WorldWideScience

Sample records for twisted intramolecular charge-transfer

  1. Enhanced Three-Photon Absorption by Symmetric Twisted Intramolecular Charge Transfer

    Institute of Scientific and Technical Information of China (English)

    GUO Fu-Quan; YANG Jun; ZHANG Qi-Jin; MING Hai

    2005-01-01

    @@ We report on a novel organic chromophore with symmetric twisted intramolecular charge transfer (TICT) state on excitation. The properties of nonlinear transmission induced by three-photon absorption (3PA) are demonstrated pumped with nanosecond laser pulse. Large 3PA cross sections as high as the order of 10-74 cm6s2have been obtained for nanosecond and picosecond laser pulses at 1064 nm from intensity-dependent transmission measurements. Similar two emissive behaviours from one-photon and three-photon excited fluorescence spectra indicate that the linear and nonlinear fluorescences share the same TICT relaxation process from the excited states. The intensity dependence of upconversion fluorescence on the incident intensity obeys the cubic law that characterizes the three-photon absorption.

  2. Ultrafast twisting motions and intramolecular charge-transfer reaction in a cyanine dye trapped in molecular nanocavities

    Science.gov (United States)

    Fayed, T. A.; Organero, J. A.; Garcia-Ochoa, I.; Tormo, L.; Douhal, A.

    2002-09-01

    Emission properties of the cyanine dye, 1-(2-naphthyl)-2-ethenyl-(2-benzothiazolium) iodide, in aqueous nanocavities offered by cyclodextrins and in a film of a polymeric matrix were studied by means of steady-state and picosecond time-resolved emission spectroscopy. The results show the occurrence of a fast twisting motion and a subsequent intramolecular charge-transfer reaction. The initial step can be prevented by the size of the nanocavity which governs the spectral position of the fluorescence band and lifetime of the excited encapsulated host.

  3. Intramolecular Charge Transfer in Arylpyrazolines

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-Liang; LIU Ju-Zheng; XU Chun-Xiang

    2006-01-01

    @@ Arylpyrazoline microparticles dispersed in water are synthesized and their absorption spectra are compared with those in solution. It is found that the absorbance of pyrazoline group in solution of 5-aryl arylpyrazoline is far greater than that in solution of arylpyrazolines with no 5-aryl group. This hyperchromic effect is intensified in 5-aryl arylpyrazoline microparticles. It is indicated that intramolecular charge transfer exists between pyrazoline group and 5-aryl group and this kind of interaction is increased in their microparticles.

  4. Twisted intra-molecular charge transfer investigations of semiorganic triglycine phosphate single crystal for non linear optical applications

    Science.gov (United States)

    Meera, M. R.; Joselin Beaula, T.; Rayar, S. L.; Bena Jothy, V.

    2017-09-01

    NLO materials are gaining importance in technologies such as optical communication, optical computing and dynamic image processing. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. A semi organic Single crystal of Triglycine Phosphate (TGP) which was grown and spectral analysis have been using FTIR and Raman spectral analysis. Natural Bond Orbital Analysis and the atomic natural charges are also predicted. HOMO LUMO energy gap value suggests the possibility of charge transfer within the molecule.

  5. Exploration of twisted intramolecular charge transfer fluorescence properties of trans-2-[4-(dimethylamino)styryl]benzothiazole to characterize the protein-surfactant aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Muthusubramanian, Sowmiya [Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan (India); Saha, Subit Kumar, E-mail: sksaha@bits-pilani.ac.in [Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan (India)

    2012-08-15

    The characterization of aggregates of an anionic surfactant, sodium dodecyl sulphate (SDS) with bovine serum albumin (BSA) in various regions of binding isotherm of SDS to BSA with increasing concentration of the former have been done by exploring the twisted intramolecular charge transfer (TICT) fluorescence properties of a probe, trans-2-[4-(dimethylamino)styryl] benzothiazole (DMASBT). The TICT fluorescence, steady-state fluorescence anisotropy and time-resolved fluorescence of DMASBT, and the fluorescence resonance energy transfer (FRET) study reveal the characteristics of the native protein as well as the protein-surfactant aggregates viz., micropolarity, microviscosity, locations of probe, denaturation of protein in various regions of binding isotherm, and also the validation of necklace-bead model. The changes in the polarity and the viscosity of the microenvironment around the probe from one binding region of SDS to other have been reflected in the highly sensitive fluorescence properties of DMASBT. The study of FRET between the DMASBT and the tryptophan residue (Trp) of BSA has identified the locations of the probe molecule in the native protein as well as that in various BSA-SDS aggregates. The energy transfer efficiency decreases, whereas the distance between the DMASBT and the Trp residue increases with increasing concentration of SDS. The significant change in the conformations of protein molecules during the non-cooperative binding region of SDS is evidenced by the fluorescence anisotropic behavior of DMASBT in the same region. - Highlights: Black-Right-Pointing-Pointer Micropolarity and microviscosity of environment around the probe in BSA-SDS aggregates is reported. Black-Right-Pointing-Pointer Denaturation of protein is demonstrated by the TCSPC of DMASBT and FRET study. Black-Right-Pointing-Pointer Location of the probe in the native protein and BSA-SDS aggregates is identified using FRET study. Black-Right-Pointing-Pointer During unfolding of BSA

  6. Photophysical studies of dipolar organic dyes that feature a 1,3-cyclohexadiene conjugated linkage: the implication of a twisted intramolecular charge-transfer state on the efficiency of dye-sensitized solar cells.

    Science.gov (United States)

    Chen, Kuan-Fu; Chang, Che-Wei; Lin, Ju-Ling; Hsu, Ying-Chan; Yeh, Ming-Chang P; Hsu, Chao-Ping; Sun, Shih-Sheng

    2010-11-15

    A detailed study of the synthesis and photophysical properties of a new series of dipolar organic photosensitizers that feature a 1,3-cyclohexadiene moiety integrated into the π-conjugated structural backbone has been carried out. Dye-sensitized solar cells (DSSCs) based on these structurally simple dyes have shown appreciable photo-to-electrical energy conversion efficiency, with the highest one up to 4.03 %. Solvent-dependent fluorescence studies along with the observation of dual emission on dye 4 b and single emission on dyes 4 a and 32 suggest that dye 4 b possesses a highly polar emissive excited state located at a lower-energy position than at the normal emissive excited state. A detailed photophysical investigation in conjunction with computational studies confirmed the twisted intramolecular charge-transfer (TICT) state to be the lowest emissive excited state for dye 4 b in polar solvents. The relaxation from higher-charge-injection excited states to the lowest TICT state renders the back-electron transfer process a forbidden one and significantly retards the charge recombination to boost the photocurrent. The electrochemical impedance under illumination and transient photovoltage decay studies showed smaller charge resistance and longer electron lifetime in 4 b-based DSSC compared to the DSSCs with reference dyes 4 a and 32, which further illustrates the positive influence of the TICT state on the performance of DSSCs.

  7. Two-State Intramolecular Charge Transfer (ICT) with 3,5-Dimethyl-4-(dimethylamino)benzonitrile (MMD) and Its Meta-Isomer mMMD. Ground State Amino Twist Not Essential for ICT.

    Science.gov (United States)

    Druzhinin, Sergey I; Galievsky, Victor A; Demeter, Attila; Kovalenko, Sergey A; Senyushkina, Tamara; Dubbaka, Srinivas R; Knochel, Paul; Mayer, Peter; Grosse, Christian; Stalke, Dietmar; Zachariasse, Klaas A

    2015-12-10

    From X-ray structure analysis, amino twist angles of 90.0° for 2,4-dimethyl-3-(dimethylamino)benzonitrile (mMMD), 82.7° for 4-(di-tert-butylamino)benzonitrile (DTABN), and 88.7° for 6-cyanobenzoquinuclidine (CBQ) are determined, all considerably larger than the 57.4° of 3,5-dimethyl-4-(dimethylamino)benzonitrile (MMD). This large twist leads to lengthening of the amino-phenyl bond, 143.5 pm (mMMD), 144.1 pm (DTABN), 144.6 pm (CBQ), and 141.4 pm (MMD), as compared with 136.5 pm for the planar 4-(dimethylamino)benzonitrile (DMABN). As a consequence, the electronic coupling between the amino and phenyl subgroups in mMMD, DTABN, CBQ, and MMD is much weaker than in DMABN, as seen from the strongly reduced molar absorption coefficients. The fluorescence spectrum of MMD in n-hexane at 25 °C consists of two emissions, from a locally excited (LE) and an intramolecular charge transfer (ICT) state, with a fluorescence quantum yield ratio Φ'(ICT)/Φ(LE) of 12.8. In MeCN, a single ICT emission is found. With mMMD in n-hexane, in contrast, only LE fluorescence is observed, whereas the spectrum in MeCN originates from the ICT state. These differences are also seen from the half-widths of the overall fluorescence bands, which in n-hexane are larger for MMD than for mMMD, decreasing with solvent polarity for MMD and increasing for mMMD, reflecting the disappearance of LE and the onset of ICT in the overall spectra, respectively. From solvatochromic measurements the dipole moments μe(ICT) of MMD (16 D) and mMMD (15 D) are obtained. Femtosecond excited state absorption (ESA) spectra at 22 °C, together with the dual (LE + ICT) fluorescence, reveal that MMD in n-hexane undergoes a reversible LE ⇄ ICT reaction, with LE as the precursor, with a forward rate constant ka = 5.6 × 10(12) s(-1) and a back-reaction kd ∼ 0.05 × 10(12) s(-1). With MMD in the strongly polar solvent MeCN, ICT is faster: ka = 10 × 10(12) s(-1). In the case of mMMD in n-hexane, the ESA spectra show

  8. Intramolecular charge transfer effects on 3-aminobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Stalin, T. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India); Rajendiran, N. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India)], E-mail: drrajendiran@rediffmail.com

    2006-03-20

    Effect of solvents, buffer solutions of different pH and {beta}-cyclodextrin on the absorption and fluorescence spectra of 3-aminobenzoic acid (3ABA) have been investigated. The solid inclusion complex of 3ABA with {beta}-CD is discussed by UV-Vis, fluorimetry, semiempirical quantum calculations (AM1), FT-IR, {sup 1}H NMR and Scanning Electron Microscope (SEM). The thermodynamic parameters ({delta}H, {delta}G and {delta}S) of the inclusion process are also determined. The experimental results indicated that the inclusion processes is an exothermic and spontaneous. The large Stokes shift emission in solvents with 3ABA are correlated with different solvent polarity scales suggest that, 3ABA molecule is more polar in the S{sub 1} state. Solvent, {beta}-CD studies and excited state dipole moment values confirms that the presence of intramolecular charge transfer (ICT) in 3ABA. Acidity constants for different prototropic equilibria of 3ABA in the S{sub 0} and S{sub 1} states are calculated. {beta}-Cyclodextrin studies shows that 3ABA forms a 1:1 inclusion complex with {beta}-CD. {beta}-CD studies suggest COOH group present in non-polar part and amino group present in hydrophilic part of the {beta}-CD cavity. A mechanism is proposed to explain the inclusion process.

  9. The role of hydrogen bonding in excited state intramolecular charge transfer.

    Science.gov (United States)

    Chipem, Francis A S; Mishra, Anasuya; Krishnamoorthy, G

    2012-07-07

    Intramolecular charge transfer (ICT) that occurs upon photoexcitation of molecules is a vital process in nature and it has ample applications in chemistry and biology. The ICT process of the excited molecules is affected by several environmental factors including polarity, viscosity and hydrogen bonding. The effect of polarity and viscosity on the ICT processes is well understood. But, despite the fact that hydrogen bonding significantly influences the ICT process, the specific role of hydrogen bonding in the formation and stabilization of the ICT state is not unambiguously established. Some literature reports predicted that the hydrogen bonding of the solvent with a donor promotes the formation of a twisted intramolecular charge transfer (TICT) state. Some other reports stated that it inhibits the formation of the TICT state. Alternatively, it was proposed that the hydrogen bonding of the solvent with an acceptor favors the TICT state. It is also observed that a dynamic equilibrium is established between the free and the hydrogen bonded ICT states. This perspective focuses on the specific role played by hydrogen bonding of the solvent with the donor and the acceptor, and by proton transfer in the ICT process. The utility of such influence in molecular recognition and anion sensing is discussed with a few recent literature examples in the end.

  10. Photoinduced intramolecular charge transfer in an electronically modified flavin derivative: roseoflavin.

    Science.gov (United States)

    Karasulu, Bora; Thiel, Walter

    2015-01-22

    The photophysical properties of a push-pull flavin derivative, roseoflavin (RoF), are investigated in different surroundings at the molecular level, with focus on intramolecular charge transfer (ICT). Time-dependent density functional theory (TD-DFT, CAM-B3LYP functional) and DFT-based multireference configuration interaction (DFT/MRCI) are used to compute excited-state energies and one-electron properties of a truncated RoF model, roseolumiflavin (RoLF). Solvent effects are taken into account implicitly by the conductor-like polarizable continuum model and explicitly through a microsolvation scheme. In the gas phase, the calculations predict no crossing between the lowest locally excited (LE) and charge-transfer (CT) states upon twisting the dimethylamine donor group relative to the plane of the isoalloxazine acceptor moiety, whereas this crossing is found to be facile in solution (i.e., in water or benzene). Crossing of the LE and CT states facilitates ICT, which is the main cause of the fluorescence quenching and dual fluorescence character experimentally observed for roseoflavin in solution. The barrier for the ICT process is computed to be lower in water than in benzene, consistent with the enhanced ICT rates observed in more polar solvents. We present a detailed study of the molecular mechanism of the photoinduced ICT process in RoLF. For a typical donor-acceptor chromophore, three such mechanisms are discussed in the literature, which differ in the alignment of the donor and acceptor planes, namely, planar ICT (PICT), perpendicular-twisted ICT (TICT), and wagging ICT (WICT). Our theoretical results suggest that the TICT mechanism is favored in RoLF.

  11. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  12. An experimental and computational study on intramolecular charge transfer: a tetrathiafulvalene-fused dipyridophenazine molecule.

    Science.gov (United States)

    Jia, Chunyang; Liu, Shi-Xia; Tanner, Christian; Leiggener, Claudia; Neels, Antonia; Sanguinet, Lionel; Levillain, Eric; Leutwyler, Samuel; Hauser, Andreas; Decurtins, Silvio

    2007-01-01

    To study the electronic interactions in donor-acceptor (D-A) ensembles, D and A fragments are coupled in a single molecule. Specifically, a tetrathiafulvalene (TTF)-fused dipyrido[3,2-a:2',3'-c]phenazine (dppz) compound having inherent redox centers has been synthesized and structurally characterized. Its electronic absorption, fluorescence emission, photoinduced intramolecular charge transfer, and electrochemical behavior have been investigated. The observed electronic properties are explained on the basis of density functional theory.

  13. A two-state model of twisted intramolecular chargetransfer in monomethine dyes

    CERN Document Server

    Olsen, Seth

    2012-01-01

    We describe a two-state model Hamiltonian that can describes the development of twisted intramolecular charge-transfer behavior in monomethine dyes, both near and far from the cyanine limit. Monomethine dyes are useful as biological probes due to their binding-dependent fluorescence turn-on behavior. The model is a generalized Mulliken-Hush diabatic Hamiltonian wherein the diabatic energies and couplings are coupled to twisting about distinct bonds of the monomethine bridge. We parameterize the Hamiltonian against multireference perturbation theory calculations of the ground and excited states of four distinct oxonol protonation states of a green fluorescent protein chromophore model. The four chromophores illustrate different regimes of detuning from the cyanine limit. The model describes correctly the distinct relationships between twisting and charge-transfer behavior in each case. We expose a deep connection between the existence of twist-dependent polarization and the existence of twisted conical interse...

  14. Excited state intramolecular charge transfer reaction in 4-(1-azetidinyl)benzonitrile: Solvent isotope effects

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Piue Ghoshal; Ranjit Biswas

    2009-01-01

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other properties such as quantum yield and radiative rates have been found to be insensitive to the solvent isotope substitution in all these solvents. The origin of the solvent isotope insensitivity of the reaction is discussed and correlated with the observed slowing down of the solvation dynamics upon isotope substitution.

  15. Photoinduced intramolecular charge transfer process of betaine pyridinium: A theoretical spectroscopic study

    Science.gov (United States)

    Perrier, Aurélie; Aloïse, Stéphane; Pawlowska, Zuzanna; Sliwa, Michel; Maurel, François; Abe, Jiro

    2011-10-01

    Using Time-Dependent Density Functional Theory and taking into account bulk solvent effects, we investigate the absorption and emission spectra of a betaine pyridinium molecule, the 2-(1-pyridinio) benzimidazolate (SBPa). This molecule exhibits strong photoinduced intramolecular charge transfer (ICT). We have identified two different electronic states involved, respectively, in the strong bathochromic ICT absorption band (S 2) and in the moderate emission band (S 1). The ICT process is analyzed in terms of charge distribution and dipole moment evolutions upon photoexcitation. These results are compared with steady-state spectroscopic measurements.

  16. Indolizino[5,6-b]quinoxaline Derivatives: Intramolecular Charge Transfer Characters and NIR Fluorescence.

    Science.gov (United States)

    Kojima, Mitsuru; Hayashi, Hironobu; Aotake, Tatsuya; Ikeda, Shinya; Suzuki, Mitsuharu; Aratani, Naoki; Kuzuhara, Daiki; Yamada, Hiroko

    2015-11-01

    Indolizino[5,6-b]quinoxaline derivatives (1 a and 1 b) with a push-pull structure were prepared to show intramolecular charge-transfer properties. Compounds 1 a and 1 b are strongly fluorescent in aprotic solvents while symmetrical derivatives (2 a and 2 b) were non-fluorescent. The π-expanded α-α linked dimer (10) of indolizino[5,6-b]quinoxaline 1 b was serendipitously obtained to show NIR absorption over 800 nm and the fluorescence edge reached to 1400 nm.

  17. Imidazole-annulated tetrathiafulvalenes exhibiting pH-tuneable intramolecular charge transfer and redox properties.

    Science.gov (United States)

    Wu, Jincai; Dupont, Nathalie; Liu, Shi-Xia; Neels, Antonia; Hauser, Andreas; Decurtins, Silvio

    2009-03-02

    In order to study the electronic interactions in donor-acceptor ensembles as a function of pH, an efficient synthetic route to three imidazole-annulated tetrathiafulvalene (TTF) derivatives 1-3 is reported. Their electronic absorption spectra, in view of photoinduced intramolecular charge transfer, and their electrochemical behavior were investigated, and pK(a) values for the two protonation processes on the acceptor unit were determined in organic solvents by photometric titration. The influence of the TTF moiety on these values is discussed.

  18. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    Science.gov (United States)

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  19. Ultrafast intramolecular charge transfer of formyl perylene observed using femtosecond transient absorption spectroscopy.

    Science.gov (United States)

    Mohammed, Omar F

    2010-11-04

    The excited-state photophysics of formylperylene (FPe) have been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of experimental and theoretical methods were employed including femtosecond transient absorption (fs-TA) spectroscopy with 130 fs temporal resolution. We report that the ultrafast intramolecular charge transfer from the perylene unit to the formyl (CHO) group can be facilitated drastically by hydrogen-bonding interactions between the carbonyl group oxygen of FPe and hydrogen-donating solvents in the electronically excited state. The excited-state absorption of FPe in methanol (MeOH) is close to the reported perylene radical cation produced by bimolecular quenching by an electron acceptor. This is a strong indication for a substantial charge transfer in the S(1) state in protic solvents. The larger increase of the dipole moment change in the protic solvents than that in aprotic ones strongly supports this observation. Relaxation mechanisms including vibrational cooling and solvation coupled to the charge-transfer state are also discussed.

  20. Photoinduced Intramolecular Charge Transfer in Donor-acceptor Dyad and Donor-bridge-acceptor Triad

    Institute of Scientific and Technical Information of China (English)

    Yong Ding; Yuan-zuo Li; Feng-cai Ma

    2008-01-01

    The ground and excited state properties of the [60]fullerene,diphenylbenzothiadiazole-triphenylamine (PBTDP-TPA) dyad and fullerene-diphenylbenzothiadiazole-triphenylamine (fullerene-PBTDP-TPA) triad were investigated theoretically using density functional theory with B3LYP functional and 3-21G basis set and time-dependent density functional theory with B3LYP functional and STO-3G basis set as well as 2D and 3D real space analysis methods.The 2D site representation reveals the electron-hole coherence on exci- tation.The 3D transition density shows the orientation and strength of the transition dipole moment,and the 3D charge difference density gives the orientation and result of the intramolecular charge transfer.Also, photoinduced intermolecular charge transfer (ICT) in PBTDP-TPA-fullerene triad are identified with 2D and 3D representations,which reveals the mechanisms of ICT in donor-bridge-acceptor triad on excitation. Besides that we also found that the direct superexchange ICT from donor to acceptor (tunneling through the bridge) strongly promotes the ICT in the donor-bridge-acceptor triad.

  1. Effects of acid concentration on intramolecular charge transfer reaction of 4-(azetidinyl) benzonitrile in solution

    Indian Academy of Sciences (India)

    Biswajit Guchhait; Tuhin Pradhan; Ranjit Biswas

    2014-01-01

    Effects of acid concentration on excited state intramolecular charge transfer reaction of 4-(azetidinyl) benzonitrile (P4C) in aprotic (acetonitrile and ethyl acetate) and protic (ethanol) solvents have been studied by means of steady state absorption and fluorescence, and time resolved fluorescence spectroscopic techniques. While absorption and fluorescence bands of P4C have been found to be shifted towards higher energy with increasing acid concentration in acetonitrile and ethyl acetate, no significant dependence has been observed in ethanolic solutions. Reaction rate becomes increasingly slower with acid concentration in acetonitrile and ethyl acetate. In contrast, acid in ethanolic solutions does not produce such an effect on reaction rate. Time-dependent density functional theory calculations have been performed to understand the observed spectroscopic results.

  2. Effect of intramolecular charge transfer on fluorescence and singlet oxygen production of phthalocyanine analogues.

    Science.gov (United States)

    Vachova, Lenka; Novakova, Veronika; Kopecky, Kamil; Miletin, Miroslav; Zimcik, Petr

    2012-10-14

    Intramolecular charge transfer (ICT) was studied on a series of magnesium, metal-free and zinc complexes of unsymmetrical tetrapyrazinoporphyrazines and tribenzopyrazinoporphyrazines bearing two dialkylamino substituents (donors) and six alkylsulfanyl or aryloxy substituents (non-donors). The dialkylamino substituents were responsible for ICT that deactivated excited states and led to considerable decrease of fluorescence and singlet oxygen quantum yields. Photophysical and photochemical properties were compared to corresponding macrocycles that do not bear any donor centers. The data showed high feasibility of ICT in the tetrapyrazinoporphyrazine macrocycle and significantly lower efficiency of this deactivation process in the tribenzopyrazinoporphyrazine type molecules. Considerable effect of non-donor peripheral substituents on ICT was also described. The results imply that tetrapyrazinoporphyrazines may be more suitable for development of new molecules investigated in applications based on ICT.

  3. Intramolecular Charge Transfer of Carotene-porphyrin-fullerene Triad: Sequential or Superexchange Cechanism

    Institute of Scientific and Technical Information of China (English)

    SUN,Yu; CHEN,Yue-Hui; LI,Yuan-Zuo; LI,Yong-Qing; MA,Feng-Cai

    2008-01-01

    As an excellent artificial photosynthetic reaction center,the carotene (C)-porphyrin (P)-fullerene (F) triad was extensively investigated experimentally.To reveal the mechanism of the intramolecular charge transfer (ICT) on the mimic of photosynthetic solar energy conversion (such as singlet energy transfer between pigments,and photoinduced electron transfer from excited singlet states to give long-lived charge-separated states),the ICT mechanisms of C-P-F triad on the exciton were theoretically studied with quantum chemical methods as well as the 2D and 3D real space analysis approaches.The results of quantum chemical methods reveal that the excited states are the ICT states,since the densities of HOMO are localized in the carotene or porphyrin unit,and the densities of LUMO are localized in the fullerene unit.Furthermore,the excited states should be the intramolecular superexchange charge transfer (ISCT) states for the orbital transition from the HOMO whose densities are localized in the carotene to the LUMO whose densities are localized in the fullerene unit.The 3D charge difference densities can clearly show that some excited states are ISCT excited states,since the electron and hole are resident in the fullerene and carotene units,respectively.From the results of the electron-hole coherence of the 2D transition density matrix,not only 3D results are supported,but also the delocalization size on the exciton can be observed.These phenomena were further interpreted with non-linear optical effect.The large changes of the linear and non-linear polarizabilities on the exciton result in the charge separate states,and if their changes are large enough,the ICT mechanism can become the ISCT on the exciton.

  4. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering

    Science.gov (United States)

    Lukman, Steven; Chen, Kai; Hodgkiss, Justin M.; Turban, David H. P.; Hine, Nicholas D. M.; Dong, Shaoqiang; Wu, Jishan; Greenham, Neil C.; Musser, Andrew J.

    2016-12-01

    Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics.

  5. Photoinduced intramolecular charge transfer of sodium 4-(N,N-dimethylamino)benzenesulfonate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new dual fluorescent N,N-dimethylaniline derivative, sodium 4-(N,N-dimethylamino)- benzenesulfonate (SDMAS), is reported. In SDMAS, the electron acceptor is linked to the phenyl ring via a sulfur atom at the para-position of the electron donor. It was found that SDMAS emits dual fluorescence only in highly polar solvent water but not in organic solvents such as formamide, methanol and acetonitrile. In organic solvents only a single-band emission at ca.360 nm was observed in the short wavelength region. The dual fluorescence of SDMAS in water was found at 365 and 475 nm, respectively. Introduction of organic solvent such as ethanol, acetonitrile, and 1,4-dioxane into aqueous solution of SDMAS leads to blue-shift and quenching of the long-wavelength emission. Measurements of steady-state and picosecond time-resolved fluorescence indicate that the long wavelength fluorescence is emitted from a charge transfer (CT) state that is populated from the locally excited (LE) state, with the latter giving off the short wavelength fluorescence. The fact that a highly polar solvent is required to bring out the dual fluorescence suggests that the CT process of SDMAS has a high activation energy (Ea). In supporting this assumption the time-resolved fluorescence measurements give an Ea of 15.35 kJ.mol-1. It was assumed that the participation of the sulfur atom d-orbital in the conjugation of sulfonate group with phenyl ring and the strong twisting and inverting of the dimethylamino plane relative to the phenyl ring could be the reasons for the high activation energy. A molecular configuration change upon charge transfer in water was suggested for SDMAS based on the thermodynamic data. SDMAS reported here represents the example of the dual fluorescent amine substituted aromatic sulfonate.

  6. Evaluation of intramolecular charge transfer state of 4-, -dimethylamino cinnamaldehyde using time-dependent density functional theory

    Indian Academy of Sciences (India)

    Surajit Ghosh; K V S Girish; Subhadip Ghosh

    2013-07-01

    Intramolecular charge transfer of 4-,-dimethylamino cinnamaldehyde (DMACA) in vacuum and in five different aprotic solvents has been studied by using time-dependent density functional theory (TDDFT). Polarizable continuum model (PCM) was employed to consider solvent-solute interactions. The potential energy curves were constructed at different torsional angle of ,-dimethylamino moiety with respect to the adjacent phenyl ring. A large bathochromic shift in our calculated emission and absorption energies for polar solvents is a clear reminiscent of charge transfer nature of the excited state. Finally, the reported results are in agreement with experimental findings.

  7. Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission

    Directory of Open Access Journals (Sweden)

    Ritesh Nandy

    2010-10-01

    Full Text Available Several 2-(phenylethynyltriphenylene derivatives bearing electron donor and acceptor substituents on the phenyl rings have been synthesized. The absorption and fluorescence emission properties of these molecules have been studied in solvents of different polarity. For a given derivative, solvent polarity had minimal effect on the absorption maxima. However, for a given solvent the absorption maxima red shifted with increasing conjugation of the substituent. The fluorescence emission of these derivatives was very sensitive to solvent polarity. In the presence of strongly electron withdrawing (–CN and strongly electron donating (–NMe2 substituents large Stokes shifts (up to 130 nm, 7828 cm−1 were observed in DMSO. In the presence of carbonyl substituents (–COMe and –COPh, the largest Stokes shift (140 nm, 8163 cm−1 was observed in ethanol. Linear correlation was observed for the Stokes shifts in a Lippert–Mataga plot. Linear correlation of Stokes shift was also observed with ET(30 scale for protic and aprotic solvents but with different slopes. These results indicate that the fluorescence emission arises from excited state intramolecular charge transfer in these molecules where the triphenylene chromophore acts either as a donor or as an acceptor depending upon the nature of the substituent on the phenyl ring. HOMO–LUMO energy gaps have been estimated from the electrochemical and spectral data for these derivatives. The HOMO and LUMO surfaces were obtained from DFT calculations.

  8. Femtosecond Heterodyne Transient Grating Spectroscopic Studies of Intramolecular Charge Transfer Character of Peridinin and Peridinin Analogs

    Science.gov (United States)

    Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora

    2016-05-01

    The peridinin chlorophyll-a protein is a light harvesting complex found in several species of dinoflagellates. Peridinin absorbs strongly in the mid-visible spectral region and, despite the lack of a strong permanent dipole moment in its lowest energy excited state, is able to transfer excitation energy quickly and efficiently to chlorophyll-a. It is believed that the high efficiency arises from the development of intramolecular charge-transfer (ICT) character upon photoexcitation. Recently, heterodyne transient grating spectroscopy has been used to study the ultrafast (<50 fs) dynamics of β carotene and peridinin. The studies show evidence for a structurally displaced intermediate in both cases and strong ICT character in the case of peridinin, but up to now the work has not provided appropriate control experiments. The present experiments examine peridinin and two peridinin analogs, S1-peridinin and S2-peridinin. S1-peridinin is reported to have greatly diminished ICT character, and S2-peridinin is reported to have little-or-no ICT character. Heterodyne transient grating data will be presented and provide a more unambiguous characterization spectral and kinetic properties associated with the peridinin ICT state. Funded by the DoE-BES, Grant No. DE-SC0012376.

  9. Self-assembly of intramolecular charge-transfer compounds into functional molecular systems.

    Science.gov (United States)

    Li, Yongjun; Liu, Taifeng; Liu, Huibiao; Tian, Mao-Zhong; Li, Yuliang

    2014-04-15

    Highly polarized compounds exhibiting intramolecular charge transfer (ICT) are used widely as nonlinear optical (NLO) materials and red emitters and in organic light emitting diodes. Low-molecular-weight donor/acceptor (D/A)-substituted ICT compounds are ideal candidates for use as the building blocks of hierarchically structured, multifunctional self-assembled supramolecular systems. This Account describes our recent studies into the development of functional molecular systems with well-defined self-assembled structures based on charge-transfer (CT) interactions. From solution (sensors) to the solid state (assembled structures), we have fully utilized intrinsic and stimulus-induced CT interactions to construct these functional molecular systems. We have designed some organic molecules capable of ICT, with diversity and tailorability, that can be used to develop novel self-assembled materials. These ICT organic molecules are based on a variety of simple structures such as perylene bisimide, benzothiadiazole, tetracyanobutadiene, fluorenone, isoxazolone, BODIPY, and their derivatives. The degree of ICT is influenced by the nature of both the bridge and the substituents. We have developed new methods to synthesize ICT compounds through the introduction of heterocycles or heteroatoms to the π-conjugated systems or through extending the conjugation of diverse aromatic systems via another aromatic ring. Combining these ICT compounds featuring different D/A units and different degrees of conjugation with phase transfer methodologies and solvent-vapor techniques, we have self-assembled various organic nanostructures, including hollow nanospheres, wires, tubes, and ribbonlike architectures, with controllable morphologies and sizes. For example, we obtained a noncentrosymmetric microfiber structure that possessed a permanent dipole along its fibers' long axis and a transition dipole perpendicular to it; the independent NLO responses of this material can be separated and

  10. Mechanism of intramolecular charge transfer in DNA helix as probed by the use of the fluorescent 2-aminopurine

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huijuan; WANG Peng; WANG Xuefei; FENG Juan; XU Sichuan; AI Xicheng; ZHANG Xingkang; ZHANG Jianping

    2004-01-01

    As a structural analogue of adenine, 2-aminopurine (2Ap) is often used as a fluorescent probe to study the intramolecular charge transfer reaction in DNA. We have designed and synthesized a series of model DNA helix with the variation in the distance between the 2Ap probe and the GGG sequence, and have investigated, by means of picosecond time-resolved fluorescence spectroscopy, the effect of the length of the bridge (consisting of a number of transfer dynamics. The fluorescence dynamics of 2Ap exhibited three exponential decay components, the one with a time constant of a few hundred picoseconds is assigned to the intramolecular charge transfer from GGG to 2Ap. Within 2.4 nm of the donor-acceptor separation,the rate of charge transfer decreased exponentially upon increasing the separation, from which the decay factor ,β is determined to be 1.3 nm-1. Beyond 2.4 nm, however, the rate started to increase, this abnormal behavior of charge transfer is interpreted in terms of the match of electronic energies between the I-bridge and the donor/acceptor couple.

  11. Donor-Acceptor Conjugated Linear Polyenes: A Study of Excited State Intramolecular Charge Transfer, Photoisomerization and Fluorescence Probe Properties.

    Science.gov (United States)

    Hota, Prasanta Kumar; Singh, Anil Kumar

    2014-07-27

    Numerous studies of donor-acceptor conjugated linear polyenes have been carried out with the goal to understand the exact nature of the excited state electronic structure and dynamics. In this article we discuss our endeavours with regard to the excited state intramolecular charge transfer, photoisomerization and fluorescence probe properties of various donor-acceptor substituted compounds of diphenylpolyene [Ar(CH = CH) n Ar] series and ethenylindoles.

  12. The intramolecular charge transfer state in carbonyl-containing polyenes and carotenoids.

    Science.gov (United States)

    Enriquez, Miriam M; Fuciman, Marcel; LaFountain, Amy M; Wagner, Nicole L; Birge, Robert R; Frank, Harry A

    2010-09-30

    Numerous femtosecond time-resolved optical spectroscopic experiments have reported that the lifetime of the low-lying S(1) state of carbonyl-containing polyenes and carotenoids decreases with increasing solvent polarity. The effect becomes even more pronounced as the number of double bonds in the conjugated π-electron system decreases. The effect has been attributed to an intramolecular charge transfer (ICT) state coupled to S(1), but it is still not clear what the precise molecular nature of this state is, and how it is able to modulate the spectral and dynamic properties of polyenes and carotenoids. In this work, we examine the nature of the ICT state in three substituted polyenes: crocetindial, which contains two terminal, symmetrically substituted carbonyl groups in conjugation with the π-electron system, 8,8'-diapocarotene-8'-ol-8-al, which has one terminal conjugated carbonyl group and one hydroxyl group, and 8,8'-diapocarotene-8,8'-diol, which has two terminal, symmetrically positioned, hydroxyl groups but no carbonyls. Femtosecond time-resolved optical spectroscopic experiments on these molecules reveal that only the asymmetrically substituted 8,8'-diapocarotene-8'-ol-8-al exhibits any substantial effect of solvent on the excited state spectra and dynamics. The data are interpreted using molecular orbital theory which shows that the ICT state develops via mixing of the low-lying S(1) (2(1)A(g)-like) and S(2) (1(1)B(u)-like) excited singlet states to form a resultant state that preferentially evolves in polar solvent and exhibits a very large (∼25 D) dipole moment. Molecular dynamics calculations demonstrate that the features of the ICT state are present in ∼20 fs.

  13. Direct Fluorescence Sensing of Metal Ions in Aqueous Solution Using Intramolecular Charge Transfer Emission from Aggregates of Pentaerythrityl Tetra(p-dimethylaminobenzoate)

    Institute of Scientific and Technical Information of China (English)

    Zhen Chang WEN; Yun Bao JIANG

    2004-01-01

    Pentaerythrityl tetra(p-dimethylaminobenzoate) (PTDMAB) was synthesized and shown to emit in water-rich aqueous dioxane solutions the intramolecular charge transfer fluorescence that was sensitive to the presence of metal ions.

  14. Intramolecular Charge Transfer and Solvation of Photoactive Molecules with Conjugated Push-Pull Structures.

    Science.gov (United States)

    Zhu, Huaning; Wang, Xian; Ma, Renjun; Kuang, Zhuoran; Guo, Qianjin; Xia, Andong

    2016-10-18

    A comparative investigation on the photophysical properties and solvation-related ICT dynamics of three push-pull compounds containing different donors including carbazole, triphenylamine and phenothiazine, was performed. The steady-state spectra and theoretical calculations show the charge transfers from the central donors to the acceptors at each side. The characterization of the extent of charge transfer was determined by various means, including estimation of the dipole moment, the electron density distribution of HOMO and LUMO, CDD and change in Gibb's free energy, which show the charge transfer strength to be in the order PDHP > BDHT > PDHC. This suggests that the electron-donating ability of the donor groups plays a crucial role in the charge transfer in these compounds. The TA data show the excited-state relaxation dynamics follow a sequential model: FC→ICT→ICT'→S0 , and are affected by the solvent polarity. The results presented here demonstrate that the compound with a higher degree of ICT characteristic interacts more strongly with stronger polar solvent molecules, which can accelerate the solvation and spectral evolution to lower energy levels. The A-π-D-π-A architectures with prominent ICT characteristics based on carbazole, triphenylamine and phenothiazine might be potential scaffolds for light-harvesting and photovoltaic devices. These results are of value for understanding structure-property relationships and the rational design of functional materials for photoelectric applications.

  15. Excited state intramolecular proton transfer and charge transfer dynamics of a 2-(2'-hydroxyphenyl)benzoxazole derivative in solution.

    Science.gov (United States)

    Kim, Chul Hoon; Park, Jaehun; Seo, Jangwon; Park, Soo Young; Joo, Taiha

    2010-05-13

    Excited state intramolecular proton transfer (ESIPT) and subsequent intramolecular charge transfer (ICT) dynamics of a 2-(2'-hydroxyphenyl)benzoxazole derivative conjugated with an electron withdrawing group (HBOCE) in solutions and a polymer film has been investigated by femtosecond time-resolved fluorescence (TRF) and TRF spectra measurements without the conventional spectral reconstruction method. TRF with high enough resolution (benzoxazole groups is invoked to account for the dispersive ESIPT dynamics in liquids. From the TRF spectra of both the enol and keto isomers, we have identified the ICT reaction of the keto isomer occurring subsequent to the ESIPT. The ICT proceeds also by two time constants of near instantaneous and 2.7 ps. Since the ICT dynamics of HBOCE is rather close to the polar solvation dynamics, we argue that the ICT is barrierless and determined mostly by the solvent fluctuation.

  16. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    Science.gov (United States)

    Rury, Aaron S.; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-01

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm-1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

  17. Ultrafast intramolecular charge transfer with N-(4-cyanophenyl)carbazole. Evidence for a LE precursor and dual LE + ICT fluorescence.

    Science.gov (United States)

    Galievsky, Victor A; Druzhinin, Sergey I; Demeter, Attila; Mayer, Peter; Kovalenko, Sergey A; Senyushkina, Tamara A; Zachariasse, Klaas A

    2010-12-09

    The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ⇄ ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ∼4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE

  18. Spectral signatures of intramolecular charge transfer process in beta-enaminones: a combined experimental and theoretical analysis.

    Science.gov (United States)

    Misra, Ramprasad; Mandal, Abhijit; Mukhopadhyay, Madhuri; Maity, D K; Bhattacharyya, S P

    2009-08-06

    In this paper, we present spectroscopic signatures of intramolecular charge transfer (ICT) and effects of solvent on the ICT process in 3-(phenylamino)-2-cyclohexen-1-one (PACO), a member of the well-known molecular family, the beta-enaminones. The dual fluorescence in the steady state emission spectra of the molecule in polar solvents indicates the occurrence of ICT, which is further supported by time-resolved studies, using time correlated single photon counting technique with picosecond resolution. To understand the nature of the charge transfer, pH dependent studies of the probe in water were performed, where a quenching of fluorescence was observed even in the presence of very low concentrations of acids. Solvent induced fluorescence quenching was observed in ethanol and methanol. The ICT process was also investigated by quantum chemical calculations. To understand the role of solvents in the ICT process, we have theoretically studied the macroscopic and microscopic solvation of the probe in water. The absorption spectra of the molecule in the gas phase as well as in water were simulated using time dependent density functional theory with cc-pVTZ basis set and self-consistent reaction field theory that models macroscopic solvation. The possibility of microscopic solvation in water was probed theoretically and the formation of 1:3 molecular clusters by PACO with water molecules has been confirmed. Our findings could have a bearing on pH sensing applications of the probe.

  19. Excited state intramolecular charge transfer reaction of 4-(morpholenyl) benzonitrile in solution: Effects of hetero atom in the donor moiety

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Harun Al Rasid Gazi; Ranjit Biswas

    2010-07-01

    An intramolecular charge transfer (ICT) molecule with an extra hetero atom in its donor moiety has been synthesized in order to investigate how ICT reaction is affected by hetero atom replacement. Photo-physical and photo-dynamical properties of this molecule, 4-(morpholenyl)benzonitrile (M6C), have been studied in 20 different solvents. The correlation between the reaction driving force (- ) and activation barrier ( #) has been explored in order to understand the solvent effects (static and dynamic) on the photo-excited ICT reaction in this molecule. A Kramer’s model analysis of the experimentally observed reaction rate constants indicates a solvent-averaged activation barrier of ∼ 4 in the absence of solvent dynamical control. The reaction in M6C is therefore not a barrier-less reaction but close to the limit where conventional kinetics might break down.

  20. Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state

    Science.gov (United States)

    Zigmantas, Donatas; Hiller, Roger G.; Sundström, Villy; Polívka, Tomáš

    2002-01-01

    Carotenoids are, along with chlorophylls, crucial pigments involved in light-harvesting processes in photosynthetic organisms. Details of carotenoid to chlorophyll energy transfer mechanisms and their dependence on structural variability of carotenoids are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin–chlorophyll-a–protein (PCP) complex containing the highly substituted carotenoid peridinin, which includes an intramolecular charge transfer (ICT) state in its excited state manifold. Extending the transient absorption spectra toward near-infrared region (600–1800 nm) allowed us to separate contributions from different low-lying excited states of peridinin. The results demonstrate a special light-harvesting strategy in the PCP complex that uses the ICT state of peridinin to enhance energy transfer efficiency. PMID:12486228

  1. Photoinduced intramolecular charge transfer in push-pull polyenes: effects of solvation, electron-donor group, and polyenic chain length.

    Science.gov (United States)

    Akemann, Walther; Laage, Damien; Plaza, Pascal; Martin, Monique M; Blanchard-Desce, Mireille

    2008-01-17

    Subpicosecond absorption spectroscopy is used to characterize the primary photoinduced processes in a class of push-pull polyenes bearing a julolidine end group as the electron donor and a diethylthiobarbituric acid end group as the electron acceptor. The excited-state decay time and relaxation pathway have been studied for four polyenes of increasing chain length (n = 2-5 double bonds) in aprotic solvents of different solvation time, polarity, and viscosity. Intramolecular charge transfer (ICT) leading to a transient state of cyanine-like structure (fully conjugated with no bond length alternation) is observed in all polar solvents at a solvent dependent rate, but the reaction is not observed in cyclohexane, a nonpolar solvent. In polar solvents, the reaction time increases with the average solvation time but remains slightly larger, except in the viscous solvent triacetin. These facts are interpreted as an indication that both solvent reorganization and internal restructuring are involved in the ICT-state formation. The observed photodynamics resemble those we previously found for another class of polyenes bearing a dibutylaniline group as the donor, including a similar charge-transfer rate in spite of the larger electron donor character of the julolidine group. This observation brings further support to the proposal that an intramolecular coordinate is involved in the charge-transfer reaction, possibly a torsional motion of the donor end group. On the other hand, relaxation of the ICT state leads to cis-trans isomerization or crossing to the triplet state, depending on the length of the polyenic chain. In dioxane, tetrahydrofuran, and triacetin, the ICT state of the shorter chains (n = 2, 3) relaxes to the isomer with a viscosity-dependent rate, while that of the longer ones (n = 4, 5) leads to the triplet state with a viscosity-independent rate, as expected. In acetonitrile, the ICT-state lifetime is generally much shorter. A change from photoisomerization to

  2. Photoinduced intramolecular charge transfer of sodium 4-(N,N-dimethylamino)benzenesulfonate

    Institute of Scientific and Technical Information of China (English)

    林丽榕; 江云宝

    2000-01-01

    A new dual fluorescent N,N-dimethylaniline derivative, sodium 4-(N,N-dimethylamino)-benzenesulfonate (SDMAS), is reported. In SDMAS, the electron acceptor is linked to the phenyl ring via a sulfur atom at the para-position of the electron donor. It was found that SDMAS emits dual fluorescence only in highly polar solvent water but not in organic solvents such as formamide, methanol and acetonitrile. In organic solvents only a single-band emission at ca.360 nm was observed in the short wavelength region. The dual fluorescence of SDMAS in water was found at 365 and 475 nm, respectively. Introduction of organic solvent such as ethanol, acetonitrile, and 1,4-dioxane into aqueous solution of SDMAS leads to blue-shift and quenching of the long-wavelength emission. Measurements of steady-state and picosecond time-resolved fluorescence indicate that the long wavelength fluorescence is emitted from a charge transfer (CT) state that is populated from the locally excited (LE) state, with the latter giving off the

  3. Spectroscopic probing of location and dynamics of an environment-sensitive intramolecular charge transfer probe within liposome membranes.

    Science.gov (United States)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-11-15

    The present work demonstrates the interaction of an intramolecular charge transfer (ICT) probe 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid methyl ester (DPDAME) with liposome membranes of dimyristoyl-L-α-phosphatidylcholine (DMPC) and dimyristoyl-L-α-phosphatidylglycerol (DMPG) studied by steady-state absorption, emission and time-resolved emission techniques. A huge hypsochromic shift together with remarkable enhancement of fluorescence quantum yield of the polarity sensitive ICT emission of DPDAME upon interaction with the lipids has been rationalized in terms of incorporation of the probe into hydrophobic interior of the lipids. Compelling evidences for penetration of the probe into the hydrocarbon interior of the lipids have been deduced from intertwining different experimental results e.g., micropolarity in the immediate vicinity of the probe in lipid environments, steady-state anisotropy, red-edge excitation shift (REES), fluorescence quenching experiments and time-resolved measurements. The rotational relaxation dynamics study of the membrane-bound probe unveils the impartation of high degree of motional rigidity. Wavelength-selective emission behaviour paves way for monitoring of solvent-relaxation in the membranes. Overall, the ICT probe DPDAME displays its commendable sensitivity in deciphering the microheterogeneous environments of liposomal membranes of DMPC and DMPG and promises a new membrane-polarity sensitizing probe.

  4. Theoretical investigation on dual fluorescence and intramolecular charge transfer of 5-phenyl-5H-phenanthridin-6-one

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Quantum-chemical calculations with the time-dependent density function theory (TDDFT) have been carried out for 5-phenyl-5H-phenanthridin-6-one (PP). For this molecule, dual fluorescence and in- tramolecular charge transfer (ICT) were experimentally observed. The B3LYP functional with 6-311+G (2d, p) basis set has been used for the theoretical calculations. The solvent effects have been described within the polarizable continuum model (PCM). Ground-state geometry optimization reveals that the phenyl/phenanthridinone dihedral angle equals 90.0°, a nearly perpendicular structure. Vertical ab- sorption energy calculations characterize the lower singlet excited states both in gas phase and in solvents. It can be found that the lower excited states have locally excitation (LE) feature. Through constructing the potential energy curves of both isolated and solvated systems describing the LE→ICT reaction and fluorescence emission, we obtain the enthalpy difference ΔH between the LE and ICT states, energy barrier Ea, and energy difference δEFC, indicating the structural changes taking place during the ICT reaction. Potential curve and calculated emission energies for both isolated and sol- vated systems show a dual fluorescence phenomenon, consisting of a LE emission band and a red-shifted ICT band. Our calculations including the solvent effects indicate that the dual fluorescence is brought about by the change in molecular structure connected with the planarization of the twisted N-phenylphenanthridinone during the ICT reaction.

  5. Excited state intramolecular charge transfer reaction in non-aqueous reverse micelles: Effects of solvent confinement and electrolyte concentration

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Harun Al Rasid Gazi; Biswajit Guchhait; Ranjit Biswas

    2012-03-01

    Steady state and time resolved fluorescence emission spectroscopy have been employed to investigate the effects of solvent confinement and electrolyte concentration on excited state intramolecular charge transfer (ICT) reaction in 4-(1-pyrrolidinyl) benzonitrile (P5C), 4-(1-piperidinyl) benzonitrile (P6C), and 4-(1-morpholenyl) benzonitrile (M6C) in AOT/n-heptane/acetonitrile and AOT/n-heptane/methanol reverse micelles. Dramatic confinement effects have been revealed via a huge reduction (factor ranging between 100 and 20) over bulk values of both equilibrium and reaction rate constants. A strong dependence on the size of the confinement () of these quantities has also been observed. dependent average static dielectric constant, viscosity and solvation time-scale have been determined. Estimated dielectric constants for confined methanol and acetonitrile show a decrease from the respective bulk values by a factor of 3-5 and viscosities increased by a factor of 2 at the highest considered. Addition of electrolyte at = 5 for acetonitrile is found to produce a linear increase of confined solvent viscosity but leads to a non-monotonic electrolyte concentration dependence of average solvation time. Reaction rate constant is found to decrease linearly with electrolyte concentration for P5C and P6C but non-monotonically for M6C, the highest decrease for all the molecules being ∼ 20% over the value in the absence of added electrolyte in the solvent pool. The observed huge reduction in reaction rate constant is attributed to the effects of decreased solution polarity, enhanced viscosity and slowed-down solvent reorganization of the solvent under confinement in these non-aqueous reverse micelles.

  6. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline

    DEFF Research Database (Denmark)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt Valentin;

    2013-01-01

    for charge{transfer character, we furthermore conrm that the di¿erence between excitation energies calculated with TDDFT and with the Tamm-Danco¿ approximation (TDA) to TDDFT is indeed correlated with the charge-transfer character of a given electronic transition both in vacuo and in solution...

  7. Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product

    Science.gov (United States)

    Zhang, Song; Sun, Simei; Zhou, Miaomiao; Wang, Lian; Zhang, Bing

    2017-01-01

    We investigated the mechanism of intramolecular charge transfer and the following radiationless dynamics of the excited states of 1-aminoanthraquinone using steady state and time-resolved absorption spectroscopy combined with quantum chemical calculations. Following photoexcitation with 460 nm, conformational relaxation via twisting of the amino group, charge transfer and the intersystem crossing (ISC) processes have been established to be the major relaxation pathways responsible for the ultrafast nonradiative of the excited S1 state. Intramolecular proton transfer, which could be induced by intramolecular hydrogen bonding is inspected and excluded. Time-dependent density functional theory (TDDFT) calculations reveal the change of the dipole moments of the S0 and S1 states along the twisted coordinate of the amino group, indicating the mechanism of twisted intra-molecular charge transfer (TICT). The timescale of TICT is measured to be 5 ps due to the conformational relaxation and a barrier on the S1 potential surface. The ISC from the S1 state to the triplet manifold is a main deactivation pathway with the decay time of 28 ps. Our results observed here have yield a physically intuitive and complete picture of the photoinduced charge transfer and radiationless dynamics in anthraquinone pharmaceutial products. PMID:28233835

  8. Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester: A fluorescence study in condensedphase and jet-cooled molecular beams

    Indian Academy of Sciences (India)

    Amrita Chakraborty; Samiran Kar; D N Nath; Nikhil Guchhait

    2007-03-01

    Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester (AMBME) have been investigated spectroscopically. AMBME, with its weak charge donor primary amino group, shows dual emission in polar solvents. Absorption and emission measurements in the condensed phase support the premise that the short wavelength emission band corresponds to local emission and the long wavelength emission band to the charge transfer emission. Laser-induced fluorescence excitation spectra show the presence of two low-energy conformers in jet-cooled molecular beams. Theoretical calculations using density functional theory help to determine structure, vibrational modes, potential energy surface, transition energy and oscillator strength for correlating experimental findings with theoretical results.

  9. Intramolecular charge transfer with crystal violet lactone in acetonitrile as a function of temperature: reaction is not solvent-controlled.

    Science.gov (United States)

    Druzhinin, Sergey I; Demeter, Attila; Zachariasse, Klaas A

    2013-08-22

    Intramolecular charge transfer (ICT) with crystal violet lactone (CVL) in the excited singlet state takes place in solvents more polar than n-hexane, such as ethyl acetate, tetrahydrofuran, and acetonitrile (MeCN). In these solvents, the fluorescence spectrum of CVL consists of two emission bands, from a locally excited (LE) and an ICT state. The dominant deactivation channel of the lowest excited singlet state is internal conversion, as the quantum yields of fluorescence (0.007) and intersystem crossing (0.015) in MeCN at 25 °C are very small. CVL is a weakly coupled electron donor/acceptor (D/A) molecule, similar to an exciplex (1)(A(-)D(+)). A solvatochromic treatment of the LE and ICT emission maxima results in the dipole moments μe(LE) = 17 D and μe(ICT) = 33 D, much larger than those previously reported. This discrepancy is attributed to different Onsager radii and spectral fluorimeter calibration. The LE and ICT fluorescence decays of CVL in MeCN are double exponential. As determined by global analysis, the LE and ICT decays at 25 °C have the times τ2 = 9.2 ps and τ1 = 1180 ps, with an amplitude ratio of 35.3 for LE. From these parameters, the rate constants ka = 106 × 10(9) s(-1) and kd = 3.0 × 10(9) s(-1) of the forward and backward reaction in the LE ⇄ ICT equilibrium are calculated, resulting in a free enthalpy difference ΔG of -8.9 kJ/mol. The amplitude ratio of the ICT fluorescence decay equals -1.0, which signifies that the ICT state is not prepared by light absorption in the S0 ground state, but originates exclusively from the directly excited LE precursor. From the temperature dependence of the fluorescence decays of CVL in MeCN (-45 to 75 °C), activation energies E(a) = 3.9 kJ/mol (LE → ICT) and E(d) = 23.6 kJ/mol (ICT → LE) are obtained, giving an enthalpy difference ΔH (= E(a) - E(d)) of -19.7 kJ/mol, and an entropy difference ΔS = -35.5 J mol(-1) K(-1). These data show that the ICT reaction of CVL in MeCN is not barrierless

  10. Evidence of coupled photoinduced proton transfer and intramolecular charge transfer reaction in para-N,N-dimethylamino orthohydroxy benzaldehyde: Spectroscopic and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Mahanta, Subrata; Singh, Rupashree Balia; Kar, Samiran [Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009 (India); Guchhait, Nikhil [Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009 (India)], E-mail: nguchhait@yahoo.com

    2008-12-10

    Steady state and time resolved fluorescence spectroscopy and quantum chemical calculations have been used to study excited state properties of para-N,N-dimethylamino orthohydroxy benzaldehyde (PDOHBA). Spectral characteristics of PDOHBA support the existence of both donor-acceptor charge transfer (CT) and proton transfer (PT) reaction in the excited state. Structural calculations at Hartree Fock and Density Functional Theory (DFT) levels and theoretical potential energy surfaces (PESs) along the proton transfer and donor twisting coordinates using DFT and Time Dependent Density Functional Theory point towards the possibility of barrierless PT and CT reaction in the first excited state of PDOHBA.

  11. Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes

    Energy Technology Data Exchange (ETDEWEB)

    Sytnik, A.; Gormin, D.; Kasha, M. (Florida State Univ., Tallahassee, FL (United States))

    1994-12-06

    A comparative study is presented of competitive fluorescences of three flavonols, 3-hydroxyflavone, 3,3[prime],4[prime],7-tetrahydroxyflavone (fisetin), and 4[prime]-diethylamino-3-hydroxyflavone (DHF). The normal fluorescence S[sub 1] [yields] S[sub 0] (400-nm region) is largely replaced by the proton-transfer tautomer fluorescence S[prime][sub 1] [yields] S[prime][sub 0] in the 550-nm region for all three of the flavonols in aprotic solvents at room temperature. For DHF in polar solvents the normal fluorescence becomes a charge-transfer fluorescence (460-500 nm) which competes strongly with the still dominant proton-transfer fluorescence (at 570 nm). In protic solvents, and at 77 K, the interference with intramolecular hydrogen bonding gives rise to greatly enhanced normal fluorescence, lowering the quantum yield of proton-transfer fluorescence. The utility of DHF as a discriminating fluorescence probe for protein binding sites is suggested by the strong dependence of the charge-transfer fluorescence on polarity of the environment and by various static and dynamic parameters of the charge-transfer and proton-transfer fluorescence which can be determined. 49 refs., 6 figs., 1 tab.

  12. Synthesis, spectral behaviour and photophysics of donor-acceptor kind of chalcones: Excited state intramolecular charge transfer and fluorescence quenching studies

    Science.gov (United States)

    Pannipara, Mehboobali; Asiri, Abdullah M.; Alamry, Khalid A.; Arshad, Muhammad N.; El-Daly, Samy A.

    2015-02-01

    The spectral and photophysical properties of two chalcones containing electron donating and accepting groups with intramolecular charge transfer characteristics were synthesized and characterized by 1H NMR, 13C NMR and X-ray crystallography. Both compounds show very strong solvent polarity dependent changes in their photophysical characteristics, namely, remarkable red shift in the emission spectra with increasing solvent polarity, large change in Stokes shift, significant reduction in the fluorescence quantum yield; indicating that the fluorescence states of these compounds are of intramolecular charge transfer (ICT) character. The solvent effect on the photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of both compounds have been investigated comprehensively. For both dyes, Lippert-Mataga and Reichardt's correlations were used to estimate the difference between the excited and ground state dipole moments (Δμ). The interactions of dyes with colloidal silver nanoparticles (Ag NPs) were also studied in ethanol using steady state fluorescence quenching measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of dyes by Ag NPs.

  13. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    Science.gov (United States)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  14. Dynamics of ultrafast intramolecular charge transfer with 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in n-hexane and acetonitrile.

    Science.gov (United States)

    Druzhinin, Sergey I; Kovalenko, Sergey A; Senyushkina, Tamara; Zachariasse, Klaas A

    2007-12-20

    The intramolecular charge transfer (ICT) reaction of 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in n-hexane and acetonitrile (MeCN) is investigated by picosecond fluorescence experiments as a function of temperature and by femtosecond transient absorption measurements at room temperature. NTC6 in n-hexane is dual fluorescent from a locally excited (LE) and an ICT state, with a quantum yield ratio Phi'(ICT)/Phi(LE) of 0.35 at +25 degrees C and 0.67 at -95 degrees C, whereas in MeCN mainly an ICT emission is observed. From the temperature dependence of Phi'(ICT)/Phi(LE) for NTC6 in n-hexane, an LE/ICT enthalpy difference DeltaH of -2.4 kJ/mol is determined. For comparison, 1-isopropyl-6-cyano-1,2,3,4-tetrahydroquinoline (NIC6) is also investigated. This molecule does not undergo an ICT reaction, because of its larger energy gap DeltaE(S1,S2). From the molar absorption coefficient epsilonmax of NTC6 as compared with other aminobenzonitriles, a ground-state amino twist angle theta of approximately 22 degrees is deduced. The increase of epsilonmax between n-hexane and MeCN indicates that theta decreases when the solvent polarity becomes larger. Whereas single-exponential LE fluorescence decays are obtained for NIC6 in n-hexane and MeCN, the LE and ICT decays of NTC6 in these solvents are double exponential. For NTC6 in n-hexane at -95 degrees C, with a shortest decay time of 20 ps, the forward (ka=2.5x10(10) s(-1)) and backward (kd=2.7x10(10) s(-1)) rate constants for the LEICT reaction are determined from the time-resolved LE and ICT fluorescence spectra. For NTC6 in n-hexane and MeCN, the excited-state absorption (ESA) spectrum at 200 fs after excitation is similar to the LE(ESA) spectra of NIC6 and 4-(dimethylamino)benzonitrile (DMABN), showing that LE is the initially excited state for NTC6. These results indicate that the LE states of NTC6, NIC6, and DMABN have a comparable molecular structure. The ICT(ESA) spectrum of NTC6 in n-hexane and Me

  15. Cyanide anion sensing mechanism of 1,3,5,7-tetratolyl aza-BODIPY: Intramolecular charge transfer and partial configuration change

    Science.gov (United States)

    Bhat, Haamid R.; Jha, Prakash C.

    2017-02-01

    The cyanide anion sensing mechanism of 1,3,5,7-tetratolyl aza-BODIPY (1) has been rigorously investigated using density functional theory and time dependent-density functional theory methods. Mulliken charge distribution and Natural Bond Orbital analysis reveals that cyanide addition may occur at both electrophilic centers with equal probability. The molecular orbital analysis reveals that first excited state (S1) of 1 is a local excited state with π-π∗ transition, whereas for 2 (the cyano form of 1), S1 , a charge-separation state, is found to be responsible for the intramolecular charge transfer (ICT) process which in conjunction with partial configuration change induces fluorescence stimulation in 2.

  16. Response of an environment-sensitive intramolecular charge transfer probe towards solubilization of liposome membranes by a non-ionic detergent: Association and dissociation kinetics

    Science.gov (United States)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2012-10-01

    The present report describes an endeavor to follow the solubilization of DMPC and DMPG liposome membranes by a non-ionic detergent Triton X-100 on the lexicon of environment-sensitive intramolecular charge transfer (ICT) photophysics of an extrinsic molecular probe 5-(4-dimethylamino-phenyl)-penta-2, 4-dienoic acid methyl ester (DPDAME). The prospective applicability of the probe to function as a reporter for detergent-sequestered solubilization of liposome membranes is argued on the basis of comparison of the spectral properties of the probe in various environments. Fluorescence anisotropy study delineates the degree of motional restriction imposed on the probe in different microheterogeneous assemblies. The kinetics of association of the probe with the liposome membranes and the dissociation kinetics of TX-100-sequestered solubilization process of the liposomes have been monitored by the stopped-flow fluorescence technique and the results are rationalized in relevance to fluorescence anisotropy study.

  17. Morphological transition of the host-structure influences solvent-relaxation: A wavelength-selective fluorescence exploration through environment-sensitive intramolecular charge transfer photophysics

    Science.gov (United States)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-10-01

    Here, we report the modulation of photo-induced intramolecular charge transfer (ICT) photophysics of N,N-dimethylaminonaphthyl-acrylo-nitrile (DMANAN) associated with sphere-to-rod structural transition of SDS micelles induced by increasing ionic strength of the medium. Emphasis is rendered on the exploration of solvent-relaxation associated with this transition on the basis of wavelength-selective fluorescence technique which includes monitoring of red-edge excitation shift (REES) and excitation/emission anisotropy profiles. Based on micropolarity determination and organization of solvent water around the probe microenvironment we argue that the present results advocate for rod-shaped micelles to be a better mimic for membrane bilayers than spherical micelles.

  18. Two states are not enough: quantitative evaluation of the valence-bond intramolecular charge-transfer model and its use in predicting bond length alternation effects.

    Science.gov (United States)

    Jarowski, Peter D; Mo, Yirong

    2014-12-15

    The structural weights of the canonical resonance contributors used in the Two-state valence-bond charge-transfer model, neutral (N, R1) and ionic (VB-CT, R2), to the ground states and excited states of a series of linear dipolar intramolecular charge-transfer chromophores containing a buta-1,3-dien-1,4-diyl bridge have been computed by using the block-localized wavefunction (BLW) method at the B3LYP/6-311+G(d) level to provide the first quantitative assessment of this simple model. Ground- and excited-state analysis reveals surprisingly low ground-state structural weights for the VB-CT resonance form using either this Two-state model or an expanded Ten-state model. The VB-CT state is found to be more prominent in the excited state. Individual resonance forms were structurally optimized to understand the origins of the bond length alternation (BLA) of the bridging unit. Using a Wheland energy-based weighting scheme, the weighted average of the optimized bond lengths with the Two-state model was unable to reproduce the BLA features with values 0.04 to 0.02 Å too large compared to the fully delocalized (FD) structure (BLW: ca. -0.13 to -0.07 Å, FD: ca. -0.09 to -0.05 Å). Instead, an expanded Ten-state model fit the BLA values of the FD structure to within only 0.001 Å of FD. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Raman and theoretical study of the solvent effects on the sizable intramolecular charge transfer in the push-pull 5-(dimethylamino)-5'-nitro-2,2'-bithiophene.

    Science.gov (United States)

    Ortí, Enrique; Viruela, Pedro M; Viruela, Rafael; Effenberger, Franz; Hernandez, Víctor; López Navarrete, Juan T

    2005-10-06

    In this paper, we analyze the degree of intramolecular charge transfer in a push-pull pi-conjugated system, 5-(dimethylamino)-5'-nitro-2,2'-bithiophene, from changes in frequencies and relative intensities of its strongest Raman scatterings in a bunch of solvents with different polarities. Density functional theory (DFT) was used as a support of the experimental study. Solvent effects on the molecular and electronic structures and on the vibrational properties were estimated by performing B3LYP/6-31G calculations within the framework of the polarized continuum model (PCM) developed by Tomasi. Calculations reveal that the molecule is highly polarized in the ground state and behaves as a very efficient photoinduced push-pull system. The polarization of the molecule strongly increases with solvent polarity and determines that the profile of the Raman spectra greatly changes from one solvent to another and in going to the solid. The strongest Raman scattering associated with the nu(sym)(NO(2)) stretching undergoes a downshift of 48 cm(-1) in passing from CCl(4) to the solid. DFT calculations provide a comprehensive interpretation of the evolution of the Raman spectra with solvent polarity.

  20. Twisted intramolecular charge transfer states : rotationally resolved fluorescence excitation spectra of 4,4 '-dimethylaminobenzonitrile in a molecular beam

    NARCIS (Netherlands)

    Nikolaev, A.E.; Myszkiewicz, G.; Berden, G.; Meerts, W.L.; Pfanstiel, J.F.; Pratt, D.W.

    2005-01-01

    We report the observation at high resolution of seven vibronic bands that appear within similar to200 cm(-1) of the electronic origin in the S-1-S-0 fluorescence excitation spectrum of 4,4(')-dimethylaminobenzonitrile (DMABN) in a molecular beam. Surprisingly, each band is found to be split into two

  1. Characterization by time-resolved UV/Vis and infrared absorption spectroscopy of an intramolecular charge-transfer state in an organic electron-donor-bridge-acceptor system

    NARCIS (Netherlands)

    Hviid, L.; Verhoeven, J.W.; Brouwer, A.M.; Paddon-Row, M.N.; Yang, J.

    2004-01-01

    A long-lived intramolecular charge-separated state in an electron-donor-acceptor molecule is characterized by time-resolved visible and infrared absorption spectroscopy. Bands that can be assigned to the negatively charged acceptor chromophore can be clearly observed in the time-resolved IR

  2. d-Orbital Effects on Stereochemical Non-Rigidity: Twisted Ti IV Intramolecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Anna V.; Firman, Timothy K.; Hay, Benjamin P.; Raymond, Kenneth N.

    2006-07-26

    The isomerization dynamics of tris-catecholate complexes have been investigated by variable temperature NMR methods, demonstrating that the intramolecular racemization of ? and ? enantiomers of d0 TiIV is facile and faster than that of d10 GaIII and GeIV analogs. Activation parameters for the racemization of K2[Ti23] (H22 = 2,3-dihydroxy-N,N?-diisopropylterephthalamide) were determined from lineshape analysis of 1H NMR spectra (methanol-d4: ?H? = 47(1) kJ/mol; ?S? = -34(4) J/molK; ?G?298 = 57(3) kJ/mol; DMF-d7: ?H? = 55(1) kJ/mol; ?S? = -16(4) J/molK; ?G?298 = 59(3) kJ/mol; D2O (pD* = 8.6, 20% MeOD): ?H? = 48(3) kJ/mol; ?S? = -28(10) J/molK; ?G?298 = 56(3) kJ/mol). The study of K2[Ti43] (H24 = 2,3-dihydroxy-N-tert-butyl-N?-benzylterephthalamide) reveals two distinct isomerization processes: faster racemization of mer-[Ti43]2- by way of a Bailar twist mechanism (D3h transition state) (Tc ? 242 K, methanol-d4), and a slower mer/fac-[Ti43]2- isomerization by way of a R?y-Dutt mechanism (C2v transition state) (Tc ? 281 K, methanol-d4). The solution behavior of the TiIV complexes mirrors that reported previously for analogous GaIII complexes, while that of analogous GeIV complexes was too inert to be detected by 1H NMR up to 400 K. These experimental findings are augmented by DFT calculations of the ML3 grounds states and Bailar and R?y-Dutt transition states, which correctly predict the relative kinetic barriers of the three metal ions, in addition to faithfully reproducing the ground state structures. Orbital calculations support the conclusion that participation of the TiIV d0 orbitals in ligand bonding contributes to the greater stabilization of the prismatic TiIV transition states. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy.

  3. Theoretical investigation of the charge-transfer properties in different meso-linked zinc porphyrins for highly efficient dye-sensitized solar cells.

    Science.gov (United States)

    Namuangruk, Supawadee; Sirithip, Kanokkorn; Rattanatwan, Rattanawelee; Keawin, Tinnagon; Kungwan, Nawee; Sudyodsuk, Taweesak; Promarak, Vinich; Surakhot, Yaowarat; Jungsuttiwong, Siriporn

    2014-06-28

    The charge transfer effect of different meso-substituted linkages on porphyrin analogue 1 (A1, B1 and C1) was theoretically investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The calculated geometry parameters and natural bond orbital analysis reveal that the twisted conformation between porphyrin macrocycle and meso-substituted linkages leads to blocking of the conjugation of the conjugated backbone, and the frontier molecular orbital plot shows that the intramolecular charge transfer of A1, B1 and C1 hardly takes place. In an attempt to improve the photoinduced intramolecular charge transfer ability of the meso-linked zinc porphyrin sensitizer, a strong electron-withdrawing group (CN) was introduced into the anchoring group of analogue 1 forming analogue 2 (A2, B2 and C2). The density difference plot of A2, B2 and C2 shows that the charge transfer properties dramatically improved. The electron injection process has been performed using TDDFT; the direct charge-transfer transition in the A2-(TiO2)38 interacting system takes place; our results strongly indicated that introducing electron-withdrawing groups into the acceptor part of porphyrin dyes can fine-tune the effective conjugation length of the π-spacer and improve intramolecular charge transfer properties, consequently inducing the electron injection process from the anchoring group of the porphyrin dye to the (TiO2)38 surface which may improve the conversion efficiency of the DSSCs. Our calculated results can provide valuable information and a promising outlook for computation-aided sensitizer design with anticipated good properties in further experimental synthesis.

  4. Evidence of Ultrafast Charge Transfer Driven by Coherent Lattice Vibrations.

    Science.gov (United States)

    Rury, Aaron S; Sorenson, Shayne A; Dawlaty, Jahan M

    2017-01-05

    We report evidence that intermolecular vibrations coherently drive charge transfer between the sites of a material on ultrafast time scales. Following a nonresonant stimulated Raman pump pulse that excites the organic material quinhydrone, we observe the initial appearance of oscillations due to intermolecular lattice vibrations and then the delayed appearance of a higher-frequency oscillation that we assign to a totally symmetric intramolecular vibration. We use the coherent dynamics of the transient reflectivity signal to propose that coherence transfer drives excitation of this intramolecular vibration. Furthermore, we conclude that the dynamical frequency shift of the intramolecular vibration reports the formation of a quasi-stable charge-separated state on ultrafast time scales. We calculate model dynamics using the extended Hubbard Hamiltonian to explain coherence transfer due to vibrationally driven charge transfer. These results demonstrate that the coherent excitation of low-frequency vibrations can drive charge transfer in the solid state and control material properties.

  5. Einfluß der Reaktionsenthalpie auf die Bildung von "Twisted Intramolecular Charge Transfer" (TICT) - Anregungszustände in unpolaren Lösungsmitteln: p-substituierte N,N-Dimethylaniline / The Influence of Reaction enthalpy on the Formation of "Twisted Intramolecular Charge Transfer" (TICT)-States in Inert Solvents: p-Substituted N,N-Dimethylanilines

    Science.gov (United States)

    Wermuth, Günter

    1983-06-01

    In saturated hydrocarbons dual fluorescence appears both in p-N,N-Dimethylaminobenzonitrile (DMABN) and p-N,N-Dimethylaminoethylbenzoate (DMABEE). The temperaturedependence of the fluorescence quantum yield suggests that in DMABEE E(B*) ≈ E(TICT) and in DMABN E(B*)

  6. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  7. Charge transfer to a semi-esterified bifunctional phenol

    Energy Technology Data Exchange (ETDEWEB)

    Brede, O.; Hermann, R.; Orthner, H. [Leipzig Univ. (Germany)

    1996-03-01

    The charge transfer from solvent radical cations of n-butyl chloride and cyclohexane to 2-butyl-6(3`-t-butyl-2`-hydroxy-5`-methylbenzyl)-4-methyl-phenylac rylate (GM) yields in the first step phenoxyl radicals as well as acrylate radical cations of this semi-acrylated bifunctional phenol. Subsequently an intramolecular charge transfer from the acrylate radical cation to the phenol group takes place. Because of the instability of phenol radical cations, under our experimental conditions (nanosecond pulse radiolysis, non-polar solvents, room temperature) phenoxyl radicals are the only observable products of phenol ionization. (author).

  8. A Valence-Bond Nonequilibrium Solvation Model for a Twisting Cyanine Dye

    CERN Document Server

    McConnell, Sean; Olsen, Seth

    2014-01-01

    We study a two-state valence-bond electronic Hamiltonian model of non-equilibrium solvation during the excited-state twisting reaction of monomethine cyanines. These dyes are of interest because of the strong environment-dependent enhancement of their fluorescence quantum yield that results from suppression of competing non-radiative decay via twisted internal charge-transfer (TICT) states. For monomethine cyanines, where the ground state is a superposition of structures with different bond and charge localization, there are two twisting pathways with different charge localization in the excited state. The Hamiltonian designed to be as simple as possible consistent with a few well-enumerated assumptions. It is defined by three parameters and is a function of two $\\pi$-bond twisting angle coordinates and a single solvation coordinate. For parameters corresponding to symmetric monomethines, there are two low-energy twisting channels on the excited-state surface that lead to a manifold of twisted intramolecular ...

  9. Low-temperature reflectance spectrum of the benzidine-TCNQ charge-transfer complex

    Science.gov (United States)

    Yakushi, Kyuya; Kuroda, Haruo

    1984-10-01

    Reflectance spectra of a single crystal of the charge-transfer complex between benzidine and 7,7,8,8-tetracyano- p-quino-dimethane (TCNQ) were measured at 30 K. The vibrational structure of the first charge-transfer band was found to be associated mainly with the intramolecular vibration of TCNQ. From its oscillator strength, the degree of charge transfer was estimated to be 0.28 at room temperature and 0.43 at 30 K. It is concluded that the charge-transfer exciton in this crystal is of localized nature.

  10. Conformational control of benzophenone-sensitized charge transfer in dinucleotides.

    Science.gov (United States)

    Merz, Thomas; Wenninger, Matthias; Weinberger, Michael; Riedle, Eberhard; Wagenknecht, Hans-Achim; Schütz, Martin

    2013-11-14

    Charge transfer in DNA cannot be understood without addressing the complex conformational flexibility, which occurs on a wide range of timescales. In order to reduce this complexity four dinucleotide models 1X consisting of benzophenone linked by a phosphodiester to one of the natural nucleosides X = A, G, T, C were studied in water and methanol. The theoretical work focuses on the dynamics and electronic structure of 1G. Predominant conformations in the two solvents were obtained by molecular dynamics simulations. 1G in MeOH adopts mainly an open geometry with a distance of 12–16 Å between the two aromatic parts. In H2O the two parts of 1G form primarily a stacked conformation yielding a distance of 5–6 Å. The low-lying excited states were investigated by electronic structure theory in a QM/MM environment for representative snapshots of the trajectories. Photo-induced intramolecular charge transfer in the S1 state occurs exclusively in the stacked conformation. Ultrafast transient absorption spectroscopy with 1X reveals fast charge transfer from S1 in both solvents with varying yields. Significant charge transfer from the T1 state is only found for the nucleobases with the lowest oxidation potential: in H2O, charge transfer occurs with 3.2 × 10(9) s(-1) for 1A and 6.0 × 10(9) s(-1) for 1G. The reorganization energy remains nearly unchanged going from MeOH to the more polar H2O. The electronic coupling is rather low even for the stacked conformation with H(AB) = 3 meV and explains the moderate charge transfer rates. The solvent controls the conformational distribution and therefore gates the charge transfer due to differences in distance and stacking.

  11. Charge-Transfer Versus Charge-Transfer-Like Excitations Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Barry; Sun, Haitao; Govind, Niranjan; Kowalski, Karol; Autschbach, Jochen

    2015-07-14

    Criteria to assess charge-transfer (CT) and `CT-like' character of electronic excitations are examined. Time-dependent density functional theory (TDDFT) with non-hybrid, hybrid, and tuned long-range corrected (LC) functionals is compared with with coupled-cluster (CC) benchmarks. The test set includes an organic CT complex, two `push-pull' donor-acceptor chromophores, a cyanine dye, and several polycyclic aromatic hydrocarbons. Proper CT is easily identified. Excitations with significant density changes upon excitation within regions of close spatial proximity can also be diagnosed. For such excitations, the use of LC functionals in TDDFT sometimes leads to dramatic improvements of the singlet energies, similar to proper CT, which has led to the concept of `CT-like' excitations. However, `CT-like' excitations are not like charge transfer, and the improvements are not obtained for the right reasons. The triplet excitation energies are underestimated for all systems, often severely. For the `CT-like' candidates, when going from a non-hybrid to an LC functional the error in the singlet-triplet (S/T) separation changes from negative to positive, providing error compensation. For the cyanine, the S/T separation is too large with all functionals, leading to the best error compensation for non-hybrid functionals.

  12. Charge-transfer with graphene and nanotubes

    Directory of Open Access Journals (Sweden)

    C.N.R. Rao

    2010-09-01

    Full Text Available Charge-transfer between electron–donor and –acceptor molecules is a widely studied subject of great chemical interest. Some of the charge-transfer compounds in solid state exhibit novel electronic properties. In the last two to three years, occurrence of molecular charge-transfer involving single-walled carbon nanotubes (SWNTs and graphene has been demonstrated. This interaction gives rise to significant changes in the electronic properties of these nanocarbons. We examine charge-transfer phenomenon in graphene and SWNTs in this article in view of its potential utility in device applications.

  13. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    Science.gov (United States)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  14. Backward Charge Transfer in Conjugated Polymers

    Institute of Scientific and Technical Information of China (English)

    CHENG Meng-Xing; LI Guang-Qi; Thomas F. George; SUN Xin

    2005-01-01

    It has been known that the static polarizability of a polymer chain with a biexciton is negative. In order to understand this peculiar fact, this paper studies the dynamical process of the charge transfer in the polymer chain induced by an external electric field E during forming the biexciton. The time dependence of the charge distribution in the chain reveals that the charge transfer is backward: the positive charge shifts in the opposite direction of the external electric field. Such a backward charge transfer (BCT) produces an opposite dipole, which makes the polarization negative. The effect of electron interaction on the BCT is illustrated.

  15. Charge Transfer Based Colorimetric Detection of Silver Ion

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Choul; Kim, Kwang Seob; Choi, Soon Kyu; Oh, Jinho; Lee, Jae Wook [Dong-A Univ., Busan (Korea, Republic of)

    2014-05-15

    We have demonstrated the colorimetric chemosensor for detection of Ag{sup +} via formation of nanoparticles which is based on the intramolecular CT interaction between the electron-rich (2,6-dialkoxynaphthalene; Np) moiety and the electron-deficient (methyl viologen; MV{sup 2+}) moiety of a single sensor molecule. Under irradiation of light, Ag{sup +} was reduced to very small silver nanoparticle by CT interaction in the presence of OEGs as flexible recognition moiety of Ag{sup +} and stabilizer for Ag nanoparticles, thus Ag nanoparticles resulted to reddish brown in the color change of sensor solution, gradually. Therefore, the charge-transfer interaction between an electron-deficient and an electron-rich units existing at a sensor molecule can be regarded as a new and efficient method to construct various colorimetric chemosensors. Donor.acceptor interactions or charge transfer (CT) interactions are an important class of non-covalent interactions and have been widely exploited in self-assembling systems. Beyond molecular chemistry, supramolecular chemistry aims at constituting highly complex, functional chemical systems from components held together by intermolecular forces. Chemosensors are the molecules of abiotic origin that bind selectively and reversibly with the analyte with concomitant change in one or more properties of the system. The recognition and signaling of ionic and neutral species of varying complexity is one of the most intensively studied areas of contemporary supramolecular chemistry.

  16. Imidazole as a parent π-conjugated backbone in charge-transfer chromophores

    Directory of Open Access Journals (Sweden)

    Jiří Kulhánek

    2012-01-01

    Full Text Available Research activities in the field of imidazole-derived push–pull systems featuring intramolecular charge transfer (ICT are reviewed. Design, synthetic pathways, linear and nonlinear optical properties, electrochemistry, structure–property relationships, and the prospective application of such D-π-A organic materials are described. This review focuses on Y-shaped imidazoles, bi- and diimidazoles, benzimidazoles, bis(benzimidazoles, imidazole-4,5-dicarbonitriles, and imidazole-derived chromophores chemically bound to a polymer chain.

  17. Opposites Attract: Organic Charge Transfer Salts

    Science.gov (United States)

    van de Wouw, Heidi L.; Chamorro, Juan; Quintero, Michael; Klausen, Rebekka S.

    2015-01-01

    A laboratory experiment is described that introduces second-year undergraduate organic chemistry students to organic electronic materials. The discovery of metallic conductivity in the charge transfer salt tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) is a landmark result in the history of organic electronics. The charge transfer…

  18. Valence-bond non-equilibrium solvation model for a twisting monomethine cyanine

    Science.gov (United States)

    McConnell, Sean; McKenzie, Ross H.; Olsen, Seth

    2015-02-01

    We propose and analyze a two-state valence-bond model of non-equilibrium solvation effects on the excited-state twisting reaction of monomethine cyanines. Suppression of this reaction is thought responsible for environment-dependent fluorescence yield enhancement in these dyes. Fluorescence is quenched because twisting is accompanied via the formation of dark twisted intramolecular charge-transfer (TICT) states. For monomethine cyanines, where the ground state is a superposition of structures with different bond and charge localizations, there are two possible twisting pathways with different charge localizations in the excited state. For parameters corresponding to symmetric monomethines, the model predicts two low-energy twisting channels on the excited-state surface, which leads to a manifold of TICT states. For typical monomethines, twisting on the excited state surface will occur with a small barrier or no barrier. Changes in the solvation configuration can differentially stabilize TICT states in channels corresponding to different bonds, and that the position of a conical intersection between adiabatic states moves in response to solvation to stabilize either one channel or the other. There is a conical intersection seam that grows along the bottom of the excited-state potential with increasing solvent polarity. For monomethine cyanines with modest-sized terminal groups in moderately polar solution, the bottom of the excited-state potential surface is completely spanned by a conical intersection seam.

  19. Charge-Transfer Emitting Triarylborane π-Electron Systems.

    Science.gov (United States)

    Li, Sheng-Yong; Sun, Zuo-Bang; Zhao, Cui-Hua

    2017-08-07

    Triarylboranes have attracted significantly increasing research interest as a remarkable class of photoelectronic π-electron materials. Because of the presence of vacant p orbital on the B center, the boryl group is a very unique electron acceptor that exhibits not only electron-accepting ability through p-π* conjugation but also high Lewis acidity to coordinate with Lewis bases and steric bulk arising from the aryl substituent on the B center to get enough kinetic stability. Thus, the incorporation of a trivalent B element into π-conjugated systems is an efficient strategy to tune the electronic and stereo structures and thus the photoelectronic properties of π-electron systems. When an electron-donating group, such as amino, is present, triarylboranes would likely display intramolecular charge-transfer transitions. These kinds of molecules are often highly emissive. In addition, the geometry of the molecules has a great impact on the emission properties. In this Forum Article, we herein describe our recent progress on the charge-transfer emitting triarylborane π-electron systems with novel geometries, which include the lateral boryl-substituted π-system with amino groups at the terminal positions, the o,o'-substituted biaryl π-system with boryl and amino groups at the o,o'-positions, a triarylborane-based BODIPY system, and a B,N/S-bridged ladder-type π-system. We mainly put the emphasis on the molecular design concept, structure-property relationships, intriguing emission properties and great applications of the corresponding triarylborane π-systems.

  20. Proton and charge transfer reactions dynamics of a hydroxyflavone derivative in a polar solvent and in a cyclodextrin nanocavity

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M.; Organero, J.A. [Departamento de Quimica Fisica, Seccion de Quimicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III, S.N., 45071 Toledo (Spain); Douhal, A. [Departamento de Quimica Fisica, Seccion de Quimicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III, S.N., 45071 Toledo (Spain)], E-mail: Abderrazzak.douhal@uclm.es

    2007-09-25

    In this work, we report on the observation of ultrafast intramolecular charge- and proton-transfer reactions of 4'-dimethylaminoflavonol (DMAF) in N,N-dimethyl formamide and in {gamma}-cyclodextrin ({gamma}-CD) solution. Upon femtosecond excitation an intramolecular charge transfer (ICT) reaction takes place to produce an ICT structure in {approx}200 fs. This structure may undergo a proton transfer reaction to generate a zwitterionic (Z) form in 2-3 ps, or relaxes in its potential energy well, to later equilibrate with that of Z in hundreds of ps. Addition of {gamma}-CD does not significantly affect the fast dynamics of the formed anion. The fs-emission signals of the parent molecule, 3-hydroxyflavone, indicate that the dimethyl amino group in DMAF enhances the rate constant of intermolecular proton-transfer and intramolecular charge-transfer reactions.

  1. Charge Transfer in Nanocrystalline Semiconductor Electrodes

    Directory of Open Access Journals (Sweden)

    M. Bouroushian

    2013-01-01

    Full Text Available Nanocrystalline electrodes in liquid junction devices possess a number of unique properties arising from their convoluted structure and the dimensions of their building units. The light-induced charge separation and transport in photoelectrochemical systems using nanocrystalline/nanoporous semiconductor electrodes is discussed here in connection with the basic principles of the (Schottky barrier theory. Recent models for charge transfer kinetics in normal and unipolar (dye-sensitized cells are reviewed, and novel concepts and materials are considered.

  2. Kinetic and Thermodynamic Studies of Charge-Transfer Complex ...

    African Journals Online (AJOL)

    Kinetic and Thermodynamic Studies of Charge-Transfer Complex Formation ... The activation parameters, i.e. activation energy, enthalpy, and entropy of ... KEYWORDS Charge-transfer complex, imipramine, DDQ, ionization potential, kinetic, ...

  3. Thermodynamic study of charge-transfer complex of iodine with ...

    African Journals Online (AJOL)

    Thermodynamic study of charge-transfer complex of iodine with HT18C6 in ... Bulletin of the Chemical Society of Ethiopia ... KEY WORDS: Charge-transfer complex, Iodine, HT18C6, Stability constant, Thermodynamic data, Spectrophotometry ...

  4. Combination of transient 2D-IR experiments and ab initio computations sheds light on the formation of the charge-transfer state in photoexcited carbonyl carotenoids.

    Science.gov (United States)

    Di Donato, Mariangela; Segado Centellas, Mireia; Lapini, Andrea; Lima, Manuela; Avila, Francisco; Santoro, Fabrizio; Cappelli, Chiara; Righini, Roberto

    2014-08-14

    The excited state dynamics of carbonyl carotenoids is very complex because of the coupling of single- and doubly excited states and the possible involvement of intramolecular charge-transfer (ICT) states. In this contribution we employ ultrafast infrared spectroscopy and theoretical computations to investigate the relaxation dynamics of trans-8'-apo-β-carotenal occurring on the picosecond time scale, after excitation in the S2 state. In a (slightly) polar solvent like chloroform, one-dimensional (T1D-IR) and two-dimensional (T2D-IR) transient infrared spectroscopy reveal spectral components with characteristic frequencies and lifetimes that are not observed in nonpolar solvents (cyclohexane). Combining experimental evidence with an analysis of CASPT2//CASSCF ground and excited state minima and energy profiles, complemented with TDDFT calculations in gas phase and in solvent, we propose a photochemical decay mechanism for this system where only the bright single-excited 1Bu(+) and the dark double-excited 2Ag(-) states are involved. Specifically, the initially populated 1Bu(+) relaxes toward 2Ag(-) in 200 fs. In a nonpolar solvent 2Ag(-) decays to the ground state (GS) in 25 ps. In polar solvents, distortions along twisting modes of the chain promote a repopulation of the 1Bu(+) state which then quickly relaxes to the GS (18 ps in chloroform). The 1Bu(+) state has a high electric dipole and is the main contributor to the charge-transfer state involved in the dynamics in polar solvents. The 2Ag(-) → 1Bu(+) population transfer is evidenced by a cross peak on the T2D-IR map revealing that the motions along the same stretching of the conjugated chain on the 2Ag(-) and 1Bu(+) states are coupled.

  5. Thermodynamic, kinetic and electronic structure aspects of a charge-transfer active bichromophoric organofullerene

    Indian Academy of Sciences (India)

    K Senthil Kumar; Archita Patnaik

    2013-03-01

    Our recent work on charge transfer in the electronically push-pull dimethylaminoazobenzene-fullerene C60 donor-bridge-acceptor dyad through orbital picture revealed charge displacement from the n(N=N) (non-bonding) and (N=N) type orbitals centred on the donor part to the purely fullerene centred LUMOs and (LUMO+n) orbitals, delocalized over the entire molecule. Consequently, this investigation centres around the kinetic and thermodynamic parameters involved in the solvent polarity dependent intramolecular photo-induced electron transfer processes in the dyad, indispensable for artificial photosynthetic systems. A quasi-reversible electron transfer pathway was elucidated with electrode-specific heterogeneous electron transfer rate constants.

  6. Computational Approach to Electron Charge Transfer Reactions

    DEFF Research Database (Denmark)

    Jónsson, Elvar Örn

    -molecular mechanics scheme, and tools to analyse statistical data and generate relative free energies and free energy surfaces. The methodology is applied to several charge transfer species and reactions in chemical environments - chemical in the sense that solvent, counter ions and substrate surfaces are taken...... in to account - which directly influence the reactants and resulting reaction through both physical and chemical interactions. All methods are though general and can be applied to different types of chemistry. First, the basis of the various theoretical tools is presented and applied to several test systems...... to show general (or expected) properties. Properties such as in the physical and (semi-)chemical interface between classical and quantum systems and the effects of molecular bond length constraints on the temperature during simulations. As a second step the methodology is applied to the symmetric...

  7. Resonant charge transfer at dielectric surfaces

    CERN Document Server

    Marbach, Johannes; Fehske, Holger

    2012-01-01

    We report on the theoretical description of secondary electron emission due to resonant charge transfer occurring during the collision of metastable nitrogen molecules with dielectric surfaces. The emission is described as a two step process consisting of electron capture to form an intermediate shape resonance and subsequent electron emission by decay of this ion, either due to its natural life time or its interaction with the surface. The electron capture is modeled using the Keldysh Green's function technique and the negative ion decay is described by a combination of the Keldysh technique and a rate equation approach. We find the resonant capture of electrons to be very efficient and the natural decay to be clearly dominating over the surface-induced decay. Secondary electron emission coefficients are calculated for aluminum oxide, magnesium oxide, silicon oxide, and diamond at several kinetic energies of the projectile. With the exception of magnesium oxide the coefficients turn out to be of the order of...

  8. Charge-transfer processes in semiconductor colloids

    Science.gov (United States)

    Kamat, Prashant V.; Gopidas, K. R.

    1990-04-01

    A picosecond transient absorption spectroscopy technique has been employed to probe the charge transfer processes in Ti02 semiconductor colloids. The trapping of electrons at the TiO surface (Ti4+ sitesY was characterized from the appearance of a broad absorption in the region of 550-750 nm following the 355-nm laser pulse excitation of Ti02 colloids. The lifetime of these trapped charge carriers increased upon incorporation of a hole scavenger in the colloidal semiconductor system. The mechanistic and kinetic details of the charge injection from excited CdS into a large bandgap semiconductor such as AgI and Ti02 have also been inves-' t i ga ted.

  9. Imidazole-Chloranil Charge Transfer Complex

    Institute of Scientific and Technical Information of China (English)

    Hai-long Wang; Tong-tong Lu; Tian-jing He; Dong-ming Chen

    2008-01-01

    UV-Vis absorption spectra of the molecular complex formed by imidazole (Im) and chloranil (CA) were measured in chloroform. The stoichiometry of the imidazole-chloranil (Im-CA) complex was determined as 1:1 by applying Benesi-Hildebrand's equation and Job's continuous variation method. Density function theory (DFT) and MP2 calculations were performed to study the structures and the binding energies of the Im-CA complex. The calculations located four conformations (denoted as S1-S4) for the Im-CA complex, two edge(lm)-to-face(CA) linked and two edgc(Im)-to-edge(CA) linked. It was found that the edgc-to-face conformers are more stable than the edge-to-edge ones. The bonding characteristics of these conformers were investigated with natural population analysis (NPA), topological analysis of electron density, and natural bond orbital (NBO) analysis. It was revealed that the edge-to-face conformers are charge-transfer (CT) complexes whereas the edge-to-edge conformers are the hydrogen bond complexes. For the most stable conformation of the Im-CA comp]ex (S1), the charge transfer interaction of the imidazole n(N15) lone pair orbital with the chloranil π*(C1=O7) orbital plays a crucial role in the Im-CA binding, and the binding is further strengthened by the 07… H20 hydrogen bond. The electronic excitation energies of the complex (S1) were calculated with time-dependent DFT (TDDFT), and the observed UV-Visiblc spectrum of the complex was analyzed based on the computed results.

  10. Nonradiative charge transfer in collisions of protons with rubidium atoms

    Institute of Scientific and Technical Information of China (English)

    Yan Ling-Ling; Qu Yi-Zhi; Liu Chun-Hua; Zhang Yu; Wang Jian-Guo; Buenker Robert J

    2012-01-01

    The nonradiative charge-transfer cross sections for protons colliding with Rb(5s) atoms are calculated by using the quantum-mechanical molecularorbital close-coupling method in an energy range of 10-3 keV 10 keV.The total and state-selective charge-transfer cross sections are in good agreement with the experimental data in the relatively low energy region.The importance of rotational coupling for chargetransfer process is stressed.Compared with the radiative charge-transfer process,nonradiative charge transfer is a dominant mechanism at energies above 15 eV.The resonance structures of state-selective charge-transfer cross sections arising from the competition among channels are analysed in detail.The radiative and nonradiative charge-transfer rate coefficients from low to high temperature are presented.

  11. Elementary charge-transfer processes in mesoscopic conductors

    NARCIS (Netherlands)

    Vanević, M.; Nazarov, Y.V.; Belzig, W.

    2008-01-01

    We determine charge-transfer statistics in a quantum conductor driven by a time-dependent voltage and identify the elementary transport processes. At zero temperature unidirectional and bidirectional single-charge transfers occur. The unidirectional processes involve electrons injected from the sour

  12. Charge-transfer spectra of tetravalent lanthanide ions in oxides

    NARCIS (Netherlands)

    Hoefdraad, H.E.

    1975-01-01

    The charge-transfer spectra of Ce4+, Pr4+ and Tb4+ in a number of oxides are reported. It is noted that the position of the first charge-transfer band is fixed for the metal ion in an oxygen coordination of VI, but varies in VIII coordination as a function of the host lattice. It is argued that this

  13. Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis [Columbia Univ., New York, NY (United States)

    2017-01-31

    This project focused on the special electronic and optical properties of graphene and adsorbed molecular species. Graphene makes an excellent substrate for current collection in nanostructured photovoltaic designs. Graphene is almost transparent, and can be used as a solar cell window. It also has no surface states, and thus current is efficiently transported over long distances. Progress in graphene synthesis indicates that there will soon be practical methods for making large pieces of graphene for devices. We now need to understand exactly what happens to both ground state and electronically excited molecules and Qdots near graphene, if we are going to use them to absorb light in a nano-structured photovoltaic device using graphene to collect photocurrent. We also need to understand how to shift the graphene Fermi level, to optimize the kinetics of electron transfer to graphene. And we need to learn how to convert local graphene areas to semiconductor structure, to make useful spatially patterned graphenes. In this final report, we describe how we addressed these goals. We explored the question of possible Surface Enhanced Raman spectroscopy from molecular Charge Transfer onto Graphene substrates. We observed strong hole doping of graphene by adsorbed halogens as indicated by the shift of the graphene G Raman band. In the case of iodine adsorption, we also observed the anionic species made by hole doping. At low frequency in the Raman spectrum, we saw quite intense lines from I3- and I5- , suggesting possible SERS. We reported on Fresnel calculations on this thin film system, which did not show any net electromagnetic field enhancement.

  14. Charge Transfer Fluctuations as a Signal for QGP

    OpenAIRE

    Shi, Lijun; Jeon, Sangyong

    2005-01-01

    In this work, the charge transfer fluctuation which was previously used for $pp$ collisions is proposed for relativistic heavy-ion collisions as a QGP probe. We propose the appearance of a local minimum at midrapidity for the charge transfer fluctuation as a signal for a QGP. Within a two-component neutral cluster model, we demonstrate that the charge transfer fluctuation can detect the presence of a QGP as well as the size of the QGP in the rapidity space. We also show that the forward-backw...

  15. Probing charge transfer in benzodifuran-C60 dumbbell-type electron donor-acceptor conjugates: ground- and excited-state assays.

    Science.gov (United States)

    Li, Hui; Schubert, Christina; Dral, Pavlo O; Costa, Rubén D; La Rosa, Andrea; Thüring, Jürg; Liu, Shi-Xia; Yi, Chenyi; Filippone, Salvatore; Martín, Nazario; Decurtins, Silvio; Clark, Timothy; Guldi, Dirk M

    2013-09-16

    Rigid electron donor-acceptor conjugates (1-3) that combine π-extended benzodifurans as electron donors and C60 molecules as electron acceptors with different linkers have been synthesized and investigated with respect to intramolecular charge-transfer events. Electrochemistry, fluorescence, and transient absorption measurements revealed tunable and structure-dependent charge-transfer processes in the ground and excited states. Our experimental findings are underpinned by density-functional theory calculations. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. spectrophotometric study of the charge transfer complexation of ...

    African Journals Online (AJOL)

    Preferred Customer

    The methods of analysis for carbocysteine and levodopa have been ... A Cary300 UV-Vis spectrophotometer (Varian, USA) was used for the absorbance ..... Foster, R. Organic Charge-Transfer Complexes, Academic Press: London; 1969; ...

  17. Charge transfer and emergent phenomena of oxide heterostructures

    Science.gov (United States)

    Chen, Hanghui

    Charge transfer is a common phenomenon at oxide interfaces. We use first-principles calculations to show that via heterostructuring of transition metal oxides, the electronegativity difference between two dissimilar transition metal ions can lead to high level of charge transfer and induce substantial redistribution of electrons and ions. Notable examples include i) enhancing correlation effects and inducing a metal-insulator transition; ii) tailoring magnetic structures and inducing interfacial ferromagnetism; iii) engineering orbital splitting and inducing a non-cuprate single-orbital Fermi surface. Utilizing charge transfer to induce emergent electronic/magnetic/orbital properties at oxide interfaces is a robust approach. Combining charge transfer with quantum confinement and expitaxial strain provides an appealing prospect of engineering electronic structure of artificial oxide heterostructures. This research was supported by National Science Foundation under Grant No. DMR-1120296.

  18. Charge transfer in time-dependent density functional theory

    Science.gov (United States)

    Maitra, Neepa T.

    2017-10-01

    Charge transfer plays a crucial role in many processes of interest in physics, chemistry, and bio-chemistry. In many applications the size of the systems involved calls for time-dependent density functional theory (TDDFT) to be used in their computational modeling, due to its unprecedented balance between accuracy and efficiency. However, although exact in principle, in practise approximations must be made for the exchange-correlation functional in this theory, and the standard functional approximations perform poorly for excitations which have a long-range charge-transfer component. Intense progress has been made in developing more sophisticated functionals for this problem, which we review. We point out an essential difference between the properties of the exchange-correlation kernel needed for an accurate description of charge-transfer between open-shell fragments and between closed-shell fragments. We then turn to charge-transfer dynamics, which, in contrast to the excitation problem, is a highly non-equilibrium, non-perturbative, process involving a transfer of one full electron in space. This turns out to be a much more challenging problem for TDDFT functionals. We describe dynamical step and peak features in the exact functional evolving over time, that are missing in the functionals currently used. The latter underestimate the amount of charge transferred and manifest a spurious shift in the charge transfer resonance position. We discuss some explicit examples.

  19. Charge Transfer Fluorescence and 34 nm Exciton Diffusion Length in Polymers with Electron Acceptor End Traps.

    Science.gov (United States)

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R; Miller, John R

    2015-06-18

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17-127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence, and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps, the trap depths are 0.06 (p-xylene), 0.13 (THF), and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization, and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ∼50% of the excitons, and that the exciton diffusion length is LD = 34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. The efficiency of exciton capture depends on chain length but not on trap depth, solvent polarity, or which trap group is present.

  20. Modulation of the charge transfer and photophysical properties in non-fused tetrathiafulvalene-benzothiadiazole derivatives.

    Science.gov (United States)

    Pop, Flavia; Seifert, Sabine; Hankache, Jihane; Ding, Jie; Hauser, Andreas; Avarvari, Narcis

    2015-01-28

    Bis(thiomethyl)- and bis(thiohexyl)-tetrathiafulvalene-bromo-benzothiadiazoles, containing electron donor tetrathiafulvalene (TTF) and electron acceptor benzothiadiazole (BTD) units, have been prepared by Stille coupling reactions between the TTF-SnMe3 precursors and BTD-Br2. In another series of experiments, TTF-acetylene-BTD compounds have been synthesized by Sonogashira coupling between either TTF-acetylenes and BTD-Br2 in low yields, or TTF-iodine and BTD-acetylene in moderate yields. In the compound TTF-C≡C-BTD the TTF and BTD units are coplanar in the solid state, as shown by the single crystal X-ray structure, and there is segregation in the packing between the donor and acceptor units. All the derivatives have good electron donor properties, as determined by cyclic voltammetry measurements, and they can also be reversibly reduced thanks to the presence of the BTD moiety. UV-visible spectroscopy and photophysical investigations show the presence of an intramolecular charge transfer (ICT) band and an emission band originating from the charge transfer. Both the absorption and the emission are modulated by the substitution scheme and the insertion of the acetylenic bridge.

  1. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    Directory of Open Access Journals (Sweden)

    Rebecca Boll

    2016-07-01

    Full Text Available Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.

  2. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.

    Science.gov (United States)

    Qi, Zewan; Chen, Yang

    2017-01-15

    Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb(3+) ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H(+) is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb(3+). The long luminescence lifetime of Tb(3+) allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H(+) in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands.

  3. Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots

    Science.gov (United States)

    Zhu, Haiming; Yang, Ye; Wu, Kaifeng; Lian, Tianquan

    2016-05-01

    Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research.

  4. Proton transfer assisted charge transfer phenomena in photochromic Schiff bases and effect of -NEt2 groups to the anil Schiff bases.

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Guchhait, Nikhil

    2012-11-15

    Photochromic Schiff bases 5-diethylamino-2-[(4-diethylamino-benzylidene)-hydrazonomethyl]-phenol (DDBHP) and N,N'-bis(4-N,N-diethylaminosalisalidene) hydrazine (DEASH) with both the proton and charge transfer moieties have been synthesized, and their photophysical properties such as excited state intramolecular charge transfer (ICT) and proton transfer (ESIPT) processes have been reported on the basis of steady-state and time-resolved spectral measurement in various solvents. The ground-state six-membered intramolecular hydrogen bonding network at the proton transfer site accelerates the ESIPT process for these compounds. Both the compounds show large Stokes-shifted emission bands for proton transfer and charge transfer processes. The hydrogen bonding solvents play a crucial role in these photophysical processes. Excited-state dipole moment of DDBHP and DEASH calculated by the solvatochromic method supports the polar character of the charge transfer excited state. Introduction of -NEt(2) groups to the reported salicylaldehyde azine (SAA) Schiff base results an increase in fluorescence lifetime from femtosecond to picosecond time scale for the proton transfer process.

  5. Charge transfer driven emergent phenomena in oxide heterostructures

    Science.gov (United States)

    Chen, Hanghui; Millis, Andrew

    2017-06-01

    Complex oxides exhibit many intriguing phenomena, including metal-insulator transition, ferroelectricity/multiferroicity, colossal magnetoresistance and high transition temperature superconductivity. Advances in epitaxial thin film growth techniques enable us to combine different complex oxides with atomic precision and form an oxide heterostructure. Recent theoretical and experimental work has shown that charge transfer across oxide interfaces generally occurs and leads to a great diversity of emergent interfacial properties which are not exhibited by bulk constituents. In this report, we review mechanisms and physical consequence of charge transfer across interfaces in oxide heterostructures. Both theoretical proposals and experimental measurements of various oxide heterostructures are discussed and compared. We also review the theoretical methods that are used to calculate charge transfer across oxide interfaces and discuss the success and challenges in theory. Finally, we present a summary and perspectives for future research.

  6. Charge transfer in the cold Yb$^+$ + Rb collisions

    CERN Document Server

    Sayfutyarova, Elvira R; Yakovleva, Svetlana A; Belyaev, Andrey K

    2013-01-01

    Charge-transfer cold Yb$^+$ + Rb collision dynamics is investigated theoretically using high-level {\\it ab initio} potential energy curves, dipole moment functions and nonadiabatic coupling matrix elements. Within the scalar-relativistic approximation, the radiative transitions from the entrance $A^1\\Sigma^+$ to the ground $X^1\\Sigma^+$ state are found to be the only efficient charge-transfer pathway. The spin-orbit coupling does not open other efficient pathways, but alters the potential energy curves and the transition dipole moment for the $A-X$ pair of states. The radiative, as well as the nonradiative, charge-transfer cross sections calculated within the $10^{-3}-10$ cm$^{-1}$ collision energy range exhibit all features of the Langevin ion-atom collision regime, including a rich structure associated with centrifugal barrier tunneling (orbiting) resonances. Theoretical rate coefficients for two Yb isotopes agree well with those measured by immersing Yb$^+$ ion in an ultracold Rb ensemble in a hybrid trap....

  7. Intermolecular-charge-transfer-induced fluorescence quenching in protic solvent

    Science.gov (United States)

    Lin, Tao; Liu, Xiaojun; Lou, Zhidong; Hou, Yanbing; Teng, Feng

    2016-11-01

    The fluorescence quenching of fluorenone in protic solvent has been extensively investigated, and the intermolecular hydrogen bond was found to play a crucial role. Unfortunately, the mechanism at atomic level is still not clear. In the present work, we theoretically put forward the charge transfer along the hydrogen bond in the excited states. The vertical excitation energies of the fluorenone-methanol complex as well as the potential energy profiles and surfaces of the vertical excited states and charge transfer states were calculated by using the ab initio electronic-structure methods. The photochemical reactions occurring in the diverse charge transfer states were compared and their decisiveness to the fluorescence quenching was discussed in the paper.

  8. Dynamics of Charge Transfer in Ordered and Chaotic Nucleotide Sequences

    CERN Document Server

    Fialko, N S

    2013-01-01

    Charge transfer is considered in systems composed of a donor, an acceptor and bridge sites of (AT) nucleotide pairs. For a bridge consisting of 180 (AT) pairs, three cases are dealt with: a uniform case, when all the nucleotides in each strand are identical; an ordered case, when nucleotides in each DNA strand are arranged in an orderly fashion; a chaotic case, when (AT) and (TA) pairs are arranged randomly. It is shown that in all the cases a charge transfer from a donor to an acceptor can take place. All other factors being equal, the transfer is the most efficient in the uniform case, the ordered and chaotic cases are less and the least efficient, accordingly. The results obtained are in agreement with experimental data on long-range charge transfer in DNA.

  9. Charge Transfer and Catalysis at the Metal Support Interface

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lawrence Robert [Univ. of California, Berkeley, CA (United States)

    2012-07-31

    Kinetic, electronic, and spectroscopic characterization of model Pt–support systems are used to demonstrate the relationship between charge transfer and catalytic activity and selectivity. The results show that charge flow controls the activity and selectivity of supported metal catalysts. This dissertation builds on extensive existing knowledge of metal–support interactions in heterogeneous catalysis. The results show the prominent role of charge transfer at catalytic interfaces to determine catalytic activity and selectivity. Further, this research demonstrates the possibility of selectively driving catalytic chemistry by controlling charge flow and presents solid-state devices and doped supports as novel methods for obtaining electronic control over catalytic reaction kinetics.

  10. Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules - Synthesis and Characterization

    Science.gov (United States)

    2016-04-12

    MX 8.  PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/SOARD U.S. Embassy Santiago Av. Andres... precipitate formation is observed. Then, the solution is filtered, washed with toluene and H2O and the precipitated is used without more purification...a precipitate that was filtered off and washed with toluene H2O to obtain a pale orange powder in 82 % yield. mp 210-220°C. 1H NMR (300 MHz, CDCl3

  11. Correlating electronic and vibrational motions in charge transfer systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Munira [Univ. of Washington, Seattle, WA (United States)

    2014-06-27

    The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.

  12. Charge transfer devices. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-04-01

    The technology, design, fabrication, and applications of charge transfer devices are presented in the cited research reports. Applications include imaging, signal processing, detectors, filters, amplifiers, and memory devices. This updated bibliography contains 107 abstracts, all of which are new entries to the previous edition.

  13. Valence Topological Charge-Transfer Indices for Dipole Moments

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2003-01-01

    Full Text Available New valence topological charge-transfer indices are applied to the calculation of dipole moments. The algebraic and vector semisum charge-transfer indices are defined. The combination of the charge-transfer indices allows the estimation of the dipole moments. The model is generalized for molecules with heteroatoms. The ability of the indices for the description of the molecular charge distribution is established by comparing them with the dipole moments of a homologous series of phenyl alcohols. Linear and non-linear correlation models are obtained. The new charge-transfer indices improve the multivariable non-linear regression equations for the dipole moment. When comparing with previous results, the variance decreases 92%. No superposition of the corresponding Gk–Jk and GkV – JkV pairs is observed. This diminishes the risk of co-linearity. Inclusion of the oxygen atom in the p-electron system is beneficial for the description of the dipole moment, owing to either the role of the additional p orbitals provided by the heteroatom or the role of steric factors in the p-electron conjugation. Linear and non-linear correlations between the fractal dimension and various descriptors point not only to a homogeneous molecular structure but also to the ability to predict and tailor drug properties.

  14. Charge transfer and transport in polymer-fullerene solar cells

    NARCIS (Netherlands)

    Parisi, J; Dyakonov, [No Value; Pientka, M; Riedel, [No Value; Deibel, C; Brabec, CJ; Sariciftci, NS; Hummelen, JC

    2002-01-01

    The development of polymer-fullerene plastic solar cells has made significant progress in recent years. These devices excel by an efficient charge generation process as a consequence of a photoinduced charge transfer between the photo-excited conjugated polymer donor and acceptor-type fullerene

  15. Charge-Transfer Interactions in Organic Functional Materials

    Directory of Open Access Journals (Sweden)

    Bih-Yaw Jin

    2010-08-01

    Full Text Available Our goal in this review is three-fold. First, we provide an overview of a number of quantum-chemical methods that can abstract charge-transfer (CT information on the excited-state species of organic conjugated materials, which can then be exploited for the understanding and design of organic photodiodes and solar cells at the molecular level. We stress that the Composite-Molecule (CM model is useful for evaluating the electronic excited states and excitonic couplings of the organic molecules in the solid state. We start from a simple polyene dimer as an example to illustrate how interchain separation and chain size affect the intercahin interaction and the role of the charge transfer interaction in the excited state of the polyene dimers. With the basic knowledge from analysis of the polyene system, we then study more practical organic materials such as oligophenylenevinylenes (OPVn, oligothiophenes (OTn, and oligophenylenes (OPn. Finally, we apply this method to address the delocalization pathway (through-bond and/or through-space in the lowest excited state for cyclophanes by combining the charge-transfer contributions calculated on the cyclophanes and the corresponding hypothetical molecules with tethers removed. This review represents a step forward in the understanding of the nature of the charge-transfer interactions in the excited state of organic functional materials.

  16. Effect of Aperiodicity on the Charge Transfer Through DNA Molecules

    Science.gov (United States)

    Ghosh, Angsula; Chaudhuri, Puspitapallab

    The effect of aperiodicity on the charge transfer process through DNA molecules is investigated using a tight-binding model. Single-stranded aperiodic Fibonacci polyGC and polyAT sequences along with aperiodic Rudin-Shapiro poly(GCAT) sequences are used in the study. Based on the tight-binding model, molecular orbital calculations of the DNA chains are performed and ionization potentials compared, as this might be relevant to understanding the charge transfer process. Charges migrate through the sequences in a multistep hopping process. Results for current conduction through aperiodic sequences are compared with those for the corresponding periodic sequences. We find that dinucleotide aperiodic Fibonacci sequences decrease the current while tetranucleotide aperiodic Rudin-Shapiro sequences increase the current when compared with the corresponding periodic sequences. The conductance in all cases decays exponentially as the sequence length increases.

  17. Charge transfer properties of pentacene adsorbed on silver: DFT study

    Energy Technology Data Exchange (ETDEWEB)

    N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in [PG & Research Department of Physics, Lady Doak College, Madurai 625002 (India)

    2015-06-24

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  18. Charge transfer in conjugated oligomers encapsulated into carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Almadori, Y.; Alvarez, L.; Michel, T.; Le Parc, R.; Bantignies, J.L.; Hermet, P.; Sauvajol, J.L. [Laboratoire Charles Coulomb UMR 5521, Universite Montpellier 2, 34095 Montpellier (France); Laboratoire Charles Coulomb UMR 5521, CNRS, 34095 Montpellier (France); Arenal, R. [Laboratoire d' Etude des Microstructures, CNRS-ONERA, 92322 Chatillon (France); Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, U. Zaragoza, 50018 Zaragoza (Spain); Babaa, R. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France); Chemical Engineering Department, University of Technology PETRONAS, UTP, Ipoh-Perak (Malaysia); Jouselme, B.; Palacin, S. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France)

    2011-11-15

    This study deals with a hybrid system consisting in quaterthiophene derivative encapsulated inside single-walled and multi-walled carbon nanotubes. Investigations of the encapsulation step are performed by transmission electron microscopy. Raman spectroscopy data point out different behaviors depending on the laser excitation energy with respect to the optical absorption of quaterthiophene. At low excitation energy (far from the oligomer resonance window) there is no significant modification of the Raman spectra before and after encapsulation. By contrast, at high excitation energy (close to the oligomer resonance window), Raman spectra exhibit a G-band shift together with an important RBM intensity loss, suggesting a significant charge transfer between the inserted molecule and the host nanotubes. Those results suggest a photo induced process leading to a significant charge transfer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Radiative charge transfer in collisions of C with He+

    Science.gov (United States)

    Babb, James F.; McLaughlin, B. M.

    2017-02-01

    Radiative charge exchange collisions between a carbon atom {{C}}({}3P) and a helium ion {{He}}+({}2S), both in their ground state, are investigated theoretically. Detailed quantum chemistry calculations are carried out to obtain potential energy curves and transition dipole matrix elements for doublet and quartet molecular states of the HeC+ cation. Radiative charge transfer cross sections and rate coefficients are calculated and are found at thermal and lower energies to be large compared to those for direct charge transfer. The present results might be applicable to modelling the complex interplay of [{{C}} {{II}}] (or {{{C}}}+), {{C}}, and {CO} at the boundaries of interstellar photon dominated regions and in x-ray dominated regions, where the abundance of {{He}}+ affects the abundance of {CO}.

  20. Positron Annihilation in Solid Charge-Transfer Complexes

    DEFF Research Database (Denmark)

    Lévay, B.; Jansen, P.

    1979-01-01

    Positron lifetime and angular correlation measurements have been carried out on 1:1 charge-transfer complexes, on their pure donor and acceptor components and on the 1:1 M mechanical mixtures of these components. Complex formation reduced the intensity of the long-lifetime component of the donor ...... compounds nearly to the low level of the acceptors. The angular correlation curves obtained for the pure acceptor and the complex were practically identical and were substantially broadened as compared to that of the donor.......Positron lifetime and angular correlation measurements have been carried out on 1:1 charge-transfer complexes, on their pure donor and acceptor components and on the 1:1 M mechanical mixtures of these components. Complex formation reduced the intensity of the long-lifetime component of the donor...

  1. Integrated Charge Transfer in Organic Ferroelectrics for Flexible Multisensing Materials.

    Science.gov (United States)

    Xu, Beibei; Ren, Shenqiang

    2016-09-01

    The ultimate or end point of functional materials development is the realization of strong coupling between all energy regimes (optical, electronic, magnetic, and elastic), enabling the same material to be utilized for multifunctionalities. However, the integration of multifunctionalities in soft materials with the existence of various coupling is still in its early stage. Here, the coupling between ferroelectricity and charge transfer by combining bis(ethylenedithio)tetrathiafulvalene-C60 charge-transfer crystals with ferroelectric polyvinylidene fluoride polymer matrix is reported, which enables external stimuli-controlled polarization, optoelectronic and magnetic field sensing properties. Such flexible composite films also display a superior strain-dependent capacitance and resistance change with a giant piezoresistance coefficient of 7.89 × 10(-6) Pa(-1) . This mutual coupled material with the realization of enhanced couplings across these energy domains opens up the potential for multisensing applications.

  2. Radiative charge transfer in collisions of C with He+

    CERN Document Server

    Babb, James F

    2016-01-01

    Radiative charge exchange collisions between a carbon atom C(${}^3$P) and a helium ion He+, both in their ground state, are investigated theoretically. Detailed quantum chemistry calculations are carried out to obtain potential energy curves and transition dipole matrix elements for doublet and quartet molecular states of the HeC+ cation. Radiative charge transfer cross sections and rate coefficients are calculated and are found at thermal and lower energies to be large compared to those for direct charge transfer. The present results might be applicable to modelling the complex interplay of [C II] (or C+), C, and CO at the boundaries of photon dominated regions (PDRs) and in xray dominated regions (XDRs), where the abundance of He+ affects the abundance of CO.

  3. Twisted light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-12-01

    Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...

  4. Charge transfer in energetic Li^2+ - H collisions

    Science.gov (United States)

    Mancev, I.

    2008-07-01

    The total cross sections for charge transfer in Li^2+ - H collisions have been calculated, using the four-body first Born approximation with correct boundary conditions (CB1-4B) and four-body continuum distorted wave method (CDW-4B) in the energy range 10 - 5000 keV/amu. Present results call for additional experimental data at higher impact energies than presently available.

  5. Conformational control of benzophenone-sensitized charge transfer in dinucleotides

    OpenAIRE

    Merz, Thomas; Wenninger, Matthias; Weinberger, Michael; Riedle, Eberhard; Wagenknecht, Hans-Achim; Schuetz, Martin

    2013-01-01

    Charge transfer in DNA cannot be understood without addressing the complex conformational flexibility, which occurs on a wide range of timescales. In order to reduce this complexity four dinucleotide models 1X consisting of benzophenone linked by a phosphodiester to one of the natural nucleosides X = A, G, T, C were studied in water and methanol. The theoretical work focuses on the dynamics and electronic structure of 1G. Predominant conformations in the two solvents were obtained by molecula...

  6. [Dynamics of charge transfer along an oligonucleotide at finite temperature].

    Science.gov (United States)

    Lakhno, V D; Fialko, N S

    2004-01-01

    The quantum-statistical approach was used to describe the charge transfer in nucleotide sequences. The results of numerical modeling for hole transfer in the GTTGGG sequence with background temperature noise are given. It was shown that, since guanine has an oxidation potential lower than thymine, the hole created at the G donor in this sequence passes through the thymine barrier into the guanine triplet (acceptor) at a time of approximately 10 ps at a temperature of 37 degrees C.

  7. Charge-transfer crystallites as molecular electrical dopants

    Science.gov (United States)

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-10-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi-Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites--rather than individual acceptor molecules--should be regarded as the dopants in such systems.

  8. Negative thermal expansion induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu3Fe4O12 and LaCu3Fe4-x Mn x O12, as well as in Bi or Ni substituted BiNiO3. The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10(-6) K(-1) near room temperature, in the temperature range which can be controlled by substitution.

  9. PHOTOINDUCED CHARGE TRANSFER POLYMERIZATION OF STYRENE INITIATED BY ELECTRON ACCEPTOR

    Institute of Scientific and Technical Information of China (English)

    CAO Weixiao; ZHANG Peng; FENG Xinde

    1995-01-01

    Photoinduced charge transfer polymerization of styrene(St) with electron acceptor as initiator was investigated. In case of fumaronitrile (FN) or maleic anhydride (MA) as initiator the polymerization takes place regularly, whereas the tetrachloro-1, 4-benzenequinone (TCQ), 2, 3-dichloro-5, 6-dicyano-1, 4-benzenequinone (DDQ) . or tetracyano ethylene (TCNE) as initiator the polymerization proceeds reluctantly only after the photoaddition reaction. A mechanism was proposed that free radicals would be formed following the charge and proton transfer in the exciplex formed between St and electron acceptors.

  10. Laser controlled charge-transfer reaction at low temperatures

    CERN Document Server

    Petrov, Alexander; Kotochigova, Svetlana

    2016-01-01

    We study the low-temperature charge transfer reaction between a neutral atom and an ion under the influence of near-resonant laser light. By setting up a multi-channel model with field-dressed states we demonstrate that the reaction rate coefficient can be enhanced by several orders of magnitude with laser intensities of $10^6$ W/cm$^2$ or larger. In addition, depending on laser frequency one can induce a significant enhancement or suppression of the charge-exchange rate coefficient. For our intensities multi-photon processes are not important.

  11. Simulation for signal charge transfer of charge coupled devices

    Institute of Scientific and Technical Information of China (English)

    Wang Zujun; Liu Yinong; Chen Wei; Tang Benqi; Xiao Zhigang; Huang Shaoyan; Liu Minbo; Zhang Yong

    2009-01-01

    Physical device models and numerical processing methods are presented to simulate a linear buried channel charge coupled devices (CCDs). The dynamic transfer process of CCD is carried out by a three-phase clock pulse driver. By using the semiconductor device simulation software MEDICI, dynamic transfer pictures of signal charges cells, electron concentration and electrostatic potential are presented. The key parameters of CCD such as charge transfer efficiency (CTE) and dark electrons are numerically simulated. The simulation results agree with the theoretic and experimental results.

  12. Optics of Chromites and Charge-Transfer Transitions

    Directory of Open Access Journals (Sweden)

    Andrei V. Zenkov

    2008-01-01

    Full Text Available Specific features of the charge-transfer (CT states and O2p→Cr3d transitions in the octahedral (CrO69− complex are considered in the cluster approach. The reduced matrix elements of the electric-dipole transition operator are calculated on many-electron wave functions of the complex corresponding to the initial and final states of a CT transition. Modeling the optic spectrum of chromites has yielded a complicated CT band. The model spectrum is in satisfactory agreement with experimental data which demonstrates the limited validity of the generally accepted concept of a simple structure of CT spectra.

  13. Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors

    Science.gov (United States)

    Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu

    2017-09-01

    The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μmax of ANIH and ANICl crystals is 1.3893 and 0.0272 cm2 V-1 s-1, which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.

  14. Photophysical study of a charge transfer oxazole dye in micelles: Role of surfactant headgroups

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Jyotirmay [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Sarkar, Yeasmin; Parui, Partha Pratim [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Chakraborty, Sandipan [Department of Microbiology, University of Calcutta, Kolkata 700019 (India); Biswas, Suman [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Das, Ranjan, E-mail: ranjan.das68@gmail.com [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India)

    2015-07-15

    Photophysics of 5-(4′′-dimethylaminophenyl)-2-(4′-sulfophenyl)oxazole, sodium salt (DMO) which undergoes intramolecular charge transfer in the excited state was studied in micelles. In the cationic and the nonionic micelles, significantly higher fluorescence quantum yield is observed in comparison to the anionic micelles, due to much lower accessibility of DMO to the water molecules in the former micelles than the latter. Time-resolved fluorescence decays were characterized by a fast (τ{sub 1}) and a slow (τ{sub 2}) component of decay in all the micelles. The fast decay component (τ{sub 1}) increases significantly in going from the anionic micelles to the cationic micelles, because of the poorly hydrated headgroup region of the latter micelles compared to the former. Furthermore, much higher value of the slow component of decay (τ{sub 2}) is observed for the cationic and the neutral micelles than the anionic micelles. This is attributed to the increased penetration of water molecules into the micellar core of the anionic micelles compared to the cationic and the neutral micelles. - Highlights: • Photophysics of the fluorophore are remarkably different in the cationic and the anionic micelles. • Differential hydration of the surfactant headgroups gives rise to significantly different fluorescence quantum yield and lifetime in oppositely charged micelles. • Electrostatic interactions fine tune location of the fluorophore in the micelle–water interface of ionic micelles.

  15. Super-iron Nanoparticles with Facile Cathodic Charge Transfer

    Energy Technology Data Exchange (ETDEWEB)

    M Farmand; D Jiang; B Wang; S Ghosh; D Ramaker; S Licht

    2011-12-31

    Super-irons contain the + 6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain.

  16. On the Possibility of Superfast Charge Transfer in DNA

    CERN Document Server

    Lakhno, V D

    2013-01-01

    Numerous experiments on charge transfer in DNA yield a contradictory picture of the transfer: on the one hand they suggest that it is a very slow process and the charge is almost completely localized on one Watson-Crick pair, but on the other hand they demonstrate that the charge can travel a very large distance. To explain this contradiction we propose that superfast charge transitions are possible between base pairs on individual DNA fragments resulting in the establishment of a quasi-equilibrium charge distribution during the time less than that of charge solvation. In other words, we hypothesize these states irrespective of the nature of a mechanism responsible for their establishment, whether it be a hopping mechanism, or a band mechanism, or superexchange, or polaron transport, etc., leaving aside the debates of which one is more advantageous. We discuss qualitative differences between the charge transfer in a dry DNA and that in a solution. In a solution, of great importance is the charge solvation whi...

  17. Ultrafast charge transfer via a conical intersection in dimethylaminobenzonitrile.

    Science.gov (United States)

    Fuss, Werner; Pushpa, Kumbil Kuttan; Rettig, Wolfgang; Schmid, Wolfram E; Trushin, Sergei A

    2002-04-01

    The L(a)-like S2 state (2A) of 4-(dimethylamino)benzonitrile was pumped at 267 nm in the gas phase at 130 degrees C. Nonresonant multiphoton ionization at 800 nm with mass-selective detection then probed the subsequent processes. Whereas ionization at the Franck-Condon geometry only gave rise to the parent ion, fragmentation increased on motion towards the charge-transfer (CT) state. This useful difference is ascribed to a geometry-dependent resonance in the ion. The time constants found are interpreted by ultrafast (approximately 68 fs) relaxation through a conical intersection to both the CT and the L(b)-type S1 state (1B). Then the population equilibrates between these two states within 1 ps. From there the molecule relaxes within 90 ps to a lower excited state which can only be a triplet state (T(n)) and then decomposes within 300 ps. Previous experiments either investigated only 1B --> CT relaxation-which does not take place in the gas phase or nonpolar solvents for energetic reasons--or, starting from S2 excitation, typically had insufficient time resolution (>1 ps) to detect the temporary charge transfer. Only recently temporary population of the CT state was found in a nonpolar solvent (Kwok et al., J. Phys. Chem. A. 2000, 104, 4188), a result fully consistent with our mechanism. We also show that S2 --> S1 relaxation does not occur vertically but involves an intermediate strong geometrical distortion, passing through a conical intersection.

  18. Energy and charge transfer in nanoscale hybrid materials.

    Science.gov (United States)

    Basché, Thomas; Bottin, Anne; Li, Chen; Müllen, Klaus; Kim, Jeong-Hee; Sohn, Byeong-Hyeok; Prabhakaran, Prem; Lee, Kwang-Sup

    2015-06-01

    Hybrid materials composed of colloidal semiconductor quantum dots and π-conjugated organic molecules and polymers have attracted continuous interest in recent years, because they may find applications in bio-sensing, photodetection, and photovoltaics. Fundamental processes occurring in these nanohybrids are light absorption and emission as well as energy and/or charge transfer between the components. For future applications it is mandatory to understand, control, and optimize the wide parameter space with respect to chemical assembly and the desired photophysical properties. Accordingly, different approaches to tackle this issue are described here. Simple organic dye molecules (Dye)/quantum dot (QD) conjugates are studied with stationary and time-resolved spectroscopy to address the dynamics of energy and ultra-fast charge transfer. Micellar as well as lamellar nanostructures derived from diblock copolymers are employed to fine-tune the energy transfer efficiency of QD donor/dye acceptor couples. Finally, the transport of charges through organic components coupled to the quantum dot surface is discussed with an emphasis on functional devices.

  19. Geometry and quadratic nonlinearity of charge transfer complexes in solution: a theoretical study.

    Science.gov (United States)

    Mukhopadhyay, S; Pandey, Ravindra; Das, Puspendu K; Ramasesha, S

    2011-01-28

    In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO∕S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, β(HRS) and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases.

  20. Spectroscopic analysis and charge transfer interaction studies of 4-benzyloxy-2-nitroaniline insecticide: A density functional theoretical approach

    Science.gov (United States)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2015-01-01

    A widespread exploration on the intra-molecular charge transfer interaction through an efficient π-conjugated path from a strong electron-donor group (amino) to a strong electron-acceptor group (nitro) has been carried out using FTIR, FT-Raman, UV-Vis, fluorescence and NMR spectra on insecticide compound 4-benzyloxy-2-nitroaniline. Density functional theory method is used to determine optimized molecular geometry, harmonic vibrational wavenumbers and intensities using 6-311G(d,p) basis set by means of Gaussian 09W program suit. A comprehensive investigation on the sp2 to sp3 hybridization and non-planarity property has been performed. Natural bond orbital analysis is used to study the existence of C-H⋯O, N-H⋯O and C-H⋯π proper and improper hydrogen bonds. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. A complete assignment of the experimental absorption peaks in the ultraviolet region has also been performed. Isotropic chemical shifts of 13C, 1H, 15N and 18O NMR and nuclear spin-spin coupling constants have been computed using the gauge-invariant atomic orbital method. The biological activity of substituent amino and nitro groups are evident from the hydrogen bonds through which the target amino acids are linked to the drug as evidenced from molecular docking.

  1. Effect of Conjugation Length on Photoinduced Charge-Transfer in π-Conjugated Oligomer-Acceptor Dyads

    KAUST Repository

    Jiang, Junlin

    2017-05-25

    A series of -conjugated oligomer-acceptor dyads were synthesized that feature oligo(phenylene ethynylene) (OPE) conjugated backbones end-capped with a naphthalene diimide (NDI) acceptor. The OPE segments vary in length from 4 to 8 phenylene ethynene units (PEn-NDI, where n = 4, 6 and 8). Fluorescence and transient absorption spectroscopy reveals that intramolecular OPE NDI charge transfer dominates the deactivation of excited states of the PEn-NDI oligomers. Both charge separation (CS) and charge recombination (CR) are strongly exothermic (G0CS ~ -1.1 and G0CR ~ -2.0 eV), and the driving forces do not vary much across the series because the oxidation and reduction potentials and singlet energies of the OPEs do not vary much with their length. Bimolecular photoinduced charge transfer between model OPEs that do not contain the NDI acceptors with methyl viologen was studied, and the results reveal that the absorption of the cation radical state (OPE+•) remains approximately constant ( ~ 575 nm) regardless of oligomer length. This finding suggests that the cation radical (polaron) of the OPE is relatively localized, effectively occupying a confined segment of n 4 repeat units in the longer oligomers. Photoinduced intramolecular electron transfer dynamics in the PEn-NDI series was investigated by UV-visible femtosecond transient absorption spectroscopy with visible and mid-infrared probes. Charge separation occurs on the 1 – 10 ps timescale, with the rates decreasing slightly with increased oligomer length (βCS ~ 0.15 Å-1). The rate for charge-recombination decreases in the sequence PE4-NDI > PE6-NDI ~ PE8-NDI. The discontinuous distance dependence in the rate for charge recombination may be related to the spatial localization of the positive polaron state in the longer oligomers.

  2. Interfacial Charge Transfer States in Condensed Phase Systems

    Science.gov (United States)

    Vandewal, Koen

    2016-05-01

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.

  3. Tunable charge transfer properties in metal-phthalocyanine heterojunctions

    Science.gov (United States)

    Siles, P. F.; Hahn, T.; Salvan, G.; Knupfer, M.; Zhu, F.; Zahn, D. R. T.; Schmidt, O. G.

    2016-04-01

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of

  4. Extended Holstein polaron model for charge transfer in dry DNA

    Institute of Scientific and Technical Information of China (English)

    Liu Tao; Wang Yi; Wang Ke-Lin

    2007-01-01

    The variational method is applied to the study of charge transfer in dry DNA by using an extended Holstein small polaron model in two cases: the site-dependent finite-chain discrete case and the site-independent continuous one. The treatments in the two cases are proven to be consistent in theory and calculation. Discrete and continuous treatments of Holstein model both can yield a nonlinear equation to describe the charge migration in an actual long-range DNA chain.Our theoretical results of binding energy Eb, probability amplitude of charge carrier φ and the relation between energy and charge-lattice coupling strength are in accordance with the available experimental results and recent theoretical calculations.

  5. Positron annihilation studies of some charge transfer molecular complexes

    CERN Document Server

    El-Sayed, A; Boraei, A A A

    2000-01-01

    Positron annihilation lifetimes were measured for some solid charge transfer (CT) molecular complexes of quinoline compounds (2,6-dimethylquinoline, 6-methoxyquinoline, quinoline, 6-methylquinoline, 3-bromoquinoline and 2-chloro-4-methylquinoline) as electron donor and picric acid as an electron acceptor. The infrared spectra (IR) of the solid complexes clearly indicated the formation of the hydrogen-bonding CT-complexes. The annihilation spectra were analyzed into two lifetime components using PATFIT program. The values of the average and bulk lifetimes divide the complexes into two groups according to the non-bonding ionization potential of the donor (electron donating power) and the molecular weight of the complexes. Also, it is found that the ionization potential of the donors and molecular weight of the complexes have a conspicuous effect on the average and bulk lifetime values. The bulk lifetime values of the complexes are consistent with the formation of stable hydrogen-bonding CT-complexes as inferred...

  6. Self-interaction effects on charge-transfer collisions

    CERN Document Server

    Quashie, Edwin E; Andrade, Xavier; Correa, Alfredo A

    2016-01-01

    In this article, we investigate the role of the self-interaction error in the simulation of collisions using time-dependent density functional theory (TDDFT) and Ehrenfest dynamics. We compare many different approximations of the exchange and correlation potential, using as a test system the collision of $\\mathrm{H^+ + CH_4}$ at $30~\\mathrm{eV}$. We find that semi-local approximations, like PBE, and even hybrid functionals, like B3LYP, produce qualitatively incorrect predictions for the scattering of the proton. This discrepancy appears because the self-interaction error allows the electrons to jump too easily to the proton, leading to radically different forces with respect to the non-self-interacting case. From our results, we conclude that using a functional that is self-interaction free is essential to properly describe charge-transfer collisions between ions and molecules in TDDFT.

  7. Charge transfer excitons in C60-dimers and polymers

    CERN Document Server

    Harigaya, K

    1996-01-01

    Charge-transfer (CT) exciton effects are investigated for the optical absorption spectra of crosslinked C60 systems by using the intermediate exciton theory. We consider the C60-dimers, and the two (and three) molecule systems of the C60-polymers. We use a tight-binding model with long-range Coulomb interactions among electrons, and the model is treated by the Hartree-Fock approximation followed by the single-excitation configuration interaction method. We discuss the variations in the optical spectra by changing the conjugation parameter between molecules. We find that the total CT-component increases in smaller conjugations, and saturates at the intermediate conjugations. It decreases in the large conjugations. We also find that the CT-components of the doped systems are smaller than those of the neutral systems, indicating that the electron-hole distance becomes shorter in the doped C60-polymers.

  8. Graphene nonvolatile memory prototype based on charge-transfer mechanism

    Science.gov (United States)

    Lv, Hongming; Wu, Huaqiang; Huang, Can; Wang, Yuda; Qian, He

    2014-04-01

    A graphene nonvolatile memory (GNVM) prototype based on charge transfer between the graphene layer and the NH2(CH2)3Si(OEt)3 (APTES) self-assembled monolayer (SAM) is demonstrated. Graphene was transferred to an APTES-SAM-engineered SiO2 substrate and patterned into bottom-gate transistors. Owing to the charge trapping/detrapping property of the nitrogen atoms in APTES, a significant and reproducible transfer curve hysteresis is observed. Memory performance metrics, including retention and endurance, are reported. Comparisons between vacuum and ambient environment test results indicate air absorbates’ detrimental effect. Loss of nonvolatile storage is explained on the basis of a two-layer tunneling junction model, which sheds light on further device improvement through aminosilane molecule structure optimization.

  9. Multiple-charge transfer and trapping in DNA dimers

    Science.gov (United States)

    Tornow, Sabine; Bulla, Ralf; Anders, Frithjof B.; Zwicknagl, Gertrud

    2010-11-01

    We investigate the charge transfer characteristics of one and two excess charges in a DNA base-pair dimer using a model Hamiltonian approach. The electron part comprises diagonal and off-diagonal Coulomb matrix elements such a correlated hopping and the bond-bond interaction, which were recently calculated by Starikov [E. B. Starikov, Philos. Mag. Lett. 83, 699 (2003)10.1080/0950083031000151374] for different DNA dimers. The electronic degrees of freedom are coupled to an ohmic or a superohmic bath serving as dissipative environment. We employ the numerical renormalization group method in the nuclear tunneling regime and compare the results to Marcus theory for the thermal activation regime. For realistic parameters, the rate that at least one charge is transferred from the donor to the acceptor in the subspace of two excess electrons significantly exceeds the rate in the single charge sector. Moreover, the dynamics is strongly influenced by the Coulomb matrix elements. We find sequential and pair transfer as well as a regime where both charges remain self-trapped. The transfer rate reaches its maximum when the difference of the on-site and intersite Coulomb matrix element is equal to the reorganization energy which is the case in a guanine/cytosine (GC)-dimer. Charge transfer is completely suppressed for two excess electrons in adenine/thymine (AT)-dimer in an ohmic bath and replaced by damped coherent electron-pair oscillations in a superohmic bath. A finite bond-bond interaction W alters the transfer rate: it increases as function of W when the effective Coulomb repulsion exceeds the reorganization energy (inverted regime) and decreases for smaller Coulomb repulsion.

  10. Charge Transfer and Ionization by Intermediate-Energy Heavy Ions

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L. H. [East Carolina University; McLawhorn, S. L. [East Carolina University; McLawhorn, R. A. [East Carolina University; Evans, N. L. [East Carolina University; Justiniano, E. L. B. [East Carolina University; Shinpaugh, J. L. [East Carolina University; Schultz, David Robert [ORNL; Reinhold, Carlos O [ORNL

    2006-11-01

    The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u-1 or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7+, 32 MeV sulphur ions have an equilibrium charge of approx. 11+, and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C+ ions with energies of 100 and 200 keV u-1 are described.

  11. Charge transfer and ionisation by intermediate-energy heavy ions.

    Science.gov (United States)

    Toburen, L H; McLawhorn, S L; McLawhorn, R A; Evans, N L; Justiniano, E L B; Shinpaugh, J L; Schultz, D R; Reinhold, C O

    2006-01-01

    The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u(-1) or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7(+), 32 MeV sulphur ions have an equilibrium charge of approximately 11(+), and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C(+) ions with energies of 100 and 200 keV u(-1) are described.

  12. Solid-state thermochromism and phase transitions of charge transfer 1,3-diamino-4,6-dinitrobenzene dyes.

    Science.gov (United States)

    Lee, Jong Hoon; Naumov, Pance; Chung, Ihn Hee; Lee, Sang Cheol

    2011-09-01

    The lower 1,3-bis(hydroxyalkylamino) homologues of the strong intramolecular X-type charge transfer (CT) system 1,3-diamino-4,6-dinitrobenzene (DADNB) exhibit reversible color change in the solid state from yellow at room temperature (RT) to orange and red at high temperature (HT). To investigate the structural prerequisites for occurrence of this phenomenon, we prepared 10 new derivatives of DADNB where the hydroxyalkyl arms at the amino groups were replaced with substituents having different electronic and steric profiles. Two of the new materials exhibit sharp and reversible thermochromic change in the solid state: when heated, the bis(aminoethyl) derivative (DADNB-1) undergoes color change from orange-red to brown, while one of the three polymorphs of the bisphenyl product (DADNB-2) changes its color from red to yellow. The physicochemical analysis and the crystal structures of seven of these compounds, one of which is trimorphic, confirmed that both phenomena are due to solid-solid phase transitions. The brown high-temperature phase of DADNB-1 presents the first example where the absorption is shifted beyond the red region. Form C of DADNB-2 is the first material of this group that exhibits "negative" thermochromism, where the high-temperature phase absorbs at lower wavelength than the low-temperature one. The results demonstrate the potentials of these simple and easily accessible organic molecular materials for thermal switching of the optical properties by utility of intermolecular interactions to modulate the intramolecular CT.

  13. Charge Transfer Characteristics and Initiation Mechanisms of Long Delayed Sprites

    Science.gov (United States)

    Li, J.; Cummer, S. A.; Lyons, W. A.; Nelson, T. E.

    2007-12-01

    Simultaneous measurements of high altitude optical emissions and the magnetic field produced by sprite-associated lightning discharges enable a close examination of the link between low altitude lightning process and high altitude sprite process. In this work, we report results of the coordinated analysis of high speed (1000--10000 frames per second) sprite video and wideband (0.1 Hz to 30 kHz) magnetic field measurements made simultaneously at the Yucca Ridge Field Station and Duke University during the June through August 2005 campaign period. During the observation period, the high speed camera detected 83 sprite events in 67 TLE sequences, which are caused by the same number of +CGs. 46% of these sprite events are delayed more than 10 ms after the lightning return stroke. With the estimated lightning source current moment waveform, we computed the continuing current amplitude and total charge transfer characteristics of the long delayed sprites (>10 ms delay). Our calculation shows the total charge moment change of the long delayed sprites can vary from several hundred C km to more than ten thousand C km. All the long delayed sprites are related with intense continuing current bigger than 2 kA. This continuing current provides about 50% to 90% of the total charge transfer. However, a bigger continuing current does not necessarily mean a shorter time delay. This indicates that other processes also involved in the sprite initiation for long delayed sprites. In our observations, the sferic burst, a high frequency noise caused by intra-cloud activity, is always accompanied by a slow intensification in the lightning source current before the time of sprite initiation. Thus we used the lightning source current as an input and employed a 2-D FDTD model to numerically simulate the electric field at different altitudes and compare it with the breakdown field. Including the effect of the electron mobility dependence on electric field, the simulation results showed that

  14. Charge Transfer Channels in Formation of Exciplex in Polymer Blends

    Institute of Scientific and Technical Information of China (English)

    DOU Fei; ZHANG Xin-Ping

    2011-01-01

    The strong dependence of photoluminescence of charge transfer excited states or exciplex in a blend film of poly(9,9'-dioctylBuorene-co-benzothiadiazole) (F8BT) and poly(9,9'-dioctyl6uorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-l,4- phenylenediamine) (PFB) on the excitation wavelengths and morphology is investigated. The experimental results reveal that electron transfer in the LUMOs from PFB to F8BT is more efficient than hole transfer in the HOMOs from PFB to F8BT for the formation of exciplex at the interfacial junctions between these two types of molecules in the blend Sim. Furthermore, energy transfer from the blue-emitting PFB to the green-emitting F8BT at the interfaces introduces an additional two-step channel and thus enhances the formation of an exciplex. This is important for understanding of charge generation and separation in organic bulk heterojunctions and for design of optoelectronic devices.%@@ The strong dependence of photoluminescence of charge transfer excited states or exciplex in a blend film of poly(9,9'-dioctylfluorene-co-benzothiadiazole)(F8BT)and poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine)(PFB)on the excitation wavelengths and morphology is investigated.The experimental results reveal that electron transfer in the LUMOs from PFB to F8BT is more efficient than hole transfer in the HOMOs from PFB to F8BT for the formation of exciplex at the interfacial junctions between these two types of molecules in the blend film.Furthermore,energy transfer from the blue-emitting PFB to the green-emitting F8BT at the interfaces introduces an additional two-step channel and thus enhances the formation of an exciplex.This is important for understanding of charge generation and separation in organic bulk heterojunctions and for design of optoelectronic devices.

  15. Tetrathiafulvalene-1,3,5-triazines as (multi)donor-acceptor systems with tunable charge transfer: structural, photophysical, and theoretical investigations.

    Science.gov (United States)

    Pop, Flavia; Riobé, François; Seifert, Sabine; Cauchy, Thomas; Ding, Jie; Dupont, Nathalie; Hauser, Andreas; Koch, Marius; Avarvari, Narcis

    2013-05-06

    Palladium-catalyzed cross-coupling reactions between chlorinated 1,3,5-triazines (TZ) and tetrathiafulvalene (TTF) trimethyltin derivatives afford mono- and C3 symmetric tris(TTF)-triazines as donor-acceptor compounds in which the intramolecular charge transfer (ICT) is modulated by the substitution scheme on TTF and TZ and by chemical or electrochemical oxidation. The TTF-TZ-Cl2 and (SMe)2TTF-TZ-Cl2 derivatives show fully planar structures in the solid state as a consequence of the conjugation between the two units. Electrochemical and photophysical investigations, supported by theoretical calculations, clearly demonstrate that the lowest excited state can be ascribed to the intramolecular charge transfer (ICT) π(TTF)→π*(TZ) transition. The tris(TTF) compound [(SMe)2TTF]3-TZ shows fluorescence when excited in the ICT band, and the emission is quenched upon oxidation. The radical cations TTF(+•) are easily observed in all of the cases through chemical and electrochemical oxidation by steady-state absorption experiments. In the case of [(SMe)2TTF]3-TZ, a low energy band at 5000 cm(-1), corresponding to a coupling between TTF(+•) and TTF units, is observed. A crystalline radical cation salt with the TTF-TZ-Cl2 donor and PF6(-) anion, prepared by electrocrystallization, is described.

  16. Versatile charge transfer through anthraquinone films for electrochemical sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Venarusso, Luna B. [Department of Chemistry, Universidade Federal de Mato Grosso do Sul, Caixa Postal 549, Campo Grande, MS 79070-900 (Brazil); Tammeveski, Kaido [Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu (Estonia); Maia, Gilberto, E-mail: gilberto.maia@ufms.br [Department of Chemistry, Universidade Federal de Mato Grosso do Sul, Caixa Postal 549, Campo Grande, MS 79070-900 (Brazil)

    2011-10-01

    Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study the effect of anthraquinone (AQ) films on the charge transfer rate of {beta}-nicotinamide adenine dinucleotide (NAD{sup +}), dopamine (DA), and ferricyanide on glassy carbon (GC) electrodes in solutions of different pH. Maximum blocking action on the Fe(CN){sub 6}{sup 3-} redox probe was observed at pH 7 and open-circuit potential (OCP). However, maximum electron hopping effect was observed at pH 9 at both -0.58 V and -0.85 V for Fe(CN){sub 6}{sup 3-}, pH 7 at -0.58 V for NAD{sup +}, and pH 9 at -0.58 V for DA, suggesting that electron hopping in AQ films on a GC surface is dependent on both pH and electrode potential. These findings lend support for the application of these films in the detection of soluble redox probes such as NAD{sup +} and DA at biological pH values (from 7 to 9).

  17. Thiolate versus Selenolate: Structure, Stability, and Charge Transfer Properties.

    Science.gov (United States)

    Ossowski, Jakub; Wächter, Tobias; Silies, Laura; Kind, Martin; Noworolska, Agnieszka; Blobner, Florian; Gnatek, Dominika; Rysz, Jakub; Bolte, Michael; Feulner, Peter; Terfort, Andreas; Cyganik, Piotr; Zharnikov, Michael

    2015-04-28

    Selenolate is considered as an alternative to thiolate to serve as a headgroup mediating the formation of self-assembled monolayers (SAMs) on coinage metal substrates. There are, however, ongoing vivid discussions regarding the advantages and disadvantages of these anchor groups, regarding, in particular, the energetics of the headgroup-substrate interface and their efficiency in terms of charge transport/transfer. Here we introduce a well-defined model system of 6-cyanonaphthalene-2-thiolate and -selenolate SAMs on Au(111) to resolve these controversies. The exact structural arrangements in both types of SAMs are somewhat different, suggesting a better SAM-building ability in the case of selenolates. At the same time, both types of SAMs have similar packing densities and molecular orientations. This permitted reliable competitive exchange and ion-beam-induced desorption experiments which provided unequivocal evidence for a stronger bonding of selenolates to the substrate as compared to the thiolates. Regardless of this difference, the dynamic charge transfer properties of the thiolate- and selenolate-based adsorbates were found to be nearly identical, as determined by the core-hole-clock approach, which is explained by a redistribution of electron density along the molecular framework, compensating the difference in the substrate-headgroup bond strength.

  18. Identifying interfacial charge transfer states in organic heterostructures (Conference Presentation)

    Science.gov (United States)

    Arndt, Andreas P.; Gerhard, Marina; Howard, Ian A.; Koch, Martin; Lemmer, Ulrich

    2016-09-01

    Charge transfer (CT) states play evidently an important role at the interface of organic heterostructures but their identification and characterization is often experimentally less obvious and challenging. We studied two exemplary material systems which both represented a benchmark within the research of organic photovoltaics at their time: the homopolymer P3HT blended with PC61BM and the copolymer PTB7 blended with PC71BM. In both heterostructures, we could identify a distinct CT state emission by the use of NIR time-resolved photoluminescence (PL) [1], [2]. The selectivity of this technique enables us to clearly probe the energetics and dynamics of weak emitting interfacial states and therefore to prove differences in the CT state characteristics between the two systems. We went beyond this previous work and investigated the time and temperature dependent emission anisotropy as well as the electric field dependence of the time-resolved PL for both blends and the pristine polymers, respectively. In both cases the CT state emission clearly deviates from the one of the primarily excited singlet excitons: the emission anisotropy reveals an additional relaxation pathway for the exciton which is connected with a change of the transition dipole moment of the emission, and under applied bias different quenching thresholds can give access to varying binding energies of the emissive excitons involved. Finally, we think that our findings demonstrate how interfacial CT state emission can be clearly identified as such and how it can be unambiguously distinguished from singlet exciton emission.

  19. Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures

    Science.gov (United States)

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Pala, Nezih

    2017-08-01

    There have been extensive researches on terahertz (THz) plasmonic structures supporting resonant modes to demonstrate nano and microscale devices with high efficiency and responsivity as well as frequency selectivity. Here, using antisymmetric plasmonic fractal Y-shaped (FYS) structures as building blocks, we introduce a highly tunable four-member fractal assembly to support charge transfer plasmons (CTPs) and classical dipolar resonant modes with significant absorption cross section in the THz domain. We first present that the unique geometrical nature of the FYS system and corresponding spectral response allow for supporting intensified dipolar plasmonic modes under polarised light exposure in a standalone structure. In addition to classical dipolar mode, for the very first time, we demonstrated CTPs in the THz domain due to the direct shuttling of the charges across the metallic fractal microantenna which led to sharp resonant absorption peaks. Using both numerical and experimental studies, we have investigated and confirmed the excitation of the CTP modes and highly tunable spectral response of the proposed plasmonic fractal structure. This understanding opens new and promising horizons for tightly integrated THz devices with high efficiency and functionality.

  20. Doping graphene films via chemically mediated charge transfer

    Directory of Open Access Journals (Sweden)

    Ishikawa Ryousuke

    2011-01-01

    Full Text Available Abstract Transparent conductive films (TCFs are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ, is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.

  1. Satellite lines at the ionization threshold in charge transfer systems

    Science.gov (United States)

    Wardermann, W.; von Niessen, W.

    1992-01-01

    This article deals with the possibility of low-energy ionizations of reduced intensity for larger organic molecules. Possible mechanisms which may lead to this phenomenon are outlined and the necessary structural features are discussed. The lowest ionization energies of some organic unsaturated nitro and nitroso compounds are calculated by the ADC(3) ab initio many-body Green's function method. The π-electron system consists either of fused five- and six-membered rings or of two fused five-membered rings with a variable number of heteroatoms. Some of the molecules contain exocylic double bonds and some are substituted with the donor groups -NH 2, -OH and -NHOH. The strongest many-body effects are found for the nitroso compounds, where in one case the spectral line at the ionization threshold has lost more than 40% of its intensity to satellites. We study the many-body effects at or close to the ionization threshold for these compounds. A particular mechanism which involves the screening of localized valence holes by charge transfer excitations appears to be capable of influencing the profile and intensities of the ionization spectrum already at the ionization threshold. The effect leads to strongly reduced relative intensities of the bands and may cause the appearance of satellite bands nearly at the ionization threshold. The spectral changes in the outermost valence region are discussed by using a simple model calculation in terms of ground-state electronic properties of the molecules.

  2. Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance

    Indian Academy of Sciences (India)

    SHWETA DHILLON; RAMA KANT

    2017-08-01

    Randles-Ershler admittance model is extensively used in the modeling of batteries, fuel cells, sensors etc. It is also used in understanding response of the fundamental systems with coupled processes like charge transfer, diffusion, electric double layer charging and uncompensated solution resistance. Wegeneralize phenomenological theory for the Randles-Ershler admittance at the electrode with double layer capacitance and charge transfer heterogeneity, viz., non-uniform double layer capacitance and charge transfer resistance (c d and R CT). Electrode heterogeneity is modeled through distribution functions of R CT and c d, viz., log-normal distribution function. High frequency region captures influence of electric double layer while intermediate frequency region captures influence from the charge transfer resistance of heterogeneous electrode. A heterogeneous electrode with mean charge transfer resistance $\\bar{R CT}$ shows faster charge transfer kinetics over a electrode with uniform charge transfer resistance ($\\bar{R CT}$). It is also observed that a heterogeneous electrode having high mean with large variance in the R CT and c d can behave same as an electrode having low mean with small variance in the R CT and c d. The origin of coupling of uncompensated solution resistance (between working and reference electrode) with the charge transfer kinetics is explained. Finally, our model provides a simple route to understand the effect of spatial heterogeneity.

  3. Ultrafast Charge Photogeneration in MEH-PPV Charge-Transfer Complexes

    Science.gov (United States)

    Bakulin, Artem A.; Paraschuk, Dmitry Yu.; Pshenichnikov, Maxim S.; van Loosdrecht, Paul H. M.

    Visible-pump-IR-probe spectroscopy is used to study the ultrafast charge dynamics in MEH-PPV based charge-transfer complexes and donor-acceptor blends. Transient anisotropy of the polymer polaron band provides invaluable insights into excitation localisation and charge-transfer pathways.

  4. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  5. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    Energy Technology Data Exchange (ETDEWEB)

    Morherr, Antonia, E-mail: morherr@stud.uni-frankfurt.de [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Witt, Sebastian [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Chernenkaya, Alisa [Graduate School Materials Science in Mainz, 55128 Mainz (Germany); Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bäcker, Jan-Peter [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Schönhense, Gerd [Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bolte, Michael [Institut für anorganische Chemie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Krellner, Cornelius [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany)

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-F{sub x}, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  6. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    Science.gov (United States)

    Morherr, Antonia; Witt, Sebastian; Chernenkaya, Alisa; Bäcker, Jan-Peter; Schönhense, Gerd; Bolte, Michael; Krellner, Cornelius

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-Fx, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  7. Crystal Growth of new charge-transfer salts based on $\\pi$-conjugated molecules

    CERN Document Server

    Morherr, Antonia; Chernenkaya, Alisa; Bäcker, Jan-Peter; Schönhense, Gerd; Bolte, Michael; Krellner, Cornelius

    2016-01-01

    New charge transfer crystals of $\\pi$-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure is reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-F$_x$, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with $\\pi$-conjug...

  8. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.

    Science.gov (United States)

    Ahn, Tae Kyu; Avenson, Thomas J; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K; Bassi, Roberto; Fleming, Graham R

    2008-05-01

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  9. Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer

    Science.gov (United States)

    Skourtis, Spiros S.; Prytkova, Tatiana; Beratan, David N.

    2007-12-01

    This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH--containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH-, upon photo-excitation of FADH- with 350-450 nm light. We compute the lowest singlet excited states of FADH- in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH- that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron-acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH--thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green's function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH- causes a π→π* charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH--to-dimer electronic coupling, thus inducing rapid electron transfer.

  10. Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer

    Science.gov (United States)

    Skourtis, Spiros S.; Prytkova, Tatiana; Beratan, David N.

    2012-01-01

    This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH−-containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH−, upon photo-excitation of FADH− with 350–450 nm light. We compute the lowest singlet excited states of FADH− in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH− that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron- acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH− - thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green’s function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH− causes a π → π* charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH− - to - dimer electronic coupling, thus inducing rapid electron transfer. PMID:23226907

  11. Self-interaction and charge transfer in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Koerzdoerfer, Thomas

    2009-12-18

    This work concentrates on the problem of self-interaction, which is one of the most serious problems of commonly used approximative density functionals. As a major result of this work, it is demonstrated that self-interaction plays a decisive role for the performance of different approximative functionals in predicting accurate electronic properties of organic molecular semiconductors. In search for a solution to the self-interaction problem, a new concept for correcting commonly used density functionals for self-interaction is introduced and applied to a variety of systems, spanning small molecules, extended molecular chains, and organic molecular semiconductors. It is further shown that the performance of functionals that are not free from self-interaction can vary strongly for different systems and observables of interest, thus entailing the danger of misinterpretation of the results obtained from those functionals. The underlying reasons for the varying performance of commonly used density functionals are discussed thoroughly in this work. Finally, this thesis provides strategies that allow to analyze the reliability of commonly used approximations to the exchange-correlation functional for particular systems of interest. This cumulative dissertation is divided into three parts. Part I gives a short introduction into DFT and its time-dependent extension (TDDFT). Part II provides further insights into the self-interaction problem, presents a newly developed concept for the correction of self-interaction, gives an introduction into the publications, and discusses their basic results. Finally, the four publications on self-interaction and charge-transfer in extended molecular systems and organic molecular semiconductors are collected in Part III. (orig.)

  12. From charge transfer to electron transfer in halogen-bonded complexes of electrophilic bromocarbons with halide anions.

    Science.gov (United States)

    Rosokha, Sergiy V; Traversa, Alfredo

    2015-02-21

    Experimental and computational studies of the halogen-bonded complexes, [R-Br, X(-)], of bromosubstituted electrophiles, R-Br, and halide anions, X(-), revealed that decrease of a gap between the frontier orbitals of interacting species led to reduction of the energy of the optical charge-transfer transition and to increase in the ground-state charge transfer (X(-) → R-Br) in their associates. These variations were accompanied by weakening of the intramolecular, C-Br, and strengthening of the intermolecular, BrX(-), bonds. In the limit of the strongest electron donor-acceptor pairs, formation of the halogen-bonded complexes was followed by the oxidation of iodide to triiodide, which took place despite the fact that the I(-) → R-Br electron-transfer step was highly endergonic and the calculated outer-sphere rate constant was negligibly small. However, the calculated barrier for the inner-sphere electron transfer accompanied by the halogen transfer, R-BrI(-) → R˙Br-I(-)˙, was nearly 24 kcal mol(-1) lower as compared to that calculated for the outer-sphere process and the rate constant of such reaction was consistent with the experimental kinetics. A dramatic decrease of the electron-transfer barriers (leading to 18-orders of magnitude increase of the rate constant) was related to the strong electronic coupling of the donor and acceptor within the halogen-bonded precursor complex, as well as to the lower solvent reorganization energy and the successor-complex stabilization.

  13. Twisting Somersault

    CERN Document Server

    Dullin, Holger R

    2015-01-01

    A complete description of twisting somersaults is given using a reduction to a time-dependent Euler equation for non-rigid body dynamics. The central idea is that after reduction the twisting motion is apparent in a body frame, while the somersaulting (rotation about the fixed angular momentum vector in space) is recovered by a combination of dynamic and geometric phase. In the simplest "kick-model" the number of somersaults $m$ and the number of twists $n$ are obtained through a rational rotation number $W = m/n$ of a (rigid) Euler top. This rotation number is obtained by a slight modification of Montgomery's formula [9] for how much the rigid body has rotated. Using the full model with shape changes that take a realistic time we then derive the master twisting-somersault formula: An exact formula that relates the airborne time of the diver, the time spent in various stages of the dive, the numbers $m$ and $n$, the energy in the stages, and the angular momentum by extending a geometric phase formula due to C...

  14. Oliver Twist

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and

  15. Oliver Twist

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and explo

  16. Direct electrochemical detection of PCR product based on charge transfer through DNA

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongtao; ZHANG Zhijie; JU Huangxian

    2005-01-01

    @@ Human genome project and genetic identification for inherited diseases will definitely have a profound impact on the diagnosis of diseases[1], which calls for rapid and accurate assays of DNA. Among different types of sensors, electrochemical DNA biosensors offer a promising alternative means[2,3]. Recent efforts to elucidate the mechanism of charge transfer in DNA have demonstrated that the charge transfer is sensitive to the perturbation in base stack[4,5]. Long-range charge transfer in DNA therefore has been showing great potential application in the development of DNA-based biosensors, especially in the study of single nucleotide polymorphs[7―10].

  17. Experimental exploration of the Mulliken-Hush relationship for intramolecular electron transfer reactions.

    Science.gov (United States)

    Mukherjee, Tamal; Ito, Naoki; Gould, Ian R

    2011-03-17

    The Mulliken-Hush (M-H) relationship provides the critical link between optical and thermal electron transfer processes, and yet very little direct experimental support for its applicability has been provided. Dicyanovinylazaadamantane (DCVA) represents a simple two-state (neutral/charge-transfer) intramolecular electron transfer system that exhibits charge-transfer absorption and emission spectra that are readily measurable in solvents with a wide range of polarities. In this regard it represents an ideal model system for studying the factors that control both optical charge separation (absorption) and recombination (emission) processes in solution. Here we explore the applicability of the M-H relation to quantitative descriptions of the optical charge-transfer processes in DCVA. For DCVA, the measured radiative rate constants exhibit a linear dependence on transition energy, and transition dipole moments exhibit an inverse dependence on transition energy, consistent with the M-H relationship.

  18. High-pressure effects on intramolecular electron transfer compounds

    CERN Document Server

    He Li Ming; Li Hong; Zhang Bao Wen; Li Yi; Yang Guo Qiang

    2002-01-01

    We explore the effect of pressure on the fluorescence spectra of the intramolecular electron transfer compound N-(1-pyrenylmethyl), N-methyl-4-methoxyaniline (Py-Am) and its model version, with poly(methyl methacrylate) blended in, at high pressure up to 7 GPa. The emission properties of Py-Am and pyrene show distinct difference with the increase of pressure. This difference indicates the strength of the charge transfer interaction resulting from the adjusting of the conformation of Py-Am with increase of pressure. The relationship between the electronic state of the molecule and pressure is discussed.

  19. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO2. The yield for this phenomenon is on the order of 10-4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D2 compared to H2, contrary to what is expected given the higher mass of D2. Reversible changes in the rectification factor of the diode are observed when switching between D2 and H2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H2 oxidation. Absorption of the light in the Si, combined with

  20. An interesting spectroscopic method for chromofluorogenic detection of cyanide ion in aqueous solution: Disruption of intramolecular charge transfer (ICT)

    Indian Academy of Sciences (India)

    Abdolhamid Alizadeh; Sohrab Ghouzivand; Mohammad M Khodaei; Mehdi Ardalani

    2016-04-01

    5-[4-(dimethylamino)benzylidene) pyrimidine-2,4,6(1H,3H,5H)]-trione (DMP-3H), the receptor was synthesized which played a chemosensor role for cyanide ion (CN−) in aqueous solution with colorimetric and fluorescence turn-off responses. Upon addition of CN− ion into the solution containing the receptor, a color change visible to the naked eye was observed from yellow to colourless and also, the fluorescence of the solution was immediately quenched. Moreover, DMP-3H exhibited a selective response to cyanide ion over many other anions such as F−, Cl−, Br−, I−, SO$^{2−}_{3}$ , OCN−, ClO$^{−}_{3}$ , CO$^{2−}_{3}$ , IO$^{−}_{3}$ , N$^{−}_{3}$ , C$_{2}$O$^{2−}_{4}$ and SCN−. The detection limit toward CN− was 8.1 × 10−7 mol.L−1, which is satisfactory enough for monitoring CN− levels in physiological and environmental systems.

  1. D-π-A Compounds with Tunable Intramolecular Charge Transfer Achieved by Incorporation of Butenolide Nitriles as Acceptor Moieties

    DEFF Research Database (Denmark)

    Moreno-Yruela, Carlos; Garín, Javier; Orduna, Jesús

    2015-01-01

    Chromophores where a polyenic spacer separates a 4H-pyranylidene or benzothiazolylidene donor and three different butenolide nitriles have been synthesized and characterized. The role of 2(5H)-furanones as acceptor units on the polarization and the second-order nonlinear (NLO) properties has been...

  2. Off-On-Off fluorescence behavior of an intramolecular charge transfer probe toward anions and CO2

    Science.gov (United States)

    Ali, Rashid; Razi, Syed S.; Shahid, Mohammad; Srivastava, Priyanka; Misra, Arvind

    2016-11-01

    The photophysical behavior of a newly developed fluorescent probe, tricyanoethylphenyl phenanthroimidazole (TCPPI) has been studied. Upon interaction of different class of anions TCPPI displayed naked-eye sensitive fluorescence "turn-on" response to detect selectively F- (0.98 μM, 18.62 ppb) and CN- (1.12 μM, 29.12 ppb) anions in acetonitrile (MeCN). Job's plot analysis revealed a 1:1 binding stoichiometry between probe and anions. The spectral data analysis and 1H NMR titration studies suggested about the affinity of F- and CN- anions with moderately acidic - NH fragment of imidazolyl unit of probe through deprotonation and H-bonding interaction. Moreover, the anion activated probe upon interaction with CO2 revived photophysical properties of probe, "On-Off-On" type fluorescence and enabled anion-induced CO2 sensing in the medium.

  3. Twisted baskets.

    Science.gov (United States)

    Hermann, Keith; Pratumyot, Yaowalak; Polen, Shane; Hardin, Alex M; Dalkilic, Erdin; Dastan, Arif; Badjić, Jovica D

    2015-02-23

    A preparative procedure for obtaining a pair of twisted molecular baskets, each comprising a chiral framework with either right ((P)-1syn) or left ((M)-1syn) sense of twist and six ester groups at the rim has been developed and optimized. The racemic (P/M)-1syn can be obtained in three synthetic steps from accessible starting materials. The resolution of (P/M)-1syn is accomplished by its transesterification with (1R,2S,5R)-(-)-menthol in the presence of a Ti(IV) catalyst to give diastereomeric 8(P) and 8(M). It was found that dendritic-like cavitands 8(P) and 8(M), in CD2Cl2, undergo self-inclusion ((1)H NMR spectroscopy) with a menthol moiety occupying the cavity of each host. Importantly, the degree of inclusion of the menthol group was ((1)H NMR spectroscopy) found to be greater in the case of 8(P) than 8(M). Accordingly, it is suggested that different folding characteristic of 8(P) and 8(M) ought to affect the physicochemical characteristics of the hosts to permit their effective separation by column chromatography. The absolute configuration of 8(P)/8(M), encompassing right- and left-handed "cups", was determined with the exciton chirality method and also verified in silico (DFT: B3LYP/TZVP). Finally, the twisted baskets are strongly fluorescent due to three naphthalene chromophores, having a high fluorescence quantum yield within the rigid framework of 8(P)/8(M).

  4. Charge transfer polarisation wave and carrier pairing in the high T(sub c) copper oxides

    Science.gov (United States)

    Chakraverty, B. K.

    1990-01-01

    The High T(sub c) oxides are highly polarizable materials and are charge transfer insulators. The charge transfer polarization wave formalism is developed in these oxides. The dispersion relationships due to long range dipole-dipole interaction of a charge transfer dipole lattice are obtained in 3-D and 2-D. These are high frequency bosons and their coupling with carriers is weak and antiadiabatic in nature. As a result, the mass renormalization of the carriers is negligible in complete contrast to conventional electron-phonon interaction, that give polarons and bipolarons. Both bound and superconducting pairing is discussed for a model Hamiltonian valid in the antiadiabatic regime, both in 3-D and 2-D. The stability of the charge transfer dipole lattice has interesting consequences that are discussed.

  5. Electronic properties of the charge transfer material MnPc/F4TCNQ

    Science.gov (United States)

    Rückerl, Florian; Mahns, Benjamin; Dodbiba, Eni; Nikolis, Vasileios; Herzig, Melanie; Büchner, Bernd; Knupfer, Martin; Hahn, Torsten; Kortus, Jens

    2016-09-01

    We present electronic properties of a charge transfer material consisting of Manganese(ii)Phthalocyanine (MnPc) and 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), investigated by means of photoemission spectroscopy and electron energy-loss spectroscopy, as well as supporting density functional theory calculations. We report the successful formation of a bulk material characterized by a strong interaction of the molecular compounds which affects the optical properties significantly. Our investigations reveal a significant charge transfer, whereas the MnPc molecule is oxidized and F4TCNQ is reduced. The valence band data indicate a full charge transfer between the two partners. The electronic excitation spectrum reveals a relatively small energy gap of MnPc/F4TCNQ of about 0.7 eV, which is related to a charge transfer excitation.

  6. Charge-Transfer Reaction of Cediranib with 2,3-Dichloro- 3,5 ...

    African Journals Online (AJOL)

    Abstract. Purpose: To investigate the charge-transfer (CT) reaction between cediranib (CRB) and 2, 3 - dichloro- ... Conclusion: The developed assay has high throughput and consumed minimum volume of organic solvent ..... radical ions…

  7. Geometry and quadratic nonlinearity of charge transfer complexes in solution using depolarized hyper-Rayleigh scattering.

    Science.gov (United States)

    Pandey, Ravindra; Ghosh, Sampa; Mukhopadhyay, S; Ramasesha, S; Das, Puspendu K

    2011-01-28

    We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, β(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D=I(2ω,X,X)/I(2ω,Z,X) and D(')=I(2ω,X,C)/I(2ω,Z,C) in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, β(HRS), and the value of macroscopic depolarization ratios, D and D('), are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical β(HRS), D and D(') values as a function of the geometry of the complex. The calculated β(HRS), D, and D(') values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30° is observed. Thus, we have demonstrated in

  8. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO2. The yield for this phenomenon is on the order of 10-4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D2 compared to H2, contrary to what is expected given the higher mass of D2. Reversible changes in the rectification factor of the diode are observed when switching between D2 and H2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H2 oxidation. Absorption of the light in the Si, combined with

  9. A compact tetrathiafulvalene-benzothiadiazole dyad and its highly symmetrical charge-transfer salt: ordered donor π-stacks closely bound to their acceptors.

    Science.gov (United States)

    Geng, Yan; Pfattner, Raphael; Campos, Antonio; Hauser, Jürg; Laukhin, Vladimir; Puigdollers, Joaquim; Veciana, Jaume; Mas-Torrent, Marta; Rovira, Concepció; Decurtins, Silvio; Liu, Shi-Xia

    2014-06-02

    A compact and planar donor-acceptor molecule 1 comprising tetrathiafulvalene (TTF) and benzothiadiazole (BTD) units has been synthesised and experimentally characterised by structural, optical, and electrochemical methods. Solution-processed and thermally evaporated thin films of 1 have also been explored as active materials in organic field-effect transistors (OFETs). For these devices, hole field-effect mobilities of μFE = (1.3±0.5)×10(-3) and (2.7±0.4)×10(-3)  cm(2)  V s(-1) were determined for the solution-processed and thermally evaporated thin films, respectively. An intense intramolecular charge-transfer (ICT) transition at around 495 nm dominates the optical absorption spectrum of the neutral dyad, which also shows a weak emission from its ICT state. The iodine-induced oxidation of 1 leads to a partially oxidised crystalline charge-transfer (CT) salt {(1)2I3}, and eventually also to a fully oxidised compound {1I3}⋅1/2I2. Single crystals of the former CT compound, exhibiting a highly symmetrical crystal structure, reveal a fairly good room temperature electrical conductivity of the order of 2 S cm(-1). The one-dimensional spin system bears compactly bonded BTD acceptors (spatial localisation of the LUMO) along its ridge. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The effect of structural changes on charge transfer states in a light-harvesting carotenoid-diaryl-porphyrin-C{sub 60} molecular triad

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Marco [Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968 (United States); Basurto, Luis; Zope, Rajendra R. [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Baruah, Tunna, E-mail: tbaruah@utep.edu [Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2014-05-28

    We present a detailed study of charge transfer (CT) excited states for a large number of configurations in a light-harvesting Carotenoid-diaryl-Porphyrin-C{sub 60} (CPC{sub 60}) molecular triad. The chain-like molecular triad undergoes photoinduced charge transfer process exhibiting a large excited state dipole moment, making it suitable for application to molecular-scale opto-electronic devices. An important consideration is that the structural flexibility of the CPC{sub 60} triad impacts its dynamics in solvents. Since experimentally measured dipole moments for the triad of ∼110 D and ∼160 D strongly indicate a range in structural variability in the excited state, studying the effect of structural changes on the CT excited state energetics furthers the understanding of its charge transfer states. We have calculated the variation in the lowest CT excited state energies by performing a scan of possible variation in the structure of the triad. Some of these configurations were generated by incrementally scanning a 360° torsional (dihedral) twist at the C{sub 60}-porhyrin linkage and the porphyrin-carotenoid linkage. Additionally, five different CPC{sub 60} conformations were studied to determine the effect of pi-conjugation and particle-hole Coulombic attraction on the CT excitation energies. Our calculations show that configurational changes in the triad induces a variation of ∼0.6 eV in CT excited state energies in the gas-phase. The corresponding calculated excited state dipoles show a range of 47 D–188 D. The absorption spectra and density of states of these structures show little variation except for the structures where the porphyrin and aryl conjugation is changed.

  11. The effect of structural changes on charge transfer states in a light-harvesting carotenoid-diaryl-porphyrin-C60 molecular triad

    Science.gov (United States)

    Olguin, Marco; Basurto, Luis; Zope, Rajendra R.; Baruah, Tunna

    2014-05-01

    We present a detailed study of charge transfer (CT) excited states for a large number of configurations in a light-harvesting Carotenoid-diaryl-Porphyrin-C60 (CPC60) molecular triad. The chain-like molecular triad undergoes photoinduced charge transfer process exhibiting a large excited state dipole moment, making it suitable for application to molecular-scale opto-electronic devices. An important consideration is that the structural flexibility of the CPC60 triad impacts its dynamics in solvents. Since experimentally measured dipole moments for the triad of ˜110 D and ˜160 D strongly indicate a range in structural variability in the excited state, studying the effect of structural changes on the CT excited state energetics furthers the understanding of its charge transfer states. We have calculated the variation in the lowest CT excited state energies by performing a scan of possible variation in the structure of the triad. Some of these configurations were generated by incrementally scanning a 360° torsional (dihedral) twist at the C60-porhyrin linkage and the porphyrin-carotenoid linkage. Additionally, five different CPC60 conformations were studied to determine the effect of pi-conjugation and particle-hole Coulombic attraction on the CT excitation energies. Our calculations show that configurational changes in the triad induces a variation of ˜0.6 eV in CT excited state energies in the gas-phase. The corresponding calculated excited state dipoles show a range of 47 D-188 D. The absorption spectra and density of states of these structures show little variation except for the structures where the porphyrin and aryl conjugation is changed.

  12. Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Keith H., E-mail: keith.hughes@bangor.ac.uk [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Cahier, Benjamin [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martinazzo, Rocco [Dipartimento di Chimica Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Tamura, Hiroyuki [WPI-Advanced Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany)

    2014-10-17

    Highlights: • Quantum dynamical study of exciton dissociation at a heterojunction interface. • The non-Markovian quantum dynamics involves a highly structured spectral density. • Spectral density is reconstructed from an effective mode transformation of the Hamiltonian. • The dynamics is studied using the hierarchical equations of motion approach. • It was found that the temperature has little effect on the charge transfer. - Abstract: We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene–fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway.

  13. Charge transfer bands in optical materials and related defect level location

    Science.gov (United States)

    Dorenbos, Pieter

    2017-07-01

    Charge transfer (CT)-bands, electron trapping, hole trapping, electron release, hole release, metal-to-metal-charge transfer, CT-luminescence, anomalous emission, impurity trapped exciton emission, inter-valence charge transfer, pair-emission, tunneling, photo-electron spectroscopy, redox potentials, photo-ionization, thermal-ionization. All these phenomena deal with the transfer of an electron from one atom in a compound to either another atom in the compound or to the ambient, i.e., outside the compound. The energy needed for, or released in, such transfer carries information on the electron binding energy in the defect levels with respect to the host band levels or the levels in the ambient. First the different types of charge transfer between a lanthanide and the host bands, and how they can be used to construct a host referred binding energy (HRBE) diagram, are reviewed. Then briefly the chemical shift model is introduced in order to convert the HRBE diagram into a vacuum referred binding energy diagram (VRBE). Next charge transfer between transition metal elements and host bands and between Bi3+ and host bands are treated, and finally electron transfer from one defect to another and to the ambient. Illustrating examples are provided.

  14. Spectroscopy of equilibrium and nonequilibrium charge transfer in semiconductor quantum structures

    Science.gov (United States)

    Rössler, C.; Burkhard, S.; Krähenmann, T.; Röösli, M.; Märki, P.; Basset, J.; Ihn, T.; Ensslin, K.; Reichl, C.; Wegscheider, W.

    2014-08-01

    We investigate equilibrium and nonequilibrium charge-transfer processes by performing high-resolution transport spectroscopy. Using electrostatically defined quantum dots for energy-selective emission and detection, we achieved very high spectral resolution and a high degree of tunability of relevant experimental parameters. Most importantly, we observe that the spectral width of elastically transferred electrons can be substantially smaller than the linewidth of a thermally broadened Coulomb peak. This finding indicates that the charge-transfer process is fast compared to the electron-phonon interaction time. By drawing an analogy to double quantum dots, we argue that the spectral width of the elastic resonance is determined by the lifetime broadening hΓ of the emitter and detector states. Good agreement with the model is found also in an experiment in which the charge transfer is in the regime hΓ≫kBT. By performing spectroscopy below the Fermi energy, we furthermore observe elastic and inelastic transfer of holes.

  15. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Science.gov (United States)

    Gómez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodríguez, A.

    2003-10-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8×8 cm2 with a pixel size of 1.27×1.27 mm2. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  16. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    Science.gov (United States)

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-05-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1-1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties.

  17. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    charge transfer (CT) excitons, which is Coulombically bound interfacial electron- hole pairs residing at the donor/acceptor heterojunctions. The CT state represents an intermediate state between the exciton dissociation and recombination back to the ground state. Since the recombination of photo...... at the donor/acceptor interface is detected. As a less studied system, we examine here the interfacial charge transfer state recombination in DBP:C70 thin-films. The weak EL from the small molecule solar cell biased in the forward direction gives valuable information about the CT state recombination, from...... which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...

  18. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption.

    Science.gov (United States)

    Siegmund, Bernhard; Mischok, Andreas; Benduhn, Johannes; Zeika, Olaf; Ullbrich, Sascha; Nehm, Frederik; Böhm, Matthias; Spoltore, Donato; Fröb, Hartmut; Körner, Christian; Leo, Karl; Vandewal, Koen

    2017-06-05

    Blending organic electron donors and acceptors yields intermolecular charge-transfer states with additional optical transitions below their optical gaps. In organic photovoltaic devices, such states play a crucial role and limit the operating voltage. Due to its extremely weak nature, direct intermolecular charge-transfer absorption often remains undetected and unused for photocurrent generation. Here, we use an optical microcavity to increase the typically negligible external quantum efficiency in the spectral region of charge-transfer absorption by more than 40 times, yielding values over 20%. We demonstrate narrowband detection with spectral widths down to 36 nm and resonance wavelengths between 810 and 1,550 nm, far below the optical gap of both donor and acceptor. The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection.

  19. Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface

    KAUST Repository

    Gruenewald, Marco

    2015-02-11

    We investigate the prototypical hybrid interface formed between PTCDA and conductive n-doped ZnO films by means of complementary optical and electronic spectroscopic techniques. We demonstrate that shallow donors in the vicinity of the ZnO surface cause an integer charge transfer to PTCDA, which is clearly restricted to the first monolayer. By means of DFT calculations, we show that the experimental signatures of the anionic PTCDA species can be understood in terms of strong hybridization with localized states (the shallow donors) in the substrate and charge back-donation, resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron-transport level but requires rather an atomistic understanding of the interfacial interactions. The study reveals that defect sites and dopants can have a significant influence on the specifics of interfacial coupling and thus on carrier injection or extraction.

  20. Analysis of incomplete charge transfer effects in a CMOS image sensor

    Institute of Scientific and Technical Information of China (English)

    Han Liqiang; Yao Suying; Xu Jiangtao; Xu Chao; Gao Zhiyuan

    2013-01-01

    A method to judge complete charger transfer is proposed for a four-transistor CMOS image sensor with a large pixel size.Based on the emission current theory,a qualitative photoresponse model is established to the preliminary prediction.Further analysis of noise for incomplete charge transfer predicts the noise variation.The test pixels were fabricated in a specialized 0.18μm CMOS image sensor process and two different processes of buried N layer implantation are compared.The trend prediction corresponds with the test results,especially as it can distinguish an unobvious incomplete charge transfer.The method helps us judge whether the charge transfer time satisfies the requirements of the readout circuit for the given process especially for pixels of a large size.

  1. Charge transfer between sensing and targeted metal nanoparticles in indirect nanoplasmonic sensors

    Science.gov (United States)

    Zhdanov, Vladimir P.; Langhammer, Christoph

    2017-03-01

    In indirect nanoplasmonic sensors, the plasmonic metal nanoparticles are adjacent to the material of interest, and the material-related changes of their optical properties are used to probe that material. If the latter itself represents another metal in the form of nanoparticles, its deposition is accompanied by charge transfer to or from the plasmonic nanoparticles in order to equalize the Fermi levels. We estimate the value of the transferred charge and show on the two examples, nanoparticle sintering and hydride formation, that the charge transfer has negligible influence on the probed processes, because the effect of charge transfer is less important than that of nanoparticle surface energy. This further corroborates the non-invasive nature of nanoplasmonic sensors.

  2. Modeling noncovalent radical-molecule interactions using conventional density-functional theory: beware erroneous charge transfer.

    Science.gov (United States)

    Johnson, Erin R; Salamone, Michela; Bietti, Massimo; DiLabio, Gino A

    2013-02-07

    Conventional density-functional theory (DFT) has the potential to overbind radical-molecule complexes because of erroneous charge transfer. We examined this behavior by exploring the ability of various DFT approximations to predict fractional charge transfer and by quantifying the overbinding in a series of complexes. It is demonstrated that too much charge is transferred from molecules to radicals when the radical singly unoccupied molecular orbitals are predicted to be erroneously too low in energy relative to the molecule highest occupied molecular orbitals, leading to excessive Coulombic attraction. In this respect, DFT methods formulated with little or no Hartree-Fock exchange perform most poorly. The present results illustrate that the charge-transfer problem is much broader than may have been previously expected and is not limited to conventional (i.e., molecule-molecule) donor-acceptor complexes.

  3. Charge transfer and excitation in H++CH3 collisions below 10keV

    Science.gov (United States)

    Nagao, Masatoshi; Hida, Ken-Nosuke; Kimura, Mineo; Rai, Sachchida N.; Liebermann, Heinz-Peter; Buenker, Robert J.; Suno, Hiroya; Stancil, Phillip C.

    2008-07-01

    Charge transfer and electronic excitation in collisions of H+ ions with CH3 from a few tens of eV up to 10keV are theoretically investigated. The adiabatic potential energy curves and corresponding wave functions are calculated by using the multireference single- and double-excitation configuration interaction method, and the scattering dynamics is studied based on the semiclassical impact parameter molecular-orbital close-coupling approach. Charge-transfer cross sections are found to be large and rather energy-dependent over the entire energy region studied. Electronic excitation is also energy-dependent with a sharp increase from below 10-17to10-16cm2 . Most of the molecular products produced through charge transfer or excitation are known to be unstable and undergo fragmentation producing various hydrocarbon radical species. Hence, identification of fragmented species and their production mechanism are important for spectroscopic analysis.

  4. Near resonant charge transfer in the reaction F(+) + CO - F + CO(+)

    Science.gov (United States)

    Kusunoki, I.; Ishikawa, T.

    1985-06-01

    Charge transfer reactions in the F(+) + CO system were investigated using a F(+) ion beam in the energy range 10-300 eVlab. The electronically excited product CO(+) A2Pi(i) was observed by the emission from the A-X transitions. At low collisional energy the dominant product is in the vibrational level v' = 5. The reaction cross section sigma(5) is about 1 A-sq at 12 eVc.m. and decreases with increasing collision energy. The large cross section at v' = 5 can be interpreted by near-resonant charge-transfer reactions. The rotational temperature of the product is about 300 K, which is the temperature of the reactant CO gas. For the resonant charge transfer, the translational energy is not effective, but the electronic and vibrational energy couple with each other strongly.

  5. Topological effects of charge transfer in telomere G-quadruplex: Mechanism on telomerase activation and inhibition

    CERN Document Server

    Wang, Xin

    2015-01-01

    We explore charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of charge transport in TG4 DNA. The consecutive TG4(CTG4) is semiconducting with 0.2 ~ 0.3eV energy gap. Charges transfers favorably in the consecutive TG4, but are trapped in the non-consecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly ~ 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  6. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    Science.gov (United States)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  7. Polyoxometalate active charge-transfer material for mediated redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  8. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    Science.gov (United States)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan; Guo, Yanling; Chen, Ximeng

    2016-11-01

    Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5-22.5 keV C- and F- ions scattering on H2O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  9. Single and double charge transfer of He(2+) ions with molecules at near-thermal energies

    Science.gov (United States)

    Tosh, R. E.; Johnsen, R.

    1993-01-01

    Rate coefficients were measured for charge-transfer reactions of He(2+) ions with H2, N2, O2, CO, CO2, and H2O. The experiments were carried out using a selected-ion drift-tube mass spectrometer. Total rate coefficients are found to be very large and are generally close to the limiting Langevin capture rate coefficients or the corresponding ADO-model (Su and Bowers, 1973) coefficients. The product-ion spectra indicate that both single and double charge transfer and possibly transfer ionization occur in these reactions.

  10. Photoinduced charge transfer within polyaniline-encapsulated quantum dots decorated on graphene.

    Science.gov (United States)

    Nguyen, Kim Truc; Li, Dehui; Borah, Parijat; Ma, Xing; Liu, Zhaona; Zhu, Liangliang; Grüner, George; Xiong, Qihua; Zhao, Yanli

    2013-08-28

    A new method to enhance the stability of quantum dots (QDs) in aqueous solution by encapsulating them with conducting polymer polyaniline was reported. The polyaniline-encapsulated QDs were then decorated onto graphene through π-π interactions between graphene and conjugated polymer shell of QDs, forming stable polyaniline/QD/graphene hybrid. A testing electronic device was fabricated using the hybrid in order to investigate the photoinduced charge transfer between graphene and encapsulated QDs within the hybrid. The charge transfer mechanism was explored through cyclic voltammetry and spectroscopic studies. The hybrid shows a clear response to the laser irradiation, presenting a great advantage for further applications in optoelectronic devices.

  11. Molecular Dynamics Simulation on Charge Transfer Relaxation between Myoglobin and Water

    Institute of Scientific and Technical Information of China (English)

    CHENG Wei; ZHANG Feng-Shou; ZHANG Bo-Yang; ZHOU Hong-Yu

    2007-01-01

    Dynamical processes of myoglobin after photon-excited charge transfer between Fe ion and surrounding water anion ale simulated by a molecular dynamics model.The roles of Coulomb interaction effect and water effect in the relaxation process are discussed.It is found that the relaxations before and after charge transfer are similar.Strong Coulomb interactions and less water mobility decrease Coulomb energy fluctuations.An extra transferred charge of Fe ion has impact on water packing with a distance up to 0.86nm.

  12. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  13. Charge transfer polarisation wave in high Tc oxides and superconductive pairing

    Science.gov (United States)

    Chakraverty, B. K.

    1991-01-01

    A general formalism of quantized charge transfer polarization waves was developed. The nature of possible superconductive pairing between oxygen holes is discussed. Unlike optical phonons, these polarization fields will give rise to dielectric bipolarons or bipolaron bubbles. In the weak coupling limit, a new class of superconductivity is to be expected.

  14. Mechanism and Dynamics of Charge Transfer in Donor-Bridge-Acceptor Systems

    NARCIS (Netherlands)

    Gorczak-Vos, N.

    2016-01-01

    Photoinduced charge transfer in organic materials is a fundamental process in various biological and technological areas. Donor-bridge-acceptor (DBA) molecules are used as model systems in numerous theoretical and experimental work to systematically study and unravel the underlying mechanisms of cha

  15. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals

    Science.gov (United States)

    Sherman, David M.

    1987-01-01

    A number of mixed valence iron oxides and silicates (e.g., magnetite, ilvaite) exhibit thermally induced electron delocalization between adjacent Fe2+ and Fe3+ ions and optically induced electronic transitions which are assigned to Fe2+→Fe3+ intervalence charge transfer.

  16. Small-signal charge transfer inefficiency experiments explained by the McWhorter interface state model

    NARCIS (Netherlands)

    Penning De Vries, René G.M.; Wallinga, Hans

    1984-01-01

    The small-signal charge transfer inefficiency (SCTI) of a surface-channel CCD has been studied. The experimentally observed behavior of the SCTI could not be explained by the conventional interface state model. Using the McWhorter model for the interface states, which assumes a distribution of the s

  17. Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering

    Science.gov (United States)

    Lippitsch, Max E.

    1984-03-01

    A model is presented for the contribution of ground-state charge transfer between a metal and adsorbate to surface-enhanced Raman scattering (SERS). It is shown that this contribution can be understood using the vibronic theory for calculating Raman intensities. The enhancement is due to vibronic coupling of the molecular ground state to the metal states, the coupling mechanism being a modulation of the ground-state charge-transfer energy by the molecular vibrations. An analysis of the coupling operator gives the selection rules for this process, which turn out to be dependent on the overall symmetry of the adsorbate-metal system, even if the charge transfer is small enough for the symmetry of the adsorbate to remain the same as that of the free molecule. It is shown that the model can yield predictions on the properties of SERS, e.g., specificity to adsorption geometry, appearance of forbidden bands, dependence on the applied potential, and dependence on the excitation wavelength. The predictions are in good agreement with experimental results. It is also deduced from this model that in many cases atomic-scale roughness is a prerequisite for the observation of SERS. A result on the magnitude of the enhancement can only be given in a crude approximation. Although in most cases an additional electromagnetic enhancement seems to be necessary to give an observable signal, this charge-transfer mechanism should be important in many SERS systems.

  18. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    Science.gov (United States)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  19. Theoretical Study of the Charge-Transfer State Separation within Marcus Theory

    DEFF Research Database (Denmark)

    Volpi, Riccardo; Nassau, Racine; Nørby, Morten Steen

    2016-01-01

    We study, within Marcus theory, the possibility of the charge-transfer (CT) state splitting at organic interfaces and a subsequent transport of the free charge carriers to the electrodes. As a case study we analyze model anthracene-C60 interfaces. Kinetic Monte Carlo (KMC) simulations on the cold...

  20. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive d...

  1. Charge Injection, Charge Trapping and Charge Transfer in Quantum-Dot Solids

    NARCIS (Netherlands)

    Boehme, S.C.

    2015-01-01

    This study reports on fundamental processes in Quantum-Dot Solids, after light absorption. Transient Absorption and Time-resolved Photoluminescence spectrocopy reveal the dynamics of charge transfer and charge trapping processes. Typically, both occur on a picosecond time scale and compete with each

  2. Spectroscopy of charge transfer states in Mg1 - x Ni x O

    Science.gov (United States)

    Churmanov, V. N.; Sokolov, V. I.; Pustovarov, V. A.; Gruzdev, N. B.; Mironova-Ulmane, N.

    2016-10-01

    Photoluminescence and photoluminescence excitation spectra of solid solution Mg1- x Ni x O ( x = 0.008) have been analyzed. The contributions of charge transfer electronic states and nonradiative Auger relaxation to the formation of the photoluminescence spectrum are discussed.

  3. [Combined hopping-superexchange mechanism of charge transfer in DNA; a model with nearest interactions].

    Science.gov (United States)

    Lakhno, V D; Sultanov, V B

    2007-01-01

    In the framework of the earlier developed combined hopping-superexchange mechanism of charge transfer in DNA, a model with all nearest interactions between nucleobases is proposed. It is shown that the transfer rates for various types of nucleotide sequences calculated within this model are in a good agreement with experimental data.

  4. Fast ethylamine gas sensing based on intermolecular charge-transfer complexation

    Institute of Scientific and Technical Information of China (English)

    Eun Mi Lee; Seon Young Gwon; Young A Son; Sung Hoon Kim

    2012-01-01

    We have investigated the fast ethylamine gas sensing of 2-chloro-3,5-dinitrobenzotrifluoride (CDBF) loaded poly(acrylonitrile)nanofiber based on an intermolecular charge-transfer complexation.Reversible response and recovery were achieved using alternating gas exposure.This system shows a fast ethylamine gas sensing within 0.4 s.

  5. Review on charge transfer and chemical activity of TiO2: Mechanism and applications

    Science.gov (United States)

    Cai, Yongqing; Feng, Yuan Ping

    2016-12-01

    Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.

  6. Photodissociation dynamics of the iodine-arene charge-transfer complex

    NARCIS (Netherlands)

    Lenderink, Egbert; Duppen, Koos; Everdij, Frank P.X.; Mavri, Janez; Torre, Renato; Wiersma, Douwe A.

    1996-01-01

    The photodissociation reaction of the molecular iodine:arene charge-transfer (CT) complex into an iodine atom and an iodine atom-arene fragment has been investigated using femtosecond pump-probe, resonance Raman, and molecular dynamics simulations. In the condensed phase the reaction proceeds on a t

  7. The influence of the HGMF on mass-charge transfer in gravisensing cells.

    Science.gov (United States)

    Kondrachuk, A; Belyavskaya, N

    2001-07-01

    The present work is focused on the influence of the high-gradient-magnetic field (HGMF) on spatial distribution of ion fluxes along the roots (a), cytoplasmic streaming (b), and the processes of plant cell growth connected with intracellular mass and charge transfer (c).

  8. Low-energy state-selective charge transfer by multiply charged ions

    NARCIS (Netherlands)

    Lubinski, G; Juhasz, Z; Morgenstern, R; Hoekstra, R

    2001-01-01

    We present a combined rf-guided ion beam and photon emission spectroscopy method, which facilitates state-selective charge-transfer measurements at energies of direct relevance for astrophysics and fusion-plasma diagnostics and modeling. Ion energies have been varied from 1000 eV/amu down to energie

  9. Near-resonant versus nonresonant chemiluminescent charge-transfer reactions of atomic ions with HCl

    Science.gov (United States)

    Glenewinkel-Meyer, Th.; Ottinger, Ch.

    1994-01-01

    Charge-transfer reactions of C+, O+, F+, Ar+ and some other atomic ions with hydrogen chloride were investigated at collision energies between eVc.m.. This may be due to formation of a long-lived collision complex (Ar-HCl)+.

  10. Mechanism of the Primary Charge Transfer Reaction in the Cytochrome bc1 Complex

    DEFF Research Database (Denmark)

    Barragan, Angela M; Schulten, Klaus; Solov'yov, Ilia A

    2016-01-01

    , the quinol-protein interaction, which initiates the Q-cycle, has not yet been completely described. Furthermore, the initial charge transfer reactions of the Q-cycle lack a physical description. The present investigation utilizes classical molecular dynamics simulations in tandem with quantum density...

  11. Excited state charge transfer reaction in (mixed solvent + electrolyte) systems: Role of reactant-solvent and reactant-ion interactions

    Indian Academy of Sciences (India)

    Harun Al Rasid Gazi; Ranjit Biswas

    2011-05-01

    Fluorescence spectroscopic techniques have been used to study the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in two sets of mixed solvents, (1-propanol + ethyl acetate) and (propylene carbonate + acetonitrile), in the absence and presence of a strong electrolyte, lithium perchlorate. These two sets of mixed solvent systems represent binary solvent mixtures of low and high polarities, respectively. Density, sound velocity and viscosity measurements indicate that these two mixed solvent systems are structurally different. Stronger ion-reactant interaction is evidenced in the mole fraction independence of emission frequencies in electrolyte solutions of low polar binary solvent mixtures. For both these mixtures, the reaction driving force (- ) decreases with increase in mole fraction of the relatively less polar solvent component of the mixture. Interestingly, - increases significantly on addition of electrolyte in low polar mixtures and exhibits mixture composition dependence but, in contrast, - in high polar mixtures does not sense variation in mixture composition in presence of electrolyte. This insensitivity to mixture composition for high polar mixtures is also observed for the measured reaction time constant. In addition, the reaction time constant does not sense the presence of electrolyte in the high polar solvent mixtures. The reaction time constant in low polar mixtures, which becomes faster on addition of electrolyte, lengthens on increasing the mole fraction of the relatively less polar solvent component of the mixture. These observations have been qualitatively explained in terms of the measured solvent reorganization energy and reaction driving force by using expressions from the classical theory of electron transfer reaction.

  12. The interplay between neutral exciton and charge transfer states in single-strand polyadenine: a quantum dynamical investigation.

    Science.gov (United States)

    Santoro, Fabrizio; Improta, Roberto; Avila, Francisco; Segado, Mireia; Lami, Alessandro

    2013-08-01

    We investigate the quantum dynamics of the internal conversion of excitons into charge transfer (CT) states in single-strand oligomers of adenine (An) of different length (n up to 10 units) excited by a short-time laser pulse. Calculations are based on a model vibronic Hamiltonian whose parameters are fitted to accurate time-dependent density functional theory (TD-DFT) calculations, which was shown to reproduce the experimental absorption spectrum with the increase of n. As a first step, we analyze the impact of the vibrational motion on the population transfer in the dimer, highlighting that it causes loss of coherence and slows down the dynamics. For longer oligomers we resort to a simplified approach considering only electronic states and solving the equation of motion for the density matrix driven by inter-state couplings. In this way we are able also to include phenomenologically dephasing terms that mainly simulate intra-molecular effects, and lifetimes of local excitations mimicking monomer-like decay processes. Relaxation effects, whose role is to drive the system towards the thermal equilibrium allowing population exchange among states, are deliberately not considered here, since the focus is on very short-time dynamics. We consider both the cases of an instantaneous and of a finite-time (full width at half maximum 50 fs) laser pulse. According to our calculations, the photoexcited oligomers exhibit a complex dynamics and CT population rises on a 20-30 fs timescale and it persists even on the picosecond timescale. CT population increases with the length of the oligomer and it is only weakly dependent on the relative stability of CT and exciton states (within a range of 1500 cm(-1)). The chain length already modifies the photoexcited dynamics for A2 and A4 systems, but this effect saturates for small n so that the A10 oligomer is also representative of longer chains.

  13. Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

    Science.gov (United States)

    Hestand, Nicholas J.

    The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J

  14. Dependence of (35)Cl NQR on hydrogen bonding and temperature in dichlorophenol-aniline charge transfer complexes.

    Science.gov (United States)

    Ramananda, D; Ramesh, K P; Uchil, J

    2007-10-01

    The hydrogen-bonded charge transfer complexes of aniline with pi-acceptors (or proton donors) such as 2,5-, 2,6-, 3,4- and 3,5-dichlorophenol were prepared. The (35)Cl nuclear quadrupole resonance (NQR) frequencies of these charge transfer complexes in the temperature range 77-300 K were measured to ascertain the existence or otherwise of a phase transition upon complex formation. Further, the NQR frequency and asymmetry parameter of the electric field gradient at the site of quadrupole nucleus were used to estimate the chemical bond parameters, namely ionic bond, double bond character of the carbon-chlorine(C--Cl) bond and the percentage charge transfer between the donor-acceptor components in charge transfer complexes. The effect of hydrogen bonding and temperature on the charge transfer process is analysed.

  15. Charge-transfer energy in closed-shell ion-atom interactions. [for H and Li ions in He

    Science.gov (United States)

    Alvarez-Rizzatti, M.; Mason, E. A.

    1975-01-01

    The importance of charge-transfer energy in the interactions between closed-shell ions and atoms is investigated. Ab initio calculations on H(plus)-He and Li(plus)-He are used as a guide for the construction of approximate methods for the estimation of the charge-transfer energy for more complicated systems. For many alkali ion-rate gas systems the charge-transfer energy is comparable to the induction energy in the region of the potential minimum, although for doubly charged alkaline-earth ions in rare gases the induction energy always dominates. Surprisingly, an empirical combination of repulsion energy plus asymptotic induction energy plus asymptotic dispersion energy seems to give a fair representation of the total interaction, especially if the repulsion energy is parameterized, despite the omission of any explicit charge-transfer contribution. More refined interaction models should consider the charge-transfer energy contribution.

  16. Intramolecular and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  17. Development of a charge-transfer distribution model for stack simulation of solid oxide fuel cells

    Science.gov (United States)

    Onaka, H.; Iwai, H.; Kishimoto, M.; Saito, M.; Yoshida, H.; Brus, G.; Szmyd, J. S.

    2016-09-01

    An overpotential model for planar solid oxide fuel cells (SOFCs) is developed and applied to a stack numerical simulation. Charge-transfer distribution within the electrodes are approximated using an exponential function, based on which the Ohmic loss and activation overpotential are evaluated. The predicted current-voltage characteristics agree well with the experimental results, and also the overpotentials within the cell can reproduce the results obtained from a numerical analysis where the distribution of the charge-transfer current within the electrodes is fully solved. The proposed model is expected to be useful to maintain the accuracy of SOFC simulations when the cell components, consisting of anode, electrolyte and cathode, are simplified into one layer element.

  18. An Accurate and Linear Scaling Method to Calculate Charge-Transfer Excitation Energies and Diabatic Couplings

    CERN Document Server

    Pavanello, Michele; Visscher, Lucas; Neugebauer, Johannes

    2012-01-01

    Quantum--Mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the Frozen Density Embedding formulation of subsystem Density-Functional Theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against Coupled-Cluster calculations and achieves chemical accuracy for the systems considered...

  19. Charge-transfer-directed radical substitution enables para-selective C-H functionalization

    Science.gov (United States)

    Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias

    2016-08-01

    Efficient C-H functionalization requires selectivity for specific C-H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho and meta selectivity, but a general strategy for para-selective C-H functionalization has remained elusive. Herein we introduce a previously unappreciated concept that enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit arene-to-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate with a simple theoretical tool that the selectivity is predictable and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of radical substitution directed by charge transfer could serve as the basis for the development of new, highly selective C-H functionalization reactions.

  20. A comparison of various surface charge transfer hole doping of graphene grown by chemical vapour deposition

    Science.gov (United States)

    Chandramohan, S.; Seo, Tae Hoon; Janardhanam, V.; Hong, Chang-Hee; Suh, Eun-Kyung

    2017-10-01

    Charge transfer doping is a renowned route to modify the electrical and electronic properties of graphene. Understanding the stability of potentially important charge-transfer materials for graphene doping is a crucial first step. Here we present a systematic comparison on the doping efficiency and stability of single layer graphene using molybdenum trioxide (MoO3), gold chloride (AuCl3), and bis(trifluoromethanesulfonyl)amide (TFSA). Chemical dopants proved to be very effective, but MoO3 offers better thermal stability and device fabrication compatibility. Single layer graphene films with sheet resistance values between 100 and 200 ohm/square were consistently produced by implementing a two-step growth followed by doping without compromising the optical transmittance.

  1. WO3-reduced graphene oxide composites with enhanced charge transfer for photoelectrochemical conversion.

    Science.gov (United States)

    Wu, Haoyu; Xu, Ming; Da, Peimei; Li, Wenjie; Jia, Dingsi; Zheng, Gengfeng

    2013-10-14

    Hybrid structures between semiconducting metal oxides and carbon with rational synthesis represent unique device building blocks to optimize the light absorption and charge transfer process for the photoelectrochemical conversion. Here we demonstrate the realization of a WO3-reduced graphene oxide (RGO) nanocomposite via hydrothermal growth of ultrathin WO3 nanoplates directly on fluorine-doped tin oxide (FTO) substrates, followed by in situ photo-reduction to deposit RGO layers on WO3 nanoplate surface. Photoanodes made of the WO3-RGO nanocomposites have achieved a photocurrent density of 2.0 mA cm(-2) at 1.23 V vs. reversible hydrogen electrode (RHE), which is among the highest reported values for photoanodes based on hydrothermally grown WO3. Electrochemical impedance spectroscopy reveals that the increase of photoactivity is attributed to the enhanced charge transfer by the incorporation of RGO, thus suggesting a general approach for designing other metal oxide-RGO hybrid architectures.

  2. Charge transfer state in DBP:C70 organic solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Benduhn, Johannes; Spoltore, Donato

    -acceptor interface via delocalized charge-transfer (CT) states, which represents an intermediate state between the exciton dissociation and recombination back to the ground state. In this work we perform the electroluminescence (EL) created by bimolecular free career recombination and sensitive external quantum....... Electroluminescence from charge transfer states in polymer solar cells. J. Am. Chem. Soc. 131, 11819–11824 (2009)....... efficiency measurements (sEQE) in DBP:C70 based SCs as a less studied system in order to study the energy and effect of CT states on degradation of the devices2. The results from these measurements reveal valuable information about the loss mechanism during the aging experiment as well as the energy...

  3. Combining intra- and intermolecular charge-transfer: a new strategy towards molecular ferromagnets and multiferroics.

    Science.gov (United States)

    Di Maiolo, Francesco; Sissa, Cristina; Painelli, Anna

    2016-01-21

    Organic ferroelectric materials are currently a hot research topic, with mixed stack charge transfer crystals playing a prominent role with their large, electronic-in-origin polarization and the possibility to tune the transition temperature down to the quantum limit and/or to drive the ferroelectric transition via an optical stimulus. By contrast, and in spite of an impressive research effort, organic ferromagnets are rare and characterized by very low transition temperatures. Coexisting magnetic and electric orders in multiferroics offer the possibility to control magnetic (electric) properties by an applied electric (magnetic) field with impressive technological potential. Only few examples of multiferroics are known today, based on inorganics materials. Here we demonstrate that, by decorating mixed stack charge transfer crystals with organic radicals, a new family of robust molecular ferromagnets can be designed, stable up to ambient temperature, and with a clear tendency towards multiferroic behaviour.

  4. Multicolour Emission States from Charge Transfer between Carbon Dots and Surface Molecules

    Directory of Open Access Journals (Sweden)

    Shengliang Hu

    2017-02-01

    Full Text Available The emissive states of carbon dots have been tuned by controlling the charge transfer process. The carbon dots couple with molecules, which are made of a benzene ring and different heteroatom substituents, through amino-carboxylic bonds that are generally identified as charge transfer promoters at the interface. New ways of radiative recombination are created due to the transfer of photo-excited electrons from carbon dots to the lowest unoccupied molecular orbital (LUMO of the grafted molecules. By variation of the molecular orbital energy levels via heteroatom substituents in the benzene ring, the different optical properties and emission colors of the carbon dots were presented. This work opens up new opportunities for the application of carbon dots since different heteroatom substituents could lead to many possibilities for conjugation with drugs and biomolecules.

  5. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    Science.gov (United States)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  6. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  7. Dual Fluorescence in GFP Chromophore Analogues: Chemical Modulation of Charge Transfer and Proton Transfer Bands.

    Science.gov (United States)

    Chatterjee, Tanmay; Mandal, Mrinal; Das, Ananya; Bhattacharyya, Kalishankar; Datta, Ayan; Mandal, Prasun K

    2016-04-14

    Dual fluorescence of GFP chromophore analogues has been observed for the first time. OHIM (o-hydroxy imidazolidinone) shows only a charge transfer (CT) band, CHBDI (p-cyclicamino o-hydroxy benzimidazolidinone) shows a comparable intensity CT and PT (proton transfer) band, and MHBDI (p-methoxy o-hydroxy benzimidazolidinone) shows a higher intensity PT band. It could be shown that the differential optical behavior is not due to conformational variation in the solid or solution phase. Rather, control of the excited state electronic energy level and excited state acidity constant by functional group modification could be shown to be responsible for the differential optical behavior. Chemical modification-induced electronic control over the relative intensity of the charge transfer and proton transfer bands could thus be evidenced. Support from single-crystal X-ray structure, NMR, femtosecond to nanosecond fluorescence decay analysis, and TDDFT-based calculation provided important information and thus helped us understand the photophysics better.

  8. Direct detection of photoinduced charge transfer complexes in polymer fullerene blends

    Science.gov (United States)

    Behrends, Jan; Sperlich, Andreas; Schnegg, Alexander; Biskup, Till; Teutloff, Christian; Lips, Klaus; Dyakonov, Vladimir; Bittl, Robert

    2012-03-01

    We report transient electron paramagnetic resonance (trEPR) measurements with submicrosecond time resolution performed on a polymer:fullerene blend consisting of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) at low temperatures. The trEPR spectrum immediately following photoexcitation reveals signatures of spin-correlated polaron pairs. The pair partners (positive polarons in P3HT and negative polarons in PCBM) can be identified by their characteristic g values. The fact that the polaron pair states exhibit strong non-Boltzmann population unambiguously shows that the constituents of each pair are geminate, i.e., originate from one exciton. We demonstrate that coupled polaron pairs are present even several microseconds after charge transfer and suggest that they embody the intermediate charge transfer complexes that form at the donor/acceptor interface and mediate the conversion from excitons into free charge carriers.

  9. Towards first-principles prediction of valence instabilities in mixed stack charge-transfer crystals

    Science.gov (United States)

    Delchiaro, Francesca; Girlando, Alberto; Painelli, Anna; Bandyopadhyay, Arkamita; Pati, Swapan K.; D'Avino, Gabriele

    2017-04-01

    Strongly correlated electrons delocalized on one-dimensional (1D) soft stacks govern the complex physics of mixed stack charge-transfer crystals, a well-known family of materials composed of electron-donor (D) and acceptor (A) molecules alternating along the 1D chain. The complex physics of these systems is well captured by a modified Hubbard model that also accounts for the coupling of electrons to molecular and lattice vibrational modes and for three-dimensional electrostatic interactions. Here we study several experimental systems to estimate relevant model parameters via density-functional theory calculations on DA units and isolated molecules and ions. Electrostatic intermolecular interactions, an important quantity not just to define the degree of charge transfer of the ground state but also to predict the propensity of the system towards multistability and hence towards discontinuous phase transitions, are also addressed. Results compare favorably with experimental data.

  10. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  11. Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles

    Science.gov (United States)

    Elton, E. S.; Rosenberg, E. R.; Ristenpart, W. D.

    2017-09-01

    We report that metallic electrodes are physically pitted during charge transfer events with water droplets or other conductive objects moving in strong electric fields (>1 kV /cm ). Post situ microscopic inspection of the electrode shows that an individual charge transfer event yields a crater approximately 1-3 μ m wide, often with features similar to a splash corona. We interpret the crater formation in terms of localized melting of the electrode via resistive heating concurrent with dielectric breakdown through the surrounding insulating fluid. A scaling analysis indicates that the crater diameter scales as the inverse cube root of the melting point temperature Tm of the metal, in accord with measurements on several metals (660 °C ≤Tm≤3414 °C ). The process of crater formation provides a possible explanation for the longstanding difficulty in quantitatively corroborating Maxwell's prediction for the amount of charge acquired by spheres contacting a planar electrode.

  12. A novel spectrophotometric determination of trace copper based on charge transfer complex

    Science.gov (United States)

    Di, Junwei; Wu, Ying; Ma, Yun

    2005-03-01

    A new type of colored complex, the charge transfer complex, was used to develop the spectrophotometric determination of copper. The method was based on the formation of a colored product, the charge transfer complex of copper substituted tungstophosphate with 3,3',5,5'-tetramethybenzidine (TMB), which was stabilized and sensitized by the addition of polyvinyl alcohol (PVA) in aqueous solution. The structure of copper substituted tungstophosphate was Keggin-type according to the results of infrared (IR) spectra. The optimum reaction conditions and other important analytic parameters had been investigated. Beer's law was obeyed in the copper(II) concentration range of 0.003-0.1 μg mL -1, and the molar absorptivity at 660 nm is 2.54×10 5 L mol -1 cm -1. The proposed method was simple, selective, and sensitive. It was applied to the analytic samples with satisfactory results.

  13. Isotope effect in charge-transfer collisions of H with He{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Loreau, J.; Dalgarno, A. [Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Ryabchenko, S. [Northern (Arctic) Federal University, 17 Severnaya Dvina Emb., 163002 Arkhangelsk (Russian Federation); Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), CP160/09, 1050 Bruxelles (Belgium); Vaeck, N. [Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), CP160/09, 1050 Bruxelles (Belgium)

    2011-11-15

    We present a theoretical study of the isotope effect arising from the replacement of H by T in the charge-transfer collision H(n=2) + He{sup +}(1s) at low energy. Using a quasimolecular approach and a time-dependent wave-packet method, we compute the cross sections for the reaction including the effects of the nonadiabatic radial and rotational couplings. For H(2s) + He{sup +}(1s) collisions, we find a strong isotope effect at energies below 1 eV/amu for both singlet and triplet states. We find a much smaller isotopic dependence of the cross section for H(2p) + He{sup +}(1s) collisions in triplet states, and no isotope effect in singlet states. We explain the isotope effect on the basis of the potential energy curves and the nonadiabatic couplings, and we evaluate the importance of the isotope effect on the charge-transfer rate coefficients.

  14. Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins.

    Science.gov (United States)

    Kannan, A M; Renugopalakrishnan, V; Filipek, S; Li, P; Audette, G F; Munukutla, L

    2009-03-01

    Bio-fuel cells are alternative energy devises based on bio-electrocatalysis of natural substrates by enzymes or microorganisms. Here we review bio-fuel cells and bio-batteries based on the recent literature. In general, the bio-fuel cells are classified based on the type of electron transfer; mediated electron transfer and direct electron transfer or electronic charge transfer (ECT). The ECT of the bio-fuel cells is critically reviewed and a variety of possible applications are considered. The technical challenges of the bio-fuel cells, like bioelectrocatalysis, immobilization of bioelectrocatalysts, protein denaturation etc. are highlighted and future research directions are discussed leveraging on the use of electron charge transfer proteins. In addition, the packaging aspects of the bio-fuel cells are also analyzed and the found that relatively little work has been done in the engineering development of bio-fuel cells.

  15. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Directory of Open Access Journals (Sweden)

    Izhal Abdul Halin

    2009-11-01

    Full Text Available The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.

  16. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Science.gov (United States)

    Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan

    2009-01-01

    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region. PMID:22303133

  17. Energy and Charge Transfer from Guest to Host in Doped Organic Electroluminescent Devices

    Institute of Scientific and Technical Information of China (English)

    李宏建; 彭景翠; 许雪梅; 瞿述; 罗小华; 赵楚军

    2002-01-01

    The luminescence properties of doped organic electroluminescent devices are explained by means off Hamiltonian model. The results show that there is a corresponding relation between the amount of transferred charge and the change of the energy originating from charge transfer, and the relation can be influenced by dopant concentration.As the amount of transferred charge increases, the total energy decreases and the luminescence intensity increases.Therefore, we deduce that the energy transfer from guest to host may be derived from the charge transfer. For a given organic electroluminescent device, the maximum value of the conductivity can be observed in a specific dopant concentration. The calculated results show that the greater the transferred charges, the higher the conductivities in doped organic electroluminescent devices. The results agree basically with experimental results.

  18. Semilocal and Hybrid Density Embedding Calculations of Ground-State Charge-Transfer Complexes

    CERN Document Server

    Laricchia, S; Della Sala, F; 10.1063/1.4795825

    2013-01-01

    We apply the frozen density embedding method, using a full relaxation of embedded densities through a freeze-and-thaw procedure, to study the electronic structure of several benchmark ground-state charge-transfer complexes, in order to assess the merits and limitations of the approach for this class of systems. The calculations are performed using both semilocal and hybrid exchange-correlation (XC) functionals. The results show that embedding calculations using semilocal XC functionals yield rather large deviations with respect to the corresponding supermolecular calculations. Due to a large error cancellation effect, however, they can often provide a relatively good description of the electronic structure of charge-transfer complexes, in contrast to supermolecular calculations performed at the same level of theory. On the contrary, when hybrid XC functionals are employed, both embedding and supermolecular calculations agree very well with each other and with the reference benchmark results. In conclusion, fo...

  19. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers

    Science.gov (United States)

    Sun, Baichuan; Barnard, Amanda S.

    2016-07-01

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove

  20. Surface-enhanced photoinduced charge transfer processes in metal-molecule nanoclusters

    OpenAIRE

    Centeno, Silvia P.; Ruano, Cristina; Román-Pérez, Jéssica; López-Tocón, Isabel; Soto, Juan; Otero, Juan Carlos

    2013-01-01

    This work deals with the unexplained efficiency of the electrode potential (EV) in tuning the energy of Charge Transfer (ECT) electronic states of hybrid systems formed by molecules and metal nanostructures. Huge energy gains (G) of up to 5 eV/V observed in electrochemical SERS experiences have been tentatively explained by a local increase of the electric potential at specific adsorption sites.[1] This gain, which is in conflict with the classical picture of the metal-adsorbate CT mechanism ...

  1. Charge-transfer gap closure in transition-metal halides under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A.L.; Yu, P.Y.

    1995-01-01

    Insulator-to-metal transition induced by pressure has been studied in three transition metal iodides: NiI{sub 2}, CoI{sub 2} and FeI{sub 2} using optical absorption and resistivity measurements at room temperature. Comparisons between the results obtained by these two techniques suggested that the closure of the charge-transfer gap is the principal mechanism responsible for the insulator-to-metal transition in these materials.

  2. First-principles study of the interaction and charge transfer between graphene and metals

    OpenAIRE

    Khomyakov, P.A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; Brink, J.G.J. van den; Kelly, P. J.

    2009-01-01

    Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and Pt(111) surfaces is so weak that its unique "ultrarelativistic" electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5...

  3. Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise.

    Science.gov (United States)

    Liu, Chaoren; Beratan, David N; Zhang, Peng

    2016-04-21

    System-environment interactions are essential in determining charge-transfer (CT) rates and mechanisms. We developed a computationally accessible method, suitable to simulate CT in flexible molecules (i.e., DNA) with hundreds of sites, where the system-environment interactions are explicitly treated with numerical noise modeling of time-dependent site energies and couplings. The properties of the noise are tunable, providing us a flexible tool to investigate the detailed effects of correlated thermal fluctuations on CT mechanisms. The noise is parametrizable by molecular simulation and quantum calculation results of specific molecular systems, giving us better molecular resolution in simulating the system-environment interactions than sampling fluctuations from generic spectral density functions. The spatially correlated thermal fluctuations among different sites are naturally built-in in our method but are not readily incorporated using approximate spectral densities. Our method has quantitative accuracy in systems with small redox potential differences (charge-transfer rates; however, in a system of units with different site energies, spatial correlations slow the fluctuations to bring units into degeneracy, in turn, slowing the charge-transfer rates. The spatial and temporal correlations of condensed phase medium fluctuations provide another source to control and tune the kinetics and dynamics of charge-transfer systems.

  4. Strongly Dichroic Organic Films via Controlled Assembly of Modular Aromatic Charge-Transfer Liquid Crystals.

    Science.gov (United States)

    Bé, Ariana Gray; Tran, Cheryl; Sechrist, Riley; Reczek, Joseph J

    2015-10-02

    The formation of highly anisotropic organic thin films based on the designed self-assembly of mixed-stack liquid crystals is reported. A series of alkoxyanthracene donors is combined in a modular fashion with a naphthalenediimide acceptor to generate new charge-transfer columnar liquid crystals. Materials characterization and molecular modeling provides insight into structure-function relationships in these organic materials that lead to the striking bulk dichroic properties of certain molecular assemblies.

  5. Modulating Charge Transfer Through Cyclic D,L α-Peptide Self-Assembly

    OpenAIRE

    Horne, W. Seth; Ashkenasy, Nurit; Ghadiri, M. Reza

    2005-01-01

    We describe a concise solid support-based synthetic method for the preparation of cyclic D,L α-peptides bearing 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond directed self-assembly of the cyclic D,L α-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depen...

  6. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  7. Rate limiting activity of charge transfer during lithiation from ionic liquids

    Science.gov (United States)

    Rodrigues, Marco-Tulio F.; Lin, Xinrong; Gullapalli, Hemtej; Grinstaff, Mark W.; Ajayan, Pulickel M.

    2016-10-01

    Given the increased use of room temperature ionic liquid electrolytes in Li-ion batteries, due to their non-flammability and negligible volatility, this study evaluates the lithiation kinetics to understand and improve the rate performance of Li-ion batteries. Lithium titanate spinel is used as a model electrode and the electrolyte is composed of LiTFSI and TFSI-coordinated alkoxy-modified phosphonium ionic liquid. Based on the analysis of activation energies for each process, we report that the charge-transfer reaction at the electrode/electrolyte interface is the rate-limiting step for cell operation. This finding is further supported by the observation that a 50-fold decrease in charge-transfer resistance at higher temperatures leads to a significant performance improvement over that of a traditional organic electrolyte at room temperature. Charge-transfer resistance and electrolyte wetting on the electrode surface are critical processes for optimal battery performance, and such processes need to be included when designing new ionic liquids in order to exceed the power density obtained with the use of current carbonate-based electrolytes.

  8. Charge-transfer states and optical transitions at the pentacene-TiO2 interface

    Science.gov (United States)

    Ljungberg, M. P.; Vänskä, O.; Koval, P.; Koch, S. W.; Kira, M.; Sánchez-Portal, D.

    2017-03-01

    Pentacene molecules have recently been observed to form a well-ordered monolayer on the (110) surface of rutile TiO2, with the molecules adsorbed lying flat, head to tail. With the geometry favorable for direct optical excitation and given its ordered character, this interface seems to provide an intriguing model to study charge-transfer excitations where the optically excited electrons and holes reside on different sides of the organic–inorganic interface. In this work, we theoretically investigate the structural and electronic properties of this system by means of ab initio calculations and compute its excitonic absorption spectrum. Molecular states appear in the band gap of the clean TiO2 surface, which enables charge-transfer excitations directly from the molecular HOMO to the TiO2 conduction band. The calculated optical spectrum shows a strong polarization dependence and displays excitonic resonances corresponding to the charge-transfer states, which could stimulate new experimental work on the optical response of this interface.

  9. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer.

    Science.gov (United States)

    Yao, Yi; Berkowitz, Max L; Kanai, Yosuke

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na(+) and K(+) ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  10. Lock-arm supramolecular ordering: a molecular construction set for cocrystallizing organic charge transfer complexes.

    Science.gov (United States)

    Blackburn, Anthea K; Sue, Andrew C-H; Shveyd, Alexander K; Cao, Dennis; Tayi, Alok; Narayanan, Ashwin; Rolczynski, Brian S; Szarko, Jodi M; Bozdemir, Ozgur A; Wakabayashi, Rie; Lehrman, Jessica A; Kahr, Bart; Chen, Lin X; Nassar, Majed S; Stupp, Samuel I; Stoddart, J Fraser

    2014-12-10

    Organic charge transfer cocrystals are inexpensive, modular, and solution-processable materials that are able, in some instances, to exhibit properties such as optical nonlinearity, (semi)conductivity, ferroelectricity, and magnetism. Although the properties of these cocrystals have been investigated for decades, the principal challenge that researchers face currently is to devise an efficient approach which allows for the growth of high-quality crystalline materials, in anticipation of a host of different technological applications. The research reported here introduces an innovative design, termed LASO-lock-arm supramolecular ordering-in the form of a modular approach for the development of responsive organic cocrystals. The strategy relies on the use of aromatic electronic donor and acceptor building blocks, carrying complementary rigid and flexible arms, capable of forming hydrogen bonds to amplify the cocrystallization processes. The cooperativity of charge transfer and hydrogen-bonding interactions between the building blocks leads to binary cocrystals that have alternating donors and acceptors extending in one and two dimensions sustained by an intricate network of hydrogen bonds. A variety of air-stable, mechanically robust, centimeter-long, organic charge transfer cocrystals have been grown by liquid-liquid diffusion under ambient conditions inside 72 h. These cocrystals are of considerable interest because of their remarkable size and stability and the promise they hold when it comes to fabricating the next generation of innovative electronic and photonic devices.

  11. Structure and electronic spectra of purine-methyl viologen charge transfer complexes.

    Science.gov (United States)

    Jalilov, Almaz S; Patwardhan, Sameer; Singh, Arunoday; Simeon, Tomekia; Sarjeant, Amy A; Schatz, George C; Lewis, Frederick D

    2014-01-01

    The structure and properties of the electron donor-acceptor complexes formed between methyl viologen and purine nucleosides and nucleotides in water and the solid state have been investigated using a combination of experimental and theoretical methods. Solution studies were performed using UV-vis and (1)H NMR spectroscopy. Theoretical calculations were performed within the framework of density functional theory (DFT). Energy decomposition analysis indicates that dispersion and induction (charge-transfer) interactions dominate the total binding energy, whereas electrostatic interactions are largely repulsive. The appearance of charge transfer bands in the absorption spectra of the complexes are well-described by time-dependent DFT and are further explained in terms of the redox properties of purine monomers and solvation effects. Crystal structures are reported for complexes of methyl viologen with the purines 2'-deoxyguanosine 3'-monophosphate (DAD'DAD' type) and 7-deazaguanosine (DAD'ADAD' type). Comparison of the structures determined in the solid state and by theoretical methods in solution provides valuable insights into the nature of charge-transfer interactions involving purine bases as electron donors.

  12. Laboratory Studies of Thermal Energy Charge Transfer of Multiply Charged Ions in Astrophysical Plasmas

    Science.gov (United States)

    Kwong, Victor H. S.

    2003-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.

  13. Full-electron ligand-to-ligand charge transfer in a compact Re(I) complex.

    Science.gov (United States)

    Yue, Yuankai; Grusenmeyer, Tod; Ma, Zheng; Zhang, Peng; Schmehl, Russell H; Beratan, David N; Rubtsov, Igor V

    2014-11-13

    Ligand-to-ligand charge transfer (LLCT) states in transition metal complexes are often characterized by fractional electron transfer due to coupling of the LLCT state with many other states via the metal. We designed and characterized a compact Re(I) complex that displays essentially full-electron charge transfer in the LLCT excited state. The complex, [Re(DCEB)(CO)3(L)](+) (DCEB = 4,4'-dicarboxyethyl-2,2'-bipyridine), referred to as ReEBA, features two redox active ligands with strong electron accepting (DCEB) and electron donating (L is 3-dimethylaminobenzonitrile (3DMABN)) properties. The lowest energy excited state formed with a ca. 10 ps time constant and was characterized as the full-electron 3DMABN → DCEB LLCT state using time-resolved infrared spectroscopy (TRIR), transient absorption spectroscopy, and DFT computations. Analysis of a range of vibrational modes helped to assign the charge transfer characteristics of the complex. The LLCT state lifetime in ReEBA shows a strong dependence on the solvent polarity and features solvent dependent frequency shifts for several vibrational reporters. The formation of a full-electron LLCT state (∼92%) was enabled by tuning the redox properties of the electron accepting ligand (DCEB) and simultaneously decoupling the redox active group of the electron donating ligand (3DMABN) from the metal center. This strategy is generally applicable for designing compact transition metal complexes that have full-electron LLCT states.

  14. Charge-transfer complexes of 4-nitrocatechol with some amino alcohols

    Science.gov (United States)

    Baniyaghoob, Sahar; Najafpour, Mohammad Mahdi; Boghaei, Davar M.

    2010-03-01

    Charge-transfer (CT) complexes formed from the reactions of 4-nitropyrocatechol (4-nCat) as an electron acceptor with four amino alcohols: 2-aminoethanol, 1-amino-2-propanol, 4-aminobutanol and N-(2-hydroxyethyl)-1,3-diaminopropane (NHEDAP) as electron donors, have been studied spectrophotometrically in H 2O and H 2O/EtOH at 20, 25, 30, 35 and 40 °C. The calculated values of the oscillator strength and transition moment confirm the formation of CT-complexes. The thermodynamic and spectroscopic parameters were also evaluated for the formation of CT-complexes. The equilibrium constants ranged from 9.00 to 2.20 l mol -1 (M -1). These interactions are exothermic and have relatively large standard enthalpy and entropy changes (Δ H values ranged from -15.58 to -3.10 kJ mol -1; Δ S ranged from 26.81 to -3.25 J K -1 mol -1). The solid CT-complexes have been synthesized and characterized by IR, NMR, mass spectrometry and thermal analysis. The photometric titration curves and other spectrometric data for the reactions indicated that the data obtained refer to the formation of 1:1 charge-transfer complex of [(4-nCat) (NHEDAP)] and 1:2 charge-transfer complexes of other amino alcohols [(4-nCat) (amino alcohol) 2]. The effect of alkali and alkaline earth metals on increasing the equilibrium constant of the CT-complexation was also investigated.

  15. Ab initio calculation of H + He$^+$ charge transfer cross sections for plasma physics

    CERN Document Server

    Loreau, J; Lauvergnat, D; Desouter-Lecomte, M; Vaeck, N

    2010-01-01

    The charge transfer in low energy (0.25 to 150 eV/amu) H($nl$) + He$^+(1s)$ collisions is investigated using a quasi-molecular approach for the $n=2,3$ as well as the first two $n=4$ singlet states. The diabatic potential energy curves of the HeH$^+$ molecular ion are obtained from the adiabatic potential energy curves and the non-adiabatic radial coupling matrix elements using a two-by-two diabatization method, and a time-dependent wave-packet approach is used to calculate the state-to-state cross sections. We find a strong dependence of the charge transfer cross section in the principal and orbital quantum numbers $n$ and $l$ of the initial or final state. We estimate the effect of the non-adiabatic rotational couplings, which is found to be important even at energies below 1 eV/amu. However, the effect is small on the total cross sections at energies below 10 eV/amu. We observe that to calculate charge transfer cross sections in a $n$ manifold, it is only necessary to include states with $n^{\\prime}\\leq n$...

  16. N+ charge transfer and N+2 dissociation in N2 at swarm energies.

    Science.gov (United States)

    Basurto, E; de Urquijo, J; Cisneros, C; Alvarez, I

    2001-01-01

    This paper reports a drift-tube-mass-spectrometer measurement of the relative abundances of N+ and N+2 in pure nitrogen, over a ratio of electric field to gas density, E/N, from 800 to 7200 Td [1 townsend (Td)=10(-17) V cm(2)]. A proposed charge transfer dissociation scheme between the above two ions and N2 allowed us to obtain spatial rate coefficients for charge transfer and dissociation over the E/N range 800-2800 Td. Using previously measured cross sections for the above processes, and assuming a Maxwellian distribution of ion velocities, we calculated the reaction coefficients, which were found to be in good agreement with our measured values. In particular, the present results support the trend toward fairly high charge transfer cross section values for N+ energies above 10 eV. In the overlap range between 2.4 and 7.2 kTd, our concentration ratio [N(+)/N(+)(2)] is about five times smaller than that measured previously from a diffuse Townsend discharge in which electron impact is involved in addition to N+2 collisional dissociation with N2, but has the same trend. Thus it seems that, besides N+2 dissociation by electron impact, collisional dissociation becomes important at elevated values of E/N. In connection with previous discharge work in nitrogen, the present study may help explain the enhanced cathode yields observed.

  17. Simplified charge transfer inefficiency correction in CCDs by trap-pumping

    Science.gov (United States)

    Gow, Jason P. D.; Murray, Neil J.

    2016-08-01

    A major concern when using Charge-Coupled Devices in hostile radiation environments is radiation induced Charge Transfer Inefficiency. The displacement damage from non-ionising radiation incident on the detector creates defects within the silicon lattice, these defects can capture and hold charge for a period of time dependent on the operating temperature and the type of defect, or "trap species". The location and type of defect can be determined to a high degree of precision using the trap-pumping technique, whereby background charges are input and then shuffled forwards and backwards between pixels many times and repeated using different transfer timings to promote resonant charge-pumping at particular defect sites. Where the charge transfer timings used in the trap-pumping process are equivalent to the nominal CCD readout modes, a simple "trap-map" of the defects that will most likely contribute to charge transfer inefficiency in the CCD array can be quickly generated. This paper describes a concept for how such a "trap-map" can be used to correct images subject to non-ionising radiation damage and provides initial results from an analytical algorithm and our recommendations for future developments.

  18. What is the "best" atomic charge model to describe through-space charge-transfer excitations?

    Science.gov (United States)

    Jacquemin, Denis; Le Bahers, Tangui; Adamo, Carlo; Ciofini, Ilaria

    2012-04-28

    We investigate the efficiency of several partial atomic charge models (Mulliken, Hirshfeld, Bader, Natural, Merz-Kollman and ChelpG) for investigating the through-space charge-transfer in push-pull organic compounds with Time-Dependent Density Functional Theory approaches. The results of these models are compared to benchmark values obtained by determining the difference of total densities between the ground and excited states. Both model push-pull oligomers and two classes of "real-life" organic dyes (indoline and diketopyrrolopyrrole) used as sensitisers in solar cell applications have been considered. Though the difference of dipole moments between the ground and excited states is reproduced by most approaches, no atomic charge model is fully satisfactory for reproducing the distance and amount of charge transferred that are provided by the density picture. Overall, the partitioning schemes fitting the electrostatic potential (e.g. Merz-Kollman) stand as the most consistent compromises in the framework of simulating through-space charge-transfer, whereas the other models tend to yield qualitatively inconsistent values.

  19. Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces

    KAUST Repository

    Van Regemorter, Tanguy

    2012-09-15

    In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.

  20. Negative Resistance Effect and Charge Transfer Mechanisms in the lon Beam Deposited Diamond Like Carbon Superlattices

    Directory of Open Access Journals (Sweden)

    Andrius VASILIAUSKAS

    2011-03-01

    Full Text Available In the present study DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures were fabricated by ion beam deposition using a closed drift ion source. Current-voltage (I-V characteristics of the multilayer samples were measured at room temperature. The main charge transfer mechanisms were considered. Unstable negative resistance effect was observed for some DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures. In the case of the diamond like carbon superlattices fabricated on nSi it was observed only during the first measurement. In the case of the some DLC:SiOx/DLC/DLC:SiOx/pSi negative resistance "withstood" several measurements. Changes of the charge carrier mechanisms were observed along with the dissapear of the negative resistance peaks. It seems, that in such a case influence of the bulk related charge transfer mechanisms such as Poole-Frenkel emission increased, while the influence of the contact limited charge transfer mechanisms such as Schottky emission decreased. Observed results were be explained by current flow through the local microconducting channels and subsequent destruction of the localized current pathways as a result of the heating by flowing electric current.http://dx.doi.org/10.5755/j01.ms.17.1.240

  1. A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence

    DEFF Research Database (Denmark)

    Chabera, Pavel; Liu, Yizhu; Prakash, Om

    2017-01-01

    of innovative molecular designs(6,8-10), it remains a formidable scientific challenge(11) to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered(12) photoluminescent at room temperature, and their rapid excited...... sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(III) d(5) complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer ((LMCT)-L-2) state that is rarely seen for transition...

  2. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  3. Wire harness twisting aid

    Science.gov (United States)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  4. Synthesis and electrochemical studies of charge-transfer complexes of thiazolidine-2,4-dione with σ and π acceptors

    Science.gov (United States)

    Singh, Prashant; Kumar, Pradeep; Katyal, Anju; Kalra, Rashmi; Dass, Sujata K.; Prakash, Satya; Chandra, Ramesh

    2010-03-01

    In the present work, we report the synthesis and characterization of novel charge-transfer complexes of thiazolidine-2,4-dione (TZD) with sigma acceptor (iodine) and pi acceptors (chloranil, dichlorodicyanoquinone, picric acid and duraquinone). We also evaluated their thermal and electrochemical properties and we conclude that these complexes are frequency dependent. Charge-transfer complex between thiazolidine-2,4-dione and iodine give best conductivity. In conclusion, complex with sigma acceptors are more conducting than with pi acceptors.

  5. Studies on the interfacial charge transfer processes of nanocrystalline CdSe thin film electrodes by intensity modulated photocurrent spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Interfacial charge transfer kinetics of the nanocrystalline CdSe thin film electrodes have been studied in sodium polysulfide solutions by intensity modulated photocurrent spectroscopy (IMPS). The interfacial direct and indirect charge transfer and recombination processes were analyzed in terms of the parameters: normalized steady state photocurrents and surface state lifetimes obtained by measuring the IMPS responses under different applied potentials and different solution concentrations. IMPS responses of polycrystalline CdSe thin film electrodes were also presented for comparison.

  6. Twisted network programming essentials

    CERN Document Server

    Fettig, Abe

    2005-01-01

    Twisted Network Programming Essentials from O'Reilly is a task-oriented look at this new open source, Python-based technology. The book begins with recommendations for various plug-ins and add-ons to enhance the basic package as installed. It then details Twisted's collection simple network protocols, and helper utilities. The book also includes projects that let you try out the Twisted framework for yourself. For example, you'll find examples of using Twisted to build web services applications using the REST architecture, using XML-RPC, and using SOAP. Written for developers who want to s

  7. Interface charge transfer process in ZnO:Mn/ZnS nanocomposites

    Science.gov (United States)

    Stefan, M.; Toloman, D.; Popa, A.; Mesaros, A.; Vasile, O. R.; Leostean, C.; Pana, O.

    2016-03-01

    ZnO:Mn/ZnS nanocomposites were prepared by seed-mediated growth of ZnS QDs onto the preformed ZnO:Mn nanoparticles. The formation of the nanocomposite structure has been evidenced by XRD, HRTEM, and XPS. The architecture of the nanocomposite with outer ZnS QDs around ZnO:Mn cores is sustained by the sulfur and oxygen depth profiles resulted from XPS. When the two components are brought together, the band gap of ZnS component decreases while that of ZnO:Mn increases. It is the result of interface charge transfer from ZnO:Mn to ZnS QDs. Here ZnO:Mn valence states are extended through the interface into unoccupied gap states of ZnS. The energy band setup is modified from a type II into a type I band alignment. The process is accompanied by enhancement of composite UV emission of PL spectra as compared to its counterparts. The charge transfer from valence band also determines the increase of the core-polarization effect of s shell electrons at Mn2+ nucleus, thus determining the increase of the hyperfine field through the reduction of the covalency degree of Zn(Mn)-O bonds. The quantum confinement in ZnS QDs promotes the ferromagnetic coupling of singly occupied states due to Zn vacancies determining a superparamagnetic behavior of the ensemble. When the nanocomposites are formed, due to interface charge transfer effects, an increased number of filled cation vacancies in ZnS QDs develop, thus disrupting the pre-existing ferromagnetic coupling between spins resulting in a significant reduction of the overall saturation magnetization. The possibility to modulate nanocomposite properties by controlling the interface interactions may be foreseen in these types of materials.

  8. Probing charge transfer and hot carrier dynamics in organic solar cells with terahertz spectroscopy

    Science.gov (United States)

    Cunningham, Paul D.; Lane, Paul A.; Melinger, Joseph S.; Esenturk, Okan; Heilweil, Edwin J.

    2016-04-01

    Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.

  9. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.

    Science.gov (United States)

    Santos, Elton J G; Wang, W L

    2016-09-21

    Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

  10. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    Science.gov (United States)

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.

  11. Structure and Bonding in Nickel-Thiolate-Iodine Charge-Transfer Complexes.

    Science.gov (United States)

    Beyer, Norman; Steinfeld, Gunther; Lozan, Vasile; Naumov, Sergej; Flyunt, Roman; Abel, Bernd; Kersting, Berthold

    2017-02-16

    The dinuclear nickel complexes [Ni2 L(μ-O2 CR)](ClO4 ) [R=Me (4), R=OMe (6)], where L(2-) is a 24-membered macrocyclic N6 S2 ligand, react readily with excess I2 in MeCN solution at 4 °C to form stable mono-(I2 ) and bis-(I2 ) charge-transfer (CT) adducts of the type [Ni2 L(μ-O2 CR)(I2 )n ](+) (n=1 or 2) containing linear RS-I-I linkages. Three new CT compounds, namely, [Ni2 L(OAc)(I2 )](I2 )(I3 ) (5), [Ni2 L(O2 COMe)(I2 )](I5 )⋅MeCN (7⋅MeCN), and [Ni2 L(O2 COMe)(I2 )2 ](I5 )⋅MeCN (8⋅MeCN) as well as the triiodide salt [Ni2 L(OAc)](I3 ) (9) were synthesized and fully characterized. A common feature of the CT adducts is a polyiodide matrix, which surrounds the individual complex molecules, stabilized by secondary I⋅⋅⋅I interactions with the CT linkages. The scatter in both the RS-I (2.6 to 3.0 Å) and the I-I bond lengths (2.7 to 3.0 Å) is indicative of both a variable strength of the RS(-) →I2 bond and a varying degree of charge transfer. An analysis of the structural parameters was undertaken accompanied by DFT calculations to quantify the donating ability of the bridging thiolate functions and to shed more light on the bonding in this rare sort of charge-transfer complexes. The stability of the CT complexes and the results of preliminary transport measurements are also reported.

  12. Examination of charge transfer in Au/YSZ for high-temperature optical gas sensing

    Energy Technology Data Exchange (ETDEWEB)

    Baltrus, John P. [U.S. DOE; Ohodnicki, Paul R. [U.S. DOE

    2014-01-01

    Au-nanoparticle incorporated oxide thin film materials demonstrate significant promise as functionalsensor materials for high temperature optical gas sensing in severe environments relevant for fossil andnuclear based power generation. The Au/yttria-stabilized zirconia (YSZ) system has been extensivelystudied in the literature and serves as a model system for fundamental investigations that seek to betterunderstand the mechanistic origin of the plasmonic gas sensing response. In this work, X-ray photoelec-tron spectroscopy techniques are applied to Au/YSZ films in an attempt to provide further experimentalevidence for a proposed sensing mechanism involving a change in free carrier density of Au nanoparticles due to charge transfer.

  13. SEMICONDUCTOR DEVICES: Simulation for signal charge transfer of charge coupled devices

    Science.gov (United States)

    Zujun, Wang; Yinong, Liu; Wei, Chen; Benqi, Tang; Zhigang, Xiao; Shaoyan, Huang; Minbo, Liu; Yong, Zhang

    2009-12-01

    Physical device models and numerical processing methods are presented to simulate a linear buried channel charge coupled devices (CCDs). The dynamic transfer process of CCD is carried out by a three-phase clock pulse driver. By using the semiconductor device simulation software MEDICI, dynamic transfer pictures of signal charges cells, electron concentration and electrostatic potential are presented. The key parameters of CCD such as charge transfer efficiency (CTE) and dark electrons are numerically simulated. The simulation results agree with the theoretic and experimental results.

  14. Efficient Charge Transfer Mechanism in Polyfluorene/ZnO Nanocomposite Thin Films

    OpenAIRE

    Bandar Ali Al-Asbahi; Mohammad Hafizuddin Haji Jumali; Rashad Al-Gaashani

    2014-01-01

    The optical properties and charge transfer mechanism of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/ZnO thin films have been investigated. The ZnO nanorods (NRs) were prepared via a microwave technique. The solution blending method was used to prepare the PFO/ZnO nanocomposites. X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) were used to determine the structural properties, while UV-Vis and photoluminescence (PL) were employed to investigate the optical p...

  15. Charge transfer in energetic Li2+-H and He+-He+ collisions

    Science.gov (United States)

    Mančev, I.

    2009-02-01

    The total cross sections for charge transfer in Li2+-H and He+-He+ collisions have been calculated, using the four body first Born approximation with correct boundary conditions (CB1-4B) and four body continuum distorted wave method (CDW-4B) in the energy range 10-5000 keV/amu. The role of dynamic electron correlations is examined as a function of the impact energy. The present results call for additional experimental data at higher impact energies than presently available.

  16. Spectroscopy of charge transfer complexes of four amino acids as organic two-dimensional conductors

    Energy Technology Data Exchange (ETDEWEB)

    Padhiyar, Ashvin; Patel, A J; Oza, A T [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat (India)

    2007-12-05

    It is found in this study that four amino acids, namely asparagine, arginine, histidine and glutamine form two-dimensional conducting systems which are charge transfer complexes (CTCs) with organic acceptors like TCNQ, TCNE, chloranil, DDQ, TNF and iodine. It is verified using optical absorption edges that these are 2d conductors like transition metal dichalcogenides obeying absorption functions different from 1d and 3d conductors. This 2d nature is related to the network of intermolecular H-bonding in these complexes, which leads to a global H-bonded network resulting in the absence of local deformation due to the relaxation of strain.

  17. Spectroscopy of charge transfer complexes of four amino acids as organic two-dimensional conductors

    Science.gov (United States)

    Padhiyar, Ashvin; Patel, A. J.; Oza, A. T.

    2007-12-01

    It is found in this study that four amino acids, namely asparagine, arginine, histidine and glutamine form two-dimensional conducting systems which are charge transfer complexes (CTCs) with organic acceptors like TCNQ, TCNE, chloranil, DDQ, TNF and iodine. It is verified using optical absorption edges that these are 2d conductors like transition metal dichalcogenides obeying absorption functions different from 1d and 3d conductors. This 2d nature is related to the network of intermolecular H-bonding in these complexes, which leads to a global H-bonded network resulting in the absence of local deformation due to the relaxation of strain.

  18. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    Science.gov (United States)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2001-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  19. Orbital localization, charge transfer, and band gaps in semilocal density-functional theory.

    Science.gov (United States)

    Armiento, R; Kümmel, S

    2013-07-19

    We derive an exchange energy functional of generalized gradient form with a corresponding potential that changes discontinuously at integer particle numbers. The functional is semilocal, yet incorporates key features that are connected to the derivative discontinuity of Kohn-Sham density-functional theory. We validate our construction for several paradigm systems and explain how it addresses central well-known deficiencies of antecedent semilocal methods, i.e., the description of charge transfer, properly localized orbitals, and band gaps. We find, e.g., an improved shell structure for atoms, eigenvalues that more closely correspond to ionization energies, and an improved description of band structure where localized states are lowered in energy.

  20. Photoinduced charge transfer involving a MoMo quadruply bonded complex to a perylene diimide.

    Science.gov (United States)

    Alberding, Brian G; Brown-Xu, Samantha E; Chisholm, Malcolm H; Epstein, Arthur J; Gustafson, Terry L; Lewis, Sharlene A; Min, Yong

    2013-04-21

    Evidence, based on femtosecond transient absorption and time resolved infrared spectroscopy, is presented for photoinduced charge transfer from the Mo2δ orbital of the quadruply bonded molecule trans-Mo2(T(i)PB)2(BTh)2, where T(i)PB = 2,4,6-triisopropyl benzoate and BTh = 2,2'-bithienylcarboxylate, to di-n-octyl perylene diimide and di-n-hexylheptyl perylene diimide in thin films and solutions of the mixtures. The films show a long-lived charge separated state while slow back electron transfer, τBET ~ 500 ps, occurs in solution.

  1. Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities

    Science.gov (United States)

    Kerasidou, A. P.; Khammar, F.; Iliopoulos, K.; Ayadi, A.; El-Ghayoury, A.; Zouari, N.; Mhiri, T.; Sahraoui, B.

    2014-03-01

    The third order nonlinearities of two azobenzene-iminopyridine molecular systems have been investigated employing the Z-scan technique at 532 nm, 30 ps. The objective of the work has been to study and to compare the nonlinearity of two iminopyridine based ligands substituted with one (NO2AzoIminoPy, A) and two azobenzene units ((NO2Azo)2IminoPy, B). The ligand B exhibits an extended conjugated structure and higher charge transfer within the molecule. Our results show high dependence of the nonlinearity on both the conjugation length within the molecule and on the number of the electron accepting units.

  2. Formation of an intermolecular charge-transfer compound in UHV codeposited tetramethoxypyrene and tetracyanoquinodimethane

    DEFF Research Database (Denmark)

    Medjanik, K.; Perkert, S.; Naghavi, S.

    2010-01-01

    Ultrahigh vacuum (UHV)-deposited films of the mixed phase of tetramethoxypyrene and tetracyanoquinodimethane (TMP -TCNQ ) on gold have been studied using ultraviolet photoelectron spectroscopy (UPS), x-ray diffraction (XRD), infrared (IR) spectroscopy, and scanning tunneling spectroscopy (STS......). The formation of an intermolecular charge-transfer (CT) compound is evident from the appearance of new reflexes in XRD (d =0.894nm and d =0.677nm). A softening of the CN stretching vibration (redshift by 7 cm⊃-1) of TCNQ is visible in the IR spectra, being indicative of a CT on the order of 0.3e from TMP...

  3. Luminescence from low-energy He/sup +//Xe charge-transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.G.; Hughes, B.M.; Fee, D.C.; Tiernan, T.O.

    1977-04-01

    Optical emissions produced by collision of 100-eV He/sup +/ ions with Xe atoms have been studied over the spectral range from 40 to 900 nm. All of the major lines in the emission spectrum can be assigned to transitions in Xe II resulting from charge-transfer reactions. Emission cross sections for the major lines in the vacuum-ultraviolet and visible spectral regions are reported and the importance of cascading is assessed. The kinetic energy dependence is discussed for several of these lines.

  4. Topological charge transfer in frequency doubling of fractional orbital angular momentum state

    Science.gov (United States)

    Ni, R.; Niu, Y. F.; Du, L.; Hu, X. P.; Zhang, Y.; Zhu, S. N.

    2016-10-01

    Nonlinear frequency conversion is promising for manipulating photons with orbital angular momentum (OAM). In this letter, we investigate the second harmonic generation (SHG) of light beams carrying fractional OAM. By measuring the OAM components of the generated second harmonic (SH) waves, we find that the integer components of the fundamental beam will interact with each other during the nonlinear optical process; thus, we figure out the law for topological charge transfer in frequency doubling of the fractional OAM state. Theoretical predictions by solving the nonlinear coupled wave equations are consistent with the experimental results.

  5. Scale-model charge-transfer technique for measuring enhancement factors

    Science.gov (United States)

    Kositsky, J.; Nanevicz, J. E.

    1991-01-01

    Determination of aircraft electric field enhancement factors is crucial when using airborne field mill (ABFM) systems to accurately measure electric fields aloft. SRI used the scale model charge transfer technique to determine enhancement factors of several canonical shapes and a scale model Learjet 36A. The measured values for the canonical shapes agreed with known analytic solutions within about 6 percent. The laboratory determined enhancement factors for the aircraft were compared with those derived from in-flight data gathered by a Learjet 36A outfitted with eight field mills. The values agreed to within experimental error (approx. 15 percent).

  6. Nanometer scale carbon structures for charge-transfer systems and photovoltaic applications.

    Science.gov (United States)

    Guldi, Dirk M

    2007-03-28

    This article surveys and highlights the integration of nanometer scale carbon structures--in combination with chromophores that exhibit (i) significant absorption cross section throughout the visible part of the solar spectrum and (ii) good electron donating power--into novel electron donor-acceptor conjugates (i.e., covalent) and hybrids (i.e., non-covalent). The focus of this article is predominantly on performance features--charge-transfer and photovoltaic--of the most promising solar energy conversion systems. Besides documenting fundamental advantages as they emerge around nanometer scale carbon structures, critical evaluations of the most recent developments in the fields are provided.

  7. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    Science.gov (United States)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  8. Laser-induced charge transfer in the HeH/sup 2 +/ quasimolecule

    Energy Technology Data Exchange (ETDEWEB)

    Errea, L.F.; Mendez, L.; Riera, A.

    1983-11-01

    In a recent publication, the charge transfer cross section for He/sup 2 +/+H(ls) collisions through photon-assisted 2psigma--3dsigma transitions was calculated; this calculation, however, contained several errors whose quantitative--even qualitative effect on the results is not obvious. We present a correct evaluation of this laser-induced cross section, which turns out to be larger, and present a maximum for longer wavelengths, than the values previously reported. In addition, we have checked the applicability of perturbation theory, of the stationary phase, uniform and Landau--Zener approximations, and the importance of potentially competitive photon-assisted reactions.

  9. Control over the charge transfer in dye-nanoparticle decorated graphene

    Science.gov (United States)

    Bongu, Sudhakara Reddy; Veluthandath, Aneesh V.; Nanda, B. R. K.; Ramaprabhu, Sundara; Bisht, Prem B.

    2016-01-01

    Charge transfer interaction between silver decorated graphene and three differently charged dyes, cationic (rhodamine 6G), neutral (rhodamine B) and anionic (fluorescein 27) has been studied. The ground state association constants have been evaluated and changes in the fluorescence intensity and lifetimes have been obtained in two solvents. Strength of complex-formation has been found to be higher with the cationic molecule in water. In a higher viscosity solvent, the ground state complex formation is restricted. Local field of localized surface plasmons of nanoparticles adsorbed on the graphene sheets leads to enhanced absorption and fluorescence of fluorescein 27.

  10. Molecular distortion and charge transfer effects in ZnPc/Cu(111)

    KAUST Repository

    Amin, B.

    2013-04-23

    The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.

  11. Multi-state charge transfer dynamics and trapping of hyperthermal and low energy alkali ions

    Science.gov (United States)

    Dahl, Eric Brian

    Experimental and theoretical studies were performed of the scattering of hyperthermal and keV energy Lisp+ and Nasp+ ions from Cu(001) surfaces. Chapter one presents measurements of relative total Li(2p) and Na(3p) yields, for 400 eV Lisp+ and 1320 eV Nasp+ scattering from clean and alkali-covered Cu(001). These excited-state yields were measured because they provide a sensitive test of multi-state models of resonant charge transfer, that is, models that are capable of treating more than two atomic states. Chapter two presents a detailed conceptual analysis of two multi-state models: a rate-equation model and the Marston model. The rate-equation model fails to reproduce the measured Li(2p) and Na(3p) yields, whereas the Marston model reproduces the primary trends in the yields. The different behaviors of these models are explained by physical reasoning. The rate-equation model is a fundamentally flawed description of resonant charge transfer, because it includes neither hybridization nor non-adiabatic excitations. Both aspects of resonant charge transfer are required to explain the Li(2p) and Na(3p) yields. These aspects are included in the Marston model, which describes the atom-metal system quantum-mechanically. The quantum mechanics of the atom-metal system can be understood from a physical viewpoint by the use of a few basic principles-principles which are broadly applicable to resonant charge transfer. A key principle is the tendency of the atom-metal system to electronically equilibrate throughout the scattering trajectory of an atom. Additional principles follow from an examination of the many-electron basis states of the atom-metal system. Chapter three presents measurements of the probability that 5 to 600 eV Nasp+ ions incident on Cu(001) become trapped on top of the surface. At a near-normal incident geometry the on-top trapping probability decreased monotonically as the incident energy was decreased. At 45sp° incidence along the azimuth, a surprising

  12. High pressure induced charge transfer in 3d-4f bimetallic photomagnetic materials.

    Science.gov (United States)

    Wu, Lai-Chin; Nielsen, Morten Bormann; Bremholm, Martin; Madsen, Solveig Røgild; Overgaard, Jacob; Newville, Matt; Chen, Yu-Sheng; Iversen, Bo Brummerstedt

    2015-05-25

    Pressure-induced crystal color change of photo-magnetic materials [Ln(DMF)4(H2O)3(μ-CN)M(CN)5]·H2O, Ln = Y, M = Fe (1), Ln = Y, M = Co (2), Ln = Nd, M = Fe (3) (DMF = N,N-dimethyl formamide) are investigated using variable pressure X-ray Absorption Near-Edge Structure (XANES) spectroscopy and X-ray diffraction. For 1 the effect is caused by ligand-to-metal charge transfer (LMCT) on the iron site.

  13. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    Science.gov (United States)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their

  14. Time resolved spectroscopy of 2-(dimethylamine)fluorene. Solvent effects and photophysical behavior.

    Science.gov (United States)

    Sánchez, Francisco G; Díaz, Aurora N; Algarra, Manuel; Lovillo, Josefa; Aguilar, Alfonso

    2011-12-01

    The effect of different solvents on the fluorescent properties of 2-(dimethylamine)fluorene (DAF) were studied. In aprotic solvents we detected a strongly emissive intramolecular charge transfer (ICT) state that decayed by intersystem crossing to triplet. In proton-accepting solvents DAF exhibits in the excited state an intramolecular proton transfer. An ionized species is postulated, which simultaneously twists to a rotated conformation in the excited state. Thus, the specific solvent interactions supplement but do not replace the twist mechanism and accompany the charge transfer accepted as the prerequisite for twisted intramolecular charged transfer (TICT) state formation. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Modeling and computations of the intramolecular electron transfer process in the two-heme protein cytochrome c4

    DEFF Research Database (Denmark)

    Natzmutdinov, Renat R.; Bronshtein, Michael D.; Zinkicheva, Tamara T.

    2012-01-01

    The di-heme protein Pseudomonas stutzeri cytochrome c4 (cyt c4) has emerged as a useful model for studying long-range protein electron transfer (ET). Recent experimental observations have shown a dramatically different pattern of intramolecular ET between the two heme groups in different local...... performed computational modeling of the intramolecular ET process by a combination of density functional theory (DFT) and quantum mechanical charge transfer theory to disclose reasons for this difference. We first address the electronic structures of the model heme core with histidine and methionine axial...... force were determined using dielectric continuum models. We then calculated the electronic transmission coefficient of the intramolecular ET rate using perturbation theory combined with the electronic wave functions determined by the DFT calculations for different heme group orientations and Fe...

  16. Overregularity in Oliver Twist

    Institute of Scientific and Technical Information of China (English)

    孔祥曼

    2015-01-01

    Oliver Twist is one of the earliest works of Charles Dickens. In this novel, the author uses many writing skills which impress the readers a lot. This paper gives a brief description of overregularity in Oliver Twist at the phonological and syntactical levels.

  17. Rapid Synthesis of Size-controlled Gold Nanoparticles by Complex Intramolecular Photoreduction

    Institute of Scientific and Technical Information of China (English)

    DONG Shou-an; YANG Sheng-chun; TANG Chun

    2007-01-01

    A rapid synthesis of size-controlled gold nanoparticles was proposed. The method is based on the sensitive intramolecular photoreduction reaction of Fe( Ⅲ )-EDTA complex in chloroacetic acid-sodium acetate buffer solution,where Fe(Ⅱ)-EDTA complex generated by photo-promotion acts as a reductant of AuCl4- ions. Gold nanoparticles formed were stabilized by EDTA ligand or other protective agents added. As a result, well-dispersed gold nanoparticles with an average diameter range of 6.7 to 50. 9 nm were obtained. According to the characterizations by the UV spectrum and TEM, the intramolecular charge transfer of the excited states of complex Fe(Ⅲ) -EDTA and the mechanism of forming gold nanoparticles were discussed in detail.

  18. Trifluoromethylmetallate anions as components of molecular charge transfer salts and superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, J. A.

    1998-10-14

    Whereas polymeric and common inorganic anions frequently deprive the synthetic chemist of a chance to modify a charge transfer salt's structure through anion alterations, discrete organometallic anions provide a vast opportunity to probe the structure/property correlations of a material through rational synthetic methods. We have recently undertaken a research effort aimed at the crystallization of conducting charge transfer salts which possess modifiable, organometallic anions as the charge compensating entities. This research has been richly rewarded with the discovery of a new family of bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF or ET) based molecular superconductors. Herein is presented a summary of over twenty {kappa}(ET){sub 2}M(CF{sub 3}){sub 4}(1,1,2-trihaloethane) (M = Cu, Ag, Au) superconducting salts. Three new related salts are also reported: (ET){sub 2} [trans-Ag(CF{sub 3}),(CN){sub 2}], {kappa}{sub L}(BEDT-TSF){sub 2}Ag(CF{sub 3}){sub 4}(TCE), and {kappa}{sub L}(ET){sub 2}Ag(CF{sub 3}){sub 3}Cl(TCE).

  19. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    Science.gov (United States)

    Vandewal, Koen; Albrecht, Steve; Hoke, Eric T.; Graham, Kenneth R.; Widmer, Johannes; Douglas, Jessica D.; Schubert, Marcel; Mateker, William R.; Bloking, Jason T.; Burkhard, George F.; Sellinger, Alan; Fréchet, Jean M. J.; Amassian, Aram; Riede, Moritz K.; McGehee, Michael D.; Neher, Dieter; Salleo, Alberto

    2014-01-01

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy.

  20. Charge transfer at carbon nanotube-graphene van der Waals heterojunctions

    Science.gov (United States)

    Liu, Yuanda; Wang, Fengqiu; Liu, Yujie; Wang, Xizhang; Xu, Yongbing; Zhang, Rong

    2016-06-01

    Carbon nanotubes and graphene are two most widely investigated low-dimensional materials for photonic and optoelectronic devices. Combining these two materials into all-carbon hybrid nanostructures has shown enhanced properties in a range of devices, such as photodetectors and flexible electrodes. Interfacial charge transfer is the most fundamental physical process that directly impacts device design and performance, but remains a subject less well studied. Here, we complemented Raman spectroscopy with photocurrent probing, a robust way of illustrating the interfacial built-in fields, and unambiguously revealed both static and dynamic (photo-induced) charge transfer processes at the nanotube-graphene interfaces. Significantly, the effects of nanotube species, i.e. metallic as opposed to semiconducting, are for the first time compared. Of all the devices examined, the graphene sheet was found to be p-type doped with (6, 5) chirality-enriched semiconducting SWNTs (s-SWNTs), while n-type doped with highly pure (>99%) metallic SWNTs (m-SWNTs). Our results provide important design guidelines for all-carbon hybrid based devices.

  1. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  2. Time-dependent quantum wave packet dynamics to study charge transfer in heavy particle collisions

    Science.gov (United States)

    Zhang, Song Bin; Wu, Yong; Wang, Jian Guo

    2016-12-01

    The method of time-dependent quantum wave packet dynamics has been successfully extended to study the charge transfer/exchange process in low energy two-body heavy particle collisions. The collision process is described by coupled-channel equations with diabatic potentials and (radial and rotational) couplings. The time-dependent coupled equations are propagated with the multiconfiguration time-dependent Hartree method and the modulo squares of S-matrix is extracted from the wave packet by the flux operator with complex absorbing potential (FCAP) method. The calculations of the charge transfer process 12Σ+ H-(1s2) +Li(1 s22 s ) →22Σ+ /32 Σ+ /12 Π H(1 s ) +Li-(1s 22 s 2 l ) (l =s ,p ) at the incident energy of about [0.3, 1.3] eV are illustrated as an example. It shows that the calculated reaction probabilities by the present FCAP reproduce that of quantum-mechanical molecular-orbital close-coupling very well, including the peak structures contributed by the resonances. Since time-dependent external interactions can be directly included in the present FCAP calculations, the successful implementation of FCAP provides us a powerful potential tool to study the quantum control of heavy particle collisions by lasers in the near future.

  3. Charge transfer kinetics at the solid-solid interface in porous electrodes

    Science.gov (United States)

    Bai, Peng; Bazant, Martin Z.

    2014-04-01

    Interfacial charge transfer is widely assumed to obey the Butler-Volmer kinetics. For certain liquid-solid interfaces, the Marcus-Hush-Chidsey theory is more accurate and predictive, but it has not been applied to porous electrodes. Here we report a simple method to extract the charge transfer rates in carbon-coated LiFePO4 porous electrodes from chronoamperometry experiments, obtaining curved Tafel plots that contradict the Butler-Volmer equation but fit the Marcus-Hush-Chidsey prediction over a range of temperatures. The fitted reorganization energy matches the Born solvation energy for electron transfer from carbon to the iron redox site. The kinetics are thus limited by electron transfer at the solid-solid (carbon-LixFePO4) interface rather than by ion transfer at the liquid-solid interface, as previously assumed. The proposed experimental method generalizes Chidsey’s method for phase-transforming particles and porous electrodes, and the results show the need to incorporate Marcus kinetics in modelling batteries and other electrochemical systems.

  4. Raman Spectroscopy of Charge Transfer Interactions Between Single Wall Carbon Nanotubes and [FeFe] Hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, J. L. Svedruzic, D.; McDonald, T. J.; Kim, Y. H.; King, P. W.; Heben, M. J.

    2008-01-01

    We report a Raman spectroscopy study of charge transfer interactions in complexes formed by single-walled carbon nanotubes (SWNTs) and [FeFe] hydrogenase I (CaHydI) from Clostridium acetobutylicum. The choice of Raman excitation wavelength and sample preparation conditions allows differences to be observed for complexes involving metallic (m) and semiconducting (s) species. Adsorbed CaHydI can reversibly inject electronic charge into the LUMOs of s-SWNTs, while charge can be injected and removed from m-SWNTs at lower potentials just above the Fermi energy. Time-dependent enzymatic assays demonstrated that the reduced and oxidized forms of CaHydI are deactivated by oxygen, but at rates that varied by an order of magnitude. The time evolution of the oxidative decay of the CaHydI activity reveals different time constants when complexed with m-SWNTs and s-SWNTs. The correlation of enzymatic assays with time-dependent Raman spectroscopy provides a novel method by which the charge transfer interactions may be investigated in the various SWNT-CaHydI complexes. Surprisingly, an oxidized form of CaHydI is apparently more resistant to oxygen deactivation when complexed to m-SWNTs rather than s-SWNTs.

  5. Charge Transfer Mechanism in Titanium-Doped Microporous Silica for Photocatalytic Water-Splitting Applications

    Directory of Open Access Journals (Sweden)

    Wendi Sapp

    2016-02-01

    Full Text Available Solar energy conversion into chemical form is possible using artificial means. One example of a highly-efficient fuel is solar energy used to split water into oxygen and hydrogen. Efficient photocatalytic water-splitting remains an open challenge for researchers across the globe. Despite significant progress, several aspects of the reaction, including the charge transfer mechanism, are not fully clear. Density functional theory combined with density matrix equations of motion were used to identify and characterize the charge transfer mechanism involved in the dissociation of water. A simulated porous silica substrate, using periodic boundary conditions, with Ti4+ ions embedded on the inner pore wall was found to contain electron and hole trap states that could facilitate a chemical reaction. A trap state was located within the silica substrate that lengthened relaxation time, which may favor a chemical reaction. A chemical reaction would have to occur within the window of photoexcitation; therefore, the existence of a trapping state may encourage a chemical reaction. This provides evidence that the silica substrate plays an integral part in the electron/hole dynamics of the system, leading to the conclusion that both components (photoactive materials and support of heterogeneous catalytic systems are important in optimization of catalytic efficiency.

  6. Ferromagnetism induced by the charge transfer in Al-doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanyu; Zhou, Wei; Wu, Ping, E-mail: pingwu@tju.edu.cn

    2014-12-05

    Highlights: • A systematical investigation has been carried out on Zn{sub 1−x}Al{sub x}O system. • Our results confirm that Zn{sub 1−x}Al{sub x}O nanoparticles are magnetic. • The magnetism originates from charge transfer between different cations. • The accordant conclusion is drawn both theoretically and experimentally. • The ferromagnetism would render it to realize more comprehensive applications. - Abstract: The mechanism of ferromagnetism in Al-doped ZnO was investigated both theoretically and experimentally. The density functional theory calculations were carried out to explore the electronic structure origin of ferromagnetism. The Al dopants both doping in a bulk ZnO and absorbing on the ZnO surface are taken into account. Based on the Bader charge analysis for the clear and adsorbed ZnO surface, it is found that the ionic state of Zn decreases after Al doping. The corresponding room temperature ferromagnetism was also confirmed by experiments. Moreover, the experimental analysis rules out that the ferromagnetism results from zinc vacancy or oxygen vacancy. Thus, the physical origin of the induced magnetism was indicated originating from the charge transfer between Zn atoms and adsorbed Al atoms.

  7. Multivalence Charge Transfer in Doped and Codoped Photocatalytic TiO2.

    Science.gov (United States)

    Ren, Hangjuan; Koshy, Pramod; Cao, Fuyang; Sorrell, Charles Christopher

    2016-08-15

    The present work reports data for the mineralogical and chemical properties of anatase thin films individually doped or codoped with chromium and vanadium, fabricated by sol-gel spin coating on glass substrates and annealing at 450 °C for 2 h. X-ray photoelectron spectroscopy data indicated the presence of Ti(4+), Ti(3+), Cr(3+), and possibly Cr(4+) in the Cr-doped thin films; Ti(4+), Ti(3+), V(3+), V(4+), and possibly V(5+) in the V-doped thin films; and Ti(4+), Ti(3+), Cr(3+), Cr(4+), V(3+), V(4+), and possibly V(5+) in the codoped thin films. While the thermodynamically stable valences Ti(4+), Cr(3+), and V(5+) would be expected to have formed, the presence of the nonequilibrium valences Ti(3+), Cr(4+), V(3+), and V(4+) is considered to have resulted from intervalence charge transfer for the Cr-doped and V-doped systems but from multivalence charge transfer (MVCT) for the codoped system. The latter phenomenon, which is introduced as a new conceptual term, describes the nature of the mutual exchange of electrons during valence changes of both dopant (Cr, V) and matrix (Ti) ions during annealing. In the present case, MVCT appears to be a transient metastable condition that acts during annealing, but subsequent UV irradiation can alter its effects.

  8. Ultrafast dynamics of solvation and charge transfer in a DNA-based biomaterial.

    Science.gov (United States)

    Choudhury, Susobhan; Batabyal, Subrata; Mondol, Tanumoy; Sao, Dilip; Lemmens, Peter; Pal, Samir Kumar

    2014-05-01

    Charge migration along DNA molecules is a key factor for DNA-based devices in optoelectronics and biotechnology. The association of a significant amount of water molecules in DNA-based materials for the intactness of the DNA structure and their dynamic role in the charge-transfer (CT) dynamics is less documented in contemporary literature. In the present study, we have used a genomic DNA-cetyltrimethyl ammonium chloride (CTMA) complex, a technological important biomaterial, and Hoechest 33258 (H258), a well-known DNA minor groove binder, as fluorogenic probe for the dynamic solvation studies. The CT dynamics of CdSe/ZnS quantum dots (QDs; 5.2 nm) embedded in the as-prepared and swollen biomaterial have also been studied and correlated with that of the timescale of solvation. We have extended our studies on the temperature-dependent CT dynamics of QDs in a nanoenvironment of an anionic, sodium bis(2-ethylhexyl)sulfosuccinate reverse micelle (AOT RMs), whereby the number of water molecules and their dynamics can be tuned in a controlled manner. A direct correlation of the dynamics of solvation and that of the CT in the nanoenvironments clearly suggests that the hydration barrier within the Arrhenius framework essentially dictates the charge-transfer dynamics.

  9. Single-crystal charge transfer interfaces for efficient photonic devices (Conference Presentation)

    Science.gov (United States)

    Alves, Helena; Pinto, Rui M.; Maçôas, Ermelinda M. S.; Baleizão, Carlos; Santos, Isabel C.

    2016-09-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior performance when compared with materials in a more disordered form. Combining crystals of two different conjugated materials as even enable a new 2D electronic system. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. In 2013, we presented the first system composed of single-crystal charge transfer interfaces presenting photoconductivity behaviour. The system composed of rubrene and TCNQ has a responsivity reaching 1 A/W, corresponding to an external quantum efficiency of nearly 100%. A similar approach, with a hybrid structure of a PCBM film and rubrene single crystal also presents high responsivity and the possibility to extract excitons generated in acceptor materials. This strategy led to an extended action towards the near IR. By adequate material design and structural organisation of perylediimides, we demonstrate that is possible to improve exciton diffusion efficiency. More recently, we have successfully used the concept of charge transfer interfaces in phototransistors. These results open the possibility of using organic single-crystal interfaces in photonic applications.

  10. Discrete electrostatic charge transfer by the electrophoresis of a charged droplet in a dielectric liquid.

    Science.gov (United States)

    Im, Do Jin; Ahn, Myung Mo; Yoo, Byeong Sun; Moon, Dustin; Lee, Dong Woog; Kang, In Seok

    2012-08-14

    We have experimentally investigated the electrostatic charging of a water droplet on an electrified electrode surface to explain the detailed inductive charging processes and use them for the detection of droplet position in a lab-on-a-chip system. The periodic bouncing motion of a droplet between two planar electrodes has been examined by using a high-resolution electrometer and an image analysis method. We have found that this charging process consists of three steps. The first step is inductive charge accumulation on the opposite electrode by the charge of a droplet. This induction process occurs while the droplet approaches the electrode, and it produces an induction current signal at the electrometer. The second step is the discharging of the droplet by the accumulated induced charge at the moment of contact. For this second step, there is no charge-transfer detection at the electrometer. The third step is the charging of the neutralized droplet to a certain charged state while the droplet is in contact with the electrode. The charge transfer of the third step is detected as the pulse-type signal of an electrometer. The second and third steps occur simultaneously and rapidly. We have found that the induction current by the movement of a charged droplet can be accurately used to measure the charge of the droplet and can also be used to monitor the position of a droplet under actuation. The implications of the current findings for understanding and measuring the charging process are discussed.

  11. Ferroelectric phase transition, ionicity condensation, and multicriticality in charge-transfer organic complexes

    Science.gov (United States)

    Kishine, Jun-Ichiro; Luty, Tadeusz; Yonemitsu, Kenji

    2004-02-01

    To elucidate a pressure-temperature phase diagram of the quasi-one-dimensional mixed-stack charge-transfer complex tetrathiafulvalene-P-chloranil (TTF-CA), we study the quasi-one-dimensional spin-1 Blume-Emery-Griffiths model. In addition to the local charge-transfer energy (Δ) and the inter-stack polar (dipole-dipole) interaction (J⊥), we take account of the interstack electrostriction (Coulomb-lattice coupling). Using the self-consistent chain-mean-field theory, where the intra-stack degrees of freedom are exactly treated by the transfer-matrix method, we reproduce the gas-liquid-solid like phase diagram corresponding to the neutral (N), paraelectric ionic (Ipara), and ferroelectric ionic (Iferro) phases, respectively. Our classical model describes an essential point of the multicritical behavior of TTF-CA, i.e., the interchain electrostriction exclusively enhances the charge concentration (ionicity condensation), but does not affect the interchain ferroelectric coupling. This effect leads to appearance of the intermediate Ipara phase in between the N and Iferro phases on the Δ-T phase diagram.

  12. Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder

    KAUST Repository

    Zheng, Zilong

    2017-05-08

    We investigate the impact of electronic polarization, charge delocalization, and energetic disorder on the charge-transfer (CT) states formed at a planar C60/pentacene interface. The ability to examine large complexes containing up to seven pentacene molecules and three C60 molecules allows us to take explicitly into account the electronic polarization effects. These complexes are extracted from a bilayer architecture modeled by molecular dynamics simulations and evaluated by means of electronic-structure calculations based on long-range-separated functionals (ωB97XD and BNL) with optimized range-separation parameters. The energies of the lowest charge-transfer states derived for the large complexes are in very good agreement with the experimentally reported values. The average singlet-triplet energy splittings of the lowest CT states are calculated not to exceed 10 meV. The rates of geminate recombination as well as of dissociation of the triplet excitons are also evaluated. In line with experiment, our results indicate that the pentacene triplet excitons generated through singlet fission can dissociate into separated charges on a picosecond time scale, despite the fact that their energy in C60/pentacene heterojunctions is slightly lower than the energies of the lowest CT triplet states.

  13. Charge transfer and weak bonding between molecular oxygen and graphene zigzag edges at low temperatures

    CERN Document Server

    Boukhvalov, D W; Shames, A I; Takai, K; Hayashi, T; Enoki, T

    2016-01-01

    Electron paramagnetic resonance (EPR) study of air-physisorbed defective carbon nano-onions evidences in favor of microwave assisted formation of weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and edge carbon atoms carrying pi-electronic spins. These complexes being located on the graphene edges are stable at low temperatures but irreversibly dissociate at temperatures above 50-60 K. These EPR findings are justified by density functional theory (DFT) calculations demonstrating transfer of an electron from the zigzag edge of graphene-like material to oxygen molecule physisorbed on the graphene sheet edge. This charge transfer causes changing the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT calculations show significant changes of adsorption energy of oxygen molecule and robustness of the charge transfer to variations of the graphene-like substrate morphology (flat and corrugated mono- and bi-layered graphene) as well as edges passivation. The presence of...

  14. Relation between Nonlinear Optical Properties of Push-Pull Molecules and Metric of Charge Transfer Excitations.

    Science.gov (United States)

    List, Nanna Holmgaard; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Bartkowiak, Wojciech; Ågren, Hans

    2015-09-08

    We establish the relationships between the metric of charge transfer excitation (Δr) for the bright ππ* state and the two-photon absorption probability as well as the first hyperpolarizability for two families of push-pull π-conjugated systems. As previously demonstrated by Guido et al. (J. Chem. Theory Comput. 2013, 9, 3118-3126), Δr is a measure for the average hole-electron distance upon excitation and can be used to discriminate between short- and long-range electronic excitations. We indicate two new benefits from using this metric for the analyses of nonlinear optical properties of push-pull systems. First, the two-photon absorption probability and the first hyperpolarizability are found to be interrelated through Δr; if β ∼ (Δr)(k), then roughly, δ(TPA) ∼ (Δr)(k+1). Second, a simple power relation between Δr and the molecular hyperpolarizabilities of push-pull systems offers the possibility of estimating properties for longer molecular chains without performing calculations of high-order response functions explicitly. We further demonstrate how to link the hyperpolarizabilities with the chain length of the push-pull π-conjugated systems through the metric of charge transfer.

  15. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes

    Science.gov (United States)

    Longuinhos, R.; Lúcio, A. D.; Chacham, H.; Alexandre, S. S.

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag4. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag4 or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag4 to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag4 hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  16. Quantum dynamics of the charge transfer in C{sup +} + S at low collision energies

    Energy Technology Data Exchange (ETDEWEB)

    Chenel, Aurelie; Mangaud, Etienne; Justum, Yves; Desouter-Lecomte, Michele [Laboratoire de Chimie Physique, Bat 349, Univ-ParisSud et CNRS-UMR8000, F-91405 Orsay Cedex (France); Talbi, Dahbia [Groupe de Recherche en Astronomie et Astrophysique du Languedoc, Universite de Montpellier II et CNRS-UMR5024, Place Eugene Bataillon, F-34095 Montpellier Cedex 05 (France); Bacchus-Montabonel, Marie-Christine, E-mail: michele.desouter-lecomte@u-psud.f [Laboratoire de Spectrometrie Ionique et moleculaire, Universite de Lyon I et CNRS-UMR5579, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France)

    2010-12-28

    Following a recent semiclassical investigation by Bacchus-Montabonel and Talbi (2008 Chem. Phys. Lett. 467 28), the C{sup +}(2s{sup 2}2p){sup 2}P + S(3s{sup 2}3p{sup 4}){sup 3}P charge transfer process involved in the modellization of the interstellar medium chemistry and its reverse reaction are revisited by combining a wave packet approach and semiclassical dynamics in a quasimolecular approach for doublet and quartet states. New radial non-adiabatic coupling matrix elements have been calculated and the mixed treatment gives access to new precise values of the rate coefficients for the direct and reverse charge transfer processes. For this system, quantum and semiclassical results are in good agreement even at low collision kinetic energies. The dominance of the quartet states in the process is confirmed. In the quantum treatment, the collision matrix elements are extracted from wave packets by the flux method with an absorbing potential. The formation of resonances due to a centrifugal barrier is illustrated.

  17. Radiative charge transfer lifetime of the excited state of (NaCa)$^+$

    CERN Document Server

    Makarov, O P; Michels, H J; Smith, W W; Makarov, Oleg P.

    2003-01-01

    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom--ion trap under high vacuum conditions. The collisional cooling of laser pre-cooled Ca$^+$ ions by ultracold Na atoms is being studied. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A$^1\\Sigma^+$ state of the (NaCa)$^+$ molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using Complete Active Space Self-Consistent field and M\\"oller-Plesset second order perturbation theory (CASSCF/MP2) with an extended Gaussian basis, 6-311+G(3df). The semiclassical charge transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition we also present elastic collision cross sections and the spin-exchange cross section. The ra...

  18. Control of intrachain charge transfer in model systems for block copolymer photovoltaic materials.

    Science.gov (United States)

    Johnson, Kerr; Huang, Ya-Shih; Huettner, Sven; Sommer, Michael; Brinkmann, Martin; Mulherin, Rhiannon; Niedzialek, Dorota; Beljonne, David; Clark, Jenny; Huck, Wilhelm T S; Friend, Richard H

    2013-04-01

    We report the electronic properties of the conjugated coupling between a donor polymer and an acceptor segment serving as a model for the coupling in conjugated donor-acceptor block copolymers. These structures allow the study of possible intrachain photoinduced charge separation, in contrast to the interchain separation achieved in conventional donor-acceptor blends. Depending on the nature of the conjugated linkage, we observe varying degrees of modification of the excited states, including the formation of intrachain charge transfer excitons. The polymers comprise a block (typically 18 repeat units) of P3HT, poly(3-hexyl thiophene), coupled to a single unit of F8-TBT (where F8 is dioctylfluorene, and TBT is thiophene-benzothiadiazole-thiophene). When the P3HT chain is linked to the TBT unit, we observe formation of a localized charge transfer state, with red-shifted absorption and emission. Independent of the excitation energy, this state is formed very rapidly (<40 fs) and efficiently. Because there is only a single TBT unit present, there is little scope for long-range charge separation and it is relatively short-lived, <1 ns. In contrast, when the P3HT chain and TBT unit are separated by the wider bandgap F8 unit, there is little indication for modification of either ground or excited electronic states, and longer-lived charge separated states are observed.

  19. Structure and dynamics of a dizinc metalloprotein: effect of charge transfer and polarization.

    Science.gov (United States)

    Li, Yong L; Mei, Ye; Zhang, Da W; Xie, Dai Q; Zhang, John Z H

    2011-08-25

    Structures and dynamics of a recently designed dizinc metalloprotein (DFsc) (J. Mol. Biol. 2003, 334, 1101) are studied by molecular dynamics simulation using a dynamically adapted polarized force field derived from fragment quantum calculation for protein in solvent. To properly describe the effect of charge transfer and polarization in the present approach, quantum chemistry calculation of the zinc-binding group is periodically performed (on-the-fly) to update the atomic charges of the zinc-binding group during the MD simulation. Comparison of the present result with those obtained from simulations under standard AMBER force field reveals that charge transfer and polarization are critical to maintaining the correct asymmetric metal coordination in the DFsc. Detailed analysis of the result also shows that dynamic fluctuation of the zinc-binding group facilitates solvent interaction with the zinc ions. In particular, the dynamic fluctuation of the zinc-zinc distance is shown to be an important feature of the catalytic function of the di-ion zinc-binding group. Our study demonstrates that the dynamically adapted polarization approach is computationally practical and can be used to study other metalloprotein systems.

  20. Label-Free Acetylcholine Image Sensor Based on Charge Transfer Technology for Biological Phenomenon Tracking

    Science.gov (United States)

    Takenaga, Shoko; Tamai, Yui; Okumura, Koichi; Ishida, Makoto; Sawada, Kazuaki

    2012-02-01

    A 32 ×32 charge-transfer enzyme-type acetylcholine (ACh) image sensor array was produced for label-free tracking of images of ACh distribution and its performance in repeatable measurements without enzyme deactivation was examined. The proposed sensor was based on a charge-transfer-type pH image sensor, which was modified using an enzyme membrane (acetylcholine esterase, AChE) for each pixel. The ACh image sensor detected hydrogen ions generated by the ACh-AChE reaction. A polyion complex membrane composed of poly(L-lysine) and poly(4-styrenesulfonate) was used to immobilize the enzyme on the sensor. The improved uniformity and adhesion of the polyion complex membrane were evaluated in this study. As a result, temporal and spatial fluctuations of the ACh image sensor were successfully minimized using this approach. The sensitivity of the sensor was 4.2 mV/mM, and its detection limit was 20 µM. In five repeated measurements, the repeatability was 8.8%.

  1. Charge transfer dynamics from adsorbates to surfaces with single active electron and configuration interaction based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan, E-mail: r.ramakrishnan@unibas.ch [Institute of Physical Chemistry, National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Nest, Mathias [Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany)

    2015-01-13

    Highlights: • We model electron dynamics across cyano alkanethiolates attached to gold cluster. • We present electron transfer time scales from TD-DFT and TD-CI based simulations. • Both DFT and CI methods qualitatively predict the trend in time scales. • TD-CI predicts the experimental relative time scale very accurately. - Abstract: We employ wavepacket simulations based on many-body time-dependent configuration interaction (TD-CI), and single active electron theories, to predict the ultrafast molecule/metal electron transfer time scales, in cyano alkanethiolates bonded to model gold clusters. The initial states represent two excited states where a valence electron is promoted to one of the two virtual π{sup ∗} molecular orbitals localized on the cyanide fragment. The ratio of the two time scales indicate the efficiency of one charge transfer channel over the other. In both our one-and many-electron simulations, this ratio agree qualitatively with each other as well as with the previously reported experimental time scales (Blobner et al., 2012), measured for a macroscopic metal surface. We study the effect of cluster size and the description of electron correlation on the charge transfer process.

  2. Charge transfer to a dielectric target by guided ionization waves using electric field measurements

    Science.gov (United States)

    Slikboer, Elmar; Garcia-Caurel, Enric; Guaitella, Olivier; Sobota, Ana

    2017-03-01

    A kHz-operated atmospheric pressure plasma jet is investigated by measuring charge transferred to a dielectric electro-optic surface (BSO crystal) allowing for the measurement of electric field by exploiting the Pockels effect. The electric field values, distribution of the surface discharge and amount of deposited charge are obtained for various parameters, including gas flow, applied voltage, target distance and the length of the capillary from ground to the end. A newly formed surface discharge emerges at the target when enough charge is deposited at the impact point and electric fields are high enough, i.e. 200 pC and 9 ± 2 kV cm‑1. The maximum amount of charge transferred by a single ionization wave (‘plasma bullet’) is 350 ± 40 pC. Due to the emerging new surface discharge behind the impact point, the total charge deposited on the surface of the dielectric target can increase up to 950 pC. The shape of the secondary discharge on the target is found to be mainly driven by gas flow, while the applied voltage allows us to utilize longer distances within the boundaries set by this gas mixing. Finally the ionization wave is found to lose charge along its propagation on the inner walls of the capillary. The loss is estimated to be approximately 7.5 pC mm‑1 of travel distance inside the capillary.

  3. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer

    Science.gov (United States)

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G.; Shimakawa, Yuichi; Attfield, J. Paul

    2011-01-01

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion <−10−4 K−1 over a temperature range ~100 K) is accessible in perovskite oxides showing charge-transfer transitions. BiNiO3 shows a 2.6% volume reduction under pressure due to a Bi/Ni charge transfer that is shifted to ambient pressure through lanthanum substitution for Bi. Changing proportions of coexisting low- and high-temperature phases leads to smooth volume shrinkage on heating. The crystallographic linear expansion coefficient for Bi0.95La0.05NiO3 is −137×10−6 K−1 and a value of −82×10−6 K−1 is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders. PMID:21673668

  4. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen

    2013-11-17

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  5. Intramolecular carbonickelation of alkenes

    Directory of Open Access Journals (Sweden)

    Rudy Lhermet

    2013-04-01

    Full Text Available The efficiency of the intramolecular carbonickelation of substituted allylic ethers and amines has been studied to evaluate the influence of the groups borne by the double bond on this cyclization. The results show that when this reaction takes place, it affords only the 5-exo-trig cyclization products, viz. dihydrobenzofurans or indoles. Depending on the tethered heteroatom (O or N, the outcome of the cyclization differs. While allylic ethers are relatively poor substrates that undergo a side elimination and need an intracyclic double bond to proceed, allylic amines react well and afford indoline and indole derivatives. Finally, the synthesis of the trinuclear ACE core of a morphine-like skeleton was achieved by using NiBr2bipy catalysis.

  6. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: Evidence of cyclodextrins cavity dependent complex stoichiometry

    Science.gov (United States)

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-01

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions.

  7. Short-lived charge-transfer excitons in organic photovoltaic cells studied by high-field magneto-photocurrent.

    Science.gov (United States)

    Devir-Wolfman, Ayeleth H; Khachatryan, Bagrat; Gautam, Bhoj R; Tzabary, Lior; Keren, Amit; Tessler, Nir; Vardeny, Z Valy; Ehrenfreund, Eitan

    2014-07-29

    The main route of charge photogeneration in efficient organic photovoltaic cells based on bulk hetero-junction donor-acceptor blends involves short-lived charge-transfer excitons at the donor-acceptor interfaces. The cell efficiency is critically affected by the charge-transfer exciton recombination and dissociation processes. By measuring the magneto-photocurrent under ambient conditions at room temperature, we show here that magnetic field-induced spin-mixing among the charge-transfer exciton spin sublevels occurs in fields up to at least 8.5 Tesla. The resulting magneto-photocurrent increases at high fields showing non-saturating behaviour up to the highest applied field. We attribute the observed high-field spin-mixing mechanism to the difference in the donor-acceptor g-factors. The non-saturating magneto-photocurrent response at high field indicates that there exist charge-transfer excitons with lifetime in the sub-nanosecond time domain. The non-Lorentzian high-field magneto-photocurrent response indicates a dispersive decay mechanism that originates due to a broad distribution of charge-transfer exciton lifetimes.

  8. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  9. The thermodynamics of charge transfer in DNA photolyase: using thermodynamic integration calculations to analyse the kinetics of electron transfer reactions.

    Science.gov (United States)

    Krapf, Sebastian; Koslowski, Thorsten; Steinbrecher, Thomas

    2010-08-28

    DNA Photolyases are light sensitive oxidoreductases present in many organisms that participate in the repair of photodamaged DNA. They are capable of electron transfer between a bound cofactor and a chain of tryptophan amino acid residues. Due to their unique mechanism and important function, photolyases have been subject to intense study in recent times, with both experimental and computational efforts. In this work, we present a novel application of classical molecular dynamics based free energy calculations, combined with quantum mechanical computations, to biomolecular charge transfer. Our approach allows for the determination of all reaction parameters in Marcus' theory of charge transport. We were able to calculate the free energy profile for the movement of a positive charge along protein sidechains involved in the biomolecule's function as well as charge-transfer rates that are in good agreement with experimental results. Our approach to simulate charge-transfer reactions explicitly includes the influence of protein flexibility and solvent dynamics on charge-transfer energetics. As applied here to a biomolecular system of considerable scientific interest, we believe the method to be easily adaptable to the study of charge-transfer phenomena in biochemistry and other fields.

  10. High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor

    Science.gov (United States)

    Takeshita, Hiroaki; Sawada, Tomonari; Iida, Tetsuya; Yasutomi, Keita; Kawahito, Shoji

    2010-01-01

    This paper presents a structure and method of range calculation for CMOS time-of-flight(TOF) range image sensors using pinned photodiodes. In the proposed method, a LED light with short pulse width and small duty ratio irradiates the objects and a back-reflected light is received by the CMOS TOF range imager.Each pixel has a pinned photodiode optimized for high speed charge transfer and unwanted charge draining. In TOF range image sensors, high speed charge transfer from the light receiving part to a charge accumulator is essential.It was found that the fastest charge transfer can be realized when the lateral electric field along the axis of charge transfer is constant and this conditon is met when the shape of the diode exactly follows the relationship between the fully-depleted potential and width. A TOF range imager prototype is designed and implemented with 0.18um CMOS image sensor technology with pinned photodiode 4transistor(T) pixels. The measurement results show that the charge transfer time is a few ns from the pinned photodiode to a charge accumulator.

  11. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    Science.gov (United States)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  12. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  13. Charge Transfer as a Probe for the Interfacial Properties of Quantum Dot-Ligand Complexes

    Science.gov (United States)

    Weinberg, David Joseph

    This dissertation describes the study of charge transfer interactions between colloidal quantum dots (QDs) and molecular redox partners in the context of both fundamental investigations of charge recombination mechanisms in nanocrystal-molecule systems, and as a technique to probe the properties of the QD ligand shell. Charge separation in a system of CdS nanocrystals and organic hole acceptors results in the formation of a spin-correlated radical ion pair. Interrogating this photogenerated species with EPR and magnetic field effect transient absorption techniques reveals that the charge recombination dynamics of this donor-acceptor system are dictated by the radical pair intersystem crossing mechanism on the nanosecond timescale. These experiments also indicate that the photoinjected electron localizes at a CdS QD surface trap state, and the coupling between the electron and hole in this spin-correlated system is low. Additional studies involving the CdS QDs and organic hole acceptors are proposed which would investigate the exchange of charge and energy within the nanocrystal organic adlayer. Collisional charge transfer interactions between substituted benzoquinone molecules and PbS QDs coated with mixed monolayers of oleic acid and perfluorodecanethiol are monitored via photoluminescence and transient absorption spectroscopies. These experiments reveal that partially fluorinated ligand shells are less permeable to solution phase molecules and offer greater protection of the nanocrystal surface than their aliphatic counterparts. Only a small amount of fluorinated surfactant ( 20% surface coverage) is necessary to profoundly change the permeability of the ligand shell, and the protective nature of these fluorinated molecules is likely a combination of the molecular volume and oleophobicity of these ligands. Follow up work is discussed which would elucidate the influence of solvent and extent of surfactant fluorination on the permeability of these ligand shells, as

  14. Charge transfer adducts of metal complexes of π-donor ligands with I 2 and TCNQ

    Science.gov (United States)

    Bera, T. R.; Sen, D.; Ghosh, R.

    1989-01-01

    Copper(II) and nickel(II) biguanides and O-alkyl-1-amidinourea can act as donors for the formation of charge transfer (CT) adducts with I 2 and tetracyanoquinodimethane (TNCQ) as acceptors. Iodine adducts are characterized both in solid and solution states whereas TCNQ adducts obtain only in solution. Appearance of a broad band at 355 nm for iodine adducts and at 335 nm for TNCQ adducts and shifting of i.r. frequencies support the formation of donor acceptor associates. Elemental analysis establishes 1:1 stoichiometry of the solid adducts. The K and ɛ values determined by modified Benesi—Hildebrand, Scott and Rose—Drago equations are found to be of the order of 10 4 and 10 3 respectively at 298 K in methanol. The solvent effect on the K values is discussed in terms of coupled solute-solute and solute-solvent equilibria.

  15. Solvent-mediated electron hopping: long-range charge transfer in IBr-(CO2) photodissociation.

    Science.gov (United States)

    Sheps, Leonid; Miller, Elisa M; Horvath, Samantha; Thompson, Matthew A; Parson, Robert; McCoy, Anne B; Lineberger, W Carl

    2010-04-09

    Chemical bond breaking involves coupled electronic and nuclear dynamics that can take place on multiple electronic surfaces. Here we report a time-resolved experimental and theoretical investigation of nonadiabatic dynamics during photodissociation of a complex of iodine monobromide anion with carbon dioxide [IBr-(CO2)] on the second excited (A') electronic state. Previous experimental work showed that the dissociation of bare IBr- yields only I- + Br products. However, in IBr-(CO2), time-resolved photoelectron spectroscopy reveals that a subset of the dissociating molecules undergoes an electron transfer from iodine to bromine 350 femtoseconds after the initial excitation. Ab initio calculations and molecular dynamics simulations elucidate the mechanism for this charge hop and highlight the crucial role of the carbon dioxide molecule. The charge transfer between two recoiling atoms, assisted by a single solvent-like molecule, provides a notable limiting case of solvent-driven electron transfer over a distance of 7 angstroms.

  16. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  17. Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics.

    Science.gov (United States)

    Sanders, Simon; Cabrero-Vilatela, Andrea; Kidambi, Piran R; Alexander-Webber, Jack A; Weijtens, Christ; Braeuninger-Weimer, Philipp; Aria, Adrianus I; Qasim, Malik M; Wilkinson, Timothy D; Robertson, John; Hofmann, Stephan; Meyer, Jens

    2015-08-14

    Using thermally evaporated cesium carbonate (Cs2CO3) in an organic matrix, we present a novel strategy for efficient n-doping of monolayer graphene and a ∼90% reduction in its sheet resistance to ∼250 Ohm sq(-1). Photoemission spectroscopy confirms the presence of a large interface dipole of ∼0.9 eV between graphene and the Cs2CO3/organic matrix. This leads to a strong charge transfer based doping of graphene with a Fermi level shift of ∼1.0 eV. Using this approach we demonstrate efficient, standard industrial manufacturing process compatible graphene-based inverted organic light emitting diodes on glass and flexible substrates with efficiencies comparable to those of state-of-the-art ITO based devices.

  18. Supercell convergence of charge-transfer energies in pentacene molecular crystals from constrained DFT

    CERN Document Server

    Turban, David H P; O'Regan, David D; Hine, Nicholas D M

    2016-01-01

    Singlet fission (SF) is a multi-exciton generation process that could be harnessed to improve the efficiency of photovoltaic devices. Experimentally, systems derived from the pentacene molecule have been shown to exhibit ultrafast SF with high yields. Charge-transfer (CT) configurations are likely to play an important role as intermediates in the SF process in these systems. In molecular crystals, electrostatic screening effects and band formation can be significant in lowering the energy of CT states, enhancing their potential to effectively participate in SF. In order to simulate these, it desirable to adopt a computational approach which is acceptably accurate, relatively inexpensive, which and scales well to larger systems, thus enabling the study of screening effects. We propose a novel, electrostatically-corrected constrained Density Functional Theory (cDFT) approach as a low-cost solution to the calculation of CT energies in molecular crystals such as pentacene. Here we consider an implementation in th...

  19. Charge-Transfer Effects in Ligand Exchange Reactions of Au25 Monolayer-Protected Clusters.

    Science.gov (United States)

    Carducci, Tessa M; Blackwell, Raymond E; Murray, Royce W

    2015-04-16

    Reported here are second-order rate constants of associative ligand exchanges of Au25L18 nanoparticles (L = phenylethanethiolate) of various charge states, measured by proton nuclear magnetic resonance at room temperature and below. Differences in second-order rate constants (M(-1) s(-1)) of ligand exchange (positive clusters ∼1.9 × 10(-5) versus negative ones ∼1.2 × 10(-4)) show that electron depletion retards ligand exchange. The ordering of rate constants between the ligands benzeneselenol > 4-bromobenzene thiol > benzenethiol reveals that exchange is accelerated by higher acidity and/or electron donation capability of the incoming ligand. Together, these observations indicate that partial charge transfer occurs between the nanoparticle and ligand during the exchange and that this is a rate-determining effect in the process.

  20. A Model of Charge Transfer Excitons: Diffusion, Spin Dynamics, and Magnetic Field Effects

    CERN Document Server

    Lee, Chee Kong; Willard, Adam P

    2016-01-01

    In this letter we explore how the microscopic dynamics of charge transfer (CT) excitons are influenced by the presence of an external magnetic field in disordered molecular semiconductors. This influence is driven by the dynamic interplay between the spin and spatial degrees of freedom of the electron-hole pair. To account for this interplay we have developed a numerical framework that combines a traditional model of quantum spin dynamics with a coarse-grained model of stochastic charge transport. This combination provides a general and efficient methodology for simulating the effects of magnetic field on CT state dynamics, therefore providing a basis for revealing the microscopic origin of experimentally observed magnetic field effects. We demonstrate that simulations carried out on our model are capable of reproducing experimental results as well as generating theoretical predictions related to the efficiency of organic electronic materials.

  1. A schematic model for energy and charge transfer in the chlorophyll complex

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F.B.

    2011-01-01

    A theory for simultaneous charge and energy transfer in the carotenoid-chlorophyll-a complex is presented here and discussed. The observed charge transfer process in these chloroplast complexes is reasonably explained in terms of this theory. In addition, the process leads to a mechanism to drive...... an electron in a lower to a higher-energy state, thus providing a mechanism for the ejection of the electron to a nearby molecule (chlorophyll) or into the environment. The observed lifetimes of the electronically excited states are in accord/agreement with the investigations of Sundström et al....... and are in the range of pico-seconds and less. The change in electronic charge distribution in internuclear space as the system undergoes an electronic transition to a higher-energy state could, under appropriate physical conditions, lead to oscillating dipoles capable of transmitting energy from the carotenoid-chlorophylls...

  2. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router.

    Science.gov (United States)

    Thanopulos, Ioannis; Paspalakis, Emmanuel; Yannopapas, Vassilios

    2008-11-05

    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router.

  3. Identifying the magnetoconductance responses by the induced charge transfer complex states in pentacene-based diodes

    Science.gov (United States)

    Huang, Wei-Shun; Lee, Tsung-Hsun; Guo, Tzung-Fang; Huang, J. C. A.; Wen, Ten-Chin

    2012-07-01

    We investigate the magnetoconductance (MC) responses in photocurrent, unipolar injection, and bipolar injection regimes in pentacene-based diodes. Both photocurrent and bipolar injection contributed MC responses show large difference in MC line shape, which are attributed to triplet-polaron interaction modulated by the magnetic field dependent singlet fission and the intersystem crossing of the polaron pair, respectively. By blending 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane into pentacene, all the MC responses are suppressed but the MC response at unipolar injection regime is enhanced, which is attributed to the induced charge transfer complex states (CT complex states). This work identify the MC responses between single carrier contributed MC and exciton related MC by the induced CT complex states.

  4. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization.

    Science.gov (United States)

    Demchenko, Alexander P; Tang, Kuo-Chun; Chou, Pi-Tai

    2013-02-01

    Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.

  5. Interaction and charge transfer between dielectric spheres: exact and approximate analytical solutions

    CERN Document Server

    Lindén, Fredrik; Zettergren, Henning

    2016-01-01

    We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.

  6. Charge transfer and penning ionization of dopants in or on helium nanodroplets exposed to EUV radiation.

    Science.gov (United States)

    Buchta, Dominic; Krishnan, Siva R; Brauer, Nils B; Drabbels, Marcel; O'Keeffe, Patrick; Devetta, Michele; Di Fraia, Michele; Callegari, Carlo; Richter, Robert; Coreno, Marcello; Prince, Kevin C; Stienkemeier, Frank; Moshammer, Robert; Mudrich, Marcel

    2013-05-30

    Helium nanodroplets are widely used as a cold, weakly interacting matrix for spectroscopy of embedded species. In this work, we excite or ionize doped He droplets using synchrotron radiation and study the effect onto the dopant atoms depending on their location inside the droplets (rare gases) or outside at the droplet surface (alkali metals). Using photoelectron-photoion coincidence imaging spectroscopy at variable photon energies (20-25 eV), we compare the rates of charge-transfer to Penning ionization of the dopants in the two cases. The surprising finding is that alkali metals, in contrast to the rare gases, are efficiently Penning ionized upon excitation of the (n = 2)-bands of the host droplets. This indicates rapid migration of the excitation to the droplet surface, followed by relaxation, and eventually energy transfer to the alkali dopants.

  7. Charge Transfer Complexes of Polymers%高分子电荷转移复合物

    Institute of Scientific and Technical Information of China (English)

    赵扬; 邱家白

    1986-01-01

    @@ 电荷转移复合物(charge transfer complex, CTC)的研究,始于本世纪二十年代。然而对CTC理论的阐述,及其实际应用方面,长期未取得实质性进展。1952年R. S. Mulliken在J. H. Hildebrand的实验基础上首创共振模型,引入电荷转移(charge transfer,CT)这一术语,奠定了CTO的理论基础。从此,对CT现象的研究不断深入,开拓的领域日益广阔,已成为世界性的研究课题。

  8. Charge-transfer interaction mediated organogels from 18β-glycyrrhetinic acid appended pyrene

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2013-12-01

    Full Text Available We describe herein the two-component charge-transfer (CT interaction induced organogel formation with 18β-glycyrrhetinic acid appended pyrene (GA-pyrene, 3 as the donor, and 2,4,7-trinitrofluorenone (TNF, 4 as the acceptor. The use of TNF (4 as a versatile electron acceptor in the formation of CT gels is demonstrated through the formation of gels in a variety of solvents. Thermal stability, stoichiometry, scanning electron microscopy (SEM, optical micrographs, and circular dichroism (CD are performed on these CT gels to investigate their thermal and assembly properties. UV–vis, fluorescence, mass spectrometric as well as variable-temperature 1H NMR experiments on these gels suggest that the CT interaction is one of the major driving forces for the formation of these organogels.

  9. Charge-Transfer Excited States in Aqueous DNA: Insights from Many-Body Green's Function Theory

    Science.gov (United States)

    Yin, Huabing; Ma, Yuchen; Mu, Jinglin; Liu, Chengbu; Rohlfing, Michael

    2014-06-01

    Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (˜1 eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.

  10. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics.

    Science.gov (United States)

    Guan, Zhiqiang; Li, Ho-Wa; Zhang, Jinfeng; Cheng, Yuanhang; Yang, Qingdan; Lo, Ming-Fai; Ng, Tsz-Wai; Tsang, Sai-Wing; Lee, Chun-Sing

    2016-08-24

    How charge-transfer states (CTSs) assist charge separation of a Coulombically bound exciton in organic photovoltaics has been a hot topic. It is believed that the delocalization feature of a CTS plays a crucial role in the charge separation process. However, the delocalization of the "hot" and the "relaxed" CTSs is still under debate. Here, with a novel frequency dependent charge-modulated electroabsorption spectroscopy (CMEAS) technique, we elucidate clearly that both "hot" and "relaxed" CTSs are loosely bound and delocalized states. This is confirmed by comparing the CMEAS results of CTSs with those of localized polaron states. Our results reveal the role of CTS delocalization on charge separation and indicate that no substantial delocalization gradient exists in CTSs.

  11. Charge transfer in keV O+(4S,2D,2P)-He collisions

    Science.gov (United States)

    Lindsay, B. G.; Stebbings, R. F.

    2003-02-01

    Absolute differential cross sections (DCSs) are reported for charge-transfer scattering of (1 5)-keV O+(4S) ground-state and O+(2D,2P) metastable-state ions by helium atoms at angles between 0.2° and 6.3° in the laboratory frame. Estimated ground-state and metastable-state total cross sections are derived from these measurements. The present ground-state cross sections agree satisfactorily with previous measurements for energies above 2 keV and the metastable-state cross sections are consistent with the mixed-state data of Kusakabe et al. [J. Phys. Soc. Japan 59, 1987 (1990)]. The large differences between the ground- and metastable-state cross sections predicted by theory are not observed.

  12. Charge-transfer dynamics at the dye-semiconductor interface of photocathodes for solar energy applications.

    Science.gov (United States)

    Black, Fiona A; Wood, Christopher J; Ngwerume, Simbarashe; Summers, Gareth H; Clark, Ian P; Towrie, Michael; Camp, Jason E; Gibson, Elizabeth A

    2017-03-13

    This article describes a comparison between the photophysical properties of two charge-transfer dyes adsorbed onto NiO via two different binding moieties. Transient spectroscopy measurements suggest that the structure of the anchoring group affects both the rate of charge recombination between the dye and NiO surface and the rate of dye regeneration by an iodide/triiodide redox couple. This is consistent with the performance of the dyes in p-type dye sensitised solar cells. A key finding was that the recombination rate differed in the presence of the redox couple. These results have important implications on the study of electron transfer at dye|semiconductor interfaces for solar energy applications.

  13. Charge-Transfer induced EUV and Soft X-ray emissions in the Heliosphere

    CERN Document Server

    Koutroumpa, D; Kharchenko, V; Dalgarno, A; Pepino, R; Izmodenov, V; Quemerais, E

    2006-01-01

    We study the EUV/soft X-ray emission generated by charge transfer between solar wind heavy ions and interstellar H and He neutral atoms in the inner Heliosphere. We present heliospheric maps and spectra for stationary solar wind, depending on solar cycle phase, solar wind anisotropies and composition, line of sight direction and observer position. A time-dependant simulation of the X-ray intensity variations due to temporary solar wind enhancement is compared to XMM Newton recorded data of the Hubble Deep Field North observation (Snowden et al. 2004). Results show that the heliospheric component can explain a large fraction of the line intensity below 1.3 keV, strongly attenuating the need for soft X-ray emission from the Local Interstellar Bubble.

  14. Doping Dependent Charge Transfer Gap and Realistic Electronic Model of n-type Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, T.

    2010-05-03

    Based on the analysis of the measurement data of angle-resolved photoemission spectroscopy (ARPES) and optics, we show that the charge transfer gap is significantly smaller than the optical one and is reduced by doping in electron doped cuprate superconductors. This leads to a strong charge fluctuation between the Zhang-Rice singlet and the upper Hubbard bands. The basic model for describing this system is a hybridized two-band t-J model. In the symmetric limit where the corresponding intra- and inter-band hopping integrals are equal to each other, this two-band model is equivalent to the Hubbard model with an antiferromagnetic exchange interaction (i.e. the t-U-J model). The mean-field result of the t-U-J model gives a good account for the doping evolution of the Fermi surface and the staggered magnetization.

  15. Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.

    Science.gov (United States)

    Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto

    2009-03-15

    A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.

  16. Charge transfer from and to manganese phthalocyanine: bulk materials and interfaces.

    Science.gov (United States)

    Rückerl, Florian; Waas, Daniel; Büchner, Bernd; Knupfer, Martin; Zahn, Dietrich R T; Haidu, Francisc; Hahn, Torsten; Kortus, Jens

    2017-01-01

    Manganese phthalocyanine (MnPc) is a member of the family of transition-metal phthalocyanines, which combines interesting electronic behavior in the fields of organic and molecular electronics with local magnetic moments. MnPc is characterized by hybrid states between the Mn 3d orbitals and the π orbitals of the ligand very close to the Fermi level. This causes particular physical properties, different from those of the other phthalocyanines, such as a rather small ionization potential, a small band gap and a large electron affinity. These can be exploited to prepare particular compounds and interfaces with appropriate partners, which are characterized by a charge transfer from or to MnPc. We summarize recent spectroscopic and theoretical results that have been achieved in this regard.

  17. Annealing bounds to prevent further Charge Transfer Inefficiency increase of the Chandra X-ray CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Monmeyran, Corentin, E-mail: comonmey@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Patel, Neil S., E-mail: neilp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bautz, Mark W., E-mail: mwb@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Grant, Catherine E., E-mail: cgrant@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Prigozhin, Gregory Y., E-mail: gyp@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Agarwal, Anuradha, E-mail: anu@mit.edu [Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Kimerling, Lionel C., E-mail: lckim@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-12-15

    After the front-illuminated CCDs on board the X-ray telescope Chandra were damaged by radiation after launch, it was decided to anneal them in an effort to remove the defects introduced by the irradiation. The annealing led to an unexpected increase of the Charge Transfer Inefficiency (CTI). The performance degradation is attributed to point defect interactions in the devices. Specifically, the annealing at 30 °C activated the diffusion of the main interstitial defect in the device, the carbon interstitial, which led to its association with a substitutional impurity, ultimately resulting in a stable and electrically active defect state. Because the formation reaction of this carbon interstitial and substitutional impurity associate is diffusion limited, we recommend a higher upper bound for the annealing temperature and duration of any future CCD anneals, that of −50 °C for one day or −60 °C for a week, to prevent further CTI increase.

  18. Radiative charge transfer in cold and ultracold Sulfur atoms colliding with Protons

    CERN Document Server

    Shen, G; Wang, J G; McCann, J F; McLaughlin, B M

    2015-01-01

    Radiative decay processes at cold and ultra cold temperatures for Sulfur atoms colliding with protons are investigated. The MOLPRO quantum chemistry suite of codes was used to obtain accurate potential energies and transition dipole moments, as a function of internuclear distance, between low-lying states of the SH$^{+}$ molecular cation. A multi-reference configuration-interaction (MRCI) approximation together with the Davidson correction is used to determine the potential energy curves and transition dipole moments, between the states of interest, where the molecular orbitals (MO's) are obtained from state-averaged multi configuration-self-consistent field (MCSCF) calculations. The collision problem is solved approximately using an optical potential method to obtain radiative loss, and a fully two-channel quantum approach for radiative charge transfer. Cross sections and rate coefficients are determined for the first time for temperatures ranging from 10 $\\mu$ K up to 10,000 K. Results are obtained for all ...

  19. Ultracold, radiative charge transfer in hybrid Yb ion - Rb atom traps

    CERN Document Server

    McLaughlin, B M; Lane, I C; McCann, J F

    2014-01-01

    Ultracold hybrid ion-atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the Yb$^{+}$ ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion-atom collisions dominates cold ion-atom collisions. For spin dependent processes \\cite{kohl13} the...

  20. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications

    Science.gov (United States)

    Wang, Zhijie; Cao, Dawei; Wen, Liaoyong; Xu, Rui; Obergfell, Manuel; Mi, Yan; Zhan, Zhibing; Nasori, Nasori; Demsar, Jure; Lei, Yong

    2016-01-01

    Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting.

  1. Charge transfer, chemical potentials, and the nature of functional groups: answers from quantum chemical topology.

    Science.gov (United States)

    Pendás, A Martín; Francisco, E; Blanco, M A

    2007-01-01

    We analyze the response of a quantum group within a molecule to charge transfer by using the interacting quantum atoms approach (IQA), an energy partitioning scheme within the quantum theory of atoms in molecules (QTAM). It is shown that this response lies at the core of the concept of the functional group. The manipulation of fractional electron populations is carried out by using distribution functions for the electron number within the quantum basins. Several test systems are studied to show that similar chemical potential groups are characterized by similar energetic behavior upon interaction with other groups. The origin of the empirical additivity rules for group energies in simple hydrocarbons is also investigated. It turns out to rest on the independent saturation of both the self-energies and the interaction energies of the groups as the size of the chain increases. We also show that our results are compatible with the standard group energies of the QTAM.

  2. Is dipole moment a valid descriptor of excited state's charge-transfer character?

    Science.gov (United States)

    Petelenz, Piotr; Pac, Barbara

    2013-11-20

    In the ongoing discussion on excited states of the pentacene crystal, dipole moment values have been recently invoked to gauge the CT admixture to excited states of Frenkel parentage in a model cluster. In the present paper, a simple dimer model is used to show that, in general, the dipole moment is not a valid measure of the CT contribution. This finding eliminates some apparent disagreement between the computational results published by different research groups. The implications of our results and other related aspects of cluster-type quantum chemistry calculations are discussed in the context of the standing literature dispute concerning the mechanism of singlet fission in the pentacene crystal, notably the role of charge transfer contributions vs the involvement of an excimer-like doubly excited intermediate (D state).

  3. Annealing bounds to prevent further Charge Transfer Inefficiency increase of the Chandra X-ray CCDs

    Science.gov (United States)

    Monmeyran, Corentin; Patel, Neil S.; Bautz, Mark W.; Grant, Catherine E.; Prigozhin, Gregory Y.; Agarwal, Anuradha; Kimerling, Lionel C.

    2016-12-01

    After the front-illuminated CCDs on board the X-ray telescope Chandra were damaged by radiation after launch, it was decided to anneal them in an effort to remove the defects introduced by the irradiation. The annealing led to an unexpected increase of the Charge Transfer Inefficiency (CTI). The performance degradation is attributed to point defect interactions in the devices. Specifically, the annealing at 30 °C activated the diffusion of the main interstitial defect in the device, the carbon interstitial, which led to its association with a substitutional impurity, ultimately resulting in a stable and electrically active defect state. Because the formation reaction of this carbon interstitial and substitutional impurity associate is diffusion limited, we recommend a higher upper bound for the annealing temperature and duration of any future CCD anneals, that of -50 °C for one day or -60 °C for a week, to prevent further CTI increase.

  4. Phosphonic acid functionalized asymmetric phthalocyanines: synthesis, modification of indium tin oxide, and charge transfer.

    Science.gov (United States)

    Polaske, Nathan W; Lin, Hsiao-Chu; Tang, Anna; Mayukh, Mayunk; Oquendo, Luis E; Green, John T; Ratcliff, Erin L; Armstrong, Neal R; Saavedra, S Scott; McGrath, Dominic V

    2011-12-20

    Metalated and free-base A(3)B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry. The PA functionalized asymmetric Pcs were anchored to the ITO surface through chemisorption and their electrochemical properties characterized using cyclic voltammetry to investigate the effects of PA structure on the thermodynamics and kinetics of charge transfer. Ionization energies of the modified ITO surfaces were measured using ultraviolet photoemission spectroscopy.

  5. Competition between covalent bonding and charge transfer at complex-oxide interfaces.

    Science.gov (United States)

    Salafranca, Juan; Rincón, Julián; Tornos, Javier; León, Carlos; Santamaria, Jacobo; Dagotto, Elbio; Pennycook, Stephen J; Varela, Maria

    2014-05-16

    Here we study the electronic properties of cuprate-manganite interfaces. By means of atomic resolution electron microscopy and spectroscopy, we produce a subnanometer scale map of the transition metal oxidation state profile across the interface between the high Tc superconductor YBa2Cu3O7-δ and the colossal magnetoresistance compound (La,Ca)MnO3. A net transfer of electrons from manganite to cuprate with a peculiar nonmonotonic charge profile is observed. Model calculations rationalize the profile in terms of the competition between standard charge transfer tendencies (due to band mismatch), strong chemical bonding effects across the interface, and Cu substitution into the Mn lattice, with different characteristic length scales.

  6. Theoretical study of charge transfer dynamics in collisions of C6+ carbon ions with pyrimidine nucleobases

    Science.gov (United States)

    Bacchus-Montabonel, M. C.

    2012-07-01

    A theoretical approach of the charge transfer dynamics induced by collision of C6+ ions with biological targets has been performed in a wide collision energy range by means of ab-initio quantum chemistry molecular methods. The process has been investigated for the target series thymine, uracil and 5-halouracil corresponding to similar molecules with different substituent on carbon C5. Such a study may be related to hadrontherapy treatments by C6+carbon ions and may provide, in particular, information on the radio-sensitivity of the different bases with regard to ion-induced radiation damage. The results have been compared to a previous analysis concerning the collision of C4+ carbon ions with the same biomolecular targets and significant charge effects have been pointed out.

  7. Polarization Enhanced Charge Transfer: Dual-Band GaN-Based Plasmonic Photodetector

    Science.gov (United States)

    Jia, Ran; Zhao, Dongfang; Gao, Naikun; Liu, Duo

    2017-01-01

    Here, we report a dual-band plasmonic photodetector based on Ga-polar gallium nitride (GaN) for highly sensitive detection of UV and green light. We discover that decoration of Au nanoparticles (NPs) drastically increases the photoelectric responsivities by more than 50 times in comparition to the blank GaN photodetector. The observed behaviors are attributed to polarization enhanced charge transfer of optically excited hot electrons from Au NPs to GaN driven by the strong spontaneous polarization field of Ga-polar GaN. Moreover, defect ionization promoted by localized surface plasmon resonances (LSPRs) is also discussed. This novel type of photodetector may shed light on the design and fabrication of photoelectric devices based on polar semiconductors and microstructural defects.

  8. Synthesis of a novel perylene diimide derivative and its charge transfer interaction with C60

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; SHI MinMin; YANG LiGong; CHEN HongZheng; WANG Mang

    2008-01-01

    A novel organic electron accepter, N,N'-dipyrimidinyl-3,4,9,10-perylene-tetracarboxylic diimide (DMP), was designed and synthesized.The molecular structure was characterized by FTIR spectrum and ele-mental analysis.By cyclic voltammetry measurements, DMP was found to possess a lower LUMO en-ergy level than N,N'-diphenyl-3,4,9,10-perylene-tetracarboxylic diimide due to the stronger elec-tron-withdrawing pyrimidinyl group than the phenyl group.Fluorescence quenching is observed in a dual-layer film consisting of a DMP layer and a C60 layer and was attributed to the charge transfer at the interface due to the energy level offset between DMP and C60.

  9. Phosphonic Acid Functionalized Asymmetric Phthalocyanines: Synthesis, Modification of Indium Tin Oxide (ITO), and Charge Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Polaske, Nathan W.; Lin, Hsiao-Chu; Tang, Anna; Mayukh, Mayank; Oquendo, Luis E.; Green, John; Ratcliff, Erin L.; Armstrong, Neal R.; Saavedra, S. Scott; McGrath, Dominic V.

    2011-12-20

    Metalated and free-base A₃B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry. The PA functionalized asymmetric Pcs were anchored to the ITO surface through chemisorption and their electrochemical properties characterized using cyclic voltammetry to investigate the effects of PA structure on the thermodynamics and kinetics of charge transfer. Ionization energies of the modified ITO surfaces were measured using ultraviolet photoemission spectroscopy.

  10. Laser-induced charge transfer in the CH/sup 6 +/ quasimolecule

    Energy Technology Data Exchange (ETDEWEB)

    Errea, L.F.; Mendez, L.; Riera, A.

    1985-05-15

    The charge transfer cross section is calculated for C/sup 6 +/+CH(1s) collisions, through photon assisted 5gsigma--6hsigma, 5gsigma--4fsigma, 5gsigma--4f..pi.., and 5gsigma--4dsigma transitions. The theory developed by Copeland and Tang, and ourselves, is employed, and the validity of the approximations used is tested. The four processes considered have widely different characteristics with regards to the laser wavelength needed, the collision dynamics and the applicability of back-of-the-envelope estimates based on the Landau--Zener approximation. We point out the relevance of those processes to the impurity diagnostics of magnetically confined fusion plasmas and to the development of short wavelength lasers.

  11. Charge transfer behavior of graphene-titania photoanode in CO2 photoelectrocatalysis process

    Science.gov (United States)

    Hasan, Md. Rakibul; Hamid, Sharifah Bee Abd; Basirun, Wan Jeffrey

    2015-06-01

    In the present study, a graphene-titania composite photoelectrode was synthesized, characterized and examined for the photoelectrocatalytic (PEC) response. The charge transfer process on the semiconductor/electrolyte interface was investigated via electrochemical impedance spectroscopy (EIS) and voltammetry. In addition, the influence of pH toward the photoanode performance was also investigated and it was noticed that a high pH condition was favorable higher photocurrent response from the EIS measurements. The main reason could be attributed to the decrease of recombination process at the photoanode with fast quenching of the photogenerated holes with OH- ions at high pH. The experiment was also run for CO2 photoreduction and increased photocurrent was observed.

  12. Charge-transfer reactions between C{sub 60} and hydrophilic solutes

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrijevic, N.M.; Nedeljkovic, J.M.; Saponjic, Z.V. [Institute for Nuclear Sciences ``Vinca``, Belgrade (Yugoslavia)

    1998-10-01

    Two different procedures for dissolving fullerene molecule C{sub 60} into aqueous solutions have been developed. Embedding C{sub 60} clusters into a water-soluble host molecule of {gamma}-cyclodextrin resulted in relatively low concentration of C{sub 60} (5-10 {mu}M). Prepare of a stable ionic surfactant/water/oil microemulsion provided a method for dissolving C{sub 60} in relatively high concentrations (1 mM). In both cases charge-transfer reactions between hydrophobic molecule of C{sub 60} and hydrophilic solutes were examined. Anion radical C{sub 60}{sup -} was detected in reaction with radiolytically produced radicals (e{sub aq}{sup -}, (CH{sub 3}){sub 2}COH or MV{sup +}), and in reaction with excess electrons stored onto nanometer-sized metal (Ag) or quantized semiconductor (TiO{sub 2}) particles. (orig.) 33 refs.

  13. Restoration of Conductivity with TTF-TCNQ Charge-Transfer Salts

    Energy Technology Data Exchange (ETDEWEB)

    Odom, Susan A.; Caruso, Mary M.; Finke, Aaron D.; Prokup, Alex M.; Ritchey, Joshua A.; Leonard, Francois; White, Scott R.; Sottos, Nancy R.; Moore, Jeffrey S.

    2010-05-03

    The formation of the conductive TTF-TCNQ (tetrathiafulvalene–tetracyanoquinodimethane) charge-transfer salt via rupture of microencapsulated solutions of its individual components is reported. Solutions of TTF and TCNQ in various solvents are separately incorporated into poly(urea-formaldehyde) core–shell microcapsules. Rupture of a mixture of TTF-containing microcapsules and TCNQ-containing microcapsules results in the formation of the crystalline salt, as verified by FTIR spectroscopy and powder X-ray diffraction. Preliminary measurements demonstrate the partial restoration of conductivity of severed gold electrodes in the presence of TTF-TCNQ derived in situ. This is the first microcapsule system for the restoration of conductivity in mechanically damaged electronic devices in which the repairing agent is not conductive until its release.

  14. Modulating charge transfer through cyclic D,L-alpha-peptide self-assembly.

    Science.gov (United States)

    Horne, W Seth; Ashkenasy, Nurit; Ghadiri, M Reza

    2005-02-04

    We describe a concise, solid support-based synthetic method for the preparation of cyclic d,l-alpha-peptides bearing 1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond-directed self-assembly of the cyclic d,l-alpha-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depend on the length of the linker between the NDI and the peptide backbone, the distal NDI substituent, and the number of NDIs incorporated in a given structure. The design rationale and synthetic strategies described here should provide a basic blueprint for a series of self-assembling cyclic d,l-alpha-peptide nanotubes with interesting optical and electronic properties.

  15. Modulating Charge Transfer Through Cyclic D,L α-Peptide Self-Assembly

    Science.gov (United States)

    Horne, W. Seth; Ashkenasy, Nurit; Ghadiri, M. Reza

    2007-01-01

    We describe a concise solid support-based synthetic method for the preparation of cyclic D,L α-peptides bearing 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond directed self-assembly of the cyclic D,L α-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depend on the length of the linker between the NDI and the peptide backbone, the distal NDI substituent, and the number of NDIs incorporated in a given structure. The design rationale and synthetic strategies described here should provide a basic blueprint for a series of self-assembling cyclic D,L α-peptide nanotubes with interesting optical and electronic properties. PMID:15624124

  16. Creation of recognition sites for organophosphate esters based on charge transfer and ligand exchange imprinting methods.

    Science.gov (United States)

    Say, Ridvan

    2006-10-01

    This manuscript describes a method for the selective binding behavior of paraoxan and parathion compounds on surface imprinted polymers which were prepared using both charge transfer (CT) (methacryloyl-antipyrine, MAAP) and ligand-exchange (LE) (methacryloyl-antipyrine-gadalonium, MAAP-Gd) monomers. These polymers were prepared in the presence of azobisisobutyronitrile (AIBN) as an initiator and crosslinking EDMA and were imprinted with organophosphate esters. Influence of CT and LE imprinting on the creation of recognition sites toward paraoxan and parathion was determined applying adsorption isotherms. The effect of initial concentration of paraoxan and parathion, adsorption time and imprinting efficiency on adsorption selectivity for MIP-CT and MIP-LE was investigated. Association constant (K(ass)), number of accessible sites (Q(max)), relative selectivity coefficient (k') and binding ability were also evaluated.

  17. Spectroscopic study of the charge-transfer complexes TiCl4/styrene and TiCl4/polystyrene

    Science.gov (United States)

    Gonçalves, Norberto S.; Noda, Lúcia. K.

    2017-10-01

    In this work, solutions of TiCl4/styrene and TiCl4/polystyrene charge-transfer complexes in CHCl3 or CDCl3 were investigated by UV-vis, resonance Raman and 1H NMR spectroscopies in order to study their molecular and electronic structures. Both show a yellow colour due to absorption in the 400 nm region, related to a charge-transfer transition. In Raman spectra, as the excitation approaches the resonance region, the primary enhancement of aromatic ring modes was mainly observed, rather than intensification of the vinylic double-bond stretch. Under the experimental conditions it was observed that formation of polystyrene takes place, as showed by 1H NMR spectra, and the most significant interaction occurs at the aromatic ring, as supported by the results from interaction of TiCl4 with polystyrene, as indicated by the charge-transfer band and resonant intensification of the aromatic ring modes.

  18. Resonant charge transfer of hydrogen Rydberg atoms incident at a Cu(100) projected band-gap surface

    CERN Document Server

    Gibbard, J A; Kohlhoff, M; Rennick, C J; So, E; Ford, M; Softley, T P

    2015-01-01

    The charge transfer (ionization) of hydrogen Rydberg atoms (principal quantum number $n=25-34$) incident at a Cu(100) surface is investigated. Unlike fully metallic surfaces, where the Rydberg electron energy is degenerate with the conduction band of the metal, the Cu(100) surface has a projected bandgap at these energies, and only discrete image states are available through which charge transfer can take place. Resonant enhancement of charge transfer is observed at hydrogen principal quantum numbers for which the Rydberg energy matches the energy of one of the image states. The integrated surface ionization signals show clear periodicity as the energies of states with increasing $n$ come in and out of resonance with the image states. The velocity dependence of the surface ionization dynamics is also investigated. Decreased velocity of the incident H atom leads to a greater mean distance of ionization and a lower field required to extract the ion. The surface-ionization profiles (signal versus applied field) ...

  19. K-shell to K-shell charge transfer in collisions of bare decelerated S ions with Ar

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M.; Justiniano, E.; Konrad, J.; Schuch, R.; Salin, A.

    1987-05-14

    The impact parameter dependence of the single and double K-shell to K-shell charge transfer probabilities was studied by measuring triple coincidences between two K x-rays and the scattered projectiles for 16 MeV S W -Ar. It was found that the data are internally consistent with independent electron assumptions, but cannot be reproduced by different calculations of single electron transfer probabilities applying the independent electron model. Also a calculation of double K-vacancy transfer including electron correlations which described the HeS -He charge transfer probabilities well, is not in good agreement with the present data. The data allow a more sensitive test of various calculations on K to K charge transfer than recent experimental studies on collision systems with hydrogen-like projectiles.

  20. Ab initio treatment of ion-induced charge transfer dynamics of isolated 2-deoxy-D-ribose.

    Science.gov (United States)

    Bacchus-Montabonel, Marie-Christine

    2014-08-21

    Modeling-induced radiation damage in biological systems, in particular, in DNA building blocks, is of major concern in cancer therapy studies. Ion-induced charge-transfer dynamics may indeed be involved in proton and hadrontherapy treatments. We have thus performed a theoretical approach of the charge-transfer dynamics in collision of C(4+) ions and protons with isolated 2-deoxy-D-ribose in a wide collision energy range by means of ab initio quantum chemistry molecular methods. The comparison of both projectile ions has been performed with regard to previous theoretical and experimental results. The charge transfer appears markedly less efficient with the 2-deoxy-D-ribose target than that with pyrimidine nucleobases, which would induce an enhancement of the fragmentation process in agreement with experimental measurements. The mechanism has been analyzed with regard to inner orbital excitations, and qualitative tendencies have been pointed out for studies on DNA buiding block damage.

  1. Twisted equivariant matter

    CERN Document Server

    Freed, Daniel S

    2012-01-01

    We show how general principles of symmetry in quantum mechanics lead to twisted notions of a group representation. This framework generalizes both the classical 3-fold way of real/complex/quaternionic representations as well as a corresponding 10-fold way which has appeared in condensed matter and nuclear physics. We establish a foundation for discussing continuous families of quantum systems. Having done so, topological phases of quantum systems can be defined as deformation classes of continuous families of gapped Hamiltonians. For free particles there is an additional algebraic structure on the deformation classes leading naturally to notions of twisted equivariant K-theory. In systems with a lattice of translational symmetries we show that there is a canonical twisting of the equivariant K-theory of the Brillouin torus. We give precise mathematical definitions of two invariants of the topological phases which have played an important role in the study of topological insulators. Twisted equivariant K-theor...

  2. Twisted analytic torsion

    Institute of Scientific and Technical Information of China (English)

    MATHAI; Varghese

    2010-01-01

    We review the Reidemeister, Ray-Singer’s analytic torsion and the Cheeger-Mller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsion of invariant forms are inverse to each other for any dimension.

  3. Twisted Analytic Torsion

    CERN Document Server

    Mathai, Varghese

    2009-01-01

    We review the Reidemeister and Ray-Singer's analytic torsions and the Cheeger-M"uller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsions are inverse to each other for any dimensions.

  4. Ultrafast charge transfer between MoTe2 and MoS2 monolayers

    Science.gov (United States)

    Pan, Shudi; Ceballos, Frank; Bellus, Matthew Z.; Zereshki, Peymon; Zhao, Hui

    2017-03-01

    High quality and stable electrical contact between metal and two-dimensional materials, such as transition metal dichalcogenides, is a necessary requirement that has yet to be achieved in order to successfully exploit the advantages that these materials offer to electronics and optoelectronics. MoTe2, owing to its phase changing property, can potentially offer a solution. A recent study demonstrated that metallic phase of MoTe2 connects its semiconducting phase with very low resistance. To utilize this property to connect other two-dimensional materials, it is important to achieve efficient charge transfer between MoTe2 and other semiconducting materials. Using MoS2 as an example, we report ultrafast and efficient charge transfer between MoTe2 and MoS2 monolayers. In the transient absorption measurements, an ultrashort pump pulse is used to selectively excite electrons in MoTe2. The appearance of the excited electrons in the conduction band of MoS2 is monitored by using a probe pulse that is tuned to the resonance of MoS2. We found that electrons transfer to MoS2 on a time scale of at most 0.3 ps. The transferred electrons give rise to a large transient absorption signal at both A-exciton and B-exciton resonances due to the screening effect. We also observed ultrafast transfer of holes from MoS2 to MoTe2. Our results suggest the feasibility of using MoTe2 as a bridge material to connect MoS2 and other transition metal dichalcogenides, and demonstrate a new transition metal dichalcogenide heterostructure involving MoTe2, which extends the spectral range of such structures to infrared.

  5. Analytical study for the charge-transfer complexes of losartan potassium

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Ibrahim A. [Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526 (Egypt)]. E-mail: iadarwish@yahoo.com

    2005-09-06

    Studies were carried out, for the first time, to investigate the charge-transfer reactions of losartan potassium (LOS-K) as n-electron donor with the {sigma}-acceptor iodine and various {pi}-acceptors: 7,7,8,8-tetracyanoquinodimethane, 1,3,5-trinitrobenzene, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, p-chloranilic acid, tetracyanoethylene, 2,3,5,6-tetrabromo-1,4-benzoquinone, 2,3,5,6-tetrachloro-1,4-benzoquinone, and 2,4,7-trinitro-9-fluorenone. Different colored charge-transfer complexes and radical anions were obtained. Different variables affecting the reactions were studied and optimized. The formed complexes and the site of interaction were examined by UV-vis, IR, and {sup 1}H NMR techniques, and computational molecular modeling. The formation of the colored complexes were utilized in the development of simple, rapid and accurate spectrophotometric methods for the analysis of LOS-K in pure form as well as in its pharmaceutical tablets. Under the optimum reaction conditions, linear relationships with good correlation coefficients (0.9985-0.9998) were found between the absorbances and the concentrations of LOS-K in the range of 2-200 {mu}g ml{sup -1}. The limits of assays detection ranged from 0.61 to 19.65 {mu}g ml{sup -1}. No interference could be observed from the co-formulated hydrochlorothiazide (HCTZ), as well as from the additives commonly present in the tablets. The methods were successfully applied to the analysis of tablets from different manufacturers that contain LOS-K, alone or combined with HCTZ, with good accuracy and precision; the recovery percentages ranged from 98.96 {+-} 1.62% to 101.58 {+-} 1.29%. The results were compared favourably with the reported method.

  6. Soft versus hard junction formation for α-terthiophene molecular wires and their charge transfer complexes

    Science.gov (United States)

    Vezzoli, Andrea; Grace, Iain M.; Brooke, Carly; Nichols, Richard J.; Lambert, Colin J.; Higgins, Simon J.

    2017-03-01

    We used a range of scanning tunnelling microscopy (STM)-based methods to conduct a detailed study of single molecule junction conductance enhancement upon charge transfer complex formation, using bis(thiaalkyl)arene molecular wires as electron donors and tetracyanoethylene (TCNE) as an electron acceptor. Using the "hard" STM break junction (STM-BJ) method, in which a Au STM tip is pushed into a Au substrate and then withdrawn in the presence of molecules, we see a single, very broad, peak in the resulting conductance histogram when all data are used; the conductance enhancement is 25-fold for a terthiophene donor and 15-fold for a phenyl group. After rational data selection, in which only current-distance curves that contain a current plateau >0.2 nm long are used in the conductance histogram, three sharper peaks are resolved in the histograms for the charge transfer complexes; two substantially lower-conductance peaks are resolved for the uncomplexed molecules. Using the "soft" STM I(s) technique, in which initial contact between tip and substrate is avoided and the current limit is about an order of magnitude lower, we were able to resolve two peaks for the uncomplexed molecules depending upon the initial set point current (i.e., tip height), one at the same value as the lower of the two data-selected STM-BJ histogram peaks and an additional peak beyond the low-current limit for the STM-BJ experiment. For the terthiophene, the low, medium, and high conductance peaks for the TCNE complex are, respectively, ca. 70, 70, and 46 times higher in conductance than the corresponding peaks for the free molecule.

  7. Theoretical description of photo-doping in Mott and charge-transfer insulators

    Science.gov (United States)

    Eckstein, Martin

    2012-02-01

    Many aspects of photo-excited insulator-to-metal transitions in Mott and charge-transfer systems are theoretically not well understood: How is the photo-doped state related to a chemically doped state? On what timescale do we expect the formation of quasiparticles? To describe the electronic dynamics of Mott insulators, we have used nonequilibrium dynamical mean-field theory (DMFT) in combination with Quantum Monte Carlo and various weak and strong-coupling [1] techniques. In the talk, I will briefly present the current status of this approach and of related cluster approaches for nonequilibrium. I will then discuss results for the photo-doping in the Hubbard model, and in a in a p-d model for charge-transfer insulators. When the onsite Coulomb repulsion U is much larger than the hopping, rapid thermalization of the pump-excited Mott insulator is inhibited by the energetic stabilization of doublon-hole pairs [2], and various types of non-thermal states can arise. Immediately after the excitation process, the system of doublons and holes is too hot to form quasiparticle states, but coupling to a heat-bath of phonons can drive the system into a metallic state with well developed doublon and hole bands. Close to the metal-insulator transition, on the other hand, when U is of the order as the hopping, doublons and holes rapidly thermalize due to the electron-electron interaction, which makes the system a bad metal rather than a Fermi liquid. [4pt] [1] M. Eckstein and Ph. Werner, Phys. Rev. B 82, 115115 (2010).[0pt] [2] M. Eckstein and Ph. Werner, Phys. Rev. B 84, 035122 (2011).

  8. Synthesis and characterization of highly conductive charge-transfer complexes using positron annihilation spectroscopy

    Science.gov (United States)

    Adam, Abdel Majid A.; Refat, Moamen S.; Sharshar, T.; Heiba, Z. K.

    Molecular charge-transfer complexes of the tetramethylethylenediamine (TMEDA) with picric acid (Pi-OH), benzene-1,4-diol (QL), tin(IV) tetrachloride (SnCl4), iodine, bromine, and zinc chloride (ZnCl2) have been synthesized and investigated by elemental and thermal analysis, electronic, infrared, Raman and proton-NMR, energy-dispersive X-ray spectroscopy, X-ray powder diffraction and positron annihilation lifetime spectroscopy, and scanning electron microscopy. In this work, three types of acceptors π-acceptors (Pi-OH and QL), σ-acceptors (iodine and bromine), and vacant orbital acceptors (SnCl4 and ZnCl2) were covered. The results of elemental analysis indicated that the CT complexes were formed with ratios 1:1 and 1:2 for QL, SnCl4, and ZnCl2 acceptors and iodine, Pi-OH, and Br2 acceptors, respectively. The type of chelating between the TMEDA donor and the mentioned acceptors depends upon the behavior of both items. The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, and the power of acceptors. The correlation between these parameters and the molecular weight and biological activities of studied complexes was also observed. Regarding the electrical properties, the AC conductivity and the dielectric coefficients were measured as a function of frequency at room temperature. The TMEDA charge-transfer complexes were screened against antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa) and antifungal (Aspergillus flavus and Candida albicans) activities.

  9. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  10. Twisted radio waves and twisted thermodynamics.

    Science.gov (United States)

    Kish, Laszlo B; Nevels, Robert D

    2013-01-01

    We present and analyze a gedanken experiment and show that the assumption that an antenna operating at a single frequency can transmit more than two independent information channels to the far field violates the Second Law of Thermodynamics. Transmission of a large number of channels, each associated with an angular momenta 'twisted wave' mode, to the far field in free space is therefore not possible.

  11. CHARGE-TRANSFER AND ENERGY-TRANSFER IN THE PHOTO-INDUCED COPOLYMERIZATION OF 2-VINYLNAPHTHALENE WITH MALEIC ANHYDRIDE

    Institute of Scientific and Technical Information of China (English)

    LI Tong; LUO Bin; LI Shanjun; CHU Guobei

    1990-01-01

    The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from ( 1 ) the local excitation of 2-vinylnaphthalene followed by the charge-transfer interaction with maleic anhydride and ( 2 ) the excitation of the ground state charge-transfer complex, and then it collapsed to 1,4-tetramethylene biradical for initiation. A 1:1 alternating copolymer was formed in different monomer feeds. Addition of benzophenone could greatly enhance the rate of copolymerization through energy-transfer mechanism.

  12. Ultrafast pump-probe study of the excited-state charge-transfer dynamics in blue copper rusticyanin.

    Science.gov (United States)

    Bizzarri, Anna Rita; Brida, Daniele; Santini, Simona; Cerullo, Giulio; Cannistraro, Salvatore

    2012-04-12

    We have used femtosecond pump-probe spectroscopy to investigate the excited-state dynamics of the anticancer blue copper protein rusticyanin, by exciting its ligand to metal charge-transfer band with 25 fs pump pulses centered at 585 nm. The charge-transfer excited state decays exponentially to the ground state with a time constant of about 230 fs, and its recovery is modulated by coherent oscillations. The Fourier transform of the oscillatory component of the signal provides most of the vibrational modes obtained by means of conventional resonance Raman studies, in addition to the low frequency modes below 80 cm(-1) believed to reflect collective motions of biological relevance.

  13. The effect of solvent polarity on the balance between charge transfer and non-charge transfer pathways in the sensitization of singlet oxygen by pipi triplet states.

    Science.gov (United States)

    Schmidt, Reinhard

    2006-05-11

    A large set of literature kinetic data on triplet (T(1)) sensitization of singlet oxygen by two series of biphenyl and naphthalene sensitizers in solvents of strongly different polarity has been analyzed. The rate constants and the efficiencies of singlet oxygen formation are quantitatively reproduced by a model that assumes the competition of a non-charge transfer (nCT) and a CT deactivation channel. nCT deactivation occurs from a fully established spin-statistical equilibrium of (1)(T(1)(3)Sigma) and (3)(T(1)(3)Sigma) encounter complexes by internal conversion (IC) to lower excited complexes that dissociate to yield O(2)((1)Sigma(g)(+)), O(2)((1)Delta(g)), and O(2)((3)Sigma(g)(-)). IC of (1,3)(T(1)(3)Sigma) encounter complexes is controlled by an energy gap law that is generally valid for the transfer of electronic energy to and from O(2). (1,3)(T(1)(3)Sigma) nCT complexes form in competition to IC (1)(T(1)(3)Sigma) and (3)(T(1)(3)Sigma) exciplexes if CT interactions between T(1) and O(2) are important. The rate constants of exciplex formation depend via a Marcus type parabolic model on the corresponding free energy change DeltaG(CT), which varies with sensitizer triplet energy, oxidation potential, and solvent polarity. O(2)((1)Sigma(g)(+)), O(2)((1)Delta(g)), and O(2)((3)Sigma(g)(-)) are formed in the product ratio (1/6):(1/12):(3/4) in the CT deactivation channel. The balance between nCT and CT deactivation is described by the relative contribution p(CT) of CT induced deactivation calculated for a sensitizer of known triplet energy from its quenching rate constant. It is shown how the change of p(CT) influences the quenching rate constant and the efficiency of singlet oxygen formation in both series of sensitizers. p(CT) is sensitive to differences of solvent polarity and varies for the biphenyls and the naphthalenes as sigmoidal with DeltaG(CT). This quantitative model represents a realistic and general mechanism for the quenching of pipi triplet states by O

  14. Intramolecular charge transfer and Z-scan studies of a semiorganic nonlinear optical material sodium acid phthalate hemihydrate: a vibrational spectroscopic study.

    Science.gov (United States)

    Sajan, D; Vijayan, N; Safakath, K; Philip, Reji; Joe, I Hubert

    2011-07-28

    FT-IR and Raman spectra of the nonlinear optical material sodium acid phthalate hemihydrate crystal have been recorded and analyzed. The equilibrium geometry, bonding features, and harmonic vibrational wavenumbers have been investigated with the help of the B3LYP density functional theory method. A detailed interpretation of the vibrational spectra was carried out with the aid of normal coordinate analysis following the scaled quantum mechanical force field methodology. The natural bond orbital analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule. Nonlinear optical absorption of the sample has been studied at 532 nm using single 5 ns laser pulses, employing the open-aperture Z-scan technique. It is found that the NaAPH molecule is a potential candidate for optical limiting applications. © 2011 American Chemical Society

  15. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.

    Science.gov (United States)

    Bazant, Martin Z

    2013-05-21

    Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations. In condensed matter, strong interactions alter chemical activities and create variations that can dramatically affect the reaction rate. The extreme case is that of a reaction coupled to a phase transformation, whose kinetics must depend not only on the order parameter but also on its gradients at phase boundaries. Reaction-driven phase transformations are common in electrochemistry, when charge transfer is accompanied by ion intercalation or deposition in a solid phase. Examples abound in Li-ion, metal-air, and lead-acid batteries, as well as metal electrodeposition-dissolution. Despite complex thermodynamics, however, the standard kinetic model is the Butler-Volmer equation, based on a dilute solution approximation. The Marcus theory of charge transfer likewise considers isolated reactants and neglects elastic stress, configurational entropy, and other nonidealities in condensed phases. The limitations of existing theories recently became apparent for the Li-ion battery material LixFePO4 (LFP). It has a strong tendency to separate into Li-rich and Li-poor solid phases, which scientists believe limits its performance. Chemists first modeled phase separation in LFP as an isotropic "shrinking core" within each particle, but experiments later revealed striped phase boundaries on the active crystal facet. This raised the question: What is the reaction rate at a surface undergoing a phase transformation? Meanwhile, dramatic rate enhancement was attained with LFP nanoparticles, and classical battery models could not predict the roles of phase separation and surface modification. In this Account, I present a general theory of chemical kinetics, developed over

  16. Charge transfer interactions of a Ru(II) dye complex and related ligand molecules adsorbed on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Andrew J.; Weston, Matthew; O' Shea, James N. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Nottingham Nanotechnology and Nanoscience Centre (NNNC), University of Nottingham, Nottingham NG7 2RD (United Kingdom); Taylor, J. Ben; Rienzo, Anna; Mayor, Louise C. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2011-10-28

    The interaction of the dye molecule, N3 (cis-bis(isothiocyanato)bis(2,2{sup '}-bipyridyl-4,4{sup '}-dicarboxylato) -ruthenium(II)), and related ligand molecules with a Au(111) surface has been studied using synchrotron radiation-based electron spectroscopy. Resonant photoemission spectroscopy (RPES) and autoionization of the adsorbed molecules have been used to probe the coupling between the molecules and the substrate. Evidence of charge transfer from the states near the Fermi level of the gold substrate into the lowest unoccupied molecular orbital (LUMO) of the molecules is found in the monolayer RPES spectra of both isonicotinic acid and bi-isonicotinic acid (a ligand of N3), but not for the N3 molecule itself. Calibrated x-ray absorption spectroscopy and valence band spectra of the monolayers reveals that the LUMO crosses the Fermi level of the surface in all cases, showing that charge transfer is energetically possible both from and to the molecule. A core-hole clock analysis of the resonant photoemission reveals a charge transfer time of around 4 fs from the LUMO of the N3 dye molecule to the surface. The lack of charge transfer in the opposite direction is understood in terms of the lack of spatial overlap between the {pi}*-orbitals in the aromatic rings of the bi-isonicotinic acid ligands of N3 and the gold surface.

  17. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...

  18. Implementing Metal-to-Ligand Charge Transfer in Organic Semiconductor for Improved Visible-Near-Infrared Photocatalysis.

    Science.gov (United States)

    Li, Yanrui; Wang, Zhaowu; Xia, Tong; Ju, Huanxin; Zhang, Ke; Long, Ran; Xu, Qian; Wang, Chengming; Song, Li; Zhu, Junfa; Jiang, Jun; Xiong, Yujie

    2016-08-01

    The coordination of organic semiconductors with metal cations can induce metal-to-ligand charge transfer, which broadens light absorption to cover the visible-near-infrared (vis-NIR) spectrum. As a proof-of-concept demonstration, the g-C3 N4 -based complex exhibits dramatically enhanced photocatalytic H2 production with excellent durability under vis-NIR irradiation.

  19. Turn-on fluorescence probes based on pyranine/viologen charge-transfer complexes for the determination of nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Schäferling, Michael, E-mail: Michael.schaeferling@utu.fi; Lang, Thomas; Schnettelker, Annette

    2014-10-15

    The formation of ground state charge-transfer complexes between pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid) and viologen (paraquat) derivatives is utilized for the design of novel fluoroionophores for the determination of phosphate species, particularly of nucleotides. The strong quenching of the pyranine fluorescence by viologen-type charge transfer acceptors can be countermanded if these are functionalized with triethylammonium groups that serve as recognition elements for phosphate anions. We report on the fluorogenic responses of these water-soluble molecular probes in presence of different phosphates. Absorbance measurements give additional information on the charge transfer complex formation and the interaction with nucleotides. The experimental data show that these aggregates form attractive, simple and versatile fluorescence turn-on probes for nucleoside triphosphates. The reversibility of the fluorescence response is demonstrated by means of an enzymatic model assay using ATPase for the decomposition of adenosine triphosphate. - Highlights: • Pyranine/viologen charge-transfer complexes as molecular probe for ATP recognition. • Fluorescence turn on mechanism. • Selective compared to other nucleotides and phosphate anions. • Fast and reversible response applicable to monitor enzymatic reactions.

  20. Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge-Transfer States in Organic Solar Cells

    KAUST Repository

    Chen, Xian Kai

    2016-09-05

    In organic solar cells, a major source of energy loss is attributed to nonradiative recombination from the interfacial charge transfer states to the ground state. By taking pentacene–C60 complexes as model donor–acceptor systems, a comprehensive theoretical understanding of how molecular packing and charge delocalization impact these nonradiative recombination rates at donor–acceptor interfaces is provided.

  1. Twisted derivations of Hopf algebras

    CERN Document Server

    Davydov, Alexei

    2012-01-01

    In the paper we introduce the notion of twisted derivation of a bialgebra. Twisted derivations appear as infinitesimal symmetries of the category of representations. More precisely they are infinitesimal versions of twisted automorphisms of bialgebras. Twisted derivations naturally form a Lie algebra (the tangent algebra of the group of twisted automorphisms). Moreover this Lie algebra fits into a crossed module (tangent to the crossed module of twisted automorphisms). Here we calculate this crossed module for universal enveloping algebras and for the Sweedler's Hopf algebra.

  2. Photochemical Dynamics of Intramolecular Singlet Fission

    Science.gov (United States)

    Lin, Zhou; Iwasaki, Hikari; Van Voorhis, Troy

    2017-06-01

    Singlet fission (SF) converts a singlet exciton (S_1) into a pair of triplet ones (T_1) via a ``multi-exciton'' (ME) intermediate: S_1 \\longleftrightarrow ^1ME \\longleftrightarrow ^1(T_1T_1) \\longrightarrow 2T_1. In exothermic cases, e.g., crystalline pentacene or its derivatives, the quantum yield of SF can reach 200%. With SF doubling the electric current generated by an incident high-energy photon, the solar conversion efficiency in pentacene-based organic photovoltaics (OPVs) can exceed the Shockley-Queisser limit of 33.7%. The ME state is popularly considered to be a dimeric state with significant charge transfer (CT) character that is strongly coupled to both S_1 and ^1(T_1T_1), while this local model lacks strong support from full quantum dynamics studies. Intramolecular SF (ISF) occurring to covalently-bound dimers in the solution phase is an excellent model for a straightforward dynamics simulation of local excitons. In the present study, we investigate the ISF mechanisms for three covalently-bound dimers of pentacene derivatives, including ortho-, meta-, and para-bis(6,13-bis(triisopropylsilylethynyl)pentacene)benzene, in non-protic solvents. Specifically, we propagate the real-time, non-adiabatic quantum mechanical/molecular mechanical (QM/MM) dynamics on the potential energy surfaces associated with the states of S_1, ^1(T_1T_1) and CT. We explore how the energies of these ISF-relevant states and the non-adiabatic couplings between each other fluctuate with time and the instantaneous molecular configuration (e.g., intermonomer distance and orientation). We also quantitatively compare Condon and non-Condon ISF dynamics with solution-phase spectroscopic data. Our results allow us to understand the roles of CT energy levels in the ISF mechanism and propose a design strategy to maximize ISF efficiency. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010). W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). T. C. Berkelbach, M. S. Hybertsen

  3. Fundamental studies of interfacial excited-state charge transfer in molecularly tethered semiconductor nanoassemblies

    Science.gov (United States)

    Youker, Diane Greer

    The research presented in this dissertation focuses on elucidating the parameters affecting dynamics and yield of electron transfer reactions in semiconducting nanoparticle assemblies through the use of time-resolved spectroscopy. In particular, the dissertation focuses on photoinduced electron injection in assemblies of CdSe, CdS, or PbS quantum dots covalently bound to either metal oxide films or each other through the use of bifunctional molecular linkers. Chapter 2 elucidates the influence of electronic coupling on excited-state electron transfer from CdS quantum dots to TiO2 nanoparticles via molecular linkers with phenylene bridges. We establish that the efficiency of electron injection from CdS quantum dots to TiO2 nanoparticle varies dramatically with electronic coupling, which can be controlled by tuning the properties of molecular linkers. Chapter 3 presents the role of excitation energy on interfacial electron transfer in tethered assemblies of CdSe quantum dots and TiO2 nanoparticles. Through this work, we determined that injection efficiency from band-edge states is independent of excitation energy. However, the efficiency of injection from trap-states decreases at lower-energy excitation. We attribute the decrease to a lower energy distribution of emissive trap-states from which injection is less efficient. Chapter 4 presents the observation of multiphasic electron injection dynamics from photoexcited PbS quantum dots to TiO2 nanoparticles. In this collaborative study with Dr. Masumoto from the University of Tsukuba we observed electron injection on multiple timescales. We determined that electron injection occurred in this system through two different mechanisms. The first involved injection from thermalized PbS excited states and the second through injection of hot electrons through Auger recombination of biexcitons that creates high lying excitonic states. Chapter 5 investigates charge transfer in covalently bound quantum dot assemblies. We utilize

  4. Charge transfer at organic-organic heterojunctions, and remote doping of a pentacene transistor

    Science.gov (United States)

    Zhao, Wei

    Organic-organic heterojunctions (OOHs) are the fundamental building blocks of organic devices, such as organic light-emitting diodes, organic photovoltaic cells, and photo detectors. Transport of free electrons and holes, exciton formation, recombination or dissociation, and various other physical processes all take place in OOHs. Understanding the electronic structures of OOH is critical for studying device physics and further improving the performance of organic devices. This work focuses on the electronic structure, i.e., the energy level alignment, at OOHs, investigated by ultraviolet and inverse photoemission spectroscopy (UPS and IPES). The weak interaction that generally prevails at OOH interfaces leads to small interface dipoles of 0˜0.5eV. The experimental observations on the majority of OOHs studied can be semi-quantitatively predicted by the model derived from the induced density of interface states and charge neutrality level (IDIS/CNL). However, we also find that the electronic structure of interfaces between two small-band-gap semiconductors, e.g., using copper phthalocyanine (CuPc) as the donor and a tris(thieno)-hexaazatriphenylene derivative (THAP) as the acceptor, is strongly influenced by changes in the substrate work function. In these cases, the charge transfer that takes place at the interface is governed by thermodynamic equilibrium, dominating any subtle interaction due to IDIS/CNL. The impact of doping on the energy level alignment of OOHs is also studied. The charges donated by the dopant molecules transfer from the parent doped layer to the adjacent undoped layer, taking advantage of the molecular level offset, and are then spatially separated from the dopant molecules. Remote doping, based on this charge transfer mechanism, is demonstrated with the heterojunction formed between pentacene and N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'bisphenyl-4,4'diazine (alpha-NPD) p-doped with tris[1,2-bis(trifluoromethyl) ethane-1,2-dithiolene] (Mo

  5. Charge transfer reactions at interfaces between neutral gas and plasma: Dynamical effects and X-ray emission

    Science.gov (United States)

    Provornikova, E.; Izmodenov, V. V.; Lallement, R.

    2012-04-01

    Charge-transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge-transfer with respect to the dynamics and the structure of neutral gas-plasma interfaces. We consider the following phenomena: (1) the heliospheric interface - region where the solar wind plasma interacts with the partly-ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so-called ``Local Bubble". In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two-component model of the cloud-plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud-plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X-ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X-ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge-transfer X-ray emission from the neutral cloud-plasma interface may be comparable to the diffuse thermal X-ray emission from the million degree gas cavity itself.

  6. Spectroscopy and dynamics of charge transfer excitons in type-II band aligned quantum confined heterostructures

    Science.gov (United States)

    Kushavah, Dushyant; Mohapatra, P. K.; Rustagi, K. C.; Bahadur, D.; Vasa, P.; Singh, B. P.

    2015-05-01

    We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ˜5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ˜597 to ˜746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ˜51 ns as compared to ˜6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.

  7. Spectroscopy and dynamics of charge transfer excitons in type-II band aligned quantum confined heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kushavah, Dushyant [Centre for Research in Nanotechnology and Science, IIT Bombay-400076, Mumbai (India); Mohapatra, P. K.; Vasa, P.; Singh, B. P., E-mail: bhanups@iitb.ac.in [Department of physics, IIT Bombay, Mumbai-400076 (India); Rustagi, K. C. [Indian Institute of Science Education and Research Bhopal-462066, Bhopal (India); Bahadur, D. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai-400076 (India)

    2015-05-15

    We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ∼5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ∼597 to ∼746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ∼51 ns as compared to ∼6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.

  8. Langmuir monolayers of gold nanoparticles: from ohmic to rectifying charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shaowei

    2003-10-31

    The lateral electrical/electronic conductivity of alkanethiolate-protected gold nanoparticles was evaluated at the air/water interface by using the Langmuir method. For particles with short protecting monolayers (C4Au and C5Au), the current-voltage profiles exhibited ohmic behaviors with conductivity several orders of magnitude smaller than that of bulk gold. The conductivity is found to decrease exponentially with increasing interparticle spacing. This is interpreted on the basis of electron tunneling/hopping between neighboring particles where the tunneling coefficient ({beta}) is found around 0.5 Angst{sup -1}. With longer alkyl protecting layers (C6 and above), the nanoparticle monolayers demonstrated rectifying charge-transfer characters. This transition from ohmic to diode-like responses can be attributable to the nanocomposite structure of the particle molecules, where the chemical nature of the core and the protecting monolayers, along with the interparticle environment and ordering, are found to play an important role in regulating the electrical/electronic properties of the nanoassemblies.

  9. Conductive PVDF-HFP nanofibers with embedded TTF-TCNQ charge transfer complex.

    Science.gov (United States)

    Gal-Oz, Reshef; Patil, Nilesh; Khalfin, Rafail; Cohen, Yachin; Zussman, Eyal

    2013-07-10

    Tetrathiafulvalene-tetracyanoquinodimethane charge-transfer complex (TTF-TCNQ CTC) represents a promising organic conductive system. However, application of this donor-acceptor pair is highly limited, because of its ultrafast crystallization kinetics and very low solubility. In this work, conductive organic nanofibers were generated via a coelectrospinning process of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with embedded TTF and TCNQ in the shell and core solutions, respectively. Upon supply of the polymer solutions, a core-shell droplet was formed at the exit of the spinneret. The electron donor TTF and the electron acceptor TCNQ migrated toward each other, within the compound droplet, to produce conductive CTC crystals. In the presence of a sufficiently strong electric field, jetting set in at the droplet tip, which yielded solidified PVDF-HFP nanofibers embedded with aligned CTC. Fiber diameters ranged between 100 and 500 nm. X-ray analysis showed strong equatorial reflections (110,200) of oriented copolymer PVDF-HFP crystals (β-phase) with copolymer chains oriented along the fiber axis, and of CTC (001), indicating that the CTC molecular planes were aligned parallel to the nanofiber axis. In addition, reflections of unreacted TCNQ (120,220) and TTF (110) crystals were observed. The electrospun nanofibers were collected to form a fiber mat, which was evaluated as a working electrode in a three-electrode cell system, exhibiting differential conductance of 5.23 μmho.

  10. Electronic coupling effects and charge transfer between organic molecules and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Forker, Roman

    2010-07-01

    We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. (orig.)

  11. Pseudogap and superconductivity in two-dimensional doped charge-transfer insulators

    Science.gov (United States)

    Fratino, L.; Sémon, P.; Sordi, G.; Tremblay, A.-M. S.

    2016-06-01

    High-temperature superconductivity emerges upon doping a state of matter that is insulating because of interactions. A widely studied model considers one orbital per CuO2 unit cell on a square lattice with a strong intraorbital repulsion that leads to a so-called Mott-Hubbard insulator. Here we solve a model that takes into account, within each unit cell, two oxygen orbitals where there is no electron-electron repulsion and a copper orbital with strong electron-electron repulsion. The insulating phase is a so-called charge-transfer insulator, not a Mott-Hubbard insulator. Using cluster dynamical mean-field theory with continuous-time quantum Monte Carlo as an impurity solver and 12 atoms per cluster, we report the normal and superconducting phase diagram of this model as a function of doping, interaction strength, and temperature. As expected, the three-orbital model is consistent with the experimental observation that doped holes are located predominantly on oxygens, a result that goes beyond the one-orbital model. Nevertheless, the phase boundary between pseudogap and correlated metal, the Widom line, and the origin of the pairing energy (kinetic vs potential) are similar to the one-orbital model, demonstrating that these are emergent phenomena characteristic of doped Mott insulators, independently of many microscopic details. Broader implications are discussed.

  12. Dissociation of charge-transfer states at donor-acceptor interfaces of organic heterojunctions

    Science.gov (United States)

    Inche Ibrahim, M. L.

    2017-02-01

    The dissociation of charge-transfer (CT) states into free charge carriers at donor-acceptor (DA) interfaces is an important step in the operation of organic solar cells and related devices. In this paper, we show that the effect of DA morphology and architecture means that the directions of CT states (where a CT state’s direction is defined as the direction from the electron to the hole of the CT state) may deviate from the direction of the applied electric field. The deviation means that the electric field is not fully utilized to assist, and could even hinder the dissociation process. Furthermore, we show that the correct charge carrier mobilities that should be used to describe CT state dissociation are the actual mobilites at DA interfaces. The actual mobilities are defined in this paper, and in general are not the same as the mobilities that are used to calculate electric currents which are the mobilites along the direction of the electric field. Then, to correctly describe CT state dissociation, we modify the widely used Onsager-Braun (OB) model by including the effect of DA morphology and architecture, and by employing the correct mobilities. We verify that when the modified OB model is used to describe CT state dissociation, the fundamental issues that concern the original OB model are resolved. This study demonstrates that DA morphology and architecture play an important role by strongly influencing the CT state dissociation as well as the mobilites along the direction of the electric field.

  13. Charge-transfer spectra of ferrocene in halocarbon solvents under photoexcitation

    Indian Academy of Sciences (India)

    Alfazuddin Thander; Biswanath Mallik

    2000-08-01

    The changes in the electronic absorption spectra of ferrocene in the halocarbon solvents chloroform and carbontetrachloride have been investigated under photoexcitation in nitrogen atmosphere. Photoexcitations have been made with monochromatic light (using an Xe-source and a monochromator), at intervals of a few nanometers in the spectral range 220-750 nm. Analysing the spectra by a modified method the position of the charge-transfer-to-solvent (CTTS) band has been located for both the solvents. The position of the CTTS band in the case of carbontetrachloride solution located (320 nm) by the present study is different from the previously reported value (307 nm), while from the previous studies the position of the CTTS band in the case of the spectra of ferrocene in chloroform was not clear. From the present investigation, the changes in spectra after photoexcitation studied as a function, the concentration of ferrocene in the solution and the time (duration) of photoexcitations, have been observed to be systematic. Using the position of the new band (320 nm) for the CTTS transition in the case of carbontetrachloride, ionization potential of ferrocene has been estimated and the estimated value has shown excellent agreement with the experimental value indicating the exactness of the newly located CTTS band position.

  14. Probing the Nature of Charge Transfer at Nano-Bio Interfaces: Peptides on Metal Oxide Nanoparticles.

    Science.gov (United States)

    Tarakeshwar, Pilarisetty; Palma, Julio L; Holland, Gregory P; Fromme, Petra; Yarger, Jeffery L; Mujica, Vladimiro

    2014-10-16

    Characterizing the nano-bio interface has been a long-standing endeavor in the quest for novel biosensors, biophotovoltaics, and biocompatible electronic devices. In this context, the present computational work on the interaction of two peptides, A6K (Ac-AAAAAAK-NH2) and A7 (Ac-AAAAAAA-NH2) with semiconducting TiO2 nanoparticles is an effort to understand the peptide-metal oxide nanointerface. These investigations were spurred by recent experimental observations that nanostructured semiconducting metal oxides templated with A6K peptides not only stabilize large proteins like photosystem-I (PS-I) but also exhibit enhanced charge-transfer characteristics. Our results indicate that α-helical structures of A6K are not only energetically more stabilized on TiO2 nanoparticles, but the resulting hybrids also exhibit enhanced electron transfer characteristics. This enhancement can be attributed to substantial changes in the electronic characteristics at the peptide-TiO2 interface. Apart from understanding the mechanism of electron transfer (ET) in peptide-stabilized PS-I on metal oxide nanoparticles, the current work also has implications in the development of novel solar cells and photocatalysts.

  15. Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface

    KAUST Repository

    El-Ballouli, Ala'a O.

    2015-11-17

    Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD-based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron-accepting unit with a new driving force for CT is urgently needed to harvest the light from large-sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time-resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD-based solar cells that make the best use of the diverse photons making up the Sun\\'s broad irradiance spectrum.

  16. Magneto-photocurrent in organic photovoltaic cells; the effect of short-lived charge transfer states

    Science.gov (United States)

    Ehrenfreund, Eitan; Devir-Wolfman, A.; Khachatryan, B.; Gautam, B.; Tessler, N.; Vardeny, Z. V.

    2014-03-01

    The spin degrees of freedom are responsible for the magnetic field effects in organic devices at low magnetic fields. The MFE is formed via a variety of spin-mixing mechanisms, such as the hyperfine (typical strength: Bhf<0.003 T), triplet-polaron or triplet-triplet (Btrip<0.1 T) interactions, that limit the response by their respective strength. We report on magneto-photocurrent (MPC) response of bulk hetero-junction organic photovoltaic cells in an extended field range B =0.00005 - 8 Tesla, and found that spin mixing mechanisms are still operative even at the highest fields. In fact, the response MPC(B) can be divided into three main regions, each with a different sign: sharp response that increases with B up to B1 ~ 0.04 T; broad response that decreases with B in the range from B1 to B2 ~ 0.3-0.7 T; and even broader response that increases above B2; this response does not saturate even at 8.5 T. We attribute the latter MPC component to short-lived charge transfer excitons (CTE) where spin-mixing is caused by the difference of the donor/acceptor g factors; a mechanism that is increasingly more effective at high magnetic field. Supported by the US-Israel BSF.

  17. Study of fluorescence characteristics of the charge-transfer reaction of quinolone agents with bromanil

    Science.gov (United States)

    Li, Wen-Ying; Chen, Xiao-Fang; Xuan, Chun-Sheng

    2009-01-01

    A spectrofluorimetric method was discussed for the determination of three antibacterial quinolone derivatives, ofloxacin (OFL), norfloxacin (NOR) and ciprofloxacin (CIP) through charge-transfer complexation (CTC) with 2,3,5,6-tetrabromo-1,4-benzoquinone (bromanil, TBBQ). The method was based on the reaction of these drugs as n-electron donors with the π-acceptor TBBQ. TBBQ was found to react with these drugs to produce a kind of yellow complexes and the fluorescence intensities of the complexes were enhanced by 29-36 times more than those of the corresponding monomers. UV-vis, 1H NMR and XPS techniques were used to study the complexes formed. The various experimental parameters affecting the fluorescence intensity were studied and optimized. Under optimal reaction conditions, the rectilinear calibration graphs were obtained in the concentration range of 0.021-2.42 μg mL -1, 0.017-2.63 μg mL -1 and 0.019-2.14 μg mL -1 for OFL, NOR and CIP, respectively. The methods developed were applied successfully to the determination of the subject drugs in their pharmaceutical dosage forms with good precision and accuracy compared to official and reported methods as revealed by t- and F-tests.

  18. Platinum/Palladium hollow nanofibers as high-efficiency counter electrodes for enhanced charge transfer

    Science.gov (United States)

    Navarro Pardo, F.; Benetti, D.; Zhao, H. G.; Castaño, V. M.; Vomiero, A.; Rosei, F.

    2016-12-01

    Pt/Pd hollow nanofibers were obtained by sputtering a Pt/Pd alloy (80/20 wt%) onto polymer nanofibers (used as sacrificial template) and were used as counter-electrodes (CEs) in dye-sensitized solar cells (DSSCs). We demonstrate that optimization of nanofiber density and Pt/Pd sputtering thickness can increase the short circuit current density and consequently lead to a ∼15% enhancement in power conversion efficiency (PCE), when compared to the commonly used flat Pt/Pd CEs with the same thickness. The processes that contribute to such PCE improvement are: (i) increased surface area provided by the high aspect ratio hollow nanofibers and (ii) improved electro-catalytic performance, as validated by electrochemical impedance spectroscopy (EIS) measurements. The latter showed a two-fold decrease in the charge-transfer resistance of the nanostructured-CE, compared to the flat CE. The contribution of the Pt/Pd hollow nanofiber to light scattering was negligible as shown by reflectance measurements. These results suggest a simple and straightforward strategy to increase PCE in DSSCs, to minimize the use of precious metals used in this kind of devices and, more generally, to tailor the CE structure in photoelectrochemical systems to boost their functional properties, thanks to the advantages afforded by this complex morphology.

  19. Hydrogen bonded charge transfer molecular salt (4-chloro anilinium-3-nitrophthalate) for photophysical and pharmacological applications

    Science.gov (United States)

    Singaravelan, K.; Chandramohan, A.; Saravanabhavan, M.; Muthu Vijayan Enoch, I. V.; Suganthi, V. S.

    2017-09-01

    Radical scavenging activity against DPPH radical and binding properties of a hydrogen bonded charge transfer molecular salt 4-chloro anilinium-3-nitrophthalate(CANP) with calf thymus DNA has been studied by electronic absorption and emission spectroscopy. The molecular structure and crystallinity of the CANP salt have been established by carried out powder and single crystal X-ray diffraction analysis which indicated that cation and anion are linked through strong N+sbnd H…O- type of hydrogen bond. FTIR spectroscopic study was carried out to know the various functional groups present in the crystal. 1H and 13C NMR spectra were recorded to further confirm the molecular structure of the salt crystal. The thermal stability of the title salt was established by TG/DTA analyses simultaneously on the powdered sample of the title crystal. Further, the CANP salt was examined against various bacteria and fungi strains which showed a remarkable antimicrobial activity compared to that of the standards Ciproflaxin and Clotrimazole. The results showed that the CANP salt could interact with CT-DNA through intercalation. Antioxidant studies of the substrates alone and synthesized CANP salt showed that the latter has been better radical scavenging activity than that of the former against DPPH radical. The third order nonlinear susceptibility of the CANP salt was established by the Z-scan study.

  20. Valence Topological Charge-Transfer Indices for Dipole Moments: Percutaneous Enhancers

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2004-12-01

    Full Text Available Valence topological charge-transfer (CT indices are applied to the calculationof dipole moments. The algebraic and vector semisum CT indices are defined. Thecombination of CT indices allows the estimation of the dipole moments. The model isgeneralized for molecules with heteroatoms. The ability of the indices for the descriptionof the molecular charge distribution is established by comparing them with the dipolemoments of homologous series of percutaneous enhancers (phenyl alcohols and4-alkylanilines. Linear and quadratic correlation models are obtained. CT indicesimprove the multivariable quadratic regression equations for the dipole moment. Thevariance decreases 97% (4-alkylanilines. No superposition of the corresponding Gk–Jkand GkV–JkV pairs is observed in the fits, which diminishes the risk of co-linearity. Theinclusion of the heteroatom in the π-electron system is beneficial for the description ofthe dipole moment, owing to either the role of the additional p orbitals provided by theheteroatom or the role of steric factors in the π-electron conjugation. Inclusion of aconjugated double bond in the alkyl chain lends to more rigid structures with dipolemoment variations lower than1%.

  1. Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping

    KAUST Repository

    Begum, Raihana

    2016-12-17

    Since compelling device efficiencies of perovskite solar cells have been achieved, investigative efforts have turned to understand other key challenges in these systems, such as engineering interfacial energy-level alignment and charge transfer (CT). However, these types of studies on perovskite thin-film devices are impeded by the morphological and compositional heterogeneity of the films and their ill-defined surfaces. Here, we use well-defined ligand-protected perovskite nanocrystals (NCs) as model systems to elucidate the role of heterovalent doping on charge-carrier dynamics and energy level alignment at the interface of perovskite NCs with molecular acceptors. More specifically, we develop an in situ doping approach for colloidal CsPbBr3 perovskite NCs with heterovalent Bi3+ ions by hot injection to precisely tune their band structure and excited-state dynamics. This synthetic method allowed us to map the impact of doping on CT from the NCs to different molecular acceptors. Using time-resolved spectroscopy with broadband capability, we clearly demonstrate that CT at the interface of NCs can be tuned and promoted by metal ion doping. We found that doping increases the energy difference between states of the molecular acceptor and the donor moieties, subsequently facilitating the interfacial CT process. This work highlights the key variable components not only for promoting interfacial CT in perovskites, but also for establishing a higher degree of precision and control over the surface and the interface of perovskite molecular acceptors.

  2. Charge transfer and mixed-valence behavior in phtalocyanine-dimer cations.

    Science.gov (United States)

    Monari, Antonio; Evangelisti, Stefano; Leininger, Thierry

    2010-09-28

    Phtalocyanine compounds deserved a considerable interest in recent times, particularly because of their possible use in the field of nanoelectronics. In particular, the charge mobility (of both electrons and holes) in phtalocyanine stacked arrangements has been recently extensively investigated. The present work focuses on the study of the hole-transfer mechanism between two phtalocyanine monomers. For an interdisk distance larger than 4.5 bohrs, the eclipsed dimer exhibits a mixed-valence behavior, with a saddle point transition state separating two equivalent minima. This behavior, however, is strongly dependent on the relative angle between the disks. In particular, the mixed-valence character of the compound is strongly enhanced for arrangements that are far from the eclipsed geometry. Moreover, for values of the angle close to π/8 and 3π/8, the ground and excited transition states have exactly the same energy, thus implying the presence of a conical intersection. These results can have deep implication in the charge transfer along phtalocyanine chains.

  3. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G; Shimakawa, Yuichi; Attfield, J Paul

    2011-06-14

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion transfer transitions. BiNiO(3) shows a 2.6% volume reduction under pressure due to a Bi/Ni charge transfer that is shifted to ambient pressure through lanthanum substitution for Bi. Changing proportions of coexisting low- and high-temperature phases leads to smooth volume shrinkage on heating. The crystallographic linear expansion coefficient for Bi(0.95)La(0.05)NiO(3) is -137×10(-6) K(-1) and a value of -82×10(-6) K(-1) is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders.

  4. Microgravity and Charge Transfer in the Neuronal Membrane: Implications for Computational Neurobiology

    Science.gov (United States)

    Wallace, Ron

    1995-01-01

    Evidence from natural and artificial membranes indicates that the neural membrane is a liquid crystal. A liquid-to-gel phase transition caused by the application of superposed electromagnetic fields to the outer membrane surface releases spin-correlated electron pairs which propagate through a charge transfer complex. The propagation generates Rydberg atoms in the lipid bilayer lattice. In the present model, charge density configurations in promoted orbitals interact as cellular automata and perform computations in Hilbert space. Due to the small binding energies of promoted orbitals, their automata are highly sensitive to microgravitational perturbations. It is proposed that spacetime is classical on the Rydberg scale, but formed of contiguous moving segments, each of which displays topological equivalence. This stochasticity is reflected in randomized Riemannian tensor values. Spacetime segments interact with charge automata as components of a computational process. At the termination of the algorithm, an orbital of high probability density is embedded in a more stabilized microscopic spacetime. This state permits the opening of an ion channel and the conversion of a quantum algorithm into a macroscopic frequency code.

  5. Charge Transfer in Light Effect Under Visible Radiation in an Ozoniser Discharge

    Directory of Open Access Journals (Sweden)

    S.V. Salvi

    2006-11-01

    Full Text Available Two fresh discharge vessels (1 and 2 of Siemen’s ozoniser type having the same height butdifferent surface-to-volume ratios have been fabricated by enclosing argon at 10 mm mercury.By immersing these in electrolytic solution and by subjecting these to a definite high 50 Hz acvoltage, the discharge count rates in dark (Cf D and under light (Cf L have been determinedusing a scaler held at different bias-voltages. The plot of the ratio (C1f / C2f D and (C1f / C2f Lof discharge counts versus pulse height (bias-voltage shows that this ratio for a constantpotential of 3.5 kV (rms is initially large in value, then rapidly decreases to a minimum. It is alsoobserved that more is the surface-to-volume ratio, more is the magnitude of net effect of irradiation.Further, the pulse height analysis shows that the charge carried by the pulses to the electrodes(charge transfer decreases under illumination. A possible mechanism to explain the net effectof the discharge current ratio in the light of pulse height measurements is discussed.

  6. Investigation of nonlinear optical (NLO) properties by charge transfer contributions of amine functionalized tetraphenylethylene

    Science.gov (United States)

    Rana, Meenakshi; Singla, Nidhi; Chatterjee, Amrita; Shukla, Abhishek; Chowdhury, Papia

    2016-12-01

    Nonlinear Optical (NLO) properties of amine functionalized tetraphenylethylene (TPE-NH2) have been recorded and analyzed. The structural geometry, bonding features, harmonic vibrational frequencies (FTIR and Raman) of TPE-NH2 have been investigated by B3LYP density functional theory (DFT). Charge (Mulliken and natural) analysis, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMOs), 13C and 1H nuclear magnetic resonance (NMR) and molecular electrostatic potential (MEP) indicate the delocalization of charges over the donor-acceptor region by the increase of C-N bond length. The vibrational analysis on the basis of potential energy distribution (PED) confirms the charge transfer interaction between donor and acceptor groups, and that in turn validates the presence of the larger dipole moment (μ), polarizability and hyperpolarizabilities (α, β and γ) in TPE-NH2. Higher value of ionization potential (IP), electronegativity (χ), hardness (η), chemical potential (CP) and smaller HOMO-LUMO energy gap (Δε) validate TPE-NH2's strong candidature to be used as an NLO active material.

  7. Flexible Organic Phototransistor Array with Enhanced Responsivity via Metal-Ligand Charge Transfer.

    Science.gov (United States)

    Liu, Xien; Lee, Eun Kwang; Kim, Dong Yeong; Yu, Hojeong; Oh, Joon Hak

    2016-03-23

    Phototransistors based on organic photoactive materials combine tunable light absorption in the spectral region from ultraviolet to near-infrared with low-temperature processability over large areas on flexible substrates. However, they often exhibit low photoresponsivity because of low molar extinction coefficient of photoactive components. We report a simple, yet highly efficient solution method for enhancing the performance of organic phototransistors using ruthenium complex 1 (Ru-complex 1). An air-stable n-type organic semiconductor, N,N'-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide (BPE-PTCDI), has been deposited on a silicon wafer and a transparent polyimide (PI) substrate via thermal evaporation under vacuum. The BPE-PTCDI phototransistors functionalized with Ru-complex 1 exhibit ∼5000 times higher external quantum efficiency (EQE) than that of pristine BPE-PTCDI phototransistors, owing to the metal-ligand charge transfer (MLCT) from Ru-complex 1 to the active component of the device. In addition, a large 10 × 10 phototransistor array (2.5 × 2.5 cm(2)) has been prepared on a transparent PI substrate, showing distinct light mapping. The fabricated phototransistor array is highly flexible and twistable and works well under tensile and compressive strains. We believe that our simple method will pave a viable way for improvements in the photoresponsivity of organic semiconductors for applications in wearable organic optoelectronic devices.

  8. Probing of Charge Transfer States at Buried Organic Interfaces with Even-Order Spectroscopy

    Science.gov (United States)

    Pandey, Ravindra; Moon, Aaron; Roberts, Sean

    Organic thin film photovoltaics (OPV) are an emerging economically competitive technology that combines manufacturing adaptability, low-cost processing and a lightweight, flexible device end-product. At junctions formed between organic electron-donating and electron-accepting materials, the abrupt change in the dielectric properties can strongly perturb the density of states of the OPV. This can substantially alter the driving force for charge transfer between these materials. Electronic Sum Frequency Generation (ESFG), owing to its inherent interfacial sensitivity, is ideally suited to probe buried interfaces. Here, we report the ESFG spectra of Copper Phthalocyanine (CuPc) films, deposited on SiO2 measured for both reflection and transmission geometries. Three peaks are observed that roughly correlate with resonances that comprise CuPc's Q-band absorption but display slight shifts and amplitude changes with respect to CuPc's bulk absorption spectrum. Experimental results are compared with calculations based on a thin film interference model that accounts for ESFG emitted from both the CuPc:Air and CuPc:SiO2 interface as well as contributions to the signal from higher order source terms from the bulk. The model reveals a difference in the density of states between the two interfaces and suggests that by combining experimental transmission and reflection data it is possible to separate bulk and interfacial contributions to ESFG spectra.

  9. The thermochromic behavior of aromatic amine-SO2 charge transfer complexes

    Science.gov (United States)

    Monezi, Natália M.; Borin, Antonio C.; Santos, Paulo S.; Ando, Rômulo A.

    2017-02-01

    The distinct thermochromism observed in solutions containing N,N-dimethylaniline (DMA) and N,N-diethylaniline (DEA) and SO2 was investigated by resonance Raman spectroscopy in a wide range of temperatures. The results indicate in addition to the charge transfer (CT) complexes DMA-SO2 and DEA-SO2, the presence of collision complexes involving the CT complexes and excess DMA and DEA molecules. The latter in fact is the chromophore responsible for the long wavelength absorption originating the color. The Raman signature of the collision complex was attributed to the distinct enhancement of a band at 1140 cm- 1 assigned to νs(SO2), in contrast to the same mode in the 1:1 complex at 1115 cm- 1. The intensity of such band, assigned to the collision complex is favored at high temperatures and depends on the steric hindrance associated to amines, as well as the SO2 molar fraction. Quantum chemical calculations based on time-dependent density functional theory (TDDFT) support the proposed interpretation.

  10. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bhargavi, R.; Nair, Geetha G., E-mail: geeraj88@gmail.com, E-mail: skpras@gmail.com; Krishna Prasad, S., E-mail: geeraj88@gmail.com, E-mail: skpras@gmail.com [Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore 560013 (India); Majumdar, R.; Bag, Braja G. [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore (W) 721 102 (India)

    2014-10-21

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  11. Computational Confirmation of the Carrier for the "XCN" Interstellar Ice Bank: OCN(-) Charge Transfer Complexes

    Science.gov (United States)

    Park, J.-Y.; Woon, D. E.

    2004-01-01

    Recent experimental studies provide evidence that carrier for the so-called XCN feature at 2165 cm(exp -1) (4.62 micron) in young stellar objects is an OCN(-)/NH4(+) charge transfer (CT) complex that forms in energetically processed interstellar icy grain mantles. Although other RCN nitriles and RCN iosonitriles have been considered, Greenberg's conjecture that OCN(-) is associated with the XCN feature has persisted for over 15 years. In this work we report a computational investigation that thoroughly confirms the hypothesis that the XCN feature observed in laboratory studies can result from OCN(-)/NH4(+) CT complexes arising from HNCO and NH3, in a water ice environment. Density functional theory calculations with theory calculations with HNCO, NH3, and up to 12 waters reproduce seven spectroscopic measurements associated with XCN: the band origin of the asymmetric stretching mode of OCN(-), shifts due to isotopic substitutions of C, N, O, and H, and two weak features. However, very similar values are also found for the OCN(-)/NH4(+) CT complex arising from HOCN and NH3. In both cases, the complex forms by barrierless proton transfer from HNCO or HOCN to NH3 during the optimization of the solvated system. Scaled B3LYP/6-31+G** harmonic frequencies for HNCO and HOCN cases are 2181 and 2202 cm(exp -1), respectively.

  12. Structural transformation and charge transfer induced ferroelectricity and magnetism in annealed YMnO3

    Directory of Open Access Journals (Sweden)

    Sheng-Hsu Liu

    2011-09-01

    Full Text Available Multiferroic materials such as YMnO3, which uniquely exhibit ferroelectricity and magnetism simultaneously, have been extensively studied for spintronic device applications. However, the origin of multiferroicity remains poorly understood. In this study, the structural phases of YMnO3 ceramics and their lattice distortions after careful annealing were investigated to explain the origins of their multiferroicity. A structural transition from the orthorhombic to the hexagonal phase was observed when the annealing temperature reached around 1100 °C. This structural transformation also results in a magnetic transition from 3D Mn-O-Mn to 2D Mn-O-Mn superexchange coupling. The ferroelectricity was enhanced by escalation of the structural distortion caused by the rising annealing temperature. The annealing effect also results in the re-hybridization of the electronic structure of YMnO3. X-ray absorption near-edge spectra suggest that there is charge transfer from the Y-OT (apical oxygen bonds of Y 4d-O 2p hybridized states to the OT-Mn bonds of Mn 3d-O 2p hybridized states, which is responsible for the enhanced ferroelectricity. This approach could be used to probe the origin of the ferroelectricity and multiferroic properties in rare-earth manganites.

  13. A zinc phthalocyanine based periodic mesoporous organosilica exhibiting charge transfer to fullerenes.

    Science.gov (United States)

    Auras, Florian; Li, Yan; Löbermann, Florian; Döblinger, Markus; Schuster, Jörg; Peter, Laurence M; Trauner, Dirk; Bein, Thomas

    2014-11-10

    Periodic mesoporous organosilica (PMO) materials offer a strategy to position molecular semiconductors within a highly defined, porous network. We developed thin films of a new semiconducting zinc phthalocyanine-bridged PMO exhibiting a face-centered orthorhombic pore structure with an average pore diameter of 11 nm. The exceptional degree of order achieved with this PMO enabled us to create thin films consisting of a single porous domain throughout their entire thickness, thus providing maximal accessibility for subsequent incorporation of a complementary phase. The phthalocyanine building blocks inside the pore walls were found to be well-aggregated, enabling electronic conductivity and extending the light-harvesting capabilities to the near IR region. Ordered 3D heterojunctions capable of promoting photo-induced charge transfer were constructed by impregnation of the PMO with a fullerene derivative. When integrated into a photovoltaic device, the infiltrated PMO is capable of producing a high open-circuit voltage and a considerable photocurrent, which represents a significant step towards potential applications of PMOs in optoelectronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Temperature-induced valence instability in the charge-transfer crystal TMB-TCNQ

    Science.gov (United States)

    Castagnetti, Nicola; Kociok-Köhn, Gabriele; Da Como, Enrico; Girlando, Alberto

    2017-01-01

    The occurrence of so-called temperature-induced neutral-ionic transitions (TINIT) in mixed-stack charge-transfer crystals is quite rare. Here we reinvestigate one of the crystals which has been claimed to undergo such a transition, 3 ,3',5 ,5' -tetramethylbenzidine-tetracyanoquinodimethane (TMB-TCNQ). Extensive optical data allow us to conclude that the transition should be classified as a valence instability, and not as a "true" TINIT, as the ˜0.5 neutral-ionic borderline is not crossed. The ionicity ϱ , or average charge at the molecular sites, indeed changes very little at the transition, from about 0.3 to about 0.4, and is accompanied by stack dimerization. The transition is first order with large hysteresis, and the crystal may crack or break. For this reason we have been unable to collect x-ray structural data on the low-temperature phase, but with the help of semiempirical calculations we are able to assess a plausible scenario for this peculiar phase transition and its mechanism.

  15. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tuan, E-mail: tuanna@hus.edu.vn [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Science and Technology Department, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan); Nguyen, Van Thanh; Nguyen, Huy Sinh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Pham, Thi Tuan Anh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, College of Hai Duong, Nguyen Thi Due, Hai Duong (Viet Nam); Do, Viet Thang [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, Haiphong University, 171 Phan Dang Luu, Kien An, Hai Phong (Viet Nam); Dam, Hieu Chi [Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan)

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  16. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    Science.gov (United States)

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  17. Bond patterns and charge-order amplitude in quarter-filled charge-transfer solids

    Science.gov (United States)

    Clay, R. T.; Ward, A. B.; Gomes, N.; Mazumdar, S.

    2017-03-01

    Most quasi-one-dimensional (quasi-1D) quarter-filled organic charge-transfer solids (CTS) with insulating ground states have two thermodynamic transitions: a high-temperature metal-insulator transition followed by a low-temperature magnetic transition. This sequence of transitions can be understood within the 1D Peierls-extended Hubbard (PEH) model. However, in some quasi-1D CTS both transitions occur simultaneously in a direct metal to spin-gapped insulator transition. In this second class of materials the organic stack bond distortion pattern does not follow the pattern of a second dimerization of a dimer lattice. These materials also display charge ordering of a large amplitude below the transition. Using quantum Monte Carlo methods we show that the same PEH model can be used to understand both classes of materials, however, within different parameter regions. We discuss the relevance of our work to experiments on several quarter-filled conductors, focusing in particular on the materials (EDO-TTF)2X and (DMEDO-TTF)2X .

  18. The intermolecular charge transfer integral as an indicator of future success in organic photovoltaics (Conference Presentation)

    Science.gov (United States)

    Collison, Christopher J.; Zheng, Chenyu; Hestand, Nicholas J.; Jalan, Ishita; Cody, Jeremy A.; Spano, Frank C.

    2016-09-01

    In recent years, higher power conversion efficiencies have been measured using "push-pull" or Donor-Acceptor (D-A) type compounds designed to specifically address bandgap and energy level requirements. Yet, a strong prescription is fundamentally lacking that improves materials for the set of all critical properties (including exciton diffusion rate and charge transport/ mobility) that combine to provide optimal performance. We will present our newest theoretical models that simulate the morphology-based spectroscopy for a series of squaraines, compounds representative of the total set of D-A type OPV-targets. The theory will describe how morphological and molecular structure influences i) the absorption spectrum, ii) the excited states and iii) the intermolecular charge transfer integral (ICTI). In particular, the ICTI's role in exciton diffusion and carrier mobility will be explored. Using device data that correlates with the ICTI variation, we will explain how this parameter must be considered in future design of new easily-purified, consistently processable, low-band-gap small molecules targeted for large scale OPV manufacture.

  19. Charge-transfer dynamics and nonlocal dielectric permittivity tuned with metamaterial structures as solvent analogues

    Science.gov (United States)

    Lee, Kwang Jin; Xiao, Yiming; Woo, Jae Heun; Kim, Eunsun; Kreher, David; Attias, André-Jean; Mathevet, Fabrice; Ribierre, Jean-Charles; Wu, Jeong Weon; André, Pascal

    2017-07-01

    Charge transfer (CT) is a fundamental and ubiquitous mechanism in biology, physics and chemistry. Here, we evidence that CT dynamics can be altered by multi-layered hyperbolic metamaterial (HMM) substrates. Taking triphenylene:perylene diimide dyad supramolecular self-assemblies as a model system, we reveal longer-lived CT states in the presence of HMM structures, with both charge separation and recombination characteristic times increased by factors of 2.4 and 1.7--that is, relative variations of 140 and 73%, respectively. To rationalize these experimental results in terms of driving force, we successfully introduce image dipole interactions in Marcus theory. The non-local effect herein demonstrated is directly linked to the number of metal-dielectric pairs, can be formalized in the dielectric permittivity, and is presented as a solid analogue to local solvent polarity effects. This model and extra PH3T:PC60BM results show the generality of this non-local phenomenon and that a wide range of kinetic tailoring opportunities can arise from substrate engineering. This work paves the way toward the design of artificial substrates to control CT dynamics of interest for applications in optoelectronics and chemistry.

  20. Proton-transfer mediated quenching of pyrene/indole charge-transfer states in isooctane solutions.

    Science.gov (United States)

    Altamirano, Marcela S; Bohorquez, María del Valle; Previtali, Carlos M; Chesta, Carlos A

    2008-01-31

    The fluorescence quenching of pyrene (Py) by a series of N-methyl and N-H substituted indoles was studied in isooctane at 298 K. The fluorescence quenching rate constants were evaluated by mean of steady-state and time-resolved measurements. In all cases, the quenching process involves a charge-transfer (CT) mechanism. The I(o)/I and tau(o)/tau Stern-Volmer plots obtained for the N-H indoles show a very unusual upward deviation with increasing concentration of the quenchers. This behavior is attributed to the self-quenching of the CT intermediates by the free indoles in solution. The efficiency of quenching of the polyaromatic by the N-H indoles increases abruptly in the presence of small amount of added pyridine (or propanol). A detailed analysis of the experimental data obtained in the presence of pyridine provides unambiguous evidence that the self-quenching process involves proton transfer from the CT states to indoles.

  1. Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell

    Science.gov (United States)

    Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir

    2016-10-01

    We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.

  2. Charge transfer and triplet states in OPV materials and devices (Presentation Recording)

    Science.gov (United States)

    Dyakonov, Vladimir

    2015-10-01

    Electron back transfer (EBT), potentially occurring after electron transfer from donor to acceptor may populate the lower lying donor or acceptor triplet state and serve as recombination channel.[1] Here we report on studies of charge transfer and triplet states in blends of highly efficient benzodithiophene PTB7 polymer in combination with the fullerene-derivative PC71BM using the spin sensitive optically detected magnetic resonance (ODMR) technique and compare the results with those obtained in P3HT (poly(3- hexylthiophene):PC61BM blends. Although PTB7:PC71BM absorbers yield much higher power conversion efficiencies in solar cells exceeding 7%, we found a significant increase of triplet exciton generation, which was absent in the P3HT based blends. We discuss this observation within the EBT scenario with the emphasis on the influence of morphology, fullerene load, HOMO/LUMO energy and presence of additives (DIO). Suppressing the EBT process by morphology and/or energetics of polymer and molecules is important to achieve the full potential of highly efficient OPV materials. [1] M. Liedtke, et al., JACS 133, 9088 (2011).

  3. Spectrophotometric Determination of Mycophenolate Mofetil as Its Charge-Transfer Complexes with Two π-Acceptors

    Directory of Open Access Journals (Sweden)

    K. B. Vinay

    2012-01-01

    Full Text Available Two simple, selective, and rapid spectrophotometric methods are described for the determination of mycophenolate mofetil (MPM in pure form and in tablets. Both methods are based on charge-transfer complexation reaction of MPM with p-chloranilic acid (p-CA or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ in dioxane-acetonitrile medium resulting in coloured product measurable at 520 nm (p-CA or 580 nm (DDQ. Beer’s law is obeyed over the concentration ranges of 40–400 and 12–120 μg mL−1 MPM for p-CA and DDQ, respectively, with correlation coefficients (r of 0.9995 and 0.9947. The apparent molar absorptivity values are calculated to be 1.06×103 and 3.87×103 L mol−1 cm−1, respectively, and the corresponding Sandell’s sensitivities are 0.4106 and 0.1119 μg cm−1. The limits of detection (LOD and quantification (LOQ are also reported for both methods. The described methods were successfully applied to the determination of MPM in tablets. Statistical comparison of the results with those of the reference method showed excellent agreement. No interference was observed from the common excipients present in tablets. Both methods were validated statistically for accuracy and precision. The accuracy and reliability of the methods were further ascertained by recovery studies via standard addition procedure.

  4. Enhancement of Charge Transfer and Quenching of Photoluminescence of Capped CdS Quantum Dots

    Science.gov (United States)

    Mehata, Mohan Singh

    2015-07-01

    Quantum dots (Q-dots) of cadmium sulfide (CdS) with three different capping ligands, 1-butanethiol (BT), 2-mercaptoethanol (ME) and benzyl mercaptan (BM) have been investigated. An external electric field of variable strength of 0.2-1.0 MV cm-1 was applied to the sample of capped CdS Q-dots doped in a poly(methyl methacrylate) (PMMA) films. Field-induced changes in optical absorption of capped CdS Q-dots were observed in terms of purely the second-derivative of the absorption spectrum (the Stark shift), indicating an enhancement in electric dipole moment following transition to the first exciton state. The enhancement depends on the shape and size of the Q-dots prepared using different capping ligands. Field induced-change in photoluminescence (PL) reveals similar changes, an enhancement in charge-transfer (CT) character in exciton state. PL of capped CdS Q-dots is significantly quenched in presence of external electric field. The strong field-induced quenching occurs as a result of the increased charge separation resulting exciton dissociation. Thus, understanding the CT character and field-induced PL quenching of CdS Q-dots is important for photovoltaic, LEDs and biological applications.

  5. Charge transfer complexes of fullerene[60] with porphyrins as molecular rectifiers. A theoretical study.

    Science.gov (United States)

    Montiel, Filiberto; Fomina, Lioudmila; Fomine, Serguei

    2015-01-01

    Molecular diodes based on charge transfer complexes of fullerene[60] with different metalloporphyrins have been modeled. Their current-voltage characteristics and the rectification ratios (RR) were calculated using direct ab initio method at PBE/def2-SVP level of theory with D3 dispersion correction, for voltages ranging from -2 to +2 V. The highest RR of 32.5 was determined for the complex of fullerene[60] with zinc tetraphenylporphyrin at 0.8 V. Other molecular diodes possessed lower RR, however, all complexes showed RR higher than 1 at all bias voltages. The asymmetric evolutions and alignment of the molecular orbitals with the applied bias were found to be essential for generating the molecular diode rectification behavior. Metal nature of metalloporphyrins and the interaction porphyrin-electrode significantly affect RR of molecular diode. Large metal ions like Cd(2+) and Ag(2+) in metalloporphyrins disfavor rectification creating conducting channels in two directions, while smaller ions Zn(2+) and Cu(2+) favor rectification increasing the interaction between gold electrode and porphyrin macrocycle.

  6. Photoinduced charge transfer properties of bolaamphiphile membrane-gramicidrin diad composites

    Science.gov (United States)

    Thompson, David H.; Kim, Jong-Mok; Di Meglio, Ciro

    1993-04-01

    Ether-linked bolaform amphiphiles (Langmuir 1992 8, 637; J. Am. Chem. Soc. 1992, 9035) and novel gramicidin-porphyrin `diads' (MRS Symposium Series, Vol. 277, 1992, 93) have been synthesized. Protocols for vectorial insertion of the derivatized gramicidins into bolaform lipid vesicles have been developed and the photochemical behavior of these proteinaceous composite membranes probed in the presence of electron donors and acceptors. Photoinduced electron transfer properties of the gramicidin-porphyrin conjugates were compared in TRIS- buffered dihexadecyl-phosphate bilayer (DHP) and bolaform monolayer membrane vesicles containing dithiothreitol as sacrificial donor and methyl viologen as electron acceptor on both the inner and outer vesicle surfaces. Although the rates of methyl viologen photoreduction varied depending on the mode of diad orientation within DHP bilayer membranes, photoreduction rates were not orientation- dependent in bolaform membrane vesicles containing the gramicidin-porphyrin diad. The relevance of these results on vectorial electron transfer processes in lamellar systems and the design of integrated charge transfer components is discussed.

  7. Origin and impact of recombination via charge transfer excitons in polymer/fullerene solar cells

    Science.gov (United States)

    Hallermann, Markus; da Como, Enrico; Feldmann, Jochen

    2010-03-01

    To further advance the performances of organic photovoltaic cells a thorough understanding of loss mechanisms in polymer/fullerene blends is mandatory. Recombination via charge transfer excitons (CTEs) appears to be a fundamental loss, potentially impacting the open circuit voltage (VOC) and the short circuit current (ISC) of cells. We unravel the origin of CTEs forming in polymer/fullerene blends and discuss their importance in recombination processes considering binding energy [1], polymer conformation [2], and energetic position. CTE photoluminescence (PL) is observed in material combinations such as P3HT and PPV blended with fullerene acceptors. By combining electron microscopy and PL spectroscopy, we show that CTE recombination is only slightly influenced by the mesoscopic morphology, whereas strongly by the polymer chain conformation [2]. By shifting the orbital energies of the fullerene, we tune the CTE PL characteristics. High energy CTE emission results in cells with a beneficial increase in VOC. On the other hand, high energy CTE emission leads to a more efficient recombination impacting directly the ISC. The results highlight a fundamental limit in the efficiency of organic solar cells with CTE recombination. [1] Hallermann et al. APL 2008 [2] Hallermann et al. AFM 2009

  8. Direct and charge transfer state mediated photogeneration in polymer-fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Mingebach, M.; Walter, S.; Dyakonov, V.; Deibel, C.

    2012-05-01

    We investigated photogeneration yield and recombination dynamics in blends of poly(3-hexyl thiophene) (P3HT) and poly[2-methoxy-5 -(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) with [6,6]-phenyl-C61butyric acid methyl ester (PC61BM) by means of temperature dependent time delayed collection field measurements. In MDMO-PPV:PC61BM, we find a strongly field dependent polaron pair dissociation which can be attributed to geminate recombination in the device. Our findings are in good agreement with field dependent photoluminescence measurements published before, supporting a scenario of polaron pair dissociation via an intermediate charge transfer state. In contrast, polaron pair dissociation in P3HT:PC61BM shows only a very weak field dependence, indicating an almost field independent polaron pair dissociation or a direct photogeneration. Furthermore, we found Langevin recombination for MDMO-PPV:PC61BM and strongly reduced Langevin recombination for P3HT:PC61BM.

  9. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer.

    Science.gov (United States)

    Li, Jinhua; Wang, Gang; Zhu, Hongqin; Zhang, Miao; Zheng, Xiaohu; Di, Zengfeng; Liu, Xuanyong; Wang, Xi

    2014-03-12

    Graphene has attracted increasing attention for potential applications in biotechnology due to its excellent electronic property and biocompatibility. Here we use both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) to investigate the antibacterial actions of large-area monolayer graphene film on conductor Cu, semiconductor Ge and insulator SiO2. The results show that the graphene films on Cu and Ge can surprisingly inhibit the growth of both bacteria, especially the former. However, the proliferation of both bacteria cannot be significantly restricted by the graphene film on SiO2. The morphology of S. aureus and E. coli on graphene films further confirms that the direct contact of both bacteria with graphene on Cu and Ge can cause membrane damage and destroy membrane integrity, while no evident membrane destruction is induced by graphene on SiO2. From the viewpoint of charge transfer, a plausible mechanism is proposed here to explain this phenomenon. This study may provide new insights for the better understanding of antibacterial actions of graphene film and for the better designing of graphene-based antibiotics or other biomedical applications.

  10. Formation of Nanoscale Composites of Compound Semiconductors Driven by Charge Transfer.

    Science.gov (United States)

    Gao, Weiwei; Dos Reis, Roberto; Schelhas, Laura T; Pool, Vanessa L; Toney, Michael F; Yu, Kin Man; Walukiewicz, Wladek

    2016-08-10

    Composites are a class of materials that are formed by mixing two or more components. These materials often have new functional properties compared to their constituent materials. Traditionally composites are formed by self-assembly due to structural dissimilarities or by engineering different layers or structures in the material. Here we report the synthesis of a uniform and stoichiometric composite of CdO and SnTe with a novel nanocomposite structure stabilized by the dissimilarity of the electronic band structure of the constituent materials. The composite has interesting electronic properties which range from highly n-type in CdO to semi-insulating in the intermediate composition range to highly p-type in SnTe. This can be explained by the overlap of the conduction and valence band of the constituent compounds. Ultimately, our work identifies a new class of composite semiconductors in which nanoscale self-organization is driven and stabilized by charge transfer between constituent materials.

  11. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep

    2012-05-24

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  12. Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Fujisawa, Tomotsumi; Creelman, Mark; Mathies, Richard A

    2012-09-06

    Femtosecond stimulated Raman spectroscopy is used to examine the structural dynamics of photoinduced charge transfer within a noncovalent electron acceptor/donor complex of pyromellitic dianhydride (PMDA, electron acceptor) and hexamethylbenzene (HMB, electron donor) in ethylacetate and acetonitrile. The evolution of the vibrational spectrum reveals the ultrafast structural changes that occur during the charge separation (Franck-Condon excited state complex → contact ion pair) and the subsequent charge recombination (contact ion pair → ground state complex). The Franck-Condon excited state is shown to have significant charge-separated character because its vibrational spectrum is similar to that of the ion pair. The charge separation rate (2.5 ps in ethylacetate and ∼0.5 ps in acetonitrile) is comparable to solvation dynamics and is unaffected by the perdeuteration of HMB, supporting the dominant role of solvent rearrangement in charge separation. On the other hand, the charge recombination slows by a factor of ∼1.4 when using perdeuterated HMB, indicating that methyl hydrogen motions of HMB mediate the charge recombination process. Resonance Raman enhancement of the HMB vibrations in the complex reveals that the ring stretches of HMB, and especially the C-CH(3) deformations are the primary acceptor modes promoting charge recombination.

  13. Role of charge transfer configurations in LaMnO3, CaMnO3, and CaFeO3

    NARCIS (Netherlands)

    Sadoc, Aymeric; Broer, Ria; de Graaf, Coen

    2007-01-01

    A simple scheme is proposed to analyze the N-electron wave function obtained in embedded cluster calculations in valence bond terms such as ligand-to-metal charge transfer and non-charge-transfer determinants. The analysis is based on a unitary transformation of pairs of natural orbitals to optimal

  14. SpaceTwist

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Jensen, Christian Søndergaard; Xuegang, Huang

    2008-01-01

    -based matching generally fall short in offering practical query accuracy guarantees. Our proposed framework, called SpaceTwist, rectifies these shortcomings for k nearest neighbor (kNN) queries. Starting with a location different from the user's actual location, nearest neighbors are retrieved incrementally...

  15. Reweighting twisted boundary conditions

    CERN Document Server

    Bussone, Andrea; Hansen, Martin; Pica, Claudio

    2015-01-01

    Imposing twisted boundary conditions on the fermionic fields is a procedure extensively used when evaluating, for example, form factors on the lattice. Twisting is usually performed for one flavour and only in the valence, and this causes a breaking of unitarity. In this work we explore the possibility of restoring unitarity through the reweighting method. We first study some properties of the approach at tree level and then we stochastically evaluate ratios of fermionic determinants for different boundary conditions in order to include them in the gauge averages, avoiding in this way the expensive generation of new configurations for each choice of the twisting angle, $\\theta$. As expected the effect of reweighting is negligible in the case of large volumes but it is important when the volumes are small and the twisting angles are large. In particular we find a measurable effect for the plaquette and the pion correlation function in the case of $\\theta=\\pi/2$ in a volume $16\\times 8^3$, and we observe a syst...

  16. The twisted Mellin transform

    OpenAIRE

    Wang, Zuoqin

    2007-01-01

    The "twisted Mellin transform" is a slightly modified version of the usual classical Mellin transform on $L^2(\\mathbb R)$. In this short note we investigate some of its basic properties. From the point of views of combinatorics one of its most important interesting properties is that it intertwines the differential operator, $df/dx$, with its finite difference analogue, $\

  17. Charge Transfer Modulated Self-Assembly in Poly(aryl ether) Dendron Derivatives with Improved Stability and Transport Characteristics.

    Science.gov (United States)

    Satapathy, Sitakanta; Prasad, Edamana

    2016-10-05

    Alteration of native gelation properties of anthracene and pyrene cored first generation poly(aryl ether) dendrons, G1-An and G1-Py, by introducing a common acceptor, 2,4,7-trinitro-9H-fluoren-9-one (TNF), results in forming charge transfer gels in long chain alcoholic solvents. This strategy leads to significant perturbation of optical and electronic properties within the gel matrix. Consequently, a noticeable increase of their electrical conductivities is observed, making these poly(aryl ether) dendron based gels potential candidates for organic electronics. While the dc-conductivity (σ) value for the native gel from G1-An is 2.8 × 10(-4) S m(-1), the value increased 3 times (σ = 8.7 × 10(-4) S m(-1)) for its corresponding charge transfer gel. Further, the dc-conductivity for the native gel self-assembled from G1-Py dramatically enhanced by approximately an order of magnitude from 4.9 × 10(-4) to 1.3 × 10(-3) S m(-1), under the influence of an acceptor. Apart from H-bonding and π···π interactions, charge transfer results in the formation of a robust 3D network of fibers, with improved aspect ratio, providing high thermo-mechanical stability to the gels compared to the native ones. The charge transfer gels self-assembled from G1-An/TNF (1:1) and G1-Py/TNF exhibit a 7.3- and 2.5-fold increase in their yield stress, respectively, compared to their native assemblies. A similar trend follows in the case of their thermal stabilities. This is attributed to the typical bilayer self-assembly of the former which is not present in the case of G1-Py/TNF charge transfer gel. Density functional calculations provide deeper insights accounting for the role of charge transfer interactions in the mode of self-assembly. The 1D potential energy surface for the G1-An/TNF dimer and G1-Py/TNF dimer is found to be 11.8 and 1.9 kcal mol(-1) more stable than their corresponding native gel dimers, G1-An/G1-An and G1-Py/G1-Py, respectively.

  18. Direct observation of charge-transfer-to-solvent (CTTS) reactions: Ultrafast dynamics of the photoexcited alkali metal anion sodide (Na-)

    Science.gov (United States)

    Barthel, Erik R.; Martini, Ignacio B.; Schwartz, Benjamin J.

    2000-06-01

    Charge-transfer-to-solvent (CTTS) transitions have been the subject of a great deal of interest recently because they represent the simplest possible charge transfer reaction: The CTTS electron transfer from an atomic ion to a cavity in the surrounding solvent involves only electronic degrees of freedom. Most of the work in this area, both experimental and theoretical, has focused on aqueous halides. Experimentally, however, halides make a challenging choice for studying the CTTS phenomenon because the relevant spectroscopic transitions are deep in the UV and because the charge-transfer dynamics can be monitored only indirectly through the appearance of the solvated electron. In this paper, we show that these difficulties can be overcome by taking advantage of the CTTS transitions in solutions of alkali metal anions, in particular, the near-IR CTTS band of sodide (Na-) in tetrahydrofuran (THF). Using femtosecond pump-probe techniques, we have been able to spectroscopically separate and identify transient absorption contributions not only from the solvated electron, but also from the bleaching dynamics of the Na- ground state and from the absorption of the neutral sodium atom. Perhaps most importantly, we also have been able to directly observe the decay of the Na-* excited CTTS state, providing the first direct measure of the electron transfer rate for any CTTS system. Taken together, the data at a variety of pump and probe wavelengths provide a direct test for several kinetic models of the CTTS process. The model which best fits the data assumes a delayed ejection of the electron from the CTTS excited state in ˜700 fs. Once ejected, a fraction of the electrons, which remain localized in the vicinity of the neutral sodium parent atom, recombine on a ˜1.5-ps time scale. The fraction of electrons that recombine depends sensitively on the choice of excitation wavelength, suggesting multiple pathways for charge transfer. The spectrum of the neutral sodium atom, which

  19. Charge transfer effects on the chemical reactivity of PdxCu1-x nanoalloys

    Science.gov (United States)

    Castegnaro, M. V.; Gorgeski, A.; Balke, B.; Alves, M. C. M.; Morais, J.

    2015-12-01

    This work reports on the synthesis and characterization of PdxCu1-x (x = 0.7, 0.5 and 0.3) nanoalloys obtained via an eco-friendly chemical reduction method based on ascorbic acid and trisodium citrate. The average size of the quasi-spherical nanoparticles (NPs) obtained by this method was about 4 nm, as observed by TEM. The colloids containing different NPs were then supported on carbon in order to produce powder samples (PdxCu1-x/C) whose electronic and structural properties were probed by different techniques. XRD analysis indicated the formation of crystalline PdCu alloys with a nanoscaled crystallite size. Core-level XPS results provided a fingerprint of a charge transfer process between Pd and Cu and its dependency on the nanoalloy composition. Additionally, it was verified that alloying was able to change the NP's reactivity towards oxidation and reduction. Indeed, the higher the amount of Pd in the nanoalloy, less oxidized are both the Pd and the Cu atoms in the as-prepared samples. Also, in situ XANES experiments during thermal treatment under a reducing atmosphere showed that the temperature required for a complete reduction of the nanoalloys depends on their composition. These results envisage the control at the atomic level of novel catalytic properties of such nanoalloys.This work reports on the synthesis and characterization of PdxCu1-x (x = 0.7, 0.5 and 0.3) nanoalloys obtained via an eco-friendly chemical reduction method based on ascorbic acid and trisodium citrate. The average size of the quasi-spherical nanoparticles (NPs) obtained by this method was about 4 nm, as observed by TEM. The colloids containing different NPs were then supported on carbon in order to produce powder samples (PdxCu1-x/C) whose electronic and structural properties were probed by different techniques. XRD analysis indicated the formation of crystalline PdCu alloys with a nanoscaled crystallite size. Core-level XPS results provided a fingerprint of a charge transfer process

  20. First report of charge-transfer induced heat-set hydrogel. Structural insights and remarkable properties

    Science.gov (United States)

    Bhattacharjee, Subham; Maiti, Bappa; Bhattacharya, Santanu

    2016-05-01

    The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the resultant sol, on heating above 70 °C, transformed into a heat-set gel instantaneously with a hitherto unknown CGC value. Detailed studies revealed the smaller globular aggregates of the RT-gels fuse to form giant globules upon heating, which, in turn, resulted in heat-set gelation through further aggregation. The thermoresponsive property of Py-D alone and 1 : 1 Py-D : NDI-A CT complex was investigated in detail which revealed the hydrophobic collapse of the oxyethylene chains of the CT complex upon heating was mainly responsible for heat-set gelation. Thixotropy, injectability, as well as stimuli responsiveness of the RT-gels were also addressed. In contrast, heat-set gel did not show thixotropic behavior. The X-ray diffraction (XRD) patterns of the xerogel depicted lamellar packing of the CT stacks in the gel phase. Single crystal XRD studies further evidenced the 1 : 1 mixed CT stack formation in the lamellae and also ruled out orthogonal hydrogen bonding possibilities among the hydrazide unit in the CT gel although such interaction was observed in a single crystal of NDI-A alone. In addition, a Ag+-ion triggered metallogelation of NDI-A and nematic liquid-crystalline property of Py-D were also observed.The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the

  1. Mass and charge transfer on various relevant scales in polymer electrolyte fuel cells[Dissertation 16991

    Energy Technology Data Exchange (ETDEWEB)

    Freunberger, S. A.

    2007-07-01

    This dissertation is concerned with the development, experimental diagnostics and mathematical modelling and simulation of polymer electrolyte fuel cells (PEFC). The central themes throughout this thesis are the closely interlinked phenomena of mass and charge transfer. In the face of developing a PEFC system for vehicle propulsion these phenomena are scrutinized on a broad range of relevant scales. Starting from the material related level of the membrane and the gas diffusion layer (GDL) we turn to length scales, where structural features of the cell additionally come into play. These are the scale of flow channels and ribs, the single cell and the cell stack followed by the cell, stack, and system development for an automotive power train. In Chapter 3 selected fundamental material models and properties, respectively, are explored that are crucial for the mathematical modelling and simulation of PEFC, as needed in some succeeding parts of this work. First, established mathematical models for mass and charge transfer in the membrane are compared within the framework of the membrane electrode assembly (MEA), which represents the electrochemical unit. Second, reliable values for effective diffusivities in the GDLs which are vital for the simulation of gaseous mass transport are measured. Therefore, a method is developed that allows measuring this quantity both as a function of compression and direction as this is a prerequisite of sophisticated more-dimensional numerical PEFC-models. Besides the cross section of the catalyst layer (CL) mass transfer under channels and ribs is considered as a major source of losses in particular under high load operation. As up to now there have been solely non-validated theoretical investigations, in Chapter 4 an experimental method is developed that is for the first time capable of resolving the current density distribution on the this scale. For this, the electron conductors in the cell are considered as 2-dimensional shunt

  2. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.

    Science.gov (United States)

    Kang, Tae Eui; Cho, Han-Hee; Cho, Chul-Hee; Kim, Ki-Hyun; Kang, Hyunbum; Lee, Myounghee; Lee, Sunae; Kim, Bongsoo; Im, Chan; Kim, Bumjoon J

    2013-02-01

    Polymer solar cells (PSCs) consisting of fullerene bis-adduct and poly(3-hexylthiophene) (P3HT) blends have shown higher efficiencies than P3HT:phenyl C(61)-butyric acid methyl ester (PCBM) devices, because of the high-lying lowest unoccupied molecular orbital (LUMO) level of the fullerene bis-adducts. In contrast, the use of fullerene bis-adducts in donor-acceptor (DA) copolymer systems typically causes a decrease in the device's performance due to the decreased short-circuit current (J(SC)) and the fill factor (FF). However, the reason for such poor performance in DA copolymer:fullerene bis-adduct blends is not fully understood. In this work, bulk-heterojunction (BHJ)-type PSCs composed of three different electron donors with four different electron acceptors were chosen and compared. The three electron donors were (1) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl] (PBDTTPD), (2) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), and (3) P3HT polymers. The four electron acceptors were (1) PCBM, (2) indene-C(60) monoadduct (ICMA), (3) indene-C(60) bis-adduct (ICBA), and (4) indene-C(60) tris-adduct (ICTA). To understand the difference in the performance of BHJ-type PSCs for the three different polymers in terms of the choice of fullerene acceptor, the structural, optical, and electrical properties of the blends were measured by the external quantum efficiency (EQE), photoluminescence, grazing incidence X-ray scattering, and transient absorption spectroscopy. We observed that while the molecular packing and optical properties cannot be the main reasons for the dramatic decrease in the PCE of the DA copolymers and ICBA, the value of the driving force for charge transfer (ΔG(CT)) is a key parameter for determining the change in J(SC) and device efficiency in the DA copolymer- and P3HT-based PSCs in

  3. Fullerene-Assisted Photoinduced Charge Transfer of Single-Walled Carbon Nanotubes through a Flavin Helix.

    Science.gov (United States)

    Mollahosseini, Mehdi; Karunaratne, Erandika; Gibson, George N; Gascón, Jose A; Papadimitrakopoulos, Fotios

    2016-05-11

    One of the greatest challenges with single-walled carbon nanotube (SWNT) photovoltaics and nanostructured devices is maintaining the nanotubes in their pristine state (i.e., devoid of aggregation and inhomogeneous doping) so that their unique spectroscopic and transport characteristics are preserved. To this effect, we report on the synthesis and self-assembly of a C60-functionalized flavin (FC60), composed of PCBM and isoalloxazine moieties attached on either ends of a linear, C-12 aliphatic spacer. Small amounts of FC60 (up to 3 molar %) were shown to coassembly with an organic soluble derivative of flavin (FC12) around SWNTs and impart effective dispersion and individualization. A key annealing step was necessary to perfect the isoalloxazine helix and expel the C60 moiety away from the nanotubes. Steady-state and transient absorption spectroscopy illustrate that 1% or higher incorporation of FC60 allows for an effective photoinduced charge transfer quenching of the encased SWNTs through the seamless helical encase. This is enabled via the direct π-π overlap between the graphene sidewalls, isoalloxazine helix, and the C60 cage that facilitates SWNT exciton dissociation and electron transfer to the PCBM moiety. Atomistic molecular simulations indicate that the stability of the complex originates from enhanced van der Waals interactions of the flexible spacer wrapped around the fullerene that brings the C60 in π-π overlap with the isoalloxazine helix. The remarkable spectral purity (in terms of narrow E(S)ii line widths) for the resulting ground-state complex signals a new class of highly organized supramolecular nanotube architecture with profound importance for advanced nanostructured devices.

  4. Hyperbolic metamaterial nanostructures to tune charge-transfer dynamics (Conference Presentation)

    Science.gov (United States)

    Lee, Kwang Jin; Xiao, Yiming; Woo, Jae Heun; Kim, Eun Sun; Kreher, David; Attias, André-Jean; Mathevet, Fabrice; Ribierre, Jean-Charles; Wu, Jeong Weon; André, Pascal

    2016-09-01

    Charge transfer (CT) is an essential phenomenon relevant to numerous fields including biology, physics and chemistry.1-5 Here, we demonstrate that multi-layered hyperbolic metamaterial (HMM) substrates alter organic semiconductor CT dynamics.6 With triphenylene:perylene diimide dyad supramolecular self-assemblies prepared on HMM substrates, we show that both charge separation (CS) and charge recombination (CR) characteristic times are increased by factors of 2.5 and 1.6, respectively, resulting in longer-lived CT states. We successfully rationalize the experimental data by extending Marcus theory framework with dipole image interactions tuning the driving force. The number of metal-dielectric pairs alters the HMM interfacial effective dielectric constant and becomes a solid analogue to solvent polarizability. Based on the experimental results and extended Marcus theory framework, we find that CS and CR processes are located in normal and inverted regions on Marcus parabola diagram, respectively. The model and further PH3T:PCBM data show that the phenomenon is general and that molecular and substrate engineering offer a wide range of kinetic tailoring opportunities. This work opens the path toward novel artificial substrates designed to control CT dynamics with potential applications in fields including optoelectronics, organic solar cells and chemistry. 1. Marcus, Rev. Mod. Phys., 1993, 65, 599. 2. Marcus, Phys. Chem. Chem. Phys., 2012, 14, 13729. 3. Lambert, et al., Nat. Phys., 2012, 9, 10. 4. C. Clavero, Nat. Photon., 2014, 8, 95. 5. A. Canaguier-Durand, et al., Angew. Chem. Int. Ed., 2013, 52, 10533. 6. K. J. Lee, et al., Submitted, 2015, arxiv.org/abs/1510.08574.

  5. Spectrophotometric determination of nizatidine and ranitidine through charge transfer complex formation.

    Science.gov (United States)

    Walash, M; Sharaf-El Din, M; Metwalli, M E-S; RedaShabana, M

    2004-07-01

    Two Spectrophotometric procedures are presented for the determination of two commonly used H2-receptor antagonists, nizatidine (I) and ranitidine hydrochloride (II). The methods are based mainly on charge transfer complexation reaction of these drugs with either p-chloranilic acid (rho-CA) or 2, 3 dichloro-5, 6-dicyanoquinone (DDQ). The produced colored products are quantified spectrophotometrically at 515 and 467 nm in chloranilic acid and DDQ methods, respectively. The molar ratios for the reaction products and the optimum assay conditions were studied. The methods determine the cited drugs in concentration ranges of 20-200 and 20-160 microg/mL for nizatidine and ranges of 20-240 and 20-140 microg/mL for ranitidine with chloranilic acid and DDQ methods, respectively. A more detailed investigation of the complexes formed was made with respect to their composition, association constant, molar absorptivity and free energy change. The proposed procedures were successfully utilized in the determination of the drugs in pharmaceutical preparations. The standard addition method was applied by adding nizatidine and ranitidine to the previously analyzed tablets or capsules. The recovery of each drug was calculated by comparing the concentration obtained from the spiked mixtures with those of the pure drug. The results of analysis of commercial tablets and the recovery study (standard addition method) of the cited drugs suggested that there is no interference from any excipients, which are present in tablets or capsules. Statistical comparison of the results was performed with regard to accuracy and precision using student's t-test and F-ratio at 95% confidence level. There is no significant difference between the reported and proposed methods with regard to accuracy and precision.

  6. Molecular adsorption on ZnO(1010) single-crystal surfaces: morphology and charge transfer.

    Science.gov (United States)

    Chen, Jixin; Ruther, Rose E; Tan, Yizheng; Bishop, Lee M; Hamers, Robert J

    2012-07-17

    While ZnO has excellent electrical properties, it has not been widely used for dye-sensitized solar cells, in part because ZnO is chemically less stable than widely used TiO(2). The functional groups typically used for surface passivation and for attaching dye molecules either bind weakly or etch the ZnO surface. We have compared the formation of molecular layers from alkane molecules with terminal carboxylic acid, alcohol, amine, phosphonic acid, or thiol functional groups on single-crystal zinc oxide (1010) surfaces. Atomic force microscopy (AFM) images show that alkyl carboxylic acids etch the surface whereas alkyl amine and alkyl alcohols bind only weakly on the ZnO(1010) surface. Phosphonic acid-terminated molecules were found to bind to the surface in a heterogeneous manner, forming clusters of molecules. Alkanethiols were found to bind to the surface, forming highly uniform monolayers with some etching detected after long immersion times in an alkanethiol solution. Monolayers of hexadecylphosphonic acid and octadecanethiol were further analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. AFM scratching shows that thiols were bound strongly to the ZnO surface, suggesting the formation of strong Zn-S covalent bonds. Surprisingly, the tridentate phosphonic acids adhered much more weakly than the monodentate thiol. The influence of organic grafting on the charge transfer to ZnO was studied by time-resolved surface photovoltage measurements and electrochemical impedance measurements. Our results show that the grafting of thiols to ZnO leads to robust surfaces and reduces the surface band bending due to midgap surface states.

  7. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions

    Science.gov (United States)

    Belal, Tarek S.; El-Kafrawy, Dina S.; Mahrous, Mohamed S.; Abdel-Khalek, Magdi M.; Abo-Gharam, Amira H.

    2016-02-01

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524 nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490 nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415 nm. The fourth method involves the formation of a yellow complex peaking at 361 nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8 μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method.

  8. Valence Topological Charge-Transfer Indices for Reflecting Polarity: Correction for Heteromolecules

    Directory of Open Access Journals (Sweden)

    F. Torrens

    2005-02-01

    Full Text Available Valence topological charge-transfer (CT indices are applied to the calculationof dipole moments μ. The μ calculated by algebraic and vector semisums of the CTindices are defined. The model is generalized for molecules with heteroatoms andcorrected for sp3-heteromolecules. The ability of the indices for the description of themolecular charge distribution is established by comparing them with μ of the valence-isoelectronic series of cyclopentadiene, benzene and styrene. Two CT indices, μvec(vector semisum of vertex-pair μ and μvecV (valence μvec are proposed. The μvecVbehaviour is intermediate between μvec and μexperiment. The correction is produced in thecorrect direction. The best results are obtained for the greatest group. Inclusion of theheteroatom in the π-electron system is beneficial for the description of μ, owing to eitherthe role of additional p and/or d orbitals provided by the heteroatom or the role of stericfactors in the π-electron conjugation. The steric effect is almost constant along the seriesand the dominating effect is electronic. Inclusion of the heteroatom enhances μ, whichcan improve the solubility of the molecule. For heteroatoms in the same group, the ringsize and the degree of ring flattering are inversely proportional to their electronegativity.

  9. Analytical Study for the Charge-Transfer Complexes of Rosuvastatin Calcium with π-Acceptors

    Directory of Open Access Journals (Sweden)

    Nourah Z. Alzoman

    2013-07-01

    Full Text Available Studies were carried out to investigate the charge-transfer (CT reaction of ROS-Ca, as a n-electron donor with various p-acceptors: tetracyanoethylene, p-chloranilic acid, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 2,3,5,6-tetrabromo-1,4-benzoquinone, 1,3,5-trinitrobenzene, 2,3,5,6-tetrachloro-1,4-benzoquinone, 7,7,8,8-tetracyano-quinodimethane, and 2,4,7-trinitro-9-fluorenone. Different colored CT complexes were obtained. The reaction mechanism and site of interaction were determined by ultraviolet-visible spectrophotometric techniques and computational molecular modeling. The formation of the colored complexes was utilized in the development of simple, rapid and accurate spectrophotometric methods for the determination of ROS-Ca. Under the optimum reaction conditions, linear relationships with good correlation coefficients (0.9984–0.9995 were found between the absorbances and the concentrations of ROS-Ca in the range of 2–200 mg mL−1. The limits of detection ranged from 0.41 to 12.24 mg mL−1. No interference could be observed from the additives commonly present in the tablets or from the drugs that are co-formulated with ROS-Ca in its combined formulations. The methods were successfully applied to the analysis of tablets with good accuracy and precision; the recovery percentages ranged from 99.54–100.46 ± 1.58–1.82%. The results were compared favorably with the reported method. The proposed methods are practical and valuable for routine application in quality control laboratories for determination of ROS-Ca in its bulk form and tablets.

  10. IR spectroscopic investigation of charge transfer at interfaces of organic semiconductors (Conference Presentation)

    Science.gov (United States)

    Beck, Sebastian; Hillebrandt, Sabina; Pucci, Annemarie

    2016-09-01

    In organic electronics, the interactions at interfaces between different organic and inorganic layers play a decisive role for device functionality and performance. Therefore, more detailed, quantitative studies of charge transfer (CT) at such interfaces are needed to improve the understanding of the underlying mechanisms. In this study we show that in-situ infrared spectroscopy can be used to investigate CT effects at organic/organic as well as inorganic/organic interfaces quantitatively. For different combinations of commonly used organic semiconductors such as 4,4´-bis(N-carbazolyl)-1,1´-biphenyl (CBP) or fluorinated zinc phthalocyanine (F4ZnPc) and inorganic contact materials such as molybdenum oxide (MoO3) or indium tin oxide (ITO) the CT at the interface was investigated using in-situ IR spectroscopy. The measurements were carried out under UHV conditions during film growth what enables a careful study of the influence of different parameters such as substrate temperature and layer thickness in a controlled way even on a nanometer scale. When the organic molecules are deposited onto the underlying layer charged and non-charged species form which can be identified and quantitatively analyzed in the IR spectra. It was also found that the deposition sequence can strongly influence the interface properties what might have strong implications on the layer stack design. For example, when MoO3 is deposited onto CBP, the CBP layer is strongly doped, due to diffusion of the deposited transition metal oxide clusters into the organic layer. Financial support by BMBF (project INTERPHASE) is gratefully acknowledged.

  11. Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide

    Institute of Scientific and Technical Information of China (English)

    王占雨; 周艳丽; 王雪青; 王飞; 孙强; 郭正晓; 贾瑜

    2015-01-01

    Temperature dependence of lattice constants is studied by using first-principles calculations to determine the effects of in-plane stiffness and charge transfer on the thermal expansions of monolayer semiconducting transition metal dichalco-genides. Unlike the corresponding bulk material, our simulations show that monolayer MX2 (M=Mo and W;X=S, Se, and Te) exhibits a negative thermal expansion at low temperatures, induced by the bending modes. Transition from con-traction to expansion at higher temperatures is observed. Interestingly, the thermal expansion can be tailored regularly by alteration of M or X atom. Detailed analysis shows that the positive thermal expansion coefficient is determined mainly by the in-plane stiffness, which can be expressed by a simple relationship. Essentially the regularity of this change can be attributed to the difference in charge transfer between the different elements. These findings should be applicable to other two-dimensional systems.

  12. Linear, third- and fifth-order nonlinear spectroscopy of a charge transfer system coupled to an underdamped vibration

    CERN Document Server

    Dijkstra, Arend G

    2015-01-01

    We study hole, electron and exciton transport in a charge transfer system in the presence of underdamped vibrational motion. We analyze the signature of these processes in the linear and third-, and fifth-order nonlinear electronic spectra. Calculations are performed with a numerically exact hierarchical equations of motion method for an underdamped Brownian oscillator spectral density. We find that combining electron, hole and exciton transfer can lead to non-trivial spectra with more structure than with excitonic coupling alone. Traces taken during the waiting time of a two-dimensional spectrum are dominated by vibrational motion and do not reflect the electron, hole, and exciton dynamics directly. We find that the fifth-order nonlinear response is particularly sensitive to the charge transfer process. While third-order 2D spectroscopy detects the correlation between two coherences, fifth-order 2D spectroscopy (2D population spectroscopy) is here designed to detect correlations between the excited states du...

  13. CoPc and CoPcF16 on gold: Site-specific charge-transfer processes

    Directory of Open Access Journals (Sweden)

    Fotini Petraki

    2014-04-01

    Full Text Available Interface properties of cobalt(II phthalocyanine (CoPc and cobalt(II hexadecafluoro-phthalocyanine (CoPcF16 to gold are investigated by photo-excited electron spectroscopies (X-ray photoemission spectroscopy (XPS, ultraviolet photoemission spectroscopy (UPS and X-ray excited Auger electron spectroscopy (XAES. It is shown that a bidirectional charge transfer determines the interface energetics for CoPc and CoPcF16 on Au. Combined XPS and XAES measurements allow for the separation of chemical shifts based on different local charges at the considered atom caused by polarization effects. This facilitates a detailed discussion of energetic shifts of core level spectra. The data allow the discussion of site-specific charge-transfer processes.

  14. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.

    Science.gov (United States)

    Liu, Junzi; Zhang, Yong; Bao, Peng; Yi, Yuanping

    2017-02-14

    Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-ΔSCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-ΔSCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.

  15. Multiple analyte response and molecular logic operations by excited-state charge-transfer modulation in a bipyridine integrated fluorophore.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Divya, Kizhumuri P; Manojkumar, T K; Ajayaghosh, Ayyappanpillai

    2011-02-01

    The tunable excited-state properties of a new donor-π-acceptor-π-donor-type fluorophore 1 with a bipyridyl moiety and its ability to respond to different analytes in solution and on paper microchannels are described. Furthermore, the multiple analyte response of fluorophore 1 has been exploited to perform multiple logic operations. Molecule 1, by virtue of its excited-state charge transfer, exhibits solvatochromism and reversible modulation of its emission in response to multiple chemical inputs, thus resulting in different fluorescent signals. The intraligand charge-transfer (ILCT) emission of 1 at 574 nm has been modulated to three emission outputs by using different chemical inputs, such as Zn(2+), H(+), and ethylenediaminetetraacetic acid (EDTA). Thus, different logic operations such as AND, 2-input-INH, 3-input-INH, IMP, and a combination of these logic operations could be achieved.

  16. Orientation and charge transfer upon adsorption of ethanethiol on Cu(1 1 1) surface at 85 K

    CERN Document Server

    Sardar, S A; Ikenaga, E; Yagi, S; Sekitani, T; Wada, S; Taniguchi, M; Tanaka, K

    2003-01-01

    Orientation and charge transfer upon adsorption of ethanethiol on Cu(1 1 1) surface at 85 K has been investigated by S K-edge near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) techniques. Exposure-dependent S K-edge NEXAFS identified the monolayer saturation at approx 0.8 L exposure. Polarization-dependent NEXAFS spectra of submonolayer ethanethiol shows that S-C bond is tilted 37+-7 deg. from the surface. Temperature-dependent NEXAFS spectra shows that ethyl thiolate starts breaking at 300-350 K and atomic sulfur creates. A significant amount of charge transfer (1.4 electrons) from copper to ethanethiol molecules has measured by S 1s XPS technique.

  17. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    Science.gov (United States)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  18. Charge Transfer Couplings and Excitation Energies From Subsystem DFT: The Ultimate Divide and Conquer Approach to DFT

    Science.gov (United States)

    Pavanello, Michele

    2013-03-01

    The subsystem formulation of DFT known as Frozen Density Embedding (FDE) offers an excellent platform for studying charge transfer reactions in solvated systems, such as biosystems. I present new theory and software development for the calculation of the electronic couplings as well as the charge transfer excitations from FDE derived densities. The method presented scales linearly with the number of non-covalently bound subsystems considered in the calculation. Proof-of-principle calculations of water and ethylene clusters with up to 56 monomers are presented. In addition, DNA oligomers radical cations, including donor-acceptor, donor-bridge-acceptor, as well as a prototype of the phothosynthetic reaction center are tackled and preliminary results are presented.

  19. Charge transfer in collisions of H+ with Li (1s22s, 2pz): TD-MADNESS approach

    Science.gov (United States)

    Domínguez-Gutiérrez, F. J.; Krstić, P. S.

    2016-10-01

    In this work we carry out a study of the single-electron charge transfer process for H+ collisions with atomic neutral lithium, in its ground and first excited state, at 1-25 keV amu-1. For this, we solve numerically the time dependent Schrödinger equation to the defined accuracy by using a multi-resolution adaptive approach, thus removing the uncertainties connected to a basis size and spatial and temporal numeric mesh size. We approximate the atomic lithium target by a single electron model in a frozen-core pseudo-potential while the projectile follows a straight line trajectory. Within these approximations we report new benchmark data for charge transfer cross sections to n = 2, and 3 states of hydrogen from 1s22s and 1s22pz of Li. Available theoretical and experimental data in the literature are in reasonable agreement with our results.

  20. Charge transfer effects on the Fermi surface of Ba0.5K 0.5Fe2As2

    KAUST Repository

    Nazir, Safdar

    2011-01-31

    Ab-initio calculations within density functional theory are performed to obtain a more systematic understanding of the electronic structure of iron pnictides. As a prototypical compound we study Ba0.5K 0.5Fe2As2 and analyze the changes of its electronic structure when the interaction between the Fe2As 2 layers and their surrounding is modified. We find strong effects on the density of states near the Fermi energy as well as the Fermi surface. The role of the electron donor atoms in iron pnictides thus cannot be understood in a rigid band picture. Instead, the bonding within the Fe2As 2 layers reacts to a modified charge transfer from the donor atoms by adapting the intra-layer Fe-As hybridization and charge transfer in order to maintain an As3- valence state. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.