 figs

  2. Anomalous phase shift in a twisted quantum loop

    International Nuclear Information System (INIS)

    Taira, Hisao; Shima, Hiroyuki

    2010-01-01

    The coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm-like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.

  3. Note on twisted elliptic genus of K3 surface

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Tohru, E-mail: eguchi@yukawa.kyoto-u.ac.j [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hikami, Kazuhiro, E-mail: KHikami@gmail.co [Department of Mathematics, Naruto University of Education, Tokushima 772-8502 (Japan)

    2011-01-03

    We discuss the possibility of Mathieu group M{sub 24} acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M{sub 24} so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M{sub 24}. In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.

  4. Note on twisted elliptic genus of K3 surface

    International Nuclear Information System (INIS)

    Eguchi, Tohru; Hikami, Kazuhiro

    2011-01-01

    We discuss the possibility of Mathieu group M 24 acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M 24 so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M 24 . In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.

  5. Stability of short wavelength tearing and twisting modes

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.

    1998-01-01

    The stability and mutual interaction of tearing and twisting modes in a torus is governed by matrices that generalize the well-known Δ' stability index. The diagonal elements of these matrices determine the intrinsic stability of modes that reconnect the magnetic field at a single resonant surface. The off-diagonal elements indicate the strength of the coupling between the different modes. The author shows how the elements of these matrices can be evaluated, in the limit of short wavelength, from the free energy driving radially extended ballooning modes. The author applies the results by calculating the tearing and twisting Δ' for a model high-beta equilibrium with circular flux surfaces

  6. Gerbes over posets and twisted C*-dynamical systems

    OpenAIRE

    Vasselli, Ezio

    2017-01-01

    A base $\\Delta$ generating the topology of a space $M$ becomes a partially ordered set (poset), when ordered under inclusion of open subsets. Given a precosheaf over $\\Delta$ of fixed-point spaces (typically C*-algebras) under the action of a group $G$, in general one cannot find a precosheaf of $G$-spaces having it as fixed-point precosheaf. Rather one gets a gerbe over $\\Delta$, that is, a "twisted precosheaf" whose twisting is encoded by a cocycle with coefficients in a suitable 2-group. W...

  7. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires.

    Science.gov (United States)

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current-voltage (I-V) characteristics show two distinct power law regions from 360 down to 60 K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100 K, and the corresponding carrier mobility, trap energy, and trap concentration are also obtained. However, the I-V data exhibit some features of the Coulomb blockade effect below 80 K.

  8. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires

    Science.gov (United States)

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current-voltage ( I- V) characteristics show two distinct power law regions from 360 down to 60 K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100 K, and the corresponding carrier mobility, trap energy, and trap concentration are also obtained. However, the I-V data exhibit some features of the Coulomb blockade effect below 80 K.

  9. AN in inclusive lepton-proton collisions: TMD and twist-3 approaches

    International Nuclear Information System (INIS)

    Prokudin, Alexei

    2015-01-01

    We consider the inclusive production of hadrons in lepton-nucleon scattering. For a transversely polarized nucleon this reaction shows a left-right azimuthal asymmetry, which we compute this asymmetry in both TMD and in twist-3 collinear factorization formalisms. All non-perturbative parton correlators of the calculation are fixed through information from other hard processes. Our results for the left-right asymmetry agree in sign with recent data for charged pion production from the HERMES Collaboration and from Jefferson Lab. As a result, we discuss similarities and differences of two formalisms

  10. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  11. Geometry of the toroidal N-helix: optimal-packing and zero-twist

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2012-01-01

    Two important geometrical properties of N-helix structures are influenced by bending. One is maximizing the volume fraction, which is called optimal-packing, and the other is having a vanishing strain-twist coupling, which is called zero-twist. Zero-twist helices rotate neither in one nor...... helix. General N-helices are discussed, as well as zero-twist helices for N > 1. The derived geometrical restrictions are gradually modified by changing the aspect ratio of the torus....

  12. Intramolecular interactions in a new tris-dithizonatocobalt(III) complex

    International Nuclear Information System (INIS)

    Eschwege, Karel G. von; As, Lydia van; Joubert, Chris C.; Swarts, Jannie C.; Aquino, Manuel A.S.; Cameron, T. Stanley

    2013-01-01

    Graphical abstract: Electrochemically Co(HDz) 3 (5), show three main ligand-based redox processes, two reductions and one oxidation. Ligand oxidations can be resolved into three components highlighting effective intramolecular interactions between molecular fragments; a spectroelectrochemical study of (5) highlighted spectroscopic changes during the six observed redox steps. - Highlights: • Comparative CV's of dithizone (1), PhHg(HDz) and new Co(HDz) 3 (5), is discussed. • One oxidation and two reductions per ligand and a Co III/II couple for (5) are observed. • Mono- and tris-coordinated PhHg(HDz) and (5) have stable metal thioether bonds. • Crystal structure details explain good resolution between ligand redox processes. • Spectro-electrochemistry of (5) highlights spectroscopic properties of redox products. - Abstract: The reactions between dithizone (H 2 Dz (1)) or potassium dithizonate (KHDz (3)), and [Co(H 2 O) 6 ] 2+ (6), in acetone or methanol to liberate tris-dithizonatocobalt(III), Co(HDz) 3 (5), are described. The structure of (5) was confirmed by single crystal X-ray analyses and shows bidentate coordination to Co III via S and N donor atoms for all three HDz − ligands. A comparative voltammetric and spectro-electrochemical study revealed that (1) can be oxidised in two one-electron transfer steps, to generate a disulphide first and then HDz + . In contrast, upon complexation with cobalt, the free mercaptan group of (1) becomes a stable “metal thioether”, Co-S-C, which effectively prevents disulphide formation in all three ligands of (5) upon electrochemical oxidation. As a result, each ligand of Co(HDz) 3 shows just one oxidation process. Intramolecular communication between ligands is evident because the three separate ligand-based oxidations are well resolved. Two irreversible ligand reduction steps, each consisting of three unresolved components related to each of the three ligands, were also observed. The Co II /Co III couple

  13. On the space of connections having non-trivial twisted harmonic spinors

    International Nuclear Information System (INIS)

    Bei, Francesco; Waterstraat, Nils

    2015-01-01

    We consider Dirac operators on odd-dimensional compact spin manifolds which are twisted by a product bundle. We show that the space of connections on the twisting bundle which yields an invertible operator has infinitely many connected components if the untwisted Dirac operator is invertible and the dimension of the twisting bundle is sufficiently large

  14. Twisting failure of centrally loaded open-section columns in the elastic range

    Science.gov (United States)

    Kappus, Robert

    1938-01-01

    In the following report a complete theory of twisting failure by the energy method is developed, based on substantially the same assumptions as those employed by Wagner and Bleich. Problems treated in detail are: the stress and strain condition under St. Venant twist and in twist with axial constraint; the concept of shear center and the energy method for problems of elastic stability.

  15. On the space of connections having non-trivial twisted harmonic spinors

    Energy Technology Data Exchange (ETDEWEB)

    Bei, Francesco, E-mail: bei@math.hu-berlin.de [Institut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin (Germany); Waterstraat, Nils, E-mail: n.waterstraat@kent.ac.uk [School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury, Kent CT2 7NF (United Kingdom)

    2015-09-15

    We consider Dirac operators on odd-dimensional compact spin manifolds which are twisted by a product bundle. We show that the space of connections on the twisting bundle which yields an invertible operator has infinitely many connected components if the untwisted Dirac operator is invertible and the dimension of the twisting bundle is sufficiently large.

  16. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  17. Mechanisms of Twist 1-Induced Invasion in Breast Cancer Metastasis

    Science.gov (United States)

    2011-01-01

    affect breast cancer metastasis with a subcutaneous mouse tumor implantation model of breast cancer metastasis. HMLE -Twist1 cells expressing shRNAs...13 4 Introduction Distant metastases are responsible for the vast majority of breast cancer deaths. This process...to migrate and invade is therefore essential to the metastatic process. The initial steps of breast cancer metastasis, local invasion and

  18. Determinant of twisted chiral Dirac operator on the lattice

    International Nuclear Information System (INIS)

    Fosco, C.D.; Randjbar Daemi, S.

    1995-04-01

    Using the overlap formulation, we calculate the fermionic determinant on the lattice for chiral fermions with twisted boundary conditions in two dimensions. When the lattice spacing tends to zero we recover the results on the usual string-theory continuum calculations. (author). 13 refs

  19. Stability of coupled tearing and twisting modes in tokamaks

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1994-03-01

    A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD behavior at only one rational surface at a time in the plasma are decoupled via sheared rotation and diamagnetic flows. At higher amplitude, more unstable open-quote compound close-quote modes develop which have nonideal behavior simultaneously at many surfaces. Such modes possess tearing parity layers at some of the nonideal surfaces, and twisting parity layers at others, but mixed parity layers are generally disallowed. At low mode number, open-quote compound close-quote modes are likely to have tearing parity layers at all of the nonideal surfaces in a very low-β plasma, but twisting parity layers become more probable as the plasma β is increased. At high mode number, unstable twisting modes which exceed a critical amplitude drive conventional magnetic island chains on alternate rational surfaces, to form an interlocking structure in which the O-points and X-points of neighboring chains line up

  20. Spectral estimates for Dirichlet Laplacians on perturbed twisted tubes

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Barseghyan, Diana

    2014-01-01

    Roč. 8, č. 1 (2014), s. 167-183 ISSN 1846-3886 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Drichlet Laplacian * twisted tube * discrete spectrum * eigenvalue estimates Subject RIV: BE - Theoretical Physics Impact factor: 0.583, year: 2014

  1. Casimir energy for twisted piecewise uniform bosonic strings

    International Nuclear Information System (INIS)

    Lu, J.; Huang, B.; Shanghai, Teachers Univ.

    1998-01-01

    The Casimir energy for the transverse oscillations of piecewise uniform bosonic strings with either untwisted or twisted continuous conditions is discussed. After calculating the analytic values of zeros of the dispersion function under certain conditions, is obtained the Casimir energy for both open and closed bosonic strings composed of two or three segments

  2. Twisted equivariant K-theory, groupoids and proper actions

    OpenAIRE

    Cantarero, Jose

    2009-01-01

    In this paper we define twisted equivariant K-theory for actions of Lie groupoids. For a Bredon-compatible Lie groupoid, this defines a periodic cohomology theory on the category of finite CW-complexes with equivariant stable projective bundles. A classification of these bundles is shown. We also obtain a completion theorem and apply these results to proper actions of groups.

  3. Fermionic construction of vertex operators for twisted affine algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Sorba, P.; Sciarrino, A.

    1988-03-01

    We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators

  4. Heat bath method for the twisted Eguchi-Kawai model

    International Nuclear Information System (INIS)

    Fabricius, K.; Haan, O.

    1984-01-01

    We reformulate the twisted Eguchi-Kawaii model in a way that allows us to use the heat bath method for the updating procedure of the link matrices. This new formulation is more efficient by a factor of 2.5 in computer time and of 2.3 in memory need. (orig.)

  5. Heat bath method for the twisted Eguchi-Kawai model

    Energy Technology Data Exchange (ETDEWEB)

    Fabricius, K.; Haan, O.

    1984-08-16

    We reformulate the twisted Eguchi-Kawaii model in a way that allows us to use the heat bath method for the updating procedure of the link matrices. This new formulation is more efficient by a factor of 2.5 in computer time and of 2.3 in memory need.

  6. Twisted mass lattice QCD with non-degenerate quark masses

    International Nuclear Information System (INIS)

    Muenster, Gernot; Sudmann, Tobias

    2006-01-01

    Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a

  7. Twist-2 Light-Cone Pion Wave Function

    OpenAIRE

    Belyaev, V. M.; Johnson, Mikkel B.

    1997-01-01

    We present an analysis of the existing constraints for the twist-2 light-cone pion wave function. We find that existing information on the pion wave function does not exclude the possibility that the pion wave function attains its asymptotic form. New bounds on the parameters of the pion wave function are presented.

  8. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  9. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe; Wheeler, Janet I; Marondedze, Claudius; Gehring, Christoph A; Irving, Helen R

    2018-01-01

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  10. TDDFT study on intramolecular hydrogen bond of photoexcited methyl salicylate.

    Science.gov (United States)

    Qu, Peng; Tian, Dongxu

    2014-01-01

    The equilibrium geometries, IR-spectra and transition mechanism of intramolecular hydrogen-bonded methyl salicylate in excited state were studied using DFT and TDDFT with 6-31++G (d, p) basis set. The length of hydrogen bond OH⋯OC is decreased from 1.73 Å in the ground state to 1.41 and 1.69 Å in the excited S1 and S3 states. The increase of bond length for HO and CO group also indicates that in excited state the hydrogen bond OH⋯OC is strengthened. IR spectra show HO and CO stretching bands are strongly redshifted by 1387 and 67 cm(-1) in the excited S1 and S3 states comparing to the ground state. The excitation energy and the absorption spectrum show the S3 state is the main excited state of the low-lying excited states. By analyzing the frontier molecular orbitals, the transition from the ground state to the excited S1 and S3 states was predicted to be the π→π∗ mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Intramolecular oxidative deselenization of acylselenoureas: a facile synthesis of benzoxazole amides and carbonic anhydrase inhibitors.

    Science.gov (United States)

    Angeli, A; Peat, T S; Bartolucci, G; Nocentini, A; Supuran, C T; Carta, F

    2016-12-28

    A mild, efficient and one pot procedure to access benzoxazoles using easily accessible acylselenoureas as starting materials has been discovered. Mechanistic studies revealed a pH dependent intramolecular oxidative deselenization, with ring closure due to an intramolecular nucleophilic attack of a phenoxide ion. All the benzoxazoles herein reported possessed a primary sulfonamide zinc binding group and showed effective inhibitory action on the enzymes, carbonic anhydrases.

  12. Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube

    Directory of Open Access Journals (Sweden)

    Amit K. Bhakta

    2018-01-01

    Full Text Available This paper reports the overall thermal performance of a cylindrical parabolic concentrating solar water heater (CPCSWH with inserting nail type twisted tape (NTT in the copper absorber tube for the nail twist pitch ratios, 4.787, 6.914 and 9.042, respectively. The experiments are conducted for a constant volumetric water flow rate and during the time period 9:00 a.m. to 15:00 p.m. The useful heat gain, hourly solar energy collected and hourly solar energy stored in this solar water heater were found to be higher for the nail twist pitch ratio 4.787. The above said parameters were found to be at a peak at noon and observed to follow the path of variation of solar intensity. At the start of the experiment, the value of charging efficiency was observed to be maximum, whereas the maximum values of instantaneous efficiency and overall thermal efficiency were observed at noon. The key finding is that the nail twist pitch ratio enhances the overall thermal performance of the CPCSWH.

  13. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    Science.gov (United States)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance

  14. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  15. Intermittent energy bursts and recurrent topological change of a twisting magnetic flux tube

    International Nuclear Information System (INIS)

    Amo, Hiroyoshi; Sato, Tetsuya; Kageyama, Akira.

    1994-09-01

    When continuously twisted, a magnetic flux tube suffers a large kink distortion in the middle part of the tube, like a knot-of-tension instability of a bundle of twisted rubber strings, and reconnection is triggered starting with the twisted field lines and quickly proceeding to the untwisted field lines at the twist-untwist boundary, whereby a giant burst-like energy release takes place. Subsequently, bursts occur intermittently and reconnection advances deeper into the untwisted region. Then, a companion pair of the linked twist-untwist flux tubes reconnect with each other to return to the original axisymmetric tube. The process is thus repeatable. (author)

  16. Automatic O(a) improvement for twisted mass QCD in the presence of spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Aoki, Sinya; Baer, Oliver

    2006-01-01

    In this paper we present a proof for automatic O(a) improvement in twisted mass lattice QCD at maximal twist, which uses only the symmetries of the leading part in the Symanzik effective action. In the process of the proof we clarify that the twist angle is dynamically determined by vacuum expectation values in the Symanzik theory. For maximal twist according to this definition, we show that scaling violations of all quantities which have nonzero values in the continuum limit are even in a. In addition, using Wilson chiral perturbation theory, we investigate this definition for maximal twist and compare it to other definitions which were already employed in actual simulations

  17. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines

    International Nuclear Information System (INIS)

    Ohkuma, Mizue; Funato, Noriko; Higashihori, Norihisa; Murakami, Masanori; Ohyama, Kimie; Nakamura, Masataka

    2007-01-01

    TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-κB sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells

  18. Charge preamplifier

    International Nuclear Information System (INIS)

    Chaminade, R.; Passerieux, J.P.

    1961-01-01

    We describe a charge preamplifier having the following properties: - large open loop gain giving both stable gain and large input charge transfer; - stable input grid current with aging and without any adjustment; - fairly fast rise; - nearly optimum noise performance; - industrial material. (authors)

  19. Charge Meter

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Charge Meter: Easy Way to Measure Charge and Capacitance: Some Interesting Electrostatic Experiments. M K Raghavendra V Venkataraman. Classroom Volume 19 Issue 4 April 2014 pp 376-390 ...

  20. New fast organic scintillators using intramolecular bromine quenching

    International Nuclear Information System (INIS)

    Berlman, I.B.; Lutz, S.S.; Flournoy, J.M.; Ashford, C.B.; Franks, L.A.

    1984-01-01

    Organic scintillator solutions with decay times as fast as 500 ps and with relatively high conversion efficiencies have been developed. The intramolecular quenching was achieved through the novel approach of adding a bromine atom to the 3- or 4-position of para-oligophenylenes, the fluorescent solutes in these binary solutions. The bromine serves to enhance singlet-to-triplet intersystem crossing in the chromophore, causing a reduction in the scintillation yield and a concomitant reduction in the decay time. The very fast value given above probably also involves some intermolecular self-quenching at high concentration. In addition, the bromine reduces the symmetry of the molecules, thereby increasing their solubility. Finally, an alkyl chain on the opposite para position further increases the solubility and also increases the immunity of the chromophore to quenching. The decay times for binary liquid solutions in toluene (at the indicated concentrations) were 0.51 ns for 4-BHTP (0.14 M), 0.75 ns for 3-BHTP (0.14 M), 0.57 ns for 3-BTP (0.14 M), and 1.3 ns for 4-BHQP (0.06 M). Binary plastics with 4-BHTP as the solute in concentrations up to 0.14 M were cast in polystyrene. The shortest decay time, 0.40 ns, was measured for the 0.14 M concentration. A plastic scintillator containing 3-BTP (0.11 M in polystyrene) had a decay time of 0.85 ns. These results compare favorably with the plastic scintillator BC-422 whose decay time is about 1.4 ns. (orig./HSI)

  1. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  2. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  3. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  4. Neutron electric dipole moment using N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Petschlies, M. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics

    2016-03-15

    We evaluate the neutron electric dipole moment vertical stroke vector d{sub N} vertical stroke using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using N{sub f}=2+1+1 twisted mass fermions at one value of the lattice spacing of a ≅0.082 fm and a light quark mass corresponding to m{sub π}≅373 MeV. Our approach to extract the neutron electric dipole moment is based on the calculation of the CP-odd electromagnetic form factor F{sub 3}(Q{sup 2}) for small values of the vacuum angle θ in the limit of zero Euclidean momentum transfer Q{sup 2}. The limit Q{sup 2}→0 is realized either by adopting a parameterization of the momentum dependence of F{sub 3}(Q{sup 2}) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of F{sub 3}(Q{sup 2}). The computation in the presence of a CP-violating term requires the evaluation of the topological charge Q. This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of vertical stroke vector d{sub N} vertical stroke =0.045(6)(1) anti θ e.fm for the ensemble with m{sub π}=373 MeV considered.

  5. A torsional artificial muscle from twisted nitinol microwire

    Science.gov (United States)

    Mirvakili, Seyed M.; Hunter, Ian W.

    2017-04-01

    Nitinol microwires of 25 μm in diameter can have tensile actuation of up to 4.5% in less than 100 ms. A work density of up to 480 MPa can be achieved from these microwires. In the present work, we are showing that by twisting the microwires in form of closed-loop two-ply yarn we can create a torsional actuator. We achieved a revisable torsional stroke of 46°/mm with peak rotational speed of up to 10,000 rpm. We measured a gravimetric torque of up to 28.5 N•m/kg which is higher than the 3 - 6 N•m/kg for direct-drive commercial electric motors. These remarkable performance results are comparable to those of guest-infiltrated carbon nanotube twisted yarns.

  6. Twisted-Light-Ion Interaction: The Role of Longitudinal Fields

    Science.gov (United States)

    Quinteiro, G. F.; Schmidt-Kaler, Ferdinand; Schmiegelow, Christian T.

    2017-12-01

    The propagation of light beams is well described using the paraxial approximation, where field components along the propagation direction are usually neglected. For strongly inhomogeneous or shaped light fields, however, this approximation may fail, leading to intriguing variations of the light-matter interaction. This is the case of twisted light having opposite orbital and spin angular momenta. We compare experimental data for the excitation of a quadrupole transition in a single trapped 40Ca+ ion from Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] with a complete model where longitudinal components of the electric field are taken into account. Our model matches the experimental data and excludes by 11 standard deviations the approximation of a complete transverse field. This demonstrates the relevance of all field components for the interaction of twisted light with matter.

  7. Nonsnaking doubly diffusive convectons and the twist instability

    Energy Technology Data Exchange (ETDEWEB)

    Beaume, Cédric, E-mail: ced.beaume@gmail.com; Knobloch, Edgar, E-mail: knobloch@berkeley.edu [Department of Physics, University of California, Berkeley, California 94720 (United States); Bergeon, Alain, E-mail: alain.bergeon@imft.fr [Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France and CNRS, IMFT, F-31400 Toulouse (France)

    2013-11-15

    Doubly diffusive convection in a three-dimensional horizontally extended domain with a square cross section in the vertical is considered. The fluid motion is driven by horizontal temperature and concentration differences in the transverse direction. When the buoyancy ratio N = −1 and the Rayleigh number is increased the conduction state loses stability to a subcritical, almost two-dimensional roll structure localized in the longitudinal direction. This structure exhibits abrupt growth in length near a particular value of the Rayleigh number but does not snake. Prior to this filling transition the structure becomes unstable to a secondary twist instability generating a pair of stationary, spatially localized zigzag states. In contrast to the primary branch these states snake as they grow in extent and eventually fill the whole domain. The origin of the twist instability and the properties of the resulting localized structures are investigated for both periodic and no-slip boundary conditions in the extended direction.

  8. Helicity conservation and twisted Seifert surfaces for superfluid vortices.

    Science.gov (United States)

    Salman, Hayder

    2017-04-01

    Starting from the continuum definition of helicity, we derive from first principles its different contributions for superfluid vortices. Our analysis shows that an internal twist contribution emerges naturally from the mathematical derivation. This reveals that the spanwise vector that is used to characterize the twist contribution must point in the direction of a surface of constant velocity potential. An immediate consequence of the Seifert framing is that the continuum definition of helicity for a superfluid is trivially zero at all times. It follows that the Gauss-linking number is a more appropriate definition of helicity for superfluids. Despite this, we explain how a quasi-classical limit can arise in a superfluid in which the continuum definition for helicity can be used. This provides a clear connection between a microscopic and a macroscopic description of a superfluid as provided by the Hall-Vinen-Bekarevich-Khalatnikov equations. This leads to consistency with the definition of helicity used for classical vortices.

  9. The dipole representation of vector meson electroproduction beyond leading twist

    International Nuclear Information System (INIS)

    Besse, A.; Szymanowski, L.; Wallon, S.

    2013-01-01

    We link the recent computation beyond leading twist of the impact factor of the transition γ T ⁎ →ρ T performed in the light-cone collinear approach, to the dipole picture by expressing the hard part of the process through its Fourier transform in coordinate space. We show that in the Wandzura–Wilczek approximation the impact factor up to twist 3 factorises in the wave function of the photon combined with the distribution amplitudes of the ρ-meson and the colour dipole scattering amplitude with the t-channel gluons. We show also that beyond the Wandzura–Wilczek approximation, the hard contribution of the amplitude still exhibits the signature of the interaction of a single colour dipole with the t-channel gluons. This result allows a phenomenological approach of the helicity amplitudes of the leptoproduction of vector meson, by combining our results to a dipole/target scattering amplitude model.

  10. BK-parameter from Nf=2 twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Constantinou, M.; Dimopoulos, P.; Frezzotti, R.; INFN, Rome

    2011-01-01

    We present an unquenched N f = 2 lattice computation of the B K parameter which controls K 0 - anti K 0 oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B K parameter which is both multiplicatively renormalizable and O(a) improved. Employing the non-perturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B RGI K =0.729±0.030, a number well in line with the existing quenched and unquenched determinations. (orig.)

  11. Overlap valence quarks on an twisted mass sea

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, K. [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Drach, V.; Garcia-Ramos, E.; Herdoiza, G.; Jansen, K. [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC

    2010-12-15

    We present the results of an investigation of a mixed action approach of overlap valence and maximally twisted mass sea quarks. Employing a particular matching condition on the pion mass, we analyze the continuum limit scaling of the pion decay constant and the role of chiral zero modes of the overlap operator in this process. We employ gauge field configurations generated by the European Twisted Mass Collaboration with linear lattice size L ranging from 1.3 to 1.9 fm. The continuum limit is taken at a fixed value of L=1.3 fm, employing three values of the lattice spacing and two values of the pion mass constructed from sea quarks only. (orig.)

  12. Electric currents induced by twisted light in Quantum Rings.

    Science.gov (United States)

    Quinteiro, G F; Berakdar, J

    2009-10-26

    We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

  13. Sweep-twist adaptive rotor blade : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  14. Partially coherent twisted states in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Omel' chenko, Oleh E.; Wolfrum, Matthias [Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin (Germany); Laing, Carlo R. [INMS, Massey University, Private Bag 102-904 NSMC, Auckland (New Zealand)

    2014-06-15

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.

  15. Partially coherent twisted states in arrays of coupled phase oscillators

    International Nuclear Information System (INIS)

    Omel'chenko, Oleh E.; Wolfrum, Matthias; Laing, Carlo R.

    2014-01-01

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system

  16. Twisted tachyon condensation in closed string field theory

    International Nuclear Information System (INIS)

    Okawa, Yuji; Zwiebach, Barton

    2004-01-01

    We consider twisted tachyons on C/Z N orbifolds of bosonic closed string theory. It has been conjectured that these tachyonic instabilities correspond to decays of the orbifolds into flat space or into orbifolds with smaller deficit angles. We examine this conjecture using closed string field theory, with the string field truncated to low-level tachyons. We compute the tachyon potentials for C/Z 2 and C/Z 3 orbifolds and find critical points at depths that generate about 70% of the expected change in the deficit angle. We find that both twisted fields and untwisted modes localized near the apex of the cone acquire vacuum expectation values and contribute to the potential. (author)

  17. Stability of Medium-Bridged Twisted Amides in Aqueous Solutions

    Science.gov (United States)

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2012-01-01

    “Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141

  18. Noether analysis of the twisted Hopf symmetries of canonical noncommutative spacetimes

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Gubitosi, Giulia; Marciano, Antonino; Martinetti, Pierre; Mercati, Flavio; Briscese, Fabio

    2008-01-01

    We study the twisted Hopf-algebra symmetries of observer-independent canonical spacetime noncommutativity, for which the commutators of the spacetime coordinates take the form [x^ μ ,x^ ν ]=iθ μν with observer-independent (and coordinate-independent) θ μν . We find that it is necessary to introduce nontrivial commutators between transformation parameters and spacetime coordinates, and that the form of these commutators implies that all symmetry transformations must include a translation component. We show that with our noncommutative transformation parameters the Noether analysis of the symmetries is straightforward, and we compare our canonical-noncommutativity results with the structure of the conserved charges and the ''no-pure-boost'' requirement derived in a previous study of κ-Minkowski noncommutativity. We also verify that, while at intermediate stages of the analysis we do find terms that depend on the ordering convention adopted in setting up the Weyl map, the final result for the conserved charges is reassuringly independent of the choice of Weyl map and (the corresponding choice of) star product.

  19. New twists to QCD at large-N

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.

    1984-01-01

    The recently discovered reduced models of Quantum Chromodynamics in the limit of a large number (N) of colors are discussed, in particular the version that employs appropriate Z(N) twists. Some preliminary numerical data are presented, together with some new analytic results (saddle-points). This may be of some help for understanding the mechanism of confinement, which presumably is the same for all N. Also, the reduced chiral model in two dimensions is discussed

  20. Twisted bilayer blue phosphorene: A direct band gap semiconductor

    Science.gov (United States)

    Ospina, D. A.; Duque, C. A.; Correa, J. D.; Suárez Morell, Eric

    2016-09-01

    We report that two rotated layers of blue phosphorene behave as a direct band gap semiconductor. The optical spectrum shows absorption peaks in the visible region of the spectrum and in addition the energy of these peaks can be tuned with the rotational angle. These findings makes twisted bilayer blue phosphorene a strong candidate as a solar cell or photodetection device. Our results are based on ab initio calculations of several rotated blue phosphorene layers.

  1. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and

  2. Some new quasi-twisted ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2015-09-01

    Full Text Available Let [n, k, d]_q code be a linear code of length n, dimension k and minimum Hamming distance d over GF(q. One of the basic and most important problems in coding theory is to construct codes with best possible minimum distances. In this paper seven quasi-twisted ternary linear codes are constructed. These codes are new and improve the best known lower bounds on the minimum distance in [6].

  3. Topological susceptibility from twisted mass fermions using spectral projectors

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, E. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Forschungszentrum Juelich (Germany). IAS; Forschungszentrum Juelich (Germany). IKP; Forschungszentrum Juelich (Germany). JCHP; Collaboration: European Twisted Mass Collaboration

    2013-12-15

    We discuss the computation of the topological susceptibility using the method of spectral projectors and dynamical twisted mass fermions. We present our analysis concerning the O(a)- improvement of the topological susceptibility and we show numerical results for N{sub f}=2 and N{sub f}=2+1+1 flavours, performing a study of the quark mass dependence in terms of leading order chiral perturbation theory.

  4. Leading Twist GPDs and Transverse Spin Densities in a Proton

    Science.gov (United States)

    Mondal, Chandan; Maji, Tanmay; Chakrabarti, Dipankar; Zhao, Xingbo

    2018-05-01

    We present a study of both chirally even and odd generalized parton distributions in the leading twist for the quarks in a proton using the light-front wavefunctions of a quark-diquark model predicted by the holographic QCD. For transversely polarized proton, both chiral even and chiral odd GPDs contribute to the spin densities which are related to the GPDs in transverse impact parameter space. Here, we also present a study of the spin densities for transversely polarized quark and proton.

  5. RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Giagkiozis, I.; Verth, G. [Solar Plasma Physics Research Centre, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH (United Kingdom); Goossens, M.; Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Amy Johnson Building, Sheffield, S1 3JD (United Kingdom)

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  6. Unwinding motion of a twisted active region filament

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  7. Microwave modulation characteristics of twisted liquid crystals with chiral dopant

    Directory of Open Access Journals (Sweden)

    Rui Yuan

    2017-01-01

    Full Text Available Adding a chiral dopant in twisted nematic (TN liquid crystal cell can stabilize the orientation of liquid crystal molecules, particularly in high TN (HTN or super TN (STN liquid crystal cells. The difference in pitches in liquid crystal is induced by the chiral dopant, and these different pitches affect the orientation of liquid crystal director under an external applied voltage and influence the characteristics of microwave modulation. To illustrate this point, the microwave phase shift per unit length (MPSL versus voltage is calculated on the basis of the elastic theory of liquid crystal and the finite-difference iterative method. Enhancing the pitch induced by the chiral dopant in liquid crystal increases the MPSLs, but the stability of the twisted structures is decreased. Thus, appropriate pitches of 100d, 4d, and 2d can be applied in TN, HTN, and STN cells with cell gap d to enhance the characteristics of microwave modulation and stabilize the structures in twisted cell. This method can improve the characteristics of liquid crystal microwave modulators such that the operating voltage and the size of such phase shifters can be decreased.

  8. Twist operator correlation functions in O(n) loop models

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Cardy, John

    2009-01-01

    Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n = 0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c = 0. In this limit the twist operator plays the role of a 0-weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null states, we derive a new explicit result for the probabilities that an SLE 8/3 winds in various ways about two points in the upper half-plane, e.g. that the SLE passes to the left of both points. The collection of c = 0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We argue that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules

  9. Twisted Bilayer Graphene. Interlayer configuration and magnetotransport signatures

    Energy Technology Data Exchange (ETDEWEB)

    Rode, Johannes C.; Smirnov, Dmitri; Belke, Christopher; Schmidt, Hennrik; Haug, Rolf J. [Institut fuer Festkoerperphysik, Hannover (Germany)

    2017-11-15

    Twisted Bilayer Graphene may be viewed as very first representative of the now booming class of artificially layered 2D materials. Consisting of two sheets from the same structure and atomic composition, its decisive degree of freedom lies in the rotation between crystallographic axes in the individual graphene monolayers. Geometrical consideration finds angle-dependent Moire patterns as well as commensurate superlattices of opposite sublattice exchange symmetry. Beyond the approach of rigidly interposed lattices, this review takes focus on the evolving topic of lattice corrugation and distortion in response to spatially varying lattice registry. The experimental approach to twisted bilayers requires a basic control over preparation techniques; important methods are summarized and extended on in the case of bilayers folded from monolayer graphene via AFM nanomachining. Central morphological parameters to the twisted bilayer, rotational mismatch and interlayer separation are studied in a broader base of samples. Finally, experimental evidence for a number of theoretically predicted, controversial electronic scenarios are reviewed; magnetotransport signatures are discussed in terms of Fermi velocity, van Hove singularities and Berry phase and assessed with respect to the underlying experimental conditions, thereby referring back to the initially considered variations in relaxed lattice structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The SU(∞) twisted gradient flow running coupling

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Margarita García [Instituto de Física Teórica UAM-CSIC,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); González-Arroyo, Antonio [Instituto de Física Teórica UAM-CSIC,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); Departamento de Física Teórica, C-15, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); Keegan, Liam [PH-TH, CERN,CH-1211 Geneva 23 (Switzerland); Okawa, Masanori [Graduate School of Science, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2015-01-09

    We measure the running of the SU(∞) ’t Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter l-tilde=l√N, with l the torus period. We set the scale for the running coupling in terms of l-tilde and use the gradient flow to define a renormalized ’t Hooft coupling λ(l-tilde). In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large N limit taken at fixed value of λ(l-tilde). The coupling constant is thus expected to coincide with that of the ordinary pure gauge theory at N=∞. The idea is shown to work and permits us to follow the evolution of the coupling over a wide range of scales. At weak coupling we find a remarkable agreement with the perturbative two-loop formula for the running coupling.

  11. The $SU(\\infty)$ twisted gradient flow running coupling

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori

    2015-01-01

    We measure the running of the $SU(\\infty)$ 't Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU($N$) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter $\\tilde l = l \\sqrt{N}$, with $l$ the torus period. We set the scale for the running coupling in terms of $\\tilde l$ and use the gradient flow to define a renormalized 't Hooft coupling $\\lambda(\\tilde l)$. In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large $N$ limit taken at fixed value of $\\lambda(\\tilde l)$. The coupling constant is thus expected to coinc...

  12. 'Twisted tape sign': Its significance in recurrent sigmoid volvulus

    International Nuclear Information System (INIS)

    Gopal, K.; Lim, Y.; Banerjee, B.

    2005-01-01

    Aim: Sigmoid volvulus is a common cause of intestinal obstruction in the elderly. Mild attacks of sigmoid volvulus may be more difficult to diagnose due to the lack of severity of symptoms which may resolve spontaneously only to recur after an interval. This study was a review of patients to assess the incidence of the 'twisted tape sign' and to evaluate the significance of its presence in cases of recurrent sigmoid volvulus. Methods and materials: A retrospective study over eight years revealed six cases of surgically confirmed recurrent sigmoid volvulus. Case records and barium enemas of all patients were reviewed. Results: Six patients were identified, including four men and two women, with a median age of 56 years. Diagnostic difficulties were encountered in four (67%) patients with a delay ranging between 10 and 37 months with a mean 17.3 months. Twisted tape sign was confirmed on all barium examinations retrospectively. Conclusion: Recognition of twisted tape sign on barium enema examination along with an appropriate clinical history would suggest a diagnosis of recurrent sigmoid volvulus

  13. Twist effects in quantum vortices and phase defects

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L.

    2018-02-01

    In this paper we show that twist, defined in terms of rotation of the phase associated with quantum vortices and other physical defects effectively deprived of internal structure, is a property that has observable effects in terms of induced axial flow. For this we consider quantum vortices governed by the Gross-Pitaevskii equation (GPE) and perform a number of test cases to investigate and compare the effects of twist in two different contexts: (i) when this is artificially superimposed on an initially untwisted vortex ring; (ii) when it is naturally produced on the ring by the simultaneous presence of a central straight vortex. In the first case large amplitude perturbations quickly develop, generated by the unnatural setting of the initial condition that is not an analytical solution of the GPE. In the second case much milder perturbations emerge, signature of a genuine physical process. This scenario is confirmed by other test cases performed at higher twist values. Since the second setting corresponds to essential linking, these results provide new evidence of the influence of topology on physics.

  14. Conductance and activation energy for electron transport in series and parallel intramolecular circuits.

    Science.gov (United States)

    Hsu, Liang-Yan; Wu, Ning; Rabitz, Herschel

    2016-11-30

    We investigate electron transport through series and parallel intramolecular circuits in the framework of the multi-level Redfield theory. Based on the assumption of weak monomer-bath couplings, the simulations depict the length and temperature dependence in six types of intramolecular circuits. In the tunneling regime, we find that the intramolecular circuit rule is only valid in the weak monomer coupling limit. In the thermally activated hopping regime, for circuits based on two different molecular units M a and M b with distinct activation energies E act,a > E act,b , the activation energies of M a and M b in series are nearly the same as E act,a while those in parallel are nearly the same as E act,b . This study gives a comprehensive description of electron transport through intramolecular circuits from tunneling to thermally activated hopping. We hope that this work can motivate additional studies to design intramolecular circuits based on different types of building blocks, and to explore the corresponding circuit laws and the length and temperature dependence of conductance.

  15. Enhancement of turbulent flow heat transfer in a tube with modified twisted tapes

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Y.G.; Zhao, C.H.; Song, C.F. [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan (China)

    2012-12-15

    Numerical simulations were performed to study the fluid flow and heat transfer in a tube with staggered twisted tapes with central holes. In the range of Reynolds numbers between 6000 and 28 000, the modified twisted tapes increased the Nusselt number by 76.2 {proportional_to} 149.7 % and the friction factor by 380.2 {proportional_to} 443.8 % compared to the smooth tube. Compared to the typical twisted tapes, the modified twisted tapes produced an acceleration flow through the triangle regions leading to the enhancement of heat transfer, and the holes in the modified tapes reduced the severe pressure loss. It was found that the modified twisted tapes decreased the friction factor by 8.0 {proportional_to} 16.1 % and enhanced the heat transfer by 34.1 {proportional_to} 46.8 % in comparison with the typical tapes. These results indicated that the performance ratio values of the tube with modified twisted tapes were higher than 1.0 in the range of Reynolds numbers studied. The computed performance ratios of the tube with modified twisted tapes were much higher than those of the tube with typical twisted tapes. This means that the integrated performance of the tube with staggered twisted tapes with central holes is superior to that of the tube with typical twisted tapes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Phuoc T Tran

    Full Text Available KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.

  17. Comparison of different lattice definitions of the topological charge

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Ottnad, Konstantin; Bonn Univ.; Bonn Univ.; Urbach, Carsten; Zimmermann, Falk; Bonn Univ.; Wenger, Urs

    2014-11-01

    We present a comparison of different definitions of the topological charge on the lattice, using a small-volume ensemble with 2 flavours of dynamical twisted mass fermions. The investigated definitions are: index of the overlap Dirac operator, spectral projectors, spectral flow of the Hermitian Wilson-Dirac operator and field theoretic with different kinds of smoothing of gauge fields (HYP and APE smearings, gradient flow, cooling). We also show some results on the topological susceptibility.

  18. Flexible Faraday Cage with a Twist: Surface Charge on a Mobius Strip

    Science.gov (United States)

    Stewart, Sean

    2007-01-01

    Once an intriguing topological novelty known only to mathematicians, the Mobius strip has become a source of fascination and inspiration to the layperson and artist alike. Principal among its features are the two strange properties that the Mobius strip is a surface with only one side and one edge. A Mobius strip is readily formed by taking a long…

  19. Exclusive processes beyond leading twist: {gamma}*T {yields} {rho}T impact factor with twist three accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland); Anikin, Igor V. [Joint Institute for Nuclear Research - JINR, Joliot-Curie st., 6, Moskovskaya obl., 141980, Dubna (Russian Federation); Ivanov, Dmitry Yu [Sobolev Institute of Mathematics, Acad. Koptyug pr., 4, 630090 Novosibirsk (Russian Federation); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France)

    2010-07-01

    We describe a consistent approach to factorization of scattering amplitudes for exclusive processes beyond the leading twist approximation. The method is based on the Taylor expansion of the scattering amplitude in the momentum space around the dominant light-cone direction and thus naturally introduces an appropriate set of non-perturbative correlators which encode effects not only of the lowest but also of the higher Fock states of the produced particle. The reduction of original set of correlators to a set of independent ones is achieved with the help of equations of motion and invariance of the scattering amplitude under rotation on the light-cone. As a concrete application, we compute the expressions of the impact factor for the transition of virtual photon to transversally polarised {rho}-meson up to the twist 3 accuracy. (Phys.Lett.B682:413-418,2010 and Nucl.Phys.B828:1-68,2010.). (authors)

  20. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    Science.gov (United States)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  1. Sky-blue emitting bridged diiridium complexes: beneficial effects of intramolecular π-π stacking.

    Science.gov (United States)

    Congrave, Daniel G; Hsu, Yu-Ting; Batsanov, Andrei S; Beeby, Andrew; Bryce, Martin R

    2018-02-06

    The potential of intramolecular π-π interactions to influence the photophysical properties of diiridium complexes is an unexplored topic, and provides the motivation for the present study. A series of diarylhydrazide-bridged diiridium complexes functionalised with phenylpyridine (ppy)-based cyclometalating ligands is reported. It is shown by NMR studies in solution and single crystal X-ray analysis that intramolecular π-π interactions between the bridging and cyclometalating ligands rigidify the complexes leading to high luminescence quantum efficiencies in solution and in doped films. Fluorine substituents on the phenyl rings of the bridge promote the intramolecular π-π interactions. Notably, these non-covalent interactions are harnessed in the rational design and synthesis of the first examples of highly emissive sky-blue diiridium complexes featuring conjugated bridging ligands, for which they play a vital role in the structural and photophysical properties. Experimental results are supported by computational studies.

  2. Chemical origin of blue- and redshifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation.

    Science.gov (United States)

    Li, An Yong

    2007-04-21

    Upon formation of a H bond Y...H-XZ, intramolecular hyperconjugation n(Z)-->sigma*(X-H) of the proton donor plays a key role in red- and blueshift characters of H bonds and must be introduced in the concepts of hyperconjugation and rehybridization. Intermolecular hyperconjugation transfers electron density from Y to sigma*(X-H) and causes elongation and stretch frequency redshift of the X-H bond; intramolecular hyperconjugation couples with intermolecular hyperconjugation and can adjust electron density in sigma*(X-H); rehybridization causes contraction and stretch frequency blueshift of the X-H bond on complexation. The three factors--intra- and intermolecular hyperconjugations and rehybridization--determine commonly red- or blueshift of the formed H bond. A proton donor that has strong intramolecular hyperconjugation often forms blueshifted H bonds.

  3. Vinylcyclopropylacyl and polyeneacyl radicals. Intramolecular ketene alkyl radical additions in ring synthesis.

    Science.gov (United States)

    De Boeck, Benoit; Herbert, Nicola M A; Harrington-Frost, Nicole M; Pattenden, Gerald

    2005-01-21

    Treatment of a variety of substituted vinylcyclopropyl selenyl esters, e.g. 11, with Bu(3)SnH-AIBN in refluxing benzene leads to the corresponding acyl radical intermediates, which undergo rearrangement and intramolecular cyclisations via their ketene alkyl radical equivalents producing cyclohexenones in 50-60% yield. By contrast, treatment of conjugated triene selenyl esters, e.g. 32, with Bu(3)SnH-AIBN produces substituted 2-cyclopentenones via intramolecular cyclisations of their ketene alkyl radical intermediates. Under the same radical-initiating conditions the selenyl esters derived from o-vinylbenzoic acid and o-vinylcinnamic acid undergo intramolecular cyclisations producing 1-indanone and 5,6-dihydrobenzocyclohepten-7-one respectively in 60-70% yields. A tandem radical cyclisation from the alpha,beta,gamma,delta-diene selenyl ester 31 provides an expeditious synthesis of the diquinane 35 in 69% yield.

  4. Modelling the effect of nonplanarity on charge transport along conjugated polymer chains

    International Nuclear Information System (INIS)

    Correia, Helena M.G.; Ramos, Marta M.D.

    2007-01-01

    Conjugated polymers show interesting properties that make them appropriated for nanoelectronics. Several studies of poly(p-phenylene vinylene) (PPV) have suggested that each polymer chain consists of several planar segments, with conjugation length of nanoscale dimension, linked by twists or kinks. A pronounced twist between two planar segments in a PPV chain not only causes loss of main-chain conjugation but it may also alter electron and hole mobility along the chain, which has further implications for the percolation of charge through the polymer film. We used self-consistent quantum molecular dynamics calculations to provide information on the electric field needed to move the injected charges (either electrons or holes) along the planar segments of PPV and to cross the twist between two planar segments perpendicular to each other. Field-dependent charge mobility was also estimated for conjugated segments of various lengths. Our results suggest that electrons can cross the twist between adjacent planar segments for lower applied electric fields than holes if there is no more than one electronic charge (electron or hole) on the PPV chain, otherwise similar fields are needed

  5. Effect of Twisting and Stretching on Magneto Resistance and Spin Filtration in CNTs

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singh

    2017-08-01

    Full Text Available Spin-dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT and non-equilibrium green’s function (NEGF formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC, which results in higher magneto resistance (MR. Twisting allows spin-up current almost equivalent to the pristine CNT case, resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones, with pristine giving a higher spin filtration than twisted CNT.

  6. Twisted entire cyclic cohomology, J-L-O cocycles and equivariant spectral triples

    International Nuclear Information System (INIS)

    Goswami, D.

    2002-07-01

    We study the 'quantized calculus' corresponding to the algebraic ideas related to 'twisted cyclic cohomology'. With very similar definitions and techniques, we define and study 'twisted entire cyclic cohomology' and the 'twisted Chern character' associated with an appropriate operator theoretic data called 'twisted spectral data', which consists of a spectral triple in the conventional sense of noncommutative geometry and an additional positive operator having some specified properties. Furthermore, it is shown that given a spectral triple (in the conventional sense) which is equivariant under the action of a compact matrix pseudogroup, it is possible to obtain a canonical twisted spectral data and hence the corresponding (twisted) Chern character, which will be invariant under the action of the pseudogroup, in contrast to the fact that the Chern character coming from the conventional noncommutative geometry need not be invariant under the above action. (author)

  7. PERFORMANCE CHARACTERISTICS OF PARABOLIC SOLAR COLLECTOR WATER HEATER SYSTEM FITTED WITH NAIL TWISTED TAPES ABSORBER

    Directory of Open Access Journals (Sweden)

    K. SYED JAFAR

    2017-03-01

    Full Text Available In this paper, the experimental heat transfer, friction loss and thermal performance data for water flowing through the absorber tube fitted with two different twisted tape configurations in parabolic trough collector (PTC are presented. In the present work, a relative experimental study is carried out to investigate the performance of a PTC influenced by heat transfer through fluidabsorber wall mixing mechanism. The major findings of this experiment show that heat transport enhancement in the nail twisted tape collector perform significantly better than plain twisted tapes and also show that the smallest twisted tape ratio enhances the system performance remarkably maximizing the collector efficiency. The results suggest that the twisted tape and nail twisted tape would be a better option for high thermal energy collection in laminar region of the PTC system.

  8. Benzothiazole-Based AIEgen with Tunable Excited-State Intramolecular Proton Transfer and Restricted Intramolecular Rotation Processes for Highly Sensitive Physiological pH Sensing.

    Science.gov (United States)

    Li, Kai; Feng, Qi; Niu, Guangle; Zhang, Weijie; Li, Yuanyuan; Kang, Miaomiao; Xu, Kui; He, Juan; Hou, Hongwei; Tang, Ben Zhong

    2018-04-23

    In this work, a benzothiazole-based aggregation-induced emission luminogen (AIEgen) of 2-(5-(4-carboxyphenyl)-2-hydroxyphenyl)benzothiazole (3) was designed and synthesized, which exhibited multifluorescence emissions in different dispersed or aggregated states based on tunable excited-state intramolecular proton transfer (ESIPT) and restricted intramolecular rotation (RIR) processes. 3 was successfully used as a ratiometric fluorescent chemosensor for the detection of pH, which exhibited reversible acid/base-switched yellow/cyan emission transition. More importantly, the pH jump of 3 was very precipitous from 7.0 to 8.0 with a midpoint of 7.5, which was well matched with the physiological pH. This feature makes 3 very suitable for the highly sensitive detection of pH fluctuation in biosamples and neutral water samples. 3 was also successfully used as a ratiometric fluorescence chemosensor for the detection of acidic and basic organic vapors in test papers.

  9. Intramolecular electron transfer in ascorbate oxidase is enhanced in the presence of oxygen

    DEFF Research Database (Denmark)

    Farver, O; Wherland, S; Pecht, I

    1994-01-01

    Intramolecular electron transfer from the type 1 copper center to the type 3 copper(II) pair is induced in the multi-copper enzyme, ascorbate oxidase, following pulse radiolytic reduction of the type 1 Cu(II) ion. In the presence of a slight excess of dioxygen over ascorbate oxidase, interaction...... between the trinuclear copper center and O2 is observed even with singly reduced ascorbate oxidase molecules. Under these conditions, the rate constant for intramolecular electron transfer from type 1 Cu(I) to type 3 Cu(II) increases 5-fold to 1100 +/- 300 s-1 (20 degrees C, pH 5.8) as compared...

  10. Synthesis of novel steroid-tetrahydroquinoline hybrid molecules and D-homosteroids by intramolecular cyclization reactions.

    Science.gov (United States)

    Magyar, Angéla; Wölfling, János; Kubas, Melanie; Cuesta Seijo, Jose Antonio; Sevvana, Madhumati; Herbst-Irmer, Regine; Forgó, Péter; Schneider, Gyula

    2004-05-01

    Steroidal aryliminium salts were prepared from D-seco-pregnene aldehyde 2b, and their BF3.OEt2-catalyzed reactions were studied. The nature of the substituent R1 in the anilines 3-6 essentially influenced the chemoselectivity. Using unsubstituted 3, 4-methoxy- (4) or 4-bromoaniline (5), different tetrahydroquinoline derivatives 7a-13a via intramolecular hetero Diels-Alder reaction were formed. In the case of 4-nitroaniline (6) the N-arylamino-D-homopregnane (14a) were also obtained. We assume, that an intramolecular Prins reaction led to this type of fluoro-D-homosteroid. The main products represent a new class of tetrahydroquinolino-androstenes.

  11. Performance improvement of small-scale rotors by passive blade twist control

    OpenAIRE

    Lv, Peng; Prothin, Sebastien; Mohd Zawawi, Fazila; Bénard, Emmanuel; Morlier, Joseph; Moschetta, Jean-Marc

    2015-01-01

    A passive twist control is proposed as an adaptive way to maximize the overall efficiency of the small-scale rotor blade for multifunctional aircrafts. Incorporated into a database of airfoil characteristics, Blade Element Momentum Theory is implemented to obtain the blade optimum twist rates for hover and forward flight. In order to realize the required torsion of blade between hover and forward flight, glass/epoxy laminate blade is proposed based on Centrifugal Force Induced Twist concept. ...

  12. Higher-Twist Distribution Amplitudes of the K Meson in QCD

    CERN Document Server

    Ball, P; Lenz, A; Ball, Patricia

    2006-01-01

    We present a systematic study of twist-3 and twist-4 light-cone distribution amplitudes of the K meson in QCD. The structure of SU(3)-breaking corrections is studied in detail. Non-perturbative input parameters are estimated from QCD sum rules and renormalons. As a by-product, we give a complete reanalysis of the twist-3 and -4 parameters of the pi-meson distribution amplitudes; some of the results differ from those usually quoted in the literature.

  13. Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning

    OpenAIRE

    Harfe, Brian D.; Gomes, Ana Vaz; Kenyon, Cynthia; Liu, Jun; Krause, Michael; Fire, Andrew

    1998-01-01

    Mesodermal development is a multistep process in which cells become increasingly specialized to form specific tissue types. In Drosophila and mammals, proper segregation and patterning of the mesoderm involves the bHLH factor Twist. We investigated the activity of a Twist-related factor, CeTwist, during Caenorhabditis elegans mesoderm development. Embryonic mesoderm in C. elegans derives from a number of distinct founder cells that are specified during the early lineages; in contrast, a singl...

  14. Measurement of curvature and twist of a deformed object using digital holography

    International Nuclear Information System (INIS)

    Chen Wen; Quan Chenggen; Cho Jui Tay

    2008-01-01

    Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method

  15. A method to estimate the necessary twist pitch in multi-filamentary superconductors

    International Nuclear Information System (INIS)

    Lindau, S; Magnusson, N; Taxt, H

    2014-01-01

    Twisting of multi-filamentary superconductors is an important step in the development of wires with AC losses at an acceptable level for AC applications. The necessary twist pitch depends on wire architecture, critical current density, matrix material, and external factors such as temperature, frequency and applied magnetic field. The development of an AC optimized MgB 2 superconductor would be facilitated by a fast method to set the requirements for the twist pitch. A problem often encountered when comparing wires with different twist pitches is the degradation in critical current occurring at small twist pitches due to mechanical deformation. In this work we propose to use a non-twisted conductor to estimate the influence of twisting on the AC losses. A long superconductor is cut into smaller lengths, each simulating one third of the twist pitch, and the AC losses due to applied magnetic fields are compared between samples of different lengths. With this method, the effect of reducing the size of the loop of the coupling currents is studied without changing the superconducting parameters. AC loss measurement results are presented for a round titanium matrix MgB 2 wire with simulated twist pitches between 9 mm and 87 mm.

  16. Dynamical twisted mass fermions with light quarks. Simulation and analysis details

    International Nuclear Information System (INIS)

    Boucaud, P.; Dimopoulos, P.; Farchioni, F.

    2008-03-01

    In a recent paper (2007) we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theory formulae. (orig.)

  17. Dynamical twisted mass fermions with light quarks. Simulation and analysis details

    Energy Technology Data Exchange (ETDEWEB)

    Boucaud, P. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Dimopoulos, P. [Rome-2 Univ. (Italy). Dipt. di Fisica; Farchioni, F. [Muenster Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2008-03-15

    In a recent paper (2007) we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theory formulae. (orig.)

  18. Photophysical study of a cyclophane displaying intramolecular exciplex emission

    International Nuclear Information System (INIS)

    Galindo, Francisco; Isabel Burguete, M.; Luis, Santiago V.

    2004-01-01

    The photophysical behavior of cyclophane 1, comprised by two L-valine units and one naphthalene ring, has been studied. It displays exciplex (EX) emission with a maximum in the range 390-460 nm, depending on solvent polarity. From this dependence a dipole moment of 19.4 D for the excited charge-transfer state has been calculated. Fluorescence quantum yields in organic media ranging from 0.012 to 0.038 have been measured. This phenomenon has been interpreted taking into account the rigidity imposed by the cyclophane framework which could pre-orient the donor and the acceptor subunits for a favorable interaction

  19. Photophysical study of a cyclophane displaying intramolecular exciplex emission

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, Francisco; Isabel Burguete, M.; Luis, Santiago V

    2004-07-12

    The photophysical behavior of cyclophane 1, comprised by two L-valine units and one naphthalene ring, has been studied. It displays exciplex (EX) emission with a maximum in the range 390-460 nm, depending on solvent polarity. From this dependence a dipole moment of 19.4 D for the excited charge-transfer state has been calculated. Fluorescence quantum yields in organic media ranging from 0.012 to 0.038 have been measured. This phenomenon has been interpreted taking into account the rigidity imposed by the cyclophane framework which could pre-orient the donor and the acceptor subunits for a favorable interaction.

  20. Dual fluorescence of excited state intra-molecular proton transfer of HBFO: mechanistic understanding, substituent and solvent effects.

    Science.gov (United States)

    Yang, Wenjing; Chen, Xuebo

    2014-03-07

    A combined approach of the multiconfigurational perturbation theory with the Rice-Ramsperger-Kassel-Marcus methodology has been employed to calculate the minimum potential energy profiles and the rates of excited state intra-molecular proton transfer (ESIPT) for the WOLED material molecule of HBFO and its four meta- or para-substituted compounds in gas phase, acetonitrile and cyclohexane solvents. The kinetic control for these reactions is quantitatively determined and extensively studied on the basis of the accurate potential energy surfaces when the thermodynamic factor associated with the free energy change becomes negligible in the case of the existence of a significant barrier in the ESIPT process. These computational efforts contribute to a deep understanding of the ESIPT mechanism, dual emission characteristics, kinetic controlling factor, substituent and solvent effects for these material molecules. The white light emission is generated by the establishment of dynamic equilibrium between enol and keto forms in the charge transfer excited SCT((1)ππ*) state. The performance of white light emission is quantitatively demonstrated to be mainly sensitive to the molecular tailoring approach of the electronic properties of meta- or para- substituents by the modulation of the forward/backward ESIPT rate ratio. The quality of white light emission is slightly tunable through its surrounding solvent environment. These computational results will provide a useful strategy for the molecular design of OLED and WOLED materials.

  1. Chiral condensate from the twisted mass Dirac operator spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2013-03-15

    We present the results of our computation of the chiral condensate with N{sub f}=2 and N{sub f}=2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavours.

  2. Position Control of Switched Reluctance Motor Using Super Twisting Algorithm

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq Mufti

    2016-01-01

    Full Text Available The inherent problem of chattering in traditional sliding mode control is harmful for practical application of control system. This paper pays a considerable attention to a chattering-free control method, that is, higher-order sliding mode (super twisting algorithm. The design of a position controller for switched reluctance motor is presented and its stability is assured using Lyapunov stability theorem. In order to highlight the advantages of higher-order sliding mode controller (HOSMC, a classical first-order sliding mode controller (FOSMC is also applied to the same system and compared. The simulation results reflect the effectiveness of the proposed technique.

  3. Twisting, supercoiling and stretching in protein bound DNA

    Science.gov (United States)

    Lam, Pui-Man; Zhen, Yi

    2018-04-01

    We have calculated theoretical results for the torque and slope of the twisted DNA, with various proteins bound on it, using the Neukirch-Marko model, in the regime where plectonemes exist. We found that the torque in the protein bound DNA decreases compared to that in the bare DNA. This is caused by the decrease in the free energy g(f) , and hence the smaller persistence lengths, in the case of protein bound DNA. We hope our results will encourage experimental investigations of supercoiling in protein bound DNA, which can provide further tests of the Neukirch-Marko model.

  4. Analysis of the British Industrial Revolution in cinema: Oliver Twist

    OpenAIRE

    Fuente Diez, Óscar

    2015-01-01

    La Revolución Industrial británica fue un fenómeno histórico que incluso a día de hoy continúa atrayendo miradas. Sus dimensiones fueron tales que actualmente sus consecuencias aún son visibles. El objetivo de este proyecto es analizar el impacto social de la Revolución Industrial británica y las causas que llevaron a este punto como retrata Oliver Twist, la película seleccionada. Desde la perspectiva de las injusticias laborales y las desigualdades sociales, el estudio se centra en las conse...

  5. Chiral condensate from the twisted mass Dirac operator spectrum

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Jansen, Karl; Cyprus Univ., Nicosia

    2013-03-01

    We present the results of our computation of the chiral condensate with N f =2 and N f =2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N f =2 and N f =2+1+1 dynamical flavours.

  6. Wigner oscillators, twisted Hopf algebras and second quantization

    Energy Technology Data Exchange (ETDEWEB)

    Castro, P.G.; Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: pgcastro@cbpf.br; toppan@cbpf.br; Chakraborty, B. [S. N. Bose National Center for Basic Sciences, Kolkata (India)]. E-mail: biswajit@bose.res.in

    2008-07-01

    By correctly identifying the role of central extension in the centrally extended Heisenberg algebra h, we show that it is indeed possible to construct a Hopf algebraic structure on the corresponding enveloping algebra U(h) and eventually deform it through Drinfeld twist. This Hopf algebraic structure and its deformed version U{sup F}(h) is shown to be induced from a more 'fundamental' Hopf algebra obtained from the Schroedinger field/oscillator algebra and its deformed version, provided that the fields/oscillators are regarded as odd-elements of a given superalgebra. We also discuss the possible implications in the context of quantum statistics. (author)

  7. Twisted speckle entities inside wave-front reversal mirrors

    International Nuclear Information System (INIS)

    Okulov, A. Yu

    2009-01-01

    The previously unknown property of the optical speckle pattern reported. The interference of a speckle with the counterpropagating phase-conjugated (PC) speckle wave produces a randomly distributed ensemble of a twisted entities (ropes) surrounding optical vortex lines. These entities appear in a wide range of a randomly chosen speckle parameters inside the phase-conjugating mirrors regardless to an internal physical mechanism of the wave-front reversal. These numerically generated interference patterns are relevant to the Brillouin PC mirrors and to a four-wave mixing PC mirrors based upon laser trapped ultracold atomic cloud.

  8. ABOUT THE GEOMETRY AND THE APPLICATIONS OF THE TWISTED SURFACES

    Directory of Open Access Journals (Sweden)

    MÂRZA Carmen

    2015-06-01

    Full Text Available The helical and spiral surfaces are used in various fields. These surfaces are obtained by rotating a segment line called generatrix around directrices lines, respectively the spiral surfaces are obtained by composing simultaneously the movements of translation and rotation of a plane figure around an axis - which can be a straight line or a curved line, or around a real or imaginary surface - called core. After an overview of these surfaces, the attention of the authors will be focused on the geometrical and graphical analysis of the twisted surfaces in civil engineering branch, such as: columns, helical ramps and stairs, respectively buildings having a futuristic design.

  9. Compactifications of 5d SCFTs with a twist

    Energy Technology Data Exchange (ETDEWEB)

    Zafrir, Gabi [Department of Physics, Technion - Israel Institute of Technology,32000, Haifa (Israel)

    2017-01-23

    We study the compactification of 5d SCFTs to 4d on a circle with a twist in a discrete global symmetry element of these SCFTs. We present evidence that this leads to various 4dN=2 isolated SCFTs. These include many known theories as well as seemingly new ones. The known theories include the recently discovered rank 1SU(4) SCFT and its mass deformations. One application of the new SCFTs is in the dual descriptions of the 4d gauge theory SU(N)+1S+(N−2)F. Also interesting is the appearance of a theory with rank 1 and F{sub 4} global symmetry.

  10. Light meson physics from maximally twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baron, R.; Boucaud, P. [Paris XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Dimopoulos, P. [Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN, Rome (IT)] (and others)

    2009-12-15

    We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N{sub f}=2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280

  11. Light meson physics from maximally twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Baron, R.; Boucaud, P.

    2009-12-01

    We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N f =2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 PS < or similar 650 MeV we control the major systematic effects of our calculation. This enables us to confront our data with chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass, with high precision. (orig.)

  12. Nucleon electromagnetic form factors in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Jansen, K.; Korzec, T.; Humboldt Univ. Berlin

    2011-02-01

    We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment. (orig.)

  13. Nucleon electromagnetic form factors in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Brinet, M.; Carbonell, J.; Harraud, P. A.; Papinutto, M.; Guichon, P.; Jansen, K.; Korzec, T.; Constantinou, M.

    2011-01-01

    We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cutoff effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.

  14. The gradient flow running coupling with twisted boundary conditions

    International Nuclear Information System (INIS)

    Ramos, Alberto

    2014-09-01

    We study the gradient flow for Yang-Mills theories with twisted boundary conditions. The perturbative behavior of the energy density left angle E(t) right angle is used to define a running coupling at a scale given by the linear size of the finite volume box. We compute the non-perturbative running of the pure gauge SU(2) coupling constant and conclude that the technique is well suited for further applications due to the relatively mild cutoff effects of the step scaling function and the high numerical precision that can be achieved in lattice simulations. We also comment on the inclusion of matter fields.

  15. Twisting dirac fermions: circular dichroism in bilayer graphene

    Science.gov (United States)

    Suárez Morell, E.; Chico, Leonor; Brey, Luis

    2017-09-01

    Twisted bilayer graphene is a chiral system which has been recently shown to present circular dichroism. In this work we show that the origin of this optical activity is the rotation of the Dirac fermions’ helicities in the top and bottom layer. Starting from the Kubo formula, we obtain a compact expression for the Hall conductivity that takes into account the dephasing of the electromagnetic field between the top and bottom layers and gathers all the symmetries of the system. Our results are based in both a continuum and a tight-binding model, and they can be generalized to any two-dimensional Dirac material with a chiral stacking between layers.

  16. Five-loop anomalous dimension of twist-two operators

    Energy Technology Data Exchange (ETDEWEB)

    Lukowski, T. [Institute of Physics, Jagellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Rej, A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Velizhanin, V.N., E-mail: velizh@mail.desy.d [Theoretical Physics Department, Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina, 188300 St. Petersburg (Russian Federation)

    2010-05-21

    In this article we calculate the five-loop anomalous dimension of twist-two operators in the planar N=4 SYM theory. Firstly, using reciprocity, we derive the contribution of the asymptotic Bethe ansatz. Subsequently, we employ the first finite-size correction for the AdS{sub 5}xS{sup 5} sigma model to determine the wrapping correction. The anomalous dimension found in this way passes all known tests provided by the NLO BFKL equation and double-logarithmic constraints. This result thus furnishes an infinite number of experimental data for testing the veracity of the recently proposed spectral equations for planar AdS/CFT correspondence.

  17. Traveling waves in twisted nematic liquid crystal cells

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Vakulenko, A.A.

    2007-01-01

    We have described a novel reorientation mechanism in the form of the traveling waves, under influence of an external electric field, directed parallel to both glass plates, which occur in the twisted nematic cell (TNC). It is found that the slowest velocity of the traveling front is proportional to the field strength, and, approximately, in three times higher than the front velocity corresponding to the non-traveling solution. The value of the critical electric field E cr which may excite the traveling waves in the TNC in π times less than the value of the threshold electric field E th corresponding to the untwisted geometry

  18. Twist and toplogy in 3He-A

    International Nuclear Information System (INIS)

    Stone, M.

    1985-01-01

    This paper gives an account of the role of charge fractionalization in the mass current of superfluid Helium-3. The topologically induced charge is seen to account for some of the puzzling features of the current

  19. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization

    NARCIS (Netherlands)

    van der Velde, Jasper H M; Oelerich, Jens; Huang, Jingyi; Smit, Jochem H; Aminian Jazi, Atieh; Galiani, Silvia; Kolmakov, Kirill; Guoridis, Giorgos; Eggeling, Christian; Herrmann, Andreas; Roelfes, Gerard; Cordes, Thorben

    2016-01-01

    Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with 'self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general

  20. Epr, structural characteristics and intramolecular movements of some phenoxyl radicals in toluene

    OpenAIRE

    Nizameev, I.; Pudovkin, M.; Kadirov, M.

    2010-01-01

    The method of electron paramagnetic resonance (EPR) spectroscopy was used for studying magnetic and dynamic properties of phenoxyl radicals in toluene at 170-370 K. Characteristics of intramolecular motion and structure of phenoxyl radicals were determined from the temperature dependence of EPR spectra. For all the given compounds the activation energies of transitions between the conformers were calculated.

  1. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    Intramolecular electron transfer (ET) over distances up to about 10 Å between states in which the electron is localized on donor and acceptor groups by interaction with molecular or external solvent nuclear motion occurs, in particular, in two classes of systems. The excess electron in anionic ra...

  2. Recent applications of intramolecular Diels-Alder reactions to natural product synthesis

    DEFF Research Database (Denmark)

    Juhl, M.; Tanner, David Ackland

    2009-01-01

    This tutorial review presents some recent examples of intramolecular Diels-Alder (IMDA) reactions as key complexity-generating steps in the total synthesis of structurally intricate natural products. The opportunities afforded by transannular (TADA) versions of the IMDA reaction in complex molecu...... comprehensive, reviews....

  3. Intramolecular Diels-Alder reactions of pyrimidines, a synthetic and computational study

    NARCIS (Netherlands)

    Stolle, W.A.W.

    1992-01-01

    This thesis deals with an investigation on the ringtransformation reactions of 2and 5-(ω-alkynyl)pyrimidine derivatives, which undergo upon heating an intramolecular Diels-Alder reaction and subsequently a spontaneous retro Diels- Alder reaction. To get a better insight into the

  4. Optimized measurements of separations and angles between intra-molecular fluorescent markers

    DEFF Research Database (Denmark)

    Mortensen, Kim; Sung, Jongmin; Flyvbjerg, Henrik

    2015-01-01

    We demonstrate a novel, yet simple tool for the study of structure and function of biomolecules by extending two-colour co-localization microscopy to fluorescent molecules with fixed orientations and in intra-molecular proximity. From each colour-separated microscope image in a time-lapse movie...

  5. Potassium hydroxide/dimethyl sulfoxide promoted intramolecular cyclization for the synthesis of benzimidazol-2-ones.

    Science.gov (United States)

    Beyer, Astrid; Reucher, Christine M M; Bolm, Carsten

    2011-06-03

    A new protocol for intramolecular N-arylations of ureas to form benzimidazol-2-ones has been developed. The cyclization reaction occurs in the presence of KOH and DMSO at close to ambient temperature. Under these conditions the yields are high and a wide range of functional groups are tolerated.

  6. On prediction of OH stretching frequencies in intramolecularly hydrogen bonded systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2012-01-01

    OH stretching frequencies are investigated for a series of non-tautomerizing systems with intramolecular hydrogen bonds. Effective OH stretching wavenumbers are predicted by the application of empirical correlation procedures based on the results of B3LYP/6-31G(d) theoretical calculations...

  7. Chemical synthesis of dual labeled proteins via differently protected alkynes enables intramolecular FRET analysis.

    Science.gov (United States)

    Hayashi, Gosuke; Kamo, Naoki; Okamoto, Akimitsu

    2017-05-30

    We report a novel method for multisite protein conjugation by setting differently silyl-protected alkynes as conjugation handles, which can remain intact through the whole synthetic procedure and provide sequential and orthogonal conjugation. This strategy enables efficient preparation of a dual dye-labeled protein and structural analysis via an intramolecular FRET mechanism.

  8. Thermal and catalytic intramolecular [4+2]-cycloaddition in 2-alkenylfurans

    International Nuclear Information System (INIS)

    Zubkov, Fedor I; Nikitina, Evgenia V; Varlamov, Alexey V

    2005-01-01

    The published data on the intramolecular Diels-Alder reaction in compounds of the 2-alkenylfuran series are generalised. The methods and conditions for the preparation of tricyclic systems are considered. The effects of the substituents in the furan and the unsaturated fragments on the cycloaddition are discussed. The application of this reaction to the synthesis of alkaloids and terpenoids is exemplified.

  9. Synthesis of benzannelated sultams by intramolecular Pd-catalyzed arylation of tertiary sulfonamides

    Directory of Open Access Journals (Sweden)

    Valentin A. Rassadin

    2017-09-01

    Full Text Available A new and efficient approach to five- and six-membered benzannelated sultams by intramolecular C-arylation of tertiary 1-(methoxycarbonylmethanesulfonamides under palladium catalysis is described. In case of the α-toluenesulfonamide derivative, an unexpected formation of a 2,3-diarylindole was observed under the same conditions.

  10. A novel stereoselective synthesis of N-heterocycles by intramolecular hydrovinylation

    DEFF Research Database (Denmark)

    Bothe, Ulrich; Rudbeck, H. C.; Tanner, David Ackland

    2001-01-01

    A novel method for the synthesis of bicyclic amines has been developed. Cyclisation of 1,6-dienes by intramolecular hydrovinylation in the presence of catalytic amounts of allylpalladium chloride dimer afforded bicyclic amines in one step. Added phosphines, silver salts, as well as the nature of ...

  11. Intramolecular 13C analysis of tree rings provides multiple plant ecophysiology signals covering decades.

    Science.gov (United States)

    Wieloch, Thomas; Ehlers, Ina; Yu, Jun; Frank, David; Grabner, Michael; Gessler, Arthur; Schleucher, Jürgen

    2018-03-22

    Measurements of carbon isotope contents of plant organic matter provide important information in diverse fields such as plant breeding, ecophysiology, biogeochemistry and paleoclimatology. They are currently based on 13 C/ 12 C ratios of specific, whole metabolites, but we show here that intramolecular ratios provide higher resolution information. In the glucose units of tree-ring cellulose of 12 tree species, we detected large differences in 13 C/ 12 C ratios (>10‰) among carbon atoms, which provide isotopically distinct inputs to major global C pools, including wood and soil organic matter. Thus, considering position-specific differences can improve characterisation of soil-to-atmosphere carbon fluxes and soil metabolism. In a Pinus nigra tree-ring archive formed from 1961 to 1995, we found novel 13 C signals, and show that intramolecular analysis enables more comprehensive and precise signal extraction from tree rings, and thus higher resolution reconstruction of plants' responses to climate change. Moreover, we propose an ecophysiological mechanism for the introduction of a 13 C signal, which links an environmental shift to the triggered metabolic shift and its intramolecular 13 C signature. In conclusion, intramolecular 13 C analyses can provide valuable new information about long-term metabolic dynamics for numerous applications.

  12. Thermal and catalytic intramolecular [4+2]-cycloaddition in 2-alkenylfurans

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Fedor I; Nikitina, Evgenia V; Varlamov, Alexey V [Department of Physical, Mathematical and Natural Sciences, Peoples' Friendship University of Russia (Russian Federation)

    2005-07-31

    The published data on the intramolecular Diels-Alder reaction in compounds of the 2-alkenylfuran series are generalised. The methods and conditions for the preparation of tricyclic systems are considered. The effects of the substituents in the furan and the unsaturated fragments on the cycloaddition are discussed. The application of this reaction to the synthesis of alkaloids and terpenoids is exemplified.

  13. Intramolecular excimer and exciplex emission of 1,4-dipyrenyl substituted cyclohexasilane

    NARCIS (Netherlands)

    van Walree, C.A.; Kaats-Richters, V.E.M.; Jenneskens, L.W.; Williams, R.M.; van Stokkum, I.H.M.

    2002-01-01

    Intramolecular excimer emission is observed for cis-1,4-di(1-pyrenyl)decamethylcyclohexasilane in nonpolar solvents. Time-resolved fluorescence spectroscopy and kinetic modelling indicate that the driving force of excimer formation is very small, and that the process is governed by the flexibility

  14. Effect of intramolecular hydrogen bonding and electron donation on substituted anthrasemiquinone characteristics

    International Nuclear Information System (INIS)

    Pal, H.; Mukherjee, T.

    1994-01-01

    The acid-base and redox characteristics of the semiquinones of a number of hydroxy and amino-substituted anthraquinones have been investigated. Results are explained on the basis of electron-donating properties and intramolecular hydrogen bond forming capabilities of the substituents. (author). 4 refs., 1 tab., 1 fig

  15. Rapid examination of the kinetic process of intramolecular lactamization of gabapentin using DSC-FTIR

    International Nuclear Information System (INIS)

    Hsu, C.-H.; Lin, S.-Y.

    2009-01-01

    The thermal stability and thermodynamics of gabapentin (GBP) in the solid state were investigated by DSC and TG techniques, and FTIR microspectroscopy. The detailed intramolecular lactamization process of GBP to form gabapentin-lactam (GBP-L) was also determined by thermal FTIR microspectroscopy. GBP exhibited a DSC endothermic peak at 169 deg. C. The weight loss in TG curve of GBP suggested that the evaporation process of water liberated via intramolecular lactamization was simultaneously combined with the evaporation process of GBP-L having a DSC endothermic peak at 91 deg. C. A thermal FTIR microspectroscopy clearly evidenced the IR spectra at 3350 cm -1 for water liberated and at 1701 cm -1 for lactam structure formed due to the lactam formation of GBP. This study indicates that the activation energy for combined processes of intramolecular lactamization of GBP and evaporation of GBP-L was about 114.3 ± 23.3 kJ/mol, but for the evaporation of GBP-L alone was 76.2 ± 1.5 kJ/mol. A powerful simultaneous DSC-FTIR combined technique was easily used to quickly examine the detailed kinetic processes of intramolecular cyclization of GPB and evaporation of GBP-L in the solid state

  16. Modal properties and stability of bend–twist coupled wind turbine blades

    Directory of Open Access Journals (Sweden)

    A. R. Stäblein

    2017-06-01

    Full Text Available Coupling between bending and twist has a significant influence on the aeroelastic response of wind turbine blades. The coupling can arise from the blade geometry (e.g. sweep, prebending, or deflection under load or from the anisotropic properties of the blade material. Bend–twist coupling can be utilized to reduce the fatigue loads of wind turbine blades. In this study the effects of material-based coupling on the aeroelastic modal properties and stability limits of the DTU 10 MW Reference Wind Turbine are investigated. The modal properties are determined by means of eigenvalue analysis around a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend–twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist for flapwise (flap–twist coupling or edgewise (edge–twist coupling bending. Edge–twist coupling can increase or decrease the damping of the edgewise mode relative to the reference blade, depending on the operational condition of the turbine. Edge–twist to feather coupling for edgewise deflection towards the leading edge reduces the inflow speed at which the blade becomes unstable. Flap–twist to feather coupling for flapwise deflections towards the suction side increase the frequency and reduce damping of the flapwise mode. Flap–twist to stall reduces frequency and increases damping. The reduction of blade root flapwise and tower bottom fore–aft moments due to variations in mean wind speed of a flap–twist to feather blade are confirmed by frequency response functions.

  17. Cerclage handling for improved fracture treatment. A biomechanical study on the twisting procedure.

    Science.gov (United States)

    Wähnert, D; Lenz, M; Schlegel, U; Perren, S; Windolf, M

    2011-01-01

    Twisting is clinically the most frequently applied method for tightening and maintaining cerclage fixation. The twisting procedure is controversially discussed. Several factors during twisting affect the mechanical behaviour of the cerclage. This in vitro study investigated the influence of different parameters of the twisting procedure on the fixation strength of the cerclage in an experimental setup with centripetal force application. Cortical half shells of the femoral shaft were mounted on a testing fixture. 1.0 mm, 1.25 mm and 1.5 mm stainless ste- el wire cerclages as well as a 1.0mm cable cerclage were applied to the bone. Pretension of the cerclage during the installation was measured during the locking procedure. Subsequently, cyclic testing was performed up to failure. Higher pretension could be achieved with increasing wire diameter. However, with larger wire diameter the drop of pre- tension due to the bending and cutting the twist also increased. The cable cerclage showed the highest pretension after locking. Cerclages twisted under traction revealed significantly higher initial cerclage tension. Plastically deformed twists offered higher cerclage pretension compared to twists which were deformed in the elastic region of the material. Cutting the wire within the twist caused the highest loss of cerclage tension (44% initial tension) whereas only 11 % was lost when cutting the wire ends separately. The bending direction of the twist significantly influenced the cerclage pretension. 45% pretension was lost in forward bending of the twist, 53% in perpendicular bending and 90% in backward bending. Several parameters affect the quality of a cerclage fixation. Adequate installation of cerclage wires could markedly improve the clinical outcome of cerclage.

  18. Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers

    KAUST Repository

    Himmelberger, Scott

    2014-10-28

    © 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.

  19. The topological B model as a twisted spinning particle

    International Nuclear Information System (INIS)

    Marcus, Neil; Yankielowicz, Shimon

    1994-01-01

    The B-twisted topological sigma model coupled to topological gravity is supposed to be described by an ordinary field theory: a type of holomorphic Chern-Simons theory for the open string, and the Kodaira-Spencer theory for the closed string. We show that the B model can be represented as a particle theory, obtained by reducing the sigma model to one dimension, and replacing the coupling to topological gravity by a coupling to a twisted one-dimensional supergravity. The particle can be defined on any Kaehler manifold - it does not require the Calabi-Yau condition - so it may provide a more generalized setting for the B model than the topological sigma model.The one-loop partition function of the particle can be written in terms of the Ray-Singer torsion of the manifold, and agrees with that of the original B model. After showing how to deform the Kaehler and complex structures in the particle, we prove the independence of this partition function on the Kaehler structure, and investigate the origin of the holomorphic anomaly. To define other amplitudes, one needs to introduce interactions into the particle. The particle will then define a field theory, which may or may not be the Chern-Simons or Kodaira-Spencer theories. ((orig.))

  20. Angular momentum transport with twisted exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  1. Reconstruction of Twist Torque in Main Parachute Risers

    Science.gov (United States)

    Day, Joshua D.

    2015-01-01

    The reconstruction of twist torque in the Main Parachute Risers of the Capsule Parachute Assembly System (CPAS) has been successfully used to validate CPAS Model Memo conservative twist torque equations. Reconstruction of basic, one degree of freedom drop tests was used to create a functional process for the evaluation of more complex, rigid body simulation. The roll, pitch, and yaw of the body, the fly-out angles of the parachutes, and the relative location of the parachutes to the body are inputs to the torque simulation. The data collected by the Inertial Measurement Unit (IMU) was used to calculate the true torque. The simulation then used photogrammetric and IMU data as inputs into the Model Memo equations. The results were then compared to the true torque results to validate the Model Memo equations. The Model Memo parameters were based off of steel risers and the parameters will need to be re-evaluated for different materials. Photogrammetric data was found to be more accurate than the inertial data in accounting for the relative rotation between payload and cluster. The Model Memo equations were generally a good match and when not matching were generally conservative.

  2. The dipole representation of vector meson electroproduction beyond leading twist

    Energy Technology Data Exchange (ETDEWEB)

    Besse, A. [LPT, Universite Paris-Sud, CNRS, 91405, Orsay (France); Szymanowski, L. [National Center for Nuclear Research (NCBJ), Warsaw (Poland); Wallon, S., E-mail: wallon@th.u-psud.fr [LPT, Universite Paris-Sud, CNRS, 91405, Orsay (France); UPMC Univ. Paris 06, Faculte de Physique, 4 place Jussieu, 75252 Paris Cedex 05 (France)

    2013-02-01

    We link the recent computation beyond leading twist of the impact factor of the transition {gamma}{sub T}{sup Low-Asterisk }{yields}{rho}{sub T} performed in the light-cone collinear approach, to the dipole picture by expressing the hard part of the process through its Fourier transform in coordinate space. We show that in the Wandzura-Wilczek approximation the impact factor up to twist 3 factorises in the wave function of the photon combined with the distribution amplitudes of the {rho}-meson and the colour dipole scattering amplitude with the t-channel gluons. We show also that beyond the Wandzura-Wilczek approximation, the hard contribution of the amplitude still exhibits the signature of the interaction of a single colour dipole with the t-channel gluons. This result allows a phenomenological approach of the helicity amplitudes of the leptoproduction of vector meson, by combining our results to a dipole/target scattering amplitude model.

  3. M(atrix) theory on an orbifold and twisted membrane

    International Nuclear Information System (INIS)

    Kim, N.

    1997-01-01

    M(atrix) theory on an orbifold and classical two-branes therein are studied with particular emphasis on heterotic M(atrix) theory on S 1 / Z 2 relevant to strongly coupled heterotic and dual type IA string theories. By analyzing the orbifold condition on Chan-Paton factors, we show that three choices of gauge group are possible for heterotic M(atrix) theory: SO(2N), SO(2N+1) or USp(2N). By examining the area-preserving diffeomorphism that underlies the M(atrix) theory, we find that each choice of gauge group restricts the possible topologies of two-branes. The result suggests that only the choice of SO(2N) or SO(2N+1) allows open two-branes, and hence, is relevant to heterotic M(atrix) theory. We show that the requirement of both local vacuum energy cancellation and of world-sheet anomaly cancellation of the resulting heterotic string identifies supersymmetric twisted sector spectra with sixteen fundamental representation spinors from each of the two fixed points. Twisted open and closed two-brane configurations are obtained in the large N limit. (orig.)

  4. Dickens's Dichotomous Formula for Social Reform In Oliver Twist

    Directory of Open Access Journals (Sweden)

    Taher Badinjki

    2016-11-01

    Full Text Available Oliver Twist was a direct appeal to society to take action against poverty, exploitation of children, oppression of women, and was meant to be a picture of the "dregs of life” in all their deformity and wretchedness. Among the most miserable inhabitants of the world of Oliver Twist, Nancy appears as a key figure.  Dickens was anxious to expose the truth about such a woman because he believed it would be a service to society. Dickens's portrayal of Nancy illustrates the power of the dual conception of womanhood  held at the time. On the one hand, a woman might be conceived as someone refined and somewhat remote from ordinary life like Rose Maylie. On the other hand, there was a certain fascination in a woman's degradation, even though that could be shown only indirectly.  Nancy is a demonstration of the two elements combined together. Dickens took the ideal nature of womanhood  and the depravity of the prostitute, and combined them in a remarkable dramatization which he had some right to claim was also true to life. The book is an astounding rebuttal of contemporary prejudice, and a call for more humane and liberal attitudes. These attitudes  are based on the concepts that there is now a radically different way of looking at human nature, that everything ought to depend on what one is in oneself, and that it is only in love that humans can live purposefully and happily with each other.

  5. Friction spinning - Twist phenomena and the capability of influencing them

    Science.gov (United States)

    Lossen, Benjamin; Homberg, Werner

    2016-10-01

    The friction spinning process can be allocated to the incremental forming techniques. The process consists of process elements from both metal spinning and friction welding. The selective combination of process elements from these two processes results in the integration of friction sub-processes in a spinning process. This implies self-induced heat generation with the possibility of manufacturing functionally graded parts from tube and sheets. Compared with conventional spinning processes, this in-process heat treatment permits the extension of existing forming limits and also the production of more complex geometries. Furthermore, the defined adjustment of part properties like strength, grain size/orientation and surface conditions can be achieved through the appropriate process parameter settings and consequently by setting a specific temperature profile in combination with the degree of deformation. The results presented from tube forming start with an investigation into the resulting twist phenomena in flange processing. In this way, the influence of the main parameters, such as rotation speed, feed rate, forming paths and tool friction surface, and their effects on temperature, forces and finally the twist behavior are analyzed. Following this, the significant correlations with the parameters and a new process strategy are set out in order to visualize the possibility of achieving a defined grain texture orientation.

  6. The ρ-meson longitudinal leading-twist distribution amplitude

    Directory of Open Access Journals (Sweden)

    Hai-Bing Fu

    2014-11-01

    Full Text Available In the present paper, we suggest a convenient model for the vector ρ-meson longitudinal leading-twist distribution amplitude ϕ2;ρ‖, whose distribution is controlled by a single parameter B2;ρ‖. By choosing proper chiral current in the correlator, we obtain new light-cone sum rules (LCSR for the B→ρ TFFs A1, A2 and V, in which the δ1-order ϕ2;ρ‖ provides dominant contributions. Then we make a detailed discussion on the ϕ2;ρ‖ properties via those B→ρ TFFs. A proper choice of B2;ρ‖ can make all the TFFs agree with the lattice QCD predictions. A prediction of |Vub| has also been presented by using the extrapolated TFFs, which indicates that a larger B2;ρ‖ leads to a larger |Vub|. To compare with the BABAR data on |Vub|, the longitudinal leading-twist DA ϕ2;ρ‖ prefers a doubly-humped behavior.

  7. The electric dipole moment of the neutron from Nf=2+1+1 twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Cyprus Institute, Nicosia; Hadjiyiannakou, K.; Cyprus Institute, Nicosia; George Washington Univ., Washington, DC; Jansen, K.; Koutsou, G.; Ottnad, K.; Bonn Univ.; Petschlies, M.; Bonn Univ.

    2015-11-01

    We extract the neutron electric dipole moment (nEDM) vertical stroke vector d n vertical stroke on configurations produced with N f =2+1+1 twisted mass fermions with lattice spacing of a ≅0.082 fm and a light quark mass that corresponds to M π ≅ 373 MeV. We do so by evaluating the CP-odd form factor F 3 for small values of the CP-violation parameter θ in the limit of zero momentum transfer. This limit is extracted using the usual parametrization but in addition position space methods. The topological charge is computed via cooling and gradient flow using the Wilson, Symanzik tree-level improved and Iwasaki actions for smoothing. We obtain consistent results for all choices of smoothing procedures and methods to extract F 3 at zero momentum transfer. For the ensemble analyzed we find a value of nEDM of vertical stroke vector d n vertical stroke /θ=0.045(6)(1) e.fm.

  8. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    Energy Technology Data Exchange (ETDEWEB)

    Barada, Daisuke [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya 321-8585 (Japan); Juman, Guzhaliayi; Yoshida, Itsuki [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Miyamoto, Katsuhiko; Omatsu, Takashige, E-mail: omatsu@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Molecular Chirality Research Center, Chiba University, Chiba 263-8522 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Ohno, Seigo [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  9. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1

    International Nuclear Information System (INIS)

    Pei, Xin-Hong; Lv, Xin-Quan; Li, Hui-Xiang

    2014-01-01

    Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cells and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression

  10. The geometrical origin of the strain-twist coupling in double helices

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2011-01-01

    A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends...

  11. Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes

    Science.gov (United States)

    Terradas, J.; Magyar, N.; Van Doorsselaere, T.

    2018-01-01

    Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin–Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube or by the continuous small length scales produced by phase mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability, but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.

  12. Light hadrons from Nf=2+1+1 dynamical twisted mass fermions

    NARCIS (Netherlands)

    Baron, R.; Blossier, B.; Boucaud, P.; Carbonell, J.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM

    2011-01-01

    We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a~0.06

  13. First results of ETMC simulations with Nf=2+1+1 maximally twisted mass fermions

    NARCIS (Netherlands)

    Baron, R.; Blossier, B.; Boucaud, P.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Palao, D.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM

    2009-01-01

    We present first results from runs performed with Nf=2+1+1 flavours of dynamical twisted mass fermions at maximal twist: a degenerate light doublet and a mass split heavy doublet. An overview of the input parameters and tuning status of our ensembles is given, together with a comparison with results

  14. Vacuum fluctuations of twisted fields in the space time of cosmic strings

    International Nuclear Information System (INIS)

    Matsas, G.E.A.

    1990-01-01

    A twisted scalar field conformally coupled to gravitation is used to calculate the vacuum stress-energy tensor in the background spacetime generated by an infinite straight gauge cosmic string. The result has an absolute numerical value close to the one obtained with a non-twisted conformal scalar field but their signals are opposite. (author) [pt

  15. Modification of the twist angle in chiral nematic polymer films by photoisomerization of the chiral dopant

    NARCIS (Netherlands)

    Witte, van de P.; Neuteboom, E.E.; Brehmer, M.; Lub, Johan

    1999-01-01

    A method for the production of polarization sensitive recordings in liquid crystalline polymers is presented. The system is based on local modification of the twist angle of chiral nematic polymer films. The twist angle of the polymer film is varied by modifying the chemical structure of the chiral

  16. Higher twist effects in QCD description of light meson exclusive formfactors

    International Nuclear Information System (INIS)

    Gorskij, A.S.

    1987-01-01

    The general approach to a quantitative description of higher twist effects in hard exclusive processes in QCD is proposed. The consistent calculations in coordinate space and the choice of special gauges for quantum and classical gluon fields are essential ingradients of this method. The self consistent system of twist three wave functions for π-meson has been built

  17. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression

    DEFF Research Database (Denmark)

    Nairismägi, Maarja-Liisa; Vislovukh, Andrii; Meng, Q

    2012-01-01

    and EMT, we found TWIST1 to be upregulated during EMT and downregulated early in carcinogenesis. The TWIST1 3′UTR contains putative regulatory elements, including miRNA target sites and two cytoplasmic polyadenylation elements (CPE). We found that miR-580, CPEB1, and CPEB2 act as negative regulators...

  18. Comparison of split double and triple twists in pair figure skating.

    Science.gov (United States)

    King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I

    2008-05-01

    In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.

  19. On the propagation and the twist of Gaussian light in first-order optical systems

    NARCIS (Netherlands)

    Bastiaans, M.J.; Nijhawan, O.P.; Gupta, A.K.; Musla, A.K.; Singh, Kehar

    1998-01-01

    A measure for the twist of Gaussian light is expressed in terms of the second-order moments of the Wigner distribution function. The propagation law for these moments through first-order optical systems is used to express the twist in the output plane in terms of moments in the input plane, and vice

  20. Modal Properties and Stability of Bend-Twist Coupled Wind Turbine Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander R.; Hansen, Morten Hartvig; Verelst, David Robert

    2017-01-01

    a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend-twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist...

  1. Osserman and conformally Osserman manifolds with warped and twisted product structure

    OpenAIRE

    Brozos-Vazquez, M.; Garcia-Rio, E.; Vazquez-Lorenzo, R.

    2008-01-01

    We characterize Osserman and conformally Osserman Riemannian manifolds with the local structure of a warped product. By means of this approach we analyze the twisted product structure and obtain, as a consequence, that the only Osserman manifolds which can be written as a twisted product are those of constant curvature.

  2. Twist-3 effect from the longitudinally polarized proton for ALT in hadron production from pp collisions

    Directory of Open Access Journals (Sweden)

    Yuji Koike

    2016-08-01

    Full Text Available We compute the contribution from the longitudinally polarized proton to the twist-3 double-spin asymmetry ALT in inclusive (light hadron production from proton–proton collisions, i.e., p↑p→→hX. We show that using the relevant QCD equation-of-motion relation and Lorentz invariance relation allows one to eliminate the twist-3 quark-gluon correlator (associated with the longitudinally polarized proton in favor of one-variable twist-3 quark distributions and the (twist-2 transversity parton density. Including this result with the twist-3 pieces associated with the transversely polarized proton and unpolarized final-state hadron (which have already been calculated in the literature, we now have the complete leading-order cross section for this process.

  3. An improved hazard rate twisting approach for the statistic of the sum of subexponential variates

    KAUST Repository

    Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2015-01-01

    In this letter, we present an improved hazard rate twisting technique for the estimation of the probability that a sum of independent but not necessarily identically distributed subexponential Random Variables (RVs) exceeds a given threshold. Instead of twisting all the components in the summation, we propose to twist only the RVs which have the biggest impact on the right-tail of the sum distribution and keep the other RVs unchanged. A minmax approach is performed to determine the optimal twisting parameter which leads to an asymptotic optimality criterion. Moreover, we show through some selected simulation results that our proposed approach results in a variance reduction compared to the technique where all the components are twisted.

  4. Supersymmetric gauged double field theory: systematic derivation by virtue of twist

    International Nuclear Information System (INIS)

    Cho, Wonyoung; Fernández-Melgarejo, J.J.; Jeon, Imtak; Park, Jeong-Hyuck

    2015-01-01

    In a completely systematic and geometric way, we derive maximal and half-maximal supersymmetric gauged double field theories in lower than ten dimensions. To this end, we apply a simple twisting ansatz to the D=10 ungauged maximal and half-maximal supersymmetric double field theories constructed previously within the so-called semi-covariant formalism. The twisting ansatz may not satisfy the section condition. Nonetheless, all the features of the semi-covariant formalism, including its complete covariantizability, are still valid after the twist under alternative consistency conditions. The twist allows gaugings as supersymmetry preserving deformations of the D=10 untwisted theories after Scherk-Schwarz-type dimensional reductions. The maximal supersymmetric twist requires an extra condition to ensure both the Ramond-Ramond gauge symmetry and the 32 supersymmetries unbroken.

  5. The geometrical origin of the strain-twist coupling in double helices

    Directory of Open Access Journals (Sweden)

    Kasper Olsen

    2011-03-01

    Full Text Available A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends only on the pitch angle. For pitch angles below 39.4° strain leads to further winding, while for larger pitch angles strain leads to unwinding. The zero-twist structure, with a pitch angle of 39.4°, is at the unique point between winding and unwinding and independent of the mechanical properties of the double helix. The existence of zero-twist structures, i.e. structures that display neither winding, nor unwinding under strain is discussed. Close-packed double helices are shown to extend rather than shorten when twisted. Numerical estimates of this elongation upon winding are given for DNA, chromatin, and RNA.

  6. Gauging the twisted Poincare symmetry as a noncommutative theory of gravitation

    International Nuclear Information System (INIS)

    Chaichian, M.; Tureanu, A.; Oksanen, M.; Zet, G.

    2009-01-01

    Einstein's theory of general relativity was formulated as a gauge theory of Lorentz symmetry by Utiyama in 1956, while the Einstein-Cartan gravitational theory was formulated by Kibble in 1961 as the gauge theory of Poincare transformations. In this framework, we propose a formulation of the gravitational theory on canonical noncommutative space-time by covariantly gauging the twisted Poincare symmetry, in order to fulfil the requirement of covariance under the general coordinate transformations, an essential ingredient of the theory of general relativity. It appears that the twisted Poincare symmetry cannot be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by introducing a more general covariant twist element. The advantages of such a formulation as well as the related problems are discussed and possible ways out are outlined.

  7. QCD factorization of exclusive processes beyond leading twist: γT*→ρT impact factor with twist three accuracy

    International Nuclear Information System (INIS)

    Anikin, I.V.; Ivanov, D.Yu.; Pire, B.; Szymanowski, L.; Wallon, S.

    2010-01-01

    We describe a consistent approach to factorization of scattering amplitudes for exclusive processes beyond the leading twist approximation. The method involves the Taylor expansion of the scattering amplitude in the momentum space around the dominant light-cone direction and thus naturally introduces an appropriate set of non-perturbative correlators which encode effects not only of the lowest but also of the higher Fock states of the produced particle. The reduction of original set of correlators to a set of independent ones is achieved with the help of equations of motion and invariance of the scattering amplitude under rotation on the light cone. We compare the proposed method with the covariant method formulated in the coordinate space, based on the operator product expansion. We prove the equivalence of two proposed parametrizations of the ρ T distribution amplitudes. As a concrete application, we compute the expressions of the impact factor for the transition of virtual photon to transversally polarised ρ-meson up to the twist 3 accuracy within these two quite different methods and show that they are identical.

  8. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy

    Science.gov (United States)

    Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander

    2017-01-01

    The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.

  9. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    Science.gov (United States)

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  10. Optical yarn assessment system for twist measurement in rotor-spun yarn

    International Nuclear Information System (INIS)

    Jhatial, R.A.

    2015-01-01

    This paper presents the development of an optical yarn assessment system for evaluation of twist and structure of twisted yarn. The system comprises a yarn carriage unit, a video microscope and a personal computer. This system was used in conjunction with the well-known tracer fibre technique. This system enables digital images to be grabbed and continuous movies of the yarn to be recorded in order to facilitate the measurement of twist and the analysis of yarn structure. Yarn samples from polyester, viscose and cotton with 35 tex and 485 turns/meter were spun from the roving with 2.3% of black fibres on the SKF laboratory ring frame. In order to measure the twist in the rotor yarns with the optical yarn assessment system, a set of yarn samples from same fibres were spun on RU 14 rotor machine with 35 tex and 475 turns/meter. The twist was measured with the optical yarn assessment system and sixty tests of each sample were carried out on the Zweigle D301. It is clear from the results that there is consistency in the twist of ring-spun yarn measured by the optical yarn assessment system. However, the measured twist with the Zwiegle D301 is inconsistent in the different yarns. The difference in the mean twist measured with the optical twist measuring system and the double untwist-twist method was not significant at a 5% probability level when data was analyzed with t test by using SPSS (Statistical Package for Social Sciences). (author)

  11. Twist-1 Up-Regulation in Carcinoma Correlates to Poor Survival

    Directory of Open Access Journals (Sweden)

    Alimujiang Wushou

    2014-11-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT facilitates tumor metastasis. Twist is a basic helix-loop-helix protein that modulates many target genes through E-box-responsive elements. There are two twist-like proteins, Twist-1 and Twist-2, sharing high structural homology in mammals. Twist-1 was found to be a key factor in the promotion of metastasis of cancer cells, and is known to induce EMT. Twist-1 participation in carcinoma progression and metastasis has been reported in a variety of tumors. However, controversy exists concerning the correlation between Twist-1 and prognostic value with respect to carcinoma. A systematic review and meta-analysis were performed to determine whether the expression of Twist-1 was associated with the prognosis of carcinoma patients. This analysis included 17 studies: four studies evaluated lung cancer, three evaluated head and neck cancer, two evaluated breast cancer, two evaluated esophageal cancer, two evaluated liver cancer and one each evaluated osteosarcoma, bladder, cervical and ovarian cancer. A total of 2006 patients were enrolled in these studies, and the median trial sample size was 118 patients. Twist-1 expression was associated with worse overall survival (OS at both 3 years (hazard ratio “HR” for death = 2.13, 95% CI = 1.86 to 2.45, p < 0.001 and 5 years (HR for death = 2.01, 95% CI = 1.76 to 2.29, p < 0.001. Expression of Twist-1 is associated with worse survival in carcinoma.

  12. Enantio- and Stereoselective Construction of Atisane Scaffold via Organocatalytic Intramolecular Michael Reaction and Diels-Alder Reaction.

    Science.gov (United States)

    Sekita, Hiroko; Adachi, Kyohei; Kobayashi, Ippei; Sato, Yusuke; Nakada, Masahisa

    2017-05-05

    An enantio- and stereoselective construction of the atisane scaffold via organocatalytic intramolecular Michael reaction and Diels-Alder reaction is described. The organocatalytic intramolecular Michael reaction has been found to stereoselectively generate a trans-stereodiad comprising an all-carbon quaternary and a tertiary stereogenic centers. Use of the chiral secondary amine bearing thiourea with benzoic acid as additive is the key to obtaining the desired product with excellent ee in synthetically acceptable yield. The prepared chiral building block has been successfully converted to the compound including the atisane scaffold via the highly stereoselective intramolecular Diels-Alder reaction.

  13. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  14. Ferrocene Orientation Determined Intramolecular Interactions Using Energy Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2015-11-01

    Full Text Available Two very different quantum mechanically based energy decomposition analyses (EDA schemes are employed to study the dominant energy differences between the eclipsed and staggered ferrocene conformers. One is the extended transition state (ETS based on the Amsterdam Density Functional (ADF package and the other is natural EDA (NEDA based in the General Atomic and Molecular Electronic Structure System (GAMESS package. It reveals that in addition to the model (theory and basis set, the fragmentation channels more significantly affect the interaction energy terms (ΔE between the conformers. It is discovered that such an interaction energy can be absorbed into the pre-partitioned fragment channels so that to affect the interaction energies in a particular conformer of Fc. To avoid this, the present study employs a complete fragment channel—the fragments of ferrocene are individual neutral atoms. It therefore discovers that the major difference between the ferrocene conformers is due to the quantum mechanical Pauli repulsive energy and orbital attractive energy, leading to the eclipsed ferrocene the energy preferred structure. The NEDA scheme further indicates that the sum of attractive (negative polarization (POL and charge transfer (CL energies prefers the eclipsed ferrocene. The repulsive (positive deformation (DEF energy, which is dominated by the cyclopentadienyle (Cp rings, prefers the staggered ferrocene. Again, the cancellation results in a small energy residue in favour of the eclipsed ferrocene, in agreement with the ETS scheme. Further Natural Bond Orbital (NBO analysis indicates that all NBO energies, total Lewis (no Fe and lone pair (LP deletion all prefer the eclipsed Fc conformer. The most significant energy preferring the eclipsed ferrocene without cancellation is the interactions between the donor lone pairs (LP of the Fe atom and the acceptor antibond (BD* NBOs of all C–C and C–H bonds in the ligand, LP(Fe-BD*(C–C & C

  15. Imidazole as a parent π-conjugated backbone in charge-transfer chromophores

    Directory of Open Access Journals (Sweden)

    Jiří Kulhánek

    2012-01-01

    Full Text Available Research activities in the field of imidazole-derived push–pull systems featuring intramolecular charge transfer (ICT are reviewed. Design, synthetic pathways, linear and nonlinear optical properties, electrochemistry, structure–property relationships, and the prospective application of such D-π-A organic materials are described. This review focuses on Y-shaped imidazoles, bi- and diimidazoles, benzimidazoles, bis(benzimidazoles, imidazole-4,5-dicarbonitriles, and imidazole-derived chromophores chemically bound to a polymer chain.

  16. Existence and equivalence of twisted products on a symplectic manifold

    International Nuclear Information System (INIS)

    Lichnerowicz, A.

    1979-01-01

    The twisted products play an important role in Quantum Mechanics. A distinction is introduced between Vey *sub(γ) products and strong Vey *sub(γ) products and it is proved that each *sub(γ) product is equivalent to a Vey *sub(γ) product. If b 3 (W) = 0, the symplectic manifold (W,F) admits strong Vey *sub(Gn) products. If b 2 (W) = 0, all *sub(γ) products are equivalent as well as the Vey Lie algebras. In the general case the formal Lie algebras are characterized which are generated by a *sub(γ) product and it proved that the existance of a *sub(γ)-product is equivalent to the existance of a formal Lie algebra infinitesimally equivalent to a Vey Lie algebra at the first order. (Auth.)

  17. The self-field effect in twisted superconducting composites

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Turck, B.; Krempasky, L.; Polak, M.

    1976-01-01

    Since twisting of composites does not cause a transposition with respect to the self-field of the transport current, they behave like a bulk superconductor with averaged critical current density, when the transport current is changed. Consequently, the electric field is given by the history of the transport current changes. Using a simplified model (Jsub(c) = const) the expressions for the electric fields and losses for the first and immediately following second increase of the transport current are derived. Experimental results are also presented which clearly show higher electric field during the first run than during the following, which agrees with theoretical predictions. Quite a good quantitative agreement between theory and experiment was obtained up to about 80 % of the critical transport current. The influence of the copper matrix is also discussed. (author)

  18. Accelerating Twisted Mass LQCD with QPhiX

    Energy Technology Data Exchange (ETDEWEB)

    Schröck, Mario [INFN, Rome3; Simula, Silvano [INFN, Rome3; Strelchenko, Alexei [Fermilab

    2016-07-08

    We present the implementation of twisted mass fermion operators for the QPhiX library. We analyze the performance on the Intel Xeon Phi (Knights Corner) coprocessor as well as on Intel Xeon Haswell CPUs. In particular, we demonstrate that on the Xeon Phi 7120P the Dslash kernel is able to reach 80\\% of the theoretical peak bandwidth, while on a Xeon Haswell E5-2630 CPU our generated code for the Dslash operator with AVX2 instructions outperforms the corresponding implementation in the tmLQCD library by a factor of $\\sim 5\\times$ in single precision. We strong scale the code up to 6.8 (14.1) Tflops in single (half) precision on 64 Xeon Haswell CPUs.

  19. Threshold corrections and gauge symmetry in twisted superstring models

    International Nuclear Information System (INIS)

    Pierce, D.M.

    1994-01-01

    Threshold corrections to the running of gauge couplings are calculated for superstring models with free complex world sheet fermions. For two N=1 SU(2)xU(1) 5 models, the threshold corrections lead to a small increase in the unification scale. Examples are given to illustrate how a given particle spectrum can be described by models with different boundary conditions on the internal fermions. We also discuss how complex twisted fermions can enhance the symmetry group of an N=4, SU(3)xU(1)xU(1) model to the gauge group SU(3)xSU(2)xU(1). It is then shown how a mixing angle analogous to the Weinberg angle depends on the boundary conditions of the internal fermions

  20. DNA origami-based nanoribbons: assembly, length distribution, and twist

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Guenther; Simmel, Friedrich C [Lehrstuhl fuer Bioelektronik, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany); Castro, Carlos E, E-mail: simmel@ph.tum.de [Labor fuer Biomolekulare Nanotechnologie, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany)

    2011-07-08

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  1. DNA origami-based nanoribbons: assembly, length distribution, and twist

    International Nuclear Information System (INIS)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Guenther; Simmel, Friedrich C; Castro, Carlos E

    2011-01-01

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  2. Twisted quantum double model of topological order with boundaries

    Science.gov (United States)

    Bullivant, Alex; Hu, Yuting; Wan, Yidun

    2017-10-01

    We generalize the twisted quantum double model of topological orders in two dimensions to the case with boundaries by systematically constructing the boundary Hamiltonians. Given the bulk Hamiltonian defined by a gauge group G and a 3-cocycle in the third cohomology group of G over U (1 ) , a boundary Hamiltonian can be defined by a subgroup K of G and a 2-cochain in the second cochain group of K over U (1 ) . The consistency between the bulk and boundary Hamiltonians is dictated by what we call the Frobenius condition that constrains the 2-cochain given the 3-cocyle. We offer a closed-form formula computing the ground-state degeneracy of the model on a cylinder in terms of the input data only, which can be naturally generalized to surfaces with more boundaries. We also explicitly write down the ground-state wave function of the model on a disk also in terms of the input data only.

  3. New findings of twisted-wing parasites (Strepsiptera) in Alaska

    Science.gov (United States)

    Mcdermott, Molly

    2016-01-01

    Strepsipterans are a group of insects with a gruesome life history and an enigmatic evolutionary past. Called ‘twisted-wing parasites’, they are minute parasitoids with a very distinct morphology (Figure 1). Alternatively thought to be related to ichneumon wasps, Diptera (flies), Coleoptera (beetles), and even Neuroptera (net-winged insects) (Pohl and Beutel, 2013); the latest genetic and morphological data support the sister order relationship of Strepsiptera and Coleoptera (Niehuis et al., 2012). Strepsipterans are highly modified, males having two hind wings and halteres instead of front wings or elytra. Unlike most parasitoids, they develop inside active, living insects who are sexually sterilized but not killed until or after emergence (Kathirithamby et al., 2015).

  4. Topological susceptibility from the twisted mass Dirac operator spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2013-12-15

    We present results of our computation of the topological susceptibility with N{sub f}=2 and N{sub f}= +1+1 flavours of maximally twisted mass fermions, using the method of spectral projectors. We perform a detailed study of the quark mass dependence and discretization effects. We make an attempt to confront our data with chiral perturbation theory and extract the chiral condensate from the quark mass dependence of the topological susceptibility. We compare the value with the results of our direct computation from the slope of the mode number. We emphasize the role of autocorrelations and the necessity of long Monte Carlo runs to obtain results with good precision. We also show our results for the spectral projector computation of the ratio of renormalization constants Z{sub P}/Z{sub S}.

  5. Topological susceptibility from the twisted mass Dirac operator spectrum

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Jansen, Karl; Cyprus Univ., Nicosia

    2013-12-01

    We present results of our computation of the topological susceptibility with N f =2 and N f = +1+1 flavours of maximally twisted mass fermions, using the method of spectral projectors. We perform a detailed study of the quark mass dependence and discretization effects. We make an attempt to confront our data with chiral perturbation theory and extract the chiral condensate from the quark mass dependence of the topological susceptibility. We compare the value with the results of our direct computation from the slope of the mode number. We emphasize the role of autocorrelations and the necessity of long Monte Carlo runs to obtain results with good precision. We also show our results for the spectral projector computation of the ratio of renormalization constants Z P /Z S .

  6. Strong-field ionization with twisted laser pulses

    Science.gov (United States)

    Paufler, Willi; Böning, Birger; Fritzsche, Stephan

    2018-04-01

    We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.

  7. Nucleon and delta masses in twisted mass chiral perturbation theory

    International Nuclear Information System (INIS)

    Walker-Loud, Andre; Wu, Jackson M.S.

    2005-01-01

    We calculate the masses of the nucleons and deltas in twisted mass heavy baryon chiral perturbation theory. We work to quadratic order in a power counting scheme in which we treat the lattice spacing, a, and the quark masses, m q , to be of the same order. We give expressions for the mass and the mass splitting of the nucleons and deltas both in and away from the isospin limit. We give an argument using the chiral Lagrangian treatment that, in the strong isospin limit, the nucleons remain degenerate and the delta multiplet breaks into two degenerate pairs to all orders in chiral perturbation theory. We show that the mass splitting between the degenerate pairs of the deltas first appears at quadratic order in the lattice spacing. We discuss the subtleties in the effective chiral theory that arise from the inclusion of isospin breaking

  8. On the difficulty of computing higher-twist corrections

    International Nuclear Information System (INIS)

    Martinelli, G.; Sachrajda, C.T.

    1996-01-01

    We discuss the evaluation of power corrections to hard scattering and decay processes for which an operator product expansion is applicable. The Wilson coefficient of the leading-twist operator is the difference of two perturbative series, each of which has a renormalon ambiguity of the same order as the power corrections themselves, but which cancel in the difference. We stress the necessity of calculating this coefficient function to sufficiently high orders in perturbation theory so as to make the uncertainty of the same order of or smaller than the relevant power corrections. We investigate in some simple examples whether this can be achieved. Our conclusion is that in most of the theoretical calculations which include power corrections, the uncertainties are at least comparable to the power corrections themselves, and that it will be a very difficult task to improve the situation. (orig.)

  9. Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer.

    Science.gov (United States)

    Yang, Enlong; Xu, Zhe; Chur, Lucas K; Behroozfar, Ali; Baniasadi, Mahmoud; Moreno, Salvador; Huang, Jiacheng; Gilligan, Jules; Minary-Jolandan, Majid

    2017-07-19

    Smart textiles are envisioned to make a paradigm shift in wearable technologies to directly impart functionality into the fibers rather than integrating sensors and electronics onto conformal substrates or skin in wearable devices. Among smart materials, piezoelectric fabrics have not been widely reported, yet. Piezoelectric smart fabrics can be used for mechanical energy harvesting, for thermal energy harvesting through the pyroelectric effect, for ferroelectric applications, as pressure and force sensors, for motion detection, and for ultrasonic sensing. We report on mechanical and material properties of the plied nanofibrous piezoelectric yarns as a function of postprocessing conditions including thermal annealing and drawing (stretching). In addition, we used a continuous electrospinning setup to directly produce P(VDF-TrFE) nanofibers and convert them into twisted plied yarns, and demonstrated application of these plied yarns in woven piezoelectric fabrics. The results of this work can be an early step toward realization of piezoelectric smart fabrics.

  10. Flicker in a twisted nematic spatial light modulator

    Science.gov (United States)

    Calderón-Hermosillo, Yuliana; García-Márquez, Jorge; Espinosa-Luna, Rafael; Ochoa, Noé Alcalá; López, Víctor; Aguilar, Alberto; Noé-Arias, Enrique; Alayli, Yasser

    2013-06-01

    Liquid Crystal on Silicon (LCoS) Spatial Light Modulators (SLM) are widely used for their capability to control beams howbeit fluctuations in phase and amplitude. It is then necessary to understand the negative effects of these fluctuations, also known as flicker, and the means to mitigate them. The flicker is observed either as high frequency variations of polarization, attenuation or high phase fluctuations on the wave front modulated by the LCoS device. Here, we compare the flicker behavior in a twisted nematic (TN) LCoS-SLM for different polarization schemes and temperatures. The quantitative evaluation shows that flicker is effectively reduced only by chilling the LCoS panel to temperatures just below 0 °C but, the LCoS modulation capability is also affected.

  11. Nonlinear and hysteretic twisting effects in ocean cable laying

    International Nuclear Information System (INIS)

    Shashaty, A.J.

    1983-01-01

    Armored ocean cable unlays under the action of installation tensions and restraining moments applied by the ocean bottom and the ship's bow sheave. The process of elongation and twist is nonlinear and hysteretic. This process has often been assumed linear and reversible. The equations describing the moment which is developed in laying cable on the ocean bottom are worked out, without assuming linearity and reversibility. These equations are applied to some cases likely to arise. For a typical armored coaxial cable laid in 3700m (2,000 fathoms) depth without bottom tension, a steady-state laying-up moment of 134Nm (99 lbs. ft.) is developed. For the reversible case, no moment is developed. If the bottom tension is increased from zero to 33,375N (7500 lbs.) and then returned to zero, a peak moment of 198Nm (146 lbs. ft.) is developed

  12. Effective electrical and thermal conductivity of multifilament twisted superconductors

    International Nuclear Information System (INIS)

    Chechetkin, V.R.

    2013-01-01

    The effective electrical and thermal conductivity of composite wire with twisted superconducting filaments embedded into normal metal matrix is calculated using the extension of Bruggeman method. The resistive conductivity of superconducting filaments is described in terms of symmetric tensor, whereas the conductivity of a matrix is assumed to be isotropic and homogeneous. The dependence of the resistive electrical conductivity of superconducting filaments on temperature, magnetic field, and current density is implied to be parametric. The resulting effective conductivity tensor proved to be non-diagonal and symmetric. The non-diagonal transverse–longitudinal components of effective electrical conductivity tensor are responsible for the redistribution of current between filaments. In the limits of high and low electrical conductivity of filaments the transverse effective conductivity tends to that of obtained previously by Carr. The effective thermal conductivity of composite wires is non-diagonal and radius-dependent even for the isotropic and homogeneous thermal conductivities of matrix and filaments.

  13. Fatigue Behaviors of Materials Processed by Planar Twist Extrusion

    Science.gov (United States)

    Ebrahimi, Mahmoud

    2017-12-01

    Since the last decade, the fabrication of ultrafine grain and nanostructure metals and alloys has attracted much attention in the field of materials engineering. The present study aimed at experimentally investigating the fatigue properties that are of great importance in dynamic structures before and after the planar twist extrusion process for both commercially pure copper and 6061 aluminum alloy. The results indicated that the yield strength, tensile strength, hardness, and fatigue endurance of copper increased by about 398, 122, 198, and 183 pct, respectively, while they improved by about 429, 212, 227, and 148 pct, respectively, in aluminum alloy as compared to the initial conditions. The stress-strain curves displayed sizable reduction of strain hardening. Furthermore, grain-size correction factors based on the empirical results were introduced to include the effect of the grain-size effect on both low and high-cycle fatigue strengths of the material.

  14. Gaussian tunneling model of c-axis twist Josephson junctions

    International Nuclear Information System (INIS)

    Bille, A.; Klemm, R.A.; Scharnberg, K.

    2001-01-01

    We calculate the critical current density J c J ((var p hi) 0 ) for Josephson tunneling between identical high-temperature superconductors twisted an angle (var p hi) 0 about the c axis. Regardless of the shape of the two-dimensional Fermi surface and for very general tunneling matrix elements, an order parameter (OP) with general d-wave symmetry leads to J c J (π/4)=0. This general result is inconsistent with the data of Li et al. [Phys. Rev. Lett. 83, 4160 (1999)] on Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212), which showed J c J to be independent of (var p hi) 0 . If the momentum parallel to the barrier is conserved in the tunneling process, J c J should vary substantially with the twist angle (var p hi) 0 when the tight-binding Fermi surface appropriate for Bi2212 is taken into account, even if the OP is completely isotropic. We quantify the degree of momentum nonconservation necessary to render J c J ((var p hi) 0 ) constant within experimental error for a variety of pair states by interpolating between the coherent and incoherent limits using five specific models to describe the momentum dependence of the tunneling matrix element squared. From the data of Li et al., we conclude that the c-axis tunneling in Bi2212 must be very nearly incoherent, and that the OP must have a nonvanishing Fermi-surface average for T c . We further show that the apparent conventional sum-rule violation observed by Basov et al. [Science 283, 49 (1999)] can be consistent with such strongly incoherent c-axis tunneling.

  15. Do resonance-assisted intramolecular halogen bonds exist without a charge transfer and a sigma-hole?

    Czech Academy of Sciences Publication Activity Database

    Pandiyan, B. V.; Deepa, Palanisamy; Kolandaivel, P.

    2015-01-01

    Roč. 17, č. 41 (2015), s. 27496-27508 ISSN 1463-9076 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ab initio * hydrogen bonds * noncovalent interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015

  16. D-π-A Compounds with Tunable Intramolecular Charge Transfer Achieved by Incorporation of Butenolide Nitriles as Acceptor Moieties

    DEFF Research Database (Denmark)

    Moreno-Yruela, Carlos; Garín, Javier; Orduna, Jesús

    2015-01-01

    Chromophores where a polyenic spacer separates a 4H-pyranylidene or benzothiazolylidene donor and three different butenolide nitriles have been synthesized and characterized. The role of 2(5H)-furanones as acceptor units on the polarization and the second-order nonlinear (NLO) properties has been...

  17. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  18. Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction

    Energy Technology Data Exchange (ETDEWEB)

    Pastorczak, Ewa; Prlj, Antonio; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Gonthier, Jérôme F. [Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States)

    2015-12-14

    We introduce an intramolecular energy decomposition scheme for analyzing non-covalent interactions within molecules in the spirit of symmetry-adapted perturbation theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical Hamiltonian of Mayer [Int. J. Quantum Chem. 23(2), 341–363 (1983)] and the recently introduced zeroth-order wavefunction [J. F. Gonthier and C. Corminboeuf, J. Chem. Phys. 140(15), 154107 (2014)]. The scheme decomposes the interaction energy between weakly bound fragments located within the same molecule into physically meaningful components, i.e., electrostatic-exchange, induction, and dispersion. Here, we discuss the key steps of the approach and demonstrate that a single-determinant wavefunction can already deliver a detailed and insightful description of a wide range of intramolecular non-covalent phenomena such as hydrogen bonds, dihydrogen contacts, and π − π stacking interactions. Intra-SAPT is also used to shed the light on competing intra- and intermolecular interactions.

  19. Does the Intramolecular Hydrogen Bond Affect the Spectroscopic Properties of Bicyclic Diazole Heterocycles?

    Directory of Open Access Journals (Sweden)

    Paweł Misiak

    2018-01-01

    Full Text Available The formation of an intramolecular hydrogen bond in pyrrolo[1,2-a]pyrazin-1(2H-one bicyclic diazoles was analyzed, and the influence of N-substitution on HB formation is discussed in this study. B3LYP/aug-cc-pVDZ calculations were performed for the diazole, and the quantum theory of atoms in molecules (QTAIM approach as well as the natural bond orbital (NBO method was applied to analyze the strength of this interaction. It was found that the intramolecular hydrogen bond that closes an extra ring between the C=O proton acceptor group and the CH proton donor, that is, C=O⋯H–C, influences the spectroscopic properties of pyrrolopyrazine bicyclic diazoles, particularly the carbonyl frequencies. The influence of N-substitution on the aromaticity of heterocyclic rings is also discussed in this report.

  20. Numerical simulation of dynamic quenching of dual-split fluorescence of molecules with intramolecular hydrogen bonds

    International Nuclear Information System (INIS)

    Morozov, V.A.; Chuvulkin, N.D.; Smolenskij, E.A.; Dubina, Yu.M.

    2014-01-01

    The dynamic quenching of intensity pulses of the dual-split fluorescence (DSF) has been simulated using numerical solutions of the equations for the population matrix of five states of the model fluorescent molecule (FM). The state with the highest energy is considered as resonantly excited by irradiation, and two other excited states populated by subsequent relaxation processes are taken as initial states for the FM transitions with emission of the DSF photons. The FM model parameters are selected to fit typical parameters of the molecules with intramolecular proton photo transfer. Quenching is considered as a consequence of non-radiative decay of the FM excited states due to collisions with the quencher molecules. Examples of two types of the DSF quenching of the FM are given. The first type leads to an intramolecular radiationless decay of particular excited states of the FM, and the second one results in radiationless transitions from the same states to the quencher molecule states. (authors)