Sample records for twisted fiber laser

  1. OAM mode converter in twisted fibers

    DEFF Research Database (Denmark)

    Usuga Castaneda, Mario A.; Beltran-Mejia, Felipe; Cordeiro, Cristiano


    We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA.......We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA....

  2. Twist-induced birefringence in hexagonal photonic fibers (United States)

    Tentori, D.; Garcia-Weidner, A.; Torres-Gómez, I.


    Photonic crystal optical fibers have much more degrees of freedom concerning the geometries and index contrasts than step-index fibers; therefore, the theoretical analysis of their performance is usually based on the finite element method. In this work, taking advantage of the similarities observed for twisted single-mode fibers: standard (SMF-28 and SMF- 28e) and hexagonal photonic fibers, we propose that in regard with polarization performance, photonic fibers can be described using a simpler model based on classical polarization optics. The main advantages of the matrix model we propose lie in its accuracy and generality: for each one of the selected wavelengths and input states of polarization, it allows a precise prediction of the output polarization state. The comparison of the experimental results measured for standard and photonic fibers with the theoretical model predictions indicates that in both cases, twist induced birefringence is produced not only by the medium's photoelasticity, but also by the waveguide (cladding/core structure and asymmetry) modification. In addition, for the photonic fiber, the non-symmetrical response to right and left twist allowed the identification of an initial twist as part of the residual elliptical birefringence.

  3. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes


    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser ...

  4. Raman fiber lasers

    CERN Document Server


    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  5. Optical Activity in Twisted Solid-Core Photonic Crystal Fibers (United States)

    Xi, X. M.; Weiss, T.; Wong, G. K. L.; Biancalana, F.; Barnett, S. M.; Padgett, M. J.; St. J. Russell, P.


    In this Letter we show that, in spectral regions where there are no orbital cladding resonances to cause transmission loss, the core mode of a continuously twisted photonic crystal fiber (PCF) exhibits optical activity, and that the magnitude of the associated circular birefringence increases linearly with twist rate and is highly reproducible. In contrast to previous work on twist-induced circular birefringence, PCF has zero linear birefringence and an on-axis core, making the appearance of circular birefringence rather unexpected. A theoretical model based on symmetry properties and perturbation theory is developed and used to show that both spin and orbital angular momentum play a role in this effect. It turns out that the degenerate left- and right-circularly polarized modes of the untwisted PCF are not 100% circularly polarized but carry a small amount of orbital angular momentum caused by the interaction between the core mode and the hollow channels.

  6. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov


    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  7. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes


    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  8. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes


    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  9. Enhancement of pump absorption efficiency by bending and twisting of double clad rare earth doped fibers (Conference Presentation) (United States)

    Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej


    High-power operation of fiber lasers was enabled by the invention of cladding-pumping in a double-clad fiber structure. Because of existence of so called skew rays in the inner clad of the fiber, pump absorption saturates along the fiber and pumping becomes inefficient. First studies of pump absorption efficiency enhancement were focused on fibers with broken circular symmetry of inner cladding eliminating skew rays [1,2]. Later, techniques of unconventional fiber coiling were proposed [3]. However, theoretical studies were limited to the assumption of a straight fiber. Even recently, the rigorous model accounting for fiber bending and twisting was described [4-6]. It was found that bending of the fiber influences modal spectra of the pump radiation and twisting provides quite efficient mode-scrambling. These effects in a synergic manner significantly enhances pump absorption rate in double clad fibers and improves laser system efficiency. In our contribution we review results of numerical modelling of pump absorption in various types of double-clad fibers, e.g., with cross section shape of hexagon, stadium, and circle; two-fiber bundle (so-called GTWave fiber structure) a panda fibers are also analyzed. We investigate pump field modal spectra evolution in hexagonally shaped fiber in straight, bended, and simultaneously bended and twisted fiber which brings new quality to understanding of the mode-scrambling and pump absorption enhancement. Finally, we evaluate the impact of enhanced pump absorption on signal gain in the fiber. These results can have practical impact in construction of fiber lasers: with pump absorption efficiency optimized by our new model (the other models did not take into account fiber twist), the double-clad fiber of shorter length can be used in the fiber lasers and amplifiers. In such a way the harmful influence of background losses and nonlinear effects can be minimized. [1] Doya, V., Legrand, O., Mortessagne, F., "Optimized absorption in a

  10. Fundamentals of fiber lasers and fiber amplifiers

    CERN Document Server

    Ter-Mikirtychev, Valerii (Vartan)


    This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, main operational laser regimes, and practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professionals who work with lasers, in the optical communications, chemical and biological industries, etc.

  11. Orbital angular momentum modes by twisting of a hollow core antiresonant fiber

    DEFF Research Database (Denmark)

    Stefani, Alessio; Kuhlmey, Boris T.; Fleming, Simon


    physical phenomena [2]. We previously reported the ability to create helical hollow fibers by mechanically twisting a tube lattice fiber made of polyurethane, the twist of which can be adjusted and reversed [3]. In this work we report how such deformation induces a mode transformation to an OAM mode...

  12. High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure (United States)

    Sun, Yuan; Liu, Deming; Lu, Ping; Sun, Qizhen; Yang, Wei; Wang, Shun; Liu, Li; Ni, Wenjun


    A low-cost way of achieving a high sensitivity optical fiber strain sensor by introducing higher-order interference modes using a torsional multimode fiber (MMF) instead of normal MMF based on single-mode-multimode-single-mode (SMS) structure is proposed and the coupling mechanism of twist fiber is investigated theoretically. The sensor is fabricated by simple process of heating and twisting a small region of MMF. According to this method, the shift of multimode interference spectrum caused by an axial strain will be greatly magnified. Different strain sensitivities can be easily realized by controlling the torsional number of circles. The experimental results indicated a high strain sensitivity of 42.5 pm/ με at most.

  13. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.


    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  14. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.


    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA.......Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  15. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  16. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper


    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...

  17. Twisting and tweezing liquid crystals with lasers (United States)

    Gleeson, Helen F.; Dickinson, Mark R.; Sanders, Jennifer E.; Yang, Yiming


    Exciting new directions for liquid crystals (LCs) are emerging on the length scale of the wavelength of light. Two complementary micron-sized systems are formed by LC droplets and by dispersions of colloidal particles in LCs. The dimensions of each of these systems are ideal for laser tweezer manipulation, allowing a new range of photon-addressed LC systems to be envisaged. Trapping and moving micron-sized particles in LCs is a beautiful approach that can build novel colloidal photonic materials. However, it is also a unique way of studying fundamental LC properties, particularly anisotropic viscosity coefficients in the low Ericksen regime, which can be accessed by laser trapping. Rather few nematic materials have been studied using laser traps; we describe two different approaches to deduce the viscosity coefficients of nematic mixtures. Micron-sized LC droplets are emerging as intriguing photonic systems in their own right. Angular momentum can be transferred from laser traps to droplets, with specific polarization properties and droplet geometries resulting in a variety of novel photon-driven effects. Fast optical switches, rotating at speeds >1kHz, can be produced from nematic droplets in circularly polarized beams. Both droplet geometry and beam polarization influence the droplet rotation, allowing control of the phenomenon. Surprisingly, a chiral nematic droplet can sometimes undergo continuous rotation in a linearly polarized trap, a phenomenon caused by optically-induced changes in chirality. We describe this remarkable effect which demonstrates how the control of chirality through polarization can result in an optically driven transducer.

  18. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review. (United States)

    Budinski, Vedran; Donlagic, Denis


    Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper.

  19. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review † (United States)

    Budinski, Vedran; Donlagic, Denis


    Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation. PMID:28241510

  20. Mid-infrared fiber lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Jackson, Stuart D.; Sorokina, I.T.; Vodopyanov, K.L.


    The current state of the art in mid-infrared fiber lasers is reviewed in this chapter. The relevant fiber-host materials such as silicates, fluorides, chalcogenides, and ceramics, the fiber, pump, and resonator geometries, and the spectroscopic properties of rare-earth ions are introduced. Lasers at

  1. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter


    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  2. Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber (United States)

    Wong, G. K. L.; Kang, M. S.; Lee, H. W.; Biancalana, F.; Conti, C.; Weiss, T.; Russell, P. St. J.


    Spiral twisting offers additional opportunities for controlling the loss, dispersion, and polarization state of light in optical fibers with noncircular guiding cores. Here, we report an effect that appears in continuously twisted photonic crystal fiber. Guided by the helical lattice of hollow channels, cladding light is forced to follow a spiral path. This diverts a fraction of the axial momentum flow into the azimuthal direction, leading to the formation of discrete orbital angular momentum states at wavelengths that scale linearly with the twist rate. Core-guided light phase-matches topologically to these leaky states, causing a series of dips in the transmitted spectrum. Twisted photonic crystal fiber has potential applications in, for example, band-rejection filters and dispersion control.

  3. Super stretchable soft actuator made of twisted and coiled spandex fiber (United States)

    Cho, Kyeong Ho; Song, Min Geun; Yang, Sang Yul; Kim, Youngeun; Jung, Hosang; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-Do; Choi, Hyouk Ryeol


    Twist and Coiled soft Actuator (TCA) is simply fabricated by twisting a polymer fiber. In the previous researches, TCA was mainly fabricated with Nylon 6,6 fiber, and Nylon-TCA (NTCA) showed strong force outputs. However, the strain from NTCA was not much enough for practical application. This paper introduces SPX-TCA (STCA) which is fabricated with Spandex fibers. NTCA and STCA were fabricated, and their performances were compared by using the performance evaluation device. STCA showed larger strain, and it was actuated lower temperature than NTCA.

  4. Polarization evolution of vector wave amplitudes in twisted fibers pumped by single and paired pulses. (United States)

    Almanee, M; Haus, J W; Armas-Rivera, I; Beltrán-Pérez, G; Ibarra-Escamilla, B; Duran-Sanchez, M; Álvarez-Tamayo, R I; Kuzin, E A; Bracamontes-Rodríguez, Y E; Pottiez, O


    Nonlinear polarization dynamics of single and paired pulses in twisted fibers is experimentally and numerically studied. Accompanying a dramatic difference in the output spectrum when a single- or double-amplified soliton pulse is launched in the fiber, the output polarization for the two cases also reveals very different characteristics.

  5. Multichannel laser-fiber vibrometer (United States)

    Dudzik, Grzegorz; Waz, Adam; Kaczmarek, Pawel; Antonczak, Arkadiusz; Sotor, Jaroslaw; Krzempek, Karol; Sobon, Grzegorz; Abramski, Krzysztof M.


    For the last few years we were elaborating the laser-fiber vibrometer working at 1550 nm. Our main stress was directed towards different aspects of research: analysis of scattered light, efficient photodetection, optimization of the fiber-free space interfaces and signal processing. As a consequence we proposed the idea of a multichannel fiber vibrometer based on well developed telecommunication technique - Wavelength Division Multiplexing (WDM). One of the most important parts of a fiber-laser vibrometer is demodulation electronic section. The distortion, nonlinearity, offset and added noise of measured signal come from electronic circuits and they have direct influence on finale measuring results. We present the results of finished project "Developing novel laser-fiber monitoring technologies to prevent environmental hazards from vibrating objects" where we have constructed a 4-channel WDM laser-fiber vibrometer.

  6. Novel fiber optic tip designs and devices for laser surgery (United States)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed

  7. Scalar - vector soliton fiber lasers

    CERN Document Server

    Wu, Zhichao; Li, Lei; Luo, Yiyang; Tang, Dingyuan; Shen, Deyuan; Tang, Ming; Fu, Songnian; Zhao, Luming


    Rapid progress in passively mode-locked fiber lasers is currently driven by the recent discovery of vector feature of mode-locking pulses, namely, the group velocity-locked vector solitons, the phase locked vector solitons, and the high-order vector solitons. Those vector solitons are fundamentally different from the previously known scalar solitons. Here, we report a fiber laser where the mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is novel and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the working regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the conditions of very small birefringence.

  8. Effect of Strain Rates and Pre-Twist on Tensile Strength of Kevlar KM2 Single Fiber (United States)


    Tension. Polymer 2012, 53, 5568–5574. 9. Wilfong, R. E.; Zimmerman, J. Strength and Durability Characteristics of Kevlar Aramid Fiber . Journal of...Effect of Strain Rates and Pre-Twist on Tensile Strength of Kevlar KM2 Single Fiber by Brett D. Sanborn and Tusit T. Weerasooriya ARL-TR...6403 April 2013 Effect of Strain Rates and Pre-Twist on Tensile Strength of Kevlar KM2 Single Fiber Brett D. Sanborn Oak Ridge Institute

  9. Orange fiber laser for ophthalmology (United States)

    Adachi, M.; Kojima, K.; Hayashi, K.


    For the light source of photocoagulators for ophthalmology, orange laser is more suitable than green laser because of low scattering loss by the crystalline lens, and low absorption by xanthophylls in the retina. We developed two orange fiber lasers (580 nm and 590 nm) to investigate the effect depending on the difference in the range of orange. The 580nm laser is composed of a 1160 nm fiber laser and a Periodically Polled Lithium Niobate (PPLN) crystal for second harmonic generation. The 1160 nm fiber laser beam is focused into the MgO-doped PPLN crystal whose length is 30 mm with 3-pass configuration. Continuous-wave 1.3 W output power of 580 nm was obtained with 5.8 W input power of 1160nm for the first time. The conversion efficiency was 22%. The band width of the second harmonic was 0.006 nm (FWHM). The 590 nm laser is almost the same as 580 nm laser source. In this case we used a Raman shift fiber to generate 1180 nm, and the output power of 590 nm was 1.4 W. We developed an evaluation model of photocoagulator system using these two laser sources. A 700 mW coagulation output power was obtained with this orange fiber laser photocoagulator system. This is enough power for the eye surgery. We have the prospect of the maintenance-free, long-life system that is completely air-cooled. We are planning to evaluate this photocoagulator system in order to investigate the difference between the two wavelengths at the field test.

  10. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry


    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  11. A High Power Frequency Doubled Fiber Laser (United States)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute


    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  12. Of masers, lasers and optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Stiglitz, M.R.; Blanchard, C.


    A review is presented of the development and evolution of fiber optics, lasers, and masers. It is noted that lasers and masers are based on quantum mechanical principles in which energy is transferred from a pump source to a paramagnetic material. Attention is given to gas lasers, liquid lasers (dye lasers), semiconductor lasers, and CW lasers. Also condsidered are materials used in the fabrication of optical fibers, optical fiber configurations, step-index multimode fibers, depletion layer photodiodes, and undersea fiber-optic communications links. 8 refs.

  13. Of masers, lasers and optical fiber (United States)

    Stiglitz, Martin R.; Blanchard, Christine


    A review is presented of the development and evolution of fiber optics, lasers, and masers. It is noted that lasers and masers are based on quantum mechanical principles in which energy is transferred from a pump source to a paramagnetic material. Attention is given to gas lasers, liquid lasers (dye lasers), semiconductor lasers, and CW lasers. Also condsidered are materials used in the fabrication of optical fibers, optical fiber configurations, step-index multimode fibers, depletion layer photodiodes, and undersea fiber-optic communications links.

  14. Monolithic thulium-doped fiber laser (United States)

    Aubrecht, J.; Peterka, P.; Honzátko, P.; Todorov, F.; Podrazký, O.; Kamrádek, M.; Proboštová, J.; Kašík, I.


    In this contribution we report and discuss the results of laser characterizations of experimental thulium-doped optical fibers. These active fibers were fabricated in house and were tested in two laser systems to verify their characteristics. The first one, a monolithic fiber laser, was of great interest to us due to its potentially lower overall resonator losses, improved laser lifetime and better robustness. The compact laser cavities with a Bragg gratings inscribed directly into the active optical fiber differs to the second laser system where the Bragg gratings were inscribed into a passive fiber which had to be spliced to the active fiber. The tested fibers were manufactured by the modified chemical vapor deposition method and a solution-doping of thulium ions with Al2O3 or alumina nanoparticles, respectively. We focused on comparison of laser output powers, slope efficiencies, and laser thresholds for particular thulium-doped fiber in different laser configurations.

  15. High performance twisted and coiled soft actuator with spandex fiber for artificial muscles (United States)

    Yang, Sang Yul; Cho, Kyeong Ho; Kim, Youngeun; Song, Min-Geun; Jung, Ho Sang; Yoo, Ji Wang; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-do; Ryeol Choi, Hyouk


    This paper reports the twisted and coiled soft actuator (abbreviated with STCA) with spandex fiber. The STCA exhibits higher actuation strain at lower temperature than the previous nylon twisted and coiled soft actuators (abbreviated with NTCAs). While NTCAs are fabricated using a twist-insertion process until coils are formed, a new method is developed to fabricate the STCA using the ultra-stretch of spandex, whereby the STCA is twisted again after the coil has been formed. A 6-gear-twist-insertion device that increases the stability and the fabrication speed is developed to fabricate the STCA. The superior performance exhibited by the STCA is due to the 14% contraction strain of the bare spandex (bare nylon: 4%) and the low spring constant of 0.0115 N mm-1. The maximum tensile actuation strain of STCA was 45% at 130 °C, and the maximum specific work was 1.523 kJ kg-1 at 130 °C. STCA could repeatedly actuate 100 times with a strain change of less than 0.4%.

  16. 2 micron femtosecond fiber laser (United States)

    Liu, Jian; Wan, Peng; Yang, Lihmei


    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  17. Topological Aharonov-Bohm suppression of optical tunneling in twisted nonlinear multicore fibers (United States)

    Parto, Midya; Lopez-Aviles, Helena; Khajavikhan, Mercedeh; Amezcua-Correa, Rodrigo; Christodoulides, Demetrios N.


    We show that the Aharonov-Bohm-like suppression of optical tunneling in twisted multicore fibers can persist even under highly nonlinear conditions. Our analysis indicates that the topological phase is robust and remains intact in the presence of nonlinearity. The energy exchange dynamics are analyzed theoretically via closed-form solutions in four-core ring systems. Effects arising from asymmetry are also investigated. A possible arrangement to experimentally observe this effect is suggested.

  18. All fiber passively Q-switched laser (United States)

    Soh, Daniel B. S.; Bisson, Scott E


    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  19. Light dynamics in nonlinear trimers ans twisted multicore fibers

    CERN Document Server

    Castro-Castro, Claudia; Srinivasan, Gowri; Aceves, Alejandro B; Kevrekidis, Panayotis G


    Novel photonic structures such as multi-core fibers and graphene based arrays present unique opportunities to manipulate and control the propagation of light. Here we discuss nonlinear dynamics for structures with a few (2 to 6) elements for which linear and nonlinear properties can be tuned. Specifically we show how nonlinearity, coupling, and parity-time PT symmetric gain/loss relate to existence, stability and in general, dynamical properties of nonlinear optical modes. The main emphasis of our presentation will be on systems with few degrees of freedom, most notably couplers, trimers and generalizations thereof to systems with 6 nodes.

  20. Twisted anisotropic fibers for robust orbital-angular-momentum-based information transmission (United States)

    Barshak, E. V.; Alexeyev, C. N.; Lapin, B. P.; Yavorsky, M. A.


    We study the light propagation in the twisted anisotropic optical fibers endowed with torsional mechanical stress by obtaining the analytical solution of the vector wave equation. We show that at certain interplay between fiber parameters optical vortex beams of topological charge ℓ =0 ,±1 ,±2 ,... become the modes of the fibers in question. To explain the splitting of the optical vortex propagation constants we introduce the notions of orbital birefringence and optical Zeeman effect. Moreover, we unveil that induced by torsional stress circular birefringence makes the vortex beams with the well-defined orbital angular momentum robust against small perturbations characterized by both constant and spatially varying orientation of a director. We believe that such fibers can be successfully utilized for the long-range robust transmission of information encoded in the light's orbital degrees of freedom.

  1. High Power Fiber Lasers (United States)


    Optics, Information and Photonics, University of Erlangen- Nuremberg , Germany, June 2007. INVITED 14. A. Siegman, “Index Antiguided Optical Fibers and...Lasers” seminar given at the Institute for Optics, Information and Photonics, University of Erlangen- Nuremberg , Germany, June 2007. INVITED 14. A

  2. Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light. (United States)

    Beravat, Ramin; Wong, Gordon K L; Frosz, Michael H; Xi, Xiao Ming; Russell, Philip St J


    A century ago, Einstein proposed that gravitational forces were the result of the curvature of space-time and predicted that light rays would deflect when passing a massive celestial object. We report that twisting the periodically structured "space" within a coreless photonic crystal fiber creates a helical channel where guided modes can form despite the absence of any discernible core structure. Using a Hamiltonian optics analysis, we show that the light rays follow closed spiral or oscillatory paths within the helical channel, in close analogy with the geodesics of motion in a two-dimensional gravitational field. The mode diameter shrinks, and its refractive index rises, as the twist rate increases. The birefringence, orbital angular momentum, and dispersion of these unusual modes are explored.

  3. Thulium-doped optical fibers for fiber lasers (United States)

    Kamrádek, M.; Aubrecht, J.; Peterka, P.; Podrazký, O.; Honzátko, P.; Cajzl, J.; Mrázek, J.; Kubeček, V.; Kašík, I.


    We present preparation and characterization of thulium-doped silica-based optical fibers for fiber lasers. The fibers were prepared by modified chemical vapor deposition process and doped with alumina and thulium ions. Alumina co-doping was achieved through two different methods - solution doping and nanoparticle doping method. Prepared preforms were characterized in terms of refractive index profiles and dopants distribution. For the drawn fibers, their spectral attenuation, fluorescence lifetime and laser performance were measured. In the case of nanoparticle doping, better laser characteristics were observed. Discussion and explanation of the trends for laser efficiency improvement is given.

  4. Advances in mid-infrared fiber lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Jackson, S.D.; Ebrahim-Zadeh, M.; Sorokina, I.T.

    The current state of the art in mid-infrared fiber laser research is reviewed. The relevant glass and ceramic fiber host matkrials and the fiber, pump, and resonator geometries are introduced. Lasers operating on transitions ranging from 1.9 to 4 pm occurring in the rare-earth-ions $Tm^{3+}$,

  5. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields. (United States)

    Xie, Fei; Zemlin, Christian W


    Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart. We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium ("penetrating needles" configuration) and one circular electrode each on epi- and endocardium, opposing each other ("epi-endo" configuration). For thick tissues (10 mm) and moderate anisotropy ratio (a = 2), we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10) leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria) and higher anisotropy ratio (a = 10), the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist. These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the fiber orientation is not consistent across the

  6. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields.

    Directory of Open Access Journals (Sweden)

    Fei Xie

    Full Text Available Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart.We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium ("penetrating needles" configuration and one circular electrode each on epi- and endocardium, opposing each other ("epi-endo" configuration.For thick tissues (10 mm and moderate anisotropy ratio (a = 2, we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10 leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria and higher anisotropy ratio (a = 10, the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist.These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the fiber orientation is not consistent

  7. Fiber laser coupled optical spark delivery system (United States)

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO


    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  8. Fiber lasers and their applications [Invited]. (United States)

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N


    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  9. Continuously tunable wideband semiconductor fiber-ring laser (United States)

    Mao, Xuefeng; Zhao, Shiwei; Yuan, Suzhen; Wang, Xiaofa; Zheng, Peichao


    We demonstrate a wideband tunable semiconductor fiber-ring laser that can be continuously tuned from 1498 nm to 1623 nm. The proposed laser uses a semiconductor optical amplifier (SOA) as a gain medium and a fiber Fabry-Perot tunable filter as a selective wavelength filter. The optimized drive current of the SOA and the output coupling ratio are obtained by experimental research. This laser has a simple configuration, low threshold, flat laser output power and high optical signal-to-noise ratio.

  10. An in-line fiber-optic modal interferometer for simultaneous measurement of twist and ambient temperature

    Directory of Open Access Journals (Sweden)

    Yongqin Yu


    Full Text Available A novel and simple sensor based on fiber-optic modal interferometer fabricated by a segment of low elliptical hollow-core photonic bandgap fiber for simultaneous temperature and twist measurements is demonstrated. Meanwhile the sensor can also measure the twist angle and determine the twist direction simultaneously. The mode distribution of EHC-PBGF is demonstrated both in theory and experiments. There is an obvious difference of two transmission dips on the temperature and twist. The twist sensitivities of Dip 1 and Dip 2 are obtained to be −31.95 and −585.8 pm/(rad/m, respectively. The temperature sensitivities are 12.99 pm/°C for Dip 1 and 5.09 pm/°C for Dip 2, respectively. Two parameters of twist and temperature can be distinguished and measured simultaneously by using a sensing matrix. Meanwhile the structure is found to be weakly sensitive to the axial strain. It has the advantage of avoiding the crosstalk of strain in the applications.

  11. 1940 nm all-fiber Q-switched fiber laser (United States)

    Ahmadi, P.; Estrada, A.; Katta, N.; Lim, E.; McElroy, A.; Milner, T. E.; Mokan, V.; Underwood, M.


    We present development of a nanosecond Q-switched Tm3+-doped fiber laser with 16 W average power and 4.4 kW peak power operating at 1940 nm. The laser has a master oscillator power amplifier design, and uses large mode area Tm3+-doped fibers as the gain medium. Special techniques are used to splice Tm3+-doped fibers to minimize splice loss. The laser design is optimized to reduce non-linear effects, including modulation instability. Pulse width broadening due to high gain is observed and studied in detail. Medical surgery is a field of application where this laser may be able to improve clinical practice. The laser together with scanning galvanometer mirrors is used to cut precisely around small footprint vessels in tissue phantoms without leaving any visible residual thermal damage. These experiments provide proof-of-principle that this laser has promising potential in the laser surgery application space.

  12. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers (United States)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do


    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  13. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper


    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  14. The SMAT fiber laser for industrial applications (United States)

    Ding, Jianwu; Liu, Jinghui; Wei, Xi; Xu, Jun


    With the increased adoption of high power fiber laser for various industrial applications, the downtime and the reliability of fiber lasers become more and more important. Here we present our approach toward a more reliable and more intelligent laser source for industrial applications: the SMAT fiber laser with the extensive sensor network and multi-level protection mechanism, the mobile connection and the mobile App, and the Smart Cloud. The proposed framework is the first IoT (Internet of Things) approach integrated in an industrial laser not only prolongs the reliability of an industrial laser but open up enormous potential for value-adding services by gathering and analyzing the Big data from the connected SMAT lasers.

  15. 100-kW ytterbium fiber laser (United States)

    Gapontsev, Valentin P.; Fomin, Valentin; Ount, Andrei; Samartsev, Igor E.


    Nonlinear SRS and SBS restrictions for available peak power in single-mode fiber lasers were investigated. Various technical means to overcome the limitations were developed. As result, a feasibility of 100 kW peak power at 5 nsec pulse duration and 20 W average power with near TEMoo output beam quality was demonstrated for ytterbium fiber laser with a MOPFA configuration. As alternative, Q-switch version of similar laser was developed using high-speed acousto-optic switch in ring geometry of fiber resonator. Temporal and spectral behavior of both versions vs peak power, pulse duration and repetition rate was investigated in details.

  16. 1570 nm High Energy Fiber Laser Project (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy fiber laser for remote sensing. Current state-of-art technologies can not provide all features of...

  17. High Power Fiber Laser Test Bed (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  18. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber. (United States)

    Chen, Shi; Liu, Jun; Zhao, Yifan; Zhu, Long; Wang, Andong; Li, Shuhui; Du, Jing; Du, Cheng; Mo, Qi; Wang, Jian


    We present a full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum (OAM) fiber. OAM+1 and OAM-1 modes carrying 20-Gbit/s quadrature phase-shift keying (QPSK) signals are employed in the downlink and uplink transmission experiments. The observed mode crosstalks are less than -15.2 dB, and the full-duplex crosstalks are less than -12.7 dB. The measured full-duplex optical signal-to-noise ratio (OSNR) penalties at a bit-error rate (BER) of 2 × 10(-3) are ~2.4 dB in the downlink transmission and ~2.3 dB in the uplink transmission. The obtained results show favorable full-duplex twisted lights multiplexing data transmission performance in a km-scale OAM fiber link.

  19. Glass-clad single crystalline fiber lasers (United States)

    Lai, C. C.; Hsu, K. Y.; Huang, C. W.; Jheng, D. Y.; Wang, S. C.; Lin, S. L.; Yang, M. H.; Lee, Y. W.; Huang, D. W.; Huang, S. L.


    Yttrium aluminium garnet (YAG) has been widely used as a solid-state laser host because of its superior optical, thermal, mechanical properties, as well as its plurality in hosting active ions with a wide range of ionic radii. Drawing YAG into single crystalline fiber has the potential to further scale up the attainable power level with high mode quality. The recent advancement on the codrawing laser-heated pedestal growth (CDLHPG) technique can produce glass-clad YAG crystalline fibers for laser applications. The drawing speed can reach 10 cm/min for mass production. The CDLHPG technique has shown advantages on transition-metal ion doped YAG and short-fluorescent-lifetime ion doped YAG host. Compared to silica fiber lasers, the crystalline core offers high emission cross section for transition metal ions because of the unique local matrix. The challenges on the development of glass-clad YAG fibers, including core crystallinity, diameter uniformity, dopant segregation, residual strain, post-growth thermal treatment, and the thermal expansion coefficient mismatch between the crystalline core and glass clad are discussed. Chromium, ytterbium, and neodymium ions doped YAG fiber lasers have been successfully achieved with high efficiency and low threshold power. Power scaling with a clad-pump/side-coupling scheme using single clad or double clad YAG fibers is also discussed.

  20. Control platform for fiber laser management (United States)

    Jay, Paul R.; Berolo, Ezio; Murison, Richard


    Fiber Lasers are emerging as a technically superior solution that is disruptive to conventional laser sources. Estimates place the 2005 market for Fiber Lasers at approximately $160Million, with growth potential of 100%/year for the next 3-4 years. Many of the applications envisage deployment where end-users have easy access to the benefits of the Fiber Laser source, without needing to understand the detailed physics and engineering behind the beam delivery. For these applications a comprehensive control platform with simple functional user interfaces is a significant competitive advantage. Depending on the nature of the particular application, effective controls can range from basic pump source management, to more detailed monitoring of multiple aspects of the lasing system to ensure the desired operating regime, and may even include feedback from external sensors to optimize delivery conditions.

  1. Laser Cooled High-Power Fiber Amplifier


    Nemova, Galina


    A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence ...

  2. Femtosecond fiber laser additive manufacturing of tungsten (United States)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei


    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  3. Ho:YLF Laser Pumped by TM:Fiber Laser

    Directory of Open Access Journals (Sweden)

    Mizutani Kohei


    Full Text Available A 2-micron Ho:YLF laser end-pumped by 1.94-micron Tm:fiber laser is described. A ring resonator of 3m length is adopted for the oscillator. The laser is a master oscillator and an amplifier system. It is operated at high repetition rate of 200-5000 Hz in room temperature. The laser outputs were about 9W in CW and more than 6W in Q-switched operation. This laser was developed to be used for wind and CO2 measurements.

  4. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei


    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  5. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology. (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang


    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  6. Innovations in high power fiber laser applications (United States)

    Beyer, Eckhard; Mahrle, Achim; Lütke, Matthias; Standfuss, Jens; Brückner, Frank


    Diffraction-limited high power lasers represent a new generation of lasers for materials processing, characteristic traits of which are: smaller, cost-effective and processing "on the fly". Of utmost importance is the high beam quality of fiber lasers which enables us to reduce the size of the focusing head incl. scanning mirrors. The excellent beam quality of the fiber laser offers a lot of new applications. In the field of remote cutting and welding the beam quality is the key parameter. By reducing the size of the focusing head including the scanning mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. By using these frequencies very thin and deep welding seams can be generated experienced so far with electron beam welding only. The excellent beam quality of the fiber laser offers a high potential for developing new applications from deep penetration welding to high speed cutting. Highly dynamic cutting systems with maximum speeds up to 300 m/min and accelerations up to 4 g reduce the cutting time for cutting complex 2D parts. However, due to the inertia of such systems the effective cutting speed is reduced in real applications. This is especially true if complex shapes or contours are cut. With the introduction of scanner-based remote cutting systems in the kilowatt range, the effective cutting speed on the contour can be dramatically increased. The presentation explains remote cutting of metal foils and sheets using high brightness single mode fiber lasers. The presentation will also show the effect of optical feedback during cutting and welding with the fiber laser, how those feedbacks could be reduced and how they have to be used to optimize the cutting or welding process.

  7. Germanate Glass Fiber Lasers for High Power (United States)


    AFRL-AFOSR-JP-TR-2016-0020 Germanate glass fiber lasers for high power David Lancaster THE UNIVERSITY OF ADELAIDE Final Report 01/04/2016...COVERED (From - To) 01-07-2014 to 30-06-2015 4. TITLE AND SUBTITLE Germanate glass fiber lasers for high power 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...germanate based glasses with a specific focus on glass stability during thermal-cycling which is representative of the steps required to fabricate a doped

  8. Nonlinear frequency conversion in fiber lasers

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian

    nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method......The concept of nonlinear frequency conversion entails generating light at new frequencies other than those of the source light. The emission wavelength of typical fiber laser systems, relying on rare-earth dopants, are constrained within specific bands of the infrared region. By exploiting...

  9. Coherent and spectral beam combining of fiber lasers (United States)

    Augst, S. J.; Redmond, S. M.; Yu, C. X.; Ripin, D. J.; Fan, T. Y.; Goodno, G. D.; Thielen, P. A.; Rothenberg, J. E.; Sanchez-Rubio, A.


    State-of-the-art diffraction-limited fiber lasers are presently capable of producing kilowatts of power. Power levels produced by single elements are gradually increasing but beam combining techniques are attractive for rapidly scaling fiber laser systems to much higher power levels. We discuss both coherent and spectral beam combining techniques for scaling fiber laser systems to high brightness and high power. Recent results demonstrating beam combination of 500-W commercial fiber laser amplifiers will be presented.

  10. Hybrid fiber-rod laser (United States)

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.


    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.


    African Journals Online (AJOL)

    30 juin 2012 ... dynamic instability arising in a fiber lasers as a consequence of Brillouin effect. The effect of Brillouin back scattering is theoretically analysed by two-coupled modes laser model. We consider the Fabry-Perot fiber ..... pumped high power fiber lasers. Journal of Nonlinear Optical Physics & Materials. 2009 ...

  12. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei


    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all...

  13. Laser Cutting of Carbon Fiber Fabrics (United States)

    Fuchs, A. N.; Schoeberl, M.; Tremmer, J.; Zaeh, M. F.

    Due to their high weight-specific mechanical stiffness and strength, parts made from carbon fiber reinforced polymers (CFRP) are increasingly used as structural components in the aircraft and automotive industry. However, the cutting of preforms, as with most automated manufacturing processes for CFRP components, has not yet been fully optimized. This paper discusses laser cutting, an alternative method to the mechanical cutting of preforms. Experiments with remote laser cutting and gas assisted laser cutting were carried out in order to identify achievable machining speeds. The advantages of the two different processes as well as their fitness for use in mass production are discussed.

  14. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei


    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate...

  15. Fiber facet gratings for high power fiber lasers (United States)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel


    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  16. Effect of a spacer on localization of topological states in a Bragg multihelicoidal fiber with a twist defect (United States)

    Alexeyev, C. N.; Lapin, B. P.; Yavorsky, M. A.


    We have studied the influence of a spacer introduced into a Bragg multihelicoidal fiber with a twist defect on the existence of defect-localized states. We have shown that in the presence of a Gaussian pump the energy of the electromagnetic field stored in topologically charged defect-localized modes essentially depends on the length of the spacer. We have demonstrated that by changing this length on the wavelength scale it is possible to strongly modulate such energy. This property can be used for generation and controlled emission of topologically charged light. We have also shown that if the value of an isotropic spacer’s refractive index deviates from the optimal value defined by the parameters of the multihelicoidal fiber parts the effect of localization disappears.

  17. Multi-watt 589nm fiber laser source

    Energy Technology Data Exchange (ETDEWEB)



    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  18. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy (United States)

    Wise, Frank W.


    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  19. Lasers and optical fibers in medicine

    CERN Document Server

    Katzir, Abraham


    The increasing use of fiber optics in the field of medicine has created a need for an interdisciplinary perspective of the technology and methods for physicians as well as engineers and biophysicists. This book presents a comprehensive examination of lasers and optical fibers in an hierarchical, three-tier system. Each chapter is divided into three basic sections: the Fundamentals section provides an overview of basic concepts and background; the Principles section offers an in-depth engineering approach; and the Advances section features specific information on systems an

  20. Quality and performance of laser cutting with a high power SM fiber laser

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Selchau, Jacob; Olsen, F. O.


    The introduction of high power single mode fiber lasers allows for a beam of high power and a good beam quality factor (M2 ” 1.2), compared to the multimode fiber lasers often utilised in macro laser metal cutting. This paper describes fundamental studies of macro laser metal cutting with a single...... mode fiber laser to study the performance of such lasers in terms of cut quality and process performance. Linear cut experiments have been performed applying a 3kW single mode fiber laser and varying the following parameters: laser power, cutting speed, focal length, focus position, cutting gas...... influence the cut quality and the maximum cutting speed in the investigated parameter space. Furthermore the achieved cutting performance is benchmarked to laser cutting with other types of lasers, CO2-lasers, disc-lasers as well as multimode fiber lasers....

  1. Blackening of metals using femtosecond fiber laser. (United States)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian


    This study presents an unprecedented high throughput processing for super-blackening and superhydrophobic/hydrophilic surface on both planar and nonplanar metals surfaces. By using a high pulse repetition rate femtosecond (fs) fiber laser, a light trapping microstructure and nanostructure is generated to absorb light from UV, visible to long-wave infrared spectral region. Different types of surface structures are produced with varying laser scanning conditions (scanning speed and pitch). The modified surface morphologies are characterized using scanning electron microscope and the blackening effect is investigated through spectral measurements. Spectral measurements show that the reflectance of the processed materials decreases sharply in a wide wavelength range and the decrease occurs at different rates for different scanning pitches and speeds. Above 98% absorption over the entire visible wavelength region and above 95% absorption over the near-infrared, middle-wave infrared and long-wave infrared regions range has been demonstrated for the surface structures, and the absorption for specific wavelengths can go above 99%. Furthermore, the processing efficiency of this fs fiber laser blackening technique is 1 order of magnitude higher than that of solid-state fs laser and 4 times higher than that of picosecond (ps) laser. Further increasing of the throughput is expected by using higher repetition and higher scanning speed. This technology offers the great potential in applications such as constructing sensitive detectors and sensors, solar energy absorber, and biomedicine.

  2. Drilling with fiber-transmitted, visible lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kautz, D.D.; Berzins, L.V.; Dragon, E.P.; Werve, M.E.; Warner, B.E.


    High power and radiance copper-vapor laser technology developed at Lawrence Livermore National Laboratory shows great promise for many materials processing tasks. The authors recently transmitted the visible light produced by these lasers through fiber optics to perform hole drilling experiments. They found the tolerances on the hole circulatory and cylindricity to be excellent when compared to that produced by conventional optics. This technique lends itself to many applications that are difficult to perform when using conventional optics, including robotic manipulation and hole drilling in non-symmetric parts.

  3. Laser and Optical Fiber Metrology in Romania (United States)

    Sporea, Dan; Sporea, Adelina


    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

  4. Femtosecond Laser Structuring in Optical Fiber and Transparent Films

    Directory of Open Access Journals (Sweden)

    Herman Peter R.


    Full Text Available Femtosecond laser processing is optimized for writing optical circuits, optical resonators, and microfluidic devices inside the cladding of single-mode optical fiber that couple efficiently with the fiber core waveguide. The laser processes open new directions towards Labon-a-Fiber.

  5. Bandwidth reduction in CW fiber Raman lasers (United States)

    Labudde, P.; Weber, H. P.; Stolen, R. H.


    The oscillation linewidth of CW fiber Raman lasers has been reduced from typical uncontrolled values of 200 GHz (approximately 0.2 nm for 528 nm radiation) to 9 GHz by employing prisms, gratings, and etalons in various resonator configurations. Further reduction is limited by four-wave mixing and stimulated Brillouin scattering. Although four-wave mixing limits bandwidth reduction, the results demonstrate the use of this nonlinear process for intensity stabilization.

  6. High Power Fiber Lasers and Applications to Manufacturing (United States)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas


    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  7. Thulium fiber laser damage to the ureter (United States)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.


    Our laboratory is studying experimental thulium fiber laser (TFL) as a potential alternative lithotripter to the clinical gold standard Holmium:YAG laser. Safety studies characterizing undesirable Holmium laser-induced damage to ureter tissue have been previously reported. Similarly, this study characterizes TFL induced ureter and stone basket damage. A TFL beam with pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rates of 150-500 Hz was delivered through a 100-μm-core, low-OH, silica optical fiber to the porcine ureter wall, in vitro. Ureter perforation times were measured and gross, histological, and optical coherence tomography images of the ablation zone were acquired. TFL operation at 150, 300, and 500 Hz produced mean ureter perforation times of 7.9, 3.8, and 1.8 s, respectively. Collateral damage averaged 510, 370, and 310 μm. TFL mean perforation time exceeded 1 s at each setting, which is a greater safety margin than previously reported during Holmium laser ureter perforation studies.

  8. Compact Ultra-Wideband Optical Frequency Comb Fiber Laser Project (United States)

    National Aeronautics and Space Administration — Based on our success in developing the world first commercial 10 W femtosecond fiber laser system and our leading technology development in ultrashort pulsed fiber...

  9. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.

  10. Proximal fiber tip damage during Holmium:YAG and thulium fiber laser ablation of kidney stones (United States)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.


    The Thulium fiber laser (TFL) is being studied as an alternative to Holmium:YAG laser for lithotripsy. TFL beam originates within an 18-μm-core thulium doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller fibers than possible during Holmium laser lithotripsy. This study examines whether TFL beam profile also reduces proximal fiber tip damage compared to Holmium laser multimodal beam. TFL beam at wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, 500-μs pulse duration, and pulse rates of 50-500 Hz. For each pulse rate, 500,000 pulses were delivered. Magnified images of proximal fiber surfaces were taken before and after each trial. For comparison, 20 single-use, 270-μm-core fibers were collected after clinical Holmium laser lithotripsy procedures using standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output power was stable, and no proximal fiber damage was observed after delivery of 500,000 pulses at settings up to 35 mJ, 500 Hz, and 17.5 W average power. In contrast, confocal microscopy images of fiber tips after Holmium lithotripsy showed proximal fiber tip degradation in all 20 fibers. The proximal fiber tip of a 105-μm-core fiber transmitted 17.5 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of Holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially reduce costs for the surgical disposables as well.

  11. Highly-efficient high-power pumps for fiber lasers (United States)

    Gapontsev, V.; Moshegov, N.; Berezin, I.; Komissarov, A.; Trubenko, P.; Miftakhutdinov, D.; Berishev, I.; Chuyanov, V.; Raisky, O.; Ovtchinnikov, A.


    We report on high efficiency multimode pumps that enable ultra-high efficiency high power ECO Fiber Lasers. We discuss chip and packaged pump design and performance. Peak out-of-fiber power efficiency of ECO Fiber Laser pumps was reported to be as high as 68% and was achieved with passive cooling. For applications that do not require Fiber Lasers with ultimate power efficiency, we have developed passively cooled pumps with out-of-fiber power efficiency greater than 50%, maintained at operating current up to 22A. We report on approaches to diode chip and packaged pump design that possess such performance.

  12. Highly Efficient Fiber Lasers for Wireless Power Transmission Project (United States)

    National Aeronautics and Space Administration — We propose to develop ytterbium (Yb) fiber lasers with an electrical-to-optical efficiency of nominally 64% by directly coupling 80%-efficient diode lasers with Yb...

  13. Rapid prototyping with high power fiber lasers

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, R.M. [Faculty of Sciences and Technology, New University Lisbon (Portugal); IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Lopes, G. [Welding Engineering Research Centre, Building 46, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Quintino, L. [IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail:; Rodrigues, J.P. [IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Williams, S. [Welding Engineering Research Centre, Building 46, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom)


    Laser rapid prototyping technologies comprise a set of technologies used in a wide range of materials to produce prototypes or small batches of complex shaped components. This paper presents a research work on rapid prototyping technology with laser additive manufacture of wire based alloy Ti-6Al-4V with an 8 kW fiber laser for the production of components with cylindrical geometry. For this, an engineering system was developed, a demonstration part produced and the deposition process was characterized. Two processing parameters were investigated: and these were the relative position between the wire feeding system and the substrate and the laser beam to wire width ratio. The former affects the molten metal transfer mode and the pressure exerted by the wire tip on the molten pool, while the laser beam to wire width ratio affects the process efficiency, since this is a compromise of process stability and process speed. Both parameters control surface finishing and the smoothness of the part. The melting efficiency of the process is low when compared to alternative processes involving powder pre deposition, but the density of the part is improved with homogeneous structural characteristics.

  14. Laser Brazing metallic embedding technique for fiber optic sensors (United States)

    Grandal, Tania; Fraga, Sergio; Castro, Gemma; Vazquez, Esteban; Zornoza, Ander


    In this paper a fiber optic metallic embedding technique is presented based on laser Brazing manufacturing process. The embedding strategy to follow by the laser Brazing, which consists in three steps, minimizes the thermal stress of the embedded fiber, relaxes microbending strains and reduces damage on the fiber. The minimum embedded fiber optic Ni coating total diameter is 237 μm for a successful process with negligible optical loss on the fiber. Fiber Bragg Gratings were successfully embedded in metallic specimens and their strain response was in accordance with their specifications.

  15. Two Types of Morphologically Distinct Fibers Comprising Gallionella ferruginea Twisted Stalks


    Suzuki, Tomoko; Hashimoto, Hideki; Ishihara, Hiromichi; Matsumoto, Nobuyuki; Kunoh, Hitoshi; Takada, Jun


    Two morphologically distinct extracellular stalk fibers produced by Gallionella ferruginea were compared by electron microscopy and elemental analysis. The thick- and fine-fiber stalks were different in structure on a micrometer scale and in the site on the mother cell to which they were attached, but on a nanometer scale they were similar in ultrastructure and in the elemental composition of their basic fiber matrix.

  16. Stable TEM00-mode Nd:YAG solar laser operation by a twisted fused silica light-guide (United States)

    Bouadjemine, R.; Liang, D.; Almeida, J.; Mehellou, S.; Vistas, C. R.; Kellou, A.; Guillot, E.


    To improve the output beam stability of a TEM00-mode solar-pumped laser, a twisted fused silica light-guide was used to achieve uniform pumping along a 3 mm diameter and 50 mm length Nd:YAG rod. The concentrated solar power at the focal spot of a primary parabolic mirror with 1.18 m2 effective collection area was efficiently coupled to the entrance aperture of a 2D-CPC/2V-shaped pump cavity, within which the thin laser rod was pumped. Optimum solar laser design parameters were found through ZEMAX© non-sequential ray-tracing and LASCAD© laser cavity analysis codes. 2.3 W continuous-wave TEM00-mode 1064 nm laser power was measured, corresponding to 1.96 W/m2 collection efficiency and 2.2 W laser beam brightness figure of merit. Excellent TEM00-mode laser beam profile at M2 ≤ 1.05 and very good output power stability of less than 1.6% were achieved. Heliostat orientation error dependent laser power variation was considerably less than previous solar laser pumping schemes.

  17. Femtosecond fiber laser welding of dissimilar metals. (United States)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian


    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  18. Numerical Modeling of Pump Absorption in Coiled and Twisted Double-Clad Fibers

    Czech Academy of Sciences Publication Activity Database

    Koška, Pavel; Peterka, Pavel; Doya, V.


    Roč. 22, č. 2 (2016), s. 4401508 ISSN 1077-260X R&D Projects: GA ČR GA14-35256S; GA MŠk(CZ) LD15122 Institutional support: RVO:67985882 Keywords : double-clad optical fibers * beam propagation method * fiber amplifiers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.971, year: 2016

  19. A laser speckle sensor to measure the distribution of static torsion angles of twisted targets

    DEFF Research Database (Denmark)

    Rose, B.; Imam, H.; Hanson, Steen Grüner


    A novel method for measuring the distribution of static torsion angles of twisted targets is presented. The method is based on Fourier transforming the scattered field in the direction perpendicular to the twist axis, while performing an imaging operation in the direction parallel to the axis....... A cylindrical lens serves to image the closely spaced lateral positions of the target along the twist axis onto corresponding lines of the two dimensional image sensor. Thus, every single line of the image sensor measures the torsion angle of the corresponding surface position along the twist axis of the target....... Experimentally, we measure the distribution of torsion angles in both uniform and non-uniform deformation zones. It is demonstrated both theoretically and experimentally that the measurements are insensitive to object shape and target distance if the image sensor is placed in the Fourier plane. A straightforward...

  20. DFB fiber laser as source for optical communication systems

    DEFF Research Database (Denmark)

    Varming, Poul; Hübner, Jörg; Kristensen, Martin


    The results demonstrate that DFB fiber lasers are an attractive alternative as sources in telecommunication systems. The lasers show excellent long-term stability with very high signal to noise ratio and a reasonable output power, combined with exceptional temperature stability and inherent fiber...

  1. Efficiency of erbium 3-µm crystal and fiber lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Spring, R.; Ghisler, C.; Wittwer, S.; Lüthy, W.; Weber, H.P.


    The population dynamics of erbium 3-μm crystal and fiber lasers are compared experimentally and theoretically. Laser slope efficiencies of 40% in Er:LiYF4 and 23% in a fluorozirconate fiber are experimentally demonstrated under Ti:sapphire pumping. These are both to our knowledge the highest values

  2. Modelling of hydrophone based on a DFB fiber laser

    DEFF Research Database (Denmark)

    Hansen, Lars Voxen; Kullander, F.


    ) and low frequency noise properties of DFB fiber lasers make them useful as hydrophones. Generally, for underwater surveillance applications or similar tasks the acoustic pressure sensitivity of the fiber laser needs to be enhanced by more than two orders of magnitude. Our models predict that this can...... be achieved by an intermediating amplifying mechanical mounting....

  3. CW single transverse mode all-fiber Tm3+-doped silica fiber laser (United States)

    Song, E. Z.; Li, W. H.; You, L.


    The CW 25.6 W output power with a slope efficiency of 30.6% respected to the pump power from a CW single transverse mode all-fiber Tm3+-doped Silica Fiber Laser is reported. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm fiber. The reflective FBG and Tm3+-doped fiber end Fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high output power, but the spectrum width is less than 2 nm at 1.94 μm. We estimate the beam quality to be M 2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.

  4. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu


    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  5. Switchable dual-mode all-fiber laser with few-mode fiber Bragg grating (United States)

    Jin, Wenxing; Qi, Yanhui; Yang, Yuguang; Jiang, Youchao; Wu, Yue; Xu, Yao; Yao, Shuzhi; Jian, Shuisheng


    We propose a new approach to realize switchable mode operation in a few-mode erbium-doped fiber laser. The ring fiber laser structure is constructed with a core-offset splicing between single-mode fiber and dual-mode fiber. Stable operating on the fundamental mode laser and second-order mode laser individually or simultaneously is realized by appropriately adjusting the state of the polarization controller and bending status of the few-mode fiber Bragg grating. The narrow 3 dB linewidth less than 0.02 nm and high optical signal to noise ratio more than 42 dB are obtained for both modes in either separate laser or simultaneous laser operating conditions.

  6. New generation high-power rare-earth-doped phosphate glass fiber and fiber laser (United States)

    Wu, Ruikun; Myers, John D.; Myers, Michael J.


    High power, high brightness fiber lasers have numerous potential commercial and military applications. Fiber lasers with cladding pump designs represent a new generation of diode pumped configurations that are extremely efficient, have single mode output and may be operated with or without active cooling. Kigre has invented a new family of Er/Yb/Nd phosphate laser glass materials (designated QX) that promise to facilitate a quantum leap in fiber laser technology of this field. The new phosphate glass Rare-Earth doped fiber exhibit many advantages than Silica or Fluoride base fiber, see table.1. Instead of 30 to 50 meters of fused silica with a 50 mm bend radii; Kigre's phosphate glass fiber amplifiers may be designed to be less than 4 meters long .Laser performance and various design parameters, such as the fiber core diameter, NA, inner cladding shape and doping concentration are evaluated. Laser performances was demonstrated for an experimental QX/Er doubled clading fiber commissioned by MIT having 8 micron core, a 240 X 300 micron rectangle shaped inner cladding with 0.4 NA and 500 micron outer clading.. Kigre obtained approximately 2 dB/cm gain from 15cm long fiber under 940nm pumping The same fiber was evaluated by researcher at MIT. They used 975nm pump source. Maximum 270mW output was demonstrated by 30 cm long fiber with Fresnel reflection resonator mirrors. The slope efficiency of absorbed pump power s 47%.

  7. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units

    National Research Council Canada - National Science Library

    Song, Feng; Chen, Ping; Sun, Dapeng; Wang, Mingzhu; Dong, Liping; Liang, Dan; Xu, Rui-Ming; Zhu, Ping; Li, Guohong


    .... Here, we report the 11-angstrom-resolution cryogenic electron microscopy (cryo-EM) structures of 30-nanometer chromatin fibers reconstituted in the presence of linker histone H1 and with different nucleosome repeat lengths...

  8. High power composite cavity fiber laser oscillator at 1120 nm (United States)

    Wang, Jianming; Li, Cheng; Yan, Dapeng


    A high power composite cavity fiber laser oscillator at 1120 nm is demonstrated experimentally. Performances of the 1120 nm single fiber laser oscillator and the composite cavity are investigated and compared, and the parasitic oscillation created by the strong amplified spontaneous emission (ASE) can be suppressed effectively in the composite cavity scheme. 2.04-kW 1120-nm signal light with a good beam quality (M2=1.15) is obtained, and the optical conversion efficiency of the composite cavity fiber laser oscillator is about 63% in the experiment. The compact architecture of composite cavity provides an effective scheme for power scaling of long wavelength lasers.

  9. Spectral properties of thulium doped optical fibers for fiber lasers around 2 micrometers (United States)

    Kamrádek, M.; Aubrecht, J.; Peterka, P.; Podrazký, O.; Honzátko, P.; Cajzl, J.; Mrázek, J.; Kubeček, V.; Kašik, I.


    Silica optical fibers doped with rare-earth elements are key components of high-power fiber lasers operating in near-infrared region up to 2.1 μm. In this contribution we deal with preparation and optical characterization of silica-based optical preforms and fibers doped with thulium for fiber lasers operating around 2 μm. A set of fibers with thulium concentration ranges 1000-5000 ppm was prepared by the MCVD solution doping method and characterized. A decrease of fluorescence lifetime of thulium from 487 μs to 378 μs was observed with increasing rare-earth concentration in fiber core. This phenomenon can be explained by energy transfer between ions and ion clustering. Fabricated fibers were suitable for use in fiber lasers.

  10. Fiber laser system for cesium and rubidium atom interferometry

    CERN Document Server

    Diboune, Clément; Bidel, Yannick; Cadoret, Malo; Bresson, Alexandre


    We present an innovative fiber laser system for both cesium and rubidium manipulation. The architecture is based on frequency conversion of two lasers at 1560 nm and 1878 nm. By taking advantage of existing fiber components at these wavelengths, we demonstrate an all fiber laser system delivering 350 mW at 780 nm for rubidium and 210 mW at 852 nm for cesium. This result highlights the promising nature of such laser system especially for Cs manipulation for which no fiber laser system has been reported. It offers new perspectives for the development of atomic instruments dedicated to onboard applications and opens the way to a new generation of atom interferometers involving three atomic species $^{85}$Rb, $^{87}$Rb and $^{133}$Cs for which we propose an original laser architecture.

  11. Characteristics research on self-amplified distributed feedback fiber laser (United States)

    Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding


    A distributed feedback (DFB) fiber laser with a ratio of the backward to forward output power of 1:100 was composed by a 45-mm-length asymmetrical phase-shifted fiber grating fabricated on the 50-mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL-980-Hp erbium-doped fiber to absorb the surplus pump power after the active phase-shifted fiber grating and get population inversion. By using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with the narrow line-width and low noise, a narrow-band light filter consisting of a fiber Bragg grating (FBG) with the same Bragg wavelength as the laser and an optical circulator was used to filter the amplified spontaneous emission (ASE) noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, and a DFB fiber laser with the 32.5-mW output power, 11.5-kHz line width, and -87-dB/Hz relative intensity noise (RIN) at 300 mW of 980 nm pump power was brought out.

  12. Propagation of the Ultra-Short Laser Pulses Through the Helical 1D Photonic Crystal Structure with Twist Defect (United States)

    Antonov, Dmitrii V.; Iegorov, Roman


    The presence of the photonic band-gap is a featured property of the cholesteric liquid crystals (CLC). It can be practically realized for almost any reasonable wavelengths with very high degree of tunability. We have investigated theoretically the influence of the twist defect of the CLC helical structure onto the bandwidth-limited ultra-short laser pulse propagating inside the photonic band-gap. The changes of both pulse duration and peak power with defect angle were observed together with pulse acceleration and retardation for a case of normal incidence of the light.

  13. Spontaneous laser-line sweeping in Ho-doped fiber laser (United States)

    Aubrecht, Jan; Peterka, Pavel; Koška, Pavel; Honzátko, Pavel; Jelínek, Michal; Kamrádek, Michal; Frank, Milan; Kubeček, Václav; Kašík, Ivan


    Spontaneous laser-line sweeping refers to fiber laser instabilities with regular laser wavelength drift within a broad range that may exceed 10 nm; other characteristics of the laser output are sustained relaxation self-pulsing and narrow spectral linewidth. The laser wavelength drift is caused by standing-wave in the cavity; it can be regarded as a special case of mode instability of longitudinal modes of the laser resonator. Self-sweeping was observed so far in Yb, Er, Tm and Bidoped fiber lasers. We report on Ho-doped fiber laser self-sweeping in interval of 3-5 nm near 2100 nm. The sweeping rate was typically 0.7-0.9 nm/s. The thulium-doped fiber lasers at around 2030 nm and 1950 nm were tested as pump sources. The self-sweeping was registered by FTIR spectrometer and the data processing is discussed.

  14. Hollow steel tips for reducing distal fiber burn-back during thulium fiber laser lithotripsy. (United States)

    Hutchens, Thomas C; Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M


    The use of thulium fiber laser (TFL) as a potential alternative laser lithotripter to the clinical holmium:YAG laser is being studied. The TFL's Gaussian spatial beam profile provides efficient coupling of higher laser power into smaller core fibers without proximal fiber tip degradation. Smaller fiber diameters are more desirable, because they free up space in the single working channel of the ureteroscope for increased saline irrigation rates and allow maximum ureteroscope deflection. However, distal fiber tip degradation and "burn-back" increase as fiber diameter decreases due to both excessive temperatures and mechanical stress experienced during stone ablation. To eliminate fiber tip burn-back, the distal tip of a 150-μm core silica fiber was glued inside 1-cm-long steel tubing with fiber tip recessed 100, 250, 500, 1000, or 2000 μm inside the steel tubing to create the hollow-tip fiber. TFL pulse energy of 34 mJ with 500-μs pulse duration and 150-Hz pulse rate was delivered through the hollow-tip fibers in contact with human calcium oxalate monohydrate urinary stones during ex vivo studies. Significant fiber tip burn-back and degradation was observed for bare 150-μm core-diameter fibers. However, hollow steel tip fibers experienced minimal fiber burn-back without compromising stone ablation rates. A simple, robust, compact, and inexpensive hollow fiber tip design was characterized for minimizing distal fiber burn-back during the TFL lithotripsy. Although an increase in stone retropulsion was observed, potential integration of the hollow fiber tip into a stone basket may provide rapid stone vaporization, while minimizing retropulsion.

  15. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device. (United States)

    Olausson, Christina B; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T; Hansen, Kim P; Bjarklev, Anders


    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm by applying an electric field to the silicon assembly.

  16. Coilable Crystalline Fiber (CCF) Lasers and their Scalability (United States)


    highly power scalable, nearly diffraction-limited output laser. 37 References 1. Snitzer, E. Optical Maser Action of Nd 3+ in A Barium Crown Glass ...Electron Devices Directorate Helmuth Meissner Onyx Optics Approved for public release; distribution...lasers, but their composition ( glass ) poses significant disadvantages in pump absorption, gain, and thermal conductivity. All-crystalline fiber lasers

  17. Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry


    We demonstrate a self-stabilization mechanism of a semiconductor saturable absorber mode-locked linearcavity Yb-doped fiber laser using an intracavity photonic bandgap fiber. This mechanism relies on the spectral shift of the laser pulses to a spectral range of higher anomalous dispersion...... and higher loss of the photonic bandgap fiber, as a reaction to the intracavity power buildup. This, in particular, results in a smaller cavity loss for the stably mode-locked laser, as opposed to the Q-switched mode-locking scenario. The laser provides stable 39–49 pJ pulses of around 230 fs duration at 29...

  18. Characteristics research of self-amplified distributed feedback fiber laser (United States)

    Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding


    A distributed feedback (DFB) fiber laser with a ratio of backward to forward output power of 1:100 was composed by a 45mm length asymmetrical phase-shifted fiber grating fabricated on 50mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL980-Hp erbium-doped fiber to absorb surplus pump power after the active phase-shifted fiber grating and get population inversion. Using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with narrow line-width and low noise, a narrow-band light filter consisted of a FBG with the same Bragg wavelength as the laser and an optical circulator was used to filter the ASE noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, a DFB fiber laser of 32.5mW output power, 11.5 kHz line width, and -87dB/Hz relative intensity noise (RIN) at 300mW of 980 nm pump power was brought out.

  19. High-power rod-type photonic crystal fiber laser (United States)

    Limpert, J.; Deguil-Robin, N.; Manek-Hönninger, I.; Salin, F.; Röser, F.; Liem, A.; Schreiber, T.; Nolte, S.; Zellmer, H.; Tünnermann, A.; Broeng, J.; Petersson, A.; Jakobsen, C.


    We report on a novel ytterbium-doped fiber design that combines the advantages of rod and fiber gain media. The fiber design has outer dimensions of a rod laser, meaning a diameter in the range of a few millimeters and a length of just a few tens of centimeters, and includes two important waveguide structures, one for pump radiation and one for laser radiation. We obtained 120-W output power in single-mode beam quality from a 48-cm-long fiber cane that corresponds to an extracted power of 250 W/m. The fiber has significantly reduced nonlinearity, which therefore allows for scalability in the performance of a high-peak-power fiber laser and amplifier system.

  20. Theory of the Sagnac's interferometer of low birefringence and twist fiber; Teoria del interferometro de Sagnac de fibra de baja birrefrigencia y torcida

    Energy Technology Data Exchange (ETDEWEB)

    Estudillo-Ayala, J. M.; Kuzin, E. A.; Ibarra-Escamilla, B. [Instituto Nacional de Astrofisica, Optica y Electronica, Puebla (Mexico); Rojas-Laguna, R. [Universidad de Guanajuato, Guanajuato (Mexico)


    The fibre Sagnac interferometer of low birefringence and twist in the lineal region is examined numerically, a method is shown to measure the birefringence in the fibers and rotation of the axes inside of the interferometer fibre loop. [Spanish] El interferometro de Sagnac de fibra de baja birrefrigencia y torcida en la region lineal es numericamente examinado, se muestra un metodo para medir la birrefrigencia en las fibras y rotacion de los ejes dentro de la fibra del lazo del interferometro.

  1. Characterization of novel optical fibers for use in laser detonators (United States)

    Bowden, M. D.; Drake, R. C.; Singleton, C. A.


    A system for launching flyers using a Q-switched Nd: YAG laser has been developed for shock initiation of secondary explosives. Flyers have been launched at velocities approaching 6 km s -1. Optical fibers are used to transport the optical energy from the laser to the detonator. The launch of these flyers with sufficient velocity requires a fluence in the region of 35 J cm -2, significantly above the damage threshold of most optical fibers. This damage is typically caused by laser absorption at the input face due to imperfections in the surface polishing. A variety of optical fibers with high quality input faces have been tested at fluences up to 50 J cm -2, and their damage thresholds and beam profiles have been measured. The standard fiber used in this system is a low hydroxyl (-OH) content, 400μm diameter core silica fiber, with CO2 laser polished faces. In addition to this, fibers tapering down to 300μm and 200μm core diameter were investigated, as a means of increasing the efficiency of the system, along with mechanically polished fibers. The fiber currently enters the detonator body from the rear. Depending on the application, it may be required for the fiber to enter from the side. To facilitate this, fibers with a machined output face, designed to produce an output at approximately 90 degrees to the fiber axis were tested. Finally, a 2:1 fiber splitter was tested, as a first step to enable simultaneous firing of several detonators. Multiple initiation points are desirable for applications such as programmable initiation, and it is intended to study fiber splitters with a higher split ratio, such as 4:1 and 8:1. The results of these experiments are presented, and assessments made of suitability for transmission of high-power Qswitched Nd:YAG laser pulses.

  2. Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers (United States)

    Becker, Frank; Neumann, Benjamin; Winkelmann, Lutz; Belke, Steffen; Ruppik, Stefan; Hefter, Ulrich; Köhler, Bernd; Wolf, Paul; Biesenbach, Jens


    High power Yb doped fiber laser sources are beside CO2- and disk lasers one of the working horses of industrial laser applications. Due to their inherently given robustness, scalability and high efficiency, fiber laser sources are best suited to fulfill the requirements of modern industrial laser applications in terms of power and beam quality. Pumping Yb doped single-mode fiber lasers at 976nm is very efficient. Thus, high power levels can be realized avoiding limiting nonlinear effects like SRS. However the absorption band of Yb doped glass around 976nm is very narrow. Therefore, one has to consider the wavelength shift of the diode lasers used for pumping. The output spectrum of passively cooled diode lasers is mainly defined by the applied current and by the heat sink temperature. Furthermore the overall emission line width of a high power pump source is dominated by the large number of needed diode laser emitters, each producing an individual spectrum. Even though it is possible to operate multi-kW cw single-mode fiber lasers with free running diode laser pumps, wavelength stabilizing techniques for diode lasers (e.g. volume holographic gratings, VHG) can be utilized in future fiber laser sources to increase the output power level while keeping the energy consumption constant. To clarify the benefits of wavelength stabilized diode lasers with integrated VHG for wavelength locking the performance of a dual side pumped fiber oscillator is discussed in this article. For comparison, different pumping configurations consisting of stabilized and free-running diode lasers are presented.

  3. High power 938 nanometer fiber laser and amplifier (United States)

    Dawson, Jay W [Livermore, CA; Liao, Zhi Ming [Pleasanton, CA; Beach, Raymond J [Livermore, CA; Drobshoff, Alexander D [Livermore, CA; Payne, Stephen A [Castro Valley, CA; Pennington, Deanna M [Livermore, CA; Hackenberg, Wolfgang [Munich, DE; Calia, Domenico Bonaccini [Garching, DE; Taylor, Luke [Montauban de Bretagne, FR


    An optical fiber amplifier includes a length of silica optical fiber having a core doped with neodymium, a first cladding and a second cladding each with succeeding lower refractive indices, where the first cladding diameter is less than 10 times the diameter of the core. The doping concentration of the neodymium is chosen so that the small signal absorption for 816 nm light traveling within the core is less than 15 dB/m above the other fiber losses. The amplifier is optically pumped with one laser into the fiber core and with another laser into the first cladding.

  4. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.


    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A "fiber muzzle brake" was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-outer-diameter, 360-μm-inner-diameter tube with a 275-μm-diameter through hole located 250 μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40±4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25±4 s (n=10) without visible distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers, respectively. The muzzle brake fiber tip simultaneously provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  5. Investigations on fibers for high-peak power pulsed Nd:YAG-lasers for laser detonator (United States)

    Gao, Yang; Zhao, Xing-hai; Su, Wei; Cheng, Yong-sheng; Xu, Mei-jian; Duan, Wen-tao; Yu, Hai-wu


    For laser detonator application, high-peak power pulsed Nd:YAG laser is transmitted through all-silica optical fiber. The transmission properties of step-index fibers are investigated, using a high-peak power pulsed Nd: YAG rod laser with beyond 1MW power and Q-switch mode. The fibers are step-index multimode fibers with 400 or 600 μm core diameters, 440 or 660 μm cladding diameters. The power delivery characteristics were studied by theory and experiments. The results show that the fiber core diameter, NA, length and so on affect the transmission efficiency for high power laser. When the laser power is beyond a certain threshold, the SRS and SBS will be serious; the quantity of fiber end-face limits to the raising of laser power passing through fibers; the zero-probability damage threshold is calculated according to ISO/DIS standard 11254-1.2, which is 58.6J/cm2. Energy distribution of output beam from fibers will be uniform. Even the fiber end-face was partly damaged, laser power is still deliverable, and the transmission efficiency is related to the fiber damage grade.

  6. The development of novel Ytterbium fiber lasers and their applications (United States)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  7. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Ld-Clad-Pumped All-Fiber Tm3+-Doped Silica Fiber Laser (United States)

    Zhang, Yun-Jun; Song, Shi-Fei; Tian, Yi; Wang, Yue-Zhu


    The CW 39.4 W all-fiber LD-clad-pumped Tm3+-doped fiber laser output is reported with a slope efficiency of 34% in respect to the pump power. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm-doped fiber. The reflective FBG and Tm-doped fiber end fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high power output, whereas the total spectrum width is less than 2nm at nearly 1.94 μm.

  8. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers. (United States)

    Wan, Peng; Yang, Lih-Mei; Liu, Jian


    Two all fiber-based laser systems are demonstrated to achieve high energy and high average power femtosecond pulsed outputs at wavelength of 1 µm. In the high energy laser system, a pulse energy of 1.05 mJ (0.85 mJ after pulse compressor) at 100 kHz repetition rate has been realized by a Yb-doped ultra large-core single-mode photonic crystal fiber (PCF) rod amplifier, seeded with a 50 µJ fiber laser. The pulse duration is 705 fs. In the high average power experiment, a large mode area (LMA) fiber has been used in the final stage amplifier, seeded with a 50 W mode locked fiber laser. The system is running at a repetition rate of 69 MHz producing 1052 W of average power before compressor. After pulse compression, a pulse duration of 800 fs was measured.

  9. High-Power Fiber Lasers Using Photonic Band Gap Materials (United States)

    DiDomenico, Leo; Dowling, Jonathan


    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  10. Humidity sensor based on intracavity sensing of fiber ring laser (United States)

    Shi, Jia; Xu, Wei; Xu, Degang; Wang, Yuye; Zhang, Chao; Yan, Chao; Yan, Dexian; He, Yixin; Tang, Longhuang; Zhang, Weihong; Yao, Jianquan


    A humidity sensor based on the intracavity sensing of a fiber ring laser is proposed and experimentally demonstrated. In the fiber ring laser, a humidity-sensitive fiber-optic multimode interferometer (MMI), fabricated by the single-mode-no-core-single-mode (SNCS) fiber coated with Agarose, works as the wavelength-selective filter for intracavity wavelength-modulated humidity sensing. The experiment shows that the lasing wavelength of the fiber laser has a good linear response to ambient humidity from 35%RH to 95%RH. The humidity sensitivity of -68 pm/%RH is obtained with a narrow 3 dB bandwidth less than 0.09 nm and a high signal-to-noise ratio (SNR)  ∼60 dB. The time response of the sensor has been measured to be as fast as 93 ms. The proposed sensor possesses a good stability and low temperature cross-sensitivity.

  11. Application of fiber laser for a Higgs factory

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.


    This paper proposes a medium size(~6km) circular Higgs factory based on a photon collider. The recent breakthrough in fiber laser technology by means of a coherent amplifier network makes such a collider feasible and probably also affordable.

  12. Tunable Single Frequency 1.55 Micron Fiber Laser Project (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  13. Surface Modification of Carbon Fiber Polymer Composites after Laser Structuring (United States)

    Sabau, Adrian S.; Chen, Jian; Jones, Jonaaron F.; Hackett, Alexandra; Jellison, Gerald D.; Daniel, Claus; Warren, David; Rehkopf, Jackie D.

    The increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin on the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg — T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90° plaques. The effect of laser fluence, scanning speed, and wavelength was investigated on the removal rate of the resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on surface morphology.

  14. 1.26 Single Frequency Fiber Laser Project (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

  15. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.


    is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different......This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape...... of the focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of the rotating rod from 0° to 360° in relation to the fiber, the full profile of the laser beam...

  16. Multi-function Fiber Laser Kinetic Aviation Hazard Sensor Project (United States)

    National Aeronautics and Space Administration — Fibertek proposes a multi-function, high energy, eye-safe 1550 nm band pulsed fiber-laser lidar system for airborne sensing of various kinetic aviation hazards. The...

  17. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi


    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  18. Simplified method for numerical modeling of fiber lasers. (United States)

    Shtyrina, O V; Yarutkina, I A; Fedoruk, M P


    A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.

  19. Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies

    Directory of Open Access Journals (Sweden)

    Zhiping Cai


    Full Text Available Fiber-optic sensors, especially fiber Bragg grating (FBG sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper.

  20. Recent advances in microstructured fibers for laser delivery and generation


    Hayes, J. R.; M. N. Petrovich; Poletti, F.; Horak, P.; Broderick, N.G.R.; Feng, Xian; Dasgupta, S; Loh, Wei H.; Ghosh, Debashri; Pal, Mrinmay; Bhadra, Shyamal K.; Chen, K K; Price, J.H.V.; Alam, S U; Richardson, D.J.


    We report recent advances in the development of fibers for the delivery and generation of both single-mode and heavily multimode laser beams as well as recent progress in fibers for supercontinuum generation in spectral regimes spanning the visible to mid-IR.

  1. Recent advances in microstructured fibers for laser delivery and generation (United States)

    Hayes, J. R.; Petrovich, M. N.; Poletti, F.; Horak, P.; Broderick, N. G. R.; Feng, Xian; Dasgupta, S. X.; Loh, Wei; Ghosh, Debashri; Pal, Mrinmay; Bhadra, Shyamal K.; Chen, K. K.; Price, J. H. V.; Alam, S. U.; Richardson, D. J.


    We report recent advances in the development of fibers for the delivery and generation of both single-mode and heavily multimode laser beams as well as recent progress in fibers for supercontinuum generation in spectral regimes spanning the visible to mid-IR.

  2. High precision optical fiber alignment using tube laser bending

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Herder, Justus Laurens


    In this paper, we present a method to align optical fibers within 0.2 μm of the optimal position, using tube laser bending and in situ measuring of the coupling efficiency. For near-UV wavelengths, passive alignment of the fibers with respect to the waveguides on photonic integrated circuit chips

  3. Preface to the Special Issue on short pulse fiber lasers (United States)

    Delavaux, Jean-Marc P.; Grelu, Philippe; Pu, Wang; Ilday, Fatih Ömer


    In the last two decades the fiber laser has evolved from a laboratory curiosity to a viable tool in an increasing number of applications in such diverse areas as material processing, atmospheric monitoring, high energy physics, medicine, telecommunications, and defense. The reasons for the growing acceptance of fiber lasers lie in the combination of their many attractive features. Indeed, fiber lasers are together power efficient, compact, light weight, versatile and reliable. Initially, the development of fiber laser technology was led to challenge the dominance of well entrenched solid state lasers used in the lucrative manufacturing industry. Traditionally, the emission wavelength band of interest was mostly limited to the near infrared (NIR) region (i.e. from 1 to 1.6 μm). More recently, extensive fiber laser R&D advances have extended the laser applications to a broader spectrum, from the ultra violet (UV) to the mid-infrared (Mid-IR) wavelength region, and investigated the specific advantages associated with different pulse widths, from ns to fs, and different operating regimes.

  4. High-temperature diode laser pumps for directed energy fiber lasers (Conference Presentation) (United States)

    Kanskar, Manoj; Bao, Ling; Chen, Zhigang; DeVito, Mark; Dong, Weimin; Grimshaw, Mike P.; Guan, Xinguo; Hemenway, David M.; Martinsen, Robert; Zhang, Jim; Zhang, Shiguo


    Kilowatt-class fiber lasers and amplifiers are becoming increasingly important building blocks for power-scaling laser systems in various different architectures for directed energy applications. Currently, state-of-the-art Yb-doped fiber lasers operating near 1060 nm operate with optical-to-optical power-conversion efficiency of about 66%. State-of-the-art fiber-coupled pump diodes near 975 nm operate with about 50% electrical-to-fiber-coupled optical power conversion efficiency at 25C heatsink temperature. Therefore, the total system electrical-to-optical power conversion efficiency is about 33%. As a result, a 50-kW fiber laser will generate 75 kW of heat at the pump module and 25 kW at the fiber laser module with a total waste heat of 100 kW. It is evident that three times as much waste heat is generated at the pump module. While improving the efficiency of the diodes primarily reduces the input power requirement, increasing the operating temperature primarily reduces the size and weight for thermal management systems. We will discuss improvement in diode laser design, thermal resistance of the package as well as improvement in fiber-coupled optical-to-optical efficiency to achieve high efficiency at higher operating temperature. All of these factors have a far-reaching implication in terms of significantly improving the overall SWAP requirements thus enabling DEW-class fiber lasers on airborne and other platforms.

  5. Tunable Single Frequency 2.05 Micron Fiber Laser Using New Ho-Doped Fiber Project (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser near 2.05 micron by developing an innovative...

  6. Tunable Single Frequency 2.054 Micron Fiber Laser Using New Ho-Doped Fiber Project (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a near 2 micron widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative...

  7. A multi-wavelength fiber laser based on superimposed fiber grating and chirp fiber Bragg grating for wavelength selection (United States)

    Wang, Feng; Bi, Wei-hong; Fu, Xing-hu; Jiang, Peng; Wu, Yang


    In this paper, a new type of multi-wavelength fiber laser is proposed and demonstrated experimentally. Superimposed fiber grating (SIFG) and chirp fiber Bragg grating (CFBG) are used for wavelength selection. Based on gain equalization technology, by finely adjusting the stress device in the cavity, the gain and loss are equal, so as to suppress the modal competition and achieve multi-wavelength lasing at room temperature. The experimental results show that the laser can output stable multi-wavelength lasers simultaneously. The laser coupling loss is small, the structure is simple, and it is convenient for integration, so it can be widely used in dense wavelength division multiplexing (DWDM) system and optical fiber sensors.

  8. Rotational multiphoton endoscopy with a 1 microm fiber laser system. (United States)

    Liu, Gangjun; Xie, Tuqiang; Tomov, Ivan V; Su, Jianping; Yu, Lingfeng; Zhang, Jun; Tromberg, Bruce J; Chen, Zhongping


    We present multiphoton microendoscopy with a rotational probe and a 1 microm fiber-based femtosecond laser. The rotational probe is based on a double-clad photonic crystal fiber, a gradient index lens, a microprism, and a rotational microelectronicmechanical system (MEMS) motor. The MEMS motor has a diameter of 2.2 mm and can provide 360 degrees full-view rotation. The fiber laser provides ultrashort pulses with a central wavelength at 1.034 microm and a repetition rate of 50 MHz. Second-harmonic-generation images of rat-tail tendon and fish scale are demonstrated with the rotational probe-based multiphoton system.

  9. Spatiotemporal mode-locking in multimode fiber lasers (United States)

    Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.


    A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made toward controlling the interactions of longitudinal modes in lasers with a single transverse mode. For example, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of longitudinal and transverse modes in a laser has received little attention. We show that modal and chromatic dispersions in fiber lasers can be counteracted by strong spatial and spectral filtering. This allows locking of multiple transverse and longitudinal modes to create ultrashort pulses with a variety of spatiotemporal profiles. Multimode fiber lasers thus open new directions in studies of nonlinear wave propagation and capabilities for applications.

  10. Twisted light

    CSIR Research Space (South Africa)

    Forbes, A


    Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...

  11. Mode-locked fiber laser based on chalcogenide microwires. (United States)

    Al-Kadry, Alaa; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin


    We report the first mode-locked fiber laser using a chalcogenide microwire as the nonlinear medium. The laser is passively mode-locked with nonlinear polarization rotation and can be adjusted for the emission of solitons or noise-like pulses. The use of the microwire leads to a mode-locking threshold at the microwatt level and shortens the cavity length by 4 orders of magnitude with respect to other lasers of its kind. The controlled birefringence of the microwire, combined with a linear polarizer in the cavity, enables multiwavelength laser operation with tunable central wavelength, switchable wavelength separation, and a variable number of laser wavelengths.

  12. Chaotic dynamics in erbium-doped fiber ring lasers (United States)

    Abarbanel, Henry D. I.; Kennel, Matthew B.; Buhl, Michael; Tureman Lewis, Clifford


    Chaotically oscillating rare-earth-doped fiber ring lasers (DFRLs) may provide an attractive way to exploit the broad bandwidth available in an optical communications system. Recent theoretical and experimental investigations have successfully shown techniques to modulate information onto the wide-band chaotic oscillations, transmit that signal along an optical fiber, and demodulate the information at the receiver. We develop a theoretical model of a DFRL and discuss an efficient numerical simulation which includes intrinsic linear and nonlinear induced birefringence, both transverse polarizations, group velocity dispersion, and a finite gain bandwidth. We analyze first a configuration with a single loop of optical fiber containing the doped fiber amplifier, and then, as suggested by Roy and VanWiggeren, we investigate a system with two rings of optical fiber-one made of passive fiber alone. The typical round-trip time for the passive optical ring connecting the erbium-doped amplifier to itself is 200 ns, so ~105 round-trips are required to see the slow effects of the population inversion dynamics in this laser system. Over this large number of round-trips, physical effects like GVD and the Kerr nonlinearity, which may appear small at our frequencies and laser powers via conventional estimates, may accumulate and dominate the dynamics. We demonstrate from our model that chaotic oscillations of the ring laser with parameters relevant to erbium-doped fibers arises from the nonlinear Kerr effect and not from interplay between the atomic population inversion and radiation dynamics.

  13. Coherent fiber supercontinuum laser for nonlinear biomedical imaging

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin


    Nonlinear biomedical imaging has not benefited from the well-known techniques of fiber supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, low spectral power intensity, and inadequate portability. Fortunately, a few techniques involving...... nonlinear fiber optics and femtosecond fiber laser development have emerged to overcome these critical limitations. These techniques pave the way for conducting point-of-care nonlinear biomedical imaging by a low-maintenance cost-effective coherent fiber supercontinuum laser, which covers a broad emission...... wavelength of 350-1700 nm. A prototype of this laser has been demonstrated in label-free multimodal nonlinear imaging of cell and tissue samples.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  14. Space-propagation model of Tm-doped fiber laser. (United States)

    Lü, Haibin; Zhou, Pu; Wang, Xiaolin; Jiang, Zongfu


    In this paper, we propose the space-propagation model for the Tm-doped fiber laser. This model builds the space-propagation equations for the population densities at different energy levels as well as the pump and laser powers. Compared to the conventional models, this model has significant advantage in reducing the computing time significantly when the steady-state population density rate equations cannot be solved analytically. On the basis of the model, the power characteristic and optimization for the Tm-doped fiber laser are investigated. Excellent agreements are achieved between the numerical simulation and experimental results.

  15. Laser fiber migration into the pelvic cavity: A rare complication of endovenous laser ablation. (United States)

    Lun, Yu; Shen, Shikai; Wu, Xiaoyu; Jiang, Han; Xin, Shijie; Zhang, Jian


    Endovenous laser ablation is an established alternative to surgery with stripping for the treatment of varicose veins. Ecchymoses and pain are frequently reported side effects of endovenous laser ablation. Device-related complications are rare but serious. We describe here an exceptional complication, necessitating an additional surgical procedure to remove a segment of laser fiber that had migrated into the pelvic cavity. Fortunately, severe damage had not occurred. This case highlights the importance of checking the completeness of the guidewire, catheter, and laser fiber after endovenous laser ablation. © The Author(s) 2014.

  16. Efficient Ho:YLF laser pumped by a Tm:fiber laser

    CSIR Research Space (South Africa)

    Koen, W


    Full Text Available A thulium fiber laser pumped Ho:YLF laser delivering 45.1 W in a near diffraction limited beam when pumped with 84.7 W is demonstrated. The optical-to-optical efficiency of 53 % compares favorably with similar Ho:YAG lasers....

  17. Electrospun Polymer Fiber Lasers for Applications in Vapor Sensing

    DEFF Research Database (Denmark)

    Krämmer, Sarah; Laye, Fabrice; Friedrich, Felix


    A sensing approach based on laser emissionfrom polymer fiber networks is presented. Poly(methyl methacrylate) (PMMA) fibers doped with a laser dye are fabricated by electrospinning. They form random loop resonators, which show laser emission upon optical pumping. The shift of the spectral positio...... in the transient shift of the lasing peaks can be used to discriminate ethanol and methanol vapor in mixtures of them. The sensing mechanism is expected to be applicable to other solvent vapors that cause polymer swelling.......A sensing approach based on laser emissionfrom polymer fiber networks is presented. Poly(methyl methacrylate) (PMMA) fibers doped with a laser dye are fabricated by electrospinning. They form random loop resonators, which show laser emission upon optical pumping. The shift of the spectral position...... feature excellent sensing performance due to the large overlap (more than 80%) of light field and transducer. The shift of the laser modes results from the swelling of the polymer when exposed to solvent vapors. Due to distinctly different diffusion coefficients in polymers, the uptake dynamics reflected...

  18. Nearly-octave wavelength tuning of a continuous wave fiber laser (United States)

    Zhang, Lei; Jiang, Huawei; Yang, Xuezong; Pan, Weiwei; Cui, Shuzhen; Feng, Yan


    The wavelength tunability of conventional fiber lasers are limited by the bandwidth of gain spectrum and the tunability of feedback mechanism. Here a fiber laser which is continuously tunable from 1 to 1.9 μm is reported. It is a random distributed feedback Raman fiber laser, pumped by a tunable Yb doped fiber laser. The ultra-wide wavelength tunability is enabled by the unique property of random distributed feedback Raman fiber laser that both stimulated Raman scattering gain and Rayleigh scattering feedback are available at any wavelength. The dispersion property of the gain fiber is used to control the spectral purity of the laser output.

  19. Silica Optical Fibers Doped with Nanoparticles for Fiber Lasers and Broadband Sources

    Czech Academy of Sciences Publication Activity Database

    Kašík, Ivan; Peterka, Pavel; Mrázek, Jan; Honzátko, Pavel


    Roč. 12, č. 3 (2016), s. 277-290 ISSN 1573-4137 R&D Projects: GA ČR GP13-37368P; GA ČR GA14-35256S Institutional support: RVO:67985882 Keywords : Fiber laser * Ceramics * Nanocrystal Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.062, year: 2016

  20. Advanced Optical Fibers for High power Fiber lasers (United States)


    unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. propagation of a higher-order mode in a...demonstrated high efficiency and excellent mode quality (see Figure 27(b) and (c)). The fiber also demonstrated robust single- mode behavior near the short...core chirally coupled core optical fibers,” PhotonicsWest, paper 8237-59, 2012. [45] T. A. Birks, G. J. Pearce, D. M. Bird , “Approximate band structure

  1. All-fiber passively mode-locked laser based on a chiral fiber grating. (United States)

    Du, Yueqing; Shu, Xuewen; Xu, Zuowei


    A novel passively mode-locked all-fiber laser using a chiral fiber grating as a polarization-selective element is demonstrated for the first time, to the best of our knowledge. The chiral fiber grating serves as a key component to form an artificial saturable absorber to realize mode locking through nonlinear polarization rotation in the cavity. The laser generates stable short pulses with energy of 0.34 nJ, a fundamental repetition rate of 3.27 MHz, and an FWHM bandwidth of 28 nm. We also show that harmonic mode-locked pulse trains of different orders can be obtained by increasing the pump power.

  2. Medical Applications Of CO2 Laser Fiber Optics (United States)

    McCord, R. C.


    In 1978, Hughes Laboratories reported development of fiber optics that were capable of transmitting CO2 laser energy. These fibers are now being tested for medical applications. Wide ranging medical investigation with CO2 lasers has occurred during the twelve years since the first observations of laser hemostasis. Specialists in ophthalmology, neurosurgery, urology, gynecology, otolaryngology, maxillo-facial/plastic surgery, dermatology, and oncology among others, have explored its use. In principle, all these specialists use CO2 laser radiation at 10.6 microns to thermally destroy diseased tissues. As such, CO2 lasers compare and compete with electrosurgical devices. The fundamental difference between these modalities lies in how they generate heat in treated tissue.

  3. Precision laser processing for micro electronics and fiber optic manufacturing (United States)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.


    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  4. Fiber laser master oscillators for optical synchronization systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A.


    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  5. Innovative fiber systems for laser medicine and technology (United States)

    Artiouchenko, Viatcheslav G.; Wojciechowski, Cezar


    Development of Polycrystalline Infrared (PIR-) fibers extruded from solid solutions of AgCl/AgBr has opened a new horizon of molecular spectroscopy applications in 4 - 18 micron range of spectra. PIR-fiber cables and probes could be coupled with a variety of Fourier Transform Infrared (FTIR) spectrometer and Tunable Diode Lasers (TDL), including pig tailing of Mercury Cadmium Tellurium (MCT) detectors. Using these techniques no sample preparation is necessary for PIR-fiber probes to measure reflection and absorption spectra, in situ, in vivo, in real time and even multiplexed. Such PIR-fiber probes have been used for evanescent absorption spectroscopy of malignant tissue and skin surface diagnostics in-vivo, glucose detection in blood as well as crude oil composition analysis, for organic pollution and nuclear waste monitoring. A review of various PIR-fiber applications in medicine, industry and environment control is presented. The synergy of PIR-fibers flexibility with a super high spectral resolution of TDL spectrometers with Δν=10-4cm-1, provides the unique tool for gas analysis, specifically when PIR-fibers are coupled as pigtails with MCT-detectors and Pb-salt lasers. Design of multichannel PIR-fiber tailed TDL spectrometer could be used as a portable device for multispectral gas analysis at 1 ppb level of detectivity for various applications in medicine and biotechnology.

  6. Numerical simulation of a DFB - fiber laser sensor (part 1

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper presents the preliminary results obtained in developing a numerical simulationanalysis of fiber optic bending sensitivity aiming to improve the design of fiber lasers. The developednumerical simulation method relies on an analysis of both the fundamental mode propagation alongan optical fiber and of how bending of this fiber influence the optical radiation losses. The cases ofsimple, undoped and of doped with Er3+ ions optical fibers are considered. The presented results arebased on numerical simulation of eigen-modes of a laser intensity distribution by the use of finiteelement method (FEM developed in the frame of COMSOL software package. The numericalsimulations are performed by considering the cases of both normal, non-deformed optic fiber and ofsymmetrically deformed optic fiber resembling micro-bending of it. Both types of fiber optic bendinglosses are analyzed, namely: the transition loss, associated with the abrupt or rapid change incurvature at the beginning and the end of a bend, and pure bend loss is associated with the loss fromthe bend of constant curvature in between.

  7. Optical bistability via an external control laser in an erbium-doped-fiber laser (United States)

    Ge, Qiang; Li, Shili; Wang, Zhiping; Zhen, Shenglai; Martín, Juan Carlos; Yu, Benli


    We demonstrate a new scheme for realizing the Optical Bistability (OB) in an erbium-doped-fiber laser with an external control laser. It is found that the OB can be significantly modified by changing the power and the wavelength of the control laser. We give an explanation of the bistability phenomenon based on numerical simulations, which are agreed very well with our experimental results. Our scheme provides a guideline for optimizing and controlling the OB in an erbium-doped-fiber laser, which might be useful for optical communications.

  8. All-optical, Three-axis Fiber Laser Magnetometer (United States)


    force acting on a current carrying bridge in the presence of a magnetic field, which drives its oscillation measured with a fiber laser strain sensor... strain between two cores as a function of rotation for difference inclinations and (b) reported inclination vs. actual inclination for a bend angle of...such as those based on SQUIDS, giant magnetoresistance (GMR), scalar resonance magnetometers, and flux-gates; however, a fiber optic sensor enables

  9. Parabolic similariton Yb-fiber laser with triangular pulse evolution (United States)

    Wang, Sijia; Wang, Lei


    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  10. Nanographene-Based Saturable Absorbers for Ultrafast Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Kuo


    Full Text Available The generation of femtosecond pulse laser in the erbium-doped fiber laser system is presented by integrating of the nanographene-based saturable absorbers (SAs. A simplified method of dispersed nanographene-based SAs side-polished fiber device with controllable polished length and depth was also developed. The dependence of geometry of a graphene-deposited side-polished fiber device on optical nonlinear characteristics and on the performance of the MLFL was screened. We found that the 10 mm polished length with 1.68 dB insertion loss had the highest modulation depth (MD of 1.2%. A stable MLFL with graphene-based SAs employing the optimized side-polished fiber device showed a pulse width, a 3 dB bandwidth, a time-bandwidth product (TBP, a repetition rate, and pulse energy of 523 fs, 5.4 nm, 0.347, 16.7 MHz, and 0.18 nJ, respectively, at fundamental soliton-like operation. The femtosecond pulse laser is achieved by evanescent field coupling through graphene-deposited side-polished fiber devices in the laser cavity. This study demonstrates that the polished depth is the key fabrication geometric parameter affecting the overall optical performance and better results exist within the certain polished range.

  11. Topology optimization of free vibrations of fiber laser packages

    DEFF Research Database (Denmark)

    Hansen, Lars Voxen


    The optimization problems described in the present paper are inspired by the problem of fiber laser package design for vibrating environments. The optical frequency of tuned fiber lasers glued to stiff packages is sensitive to acoustic or other mechanical vibrations. The paper presents a method...... for reducing this sensitivity by limiting the glue point movement on the package while using only a limited knowledge of vibrating external forces. By use of topology optimization a density distribution for the package is obtained, where the critical eigenmode of the package only effects a small elongation...

  12. Picosecond passively mode-locked mid-infrared fiber laser (United States)

    Wei, C.; Zhu, X.; Norwood, R. A.; Kieu, K.; Peyghambarian, N.


    Mode-locked mid-infrared (mid-IR) fiber lasers are of increasing interest due to their many potential applications in spectroscopic sensors, infrared countermeasures, laser surgery, and high-efficiency pump sources for nonlinear wavelength convertors. Er3+-doped ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fiber lasers, which can emit mid-IR light at 2.65-2.9 μm through the transition from the upper energy level 4I11/2 to the lower laser level 4I13/2, have attracted much attention because of their broad emission range, high optical efficiency, and the ready availability of diode pump lasers at the two absorption peaks of Er3+ ions (975 nm and 976 nm). In recent years, significant progress on high power Er3+- doped ZBLAN fiber lasers has been achieved and over 20 watt cw output at 2.8 μm has been demonstrated; however, there has been little progress on ultrafast mid-IR ZBLAN fiber lasers to date. We report a passively mode-locked Er3+- doped ZBLAN fiber laser in which a Fe2+:ZnSe crystal was used as the intracavity saturable absorber. Fe2+:ZnSe is an ideal material for mid-IR laser pulse generation because of its large saturable absorption cross-section and small saturation energy along with the excellent opto-mechanical (damage threshold ~2 J/cm2) and physical characteristics of the crystalline ZnSe host. A 1.6 m double-clad 8 mol% Er3+-doped ZBLAN fiber was used in our experiment. The fiber core has a diameter of 15 μm and a numerical aperture (NA) of 0.1. The inner circular cladding has a diameter of 125 μm and an NA of 0.5. Both continuous-wave and Q-switched mode-locking pulses at 2.8 μm were obtained. Continuous-wave mode locking operation with a pulse duration of 19 ps and an average power of 51 mW were achieved when a collimated beam traversed the Fe2+:ZnSe crystal. When the cavity was modified to provide a focused beam at the Fe2+:ZnSe crystal, Q-switched mode-locked operation with a pulse duration of 60 ps and an average power of 4.6 mW was achieved. More powerful

  13. Fiber laser beam combining and power scaling progress: Air Force Research Laboratory Laser Division (United States)

    Wagner, T. J.


    Numerous achievements have been made recently by researchers in the areas of fiber laser beam combining and power scaling. Industry has demonstrated multi-kW power from a single fiber amplifier, and a US national laboratory has coherently combined eight fiber amplifiers totaling 4 kW. This paper will survey the recent literature and then focus on fiber laser results from the Laser Division, Directed Energy Directorate of the Air Force Research Laboratory (AFRL). Progress has been made in the power scaling of narrow-linewidth fiber amplifiers, and we are transitioning lessons learned from PCF power scaling into monolithic architectures. SBS suppression has been achieved using a variety of techniques to lower the Brillioun gain, including acoustically tailored fiber, laser gain competition resulting from multitone seeding and inducing a longitudinal thermal gradient. We recently demonstrated a 32-channel coherent beam combination result using AFRL's phaselocking technique and are focused on exploring the limitations of this technique including linewidth broadening, kW-induced phase nonlinearities and auto-tuning methods for large channel counts. Additionally, we have recently refurbished our High Energy Laser Joint Technology Office-sponsored 16-amplifier fiber testbed to meet strict PER, spatial drift, power stability and beam quality requirements.

  14. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones (United States)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.


    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  15. Laser Processing of Carbon Fiber Reinforced Plastics - Release of Carbon Fiber Segments During Short-pulsed Laser Processing of CFRP (United States)

    Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.

  16. Compact 84 GHz passive mode-locked fiber laser using dual-fiber coupled fused-quartz microresonator (United States)

    Liu, Tze-An; Hsu, Yung; Chow, Chi-Wai; Chuang, Yi-Chen; Ting, Wei-Jo; Wang, Bo-Chun; Peng, Jin-Long; Chen, Guan-Hong; Chang, Yuan-Chia


    We propose and demonstrate a compact and portable-size 84-GHz passive mode-locked fiber laser, in which a dual-fiber coupled fused-quartz microresonator is employed as the intracavity optical comb filter as well as the optical nonlinear material for optical frequency comb generation. About eight coherent optical tones can be generated in the proposed fiber laser. The 20-dB bandwidth is larger than 588 GHz. The full-width half-maximum pulse-width of the proposed laser is 2.5 ps. We also demonstrate the feasibility of using the proposed passive mode-locked fiber laser to carry a 5-Gbit/s on-off-keying signal and transmit over 20-km standard single mode fiber. A 7% forward error correction requirement can be achieved, showing the proposed fiber laser can be a potential candidate for fiber-wireless applications.

  17. Er/Tm:fiber laser system for coherent Raman microscopy. (United States)

    Coluccelli, Nicola; Kumar, Vikas; Cassinerio, Marco; Galzerano, Gianluca; Marangoni, Marco; Cerullo, Giulio


    We present a novel architecture for a fiber-based hybrid laser system for coherent Raman microscopy, combining an amplified Er:fiber femtosecond oscillator with a Tm:fiber amplifier boosting the power of the 2-μm portion of a supercontinuum up to 300 mW. This is enough to obtain, by means of nonlinear spectral compression, sub-20-cm(-1) wide pump and Stokes pulses with 2500-3300  cm(-1) frequency detuning and average power at the 100-mW level. Application of this system to stimulated Raman scattering microscopy is discussed.

  18. Electrochemical Micromachining with Fiber Laser Masking for 304 Stainless Steel (United States)

    Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han


    In order to fabricate micro structure, the combined machining of electrochemical micro machining (EMM) and laser masking for 304 stainless steel was studied. A device of composite machining of EMM with laser masking was developed, and the experiments of EMM with laser masking were carried out. First, by marking pattern with fiber laser on the surface of 304 stainless steel, the special masking layer can be formed. Through X ray photoelectron spectroscopy (XPS), the corrosion resistance of laser masking layer was analyzed. It is proved by XPS that the iron oxide and chromium oxide on the surface of stainless steel generates due to air oxidation when laser scanning heats. Second, the localization and precision of EMM are improved, since the marking patterns forming on the surface of stainless steel by laser masking play a protective role in the process of subsequent EMM when the appropriate parameters of EMM are selected. At last, the shape and the roughness of the machined samples were measured by SEM and optical profilometer and analyzed. The results show that the rapid fabrication of micro structures on the 304 stainless steel surface can be achieved by EMM with fiber laser masking, which has a good prospect in the field of micro machining.

  19. Advanced experiments with an erbium-doped fiber laser (United States)

    Marques, Paulo V. S.; Marques, Manuel B.; Rosa, Carla C.


    This communication describes an optical hands-on fiber laser experiment aimed at advanced college courses. Optical amplifiers and laser sources represent very important optical devices in numerous applications ranging from telecommunications to medicine. The study of advanced photonics experiments is particularly relevant at undergraduate and master level. This paper discusses the implementation of an optical fiber laser made with a cavity built with two tunable Bragg gratings. This scheme allows the students to understand the laser working principles as a function of the laser cavity set-up. One or both of the gratings can be finely tuned in wavelength through applied stress; therefore, the degree of spectral mismatch of the two gratings can be adjusted, effectively changing the cavity feedback. The impact of the cavity conditions on the laser threshold, spectrum and efficiency is analyzed. This experiment assumes that in a previous practice, the students should had already characterized the erbium doped fiber in terms of absorption and fluorescent spectra, and the spectral gain as a function of pump power.

  20. Experimental investigation on fiber laser cutting of aluminium thin sheets (United States)

    Scintilla, Leonardo Daniele


    The most extensively used lasers for aluminum and its alloys cutting, are CO2 and Nd:YAG operating in continuous wave and pulsed mode. High power solid state fiber lasers operating in continuous wave mode offer a great potential in improving the cut quality and productivity of highly reflective materials cutting process due to the better absorptivity of 1 μm laser radiation. The high processing speeds of CW mode and a good cut quality could be achieved at the same time. In this work, cutting experiments were performed on Al1050 1mm thick sheets using a fiber laser and Nitrogen as assist gas. A DOE approach that consists of fitting the regression models by means of response surface method (RSM) was adopted. The effects of cutting speed, focal position and assist gas pressure on dross height, kerf width and roughness parameters were investigated. Results showed that processing in CW with fiber laser increases the cutting speed and gives a cut quality comparable with results obtained with CO2 and Nd:YAG lasers and reported in literature.

  1. Fiber-distributed feedback lasers for high-speed wavelength-division multiplexed networks

    DEFF Research Database (Denmark)

    Sejka, Milan; Hübner, Jörg; Varming, Poul


    Summary form only given. In conclusion, we have demonstrated that fiber DFB lasers constitute an excellent alternative to commercially available semiconductor DFB lasers. We have also shown that two fiber DFB lasers can be spliced together without any BER power penalty. Therefore, we suggest the ...... the possibility of using a single pump source for pumping a WDM laser array consisting of a number of fiber lasers spliced in series....

  2. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers. (United States)

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John


    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of laser diode with minimal heating of the fiber coating and packaging adhesives.

  3. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding (United States)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya


    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  4. Ultrafast Optics: Vector Cavity Fiber Lasers - Physics and Technology (United States)


    AFRL-AFOSR-JP-TR-2016-0065 Ultrafast Optics - Vector Cavity Lasers: Physics and Technology Dingyuan Tang NANYANG TECHNOLOGICAL UNIVERSITY Final...REPORT TYPE      Final 3.  DATES COVERED (From - To)      28 Mar 2013 to 27 Mar 2016 4.  TITLE AND SUBTITLE Ultrafast Optics - Vector Cavity Lasers...Nonlinear Optical Materials, Vector Cavity Fiber Laser 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF       ABSTRACT SAR 18.  NUMBER        OF

  5. Development of pulse laser processing for mounting fiber Bragg grating (United States)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi


    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  6. Pulsed Raman fiber laser and multispectral imaging in three dimensions

    DEFF Research Database (Denmark)

    Andersen, Joachim F.; Busck, Jens; Heiselberg, Henning


    are then constructed with submillimeter accuracy for all visible colors. The generation of a series of Stokes peaks by Raman scattering in a Si fiber is discussed in detail and the laser radar technique is demonstrated. The data recording takes only a few seconds, and the high accuracy 3D color imaging works at ranges...

  7. Fiber-Based Ultraviolet Laser System Project (United States)

    National Aeronautics and Space Administration — The purpose of this program is to develop a compact and efficient ultraviolet laser system for use in space-based uv-Raman instruments. The basis for this system...

  8. Compact High Power Fiber Laser Project (United States)

    National Aeronautics and Space Administration — The goal of the proposed work is the development of a portable and efficient pulsed laser system for LIDAR and ranging applications, which make use of the latest...

  9. Laser backlight unit based on a leaky optical fiber (United States)

    Okuda, Yuuto; Onoda, Kousuke; Fujieda, Ichiro


    A backlight unit is constructed by laying out an optical fiber on a two-dimensional plane and letting the light leak out in a controlled manner. In experiment, we formed multiple grooves on the surface of a plastic optical fiber by pressing a heated knife edge. The depth of the groove determined the percentage of the optical power leaking out. The optical fiber with multiple grooves was embedded in an acrylic plate with a spiral trench, and a diffuser sheet was placed over it. When we injected laser light into the end of the optical fiber, this configuration successfully worked as an area illuminator. However, the coherent nature of the laser light caused severe speckle noise. We evaluated the speckle contrast under darkness, and it varied from 80% to 23%, depending on the lens aperture used to capture the images of the illuminator. We glued an ultrasound generator to the optical fiber to introduce phase modulation for the light propagating inside the optical fiber. In this way, the speckle contrast was reduced by a factor of seven to four. Under room lighting, the speckle noise was made barely noticeable by turning on the ultrasound generator.

  10. Distributed feedback imprinted electrospun fiber lasers. (United States)

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario


    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synchronization of chaotic oscillations in doped fiber ring lasers

    CERN Document Server

    Lewis, C T; Kennel, M B; Buhl, M; Illing, L; Lewis, Clifford Tureman; Abarbanel, Henry D I; Kennel, Matthew B; Buhl, Michael; Illing, Lucas


    We investigate synchronization and subsequently communication using chaotic rare-earth-doped fiber ring lasers, represented by a physically realistic model. The lasers are coupled by transmitting a fraction c of the circulating electric field in the transmitter and injecting it into the optical cavity of the receiver. We then analyze a coupling strategy which relies on modulation of the intensity of the light alone. This avoids problems associated with the polarization and phase of the laser light. We study synchronization as a function of the coupling strength and see excellent convergence, even with small coupling constants. We prove that in an open-loop configuration (c=1) synchronization is guaranteed due to the particular structure of our equations and of the injection method we use for these coupled laser systems. We also analyze the generalized synchronization of these model lasers when there is parameter mismatch between the transmitter and the receiver. We then address communicating information betwe...

  12. Monolithic fiber coupler for high power diode laser bars: results of prototype (United States)

    Mitra, T.; Bagschik, K.; Kalkusinki, A.


    A novel micro optical element is introduced, allowing coupling of light from several emitters of a laser diode bar into an optical fiber at high brightness. The monolithic fiber coupler is designed with individual segments for each emitter of the laser diode bar, providing two refractive surfaces for each emitter. By means of the monolithic fiber coupler, very cost effective fiber coupled laser diode modules based on bars are feasible. Consequently, approaches based on laser diodes bars can also compete with single emitter solutions for pumping application. Further applications of laser modules with monolithic fiber couplers may also be for direct material processing or as components in projection and illumination systems.

  13. High-Energy Passive Mode-Locking of Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Edwin Ding


    Full Text Available Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber. The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the experimental settings.

  14. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser. (United States)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin


    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  15. Quartz head contact laser fiber: a novel fiber for laser ablation of the prostate using the 980 nm high power diode laser. (United States)

    Shaker, Hassan S; Shoeb, Mohammed S; Yassin, Mohammed M; Shaker, Sayed H


    High power 980 nm diode laser ablation of the prostate using the side firing fiber has proven its efficiency and safety in treating lower urinary tract symptoms secondary to benign prostatic hyperplasia. Nevertheless, this procedure is associated with some drawbacks such as prolonged irritative symptoms and tissue sloughing. In this study we evaluated the clinical outcome of high power 980 nm diode laser ablation of the prostate using a new quartz head contact fiber, and compared it to the standard side firing fiber in a randomized fashion. A total of 120 patients with benign prostatic hyperplasia scheduled for high power 980 nm diode laser ablation of the prostate were randomized to receive treatment with the standard side firing fiber or the novel quartz head contact fiber between April 2009 and April 2010. Patients were followed for at least 6 months, although 7 were lost to followup. The side firing fiber and quartz head contact fiber groups demonstrated significant improvement in International Prostate Symptom Score (from 20 to 8.39 vs 21.63 to 9.91), International Prostate Symptom Score-quality of life (from 4.47 to 1.94 vs 4.57 to 1.98) and maximum flow rate (from 7.79 to 22.22 vs 8.93 to 29.63 ml per second), and decreased prostate volume (47.79% vs 55.54%) and prostate specific antigen (59.69% to 60.61%), respectively. Complications, postoperative passage of tissue remnants and irritative symptoms were significantly less in the quartz head contact fiber group, as was the number of fibers per case. The quartz head contact fiber can produce similarly good outcomes in ablating the prostate using the high power 980 nm diode laser compared to the side firing fiber, and with fewer complications and side effects. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Thulium fiber laser lithotripsy in an in vitro ureter model (United States)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.


    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ=2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy.

  17. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Nanjing University of Posts and Communications, Nanjing 210003 (China); Popa, D., E-mail:; Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C. [Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Ilday, F. Ö. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey)


    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  18. High Performance Large Mode-Area Ytterbium-doped Photonic Crystal Fiber for Fiber Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wei; Lu Peixiang [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 (China); Li Shiyu; Wang Dongxiang, E-mail: [State Key Laboratory of Optical Communication Technologies and Networks, Fiberhome Telecommunication Technologies Co. Ltd, 430074 (China)


    In this letter, large-mode-area double-cladding ytterbium-doped photonic crystal fiber was designed in theory and fabricated in practice. This fiber we have fabricated successfully has endless single mode operation performance and large inner-cladding numerical aperture of more than 0.75. The struts width between large air-holes in the outer-cladding is about 0.22 {mu}m. The photonic crystal fiber has a mode-area about 1465.7{mu}m{sup 2}. Due to the material being pure silica and air, such structures have excellent capacity to with-stand high temperature. The laser light can have very good beam quality, even diffraction-limited beam quality because of the single-mode core. This fabrication technical breakthrough of novelty high performance double-cladding ytterbium-doped photonic crystal fibers will give contributions to the high power fiber lasers and promote the progress of technology in the fields of high power lasers.

  19. All-fiber femtosecond Cherenkov laser at visible wavelengths

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe Visbech


    -matching condition [1]. The resonant ultrafast wave conversion via the fiber-optic CR mechanism is instrumental for applications in biophotonics such as bio-imaging and microscopy [2]. In this work, we demonstrate a highly-stable all-fiber, fully monolithic CR system based on an Yb-fiber femtosecond laser, producing...... electrically tunable femtosecond CR output in the visible (VIS) spectral range of 580-630 nm, with the 3 dB spectral bandwidth not exceeding 36 nm, with average power in the milliwatt range. Relative intensity noise (RIN) of this laser, affecting the sensitivity of bio-imaging and microscopy systems, is found...... to be as low as -103 dBc/Hz. This is 2 orders of magnitudes lower noise as compared to spectrally-sliced supercontinuum, which is the current standard of ultrafast fiber-optic generation at visible wavelength. The layout of the laser system is shown in Fig. 1(a). The system consists of two parts: an all...

  20. Are we all doing it wrong? Influence of stripping and cleaving methods of laser fibers on laser lithotripsy performance. (United States)

    Kronenberg, Peter; Traxer, Olivier


    We assessed whether stripping and cleaving the laser fiber tip with specialized tools, namely laser fiber strippers, or ceramic or metal scissors, would influence lithotripsy performance. Laser fiber tips were stripped with a specialized laser fiber stripper or remained coated. The tips were then cleaved with metal or ceramic scissors. Laser lithotripsy experiments were performed with the 4 fiber tip combinations using an automated laser fragmentation testing system with artificial stones made of plaster of Paris or BegoStone Plus (Bego, Lincoln, Rhode Island). High frequency-low pulse energy (20 Hz and 0.5 J) and low frequency-high pulse energy (5 Hz and 2.0 J) settings were used for 30 seconds. Fissure width, depth and volume, and laser fiber tip photos were analyzed. Coated laser fiber tips always achieved significantly higher ablation volumes (sometimes greater than 50%) than stripped laser fiber tips (p material or lithotripter setting. Coated fiber tips cleaved with metal scissors ablated as well as those cleaved with ceramic scissors (p = 0.16). However, stripped fibers were much less ablative when they were cut with metal scissors compared to ceramic scissors (p material decreased ablation volume (p ablative than high frequency-low pulse energy settings (p material and low frequency-high pulse energy settings were associated with increased fiber tip degradation. Coated laser fibers provided better lithotripsy performance and metal scissors were as good as ceramic scissors to cleave coated fibers. This knowledge may improve and simplify the way that laser lithotripsy procedures are done worldwide. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Tunable narrow linewidth all-fiber thulium-doped fiber laser in a 2 µm-band using two Hi-Bi fiber optical loop mirrors (United States)

    Posada-Ramírez, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R. I.; Ibarra-Escamilla, B.; Hernández-Arriaga, M. V.; Sánchez-de-la-Llave, D.; Kuzin, E. A.


    We propose an all-fiber Tm-doped fiber laser with a tunable and narrow laser line generated in a wavelength region of 2 µm. A single laser line with a linewidth below 0.05 nm, tunable in a wavelength range of 44.25 nm, is obtained. The laser linewidth and the discrete wavelength tuning range depend on the characteristics of the two fiber optical loop mirrors with high birefringence in the loop that forms the cavity. Dual-wavelength laser operation is also observed at tuning range limits with a wavelength separation of 47 nm. Alternate wavelength switching is also observed.

  2. Tm3+-doped CW fiber laser based on a highly GeO2-doped dispersion-shifted fiber


    Dvoyrin, Vladislav; Sorokina, Irina T; Mashinsky, Valery M.; Ischakova, Lyudmila D.; Dianov, Evgenii M; Kalashnikov, Valdimir L; Yashkov, Mikhail V.; Khopin, Vladimir F.; Guryanov, Aleksey N.


    A novel all-fiber laser based on a highly GeO2-doped dispersion-shifted Tm-codoped fiber, pumped at 1.56 µm wavelength and lasing at 1.862 µm wavelength with a slope efficiency up to 37% was demonstrated. The single-mode Tm-doped fiber with the 55GeO2-45SiO2 core was fabricated for the first time by MCVD technique. The laser produces spectral side bands, resulting from the four-wave mixing owing to the shift of the zero-dispersion-wavelength of the fiber to the laser wavelength, thus, making ...

  3. Stabilizing effect of line broadening in Raman fiber lasers (United States)

    Krause, Michael; Cierullies, Sven; Renner, Hagen


    We show phenomenologically that power-dependent Stokes line broadening can stabilize Raman fiber lasers (RFLs) against pump power changes. To this aim we assume, according to experimental observations in the literature, that an increase of the Stokes power in any cavity increases the corresponding spectral linewidth. This reduces the effective reflectivity of the fiber Bragg gratings of the cavity and thus increases the total cavity loss. The latter counteracts the power increase and thus stabilizes the RFL. While single-wavelength RFLs are only slightly affected, the stabilizing effect for multi-wavelength RFLs can be particularly strong.

  4. Comparison of photosensitivity in germanium doped silica fibers using 244 nm and 266 nm continuous wave lasers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo; Varming, Poul; Liu, B.


    Diode pumped continuous-wave UV lasers offer an interesting alternative to frequency doubled argon-ion lasers. We report the first photosensitivity comparison using these lasers on deuterium loaded standard telecommunication fibers and unloaded experimental fibers....

  5. Narrow linewidth Yb-doped double-cladding fiber laser utilizing fiber Bragg gratings inscribed by femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhinan; Shi Jiawei; Zhang Jihuang; Wang Haiyan; Li Yuhua; Lu Peixiang, E-mail:, E-mail: [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)


    A narrow-linewidth high power laser in all fiber format at 1064 nm is demonstrated. The resonant cavity is composed of two distributed Bragg reflector (DBR) fiber gratings, which were inscribed into the core of the double-cladding fiber by use of 800 nm femtosecond laser pulses and a phase mask. The spectrum of the laser exhibited a narrow linewidth of 21 pm at the output power of 0.8 W. The wavelength and power of the laser featured long term stability.

  6. Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber (United States)

    Lefrancois, Simon; Sosnowski, Thomas S.; Liu, Chi-Hung; Galvanauskas, Almantas; Wise, Frank W.


    We report a mode-locked dissipative soliton laser based on large-mode-area chirally-coupled-core Yb-doped fiber. This demonstrates scaling of a fiber oscillator to large mode area in a format that directly holds the lowest-order mode and that is also compatible with standard fiber integration. With an all-normal-dispersion cavity design, chirped pulse energies above 40 nJ are obtained with dechirped durations below 200 fs. Using a shorter fiber, dechirped durations close to 100 fs are achieved at pump-limited energies. The achievement of correct energy scaling is evidence of single-transverse-mode operation, which is confirmed by beam-quality and spectral-interference measurements. PMID:21369169

  7. The twister fiber: a comparative study of tissue interaction between this novel fiber and the side-firing fiber using the 980 nm laser in bovine kidneys. (United States)

    Shaker, Hassan; Salman, Manal


    Twister fiber has been recently introduced to convey the 980 nm laser. It is an end-firing fiber with terminal angulation. Theoretically, this fiber has many advantages over the standard side-firing fiber. Tissue characterization for such fiber has not been performed until now. It is important to carry out such a task to better understand the performance of this type of laser using this new fiber. Ablation capacity, fiber degradation, and maximum coagulation depth were tested for both the side-firing and the Twister fibers using a 980 nm diode laser system with a maximum output of 300 watts (Ceralas 300 system). The fibers have been tested on bovine kidneys. Laser powers used were 50, 100, 150, and 200 watts. The application time was 3 minutes for each experiment. Each experiment was repeated six times. Ablation rate was directly proportional to laser power reaching 2.4 ± 0.24 g/minute for the side-firing fiber and 1.83 ± 0.23 g/minute for the Twister fiber when the 200 watts power was reached. There was no statistical significant difference between the two fibers except at the 200 watts power. The side-firing fiber seems to resist degradation better at high power. The maximum coagulation depth was equivalent and did not significantly increase with power increase beyond the 100 watts. At 50 watts, the coagulation depth was significantly lower in the side-firing fiber. Both fibers produced significantly smaller coagulation at the 50 watts power setting compared with higher powers. In conclusion, both fibers performed well with regard to the ablation rate and produced a reasonable coagulation zone beyond the ablation area. The side-firing fiber seems to resist degradation more than the Twister fiber.

  8. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers. (United States)

    Supradeepa, V R; Nicholson, Jeffrey W


    High-power fiber lasers operating at the 1.5 μm wavelength region have attractive features, such as eye safety and atmospheric transparency, and cascaded Raman fiber lasers offer a convenient method to obtain high-power sources at these wavelengths. A limitation to power scaling, however, has been the lower conversion efficiency of these lasers. We recently introduced a high-efficiency architecture for high-power cascaded Raman fiber lasers applicable for 1.5 μm fiber lasers. Here we demonstrate further power scaling using this new architecture. Using numerical simulations, we identify the ideal operating conditions for the new architecture. We demonstrate a high-efficiency 1480 nm cascaded Raman fiber laser with an output power of 301 W, comparable to record power levels achieved with rare-earth-doped fiber lasers in the 1.5 μm wavelength region.

  9. Study of mid IR fiber transmission and mode patterns under laser induced stimulated Brillouin scattering (United States)

    Yu, C.; Chong, Yat C.; Zhou, Hongyi


    Mid IR fiber transmission and exit radiation mode patterns at various incident CO2 laser power levels appear to be effective diagnostic tools for monitoring laser induced stimulated Brillouin scattering in various mid IR fibers. Such processes are deemed to be essential mechanisms for fiber-optic amplifiers and switches as potential replacements of current repeaters and bistable devices.

  10. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project. (United States)

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  11. The rising power of random distributed feedback fiber laser (United States)

    Zhou, Pu; Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Huang, Long; Wu, Jian; Xiao, Hu; Leng, Jinyong


    Random distributed feedback fiber lasers (RDFFL) are now attracting more and more attentions for their unique cavity-free, mode-free and structural simplicity features and broadband application potentials in many fields, such as long distance sensing, speck free imaging, nonlinear frequency conversion as well as new pump source. In this talk, we will review the recent research progresses on high power RDFFLs. We have achieved (1) More than 400 W RDFFL with nearly Gaussian beam profile based on crucial employment of fiber mismatching architecture. (2) High power RDFFL with specialized optical property that include: high power narrow-band RDFFL, hundred-watt level linearly-polarized RDFFL, hundred-watt level high-order RDFFL. (3) Power enhancements of RDFFL to record kilowatt level are demonstrated with the aid of fiber master oscillator power amplifier (MOPA) with different pump schemes.

  12. Polarization maintaining linear cavity Er-doped fiber femtosecond laser (United States)

    Jang, Heesuk; Jang, Yoon-Soo; Kim, Seungman; Lee, Keunwoo; Han, Seongheum; Kim, Young-Jin; Kim, Seung-Woo


    We present a polarization-maintaining (PM) type of Er-doped fiber linear oscillator designed to produce femtosecond laser pulses with high operational stability. Mode locking is activated using a semiconductor saturable absorber mirror (SESAM) attached to one end of the linear PM oscillator. To avoid heat damage, the SESAM is mounted on a copper-silicon-layered heat sink and connected to the linear oscillator through a fiber buffer dissipating the residual pump power. A long-term stability test is performed to prove that the proposed oscillator design maintains a soliton-mode single-pulse operation without breakdown of mode locking over a week period. With addition of an Er-doped fiber amplifier, the output power is raised to 180 mW with 60 fs pulse duration, from which an octave-spanning supercontinuum is produced.

  13. LD-cladding-pumped 50 pm linewidth Tm 3+ -doped silica fiber laser. (United States)

    Yunjun, Zhang; Baoquan, Yao; Youlun, Ju; Hui, Zhou; Yuezhu, Wang


    We report on a Tm(3+)-doped fiber laser source operating at 1936.4 nm with a very narrow linewidth (50 pm) laser output. Up to 2.4 W cw laser power was obtained from an 82 cm long Tm(3+)-doped multimode-core fiber cladding pumped by a 792 nm laser diode (LD). The fiber laser cavity included a high-reflective dichroic and a low-reflective FBG output coupler. The multimode fiber Bragg grating (FBG) transmission spectrum and output laser spectrum were measured. By adjusting the distance between the dichroic and the Tm(3+)-doped fiber end, the multipeak laser spectrum changed to a single-peak laser spectrum.

  14. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień


    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  15. Fiber-laser-pumped CW OPO for red, green, blue laser generation. (United States)

    Lin, S T; Lin, Y Y; Tu, R Y; Wang, T D; Huang, Y C


    We report a CW, watt-level, red, green, and blue (RGB) laser pumped by an economical multimode (1-nm linewidth) Yb-fiber laser at 1.064 mum. A singly resonant optical parametric oscillator at 1.56 mum has two intracavity sum-frequency generators for red and blue laser generation. An extracavity second harmonic generator converts the residual pump power into green laser radiation. At 25-W pump power, the laser generated 3.9, 0.456, and 0.49 W at 633, 532, and 450 nm, respectively. The multimode pump laser offers a large temperature bandwidth for operating the RGB OPO without the need of a precision crystal temperature stabilizer.

  16. Temperature Sensor Using a Multiwavelength Erbium-Doped Fiber Ring Laser

    Directory of Open Access Journals (Sweden)

    Silvia Diaz


    Full Text Available A novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser. The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this system for remote temperature measurements.

  17. Fiber lasers for medical diagnostics and treatments: state of the art, challenges and future perspectives (United States)

    Taccheo, Stefano


    Fiber laser is a fast growing yet quite young type of laser with huge potential in healthcare due to versatility and reliability. The talk discusses present and future for fiber lasers for medical applications and address future challenges and competitions with other sources.

  18. A 158 fs 5.3 nJ fiber-laser system at 1 mu m using photonic bandgap fibers for dispersion control and pulse compression

    DEFF Research Database (Denmark)

    Nielsen, C.K.; Jespersen, Kim Giessmann; Keiding, S.R.


    We demonstrate a 158 fs 5.3 nJ mode-locked laser system based on a fiber oscillator, fiber amplifier and fiber compressor. Dispersion compensation in the fiber oscillator was obtained with a solid-core photonic bandgap (SC-PBG) fiber spliced to standard fibers, and external compression is obtained...

  19. Laser dynamics of a mode-locked thulium/holmium fiber laser in the solitonic and the stretched pulse regimes (United States)

    Kadel, Rajesh

    Mode-locked lasers that produce short optical pulses in the mid-infrared wavelength region have been sought out for a wide range of applications such as free space communication, molecular spectroscopy, medical diagnostics, and remote sensing. Here, a thulium and holmium (Tm/Ho) co-doped fiber laser that mode-locks in both the solitonic and stretched-pulse regimes is used to produce ultra-short pulses in the 2 mum region. Nonlinear polarization rotation technique is used where fiber nonlinearity is responsible to mode-lock the laser. The anomalous group velocity dispersion of both the single mode and gain fibers used limit the laser operation in the solitonic regime where spectral bandwidth is 10 nm and hence the pulse duration is limited to 996 fs. In order to increase the spectral bandwidth and hence get the shorter pulses the anomalous dispersion of these fibers has to compensate using normal group velocity dispersion fiber in the laser cavity. High numerical aperture fibers, which have normal group velocity dispersion around 2 mum due to its large and positive waveguide dispersion, can be used to compensate the anomalous dispersion of the gain and single mode fibers. We used a high numerical aperture fiber called UHNA4 in the laser cavity in order to compensate the anomalous dispersion of other fibers and mode-locked the laser in stretched pulse regime. The spectral bandwidth of the laser increased to 31 nm with corresponding pulse duration of 450 fs measured from the interferometric autocorrelation. The laser dynamics of the Tm/Ho co-doped fiber laser is also studied while going from the stretched-pulse to solitonic regime by fiber cut-back measurements of normal dispersion fiber. It was clearly observed that both the spectral bandwidth and the pulse duration changed significantly going from one region to the other.

  20. Waveform reconstruction for an ultrasonic fiber Bragg grating sensor demodulated by an erbium fiber laser. (United States)

    Wu, Qi; Okabe, Yoji


    Fiber Bragg grating (FBG) demodulated by an erbium fiber laser (EFL) has been used for ultrasonic detection recently. However, due to the inherent relaxation oscillation (RO) of the EFL, the detected ultrasonic signals have large deformations, especially in the low-frequency range. We proposed a novel data processing method to reconstruct an actual ultrasonic waveform. The noise spectrum was smoothed first; the actual ultrasonic spectrum was then obtained by deconvolution in order to mitigate the influence of the RO of the EFL. We proved by experiment that this waveform reconstruction method has high precision, and demonstrated that the FBG sensor demodulated by the EFL will have large practical applications in nondestructive testing.

  1. Thulium fiber laser ablation of kidney stones using a 50-μm-core silica optical fiber (United States)

    Blackmon, Richard L.; Hutchens, Thomas C.; Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.


    Our laboratory is currently studying the experimental thulium fiber laser (TFL) as a potential alternative laser lithotripter to the gold standard, clinical Holmium:YAG laser. We have previously demonstrated the efficient coupling of TFL energy into fibers as small as 100-μm-core-diameter without damage to the proximal end. Although smaller fibers have a greater tendency to degrade at the distal tip during lithotripsy, fiber diameters (≤200 μm) have been shown to increase the saline irrigation rates through the working channel of a flexible ureteroscope, to maximize the ureteroscope deflection, and to reduce the stone retropulsion during laser lithotripsy. In this study, a 50-μm-core-diameter, 85-μm-outer-diameter, low-OH silica fiber is characterized for TFL ablation of human calcium oxalate monohydrate urinary stones, ex vivo. The 50-μm-core fiber consumes approximately 30 times less cross-sectional area inside the single working channel of a ureteroscope than the standard 270-μm-core fiber currently used in the clinic. The ureteroscope working channel flow rate, including the 50-μm fiber, decreased by only 10% with no impairment of ureteroscope deflection. The fiber delivered up to 15.4±5.9 W under extreme bending (5-mm-radius) conditions. The stone ablation rate measured 70±22 μg/s for 35-mJ-pulse-energy, 500-μs-pulse-duration, and 50-Hz-pulse-rate. Stone retropulsion and fiber burnback averaged 201±336 and 3000±2600 μm, respectively, after 2 min. With further development, thulium fiber laser lithotripsy using ultra-small, 50-μm-core fibers may introduce new integration and miniaturization possibilities and potentially provide an alternative to conventional Holmium:YAG laser lithotripsy using larger fibers.

  2. 100  W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers. (United States)

    Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Xiao, Hu; Liu, Zejin


    We present a high power and high efficiency Tm-doped fiber laser (TDFL) pumped by two high power Raman fiber lasers (RFLs) at 1173 nm. The output power of the TDFL reached 96 W with slope efficiency of 0.42. The central wavelength located at 1943.3 nm with a 3 dB bandwidth of 0.1 nm. Higher output power can be achieved if more RFLs are employed to pump the TDFL. This is to our knowledge the first demonstration with 100 W-level output power achieved in TDFLs around their ∼1200  nm absorption band pumped by RFLs, which indicates a promising and powerful pump scheme to achieve higher power output in TDFLs.

  3. Solutions of kW Continuous-wave All-fiber Laser

    Energy Technology Data Exchange (ETDEWEB)

    Yan Dapeng; Li Libo; Liu Xiaoxu [Wuhan Raycus Fiber Laser Technologies Co., Ltd, Wuhan (China); Min Dayong, E-mail: [Wuhan HuaGong Laser Engineering Co., Ltd, Wuhan (China)


    Solutions of kW continuous-wave (CW) all-fiber laser are proposed. In our solutions, master oscillator power amplifier (MOPA) configuration is applied. Output power of master oscillator is 10W, and then is amplified to 70W with 1st pre-amplifier and next scaled up to 400W. Finally, 400W fiber laser is used as a basic power unit, and 1000W all-fiber laser can be achieved by means of beam combining with large core double clad fiber (DCF) combiner. In this solution, fiber laser has good stability and reliability for dispersion coupling of pump source and inhibition of photon darkening effect in the fiber. In addition, this solution assures us realize a 1000W all-fiber laser product easily, and the cost is low.

  4. The output characteristics of the erbium-doped fiber Bragg grating ring laser (United States)

    Yang, C. Y.; Ko, C. L.; Huang, K. R.; Shih, Ming Chang


    We present the study of the output characteristics of a distributed Bragg grating fiber ring laser (DBGFL) with different coupling configuration with the fiber Bragg grating (FBG). The fiber ring laser was pumped by a 980 nm laser diode with pig tail fiber connection with a 980/1550 WDM, and the resonator is contained in a fiber Bragg grating loop. Two coupling configuration of the FBG have been used to study the effect to the output characteristics of the fiber ring laser. It shows about the same output efficiency between the fiber ring laser with only reflection coupling and with reflection /transmission coupling. In addition, a numerical model of calculating the multiple reflection/transmission feedback coupling of the FBG has been proposed, and explains reasonably the experimental results.

  5. Investigation on the applications of fiber grating lasers in industrial sensing and pollution monitoring (United States)

    Xu, Yuanzhong

    The main objective of the project was to develop ``eye-safe'' fiber-grating lasers for pollution measurement and monitoring. Fiber grating lasers have a number of advantages such as narrow linewidth and precise wavelength control over the semiconductor counterparts. Three types of Erbium doped fiber grating lasers emitting in 1.5 μm band were developed and characterized in this work. We first used an entirely original approach to develop tunable dual-wavelength switchable fiber grating laser for differential absorption spectroscopy. The lam can switch between two wavelengths with each wavelength being independently tunable. It's characterized by >6-mW output power, detector for both wavelengths. Main drawbacks of the prototype laser are slow switching speed (100s Hz) and multimode operation, which could be overcome by cavity dampening and modification in laser configuration. Short cavity erbium-doped fiber grating lasers using high Erbium concentration were also studied. A 6-cm long fiber-grating laser pumped by a 980-nm laser diode was constructed. The linewidth of the laser is very narrow (~100s kHz) but its output slope efficiency is relatively low (~1%). Furthermore, the ion clustering effect arising from high Er concentration tends to cause self-pulsation and thus instability to the laser. By replacing the Erbium doped fiber with Er/Yb codoped one, the fiber grating laser was made more stable and efficient. The ion clustering effect disappears in the laser output due to the low Erbium concentration in Er/Yb codoped fiber, while the Er/Yb codoped fiber's two orders higher pump absorption at 980 nm results in as large as 10 ~ 30% output slope efficiency in about 2 cm long laser. On the other hand, strong pump absorption in Er/Yb fiber was found to cause significant thermal effects in Er/Yb fiber grating lasers, which can be eliminated by ensuring proper thermal dissipation. Because of fiber laser's long lifetime at the upper laser level, its wavelength cannot

  6. Efficient High Power 2 micron Tm3+-Doped Fiber Laser Project (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new Tm3+ doped germanate glass fibers for efficient high power 2-micron fiber lasers capable of generating an output power of...

  7. Efficient high power 2 micron Tm3+-Doped Fiber Laser Project (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new Tm3+ doped germanate glass fibers for efficient high power 2 micron fiber lasers capable of generating an output power of...

  8. Mid-Infrared Fiber Lasers (Les fibres laser infrarouge moyen) (United States)


    The approval of the RTA Information Management Systems Branch is required for more than one copy to be made or an extract included in another...conventional solid state lasers, offering optical confinement, reduced environmental sensitivity, and simplified thermal management . Although recent years...d’ondes supérieures à 3 microns, valeur basse de la fin de la fenêtre de transmission atmosphérique en IR moyen. L’objet de cet atelier a été de réunir

  9. High power pulsed fiber laser development for Co2 space based dial system (United States)

    Canat, Guillaume; Le Gouët, Julien; Lombard, Laurent; Bresson, Alexandre; Goular, Didier; Dolfi-Bouteyre, Agnès.; Duzellier, Sophie; Boivin, Denis; Nilsson, Johan; Sahu, Jayata; Bordais, Sylvain


    High energy fiber lasers emitting around 1579nm is seen as a possible technology for the laser unit of a spaceborn CO2 DIAL system. We are developing an all fiber system with the following expected performances: pulse energy of 260μJ, pulse duration 150ns, beam quality M2 laser stability 200 kHz. One of our main concerns has been the radiation induced attenuation mitigation. Various fiber compositions have been investigated.

  10. Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies (United States)

    Sudo, Masaaki; Takayanagi, Jun; Ohtake, Hideyuki


    Because optical fiber-based optical systems are generally robust against external interference, they can be used as reliable systems in industrial applications in various fields. This paper describes fiber lasers generating femtosecond pulses that use optical fibers as gain media and optical paths. Additionally, the nondestructive paint multilayer thickness measurement of automotive parts using terahertz waves generated and detected by femtosecond fiber laser systems was conducted.

  11. Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber bragg grating array

    NARCIS (Netherlands)

    Alvarez-Chavez, J.A.; Martinez-Rios, A.; Torres-Gomez, I.; Offerhaus, Herman L.


    We report wide wavelength tuning in a double-clad ytterbium-doped fiber laser. The laser cavity consists of an array of broadband high-reflection fiber Bragg gratings and a bulk grating as output coupler and wavelength selection element. The proposed fiber laser configuration combines low

  12. All-fiber widely tunable 2 μm fiber laser (United States)

    Tian, Wenyan; Stegeman, Robert A.; Park, Eric D.


    We report on the development of an all-fiber, 793-nm cladding-pumped tunable Tm-doped fiber laser based on a voltage driven 2-μm, intra-cavity, fiber-coupled, Fabry-Perot tunable filter. Continuous tuning over a 90-nm range has been achieved from 1952 to 2042 nm with a spectral linewidth <=0.07 nm and an optical signal-to-noise ratio <55 dB. A wavelength stability of +/-0.01 nm over a run time of 2 hours has been demonstrated. The desired wavelength from the available 90 nm of tuning range can be selected by the filter with a kHz repetition rate.

  13. A switchable dual-wavelength fiber laser based on asymmetric fiber Bragg grating Fabry-Perot cavity with a SESAM (United States)

    Huang, Kaiqiang; Li, Qi; Chen, Haiyan


    A switchable dual-wavelength fiber laser with an asymmetric fiber Bragg grating (FBG)-Fabry-Perot (FP) cavity based a semiconductor saturable absorber mirror (SESAM) is proposed and experimentally demonstrated. The proof of concept device consists of a FGB laser with an asymmetric FBG-FP cavity, a SESAM as mode loss modulator, and a intracavity FBG as wavelength selector by changing its operation temperature. The results demonstrate the new concept of dual-wavelength fiber laser based SESAM with asymmetric FBG-FP cavity and the technical feasibility.

  14. Adaptive ultrasonic sensor using a fiber ring laser with tandem fiber Bragg gratings. (United States)

    Liu, Tongqing; Hu, Lingling; Han, Ming


    We propose and demonstrate an intensity-demodulated fiber-optic ultrasonic sensor system that can be self-adaptive to large quasi-static background strain perturbations. The sensor system is based on a fiber ring laser (FRL) whose laser cavity includes a pair of fiber Bragg gratings (FBGs). Self-adaptive ultrasonic detection is achieved by a tandem design where the two FBGs are engineered to have differential spectral responses to ultrasonic waves and are installed side-by-side at the same location on a structure. As a result, ultrasonic waves lead to relative spectral shifts of the FBGs and modulations to the cold-cavity loss of the FRL. Ultrasonic waves can then be detected directly from the laser intensity variations in response to the cold-cavity loss modulation. The sensor system is insensitive to quasi-static background strains because they lead to identical responses of the tandem FBGs. Based on the principle, a FRL sensor system was demonstrated and tested for adaptive ultrasonic detection when large static strains as well as dynamic sinusoidal vibrations were applied to the sensor.

  15. Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry


    Operational and environmental stability of ultrafast laser systems is critical for their applications in practical biophotonics. Mode-locked fiber lasers show great promise in applications such as supercontinuum sources or multiphoton microscopy systems. Recently, substantial progress has been made...

  16. Fast Micromachining Using Spatial Light Modulator and Galvanometer Scanner with Infrared Pulsed Nanosecond Fiber Laser

    National Research Council Canada - National Science Library

    Jarno J J Kaakkunen; Ilkka Vanttaja; Petri Laakso


    ...) and a galvanometer scanner with an infrared nanosecond fiber lasers is studied. Here, the SLM is used as a computer generated hologram which can be applied to modify laser pulses intensity distribution virtually almost arbitrary...

  17. Modeling synchronization in networks of delay-coupled fiber ring lasers. (United States)

    Lindley, Brandon S; Schwartz, Ira B


    We study the onset of synchronization in a network of N delay-coupled stochastic fiber ring lasers with respect to various parameters when the coupling power is weak. In particular, for groups of three or more ring lasers mutually coupled to a central hub laser, we demonstrate a robust tendency toward out-of-phase (achronal) synchronization between the N-1 outer lasers and the single inner laser. In contrast to the achronal synchronization, we find the outer lasers synchronize with zero-lag (isochronal) with respect to each other, thus forming a set of N-1 coherent fiber lasers. © 2011 Optical Society of America

  18. Study of a fiber laser assisted friction stir welding process (United States)

    Casalino, G.; Campanelli, S.; Ludovico, A. D.; Contuzzi, N.; Angelastro, A.


    Friction stir welding is a relatively new joining technique. This technique, which is considered a derivative of the more common friction welding method, was developed mainly for aluminum and its alloys. In recent years, this method has been used to join various other alloys. FSW has many advantages, including the following: the welding procedure is relatively simple with no consumables or filler metal; joint edge preparation is not needed; oxide removal prior to welding is unnecessary; high joint strength has been achieved in aluminum and magnesium alloys; FSW can be used with alloys that cannot be fusion welded due to crack sensitivity. The drawbacks of FSW include the need for powerful fixtures to clamp the workpiece to the welding table, the high force needed to move the welding tool forward, the relatively high wear rate of the welding tool, and weld speeds in FSW are slower, which can lead to longer process times. To overcome these drawbacks, a fiber laser-assisted friction stir welding system was designed (FLAFSW). The system combined a conventional commercial friction machine and a fiber pumped laser system. The scope is to investigate the influence of the laser assistance on the weld quality. A number of different aluminum plates, which are still mentioned to be difficult to be joint as intermetallic phases appear during melting welding techniques, were used. The evaluation of quality was performed through analysis of appearance, mechanical and microstructure characterization of the weld.

  19. Single-shot spectroscopy of broadband Yb fiber laser (United States)

    Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto


    We have experimentally reported on a real-time single-shot spectroscopy of a broadband Yb-doped fiber (YDF) laser which based on a nonlinear polarization evolution by using a time-stretched dispersive Fourier transformation technique. We have measured an 8000 consecutive single-shot spectra of mode locking and noise-like pulse (NLP), because our developed broadband YDF oscillator can individually operate the mode locking and NLP by controlling a pump LD power and angle of waveplates. A shot-to-shot spectral fluctuation was observed in NLP. For the investigation of pulse formation dynamics, we have measured the spectral evolution in an initial fluctuations of mode locked broadband YDF laser at an intracavity dispersion of 1500 and 6200 fs2 for the first time. In both case, a build-up time between cw and steady-state mode locking was estimated to be 50 us, the dynamics of spectral evolution between cw and mode locking, however, was completely different. A shot-to-shot strong spectral fluctuation, as can be seen in NLP spectra, was observed in the initial timescale of 20 us at the intracavity dispersion of 1500 fs2. These new findings would impact on understanding the birth of the broadband spectral formation in fiber laser oscillator.

  20. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser


    Xiaoxi Jin; Xueyuan Du; Xiong Wang; Pu Zhou; Hanwei Zhang; Xiaolin Wang; Zejin Liu


    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153?nm with the output power exceeding 18?W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173?nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173?nm random distributed fe...

  1. Energy loss in gas lasers operating in hollow-core optical fibers (United States)

    Lane, Ryan A.; Madden, Timothy J.


    The output of solid core fiber lasers is constrained in the mid-infrared due to the absorption properties of silica. Optically pumped gas lasers can reach the mid-infrared but require long path lengths for interaction between the pump light and gain medium. Optically pumped gas lasers where the gain medium is contained in a hollow-core optical fiber may provide a robust and compact platform that combines advantages of fiber and optically-pumped gas lasers. Experimental demonstrations of gas-filled-fiber lasers have been reported. The energy output of a molecular gas laser operating in a hollow-core optical fiber is computationally modeled using rate equations. The rate equations include terms for various physical processes including molecular self-collisions, molecular collisions with the fiber walls, and fiber attenuation. The rate equations are solved for a time-dependent, one-dimensional fiber model with an acetylene gain medium that lases along rotation-vibrational transitions. The energy output and losses are computed for multiple configurations. Model correspondence with reported experiments is shown. The computed energy losses due to backwards propagating light, fiber losses, and molecular collisions are applied to pulsed, continuous wave, and synchronously pumped gas lasers operating in hollow-core optical fibers. Energy losses due to molecular collisions are used to estimate heating in the gain medium.

  2. Reliability and photodarkening in 790nm-pumped 2μm fiber lasers (United States)

    Carter, A.; Samson, B.; Ding, J.; Frith, G.; Tankala, K.


    Recent progress on high efficiency Tm-doped silica fibers pumped at 790nm has enabled the demonstration of a 2μm CW fiber laser operating at the 1kW power level and with single mode beam quality [1]. In addition to this state-of-the-art high power research, Tm-doped fibers are now starting to find applications in lasers with nsec [2] and psec [3] pulsed operation, as well as lower power CW lasers (50-100W) in the 1940nm wavelength region for medical use [4]. As with Yb-doped fibers, the question of photodarkening needs to be addressed to ensure the long term fiber reliability is appropriate for the application. In a recent paper [5], we proposed that the up-conversion process in highly doped Tm-fibers was significantly quenched when compared with lower concentration fibers, under 790nm pumping. This trend was also observed in the photodarkening rate as measured in a CW 2μm fiber laser cavity operating around 20W output power. In this controlled experiment, the rate of photodarkening dropped from 15% per 1000 hours in low concentration fiber to less than 1% in a fiber doped with 4.6% Tm. In this paper we review the 20W results of our earlier work and then confirm the long term reliability of 1940nm CW fiber lasers operating at higher (40W) output power, presenting results for a laser operating for 1200 hours without significant loss of output power (around 12% total power variation). Over any given 24-hour period during this experiment, the laser operates open loop with around 8% total power variation, in an air cooled configuration. We believe these results confirm the appropriate level of long term reliability of Tm-doped fibers for CW fiber lasers at the ~50W power level, suitable for medical laser applications.

  3. Effect of laser operating mode in paint removal with a fiber laser (United States)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Shukla, Dinesh K.; Kumar, Shailesh; Nath, Ashish K.


    The laser paint removal behavior with the continuous wave (CW) beam and repetitive pulses has been investigated using an Yb:fiber laser. The specific energy, which is defined as the amount of laser energy needed to remove unit volume of paint prior to the onset of substrate damage and is a measure of the process efficiency, was found to be dependent on the laser processing parameters. In CW mode the specific energy reduced with the increase of laser scan speed and corresponding increase of laser power. In case of repetitive pulsed mode the specific energy was found to depend on the pulse on-time as well as on the time interval between two successive pulses. At 1 kHz repetition rate, the specific energy reduced with the increase of duty cycle and corresponding increase in scanning speed, but at relatively low frequencies of 50-150 Hz and 50% overlap between two pulses specific energy was found to increase with increasing duty cycle. Irrespective of the mode of operation specific energy increased with the increase of average line energy. During the laser paint irradiation a plume of burning fume was formed over the surface and the variation in specific energy with laser processing parameters has been attributed to the absorption of laser radiation in the plume. Since the dimension of plume and fume particle density in it will depend on the laser energy absorbed in paint, the absorption loss in plume will depend on the laser parameters. This was confirmed by measuring the plume temperature for different laser processing conditions. Based on this and considering that the actual specific energy absorbed by paint should be constant, the absorption characteristic of plume was modeled applying Beer Lambert's law.

  4. Holograms for laser diode: Single mode optical fiber coupling (United States)

    Fuhr, P. L.


    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  5. Characterization of the Los Alamos IPG YLR-6000 fiber laser using multiple optical paths and laser focusing optics

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, John O [Los Alamos National Laboratory; Bernal, John E [Los Alamos National Laboratory


    Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts in testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.

  6. High-power gain-switched Tm(3+)-doped fiber laser. (United States)

    Tang, Yulong; Xu, Lin; Yang, Yi; Xu, Jianqiu


    Gain-switched by a 1.914-µm Tm:YLF crystal laser, a two-stage Tm(3+) fiber laser has been achieved 100-W level ~2-µm pulsed laser output with a slope efficiency of ~52%. With the 6-m length of Tm fiber, the laser wavelength was centered at 2020 nm with a bandwidth of ~25 nm. Based on an acousto-optic switch, the pulse repetition rate can be modulated from 500 Hz to 50 kHz, and the laser pulse width can be tuned between 75 ns and ~1 µs. The maximum pulse energy was over 10 mJ, and the maximum pulse peak power was 138 kW. By using the fiber-coiling-induced mode-filtering effect, laser beam quality of M2 = 1.01 was obtained. Further scaling the pulse energy and average power from such kind of gain-switched fiber lasers was also discussed.

  7. Ablation of selected conducting layers by fiber laser (United States)

    Pawlak, Ryszard; Tomczyk, Mariusz; Walczak, Maria


    Laser Direct Writing (LDW) are used in the manufacture of electronic circuits, pads, and paths in sub millimeter scale. They can also be used in the sensors systems. Ablative laser writing in a thin functional layer of material deposited on the dielectric substrate is one of the LDW methods. Nowadays functional conductive layers are composed from graphene paint or nanosilver paint, indium tin oxide (ITO), AgHTTM and layers containing carbon nanotubes. Creating conducting structures in transparent layers (ITO, AgHT and carbon nanotubes layers) may have special importance e.g. for flexi electronics. The paper presents research on the fabrication of systems of paths and appropriate pattern systems of paths and selected electronic circuits in AgHTTM and ITO layers deposited on glass and polymer substrates. An influence of parameters of ablative fiber laser treatment in nanosecond regime as well as an influence of scanning mode of laser beam on the pattern fidelity and on electrical parameters of a generated circuit was investigated.

  8. Innovative fiber-laser architecture-based compact wind lidar (United States)

    Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ


    This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.

  9. Laser diode fiber optic apparatus for acupuncture treatment by the Oriental method (United States)

    Pham, Van Hoi; Phung, Huu A.; Bui, Huy; Hoang, Cao D.; Vu, Duc T.; Tran, Minh T.; Nguyen, Minh H.


    The laser acupuncture equipment using laser diodes of 850, 1300 nm and optical fibers as light needles is presented. The double-frequency modulation of laser beam gives the high efficiency treatment of the low-power laser therapy by the oriental acupuncture method. The laser spot from optical fiber of 50 microns is suitable for the irradiation into special points on body or auricular by the acupuncture treatment schema. The laser intensity in pulse regime of 5 - 40 W/cm2 and irradiation time of 5 - 15 minutes are optimum for treatment of neurosis symptoms and pain-relieving.

  10. Tm-doped fiber laser resonantly diode-cladding-pumped at 1620 nm (United States)

    Newburgh, G. A.; Zhang, J.; Dubinskii, M.


    We report the first demonstration of an efficient, high power, resonantly (in-band) diode-cladding-pumped Tm-doped fiber laser operating on the 3F4  ⇒  3H6 transition of Tm3+ ion. The laser, pumped by a fiber coupled laser diode module at ~1620 nm, delivered ~15 W of power at 1930 nm with a slope efficiency of 67% versus the absorbed pump power. This presents, to the best of our knowledge, the highest slope efficiency and the highest output power reported so far for resonantly diode-cladding-pumped 2 µm fiber lasers based on double-clad Tm-doped silica fibers. These very preliminary results, obtained with commercial double-clad Tm-doped fibers, unoptimized for in-band pumping at the peak of resonant absorption, indicate a very high potential of resonantly diode-cladding-pumped Tm fiber lasers for major power scaling unaffected by photodarkening. Fiber optimization for resonant pumping at the maximum of the Tm3+   3H6  ⇒  3F4 absorption band in silica (1610–1710 nm) can lead to a new generation of Tm fiber lasers with power and wall-plug efficiency, competing with those of high power tandem-pumped Tm-doped fiber lasers, but potentially with a lighter weight and smaller dimensions.

  11. Linear polarization Yb3+-doped fiber laser with novel innerclad structures

    NARCIS (Netherlands)

    Martinez-Pinon, F.; Alvarez-Chavez, J.A.; Jaramillo Vigueras, D.; de la Cruz-May, L.; Offerhaus, Herman L.


    Results on high radiance Yb3+-doped fiber lasers with novel double innerclad structures (double-D clad and four hole) and polarized output at ≈1090 nm are presented. We have demonstrated >40% of the total output power being polarized, making the fiber laser suitable for LIDAR and second-harmonic

  12. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress. (United States)

    Chong, Andy; Wright, Logan G; Wise, Frank W


    Self-similar fiber oscillators are a relatively new class of mode-locked lasers. In these lasers, the self-similar evolution of a chirped parabolic pulse in normally-dispersive passive, active, or dispersion-decreasing fiber (DDF) is critical. In active (gain) fiber and DDF, the novel role of local nonlinear attraction makes the oscillators fundamentally different from any mode-locked lasers considered previously. In order to reconcile the spectral and temporal expansion of a pulse in the self-similar segment with the self-consistency required by a laser cavity's periodic boundary condition, several techniques have been applied. The result is a diverse range of fiber oscillators which demonstrate the exciting new design possibilities based on the self-similar model. Here, we review recent progress on self-similar oscillators both in passive and active fiber, and extensions of self-similar evolution for surpassing the limits of rare-earth gain media. We discuss some key remaining research questions and important future directions. Self-similar oscillators are capable of exceptional performance among ultrashort pulsed fiber lasers, and may be of key interest in the development of future ultrashort pulsed fiber lasers for medical imaging applications, as well as for low-noise fiber-based frequency combs. Their uniqueness among mode-locked lasers motivates study into their properties and behaviors and raises questions about how to understand mode-locked lasers more generally.

  13. Electrically-Tunable Multi-Color Ultrafast Cherenkov FiberLaser

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Liu, Xiaomin; Lægsgaard, Jesper


    We demonstrate the broadband electrical tunability of ultrafast fiber laser output across the visible range, from the deep blue to the infrared.......We demonstrate the broadband electrical tunability of ultrafast fiber laser output across the visible range, from the deep blue to the infrared....

  14. Femtosecond all-polarization-maintaining fiber laser operating at 1028 nm

    DEFF Research Database (Denmark)

    Olsson, R.K.; Andersen, T.V.; Leick, Lasse


    We present an effective solution for an all-polarization-maintaining modelocked femtosecond fiber laser operating at the central wavelength of 1028 nm. The laser is based on an Yb-doped active fiber. Modelocking is enabled by a semiconductor saturable absorber mirror, and the central wavelength...

  15. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module. (United States)

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  16. Layout of NALM fiber laser with adjustable peak power of generated pulses. (United States)

    Smirnov, Sergey; Kobtsev, Sergey; Ivanenko, Alexey; Kokhanovskiy, Alexey; Kemmer, Anna; Gervaziev, Mikhail


    The Letter proposes a new layout of a passively mode-locked fiber laser based on a nonlinear amplifying loop mirror (NALM) with two stretches of active fiber and two independently controlled pump modules. In contrast with conventional NALM configurations using a single piece of active fiber that yields virtually constant peak power, the proposed novel laser features larger than a factor of 2 adjustment range of peak power of generated pulses. The proposed layout also provides independent adjustment of duration and peak power of generated pulses as well as power-independent control of generated pulse spectral width impossible in NALM lasers with a single piece of active fiber.

  17. Harmonic Mode-Locked Fiber Laser based on Photonic Crystal Fiber Filled with Topological Insulator Solution

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen


    Full Text Available We reported that the photonic crystal fiber (PCF filled with TI:Bi2Te3 nanosheets solution could act as an effective saturable absorber (SA. Employing this TI-PCF SA device; we constructed an ytterbium-doped all-fiber laser oscillator and achieved the evanescent wave mode-locking operation. Due to the large cavity dispersion; the fundamental mode-locking pulse had the large full width at half maximum (FWHM of 2.33 ns with the repetition rate of ~1.11 MHz; and the radio frequency (RF spectrum with signal-to-noise ratio (SNR of 61 dB. In addition; the transition dynamics from a bunched state of pulses to harmonic mode-locking (HML was also observed; which was up to 26th order.

  18. Switchable narrow linewidth fiber laser with LP11 transverse mode output (United States)

    Shen, Ya; Ren, Guobin; Yang, Yuguang; Yao, Shuzhi; Wu, Yue; Jiang, Youchao; Xu, Yao; Jin, Wenxing; Zhu, Bofeng; Jian, Shuisheng


    We experimentally demonstrate a switchable narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser with LP11 transverse mode output. The laser is based on a mode selective all-fiber fused coupler which is composed of a single-mode fiber (SMF) and a two-mode fiber (TMF). By controlling the polarization state of the output light, the laser can provide narrow linewidth SLM output with LP11 transverse mode at two specific wavelengths, which correspond to two transmission peaks of the chirped moiré fiber grating (CMFBG). The 20 dB linewidth of the fiber laser for each wavelength is approximately 7.2 and 6.4 kHz.

  19. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers; Etat de l`art des lasers a fibre, etude d`un laser a fibre dopee ytterbium et spectroscopie laser de fibres dopees

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S.


    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs.

  20. Actively mode-locked all fiber laser with cylindrical vector beam output. (United States)

    Zhou, Yong; Wang, Anting; Gu, Chun; Sun, Biao; Xu, Lixin; Li, Feng; Chung, Dick; Zhan, Qiwen


    We demonstrated an all fiber actively mode-locked laser that emits a cylindrical vector beam. An intra-cavity few-mode fiber Bragg grating inscribed in a short section of four-mode fiber is employed to provide mode selection and spectrum filtering functions. Mode coupling is achieved by offset splicing between the single-mode fiber and the four-mode fiber in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode-locking in the laser. The laser operates at 1547 nm with 30 dB spectrum width of 0.2 nm. The mode-locked pulses have a duration of 2 ns and repetition of 12.06 MHz. Through adjusting the polarization state in the laser cavity, both radially and azimuthally polarized beams have been obtained with high mode purity.

  1. Nanoparticle doping for high power fiber lasers at eye-safer wavelengths. (United States)

    Baker, Colin C; Friebele, E Joseph; Burdett, Ashley A; Rhonehouse, Daniel L; Fontana, Jake; Kim, Woohong; Bowman, Steven R; Shaw, L Brandon; Sanghera, Jasbinder; Zhang, Jun; Pattnaik, Radha; Dubinskii, Mark; Ballato, John; Kucera, Courtney; Vargas, Amber; Hemming, Alexander; Simakov, Nikita; Haub, John


    A nanoparticle (NP) doping technique was developed for fabricating erbium (Er)- and holmium (Ho)-doped silica-based optical fibers for high energy lasers. Slope efficiencies in excess of 74% were realized for Er NP doping in a single mode fiber based master oscillator power amplifier (MOPA) and 53% with multi-Watt-level output in a resonantly cladding-pumped power oscillator laser configuration based on a double-clad fiber. Cores comprising Ho doped LaF3 and Lu2O3 nanoparticles exhibited slope efficiencies as high as 85% at 2.09 µm in a laser configuration. To the best of the authors' knowledge, this is the first report of a holmium nanoparticle doped fiber laser as well as the highest efficiency and power output reported from an erbium nanoparticle doped fiber laser.

  2. 28 W CW linearly polarized single mode all-fiber thulium-doped fiber laser operating at 1.95 μm (United States)

    Wang, Jiachen; Yeom, Dong-il; Lee, Sang Bae; Lee, Kwanil


    An all-fiber type, CW, linearly polarized thulium-doped fiber laser is reported. Highly linear polarization was achieved by a special management of fiber Bragg gratings, which performs as the laser cavity reflectors. The laser generated 28 W signal output at 1949 nm with a slope efficiency of 47.3%. The polarization extinction ratio of the laser was measured to be around 20 dB. The beam quality of the laser was near diffraction-limited, with M2 of 1.1. The laser's output features make it to be a potential light source for some important applications such as for pumping holmium-doped solid state lasers.

  3. Single fiber laser based wavelength tunable excitation for CRS spectroscopy. (United States)

    Su, Jue; Xie, Ruxin; Johnson, Carey K; Hui, Rongqing


    We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting (SSFS) in a nonlinear optical fiber. Spectra of C-H stretches of cyclohexane were measured simultaneously by stimulated Raman gain (SRG) and coherent anti-Stokes Raman scattering (CARS) and compared. We demonstrate the use of spectral focusing through pulse chirping to improve CRS spectral resolution. We analyze the impact of pulse stretching on the reduction of power efficiency for CARS and SRG. Due to chromatic dispersion in the fiber-optic system, the differential pulse delay is a function of Stokes wavelength. This differential delay has to be accounted for when performing spectroscopy in which the Stokes wavelength needs to be scanned. CARS and SRG signals were collected and displayed in two dimensions as a function of both the time delay between chirped pulses and the Stokes wavelength, and we demonstrate how to find the stimulated Raman spectrum from the two-dimensional plots. Strategies of system optimization consideration are discussed in terms of practical applications.

  4. Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Villanueva Ibáñez, Guillermo Eduardo; Lægsgaard, Jesper


    We investigate the noise properties of a femtosecond all-fiber Cherenkov radiation source with emission wavelength around 600 nm, based on an Yb-fiber laser and a highly-nonlinear photonic crystal fiber. A relative intensity noise as low as - 103 dBc/Hz, corresponding to 2.48 % pulse-to-pulse flu...

  5. Experimental study of a Q-switched ytterbium-doped double-clad fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Anzueto S, G.; Estudillo A, M. [FIMEE, Campus Salamanca, Universidad de Guanajuato, Domicilio conocido, Comunidad de Palo Blanco, 36885, A.P. 215-A, Salamanca, Guanajuato (Mexico); Martinez R, A.; Torres G, I. [Centro de Investigaciones en Optica, Lomas del Bosque 115, 37150, Leon, Guanajuato (Mexico); Selvas A, R. [Facultad de Ciencias Fisico Matematicas, UANL, Cd. Universitaria, 66450, Nuevo Leon (Mexico)]. e-mail: gilberto.anzueto@gmail. com


    We report an experimental characterization of a Q-switched operation of an all-fiber laser using , 30 m of a double-clad ytterbium-doped fiber spliced to a piece of single-mode un-doped holey fiber. Loss modulation in the splicing point between the active and un-doped fiber due to a substantial coupling of light into lossy cladding modes stimulates pulsed operation of the fiber laser. Pulse energy of {approx}2.5 {mu}J was estimated and the repetition rate was measured in the range of 4-16 KHz. (Author)

  6. Temperature sensing in multiple zones based on Brillouin fiber ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Galindez, C A; Madruga, F J; Ullan, A; Lopez-Higuera, J M [Photonics Engineering Group, Universidad de Cantabria, Av Castros s/n, 39005-Santander (Spain); Lopez-Amo, M, E-mail: galindezca@unican.e [Depto. IngenierIa Electrica y Electronica, Universidad Publica de Navarra, Campus de Arrosadia s/n, 31006 Pamplona (Spain)


    A simple system for sensing temperature in multiple zones based on a multi-wavelength Brillouin fiber laser ring is presented. Optical fiber reels are serially concatenated and divided in zones (one per sensing area). Setting the Brillouin lasing in each spool of fiber generates a characteristic wavelength that depends on the fiber properties and the temperature in the zone. Thus, it is possible to measure temperature independently and accurately through heterodyne detection between two narrow laser signals. The proposed sensor integrates the temperature along the whole spool of fiber in each zone. These real time measurements were successfully checked in our laboratory.

  7. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe. (United States)

    Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie


    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  8. Nonlinear beam self-cleaning in a coupled cavity composite laser based on multimode fiber. (United States)

    Guenard, R; Krupa, K; Dupiol, R; Fabert, M; Bendahmane, A; Kermene, V; Desfarges-Berthelemot, A; Auguste, J L; Tonello, A; Barthélémy, A; Millot, G; Wabnitz, S; Couderc, V


    We study a coupled cavity laser configuration where a passively Q-switched Nd:YAG microchip laser is combined with an extended cavity, including a doped multimode fiber. For appropriate coupling levels with the extended cavity, we observed that beam self-cleaning was induced in the multimode fiber thanks to nonlinear modal coupling, leading to a quasi-single mode laser output. In the regime of beam self-cleaning, laser pulse duration was reduced from 525 to 225 ps. We also observed a Q-switched mode-locked operation, where spatial self-cleaning was accompanied by far-detuned nonlinear frequency conversion in the active multimode fiber.

  9. Watts-level super-compact narrow-linewidth Tm-doped silica all-fiber laser near 1707 nm with fiber Bragg gratings (United States)

    Xiao, X. S.; Guo, H. T.; Lu, M.; Yan, Z. J.; Wang, H. S.; Wang, Y. S.; Xu, Y. T.; Gao, C. X.; Cui, X. X.; Guo, Q.; Peng, B.


    Watts-level ultra-short wavelength operation of a Tm-doped all fiber laser was developed by using a 1550 nm Er-doped fiber laser pump source and a pair of fiber Bragg gratings (FBGs). The laser yielded 1.28 W of continuous-wave output at 1707.01 nm with a narrow linewidth of ~44 pm by means of a 20 cm Tm-doped fiber. The dependencies of the slope efficiencies and pump threshold of the Tm-doped fiber laser versus the length of active fiber and reflectivity of the output mirror (FBG) were investigated in detail, in which the maximum average slope efficiency was 36.1%. There is no doubt that this all fiber laser will be a perfect pump source for mid-IR laser output.

  10. Numerical optimization of multi-wavelength and cascaded Raman fiber lasers (United States)

    Cierullies, Sven; Renner, Hagen; Brinkmeyer, Ernst


    We present a model for the simulation and optimization of Raman fiber lasers. Applications include cascaded Raman lasers as well as lasers running on several wavelengths within one Stokes band. The model takes into account forward and backward propagating waves as well as Raman induced interactions between all pump and Stokes lines. Example calculations for both the simulation of a laser and the optimization of the mirror reflectivities for maximum overall output power and equalized laser lines are performed.

  11. Mode locking of fiber lasers at high repetition rates (United States)

    Usechak, Nicholas G.

    Mode-locked fiber lasers have become indispensable tools in many fields as their use is no longer relegated to the optics community. In the future, their size will decrease and their applications will become far more prevalent than they are today. At present, the field is undergoing a cardinal shift as these devices have become commercially available in the last decade. This has put an emphasis on long-term performance and reliability as these devices are beginning to be integrated into complex systems in areas as diverse as medical optics, micro-machining, forensics, and tracking as well as their obvious use as laboratory tools or sources in telecommunications. This is also resulting in a transition from research to engineering. Since the field of mode-locked lasers has been extensively studied for over forty years, one may expect that little has been overlooked. However, since the mode-locking phenomena is governed by nonlinear partial differential equations, a rich degree of effects exist and the field has not yet been exhausted. During the past two decades, the main emphasis has been on short-pulse generation; however, the main thrust of research is likely to change to producing high-power devices, which will result in limiting effects and thermal issues that are currently ignored for low-power sources. Finally, detailed studies have generally been performed numerically as analytic solutions only exist in limiting cases. In this thesis, mode-locked fiber lasers are studied experimentally, numerically, and theoretically. The experimental work focuses on high-repetition rate, mode-locked cavities, which are then modeled numerically. A semi-analytic tool, which goes beyond the prior theories and includes all of the effects experienced by steady-state, mode-locked pulses as they propagate in a laser cavity, is also derived. The only caveats to this approach are an assumption of the pulse shape and the requirement that it not change during propagation through the

  12. Fiber Laser Welding Properties of Copper Materials for Secondary Batteries

    Directory of Open Access Journals (Sweden)

    Young-Tae YOU


    Full Text Available Secondary battery is composed of four main elements: cathodes, anodes, membranes and electrolyte. The cathodes and the anodes are connected to the poles that allow input and output of the current generated while the battery is being charged or discharged. In this study laser welding is conducted for 40 sheets of pure copper material with thickness of 38μm, which are used in currently manufactured lithium-ion batteries, using pulse-wave fiber laser to compare welded joint to standard bolt joint and to determine optimum process parameters. The parameters, which has significant impact on penetration of the pulse waveform laser to the overlapped thin sheets, is the peak power while the size of the weld zone is mainly affected by the pulse irradiation time and the focal position. It is confirmed that overlapping rate is affected by the pulse repetition rate rather than by the pulse irradiation time. At the cross-section of the weld zone, even with the increased peak power, the width of the front bead weld size does not change significantly, but the cross-sectional area becomes larger. This is because the energy density per pulse increases as the peak power increases.DOI:

  13. Carbon dioxide laser fiber for laryngeal cancer surgery. (United States)

    Zeitels, Steven M; Kobler, James B; Heaton, James T; Faquin, William


    The carbon dioxide laser has evolved to be the premier dissecting instrument for hemostatic cutting during endolaryngeal cancer resection. However, dissection is limited to mirror-reflected line-of-sight delivery of the laser. A recently developed flexible, hollow photonic bandgap fiber (PBF) appears to offer advantages in endolaryngeal dissection. The suitability of the PBF for human application was evaluated in a canine experiment in which human surgical procedures for microlaryngoscopic en bloc partial laryngectomy were simulated. The specimens that were resected endoscopically and the completion laryngectomy specimen were evaluated histologically. Observations from this experiment revealed that en bloc partial laryngectomy procedures were substantially easier to achieve as compared with prior experience in humans. This improvement resulted from three factors: 1) enhanced tangential dissection due to increased angulation of the laser energy, 2) enhanced procedural orientation due to proprioception of the tissues in contact mode, and 3) improved hemostasis. Histopathologic analysis of the resection margins revealed minimal thermal trauma. The PBF shows substantial promise for human application in endoscopic partial laryngectomy. It will likely enhance the ability of any surgeon to extend his or her indications for performing endoscopic laryngeal cancer resections regardless of philosophy (en bloc resection or piecemeal).

  14. Athermal fiber laser for the SWARM absolute scalar magnetometer (United States)

    Fourcault, W.; Léger, J.-M.; Costes, V.; Fratter, I.; Mondin, L.


    The Absolute Scalar Magnetometer (ASM) developed by CEA-LETI/CNES is an optically pumped 4He magnetic field sensor based on the Zeeman effect and an electronic magnetic resonance whose effects are amplified by a laser pumping process [1-2]. Consequently, the role of the laser is to pump the 4He atoms at the D0 transition as well as to allow the magnetic resonance signal detection. The ASM will be the scalar magnetic reference instrument of the three ESA Swarm satellites to be launched in 2012 in order to carry out the best ever survey of the Earth magnetic field and its temporal evolution. The sensitivity and accuracy of this magnetometer based on 4He optical pumping depend directly on the characteristics of its light source, which is the key sub-system of the sensor. We describe in this paper the selected fiber laser architecture and its wavelength stabilization scheme. Its main performance in terms of spectral emission, optical power at 1083 nm and intensity noise characteristics in the frequency bands used for the operation of the magnetometer, are then presented. Environmental testing results (thermal vacuum cycling, vibrations, shocks and ageing) are also reported at the end of this paper.

  15. Experimental and numerical study of the switching dynamics of Raman fiber lasers (United States)

    Cierullies, S.; Krause, M.; Renner, H.; Brinkmeyer, E.


    We present an experimental and numerical survey of the switching behavior of cascaded Raman fiber lasers (RFLs). When these lasers are switched on, the output power shows a pulsing behavior where the pulse powers strongly exceed the steady-state output powers. The influence of the pump-laser and fiber properties of a RFL on this dynamical behavior is investigated both experimentally and numerically, where experiments and simulations showed good qualitative agreement.

  16. Suppression of Stimulated Brillouin Scattering in Optical Fibers Using a Linearly Chirped Diode Laser (United States)


    directed to the fiber under test (FUT) using a circulator. The seed laser is a 1.5-µm vertical-cavity surface-emitting laser ( VCSEL ) with a current that...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT...laser seed has the potential to significantly suppress the SBS that is currently limiting the output power of narrow-linewidth fiber amplifiers

  17. Parameter space for the collective laser coupling in the laser fusion driver based on the concept of fiber amplification network. (United States)

    Huang, Zhihua; Lin, Honghuan; Xu, Dangpeng; Li, Mingzhong; Wang, Jianjun; Deng, Ying; Zhang, Rui; Zhang, Yongliang; Tian, Xiaocheng; Wei, Xiaofeng


    Collective laser coupling of the fiber array in the inertial confinement fusion (ICF) laser driver based on the concept of fiber amplification network (FAN) is researched. The feasible parameter space is given for laser coupling of the fundamental, second and third harmonic waves by neglecting the influence of the frequency conversion on the beam quality under the assumption of beam quality factor conservation. Third harmonic laser coupling is preferred due to its lower output energy requirement from a single fiber amplifier. For coplanar fiber array, the energy requirement is around 0.4 J with an effective mode field diameter of around 500 μm while maintaining the fundamental mode operation which is more than one order of magnitude higher than what can be achieved with state-of-the-art technology. Novel waveguide structure needs to be developed to enlarge the fundamental mode size while mitigating the catastrophic self-focusing effect.

  18. Generation of femto second pulses from self mode locked Yb doped fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Won; Hong, Sung Ki; Kim, Min Suk; Ko, Kwanghoon; Lim, Changhwan [KAERI, Daejeon (Korea, Republic of); Goo, Jae Jin; Seo, Young Suk [Technology research laboratory, Daejeon (Korea, Republic of)


    Recently, the fiber lasers have received vast attention as an oscillator of Master Oscillator Power Amplifier (MOPA)system due to their excellent output power stability. Especially, all fiber splicing connection type fiber lasers offer several advantages over conventional bulk type fiber lasers, including greater stability, compactness, and ease of management. This type of fiber laser does not need the adjustment of its spatially coupled components because it consists of only optical fibers, whereas the conventional fiber lasers using focus lenses and air gaps need the adjustment of spatially coupled components. In addition, the direct splicing of fiber components is very robust to thermal effects and mechanical disturbances because it does not need much optical alignment. We have been demonstrated the self mode locked Yb doped fiber laser by Nonlinear Polarization Rotation (NRT)which consist of all fiber splicing connection type and only PM Single mode fiber due to their structures are similar. Since no polarization instability or polarization mode beating, a highly polarized cavity can generate highly stable pulses. We have fiber ring resonator without air gap of connection between fibers, the active element as laser amplifier was PM YDF which has two air channels located in parallel to the core in order to maintain linear polarization, and we used a PANDA fiber that high internal birefringence loss maintaining linear polarization against external perturbation as shown Fig. 1. When pump power was weak, unstable noisy pulses were observed. As the Pump power gradually increased, the operation mode change to the mode locked pulse generation from noisy pulse trains. We obtain the detail pulse waveform that measuring spectrum FWHM of 70nm by digital spectrum analyzer, measuring pulse train repetition rate of 25MHz and measuring pulse width of 44 FS by SHG FROG method as shown Fig. 2. The self mode locked Yb doped fiber laser system can be widely tunable from 1020nm to

  19. Laser beam uniformity and stability using homogenizer-based fiber optic launch method: square core fiber delivery (United States)

    Lizotte, Todd E.


    Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.

  20. Structural and optical properties of europium doped zirconia single crystals fibers grown by laser floating zone


    Soares, M.R.N.; Nico, C.; Peres, M.; Ferreira, N.; Fernandes, A.J.S.; Monteiro, T.; COSTA, F.M.


    Yttria stabilized zirconia single crystal fibers doped with europium ions were developed envisaging optical applications. The laser floating zone technique was used in order to grow millimetric high quality single crystal fibers. The as-grown fibers are completely transparent and inclusion free, exhibiting a cubic structure. Under ultraviolet (UV) excitation, a broad emission band appears at 551 nm. The europium doped fibers are translucent with a tetragonal structure and exhibit an intense r...

  1. Oxidation and sublimation of porous graphite during fiber laser irradiation (United States)

    Phillips, Grady T.; Bauer, William A.; Gonzales, Ashley E.; Herr, Nicholas C.; Perram, Glen P.


    Porous graphite plates, cylinders and cones with densities of 1.55-1.82 g/cm3 were irradiated by a 10 kW fiber laser at 0.075 -3.525 kW/cm2 for 120 s to study mass removal and crater formation. Surface temperatures reached steady state values as high as 3767 K. The total decrease in sample mass ranged from 0.06 to 6.29 g, with crater volumes of 0.52 - 838 mm3, and penetration times for 12.7 mm thick plates as short as 38 s. Minor contaminants in the graphite samples produced calcium and iron oxide to be re-deposited on the graphite surface. Significantly increased porosity of the sample is observed even outside of the laser-irradiated region. Total mass removed increases with deposited laser energy at a rate of 4.83 g/MJ for medium extruded graphite with an apparent threshold of 0.15 MJ. Visible emission spectroscopy reveals C2 Swan and CN red, CN violet bands and Li, Na, and K 2P3/2,1/2 - 2S1/2 doublets. The reacting boundary layer is observed using a mid-wave imaging Fourier transform spectrometer (IFTS) at 2 cm-1 spectral resolution, 0.5 mm/pixel spatial resolution, and 0.75 Hz data cube rate. A two-layer radiative transfer model was used to determine plume temperature, CO, and CO2 concentrations from spectral signatures. The new understanding of graphite combustion and sublimation during laser irradiation is vital to the more complex behavior of carbon composites.

  2. A Miniaturized, 1.9F Integrated Optical Fiber and Stone Basket for Use in Thulium Fiber Laser Lithotripsy. (United States)

    Wilson, Christopher R; Hutchens, Thomas C; Hardy, Luke A; Irby, Pierce B; Fried, Nathaniel M


    The thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the standard holmium:yttrium-aluminum-garnet laser. The more uniform beam profile of the TFL enables higher power transmission through smaller fibers. In this study, a 100-μm core, 140-μm outer-diameter (OD) silica fiber with 5-mm length hollow steel tip was integrated with 1.3F (0.433-mm OD) nitinol wire basket to form a 1.9F (0.633-mm OD) device. TFL energy of 30 mJ, 500 μs pulse duration, and 500 Hz pulse rate was delivered to human uric acid stones, ex vivo. Stone ablation rates measured 1.5 ± 0.2 mg/s, comparable to 1.7 ± 0.3 mg/s using bare fiber tips separately with stone basket. With further development, this device may minimize stone retropulsion, allowing more efficient TFL lithotripsy at higher pulse rates. It may also provide increased flexibility, higher saline irrigation rates through the ureteroscope working channel, reduce fiber degradation compared with separate fiber and basket manipulation, and reduce laser-induced nitinol wire damage.

  3. Test Port for Fiber-Optic-Coupled Laser Altimeter (United States)

    Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John


    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as

  4. Rotational second harmonic generation endoscopy with 1μm fiber laser system (United States)

    Liu, Gangjun; Xie, Tuqiang; Yu, Lingfeng; Su, Jianping; Tomov, Ivan V.; Wang, Qiang; Rao, Bin; Zhang, Jun; Chen, Zhongping


    We present a kind of rotational two photon mciroendoscopy for 1μm fiber femtosecond laser. The fiber laser provide ultrashort femto-second pulses with center wavelength at 1.034μm and repetition rate of 50MH. The rotational probe is based on double cladding photonic crystal fiber (CD PCF) fiber, Grin lens, microprism and rotational MEMS motor. The MEMS motor has diameter of 2.2mm and can provide 360 degree full view rotation. We experimentally show that the DC PCF fiber works for 1μm fiber laser two photon system. Second harmonic generation (SHG) singnal line profile of rat tail tendon and fish scale was taken with the endoscopy system.

  5. Widely tunable mode-locked fiber laser using carbon nanotube and LPG W-shaped filter. (United States)

    Wang, Jie; Zhang, A Ping; Shen, Yong Hang; Tam, Hwa-yaw; Wai, P K A


    A widely tunable mode-locked fiber laser using a carbon nanotube absorber and a fiber-optic W-shaped spectral filter is presented. The W-shaped filter is constructed by sandwiching a phase-shifted long-period grating between two LPGs of different periods. By adjusting the temperature of the W-shaped filter from 23°C to 100°C, the central wavelength of the mode-locked fiber laser can be continuously tuned from 1597 to 1553 nm. The tuning range is further extended to 1531.6 nm when a shorter erbium-doped fiber is used in the fiber oscillator. The experimental results reveal that the large thermal tunability of the proposed LPG filter provides an effective approach to achieve compact widely tunable mode-locked fiber lasers covering both C and L bands.

  6. Fiber optics and microprocessors: a control-system solution for the laser-fusion environment

    Energy Technology Data Exchange (ETDEWEB)

    Thuot, M.E.


    The use of fiber optics and microprocessors in a distributed computer control system for a 100-kJ CO/sub 2/ laser fusion facility is described. Gas-laser control systems must operate in an environment in which megavolt Marx circuits generate megampere discharges in the laser amplifiers, with attendant high electromagnetic fields. By linking the distributed controls with fiber optics we minimize the adverse effect of these fields on the hard-wired controls and gain the additional advantage of ground isolation. Our fiber-optic subsystems and interfaces include low-error-rate digital communication links between computers; nanosecond timing and trigger links; fiber-optic parameter monitors with dc-to-10 MHz bandwidths; binary fiber-optic power control for valves, motors, and contractors; and binary fiber-optic status interfaces to monitor the system response to control outputs.

  7. Cladding single crystal YAG fibers grown by laser heated pedestal growth (United States)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Chick, Theresa; Chakrabarty, Ayan; Trembath-Reichert, Stephen; Chapman, James; Rand, Stephen C.


    Rare-earth doped single-crystal (SC) Yttrium Aluminum Garnet (YAG) fibers are excellent candidates for high power lasers. These SC fiber optics combine the favorable low Stimulated Brillouin Scattering (SBS) gain coefficient and excellent thermal properties to make them an attractive alternative to glass fiber lasers and amplifiers. Various rare-earth doped SC fibers have been grown using the laser heated pedestal growth (LHPG) technique. Several cladding methods, including in-situ and post-growth cladding techniques, are discussed in this paper. A rod-in-tube approach has been used by to grow a fiber with an Erbium doped SC YAG fiber core inserted in a SC YAG tube. The result is a radial gradient in the distribution of rare-earth ions. Post cladding methods include sol-gel deposited polycrystalline.

  8. Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yalin, Azer [Seaforth, LLC


    Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 – 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

  9. Pulse-spacing manipulation in a passively mode-locked multipulse fiber laser. (United States)

    Yu, Ying; Wei, Xiaoming; Kang, Jiqiang; Li, Bowen; Wong, Kenneth K Y


    Passively mode-locked fiber lasers have been intensively applied in various research fields. However, the passive mode-locking typically operates in free-running regime, which easily produces messy multiple pulses due to the fruitful nonlinear effects involved in optical fibers. Actively controlling those disordered pulses in a passively mode-locked laser is of great interest but rarely studied. In this work, we experimentally investigate a flexible pulse-spacing manipulation in the passively mode-locked multipulse fiber laser by both intracavity and extracavity methods. A tuning range of pulse spacing up to 1.5 ns is achieved. More importantly, continuous pulse-spacing modulation is successfully demonstrated through external optical injection. It is anticipated that the results can contribute to the understanding of laser nonlinear dynamics and pursuing the optimal performance of passively mode-locked fiber lasers for practical applications.

  10. Space-dependent characterization of laser-induced plasma plume during fiber laser welding (United States)

    Xiao, Xianfeng; Song, Lijun; Xiao, Wenjia; Liu, Xingbo


    The role of a plasma plume in high power fiber laser welding is of considerable interest due to its influence on the energy transfer mechanism. In this study, the space-dependent plasma characteristics including spectrum intensity, plasma temperature and electron density were investigated using optical emission spectroscopy technique. The plasma temperature was calculated using the Boltzmann plot of atomic iron lines, whereas the electron density was determined from the Stark broadening of the Fe I line at 381.584 nm. Quantitative analysis of plasma characteristics with respect to the laser radiation was performed. The results show that the plasma radiation increases as the laser power increases during the partial penetration mode, and then decreases sharply after the initiation of full penetration. Both the plasma temperature and electron density increase with the increase of laser power until they reach steady state values after full penetration. Moreover, the hottest core of the plasma shifts toward the surface of the workpiece as the penetration depth increases, whereas the electron density is more evenly distributed above the surface of the workpiece. The results also indicate that the absorption and scattering of nanoparticles in the plasma plume is the main mechanism for laser power attenuation.

  11. Low-NA fiber laser pumps powered by high-brightness single emitters (United States)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya


    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed high-brightness NEON multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber enabling low-NA power delivery to a customer's fiber laser network. Brightness-enhanced single emitters are engineered with ultra-low divergence for compatibility with the low-NA delivery fiber, with the latest emitters delivering 14 W with 95% of the slow-axis energy contained within an NA of 0.09. The reduced slow-axis divergence is achieved with an optimized epitaxial design, where the peak optical intensity is reduced to both lessen filamentation within the laser cavity and reduce the power density on the output facet thus increasing the emitter reliability. The low mode filling of the fiber allows it to be coiled with diameters down to 70 mm at full operating power despite the small NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules. 50W fiber pump products at 915, 950 and 975 nm wavelengths are presented, including a wavelengthstabilized version at 976 nm.

  12. High-power spectral beam combining of linearly polarized Tm:fiber lasers. (United States)

    Shah, Lawrence; Sims, R Andrew; Kadwani, Pankaj; Willis, Christina C C; Bradford, Joshua B; Sincore, Alex; Richardson, Martin


    To date, high-power scaling of Tm:fiber lasers has been accomplished by maximizing the power from a single fiber aperture. In this work, we investigate power scaling by spectral beam combination of three linearly polarized Tm:fiber MOPA lasers using dielectric mirrors with a steep transition from highly reflective to highly transmissive that enable a minimum wavelength separation of 6 nm between individual laser channels within the wavelength range from 2030 to 2050 nm. Maximum output power is 253 W with M(2)<2, ultimately limited by thermal lensing in the beam combining elements.

  13. Implementation of distributed feedback fiber laser sensor for acoustic measurements in hydraulic fracturing (United States)

    Chen, Rongzhang; Yan, Aidong; Zaghloul, Mohamed A. S.; Lu, Guanyi; Bunger, Andrew P.; Miller, Gary A.; Cranch, Geoffrey A.; Chen, Kevin P.


    A distributed feedback (DFB) fiber laser strain sensor was implemented to measure acoustic emission induced by the hydraulic fracturing process. A study of practical sensor mounting configurations and their characteristics was carried out to find a practical solution. Combining the suitable mounting configuration and ultrahigh strain sensitivity of the DFB fiber laser, the evolution of the hydraulic fracturing process was well monitored. This study shows that fiber lasers can be useful alternatives to piezoelectric sensors in the field of hydraulic fracturing for gas and oil extraction.

  14. High-power ns-pulse fiber laser sources for remote sensors (United States)

    Di Teodoro, Fabio; Belden, Paul; Ionov, Pavel; Werner, Nicolette


    The development of fiber-based laser sources for space-borne remote sensors must meet many concurrent requirements including high pulse energy/peak power, excellent beam quality, narrow spectral linewidth, simple thermal management, small volume and mass, low power consumption, rugged packaging, and long-term reliability. To address these requirements, many aspects of pulse fiber laser technology must be advanced beyond the state of the art of traditional optical sources used in telecommunications and materials processing. In this article, we discuss component and solutions that enable pulsed fiber laser sources to support remote sensing from space. We also describe several examples of such sources and characterize their performance.

  15. Principles and performance of tapered fiber lasers: from uniform to flared geometry. (United States)

    Kerttula, Juho; Filippov, Valery; Chamorovskii, Yuri; Ustimchik, Vasily; Golant, Konstantin; Okhotnikov, Oleg G


    We have studied the recently demonstrated concept of fiber lasers based on active tapered double-clad fiber (T-DCF) in copropagating and counterpropagating configurations, both theoretically and experimentally, and compared the performance to fiber lasers based on conventional cylindrical fibers in end-pumped configurations. Specific properties of T-DCFs were considered theoretically using a rate-equation model developed for tapered fibers, and a detailed comparative study was carried out experimentally. Furthermore, we have studied mode coupling effects in long adiabatic tapers due to coiling and local bending. The results allow us to conclude that, with proper fiber design, the T-DCF technology offers a high-potential alternative for bright, cost-effective fiber devices.

  16. Tunable Tm-doped fiber ring laser operating at 1.9 μm band using force-induced fiber grating as wavelength tuner. (United States)

    Sakata, Hajime; Ichikawa, Marie; Nakagami, Hiroyuki


    We report wavelength-tunable operation of a Tm-doped silica fiber laser by using a force-induced long-period fiber grating (LPFG) formed in a fiber ring resonator. The laser output wavelength is tuned by moving the transmission passband that is generated between adjacent resonance wavelengths due to the force-induced LPFG. By changing the grating period around 900 μm, we control the laser output wavelength between 1845 and 1930 nm.

  17. Analysis of influence factors on 2 μm Tm3+-doped fiber laser output characteristics (United States)

    Yu, Miao; Jin, Guang-yong; Wang, Ji


    The affecting factors of 2 μm Tm3+-doped fiber laser output characteristics were theoretical analyzed. On the basis of the energy level structure and optical absorption properties of Tm3+ ion, combining with the basic principle of Tm3+-doped fiber laser, and starting from the energy level structures and the cross relaxation processes of Tm3+ ion, the three pumping methods of Tm doped fiber laser (TDF) were analyzed and discussed. The influences of output characteristics by different influence factors were simulated. Based on optimization of the equations, for different fiber lengths, doping concentrations and pumping absorption coefficients and other influence factors, the laser output characteristics under different conditions were obtained and analyzed. Combination the simulation analysis, through the reasonable design and the selection of the optimum parameters of the laser system, the high laser output performance scan be achieved by improving the injection power and controlling of fiber coil diameter. The influences of different factors on the output characteristics were analyzed in the issue. The high laser output performances can be obtained and the laser loss was reduced by selecting the parameters of the laser system properly.

  18. Octave-spanning spectrum of femtosecond Yb:fiber ring laser at 528 MHz repetition rate in microstructured tellurite fiber. (United States)

    Wang, Guizhong; Jiang, Tongxiao; Li, Chen; Yang, Hongyu; Wang, Aimin; Zhang, Zhigang


    The octave-spanning spectrum was generated in a tellurite glass based microstructured fiber pumped by a 528 MHz repetition rate Yb:fiber ring laser without amplification. The laser achieved 40% output optical-to-optical efficiency with the output power of 410 mW. By adjusting the grating pair in the cavity, this oscillator can work at different cavity dispersion regimes with the shortest dechirped pulse width of 46 fs. The output pulses were then launched into a high-nonlinearity tellurite fiber, which has the zero-dispersion wavelength at ~1 μm. The high nonlinearity coefficient (1348 km⁻¹W⁻¹) and the matched zero-dispersion wavelength with pump laser enable the octave-spanning supercontinuum generated from 750 nm to 1700 nm with the coupled pulse energy above 10 pJ.

  19. Erbium-doped fiber ring laser based on few-mode-singlemode-few-mode fiber structure for refractive index measurement (United States)

    Liu, Jingxuan; Wang, Muguang; Liang, Xiao; Dong, Yue; Xiao, Han; Jian, Shuisheng


    A novel Erbium-doped fiber ring cavity laser sensor for refractive index (RI) measurement based on a special designed few-mode-singlemode-few-mode structure is proposed and experimentally demonstrated. The few-mode fiber is a home-made concentric ring core fiber (CRCF) which can only support two scalar modes. Thus a stable mode interference occurs which functions as a sensing head and band-pass filter to select the lasing wavelength simultaneously. A sensitivity of -45.429 nm/RIU is obtained in the range of 1.333-1.363. High optical signal to noise ratio (OSNR) of ∼45 dB and narrow 3-dB bandwidth of ∼0.1 nm indicate that the fiber ring laser sensing system has a high resolution and accuracy RI measurement.

  20. Crack detection in riveted lap joints using fiber laser acoustic emission sensors. (United States)

    Cranch, G A; Johnson, L; Algren, M; Heerschap, S; Miller, G A; Marunda, T S; Holtz, R L


    Fiber laser ultrasonic sensors are demonstrated to be capable of measuring acoustic emission generated by cracks in aluminum panels. A single laser sensor is integrated into a riveted lap joint, which is subject to accelerated fatigue. Acoustic emission generated by crack formation in the panel in addition to other acoustic events due to fretting within the joint are clearly resolved by the laser sensor. Localization of an acoustic emission event is demonstrated with a multiplexed array of three laser sensors. This manuscript also calculates the fundamental limit to displacement resolution of the fiber laser sensor and presents measurements of the directional response to Lamb waves. The high measurement resolution and multiplexing capability of the fiber laser ultrasonic sensor makes it an ideal candidate for structural health monitoring applications.

  1. Chromatic polarization effects of swept waveforms in FDML lasers and fiber spools. (United States)

    Wieser, Wolfgang; Palte, Gesa; Eigenwillig, Christoph M; Biedermann, Benjamin R; Pfeiffer, Tom; Huber, Robert


    We present detailed investigations of chromatic polarization effects, caused by fiber spools used in FDML lasers and buffering spools for rapidly wavelength swept lasers. We introduce a novel wavelength swept FDML laser source, specially tailored for polarization sensitive optical coherence tomography (OCT) which switches between two different linear polarization states separated by 45°, i.e. 90° on the Poincaré sphere. The polarization maintaining laser cavity itself generates a stable linear polarization state and uses an external buffering technique in order to provide alternating polarization states for successive wavelength sweeps. The design of the setup is based on a comprehensive analysis of the polarization output from FDML lasers, using a novel 150 MHz polarization analyzer. We investigate the fiber polarization properties related to swept source OCT for different fiber delay topologies and analyze the polarization state of different FDML laser sources. © 2012 Optical Society of America

  2. High-power thulium fiber laser Q switched with single-layer graphene. (United States)

    Tang, Yulong; Yu, Xuechao; Li, Xiaohui; Yan, Zhiyu; Wang, Qi Jie


    We report high-power 2 μm Tm3+ fiber lasers passively Q switched by double-piece single-layer graphene transferred onto a glass plate. Through manipulating intracavity laser beam size and increasing pump ratios, an average power of 5.2 W is directly achieved from the laser oscillator with an optical-to-optical slope efficiency of 26%. The laser pulse energy can be as high as ∼18  μJ, comparable to that from actively Q-switched fiber lasers. The narrowest pulse width is 320 ns, and the pulse repetition rate can be tuned from tens of kilohertz to 280 kHz by changing the pump power. To the best of our knowledge, this is the highest average power and pulse energy, as well as the narrowest pulse width, from graphene-based Q-switched 2 μm fiber lasers.

  3. Experimental demonstration of passive coherent combining of fiber lasers by phase contrast filtering. (United States)

    Jeux, François; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Barthelemy, Alain


    We report experiments on a new laser architecture involving phase contrast filtering to coherently combine an array of fiber lasers. We demonstrate that the new technique yields a more stable phase-locking than standard methods using only amplitude filtering. A spectral analysis of the output beams shows that the new scheme generates more resonant frequencies common to the coupled lasers. This property can enhance the combining efficiency when the number of lasers to be coupled is large.

  4. A simple way to establish a dual-core hollow fiber for laser surgery applications (United States)

    Jing, Chengbin; Kendall, Wesley; Harrington, James A.


    A dual-core hollow fiber has two separate cores for propagation of light. Such a fiber can have some good applications in laser surgery. The dual-core guide can transmit an infrared laser beam for cutting or ablation while a visible laser beam is simultaneously transmitted as a pilot or aiming beam. The traditional fabrication procedure for a dual-core hollow fiber involves chemical vapor deposition (CVD) growth on silica tubing of an inner cladding layer followed by the deposition of a low index polymer on the outside of the tubing. This will provide a hollow structure that has a clad-core-clad tube. This work provides an alternative approach which involves nesting of two hollow waveguides to establish a dual-core hollow fiber. An Ag/AgI hollow glass fiber is fabricated for transmitting CO2 laser. Another silica glass tube is selected carefully so that its inner diameter is just slightly larger than the outer diameter of the Ag/AgI hollow fiber. The outer surface of the as-selected glass tubing is coated with a low refractive index polymer. The Ag/AgI hollow fiber was inserted into the polymer coated silica glass tubing to establish an air or silicone oil gap between the two tubes. A visible laser beam is transmitted through the outer tube's core. The CO2 laser beam is transmitted through the inner Ag/AgI hollow fiber. The dual-core hollow fibers show good transmission for both the red aiming beam and the CO2 laser. Therefore this structure can be a good candidate for laser surgery applications.

  5. Photonic crystal fiber based dual-wavelength Q-switched fiber laser using graphene oxide as a saturable absorber. (United States)

    Ahmad, H; Soltanian, M R K; Pua, C H; Alimadad, M; Harun, S W


    A Q-switched dual-wavelength fiber laser with narrow channel spacing is proposed and demonstrated. The fiber laser is built around a 3 m long erbium doped fiber as the gain medium and a 10 cm long photonic crystal fiber (PCF) as the element used to generate the dual-wavelength output. The PCF has a solid core approximately 4.37 μm in diameter and is surrounded by microscopic air-holes with a diameter of about 5.06 μm each as well as a zero-dispersion wavelength of about 980 nm. A graphene oxide based saturable absorber is used to generate the desired pulsed output. At the maximum pump power of 72 mW the laser is capable of generating pulses with a repetition rate and pulse-width of 31.0 kHz and 7.0 μs, respectively, as well as an average output power and pulse energy of 0.086 mW and 2.8 nJ, respectively. The proposed fiber laser has substantial potential for use in applications that require longer duration pulsed outputs such as in range finding and terahertz radiation generation.

  6. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications (United States)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.


    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  7. Thermal behaviors of stainless steel tube based GeO2 ATR hollow fibers for transmitting CO2 laser radiations (United States)

    Wang, Xu; Wang, Lin; Fu, Xiaohong; Jing, Chengbin; Yue, Fangyu; Yang, Pingxiong; Chu, Junhao


    The stainless steel (SUS) capillary tube attenuated total reflective (ATR) GeO2 hollow waveguide has advantages of low fabrication cost, strong mechanic strength and low transmission loss. It can find laser power delivery applications such as laser surgery, and material processing. However, the temperature rise of the operating waveguide may affect the laser delivery stability and the laser surgery safety. The thermal behaviors of the SUS ATR hollow fiber transmitting CO2 laser were investigated theoretically and experimentally in this work. Both theoretic simulations and experimental results disclose the periodic oscillatory behavior of the fiber temperature. The influence of input laser power on fiber temperature has been quantitatively discussed. A maximum input laser power of 23 W is predicted for laser surgery in which case the fiber temperature had better be lower than 47 °C to avoid tissue scalds. An input laser power smaller than 137 W is suggested preventing the fiber from being overheated (150 °C).

  8. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry


    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression.......We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  9. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos


    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluoresc......We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement...... in fluorescence pickup efficiency of a Förster resonance energy transfer-based POF glucose sensor. A Zemax model of the CPC-tipped sensor predicts an optimal improvement of a factor of 3.96 compared to the sensor with a plane-cut fiber tip. The fs laser micromachined CPC tip showed an increase of a factor of 3...

  10. Energy recycling versus lifetime quenching in erbium-doped 3-µm fiber lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Golding, P.S.; Jackson, S.D.; King, T.A.

    Spectroscopic and numerical investigations show that energy-transfer upconversion can efficiently recycle energy in 3-µm Er:ZBLAN fiber lasers at relatively low dopant concentrations, thereby dramatically increasing the slope efficiency compared to lifetime quenching by Pr3+.

  11. Development of fiber-delivered laser peening system to prevent stress corrosion cracking of reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Y.; Kimura, M.; Yoda, M.; Mukai, N.; Sato, K.; Uehara, T.; Ito, T.; Shimamura, M.; Sudo, A.; Suezono, N. [Toshiba Corp., Yokohama (Japan)


    The authors have developed a system to deliver water-penetrable intense laser pulses of frequency-doubled Nd:YAG laser through optical fiber. The system is capable of improving a residual stress on water immersed metal material remotely, which is effective to prevent the initiation of stress corrosion cracking (SCC) of reactor components. Experimental results showed that a compressive residual stress with enough amplitude and depth was built in the surface layer of type 304 stainless steel (SUS304) by irradiating laser pulses through optical fiber with diameter of 1 mm. A prototype peening head with miniaturized dimensions of 88 mm x 46 mm x 25 mm was assembled to con-firm the accessibility to the heat affected zone (HAZ) along weld lines of a reactor core shroud. The accessibility was significantly improved owing to the flexible optical fiber and the miniaturized peening head. The fiber delivered system opens up the possibility of new applications of laser peening. (author)

  12. Practical Method for engineering Erbium-doped fiber lasers from step-like pulse excitations

    Energy Technology Data Exchange (ETDEWEB)

    Causado-Buelvas, J D; Gomez-Cardona, N D; Torres, P, E-mail: [Escuela de fisica, Universidad Nacional de Colombia-sede Medellin A.A.3840, Medellin (Colombia)


    A simple method, known as 'easy points', has been applied to the characterization of Erbium-doped fibers, aiming for the engineering of fiber lasers. Using low- optical-power flattop pulse excitations it has been possible to determine both the attenuation coefficients and the intrinsic saturation powers of doped single-mode fibers at 980 and 1550 nm. Laser systems have been projected for which the optimal fiber length and output power have been determined as a function of the input power. Ring and linear laser cavities have been set up, and the characteristics of the output laser have been obtained and compared with the theoretical predictions based on the 'easy points' parameters.

  13. Graphene oxide mode-locked femtosecond erbium-doped fiber lasers

    National Research Council Canada - National Science Library

    Xu, Jia; Liu, Jiang; Wu, Sida; Yang, Quan-Hong; Wang, Pu


    We demonstrated the femtosecond erbium-doped all-fiber lasers mode-locked with graphene oxide, which can be conveniently obtained from natural graphite by simple oxidation and ultra-sonication process...

  14. High power L-band mode-locked fiber laser based on topological insulator saturable absorber. (United States)

    Meng, Yichang; Semaan, Georges; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois


    We demonstrate a passive mode-locked Er:Yb doped double-clad fiber laser using a microfiber-based topological insulator (Bi(2)Se(3)) saturable absorber (TISA). By optimizing the cavity loss and output coupling ratio, the mode-locked fiber laser can operate in L-band with high average output power. With the highest pump power of 5 W, 91st harmonic mode locking of soliton bunches with average output power of 308 mW was obtained. This is the first report that the TISA based erbium-doped fiber laser operating above 1.6 μm and is also the highest output power yet reported in TISA based passive mode-locked fiber laser.

  15. Active mode-locking via pump modulation in a Tm-doped fiber laser

    Directory of Open Access Journals (Sweden)

    Yu Wang


    Full Text Available We propose and experimentally realize a new class of actively mode-locking technique using pump modulation for rare-earth doped fiber lasers. A Tm-doped fiber laser at 2 μm is mode-locked using the proposed active mode-locking via pump modulation technique. Low-threshold continuous-wave mode-locking is achieved with a transform-limited pulse width of 4.4 ps, a spectral bandwidth of 0.9 nm, and a repetition rate of 12.9 MHz. Second-harmonic mode-locking is also demonstrated by simply driving the pump current at an appropriate frequency. More importantly, we believe that this technique can be applied to mode-lock other rare-earth doped fiber laser systems such as erbium- and ytterbium-doped fiber lasers.

  16. Active mode-locking via pump modulation in a Tm-doped fiber laser (United States)

    Wang, Yu; Set, Sze Y.; Yamashita, Shinji


    We propose and experimentally realize a new class of actively mode-locking technique using pump modulation for rare-earth doped fiber lasers. A Tm-doped fiber laser at 2 μm is mode-locked using the proposed active mode-locking via pump modulation technique. Low-threshold continuous-wave mode-locking is achieved with a transform-limited pulse width of 4.4 ps, a spectral bandwidth of 0.9 nm, and a repetition rate of 12.9 MHz. Second-harmonic mode-locking is also demonstrated by simply driving the pump current at an appropriate frequency. More importantly, we believe that this technique can be applied to mode-lock other rare-earth doped fiber laser systems such as erbium- and ytterbium-doped fiber lasers.

  17. High-efficiency resonantly pumped 1550-nm fiber-based laser transmitter Project (United States)

    National Aeronautics and Space Administration — nLight proposes the development of high efficiency, high average power 1550-nm laser transmitter system that is based on Er-doped fiber amplifier resonantly pumped...

  18. High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Chen, Y.; Steinvurzel, P.


    We propose exploiting intermodal four-wave mixing for energy-scalable tuneable fiber lasers, hitherto restricted to low powers, constrained by dispersion-tailoring limitations in PCFs. Conversion over an octave, at mJ-energy-levels, appears feasible....

  19. Compact passively Q-switched single-frequency Er3+/Yb3+ codoped phosphate fiber laser (United States)

    Zhang, Yuanfei; Wang, Simin; Lin, Wei; Mo, Shupei; Zhao, Qilai; Yang, Changsheng; Feng, Zhouming; Deng, Huaqiu; Peng, Mingying; Yang, Zhongmin; Xu, Shanhui


    We present a compact passively Q-switched single-frequency fiber laser based on a 12-mm-long laboratory-built highly Er3+/Yb3+ codoped phosphate fiber (EYDPF) and a semiconductor saturable absorber mirror (SESAM). An effective cavity length of less than 20 mm ensures the stable single-frequency operation of the Q-switched fiber laser. By employing a SESAM for Q-switching, a single-pulse energy of more than 34.4 nJ is realized with the narrowest pulse duration of 95 ns, and the repetition rate of the Q-switched fiber laser reaches over 600 kHz. In addition, the optical signal-to-noise ratio of the output laser is as high as 68.0 dB.

  20. Dispersion Management in a Harmonically Mode-Locked Fiber Soliton Laser

    National Research Council Canada - National Science Library

    Carruthers, Thomas F; Duling, III, Irl N; Horowitz, Moshe; Menyuk, Curtis R


    Harmonically mode-locked Er-fiber soliton lasers have become a reliable source of high-repetition-rate picosecond pulses in high-speed communications and photonic analog-to-digital conversion systems...

  1. Frequency-Locked Single-Frequency Fiber Laser at 2 Micron Project (United States)

    National Aeronautics and Space Administration — Frequency-locked single-frequency 2 micron fiber laser is proposed to be used for airborne/spaceborne coherent lidar measurements, i.e., Active Sensing of CO2...

  2. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser Project (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  3. High Energy Single Frequency Fiber Laser at Low Repetition Rate Project (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system operating at low repetition rate of 10 Hz to 1 kHz for coherent Lidar systems...

  4. High Energy Single Frequency Fiber Laser at Low Repetition Rate Project (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  5. Hight Energy Fiber Laser Based Lidar Transmitter for Topographic Mapping Project (United States)

    National Aeronautics and Space Administration — This SBIR will develop core Yb laser technology that is higher than 50% optical to optical efficient with pulse energies up to 300uJ/pulse in the all fiber...

  6. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser Project (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  7. High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler. (United States)

    Wan, Hongdan; Wang, Jie; Zhang, Zuxing; Cai, Yu; Sun, Bin; Zhang, Lin


    We propose and demonstrate an all-fiber passively mode-locked laser with a figure-8 cavity, which generates pulsed cylindrical vector beam output based on a mode selective coupler (MSC). The MSC made of a two mode fiber and a standard single mode fiber is used as both the intracavity transverse mode converter and mode splitter with a low insertion loss of about 0.65 dB. The slope efficiency of the fiber laser is > 3%. Through adjusting the polarization state in the laser cavity, both radially and azimuthally polarized beams have been obtained with high mode purity which are measured to be > 94%. The laser operates at 1556.3 nm with a spectral bandwidth of 3.2 nm. The mode-locked pulses have duration of 17 ns and a repetition rate of 0.66 MHz.

  8. Fiber inline Mach-Zehnder interferometer based on femtosecond laser inscribed waveguides. (United States)

    Li, W W; Chen, W P; Wang, D N; Wang, Z K; Xu, Ben


    A new type of Mach-Zehnder interferometer device based on in-fiber optical waveguides, fabricated by direct femtosecond laser pulse inscription in a single-mode fiber has been demonstrated and successfully employed for temperature and strain measurement. The in-fiber waveguide can couple the light out from the fiber core and guide it along the cladding region before directing it back into the fiber core. Such an inner structured interferometer device is compact and robust, can be constructed in a flexible and precisely controlled manner, and hence is expected to have many potential applications.

  9. Femtosecond laser inscription of optical circuits in the cladding of optical fibers (United States)

    Grenier, Jason R.

    The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters

  10. Pulse dynamics of a passively mode-locked Bi-doped fiber laser. (United States)

    Kivistö, Samuli; Puustinen, Janne; Guina, Mircea; Herda, Robert; Marcinkevicius, Saulius; Dianov, Evgueny M; Okhotnikov, Oleg G


    The pulse evolution in Bi-doped soliton fiber laser with slow and fast saturable absorber has been studied both experimentally and numerically. Semiconductor saturable absorbers with balanced slow and fast absorption recovery mechanisms exhibit a bi-temporal recovery dynamics which permits both reliable start-up of passive mode-locking and short pulse generation and stabilization. The pulse dynamics within the Bi fiber laser cavity have been investigated.

  11. Optical fiber cable for transmission of high power laser energy over great distances (United States)

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya


    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  12. Polarized millijoule fiber laser system with high beam quality and pulse shaping ability (United States)

    Zhang, Rui; Tian, Xiaocheng; Xu, Dangpeng; Zhou, Dandan; Zong, Zhaoyu; Li, Hongxun; Fan, Mengqiu; Huang, Zhihua; Zhu, Na; Su, Jingqin; Zhu, Qihua; Jing, Feng


    The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.

  13. Fibred knots and twisted Alexander invariants


    Cha, Jae Choon


    We introduce a new algebraic topological technique to detect non-fibred knots in the three sphere using the twisted Alexander invariants. As an application, we show that for any Seifert matrix of a knot with a nontrivial Alexander polynomial, there exist infinitely many non-fibered knots with the given Seifert matrix. We illustrate examples of knots that have trivial Alexander polynomials but do not have twisted Alexander invariants of fibred knots.

  14. Multiwavelength mode-locked cylindrical vector beam fiber laser based on mode selective coupler (United States)

    Huang, Ping; Cai, Yu; Wang, Jie; Wan, Hongdan; Zhang, Zuxing; Zhang, Lin


    We propose and demonstrate a multiwavelength mode-locked fiber laser with cylindrical vector beam generation for the first time, to the best of our knowledge. The mode-locking mechanism is based on a nonlinear polarization rotation effect in fiber, and the multiwavelength operation is contributed to by an in-line birefringence fiber filter with periodic multiple passbands, formed by incorporating a section of polarization maintaining fiber into the laser cavity with a fiber polarizer. Furthermore, by using a home-made mode selective coupler, which acts as both a mode converter from fundamental mode to higher-order mode and an output coupler, multiwavelength mode-locked cylindrical vector beams have been obtained. This may have potential applications in mode-division multiplexing optical fiber communication and material processing.

  15. Comparison of laser-assisted damage in soft tissue using bi-directional and forward-firing optical fiber (United States)

    Kim, Changhwan; Sohn, Ik-Bu; Park, Hoyong; Lee, Yong Joong; Lee, Ho


    Laser-assisted endoscopic surgery is made possible by employing optical devices such as fiber optics and hollow wave-guides. In some applications of laser-assisted endoscopic surgery, it is necessary to change the direction of the light emission. Our group reported a new fabrication method for bi-directional firing fibers. The conical surface of the fiber tip made the bi-directional emission of the laser light at the distal end of the fiber. In this study, we employed the bi-directional firing fiber for laser-assisted coagulation of soft tissue. The developed fiber and the normal forward-firing fiber are used for the endoscopic delivery system of a continuous IR laser into an in vitro porcine liver. The ablation and coagulation pattern were compared for two distinctive fiber systems. Regardless of the laser's parameters, the bi-directional firing fiber produced a cavity and coagulation zone with more or less a circular shape, while the forward fiber produced an elongated cavity and coagulation region. The bi-directional firing fiber produced wider and shorter coagulation and cavity zones compared to that of the forward-firing fiber. We expect the bi-directional firing fiber to be an excellent optical delivery system for endoscopic laser-hyperthermia when used against various tumors in the liver, breast and thyroid.

  16. Waveform agile high-power fiber laser illuminators for directed-energy weapon systems (United States)

    Engin, Doruk; Lu, Wei; Kimpel, Frank; Gupta, Shantanu


    A kW-class fiber-amplifier based laser illuminator system at 1030nm is demonstrated. At 125 kHz pulse repetition rate, 1.9mJ energy per pulse (235W average power) is achieved for 100nsec pulses with >72% optical conversion efficiency, and at 250kHz repetition, >350W average power is demonstrated, limited by the available pumps. Excellent agreement is established between the experimental results and dynamic fiber amplifier simulation, for predicting the pulse shape, spectrum and ASE accumulation throughout the fiber-amplifier chain. High pulse-energy, high power fiber-amplifier operation requires careful engineering - minimize ASE content throughout the pre-amplifier stages, use of large mode area gain fiber in the final power stage for effective pulse energy extraction, and pulse pre-shaping to compensate for the laser gain-saturation induced intra-pulse and pulse-pattern dependent distortion. Such optimization using commercially available (VLMA) fibers with core size in the 30-40μm range is estimated to lead to >4mJ pulse energy for 100nsec pulse at 50kHz repetition rate. Such waveform agile high-power, high-energy pulsed fiber laser illuminators at λ=1030nm satisfies requirements for active-tracking/ranging in high-energy laser (HEL) weapon systems, and in uplink laser beacon for deep space communication.

  17. High-power Tm-doped fiber distributed-feedback laser at 1943 nm. (United States)

    Zhang, Z; Shen, D Y; Boyland, A J; Sahu, J K; Clarkson, W A; Ibsen, M


    We report on high-power operation of a fiber distributed-feedback (DFB) laser fabricated from Tm-doped photosensitive alumino-silicate fiber and in-band pumped by an Er/Yb fiber laser at 1565 nm. The fiber DFB laser yielded up to 875 mW of single-ended output at 1943 nm on two orthogonally polarized modes for 3.5 W of absorbed pump power. Further scaling of the DFB laser output power was achieved with the aid of a simple Tm-doped fiber amplifier stage spliced directly to the DFB fiber without the need of an optical isolator. The maximum output power from the DFB laser and fiber amplifier was >3 W for a combined absorbed pump power of 8.1 W. The influence of thermal loading, owing to quantum defect heating in the Tm-doped core, on the output power and longitudinal mode behavior is discussed, and the prospects for further improvement in performance are considered.

  18. Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics. (United States)

    Willer, Ulrike; Scheel, Dirk; Kostjucenko, Irina; Bohling, Christian; Schade, Wolfgang; Faber, Eckhard


    A compact, rugged and portable fiber-optic evanescent-field laser sensor is developed for the detection of gaseous species in harsh environments such as volcano fumaroles or industrial combustion of glass furnaces. The sensor consists of an optical multi-mode fused silica fiber with jacket and cladding removed and the bare fiber core in direct contact with the surrounding molecules. The beam of a single-mode DFB diode laser with an emission wavelength centered at 1.5705 microm is coupled into the fiber. At the other end of the fiber an infrared detector is used to record the transmitted infrared laser light intensity. Due to the frustrated total reflection (FTR) and the attenuated total reflection (ATR) the laser intensity is attenuated when passing through the fiber. The FTR is related to a change of the index of refraction while the latter one is related to a change of the absorption coefficient. While tuning the DFB laser wavelength across absorption lines of molecules surrounding the fiber a spectral intensity profile is measured. Voigt functions are fitted to the recorded intensity profiles to estimate relative molecule concentrations. In this paper results from first field measurements at the volcano site 'Solfatara' in Italy are reported that use such a sensor device for simultaneous detection of H2S, CO2 and H2O directly in the gas stream of a volcano fumarole.

  19. 70-fs mode-locked erbium-doped fiber laser with topological insulator. (United States)

    Liu, Wenjun; Pang, Lihui; Han, Hainian; Tian, Wenlong; Chen, Hao; Lei, Ming; Yan, Peiguang; Wei, Zhiyi


    Femtosecond optical pulses have applications in optical communication, astronomical frequency combs, and laser spectroscopy. Here, a hybrid mode-locked erbium-doped fiber (EDF) laser with topological insulator (TI) is proposed, for the first time to our best knowledge. The pulsed laser deposition (PLD) method is employed to fabricate the fiber-taper TI saturable absorber (TISA). By virtue of the fiber-taper TISA, the hybrid EDF laser is passively mode-locked using the nonlinear polarization evolution (NPE), and emits 70 fs pulses at 1542 nm, whose 3 dB spectral width is 63 nm with a repetition rate and transfer efficiency of 95.4 MHz and 14.12%, respectively. Our experiments indicate that the proposed hybrid mode-locked EDF lasers have better performance to achieve shorter pulses with higher power and lower mode-locking threshold in the future.

  20. Phase Noise Characteristics of Fiber Lasers as Potential Ultra-Stable Master Oscillators

    CERN Document Server

    Winter, Axel; Ilday, Fatih O; Kaertner, Franz X; Kim, Jung-Won; Schlarb, Holger; Schmüser, Peter


    Fourth-generation light sources, such as the European X-Ray free electron laser facility (XFEL) require timing signals distributed over distances of the order of kilometers with a timing jitter in the order of femtoseconds. The master clock for the proposed optical distribution system must operate with exceptionally low timing jitter. A promising approach is the use of a mode-locked laser that generates ultrastable pulses which are distributed via timing stabilized fiber links. Candidates for the pulse source are mode-locked Erbium doped fiber lasers, featuring very low high frequency noise. In this paper, we present a study of the phase noise of various fiber lasers in view of their applicability as laser-based master oscillators for femtosecond timing distributions.

  1. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range. (United States)

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu


    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.

  2. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range (United States)

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu


    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.

  3. Experimental study on the 1550 nm all fiber heterodyne laser range finder. (United States)

    Yang, Fu; He, Yan; Shang, Jianhua; Chen, Weibiao


    In this paper, a 1550 nm all fiber monostatic laser range finder system based on linear chirp modulation and heterodyne detection is presented. The fiber end face signal is used as a range starting indicator. The transmitted laser power is 5 mW with a laser pulse length of 131 micros and a linear chirp bandwidth of 40 MHz. The telescope with an aperture of 3 cm couples the return light into a single mode fiber. Better than 14 cm distance accuracy and 26 dB SNR can be achieved for a wood target at a distance of about 43 m by using the above system setup. Several experiments with different system parameters are conducted. The system performance is tested under variable laser pulse length, linear chirp bandwidth, local oscillator power, and background noise. Finally, an application of the linear chirp modulation heterodyne laser range finder in a spaceborne ranging system is proposed.

  4. Dispersion tailored non-PM and PM fibers for 2 μm ultrafast fiber lasers(Conference Presentation) (United States)

    Jollivet, Clémence; Jeannotte, Daniel; Ahmadi, Peyman; Carter, Adrian L.; Tankala, Kanishka


    One of the current challenges towards the development of ultrafast 2 microns all-fiber laser systems delivering transform-limited pulses is to manage dispersion and nonlinearities which are well-known limiting factors in fiber-based systems due to their negative impact on pulse duration and shape. Here, we present what we believe to be, to the best of our knowledge, the first all-solid step-index dispersion tailored fiber designed with anomalous dispersion around 2 microns. This all-solid, step-index ultra-high numerical aperture (UHNA) fiber offers an efficient and simple alternative compared to existing approaches such as free-space optical systems or micro-structured fibers that are complex to manufacture and handle. The combination of highly Ge-doped core with a small core diameter allows tailoring the material and waveguide components of the dispersion to reach the anomalous dispersion required by the application. In this work, details will be provided using experimental and calculated values via the example of a non-PM UHNA fiber with 2.45 microns core and 0.34 NA. This fiber was designed to achieve anomalous dispersion of -45 ps/( at 2 microns. It will be shown that the UHNA fiber design can be further tuned to achieve specific values of anomalous dispersion and dispersion slope. The fiber performances were confirmed using a 2 microns chirp-pulsed fiber amplifier where the pulse duration was measured at 24 ps and 4.3 ps without and with the UHNA fiber respectively. A PM-UHNA fiber design is currently being developed and will be characterized and tested following a similar fashion.

  5. High-power random distributed feedback fiber laser: From science to application

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xueyuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Naval Academy of Armament, Beijing 100161 (China); Zhang, Hanwei; Xiao, Hu; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)


    A fiber laser based on random distributed feedback has attracted increasing attention in recent years, as it has become an important photonic device and has found wide applications in fiber communications or sensing. In this article, recent advances in high-power random distributed feedback fiber laser are reviewed, including the theoretical analyses, experimental approaches, discussion on the practical applications and outlook. It is found that a random distributed feedback fiber laser can not only act as an information photonics device, but also has the feasibility for high-efficiency/high-power generation, which makes it competitive with conventional high-power laser sources. In addition, high-power random distributed feedback fiber laser has been successfully applied for midinfrared lasing, frequency doubling to the visible and high-quality imaging. It is believed that the high-power random distributed feedback fiber laser could become a promising light source with simple and economic configurations. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Self-starting self-similar all-polarization maintaining Yb-doped fiber laser. (United States)

    Nielsen, C; Ortaç, B; Schreiber, T; Limpert, J; Hohmuth, R; Richter, W; Tünnermann, A


    We report on the generation of self-similar pulses from an self-starting saturable absorber mirror (SAM) based environmentally stable fiber laser comprising only polarization maintaining (PM) fibers. Pulse energies of 1 nJ at a repetition rate of 17 MHz were obtained, which could be externally compressed to an autocorrelation width of 280 fs.

  7. Self-starting self-similar all-polarization maintaining Yb-doped fiber laser


    Nielsen, C.; Ortac, B.; Schreiber, T.; Limpert, J.; Hohmuth, R.; Richter, W.; Tünnermann, A.


    We report on the generation of self-similar pulses from an self-starting saturable absorber mirror (SAM) based environmentally stable fiber laser comprising only polarization maintaining (PM) fibers. Pulse energies of 1 nJ at a repetition rate of 17 MHz were obtained, which could be externally compressed to an autocorrelation width of 280 fs.

  8. Space-time-dynamic model of passively-phased ring-geometry fiber laser array

    Energy Technology Data Exchange (ETDEWEB)

    Bochove, Erik J. [Air Force Research Laboratory, Kirtland Air Force Base, NM; Aceves, Alejandro B. [Southern Methodist University, Dallas; Deiterding, Ralf [ORNL; Crabtree, Lily I [ORNL; Braiman, Yehuda [ORNL; Jacobo, Adrian [University of the Balearic Islands, Palma de Mallorca, Spain; Colet, Pere R. [University of the Balearic Islands, Palma de Mallorca, Spain


    We performed a linearized stability analysis and preliminary simulations of passive phasing in a CW operating ring geometry fiber laser array coupled in an external cavity with a single-mode feedback fiber that functions as spatial filter. A two-element array with path length error is predicted to have a dynamically stable stationary operating state at the calculated operating wavelength.

  9. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick


    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  10. Millijoule Pulse Energy Second Harmonic Generation With Single-Stage Photonic Bandgap Rod Fiber Laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas Tanggaard


    In this paper, we demonstrate, for the first time, a single-stage Q-switched single-mode (SM) ytterbium-doped rod fiber laser delivering record breaking pulse energies at visible and UV light. We use a photonic bandgap rod fiber with a mode field diameter of 59μm based on a new distributed...

  11. Polymer optical fiber Bragg grating inscription with a single UV laser pulse

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, A.T.; Bang, Ole


    We experimentally demonstrate the first polymer optical fiber Bragg grating inscribed with only one krypton fluoride laser pulse. The device has been recorded in a single-mode poly(methyl methacrylate) optical fiber, with a core doped with benzyl dimethyl ketal for photosensitivity enhancement. One...


    Directory of Open Access Journals (Sweden)

    V. P. Veiko


    Full Text Available Subject of research. The paper deals with research of the surface ablation for single-crystal silicon wafers and properties of materials obtained in response to silicon ablation while scanning beam radiation of pulse fiber ytterbium laser with a wavelenght λ = 1062 nm in view of variation of radiation power and scanning modes. Method. Wafers of commercial p-type conductivity silicon doped with boron (111, n-type conductivity silicon doped with phosphorus (100 have been under research with a layer of intrinsical silicon oxide having the thickness equal to several 10 s of nanometers and SiO2 layer thickness from 120 to 300 nm grown by thermal oxidation method. The learning system comprises pulse fiber ytterbium laser with a wavelenght λ = 1062 nm. The laser rated-power output is equal to 20 W, pulse length is 100 ns. Pulses frequency is in the range from 20 kHz to 100 kHz. Rated energy in the pulse is equal to 1.0 mJ. Scanning has been carried out by means of two axial scanning device driven by VM2500+ and controlled by personal computer with «SinMarkТМ» software package. Scanning velocity is in the range from 10 mm/s to 4000 mm/s, the covering varies from 100 lines per mm to 3000 lines per mm. Control of samples has been carried out by means of Axio Imager A1m optical microscope Carl Zeiss production with a high definition digital video camera. All experiments have been carried out in the mode of focused laser beam with a radiation spot diameter at the substrate equal to 50 μm. The change of temperature and its distribution along the surface have been evaluated by FLIR IR imager of SC7000 series. Main results. It is shown that ablation occurs without silicon melting and with plasma torch origination. The particles of ejected silicon take part in formation of silicon ions plasma and atmosphere gases supporting the plasmo-chemical growth of SiO2. The range of beam scanning modes is determined where the growth of SiO2 layer is observed

  13. Review of long period fiber gratings written by CO2 laser (United States)

    Wang, Yiping


    This paper presents a systematic review of long period fiber gratings (LPFGs) written by the CO2 laser irradiation technique. First, various fabrication techniques based on CO2 laser irradiations are demonstrated to write LPFGs in different types of optical fibers such as conventional glass fibers, solid-core photonic crystal fibers, and air-core photonic bandgap fibers. Second, possible mechanisms, e.g., residual stress relaxation, glass structure changes, and physical deformation, of refractive index modulations in the CO2 -laser-induced LPFGs are analyzed. Third, asymmetrical mode coupling, resulting from single-side laser irradiation, is discussed to understand unique optical properties of the CO2 -laser-induced LPFGs. Fourthly, several pretreament and post-treatment techniques are proposed to enhance the efficiency of grating fabrications. Fifthly, sensing applications of the CO2 -laser-induced LPFGs are investigated to develop various LPFG-based temperature, strain, bend, torsion, pressure, and biochemical sensors. Finally, communication applications of the CO2 -laser-induced LPFGs are investigated to develop various LPFG-based band-rejection filters, gain equalizers, polarizers, and couplers.

  14. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser (United States)

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming


    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  15. Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber (United States)

    Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.


    Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.

  16. Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz. (United States)

    Jiang, Tongxiao; Wang, Guizhong; Zhang, Wei; Li, Chen; Wang, Aimin; Zhang, Zhigang


    We report octave-spanning spectrum generated in a tapered silica photonic crystal fiber by a mode-locked Yb:fiber ring laser at a repetition rate as high as 528 MHz. The output pulses from this laser were compressed to 62 fs. By controlling the hole expansion and core diameter, a silica PCF was tapered to 20 cm with an optimal d/Λ ratio of 0.6. Pulses with the energy of 280 pJ and the peak power of 4.5 kW were injected into the tapered fiber and the pulse spectrum was expanded from 500 to 1600 nm at the level of -30 dB.

  17. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers (United States)

    Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H.


    We fabricate ultrasmall phosphorene quantum dots (PQDs) with an average size of 2.6 ± 0.9 nm using a liquid exfoliation method involving ultrasound probe sonication followed by bath sonication. By coupling the as-prepared PQDs with microfiber evanescent light field, the PQD-based saturable absorber (SA) device exhibits ultrafast nonlinear saturable absorption property, with an optical modulation depth of 8.1% at the telecommunication band. With the integration of the all-fiber PQD-based SA, a continuous-wave passively mode-locked erbium-doped (Er-doped) laser cavity delivers stable, self-starting pulses with a pulse duration of 0.88 ps and at the cavity repetition rate of 5.47 MHz. Our results contribute to the growing body of work studying the nonlinear optical properties of ultrasmall PQDs that present new opportunities of this two-dimensional (2D) nanomaterial for future ultrafast photonic technologies.

  18. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.


    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  19. Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm. (United States)

    Wei, Chen; Zhu, Xiushan; Norwood, Robert A; Song, Feng; Peyghambarian, N


    High power mid-infrared (mid-IR) supercontinuum (SC) laser sources in the 3-12 µm region are of great interest for a variety of applications in many fields. Although various mid-IR SC laser sources have been proposed and investigated experimentally and theoretically in the past several years, power scaling of mid-IR SC lasers beyond 3 μm with infrared edges extending beyond 7 μm are still challenges because the wavelengths of most previously used pump sources are below 2 μm. These problems can be solved with the recent development of mode-locked fiber lasers at 3 μm. In this paper, high power mid-IR SC laser sources based on dispersion engineered tellurite and chalcogenide fibers and pumped by ultrafast lasers at 3 µm are proposed and investigated. Our simulation results show that, when a W-type tellurite fiber with a zero dispersion wavelength (ZDW) of 2.7 µm is pumped at 2.78 μm, the power proportion of the SC laser beyond 3 µm can exceed 40% and the attainable SC output power of the proposed solid-cladding tellurite fiber is one order of magnitude higher than that of existing microstructured tellurite fibers. Our calculation also predicts that a very promising super-broadband mid-IR SC fiber laser source covering two atmospheric windows and molecules' "fingerprint" region can be obtained with a microstructured As2Se3 chalcogenide fiber pumped at 2.78 μm.

  20. Spectrally Tailored Pulsed Thulium Fiber Laser System for Broadband Lidar CO2 Sensing (United States)

    Heaps, William S.; Georgieva, Elena M.; McComb, Timothy S.; Cheung, Eric C.; Hassell, Frank R.; Baldauf, Brian K.


    Thulium doped pulsed fiber lasers are capable of meeting the spectral, temporal, efficiency, size and weight demands of defense and civil applications for pulsed lasers in the eye-safe spectral regime due to inherent mechanical stability, compact "all-fiber" master oscillator power amplifier (MOPA) architectures, high beam quality and efficiency. Thulium fiber's longer operating wavelength allows use of larger fiber cores without compromising beam quality, increasing potential single aperture pulse energies. Applications of these lasers include eye-safe laser ranging, frequency conversion to longer or shorter wavelengths for IR countermeasures and sensing applications with otherwise tough to achieve wavelengths and detection of atmospheric species including CO2 and water vapor. Performance of a portable thulium fiber laser system developed for CO2 sensing via a broadband lidar technique with an etalon based sensor will be discussed. The fielded laser operates with approximately 280 J pulse energy in 90-150ns pulses over a tunable 110nm spectral range and has a uniquely tailored broadband spectral output allowing the sensing of multiple CO2 lines simultaneously, simplifying future potentially space based CO2 sensing instruments by reducing the number and complexity of lasers required to carry out high precision sensing missions. Power scaling and future "all fiber" system configurations for a number of ranging, sensing, countermeasures and other yet to be defined applications by use of flexible spectral and temporal performance master oscillators will be discussed. The compact, low mass, robust, efficient and readily power scalable nature of "all-fiber" thulium lasers makes them ideal candidates for use in future space based sensing applications.

  1. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan


    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...

  2. Mode-locked Pr3+-doped silica fiber laser with an external cavity

    DEFF Research Database (Denmark)

    Shi, Yuan; Poulsen, Christian; Sejka, Milan


    We present a Pr3+-doped silica-based fiber laser mode-locked by using a linear external cavity with a vibrating mirror. Stable laser pulses with a FWHM of less than 44 ps, peak power greater than 9 W, and repetition rate up to 100 MHz are obtained. The pulse width versus cavity mismatch ΔL and pump...

  3. Laser forming for sub-micron adjustment: with application to optical fiber assembly

    NARCIS (Netherlands)

    Folkersma, Ger


    Laser forming is a method to deform a material by controlled local laser heating. In combination with a dedicated actuator topology, those deformations can be used for high precision alignment of components. This thesis applies this method to the alignment of optical fibers with respect to the

  4. Effect of fiber laser parameters on laser welded AZ31B Magnesium alloys

    Directory of Open Access Journals (Sweden)

    Mat Salleh Naqiuddin


    Full Text Available Recently, the usage of Magnesium (Mg alloys has been hugely applied in the industrial application such as in automotive, marine, and electronic due to its advantages of recyclability and lightweight. This alloys required low heat input to be weld since it is easily evaporated due to the Magnesium Oxide (MgO at the surface and it also possesses lower melting point compared to steel. Laser welding is more convenient to weld Mg alloys due to its high power and lower heat input. AZ31B was selected since it has strong mechanical properties among others Mg alloys due to the major alloying elements; Aluminium (Al and Zinc (Zn. Low power fiber laser machine with wavelength of 900 nm was used in this experiment. The intention of this work was to investigate the effect of low power fiber laser parameters and effect of shielding gas on weld penetration and microstructure. Another aim in this work was to produce the joint for this thin sheets metal. Penetration depth and microstructure evaluation were emphasized in the analysis section. Bead-on-Plate (BOP and laser lap welding was conducted on AZ31B with thicknesses of 1.0 mm and 0.6 mm for feasibility study using pulsed wave (PW mode. Defocusing features was used in order to find better focal position, which has less occurrence of evaporation (underfill. The effect of different angle of irradiation was also investigated. Two types of shielding gases, Argon (Ar and Nitrogen (N2 were used in order to study the effect of shielding gas. Lastly, the effect of pulsed energy on penetration types and depth of BOP welded samples was investigated. Focus point was found at focal length of 156 mm with 393.75 μm. For BOP experiment, higher pulsed energy used contributes to melt through defect. Meanwhile, Ns shielding gas proved to be better shielding gas in laser welding the AZ31B. Higher angle of irradiation could reduce the underfill defect. Fillet Lap joint of similar metal was successfully done where 2.0 J of

  5. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency. (United States)

    Creeden, Daniel; Johnson, Benjamin R; Setzler, Scott D; Chicklis, Evan P


    We have demonstrated what we believe is the highest slope efficiency reported for a Tm-doped fiber laser operating in the 2-micron spectral region. Using a 1908 nm Tm-doped fiber laser as an in-band pump source, we generated 1.43 W of output power at 2005 nm with 81.25% optical efficiency and 90.2% slope efficiency, with respect to launched pump power. This resonant-pumping approach allowed us to examine the bleaching effects in Tm-doped fiber under resonant pumping. We also analytically show that this pumping method can scale to high power levels while maintaining high efficiency.

  6. Optical fiber monitored by a directional coupler for delivering laser radiation in medical treatments. (United States)

    Sottini, S; Lombardo, S; Russo, V


    The safety of therapeutic laser treatments could be strongly improved by introducing real-time monitoring to the fiber delivery system. Since any fiber damage leads to a significant variation of the backscatter, its detection could be exploited to monitor the system, in particular the fiber trip. To assess this potential, the backscattered modal power distribution (BMPD) from flat, bulb, and damaged fiber tips were investigated. The BMPD detection was accomplished by using a conventional beam-splitter method and two directional couplers: a prism-fiber and a fiber-fiber lapped coupler. Unlike the conventional method, use of the couplers allows for the separate detection of backscattered and forward transmitted signals. Therefore variations in the backscatter that are due to only a change in the laser pulse can be determined. Moreover, the directional couplers, because of the amplification of high-index modes, allow for an increase in sensitivity of the method. This was particularly evident in our tests on fiber tips that had been dipped into water to obtain a better simulation of the real working conditions. Finally, the influence of the target on the BMPD was investigated as a function of its distance from the fiber tip. All the tests confirm that the target must be taken into account if the distance is <1 mm, but the monitoring system can also be used when the fiber tip works in contact with the tissue wall provided that one can ensure contact by pushing the tip against the target wall.

  7. A femtosecond Yb-doped fiber laser with generalized vector vortex beams output (Conference Presentation) (United States)

    Huo, Tiancheng; Qi, Li; Zhang, Buyun; Chen, Zhongping


    Light carries both spin and orbital angular momentum (OAM) and the superpositions of these two dynamical properties have found many applications. Many techniques exist to create such light sources but none allow their creation at the femtosecond fiber laser. Here we report on a novel mode-locked Ytterbium-doped fiber laser that generates femtosecond pulses with generalized vector vortex states. The controlled generation of such pulses such as azimuthally and radially polarized light with definite orbital angular momentum modes are demonstrated. A unidirectional ring cavity constructed with the Yb-doped fiber placed at the end of the fiber section to reduces unnecessary nonlinear effects is employed for self-starting operation. Pairs of diffraction gratings are used for compensating the normal group velocity dispersion of the fiber and other elements. Mode-locked operation is achieved based on nonlinear polarization evolution, which is mainly implemented with the single mode fiber, the bulk wave plates and the variable spiral plates (q-plate with topological charge q=0.5). The conversion from spin angular momentum to the OAM and reverse inside the laser cavity are realized by means of a quarter-wave plate and a q-plate so that the polarization control was mapped to OAM mode control. The fiber laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability and portability.

  8. Fiber fuse behavior in kW-level continuous-wave double-clad field laser (United States)

    Jun-Yi, Sun; Qi-Rong, Xiao; Dan, Li; Xue-Jiao, Wang; Hai-Tao, Zhang; Ma-Li, Gong; Ping, Yan


    In this study, original experimental data for fiber fuse in kW-level continuous-wave (CW) high power double-clad fiber (DCF) laser are reported. The propagating velocity of the fuse is 9.68 m/s in a 3.1-kW Yb-doped DCF laser. Three other cases in Yb-doped DCF are also observed. We think that the ignition of fiber fuse is caused by thermal mechanism, and the formation of bullet-shaped tracks is attributed to the optical discharge and temperature gradient. The inducements of initial fuse and formation of bullet-shaped voids are analyzed. This investigation of fiber fuse helps better understand the fiber fuse behavior, in order to avoid the catastrophic destruction caused by fiber fuse in high power fiber laser. Project supported by the Key Laboratory of Science and Technology on High Energy Laser and China Academy of Engineering Physics (Grant No. 2014HEL02) and the National Natural Science Foundation of China (Grant No. 61307057).

  9. Medical Application of Free Electron Laser Trasmittance using Hollow Optical Fiber

    CERN Document Server

    Suzuki, Sachiko; Ishii, Katsonuri


    Mid-infrared Free Electron Laser (FEL) is expected as new application for biomedical surgery. However, delivery of MIR-FEL into the body is difficult because the common glass optical fibers have strong absorption at MIR region. A good operational and flexible line for FEL is required at medical field. A Hollow optical fiber is developed for IR laser and high-power laser delivery. We evaluated the fiber for FEL transmission line. This fiber is coated with cyclic olefin polymer (COP) and silver thin film on the inside of glass capillary tube. It is 700 μm-bore and 1m in lengths. The fiber transmission loss of the measured wavelength region of 5.5 μm to 12 μm is less than 1dB/m when the fiber is straight and 1.2 dB/m when bent to radius of 20 cm. Additionally, the output beam profile and the pulse structure is not so different form incidence beam. In conclusion, the fiber is suitable for delivery of the FEL energy for applications in medical and laser surgery.

  10. Investigation on chaotic dynamics of ytterbium-doped fiber laser with Mach-Zehnder interferometer (United States)

    Zhang, Li; Yang, Lingzhen; Wang, Feifei; Cui, Liqin; Qin, Jianmin


    Chaotic dynamics are observed experimentally from an ytterbium-doped fiber laser when the polarization controller is adjusted to an appropriate position and the pump power is increased. But chaotic signals hide the cavity-length signature of ytterbium-doped fiber laser and the cavity-length can be identified by the sidelobes of chaotic autocorrelation. The perturbation of variable optical attenuator inserted to the ytterbium-doped fiber laser and the interference effect induced by the optical path difference (OPD) of a fiber optical Mach-Zehnder interferometer (MZI) are adopted to investigate the chaotic dynamics. The results show that such sidelobes can be completely suppressed by exerting the perturbation and by the interference effect of MZI with optimum OPD which is demonstrated theoretically and experimentally. Moreover, the optimum OPD corresponding to the delay-time of MZI is intimately related to the relaxation oscillation period.

  11. Dual-wavelength mode-locked fiber laser based on tungsten disulfide saturable absorber (United States)

    Li, Xiaowen; Qian, Jianqiang; Zhao, Ruwei; Wang, Fan; Wang, Zhenyu


    We report on the generation of dual-wavelength mode-locked laser pulse in an Er-doped ring-shaped fiber cavity with WS2 nanosheets based saturable absorber (SA), emitting at wavelength of 1531.8 nm and 1556.7 nm. The WS2 nanosheets were precipitated on the head face of fiber patch cord via light precipitation method. By adjusting the polarization of lasing mode, the gain of the Er-doped fiber laser was effectively controlled and the stable dual-wavelength mode-locking operation was achieved. Our investigation revealed WS2’s extraordinary nonlinear properties, which make it an excellent material for saturable absorber for passively mode-locked fiber lasers.

  12. Fiber optic picosecond laser pulse transmission line for hydrogen ion beam longitudinal profile measurement. (United States)

    Huang, Chunning; Liu, Yun; Aleksandrov, Alexander


    We present a fiber optic laser pulse transmission line for nonintrusive longitudinal profile measurement of the hydrogen ion (H(-)) beam at the front-end of the Spallation Neutron Source accelerator. The 80.5 MHz, 2.5 ps, multikilowatt optical pulses are delivered to the accelerator beam line through a large-mode-area polarization-maintaining optical fiber to ensure high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter, and pulse width broadening over a 30 m long fiber line are experimentally investigated. A successful measurement of the H(-) beam microbunch (~130 ps) profile is obtained. The experiment is the first demonstration to our knowledge of particle beam profile diagnostics using a fiber optic laser pulse transmission line.

  13. Wavelength-selectable and steady single-mode erbium-doped fiber multiple ring laser (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang


    To achieve a stable and selectable C-band erbium-doped fiber (EDF) laser with single-longitudinal-mode output, a multiple ring architecture is proposed and demonstrated experimentally. In this work, we design a passively quadruple-ring structure in the cavity of an EDF laser to produce a Vernier effect with a mode filter for suppressing the multimode spikes significantly. In addition, the output performance and stability of the proposed EDF ring laser are discussed.

  14. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies (United States)


    AFRL-AFOSR-JP-TR-2016-0059 Optical material researches for frontier optical ceramics and visible fiber laser technologies Yasushi Fujimoto Osaka...07-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Optical material researches for frontier...are very useful for scientific and industrial applications. 15. SUBJECT TERMS Fibre Lasers, Laser Dynamics, Nonlinear Optical Materials 16. SECURITY

  15. Gas-Filled Hollow Core Fiber Lasers Based on Population Inversion (United States)


    solid-core fiber laser systems. Gas- filled hollow-core fiber lasers based on population inversion from acetylene (12C2H2) and hydrogen cyanide (HCN...via first order rotational- vibrational overtones near 1.5 μm using 1-ns duration pulses from a home-built optical parametric amplifier. Narrow-band...laser emission peaks in the 3-μm region corresponding to the ΔJ = ±1 dipole allowed rotational transitions between the pumped vibrational overtone

  16. Machining parameters optimization during machining of Al/5 wt% alumina metal matrix composite by fiber laser (United States)

    Ghosal, Arindam; Patil, Pravin


    This experimental work presents the study of machining parameters of Ytterbium fiber laser during machining of 5 mm thick Aluminium/5wt%Alumina-MMC (Metal Matrix Composite). Response surface methodology (RSM) is used to achieve the optimization i.e. minimize hole tapering and maximize Material Removal Rate (MRR). A mathematical model has been developed and ANOVA has been done for correlating the interactive and higher-order influences of Ytterbium fiber laser machining parameters (laser power, modulation frequency, gas pressure, wait time, pulse width) on Material Removal Rate (MRR) and hole tapering during machining process.

  17. Effects of wavelength filtering on pulse dynamics in a tunable, actively Q-switched fiber laser (United States)

    Srivastava, Manas; Venkitesh, Deepa; Srinivasan, Balaji


    We present a numerical simulation, validated by experimental analysis, of the effect of wavelength filtering on pulse dynamics of a wavelength-tunable Erbium-doped fiber Q-switched laser in a ring configuration. Travelling wave time-dependent model is implemented using finite difference time domain (FDTD) method to accurately simulate the population dynamics and the pulse evolution in the ring laser. Such a model is experimentally validated for a wavelength tunable Q-switched fiber laser and stable Q-switched pulses are obtained over a wavelength tuning range of ∼30 nm in the C-band.

  18. All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser. (United States)

    Sobon, Grzegorz; Sotor, Jaroslaw; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Abramski, Krzysztof M


    We report an all-fiber, all-polarization maintaining (PM) ultrafast Tm-doped fiber laser mode-locked by a multilayer graphene-based saturable absorber (SA). The laser emits 603 fs-short pulses centered at 1876 nm wavelength with 6.6 nm of bandwidth and 41 MHz repetition rate. Graphene used as saturable absorber was obtained via chemical vapor deposition (CVD) on copper substrate and immersed in a poly(methylmethacrylate) (PMMA) support, forming a stable, free-standing foil containing 12 graphene layers, suitable for the use in a fiber laser. The generated 603 fs pulses are the shortest reported pulses achieved from a Tm-doped laser mode-locked by graphene saturable absorber so far. Additionally, this is the first demonstration of an all-PM Tm-doped fiber laser incorporating a graphene-based SA. Such cost-effective, compact and stable fiber lasers might be considered as sources usable in nonlinear frequency conversion, mid-infrared spectroscopy and remote sensing.

  19. Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing

    Directory of Open Access Journals (Sweden)

    Shinji Yamashita


    Full Text Available We have developed a unique wide and fast wavelength-swept fiber laser for dynamic and accurate fiber sensing. The wavelength tuning is based on the dispersion tuning technique, which simply modulates the loss/gain in the dispersive laser cavity. By using wideband semiconductor optical amplifiers (SOAs, the sweep range could be as wide as ∼180 nm. Since the cavity contains no mechanical components, such as tunable filters, we could achieve very high sweep rate, as high as ∼200 kHz. We have realized the swept lasers at three wavelength bands, 1550 nm, 1300 nm, and 800 nm, using SOAs along with erbium-doped fiber amplifiers (EDFAs, and in two laser configurations, ring and linear ones. We also succeeded in applying the swept laser for a dynamic fiber-Bragg grating (FBG sensor system. In this paper, we review our researches on the wide and fast wavelength-swept fiber lasers.

  20. Brillouin Instability in Fiber Lasers Doped By Power | Bouras ...

    African Journals Online (AJOL)

    With the emergence of rare-earth doped fibers, and especially double-clad fibers, there is a renewed interest in Brillouin effect. First of all, the amplification of a continuous signal in a rare-earth doped fiber amplifier can generate high enough intensities to excite Brillouin effect and then to create a backscattered stokes wave.

  1. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach. (United States)

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing


    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  2. Preparation and Characterization of Bragg Fibers for Delivery of Laser Radiation at 1064 nm

    Directory of Open Access Journals (Sweden)

    V. Matejec


    Full Text Available Bragg fibers offer new performance for transmission of high laser energies over long distances. In this paper theoretical modeling, preparation and characterization of Bragg fibers for delivery laser radiation at 1064 nm are presented. Investigated Bragg fibers consist of the fiber core with a refractive index equal to that of silica which is surrounded by three pairs of circular layers. Each pair is composed of one layer with a high and one layer with a low refractive index and characterized by a refractive-index difference around 0.03. Propagation constants and radiation losses of the fundamental mode in such a structure were calculated on the basis of waveguide optics. Preforms of the Bragg fibers were prepared by the MCVD method using germanium dioxide, phosphorous pentoxide and fluorine as silica dopants. The fibers with a diameter of 170 m were drawn from the preforms. Refractive-index profiles, angular distributions of the output power and optical losses of the prepared fibers were measured. Results of testing the fibers for delivery radiation of a pulse Nd:YAG laser at 1064 nm are also shown.

  3. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. (United States)

    Liu, Wenjun; Pang, Lihui; Han, Hainian; Bi, Ke; Lei, Ming; Wei, Zhiyi


    Tungsten disulphide (WS2), which exhibits excellent saturable absorption properties, has attracted much attention in the applications of photonic devices. In this paper, WS2 is applied for the preparation of a saturable absorber (SA). Using the pulsed laser deposition (PLD) method, WS2 is deposited on the side surface of the tapered fiber. In order to obtain larger non-linearity of the SAs with evanescent wave interaction, the tapered fiber had a smaller waist diameter and longer fused zone. Gold film was deposited on the fiber-taper WS2 SAs to improve their reliability and avoid oxidation and corrosion. Employing the balanced twin-detector method, the modulation depth of the fiber-taper WS2 SAs was measured to be 17.2%. With the fiber-taper WS2 SA, a generated pulse with 246 fs duration and a 57 nm bandwidth was obtained at 1561 nm. The electrical signal to noise ratio was better than 92 dB. To our knowledge, the pulse duration was the shortest among the reported all-fiber lasers with transition metal dichalcogenide (TMD) SAs. These results indicate that fiber-taper WS2 SAs with smaller waist diameter and longer fused zone are promising photonic devices for ultrashort pulse generation in all-fiber lasers.

  4. Influence of nuclear radiation and laser beams on optical fibers and components

    Directory of Open Access Journals (Sweden)

    Pantelić Slađana N.


    Full Text Available The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc..

  5. Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser. (United States)

    Shen, Yanlong; Wang, Yishan; Chen, Hongwei; Luan, Kunpeng; Tao, Mengmeng; Si, Jinhai


    A passively mode-locked Er3+-doped ZBLAN fiber laser around 3 μm with a wide wavelength tuning range is proposed and demonstrated. The laser cavity was comprised of a semiconductor saturable absorber mirror and a blazed grating to provide a wavelength tunable feedback. The central wavelength of the mode-locked fiber laser can be continuously tuned from 2710 to 2820 nm. The pulse train had a maximum average power of higher than 203 mW, a repetition rate of 28.9 MHz and a pulse duration of 6.4 ps, yielding a peak power of exceeding 1.1 kW. To the best of our knowledge, this is the first demonstration of a wavelength-tunable passively mode-locked mid-infrared fiber laser at 3 μm.

  6. Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus (United States)

    Zhao, Ruwei; Li, Jing; Zhang, Baitao; Li, Xiaowen; Su, Xiancui; Wang, Yiran; Lou, Fei; Zhang, Haikun; He, Jingliang


    A triwavelength synchronously mode-locked erbium-doped fiber laser with black phosphorus (BP) was demonstrated. The BP was proved to be not only an excellent saturable absorber (SA) but also a strong nonlinear material benefiting the stabilization of a multiwavelength fiber laser. The laser worked for a long time at three synchronous wavelengths of 1557.2, 1557.7, and 1558.2 nm. The autocorrelation trace of 9.41 ps pulses showed an interference beating of 0.06 THz, corresponding to a beating period of 16.37 ps. To the best of our knowledge, this is the first report on the usage of BP as an SA for building a multiwavelength synchronous mode-locked fiber laser.

  7. Laminar-Turbulent Transition in Raman Fiber Lasers: A First Passage Statistics Based Analysis

    CERN Document Server

    Chattopadhyay, Amit K; Sugavanam, Srikanth; Tarasov, Nikita; Churkin, Dmitry


    Loss of coherence with increasing excitation amplitudes and spatial size modulation is a fundamental problem in designing Raman fiber lasers. While it is known that ramping up laser pump power increases the amplitude of stochastic excitations, such higher energy inputs can also lead to a transition from a linearly stable coherent laminar regime to a non-desirable disordered turbulent state. This report presents a new statistical methodology, based on first passage statistics, that classifies lasing regimes in Raman fiber lasers, thereby leading to a fast and highly accurate identification of a strong instability leading to a laminar-turbulent phase transition through a self-consistently defined order parameter. The results have been consistent across a wide range of pump power values, heralding a breakthrough in the non-invasive analysis of fiber laser dynamics.

  8. Stable linear SESAM femtosecond fiber laser by use of faraday rotator mirrors (United States)

    Hekmat, M. J.; Gholami, A.; Omoomi, M.; Taheri, A.; Kanani, M.; Malek Mohammadi, S.; Shahriari, N.; Abdollahi, M.; Noormohammadi, H.


    We present a linear cavity type of Erbium-Doped fiber oscillator designed for high stability femtosecond pulse production. Commercial Semiconductor Saturable Absorber Mirrors (SESAM) is applied. To avoid environment unstable effects which affects on polarization state of fiber, standard faraday rotator is used in this cavity. Also the experimental study of ring femtosecond fiber laser is compared with linear once. The linear cavity is more stable than ring configuration. With addition of Erbium-Doped fiber amplifier, the output power 100mW with 910 fs and 45.5 MHz repetition rate is acquired without any pulse compressing.

  9. Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones. (United States)

    Hardy, Luke A; Kennedy, Joshua D; Wilson, Christopher R; Irby, Pierce B; Fried, Nathaniel M


    The Thulium fiber laser (TFL) is being explored as an alternative to the Holmium : YAG laser for lithotripsy. TFL parameters differ in several fundamental ways from Holmium laser, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of laser induced bubbles was performed at 105,000 frames per second and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation and needle hydrophone data was also used to measure pressure transients. The TFL was operated at 1908 nm with pulse energies of 5-65 mJ, and pulse durations of 200-1000 μs, delivered through 105-μm-core and 270-μm-core silica optical fibers. Bubble dynamics using Holmium laser at a wavelength of 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1200 ± 90 μm and 1070 ± 50 μm from fiber tip, with maximum bubble widths averaging 650 ± 20 μm and 870 ± 40 μm (n = 4), for 105 μm and 270 μm fibers, respectively. These observations are consistent with previous studies which reported TFL ablation stallout at working distances beyond 1.0 mm. TFL bubble dimensions were four times smaller than for Holmium laser due to lower peak power and smaller fiber diameter used. The maximum pressure transients measured 0.6 bars at 35 mJ pulse energy for TFL and 7.5 bars at 600 mJ pulse energy for Holmium laser. These fundamental studies of bubble dynamics as a function of specific laser and fiber parameters may assist with optimization of the TFL parameters for safe and efficient lithotripsy in the clinic. Image of bubble formation during fiber optic delivery of Thulium fiber laser energy in saline (35 mJ, 500 μs). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper. (United States)

    Wang, Yazhou; Li, Jianfeng; Zhai, Bo; Hu, Yunxiao; Mo, Kundong; Lu, Rongguo; Liu, Yong


    We demonstrate a self-starting dual-wavelength mode-locked fiber laser at a 2 μm spectral region by using a fiber taper in a Tm3+-doped ring fiber cavity. The fiber taper fabricated with a flame brushing technique was used as a periodic filter with a modulation depth of ~3.61 dB and a modulation period of ~7.3 nm, respectively. Diverse dual-wavelength regimes including continuous wave (CW)/multi-soliton, soliton/multi-soliton, and soliton/soliton regimes were obtained by adjusting pump power. Wavelength tuning for the dual-wavelength was also precisely controllable through stretching the fiber taper carefully. The tuning range was ~7 nm which was limited by the modulation period of the taper. By inserting a 10.0 m dispersion compensation fiber (DCF) into the fiber cavity, a stable dual-wavelength dissipative-soliton operation was obtained at 2 μm spectral region for the first time.

  11. Chemical-Assisted Femtosecond Laser Writing of Lab-in-Fiber Sensors (United States)

    Haque, Moez

    Three-dimensional (3D) patterning inside optical fiber was shown to be a powerful tool for embedding refractive index and microfluidic structures inside the flexible glass fiber for enabling novel sensing opportunities with lab-in-fibers (LIFs). A femtosecond laser was tightly focused into optical fibers using an oil-immersion lens to eliminate extreme optical aberrations from the cladding-air interface. The laser interactions were then optimized to bring ˜12 nm rms surfaces for the first time inside the fiber cladding by precisely conforming planar nanograting structures when assembled by the writing laser. Further, the unprecedented integration of cladding waveguides, X-couplers, fiber Bragg gratings (FBGs), microholes, mirrors, optofluidic resonators, and microfluidic reservoirs defined the building blocks for facile interconnection of inline core-waveguide devices with fiber cladding optofluidics. Laser templating was restricted to the single mode fiber (SMF) cladding or formed inside all-fused silica coreless optical fibers to meet with buried laser-formed waveguides that were fused to SMFs for novel seamless inline probing while avoiding undesired concave surface profiles and negative lensing losses associated with writing optofluidic templates across the germanium-doped SMF core waveguide. With these components, more advanced, integrated, and multiplexed fiber microsystems were demonstrated for fluorescence detection, Fabry Perot interferometer (FPI) refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. Tapered access ports were found to minimize fiber mechanical weakening and thereby avoid fiber breakage during optofluidic sensing. Optical resonator arrays (ORAs) were then explored to deepen fringe contrasts beyond that available with a single FPI for opening new prospects for fiber inline pass-band optical filters and broadband reflectors. Finally, wavefront splitting interferometers (WSIs) were targeted to improve

  12. Integrated and miniaturized endoscopic devices for use during high power infrared fiber laser surgery (United States)

    Wilson, Christopher Ryan

    The Thulium Fiber Laser (TFL) is currently being studied as a potential alternative to the conventional, solid-state Holmium:YAG laser (Ho:YAG) for the treatment of kidney stones. The TFL is an ideal candidate to replace the Ho:YAG for laser lithotripsy due to a higher absorption coefficient in water of the emitted wavelength, an ability to operate at high pulse rates, and a near single mode, Gaussian spatial beam profile. The higher absorption of the TFL wavelength by water translates to a decrease in ablation threshold by a factor of four. High pulse rate operation allows higher ablation rates than the Ho:YAG, thus decreasing operation time necessary to ablate the urinary stone. The Gaussian spatial beam profile allows the TFL to couple higher laser power into smaller optical fibers than those currently being used for Ho:YAG lithotripsy. This decrease in fiber diameter translates into a potential decrease in the size of ureteroscope working channel, higher saline irrigation rates for improved visibility and safety, and may also extend to a decrease in overall ureteroscope diameter. Furthermore, the improved spatial beam profile reduces the risk of damage to the input end of the fiber. Therefore, the trunk fiber, minus the distal fiber tip, may be preserved and re-used, resulting in significant cost savings. This thesis details rapid TFL lithotripsy at high pulse rates up to 500 Hz, both with and without the aid of a stone retrieval basket, in order to demonstrate the TFL's superior ablation rates over the Ho:YAG. Collateral damage testing of the TFL effect on the ureter wall and Nitinol stone baskets were conducted to ensure patient safety for future clinical use. Proximal fiber end damage testing was conducted to demonstrate fiber preservation, critical for permanent fiber integration. Optical fibers were fitted with fabricated hollow steel tips and integrated with stone retrieval baskets for testing. Ball tipped optical fibers were tested to maintain ablation

  13. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber. (United States)

    Sobon, Grzegorz; Sotor, Jaroslaw; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Abramski, Krzysztof M


    We report an all-fiber Tm-doped fiber laser mode-locked by graphene saturable absorber. The laser emits 1.2 ps pulses at 1884 nm center wavelength with 4 nm of bandwidth and 20.5 MHz mode spacing. The graphene layers were grown on copper foils by chemical vapor deposition (CVD) and transferred onto the fiber connector end. Up to date this is the shortest reported pulse duration achieved from a Tm-doped laser mode-locked by graphene saturable absorber. Such cost-effective and stable fiber lasers might be considered as sources for mid-infrared spectroscopy and remote sensing.

  14. Highly Tm(3+) doped germanate glass and its single mode fiber for 2.0 μm laser. (United States)

    Wen, Xin; Tang, Guowu; Yang, Qi; Chen, Xiaodong; Qian, Qi; Zhang, Qinyuan; Yang, Zhongmin


    Highly Tm(3+) doped optical fibers are urgently desirable for 2.0 μm compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm(3+) doped barium gallo-germanate (BGG) glasses. Highly Tm(3+) doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm(3+) doping concentration reaches 7.6 × 10(20) ions/cm(3), being the reported highest level in Tm(3+) doped BGG SM fibers. Using ultra short (1.6 cm) as-drawn highly Tm(3+) doped BGG SM fiber, a single-frequency fiber laser at 1.95 μm has been demonstrated with a maximum output power of 35 mW when in-band pumped by a home-made 1568 nm fiber laser. Additionally, a multilongitudinal-mode fiber laser at 1.95 μm has also been achieved in a 10 cm long as-drawn active fiber, yielding a maximum laser output power of 165 mW and a slope efficiency of 17%. The results confirm that the as-drawn highly Tm(3+) doped BGG SM fibers are promising in applications that require high gain and high power from a short piece of active optical fiber.

  15. 978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser (United States)

    Li, Shujie; Xu, Lixin; Gu, Chun


    A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.

  16. Formation of TiO2 film with lower electrical resistance by aerosol beam and fiber laser irradiation (United States)

    Shinonaga, T.; Tsukamoto, M.; Takahashi, M.; Fujita, M.; Abe, N.


    Titanium dioxide (TiO2) is a functional ceramic with unique photoconductive and photocatalytic properties. In our previous study, a TiO2 film was formed by aerosol beam irradiation. The films were darkened by femtosecond laser irradiation in air. Then electrical resistance of the darkened area on the film decreased. The heating process is also a useful method to vary the TiO2 film property. Local heating can be performed by using a continuous wave (CW) fiber laser. In this study, the film was irradiated with a commercial CW fiber laser in vacuum. Laser irradiated area on the film was also darkened after CW fiber laser irradiation. The electrical resistance of the darkened area on the films was decreased as laser fluence was increased. Electrical resistance of the darkened area after CW fiber laser irradiation in vacuum was much smaller than that after femtosecond laser irradiation.

  17. Spatial-Resolution Improvement in Optical Frequency Domain Reflectometry System Based on Tunable Linear Fiber Laser

    Energy Technology Data Exchange (ETDEWEB)

    Li Guoyu; Li Yan [Institute of Information Engineering, Handan College, Handan, 056005 (China); Zhao Peng, E-mail: [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)


    In optical frequency domain reflectometry (OFDR) system, the spatial resolution is obtained by using the total frequency-sweep span of the tunable laser. However, in practice, the spatial resolution is severely limited by nonlinearity in the lightwave-frequency sweep of the tunable laser. A closed-loop PZT modulated DBR linear fiber laser is proposed to improve the spatial resolution of the OFDR system. Experimental results show that the spatial resolution of OFDR system has improved greatly. When the frequency sweep excursion is 66GHz and the fiber under test (FUT) is 7 m, the OFDR system has a spatial resolution of 1.5 m with open-loop PZT modulated laser. But the spatial resolution increases to 35 cm with closed-loop PZT modulated laser.

  18. High-power fiber laser cutting parameter optimization for nuclear Decommissioning

    Directory of Open Access Journals (Sweden)

    Ana Beatriz Lopez


    Full Text Available For more than 10 years, the laser process has been studied for dismantling work; however, relatively few research works have addressed the effect of high-power fiber laser cutting for thick sections. Since in the nuclear sector, a significant quantity of thick material is required to be cut, this study aims to improve the reliability of laser cutting for such work and indicates guidelines to optimize the cutting procedure, in particular, nozzle combinations (standoff distance and focus position, to minimize waste material. The results obtained show the performance levels that can be reached with 10 kW fiber lasers, using which it is possible to obtain narrower kerfs than those found in published results obtained with other lasers. Nonetheless, fiber lasers appear to show the same effects as those of CO2 and ND:YAG lasers. Thus, the main factor that affects the kerf width is the focal position, which means that minimum laser spot diameters are advised for smaller kerf widths.

  19. High-power fiber laser cutting parameter optimization for nuclear decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Ana Beatriz; Assuncao, Eurico; Quintino, Luisa [IDMEC, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa (Portugal); Khan, Ali; Blackbun, Jonathan [TWI Ltd., Cambridge (United States)


    For more than 10 years, the laser process has been studied for dismantling work; however, relatively few research works have addressed the effect of high-power fiber laser cutting for thick sections. Since in the nuclear sector, a significant quantity of thick material is required to be cut, this study aims to improve the reliability of laser cutting for such work and indicates guidelines to optimize the cutting procedure, in particular, nozzle combinations (standoff distance and focus position), to minimize waste material. The results obtained show the performance levels that can be reached with 10 kW fiber lasers, using which it is possible to obtain narrower kerfs than those found in published results obtained with other lasers. Nonetheless, fiber lasers appear to show the same effects as those of CO{sub 2} and ND:YAG lasers. Thus, the main factor that affects the kerf width is the focal position, which means that minimum laser spot diameters are advised for smaller kerf widths.

  20. Characteristics of plasma plume in fiber laser welding of aluminum alloy (United States)

    Gao, Ming; Chen, Cong; Hu, Ming; Guo, Lianbo; Wang, Zemin; Zeng, Xiaoyan


    To understand the laser-matter interaction in fiber laser welding of aluminum alloys, the effects of laser power on the characteristics of fiber laser induced plasma plume were studied by emission spectroscopic analysis firstly. The plasma characteristic parameters including electron temperature, electron density, ionization degree, and inverse bremsstrahlung linear absorption coefficient were computed according to the spectral data. It was found that the laser power of 5 kW is a turning point. After the laser power reaches 5 kW, the plume changes from a metal vapor dominated weakly ionized plasma to a strongly ionized plasma. The corresponding phenomena are the dramatic increase of the value of characteristic parameters and the appearance of strong plasma shielding effect. The calculation of effective laser power density demonstrated that the plasma shielding effect is dominated by inverse bremsstrahlung absorption. The finding suggested the plasma shielding effect must be considered in fiber laser welding of aluminum alloys, rather than is ignored as claimed in previous view.

  1. Phenomena Elucidation of High Brightness Fiber Laser Welding of Stainless Steel (United States)

    Kawahito, Yousuke; Mizutani, Masami; Katayama, Seiji

    A high-brigthness fiber laser can produce an ultra-high peak power density of MW/mm2 level corresponding to a focused electron beam, and is promising as one of the desirable heat sources for deep-penetration welding. The objectives of this research are to elucidate the factors affecting weld penetration and defects formation mechanisms, to obtain a fundamental knowledge of interaction between a fiber laser beam and the laser-induced plume, and to assess laser absorption with water-calorimetric method in bead-on-plate welding of Type 304 austenitic stainless steel plates with a 10 kW fiber laser beam. Concerning the weldablity and defects, the penetration depth reached 18 mm at the maximum. At 50 mm/s or lower welding speeds, porosity was generated under the conventionally-focused and tightly-focused conditions. X-ray transmission in-site observation images demonstrated that pores were formed not only at the tip of the keyhole but also near the upper part. The keyhole behavior was stabilized by using nitrogen shielding gas, which led to the porosity prevention. As for the interaction under the normal Ar shielding gas conditions, the temperature and ionization degree of the laser-induced plumes were calculated to be 6,000 K and 0.02, respectively, by the Bolzman plots and Saha's equation. It was also found that the attenuation and the refraction between the 10-kW fiber laser beam and the short weakly-ionized plume were too small to exert the reduction in weld penetration. The laser absorption of the stainless steel plate was approximately 85 % high at 10 kW laser power and 50 mm/s welding speed. Compared X-ray transmission observation images of the keyhole with the focusing feature of the fiber laser beam, most of the incident laser passed through the keyhole inlet, and the center part of the beam was delivered directly to the tip of the deep keyhole. Consequently, as far as the adquate welding procedures were utilized on the basis of eclucidation of the welding

  2. Tunable multiwavelength Tm-doped fiber laser based on the multimode interference effect. (United States)

    Zhang, Peng; Wang, Tianshu; Ma, Wanzhuo; Dong, Keyan; Jiang, Huilin


    A simple multiwavelength Tm-doped fiber laser at the 2 μm band based on multimode interference (MMI) is proposed and experimentally demonstrated. In this scheme, a 4 m Tm-doped single-mode fiber is pumped by a 1568 nm laser, and a single-mode-multimode-single-mode (SMS) fiber structure is used as an MMI filter in which the multimode fiber is used to tune the laser. Laser operation of up to three wavelengths is obtained based on the MMI filter. The wavelengths can be tuned by adjusting the polarization controller and rotating the multimode fiber in the SMS structure, and the tuning region is about 24 nm, i.e., 1892-1916 nm. The side-mode suppression ratio of the laser is about 54 dB. The 3 dB linewidth is less than 0.04 nm. Peak fluctuation at each wavelength is analyzed, and the results show that the power fluctuation is less than 3 dB around the average power.

  3. Ultra-short wavelength operation in Thulium-doped silica fiber laser with bidirectional pumping (United States)

    Xiao, Xusheng; Guo, Haitao; Yan, Zhijun; Wang, Hushan; Xu, Yantao; Lu, Min; Wang, Yishan; Peng, Bo


    An ultra-short wavelength operation of Tm-doped all fiber laser based on fiber Bragg gratings (FBGs) was developed. A bi-directional pump configuration for the ultra-short wavelength operation was designed and investigated for the first time. the laser yielded 3.15W of continuous-wave output at 1706.75nm with a narrow-linewidth of 50pm and a maximum slope efficiency of 42.1%. The dependencies of the slope efficiencies and pump threshold of the laser versus the length of active fiber and reflectivity of the output mirror (FBG) were investigated in detail. An experimental comparative study between two Thulium-doped fiber lasers (TDFLs) with two different pumping configuration(forward unidirectional pumping and bidirectional pumping) was presented. It is indisputable that the development of 1.7μm silicate fiber lasers with Watt-level output power open up a number of heart-stirring and tempting application windows.

  4. Design and characterization of a novel power over fiber system integrating a high power diode laser (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry


    High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.

  5. Development of laser decontamination. 4. Test of beam transmission by fibers and the most suitable condition

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Yasutaka; Ogawa, Ryuichirou; Ishijima, Noboru; Tanimoto, Kenichi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center


    In this work, the characteristics of laser beam transmission by optical fibers and decontamination speed by the most suitable condition and improvement of the characteristics of secondary products are experimented for apply laser decontamination technique to radioactive wastes treatment and decommissioning of nuclear fuel facilities. The results are as follows. (1) Beam transmission: For Q switch pulse YAG laser, beam transmission by optical fibers were examined. Transmission energy increase in proportion to diameter of fiber. The maximum transmission energy of optical fiber was 61 mJ, which was not damaged. The transmission energy of bundle fiber was more plenty than the energy of single fibers at same numbers. It is able to apply bundle fiber to transmission system of Q switch pulse YAG laser beam. (2) Improvement of decontamination speed: Imitation contaminants were removed perfectly on the condition that, the irradiation frequency was 2 times, move speed of test piece was 3.0 mm/sec, beam diameter was 1.2 mm, repetition speed was 10 Hz. At this time, the number of beam shots were more 4 in the unit area. The case of fluence is constant, the number of beam shots were increased by spread of beam diameter in the unit area. (3) Measurement of secondary products: Particle diameters of more than 50% secondary products by Q switch pulse YAG laser were less than 0. 1 {mu}m. Particle diameters of more than 50% secondary products by normal pulse YAG laser were from 0.1 {mu}m to 1 {mu}m. (author)

  6. Novel Optical Fiber Materials With Engineered Brillouin Gain Coefficients SSL 1: Novel Fiber Lasers (United States)


    Hawkins, C. Ryan, A. D. Yablon, R. Stolen, J. Ballato. Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain...invited presentations 5 invited journal papers 1 journal cover 1 paper awarded "Spotlight on Optics" by the Optical Society of America 1 paper...Derived Fiber 25 G. Strontium Aluminosilicate Fiber 28 H. Lithium Aluminosilicate Fiber 30 V. Investigations Into Other Compatible

  7. Effect of optical fiber type and absorption medium on the endovenous laser ablation mechanism (United States)

    Ignatieva, N. Yu; Zakharkina, O. L.; Mazayshvili, C. V.; Bagratashvili, V. N.; Lunin, V. V.


    Our experimental investigation was aimed at revealing the mechanism behind the action of laser radiation on venous wall under endovenous laser ablation conditions. We determined the critical laser power P cr at which the objective effect of complete denaturation of the vascular tissue collagen was attained for two types of optical fiber in the presence and absence of blood cells. We demonstrated that for the radial optical fiber the presence of blood cells had no effect on the magnitude of P cr, which came to 4.3  ±  0.1 and 5.6  ±  01 W for 1.56 and 1.47 µm lasers, respectively. For the bare fiber and 1.56 µm laser, P cr increased up to 5.2  ±  0.2 W in a blood-filled vessel and up to 7.1  ±  0.2 W when the blood was replaced by a sodium chloride solution. Our data show that the heating and degradation of insufficient veins go on more effectively when the tissue is heated by laser radiation directly absorbed therein, rather than the red-hot carbonized optical fiber tip.

  8. Development of femtosecond infrared fiber laser for multiphoton silicon micromachining


    Rezaei, Hossein Salmani


    Cataloged from PDF version of article. Thesis (M.S.): Bilkent University, Department of Electrical and Electronics Engineering, İhsan Doğramacı Bilkent University, 2016. Includes bibliographical references (leaves 45-49). Femtosecond laser is widely used in material processing. Application of ultrashort lasers makes it possible to process with higher precision compared to picosecond and nanosecond lasers. Moreover, a major challenge in picosecond and nanosecond laser processing is pr...

  9. New fiber laser design for application in phase sensitive optical time domain reflectometry (United States)

    Bueno Escobedo, J. L.; Spirin, V. V.; López-Mercado, C. A.; Marquez Lucero, A.; Mégret, P.; Zolotovskii, I. O.; Fotiadi, A. A.


    We have employed a new injection locking DFB laser configuration for detection and localization of the perturbations in phase sensitive OTDR system. The spectral performance of available DFB laser source has been significantly improved with implementation of self-injection locking mechanism. To provide the effect, a part of the optical radiation emitted by the laser is returned back into the laser cavity through an external fiber optic ring resonator. Self-injection locking of DFB laser coupled with the ring cavity in the under-coupled, critically coupled, and over-coupled regimes has been tested bringing us to the conclusion that the best locked laser stability and narrower linewidth is observed with the critical coupling. With the laser operating in this regime an accurate localization of 50 Hz harmonic perturbation with the spatial resolution of 10 m at the distance of 9270 m is experimentally demonstrated with phase sensitive OTDR technique.

  10. Cutting of Stainless Steel With Fiber and Disk Laser

    DEFF Research Database (Denmark)

    Wandera, Catherine; Salminen, Antti; Olsen, Flemming Ove


    , the new laser types with a high beam quality, in cutting of austenitic stainless steel. The performance of these new lasers at power level of 4 kW was compared with CO2-laser in respect of cutting speed, kerf width, kerf edge roughness and perpendicularity (squarness) in order to validate the potential...

  11. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji


    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  12. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai


    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  13. Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement (United States)

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia


    A short fiber Bragg grating (FBG) is successfully written in a multimode fiber (MMF) with core and cladding diameters of 50 μm and 125 μm using 800 nm femtosecond laser side-illumination technique. Three-type grating inscriptions can be realized at the different positions over the core of MMF by moving the focal-line position of laser beam. Both fundamental mode and higher-order modes of MMF are excited at the core-mismatch junction, resulting in two well-defined resonances in transmission. The strain measurement with a single core resonance mode is demonstrated experimentally at the ultra-high temperature. The result indicates that the strain sensitivity improved to 5.24 pm/με at the temperature of 600-900 °C, making it as a good candidate for the strain measurement at the high temperature environments.

  14. Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser. (United States)

    Francke, Ricardo E; Pöschel, Thorsten; Gallas, Jason A C


    We report numerical evidence showing that periodic oscillations can produce unexpected and wide-ranging zig-zag parameter networks embedded in chaos in the control space of nonlinear systems. Such networks interconnect shrimplike windows of stable oscillations and are illustrated here for a tunnel diode, for an erbium-doped fiber-ring laser, and for the Hénon map, a proxy of certain CO(2) lasers. Networks in maps can be studied without the need for solving differential equations. Tuning parameters along zig-zag networks allows one to continuously modify wave patterns without changing their chaotic or periodic nature. In addition, we report convenient parameter ranges where such networks can be detected experimentally.

  15. Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber. (United States)

    Jung, Minwan; Koo, Joonhoi; Park, Jaehyun; Song, Yong-Won; Jhon, Young Min; Lee, Kwanil; Lee, Sangbae; Lee, Ju Han


    An in-depth experimental investigation was conducted into the use of a graphene oxide-based saturable absorber implemented on a side-polished fiber platform for femtosecond pulse generation in the 2 μm region. First, it was experimentally shown that an all-fiberized thulium-holmium (Tm-Ho)-codoped fiber ring laser with reduced cavity length can produce stable femtosecond pulses by incorporating a graphene oxide-deposited side-polished fiber. Second, the measurement accuracy issue in obtaining a precise pulse-width value by use of an autocorrelator together with a silica fiber-based 2 μm-band amplifier was investigated. It showed that the higher-order soliton compression effect caused by the combination of anomalous dispersion and Kerr nonlinearity can provide incorrect pulse-width information. Third, an experimental investigation into the precise role of the graphene oxide-deposited side-polished fiber was carried out to determine whether its polarization-dependent loss (PDL) can be a substantial contributor to mode-locking through nonlinear polarization rotation. By comparing its performance with that of a gold-deposited side-polished fiber, the PDL contribution to mode-locking was found to be insignificant, and the dominant mode-locking mechanism was shown to be saturable absorption due to mutual interaction between the evanescent field of the oscillated beam and the deposited graphene oxide particles.

  16. Mid-infrared supercontinuum generation in tapered ZBLAN fiber with a standard Erbium mode-locked fiber laser

    DEFF Research Database (Denmark)

    Kubat, Irnis; Moselund, Peter M.; Bang, Ole


    with taper start at 8 m down to Dc=5.5 μm. At the taper waist a region of normal dispersion now appears in between the solitons, which generates MIR Dispersive Waves (DWs) between the second and third ZDW and also accelerates a large number of solitons towards the IR, as we will detail in the presentation...... realistic fiber and laser parameters and a short taper, which can be fabricated on a taper station....

  17. Tunable passively harmonic mode-locked Yb-doped fiber laser with Lyot-Sagnac filter. (United States)

    Li, Ming; Zou, Xin; Wu, Jian; Shi, Jindan; Qiu, Jifang; Hong, Xiaobin


    A novel passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all normal dispersion is proposed and experimentally demonstrated based on a semiconductor saturable absorption mirror and tunable Lyot-Sagnac filter. By only tuning the bandwidth of the filter at fixed pump power, the repetition rate of 9.87 to 167.8 MHz (corresponding to 17th-order harmonic) is obtained. This is the highest repetition rate and harmonic order for a passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all-normal dispersion to the best of our knowledge. The signal-to-noise ratio and super-mode suppression ratio for all harmonic orders are higher than 65 and 35 dB, respectively, which shows the high stability of the fiber laser.

  18. Versatile mode-locked fiber laser with switchable operation states of bound solitons. (United States)

    Zou, Xin; Qiu, Jifang; Wang, Xiaodong; Ye, Zi; Shi, Jindan; Wu, Jian


    Bound states of two solitons are among the typical forms of bound states and can be observed in various operation states of mode-locked fiber lasers. We experimentally investigated bound solitons (BSs) in a passively mode-locked erbium-doped fiber laser based on a semiconductor saturable absorber mirror, whose operation states can be switched among multiple pulses, passively harmonic mode-locking, and "giant pulses" by simply adjusting the in-line polarization controller with the pump power fixed. Up to four pulses, fourth-order harmonic mode-locking (HML), and a "giant pulse" with four BSs were obtained with increasing pump power. Experimental results showed a correlative relationship among those operation states (N pulses/Nth-order HML/"giant pulses" of N bound solitons) at different pump power levels. The birefringence induced by the erbium-doped fiber inside the laser cavity played a vital role in the transitions of those operation states.

  19. 152 fs nanotube-mode-locked thulium-doped all-fiber laser (United States)

    Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique


    Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps2, and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials. PMID:27374764

  20. Highly Nd3+-doped Y3Al5O12 crystal fiber tip for laser thermotherapy (United States)

    Tong, Limin; Lou, Jingyi; Xu, Yunfei; Luo, Qingming; Shen, Nan; Mazur, Eric


    Based on phonon relaxation, a 12-at. % neodymium-doped YAG (Y3Al5O12) crystal fiber tip has been developed for photothermal conversion. The near-cylindrical tip, with an average diameter of 0.68 mm and a length of 1.8 mm, is fabricated on a 0.65-mm-thick 220-mm-long pure YAG single-crystal fiber by laser-heated growth. Pumped by an 810-nm wavelength diode laser with a pump power of less than 2 W, the temperatures of the tip reach 725 degC in air, 78 degC in egg white, and 79 degC in porcine liver, with acceptable reproducibilities and thermal response times. The photothermal conversion efficiency of the doped tip is approximately 89%, and the high stability of the tip is also proved. Experimental results show that the doped fiber tip is promising for laser thermotherapy applications.

  1. High-power fiber-coupled 100W visible spectrum diode lasers for display applications (United States)

    Unger, Andreas; Küster, Matthias; Köhler, Bernd; Biesenbach, Jens


    Diode lasers in the blue and red spectral range are the most promising light sources for upcoming high-brightness digital projectors in cinemas and large venue displays. They combine improved efficiency, longer lifetime and a greatly improved color space compared to traditional xenon light sources. In this paper we report on high-power visible diode laser sources to serve the demands of this emerging market. A unique electro-optical platform enables scalable fiber coupled sources at 638 nm with an output power of up to 100 W from a 400 μm NA0.22 fiber. For the blue diode laser we demonstrate scalable sources from 5 W to 100 W from a 400 μm NA0.22 fiber.

  2. High power fiber coupled diode lasers for display and lighting applications (United States)

    Drovs, Simon; Unger, Andreas; Dürsch, Sascha; Köhler, Bernd; Biesenbach, Jens


    The performance of diode lasers in the visible spectral range has been continuously improved within the last few years, which was mainly driven by the goal to replace arc lamps in cinema or home projectors. In addition, the availability of such high power visible diode lasers also enables new applications in the medical field, but also the usage as pump sources for other solid state lasers. This paper summarizes the latest developments of fiber coupled sources with output power from 1.4 W to 120 W coupled into 100 μm to 400 μm fibers in the spectral range around 405 nm and 640 nm. New developments also include the use of fiber coupled multi single emitter arrays at 450 nm, as well as very compact modules with multi-W output power.

  3. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier. (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A


    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  4. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors (United States)

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos; Bang, Ole


    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluorescence pickup efficiency of a Förster resonance energy transfer-based POF glucose sensor. A Zemax model of the CPC-tipped sensor predicts an optimal improvement of a factor of 3.96 compared to the sensor with a plane-cut fiber tip. The fs laser micromachined CPC tip showed an increase of a factor of 3.5, which is only 11.6% from the predicted value. Earlier state-of-the-art fabrication of the CPC-shaped tip by fiber tapering was of so poor quality that the actual improvement was 43% lower than the predicted improvement of the ideal CPC shape.

  5. 220 μJ monolithic single-frequency Q-switched fiber laser at 2 μm by using highly Tm-doped germanate fibers. (United States)

    Shi, Wei; Petersen, Eliot B; Nguyen, Dan T; Yao, Zhidong; Chavez-Pirson, Arturo; Peyghambarian, N; Yu, Jirong


    We report a unique all fiber-based single-frequency Q-switched laser in a monolithic master oscillator power amplifier configuration at ~1920 nm by using highly Tm-doped germanate fibers for the first time. The actively Q-switched fiber laser seed was achieved by using a piezo to press the fiber in the fiber Bragg grating cavity and modulate the fiber birefringence, enabling Q-switching with pulse width and repetition rate tunability. A single-mode polarization maintaining large core 25 μm highly Tm-doped germanate fiber was used in the power amplifier stage. For 80 ns pulses with 20 kHz repetition rate, we achieved 220 μJ pulse energy, which corresponds to a peak power of 2.75 kW with transform-limited linewidth.

  6. A Stable Dual-wavelength Thulium-doped Fiber Laser at 1.9 μm Using Photonic Crystal Fiber


    Soltanian, M. R. K.; Ahmad, H; A. Khodaie; Amiri, I. S.; M.F. Ismail; Harun, S. W.


    A stable dual-wavelength thulium-doped fiber laser operating at 1.9 μm using a short length of photonic crystal fiber (PCF) has been proposed and demonstrated. The photonics crystal fiber was 10 cm in length and effectively acted as a Mach-Zehnder interferometry element with a free spectral range of 0.2 nm. This dual-wavelength thulium-doped fiber laser operated steadily at room temperature with a 45 dB optical signal-to-noise-ratio.

  7. A Stable Dual-wavelength Thulium-doped Fiber Laser at 1.9 μm Using Photonic Crystal Fiber. (United States)

    Soltanian, M R K; Ahmad, H; Khodaie, A; Amiri, I S; Ismail, M F; Harun, S W


    A stable dual-wavelength thulium-doped fiber laser operating at 1.9 μm using a short length of photonic crystal fiber (PCF) has been proposed and demonstrated. The photonics crystal fiber was 10 cm in length and effectively acted as a Mach-Zehnder interferometry element with a free spectral range of 0.2 nm. This dual-wavelength thulium-doped fiber laser operated steadily at room temperature with a 45 dB optical signal-to-noise-ratio.

  8. 100-watt fiber-based green laser with near diffraction-limited beam quality (United States)

    Hu, Dan; Eisenberg, Eric; Brar, Khush; Yilmaz, Tolga; Honea, Eric


    An air-cooled, light-weight, fiber-based, high power green laser has been prototyped. The system consists of an all-fibercoupled IR pump laser at 1064 nm and a frequency-conversion module in a compact and flexible configuration. The IR laser operates in QCW mode, with 10 MHz pulse repetition frequency and 3-5 ns pulse width, to generate sufficient peak power for frequency doubling in the converter module. The IR laser can produce more than 200 W in a linearlypolarized diffraction-limited output beam with high spectral brightness for frequency conversion. The converter module has an input telescope and an oven with a nonlinear crystal to efficiently convert the 1064-nm IR fiber laser output to 532-nm green output. The IR laser and conversion module are connected via a stainless-steel protected delivery fiber for optical beam delivery and an electrical cable harness for electrical power delivery and system control. The beam quality of the 532 nm output remains near diffraction-limited, with M2green laser sources are expected to enable various scientific, defense and industrial applications.

  9. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers (United States)

    Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.


    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.

  10. Polycrystalline CdTe thin film mini-modules monolithically integrated by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Bosio, A., E-mail: [Department of Physics and Earth Sciences, University of Parma, via G.P. Usberti 7/A, 43124 Parma (Italy); Sozzi, M. [Department of Information Engineering, University of Parma, via G.P. Usberti 181/A, 43124 Parma (Italy); Menossi, D. [Department of Physics and Earth Sciences, University of Parma, via G.P. Usberti 7/A, 43124 Parma (Italy); Selleri, S.; Cucinotta, A. [Department of Information Engineering, University of Parma, via G.P. Usberti 181/A, 43124 Parma (Italy); Romeo, N. [Department of Physics and Earth Sciences, University of Parma, via G.P. Usberti 7/A, 43124 Parma (Italy)


    The CdTe thin film technology for photovoltaics (PV) is attractive because of its potential low cost and good performance. In thin film technology the efficiency of large area cells can be maintained if small segments are interconnected in series to reduce the photocurrent and resistance losses. In respect to this, the scribing process is critical for the performance of the device. Today, fiber lasers represent the most advanced and cheap technology that can be used in PV industry to carry out the cuts, needed for the monolithic integration, at different deposition stages. We will present our results on the scribing of CdTe thin film solar cells by means of fiber lasers, with pulse duration of a few nanoseconds and solid state lasers in the picosecond regime. The quality of the scribing was evaluated by optical and scanning electron microscopy. Finally, mini-modules with a total area of 10 × 10 cm{sup 2} were fabricated, in which the cells were interconnected in series by means of a scribing system, equipped with a fiber laser with the same characteristics of the system mounted on production lines. The mini-modules were characterized by photovoltaic and electrical measurements. - Highlights: • Study of laser scribing of CdTe-based mini-modules • Comparison between different lasers working in nanosecond and picosecond regimes • The laser scribing process was transferred to industrial production.

  11. Sensitive detection of CO2 implementing tunable thulium-doped all-fiber laser. (United States)

    Bremer, K; Pal, A; Yao, S; Lewis, E; Sen, R; Sun, T; Grattan, K T V


    In this paper a compact, yet sensitive gas detection system based on a modulated, tunable thulium-doped fiber laser in the 2 μm wavelength region is reported. The laser operating wavelength range centered at a wavelength of 1.995 μm has been selected to access the R(50) transition (ν1+2ν2+ν3) of CO2 based on its line strength and to achieve isolation from interfering high-temperature water absorption features. The laser linewidth and tuning range are optimized accordingly. The modulation of the fiber laser, achieved through pump source modulation and a locking detection mechanism, has been utilized to stabilize the laser system and therefore to create a compact gas sensor with high sensitivity. The absorption spectrum, as well as the line strength and the concentration level of CO2, have been monitored through absorption spectroscopy techniques. The measured minimum detectable concentration of CO2 obtained using the system shows that it is quite capable of detecting trace gas at the ppm (parts in 10(6)) level. The stable laser performance achieved in the sensor system illustrates its potential for the development of practical, compact, yet sensitive fiber-laser-based gas sensor systems.

  12. NDT of fiber-reinforced composites with a new fiber-optic pump-probe laser-ultrasound system. (United States)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew


    Laser-ultrasonics is an attractive and powerful tool for the non-destructive testing and evaluation (NDT&E) of composite materials. Current systems for non-contact detection of ultrasound have relatively low sensitivity compared to contact peizotransducers. They are also expensive, difficult to adjust, and strongly influenced by environmental noise. Moreover, laser-ultrasound (LU) systems typically launch only about 50 firings per second, much slower than the kHz level pulse repetition rate of conventional systems. As demonstrated here, most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive, high repetition rate nanosecond fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe beam detector. In particular, a modified fiber-optic balanced Sagnac interferometer is presented as part of a LU pump-probe system for NDT&E of aircraft composites. The performance of the all-optical system is demonstrated for a number of composite samples with different types and locations of inclusions.

  13. Determination of temperature and residual laser energy on film fiber-optic thermal converter for diode laser surgery. (United States)

    Liu, Weichao; Kong, Yaqun; Shi, Xiafei; Dong, Xiaoxi; Wang, Hong; Zhao, Jizhi; Li, Yingxin


    The diode laser was utilized in soft tissue incision of oral surgery based on the photothermic effect. The contradiction between the ablation efficiency and the thermal damage has always been in diode laser surgery, due to low absorption of its radiation in the near infrared region by biological tissues. Fiber-optic thermal converters (FOTCs) were used to improve efficiency for diode laser surgery. The purpose of this study was to determine the photothermic effect by the temperature and residual laser energy on film FOTCs. The film FOTC was made by a distal end of optical fiber impacting on paper. The external surface of the converter is covered by a film contained amorphous carbon. The diode laser with 810 nm worked at the different rated power of 1.0 W, 1.5 W, 2.0 W, 3.0 W, 4.0 W, 5.0 W, 6.0 W, 7.0 W, 8.0 W in continuous wave (CW)and pulse mode. The temperature of the distal end of optical fiber was recorded and the power of the residual laser energy from the film FOTC was measured synchronously. The temperature, residual power and the output power were analyzed by linear or exponential regression model and Pearson correlations analysis. The residual power has good linearity versus output power in CW and pulse modes (R2 = 0.963, P < 0.01 for both). The temperature on film FOTCs increases exponentially with adjusted R2 = 0.959 in continuous wave mode, while in pulsed mode with adjusted R2 = 0.934. The temperature was elevated up to about 210 °C and eventually to be a stable state. Film FOTCs centralized approximately 50% of laser energy on the fiber tip both in CW and pulsed mode while limiting the ability of the laser light to interact directly with target tissue. Film FOTCs can concentrate part of laser energy transferred to heat on distal end of optical fiber, which have the feasibility of improving efficiency and reducing thermal damage of deep tissue.

  14. Fiber grating sensor array interrogation with direct-wavelength readout of a wavelength-scanned fiber laser (United States)

    Song, Minho


    We present a novel interrogation method to measure wavelength shifts in fiber Bragg grating sensor array. A fiber laser tuned by an intracavity FP (Fabry-Perot) filter was used to interrogate Bragg wavelength variations. To solve the linearity, stability, and accuracy problems caused by the nonlinear response of FP filter, we calculated the wavelength variation of the fiber laser using quadrature signal processing with an unbalanced M/Z (Mach-Zehnder) interferometer and time-delayed sampling technique. The phase modulated interferometric signal is sampled with time delay, generating quadrature phase-delayed signals. By applying arctangent demodulation and phase unwrapping algorithm to the signals, accurate wavelength readout is performed. The calculated wavelengths are mapped to corresponding temporal reflection peaks from the sensor array, which enables more accurate fiber grating interrogation without the problems from the FP filter"s nonlinear response. The wavelength resolution of ~ 20 pm was obtained in our experimental setup, which could have been greatly enhanced with faster phase modulation.

  15. Review of self-focusing of high power lasers in large-mode-area optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Chujun; Li Ying; Lei Dajun; Yang Hua; Wen Shuangchun; Fan Dianyuan; Wen Jianguo, E-mail: [Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Computer and Communication, Hunan University, Changsha 410082 (China)


    The main progress about the self-focusing of high power lasers in large-mode-area optical fiber has been reviewed. The theoretical models including the self-focusing effects have been discussed. Some different views on the whole beam self focusing and small scale self-focusing effects in optical fiber have been introduced. Moreover, the possible methods exceeding the bulk-media self-focusing threshold have been discussed and explored.

  16. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper


    We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror....... The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse...

  17. Benefits of CO2 laser heating for high reliability fiber splicing (United States)

    Duke, Douglas M.; Nasir, Usman; Saravanos, Elli


    The use of a CO2 laser as a heat source became commercially available for optical fiber splicing and component fabrication only in recent years. In addition to long-term trouble-free and low-maintenance heat source operation, laser fusion splicing offers unique benefits for fabricating high-power optical components, as well as for splice reliability. When used as the heating method for fiber splicing, the energy of the CO2 laser beam is efficiently absorbed by the outer layer of the glass, and is then conducted inwards. This heating method is well controlled, and results in a smooth and contamination-free glass surface. Other heating methods, such as arc fusion or resistive heating, may leave tungsten, graphite, or metal oxide deposits on the spliced fiber surface. By contrast, with CO2 laser splicing, the lack of surface irregularities and contamination enables remarkable spliced-fiber strength results, with some strength results nearly within the range of coated fiber breaking strength.

  18. Novel laser machining of optical fibers for long cavities with low birefringence. (United States)

    Takahashi, Hiroki; Morphew, Jack; Oručević, Fedja; Noguchi, Atsushi; Kassa, Ezra; Keller, Matthias


    We present a novel method of machining optical fiber surfaces with a CO₂ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths (≤ 200 μm). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the laser's transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for use in low-birefringence FFPCs.

  19. Pulse position modulation for compact all-fiber vehicle laser rangefinder development (United States)

    Mao, Xuesong; Cheng, Yongzhi; Xiong, Ying; Inoue, Daisuke; Kagami, Manabu


    We propose a method for developing small all-fiber vehicle laser rangefinders that is based on pulse position modulation (PPM) and data integration and present a theoretical study on its performance. Compared with spatial coupling, which is employed by most of the current commercial vehicle laser rangefinders, fiber coupling has the advantage that it can guide laser echoes into the interior of a car, so the electronic components following the photodiode can operate in a moderate-temperature environment. However, optical fibers have numerical apertures (NAs), which means that a laser beam from a receiving lens cannot be coupled into an optical fiber if its incident angle exceeds the critical value. Therefore, the effective size of the receiving lens is typically small since it is limited by its focal length and the NA of the fiber, causing the power of the laser echoes gathered by the receiving lens to be insufficient for performing target identification. Instead of increasing the peak transmitting laser power unrestrictedly, PPM and data integration effectively compensate for the low signal-to-noise ratio that results from the effective receiving lens size reduction. We validated the proposed method by conducting numerical simulations and performance analysis. Finally, we compared the proposed method with pseudorandom noise (PN) code modulation and found that, although the two methods perform equally well in single-target measurement scenarios, PPM is more effective than PN code modulation for multitarget measurement. In addition, PPM enables the transmission of laser beams with higher peak powers and requires less computation than PN code modulation does.

  20. Switchable multi-wavelength Tm-doped mode-locked fiber laser. (United States)

    Yan, Zhiyu; Tang, Yulong; Sun, Biao; Liu, Tao; Li, Xiaohui; Ping, Perry Shum; Yu, Xia; Zhang, Ying; Wang, Qi Jie


    We propose and demonstrate for the first time a switchable tri-wavelength Tm-doped ultra-fast fiber laser based on nonlinear polarization evolution (NPE) technique. The NPE effect induces wavelength-dependent loss in the cavity that changes the homogeneous broadening of the effective gain to become inhomogeneous. This inhomogeneous effective gain spectral profile enables the multi-wavelength mode locking. Binary control of three bits can be realized by controlling the polarization in the compact fiber ring cavity. Such switchable laser has potential applications in optical signal processing and communication.

  1. All-fiber probe for laser-induced thermotherapy with integrated temperature measurement capabilities (United States)

    Liu, Y.; Chen, W.; Yu, H.; Gassino, R.; Braglia, A.; Olivero, M.; Perrone, Guido; Vallan, A.


    The paper presents our recent results towards the development of a miniaturized all-fiber probe for laser induced thermal ablation of tumor cells, which combines the optimal delivery of a near-infrared high power ablating beam, a low power visible aiming beam and fast Bragg grating (FBG) temperature sensors. Specific combiner and probe end-cap based on dual cladding fibers have been developed to allow the simultaneous handling of the laser beams and of the signal that feeds the temperature sensor. Moreover, a very fast FBG interrogation system has been implemented to track abrupt temperature variations during medical treatment.

  2. Short cavity DFB fiber laser based vector hydrophone for low frequency signal detection (United States)

    Zhang, Xiaolei; Zhang, Faxiang; Jiang, Shaodong; Min, Li; Li, Ming; Peng, Gangding; Ni, Jiasheng; Wang, Chang


    A short cavity distributed feedback (DFB) fiber laser is used for low frequency acoustic signal detection. Three DFB fiber lasers with different central wavelengths are chained together to make three-element vector hydrophone with proper sensitivity enhancement design, which has extensive and significant applications to underwater acoustic monitoring for the national defense, oil, gas exploration, and so on. By wavelength-phase demodulation, the lasing wavelength changes under different frequency signals can be interpreted, and the sensitivity is tested about 33 dB re pm/g. The frequency response range is rather flat from 5 Hz to 300 Hz.

  3. Synthesis of silica glass fibers and nanoparticles by continuous-wave laser backside irradiation (United States)

    Saito, Namiko; Hidai, Hirofumi; Matsusaka, Souta; Chiba, Akira; Morita, Noboru


    We have developed a novel method to synthesize fibers and nanoparticles of silica glass using a continuous-wave laser. The synthesis process operates through continuous-wave laser backside irradiation (CW-LBI) of a glass substrate. In CW-LBI, a spindle-shaped emission is generated in the glass bulk along the optical axis; the emission propagates toward the light source as a confined plasma. The emission and its surroundings contain vaporized and molten glass. When the laser irradiation continues for a sufficient duration, the emission forefront reaches the glass surface, at which point vaporized and molten glass are ejected explosively. The ejected glass forms fibers and nanoparticles. Some of the nanoparticles become attached to the fiber surfaces during the explosion. The fiber diameters range from hundreds of nanometers to more than 10 μm. The particles on the fiber surfaces have diameters of tens of nanometers. A spindle-shaped hole remained in the glass substrate after the ejection, which had a depth of 3.8 mm. This result indicated that the ejected materials originated from deep inside the glass bulk. High-speed camera observations of the ejection process and scanning electron microscopy of the ejected materials indicated that the fibers formed from the extraction from molten silica glass and particles formed by aggregation of vaporized silica glass.


    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ


    Full Text Available On the lasers or fiber optic communication electromagnetic waves are transmitted by confining and guiding between special layer's or fiber glass respectively. It is desired that electric and magnetic waves are in the active region of the lasers and in the core of the fiber glass. It is obtained by making more larger the of refractive index of the regions. On this work, the behavior and varying of the electric and magnetic waves and the effects on the electromagnetic waves in the fiber glass and lasers are investigated.

  5. Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy (United States)

    Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Xu, Kexin


    Wavelength-tunable laser spectroscopy in combination with a small-sized fiber-optic attenuated total reflection (ATR) sensor (fiber-based evanescent field analysis, FEFA) is reported for the continuous measurement of the glucose level. We propose a method of controlling and stabilizing the wavelength and power of laser emission and present a newly developed mid-infrared wavelength-tunable laser with a broad emission spectrum band of 9.19-9.77 μm (1024-1088 cm-1). The novel small-sized flow-through fiber-optic ATR sensor with long optical sensing length was used for glucose level determination. The experimental results indicate that the noise-equivalent concentration of this laser measurement system is as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. The sensitivity, which is three times that of conventional Fourier transform infrared spectrometer, was acquired because of the higher laser power and higher spectral resolution. The best prediction of the glucose concentration in phosphate buffered saline solution was achieved using the five-variable partial least-squares model, yielding a root-mean-square error of prediction as small as 3.5 mg/dL. The high sensitivity, multiple tunable wavelengths and small fiber-based sensor with long optical sensing length make glucose determination possible in blood or interstitial fluid in vivo.

  6. Disilicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis

    Directory of Open Access Journals (Sweden)

    Carlo Fornaini


    Full Text Available Lithium disilicate dental ceramic bonding, realized by using different resins, is strictly dependent on micro-mechanical retention and chemical adhesion. The aim of this in vitro study was to investigate the capability of a 1070 nm fiber laser for their surface treatment. Samples were irradiated by a pulsed fiber laser at 1070 nm with different parameters (peak power of 5, 7.5 and 10 kW, repetition rate (RR 20 kHz, speed of 10 and 50 mm/s, and total energy density from 1.3 to 27 kW/cm2 and the thermal elevation during the experiment was recorded by a fiber Bragg grating (FBG temperature sensor. Subsequently, the surface modifications were analyzed by optical microscope, scanning electron microscope (SEM, and energy dispersive X-ray spectroscopy (EDS. With a peak power of 5 kW, RR of 20 kHz, and speed of 50 mm/s, the microscopic observation of the irradiated surface showed increased roughness with small areas of melting and carbonization. EDS analysis revealed that, with these parameters, there are no evident differences between laser-processed samples and controls. Thermal elevation during laser irradiation ranged between 5 °C and 9 °C. A 1070 nm fiber laser can be considered as a good device to increase the adhesion of lithium disilicate ceramics when optimum parameters are considered.

  7. Tm3+ and Tm(3+)-Ho3+ co-doped tungsten tellurite glass single mode fiber laser. (United States)

    Li, Kefeng; Zhang, Guang; Wang, Xin; Hu, Lili; Kuan, Peiwen; Chen, Danping; Wang, Meng


    We investigated the ~2 μm spectroscopic and lasing performance of Tm(3+) and Tm(3+)-Ho(3+) co-doped tungsten tellurite glass single mode fibers with a commercial 800 nm laser diode. The double cladding single mode (SM) fibers were fabricated by using rod-in-tube method. The propagation loss of the fiber was ~2.5 dB/m at 1310 nm. The spectroscopic properties of the fibers were analyzed. A 494 mW laser operating at ~1.9 μm was achieved in a Tm(3+) doped 20 cm long fiber, the slope efficiency was 26%, and the laser beam quality factor M(2) was 1.09. A 35 mW ~2.1 μm laser output was also demonstrated in a 7 cm long of Tm(3+)-Ho(3+) co-doped tungsten tellurite SM fiber. © 2012 Optical Society of America

  8. Laser direct writing using submicron-diameter fibers. (United States)

    Tian, Feng; Yang, Guoguang; Bai, Jian; Xu, Jianfeng; Hou, Changlun; Liang, Yiyong; Wang, Kaiwei


    In this paper, a novel direct writing technique using submicron-diameter fibers is presented. The submicron-diameter fiber probe serves as a tightly confined point source and it adopts micro touch mode in the process of writing. The energy distribution of direct writing model is analyzed by Three-Dimension Finite-Difference Time-Domain method. Experiments demonstrate that submicron-diameter fiber direct writing has some advantages: simple process, 350-nm-resolution (lower than 442-nm-wavelength), large writing area, and controllable width of lines. In addition, by altering writing direction of lines, complex submicron patterns can be fabricated.

  9. Optical Connecting of Fibers by Laser Beams Propagating from the Fibers Edges

    Directory of Open Access Journals (Sweden)

    Sergey Nikolayevich Mensov


    Full Text Available A possibility to connect nonprecise positioned fibers in photopolymerizable compositions is under discussion in this paper. The processes of optical synthesis of connective waveguiding structures forming in such mediums directly by the radiation leaving the edges of connecting fibers are investigated numerically and experimentally as well. It was shown that nonlinear interaction of the light beams allows to connect misaligned and transversally shifted fibers with high efficiency.

  10. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault


    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  11. Broadband supercontinuum light source seeded by random distributed feedback fiber laser (United States)

    Ma, R.; Rao, Y. J.; Zhang, W. L.; Wu, H.; Zeng, X.


    A novel broadband light source based on supercontinuum (SC) generation seeded by random distributed feedback fiber laser (RFL) is proposed and demonstrated for the first time. A half-opened fiber cavity formed by FBG and TrueWave fiber is used to generate random lasing and SC simultaneously. Experimental results indicate that RFL can be used as an effective pump for generation of SC. SC with 20-dB bandwidth of >250 nm was obtained. Such a broadband SC light source seeded by RFL may pave a way to generate high power broadband RFLs for use in optical sensing and measurement.

  12. Mode-locked Yb-doped fiber laser emitting broadband pulses at ultralow repetition rates. (United States)

    Bowen, Patrick; Erkintalo, Miro; Provo, Richard; Harvey, John D; Broderick, Neil G R


    We report on an environmentally stable, Yb-doped, all-normal dispersion, mode-locked fiber laser that is capable of creating broadband pulses with ultralow repetition rates. Specifically, through careful positioning of fiber sections in an all-PM-fiber cavity mode-locked with a nonlinear amplifying loop mirror, we achieve stable pulse trains with repetition rates as low as 506 kHz. The pulses have several nanojules of energy and are compressible down to ultrashort (<500  fs) durations.

  13. Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting. (United States)

    Li, Yanlu; Meersman, Stijn; Baets, Roel


    We demonstrate a laser Doppler vibrometer (LDV) based on the serrodyne frequency shifting technique. A proof-of-principle system is implemented on the basis of fiber-optic components but opens the way toward an ultracompact integrated LDV system on a silicon chip. With a low laser power of 50  μW, the serrodyne LDV was able to measure submicrometer vibrations with frequencies in the audio range.

  14. Widely tunable Tm-doped mode-locked all-fiber laser


    Yan, Zhiyu; Sun, Biao; Li, Xiaohui; Luo, Jiaqi; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie


    We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136?nm, from 1842 to 1978?nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved m...

  15. Measurement of the thermal diffusivity of a silica fiber bundle using a laser and an IR camera


    Vignoles, Gérard; BRESSON, Grégory; Lorrette, Christophe; AHMADI-SENICHAULT, Azita


    International audience; We propose a lightweight method for the determination of heat diffusivity of silica fiber bundles based on the use of a laser and an IR camera. The fiber bundle is maintained in traction in a holder; exposition is made as a step function, followed by a laser shutdown. The movie obtained by the IR camera is then processed : frame averaging, backgraound computation and substraction, image smoothing, extraction of the IR signal along the fiber bundle. A 1D model has been ...

  16. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency (United States)

    Jiang, Man; Zhou, Pu; Gu, Xijia


    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  17. Range Resolved CO2 Atmospheric Backscattering Measurements Using Fiber Lasers and RZPN Code Modulation (United States)

    Burris, John


    We report the use of a return-to- zero (RZPN) pseudo noise modulation technique for making range resolved measurements of CO2 within the planetary boundary layer (PBL) using commercial, off-the-shelf, components. Conventional, range resolved, DIAL measurements require laser pulse widths that are significantly shorter than the desired spatial resolution and necessitate using pulses whose temporal spacing is such that scattered returns from only a single pulse are observed by the receiver at any one time (for the PBL pulse separations must be greater than approximately 20 microseconds). This imposes significant operational limitations when using currently available fiber lasers because of the resulting low duty cycle (less than approximately 0.0005) and consequent low average laser output power. The RZPN modulation technique enables a fiber laser to operate at much higher duty cycles (approaching 0.04) thereby more effectively utilizing the amplifier's output. This increases the counts received by approximately two orders of magnitude. Our approach involves employing two distributed feedback lasers (DFB), each modulated by a different RPZN code, whose outputs are then amplified by a CW fiber amplifier. One laser is tuned to a CO2 absorption line; the other operates offline thereby permitting the simultaneous acquisition of both on and offline signals using independent RZPN codes. This minimizes the impact of atmospheric turbulence on the measurement. The on and offline signals are retrieved by deconvolving the return signal using the appropriate kernels.

  18. Developing high-power hybrid resonant gain-switched thulium fiber lasers. (United States)

    Yan, Shuo; Wang, Yao; Zhou, Yan; Yang, Nan; Li, Yue; Tang, Yulong; Xu, Jianqiu


    In this paper, we propose hybrid-pumped resonant gain-switched thulium fiber lasers to realize high-average-power and high-pulse-energy 2-μm laser emissions. Based on numerical simulation, laser dynamics (pulse peak power, pulse energy, pulse duration, etc.) of this kind of laser system are investigated in detail. By taking advantages of the 793 nm continuous wave pump and the 1900 nm pulsed pump, performance of the laser emission can be significantly improved, with the highest average power of 28 W, peak power of 3.5 kW, pulse energy of 281 μJ, and narrowest pulse duration of 92 ns, all of which can be further optimized through designing the cavity parameters and the pumping circumstance. Compared with the pump pulses, two times improvement in pulse energy and average power has been achieved. This hybrid resonant gain-switched system has an all-fiber configuration and high efficiency (low heat load), and can be steadily extended into the cladding pump scheme, thus paving a new way to realize high power (>100 W average power) and high pulse energy (>1 mJ) 2 μm thulium fiber lasers.

  19. TruMicro Series 2000 sub-400 fs class industrial fiber lasers: adjustment of laser parameters to process requirements (United States)

    Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Jansen, Florian; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk


    The matchless properties of ultrashort laser pulses, such as the enabling of cold processing and non-linear absorption, pave the way to numerous novel applications. Ultrafast lasers arrived in the last decade at a level of reliability suitable for the industrial environment.1 Within the next years many industrial manufacturing processes in several markets will be replaced by laser-based processes due to their well-known benefits: These are non-contact wear-free processing, higher process accuracy or an increase of processing speed and often improved economic efficiency compared to conventional processes. Furthermore, new processes will arise with novel sources, addressing previously unsolved challenges. One technical requirement for these exciting new applications will be to optimize the large number of available parameters to the requirements of the application. In this work we present an ultrafast laser system distinguished by its capability to combine high flexibility and real time process-inherent adjustments of the parameters with industry-ready reliability. This industry-ready reliability is ensured by a long experience in designing and building ultrashort-pulse lasers in combination with rigorous optimization of the mechanical construction, optical components and the entire laser head for continuous performance. By introducing a new generation of mechanical design in the last few years, TRUMPF enabled its ultrashort-laser platforms to fulfill the very demanding requirements for passively coupling high-energy single-mode radiation into a hollow-core transport fiber. The laser architecture presented here is based on the all fiber MOPA (master oscillator power amplifier) CPA (chirped pulse amplification) technology. The pulses are generated in a high repetition rate mode-locked fiber oscillator also enabling flexible pulse bursts (groups of multiple pulses) with 20 ns intra-burst pulse separation. An external acousto-optic modulator (XAOM) enables linearization

  20. Effect of Laser Etching on Glass Fiber Posts Cemented with Different Adhesive Systems. (United States)

    Parlar Oz, Ozge; Secilmis, Asli; Aydin, Cemal


    Glass fiber-reinforced posts have been preferred frequently because of some physical properties similar to the dentin, chemically bonding to dentin, biocompatibility, and esthetics. This study aimed to evaluate the microleakage and bond strength of glass fiber posts cemented with various adhesive systems on laser-etched root canal walls. Roots of 120 human mandibular premolars were divided into two groups for push-out bond strength test and the microleakage test (n = 60). Erbium-doped yttrium-aluminum-garnet (Er:YAG) laser etching of the root canal walls was carried out on half of the specimens in both test groups. The laser-treated and laser-nontreated groups were divided again into three subgroups (n = 10). Glass fiber posts (everStick Post) were luted using three different resin cements: total-etch (Variolink N), self-etch (Panavia F 2.0), and self-adhesive (Rely X Unicem). Three dentin discs were obtained from each root, and the bond strength of the glass fiber posts was measured by push-out tests. The dye penetration method was used to investigate coronal microleakage. In addition, surface treatments and the bonding interfaces were observed using scanning electron microscope. The highest bond strengths were observed for the total-etch and self-adhesive resin cement groups with laser etching (p  0.05), except for the self-adhesive resin cement group (p fiber posts. In addition, laser etching can reduce microleakage of self-adhesive resin cement.

  1. All-fiber wavelength-tunable Tm-doped fiber laser mode locked by SESAM with 120  nm tuning range. (United States)

    Xu, Zhuo; Dou, Zhi-Yuan; Hou, Jing; Xu, Xiao-Jun


    We demonstrate an all-fiber widely wavelength-tunable thulium-doped fiber laser (TDFL) mode locked by a semiconductor saturable absorber mirror (SESAM). The tuning range spans 121 nm, from 1862 nm to 1983 nm. The central wavelength is tuned by a grating-based tunable filter in the ring laser cavity. To the best of our knowledge, this is so far the most widely wavelength-tunable TDFL mode locked by SESAM.

  2. Periodic and non-periodic frequency selection in an erbium doped fiber laser by silica microdisk optical cavity filters. (United States)

    Bergeron, Sacha; Saïdi, Samir; Peter, Yves-Alain


    Integrated silica microdisk resonators can be used to create a variety of very high performance spectral filters. These filters can control the spectral emission of an erbium doped fiber laser. By modifying the number and sizes of the microdisks constituting these filters it is possible to produce single wavelength, periodic multi-frequency and non-periodic multi-wavelength fiber lasers. Channel spacing as low as 0.28 nm and non-periodic four wavelength lasers were demonstrated.

  3. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B


    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  4. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications. (United States)

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D


    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.

  5. Fabrication of π phase-shifted fiber Bragg grating and its application in narrow linewidth 1.5 μm Er-doped fiber lasers (United States)

    Sun, Junjie; Wang, Zefeng; Wang, Meng; Xi, Xiaoming; Cao, Jianqiu; Gu, Xijia; Chen, Jinbao


    Using a π phase-shifted fiber Bragg grating (PSFBG) as narrow band filtering component is an important method for narrow linewidth fiber lasers, which have lots of applications in fiber sensors, optical communication, coherent detection and combination. In this paper, we design and fabricate two π PSFBGs by π phase-shifted phase mask. A narrow linewidth 1.5 μm Er-doped fiber ring laser employing one of the two π PSFBGs is set up, and the characteristics of the laser power and spectrum are investigated experimentally. A maximum laser power about 2.22 W at 1549.5 nm with linewidth ∼1 GHz is achieved, and the maximum slope efficiency is 35.8%. To the best of our knowledge, it is the highest power for GHz-level C-band fiber lasers. Further, high-efficient, high-power, single-longitudinal-mode fiber lasers could be achieved by optimizing the π PSFBG and the structure of the cavity.

  6. Twisted network programming essentials

    CERN Document Server

    Fettig, Abe


    Twisted Network Programming Essentials from O'Reilly is a task-oriented look at this new open source, Python-based technology. The book begins with recommendations for various plug-ins and add-ons to enhance the basic package as installed. It then details Twisted's collection simple network protocols, and helper utilities. The book also includes projects that let you try out the Twisted framework for yourself. For example, you'll find examples of using Twisted to build web services applications using the REST architecture, using XML-RPC, and using SOAP. Written for developers who want to s

  7. Fiber optic analog and timing monitoring system for the antares laser fusion program

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, J.L.; Thuot, M.E.


    The development and use of two optical fiber systems for the Antares 40 kJ CO/sub 2/ laser is described. In the Antares power amplifier, electron guns produce a discharge-sustaining B kA beam of 500 kV electrons. Eight 300 kJ, 3 Marx pulsers provide a direct electrical pumping discharge through the laser gas. The electro-optic systems developed allow the measurement of pulsed analog waveforms and trigger timing information within the laser and power systems by a computer based control and data acquisition network.

  8. Tunable wavelength erbium doped fiber linear cavity laser based on mechanically induced long-period fiber gratings (United States)

    Pérez Maciel, M.; Montenegro Orenday, J. A.; Estudillo Ayala, J. M.; Jáuregui-Vázquez, D.; Sierra-Hernandez, J. M.; Hernandez-Garcia, J. C.; Rojas-Laguna, R.


    Tunable wavelength erbium doped fiber linear cavity laser, based on mechanically induced long-period fiber gratings (MLPFG) is presented. The laser was tuned applying pressure over the MLPFG, in order to monitor this, pressure is applied over a plate with periodic grooves that has a short length, this pressure is controlled by a digital torque tester as a result tunable effect is observed. The grooves have a period of 620µm and the maximal pressure without breakpoint fiber is around 0.80lb-in2. Furthermore, the MLPFG used can be erased, reconfigured and exhibit a transmission spectra with termal stability, similar to high cost photoinduced long period gratings. In this work, by pressure increment distributed over the MLPFG from 0.40 lb-in2 to 0. 70 lb-in 2, tuned operation range of 14nm was observed and single line emission was tuned in the C telecommunication band. According to the stability analysis the signal to noise ratio was 29 dB and minimal wavelength oscillations of 0.29nm.

  9. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    R. Brian Jenkins


    Full Text Available Fiber Bragg grating (FBG temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  10. Nanosecond two-photon excitation fluorescence imaging with a multi color fiber MOPA laser (United States)

    Karpf, Sebastian; Eibl, Matthias; Huber, Robert


    A system is presented that uses a fiber based Master Oscillator Power Amplifier (MOPA) with nanosecond-range pulses for two-photon excitation fluorescence (TPEF) imaging. The robust laser in the extended near infrared is based on an actively modulated electro-optical modulator (EOM), enabling free synchronization of the pulses to any other light source or detection unit. Pulses with a freely programmable duration between 0.4 and 10 ns are generated and then amplified to up to kilowatts of peak power with ytterbium doped fiber amplifiers (YDFA). Since we achieve peak power and duty cycles comparable to standard femto- and picosecond setups, the TPEF signal levels are similar, but realized with a robust and inexpensive fiber-based setup. The delivery fiber is further used as an optional, electronically controllable Raman shifter to effectively shift the 1064 nm light to 1122 nm and to 1186 nm. This allows imaging of a manifold of fluorophores, like e.g. TexasRed, mCherry, mRaspberry and many more. We show TPEF imaging of the autofluorescence of plant leaves of moss and algae, acquired in epi-direction. This modular laser unit can be integrated into existing systems as either a fiber-based, alignment free excitation laser or an extension for multi-modal imaging.

  11. Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation (United States)

    Luo, Xing; Xu, Zhongwei; Peng, Jinggang; Yang, Luyun; Dai, Nengli; Li, Haiqing; Li, Jinyan


    A simple open-cavity laser is proposed for supercontinuum generation. Broadband supercontinuum covering the wavelength from 630 to 1700 nm with low multimode LD pump power ( 1.7 W) is demonstrated. Giant nanosecond pulse generation can be realized by pumping a piece of Yb-doped double cladding fiber combined with two pieces of long passive fibers. There are no reflectors or modulators included in this laser. It is confirmed that the process of the passive self-Q-switch is mainly based on the stimulated Brillouin scattering effect. The peak power of the giant nanosecond pulses is high enough to generate supercontinuum with over 1000 nm bandwidth even in standard single-mode fiber, which makes this supercontinuum laser source low-cost and compact. Replacing the standard single-mode fiber with a piece of high nonlinear photonic crystal fiber, broader and flatter supercontinuum can be obtained because of the high nonlinear coefficient and the blue-shift of the zero-dispersion wavelength.

  12. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors. (United States)

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah


    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  13. Energy recycling versus lifetime quenching in erbium-doped 3-µm fiber lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Jackson, Stuart D.

    Based on recently published spectroscopic measurements of the relevant energy-transfer parameters, we performed a detailed analysis of the population mechanisms and the characteristics of the output from Er3+-singly-doped and Er3+, Pr3+-codoped ZBLAN fiber lasers operating at 3 um, for various Er3+

  14. Numerical simulation about orthogonal single frequency dithering technique used in tilt control of fiber laser array (United States)

    Zhang, Zhixin; Zhi, Dong; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei


    Beam combination of fiber laser array is an effective technique contributed to improve the brightness of fiber lasers. In order to realize high-efficiency CBC, challenges like phase distortion (mainly including piston and tilt phase aberrations) should be taken into consideration. Resent years, tilt phase aberrations control has been come true by adaptive fiber optics collimator using the stochastic parallel gradient descent (SPGD) algorithm. However, the convergence rate of tilt control system still cannot satisfy the needs of practical application. In order to increase the tilt control bandwidth, a new idea is put forward that applying the orthogonal single frequency dithering (OSFD) technique into tilt control, and numerical simulation has been completed. A hexagonal laser array with 7 elements has been simulated, and each element has a pair of initial tilt angles in horizontal and vertical direction. The initial tilt angles comply with normal distribution. In the same condition, tilt phase control has been realized through SPGD and OSFD individually, and the convergence steps (defined as the iteration steps that improve the normalized PIB above 0.9) with appropriate parameters are respectively about 20 (SPGD) and 7 (OSFD). Furthermore, tilt phase control of large number hexagonal array is simulated, and the results are as follows: for 19/37 elements, the least convergence steps are about 80/160(SPGD) and 19/55(OSFD). Comparing with SPGD algorithm, it is obvious that the OSFD has higher convergence rate and greater potential for tilt control application in large number coherent fiber laser array.

  15. Spectral shaping of a 10 W diode laser-Yb-fiber amplifier system

    NARCIS (Netherlands)

    Adhimoolam, B.; Lindsay, I.D.; Lee, Christopher James; Gross, P.; Boller, Klaus J.; Klein, M.E.


    We describe a continuous-wave master-oscillator power-amplifier system based on a distributed Bragg reflection diode laser and an Yb doped fiber amplifier. The observed optical spectrum of the amplified seed source can be tailored to arbitrary shapes and widths between 30 MHz and greater than 1 GHz

  16. Dissipative shock waves in all-normal-dispersion mode-locked fiber lasers. (United States)

    Lecaplain, C; Soto-Crespo, J M; Grelu, Ph; Conti, C


    We propose an interpretation of the pronounced "M" spectral shape that is a recurrent feature in all-normal-dispersion mode-locked fiber laser dynamics. Our interpretation involves shock wave formation regularized by dissipation, modeled by a modified Burgers equation. The large fringes appearing at the edges of the spectrum result from discontinuities in the spectral phase.

  17. Dissecting Regional Variations in Stress Fiber Mechanics in Living Cells with Laser Nanosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Kandice; Boudreau, Aaron; Bissell, Mina J; Kumar, Sanjay


    The ability of a cell to distribute contractile stresses across the extracellular matrix in a spatially heterogeneous fashion underlies many cellular behaviors, including motility and tissue assembly. Here we investigate the biophysical basis of this phenomenon by using femtosecond laser nanosurgery to measure the viscoelastic recoil and cell-shape contributions of contractile stress fibers (SFs) located in specific compartments of living cells. Upon photodisruption and recoil, myosin light chain kinase-dependent SFs located along the cell periphery display much lower effective elasticities and higher plateau retraction distances than Rho-associated kinase-dependent SFs located in the cell center, with severing of peripheral fibers uniquely triggering a dramatic contraction of the entire cell within minutes of fiber irradiation. Image correlation spectroscopy reveals that when one population of SFs is pharmacologically dissipated, actin density flows toward the other population. Furthermore, dissipation of peripheral fibers reduces the elasticity and increases the plateau retraction distance of central fibers, and severing central fibers under these conditions triggers cellular contraction. Together, these findings show that SFs regulated by different myosin activators exhibit different mechanical properties and cell shape contributions. They also suggest that some fibers can absorb components and assume mechanical roles of other fibers to stabilize cell shape.

  18. All-fiber multi-wavelength passive Q-switched Er/Yb fiber laser based on a Tm-doped fiber saturable absorber (United States)

    Posada-Ramírez, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R. I.; Alaniz-Baylón, J.; Ibarra-Escamilla, B.; López-Estopier, R.; Kuzin, E. A.


    We report on a ring cavity, multi-wavelength, passive Q-switched erbium-ytterbium double cladding fiber laser based on the use of an unpumped segment of Tm-doped fiber acting as a saturable absorber for passive Q-switched pulse generation and a wavelength filter for multi-wavelength laser generation. By performing pump power variations from 1.6 to 9.8 W, stable Q-switched laser pulses are observed in a repetition rate from 135.8 to 27.5 kHz at room temperature. With a maximal repetition rate of 135.8 kHz, the minimum pulse duration of 430 ns is obtained. The maximal average output power of 2.2 W is reached with a pump power of 9.8 W. The maximum pulse energy was 16.4 µJ and the average output power slope efficiency is ~24.8%. The obtained results demonstrate a laser performance with extended range of high repetition rate and improved stability.

  19. Rotational multiphoton endoscopy with a 1 μm fiber laser system (United States)

    Liu, Gangjun; Xie, Tuqiang; Tomov, Ivan V.; Su, Jianping; Yu, Lingfeng; Zhang, Jun; Tromberg, Bruce J.; Chen, Zhongping


    We present multiphoton microendoscopy with a rotational probe and a 1 μm fiber-based femtosecond laser. The rotational probe is based on a double-clad photonic crystal fiber, a gradient index lens, a microprism, and a rotational microelectronicmechanical system (MEMS) motor. The MEMS motor has a diameter of 2.2 mm and can provide 360° full-view rotation. The fiber laser provides ultrashort pulses with a central wavelength at 1.034 μm and a repetition rate of 50 MHz. Second-harmonic-generation images of rat-tail tendon and fish scale are demonstrated with the rotational probe-based multiphoton system. PMID:19649060

  20. 20 W High Efficiency 1550 nm Pulsed Fiber Laser Project (United States)

    National Aeronautics and Space Administration — High peak power short pulsed lasers have been considered to be an enabling technology to build high power transmitters for future deep space high rate space...

  1. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers (United States)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad


    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  2. Myosin content of individual human muscle fibers isolated by laser capture microdissection. (United States)

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H


    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  3. Timing stability enhancement of an Erbium Doped mode locked Fiber Laser using SESAM mirror (United States)

    Afifi, G.; Khedr, M. Atta; Badr, Y.; Danailov, M.; Sigalotti, P.; Cinquegrana, P.; Alsous, M. B.; Galaly, A. R.


    We report on an examination of pulse timing stability of a home built Erbium Doped Fiber Laser (EDFL) passively mode locked via nonlinear polarization rotation by inserting semiconductor saturable absorber mirror (SESAM) in laser cavity. A very low root mean square (RMS) timing jitter (less than 27 fsec) and faster self-starting mode locking have been established. In order to get clear, low noise signal for time resolving measurements, synchronization of EDFL laser with an external high precision electronic oscillator have been established. Subsequently, it is synchronized and optically cross-correlated with a Ti:Sapphire laser source (Micra). The measured relative timing jitter was found to be less than 65 fsec. In this way, the two, well synchronized Ti:Sapphire and EDFL laser pulses prove to be a powerful tool for time resolving measurements.

  4. Energy balance in high-quality cutting of steel by fiber and CO2 lasers (United States)

    Fomin, V. M.; Golyshev, A. A.; Orishich, A. M.; Shulyat'ev, V. B.


    The energy balance of laser cutting of low-carbon and stainless steel sheets with the minimum roughness of the cut surface is experimentally studied. Experimental data obtained in wide ranges of cutting parameters are generalized with the use of dimensionless parameters (Peclet number and absorbed laser energy). It is discovered for the first time that the minimum roughness is ensured at a certain value of energy per unit volume of the melt (approximately 26 J/mm3), regardless of the gas type (oxygen or nitrogen) and laser type (fiber laser with a wavelength of 1.07 μm or CO2 laser with a wavelength of 10.6 μm).

  5. 3D finite element model for writing long-period fiber gratings by CO2 laser radiation. (United States)

    Coelho, João M P; Nespereira, Marta; Abreu, Manuel; Rebordão, José


    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented.

  6. Room temperature CW and QCW operation of Ho:CaF2 laser pumped by Tm:fiber laser (United States)

    Jelínek, Michal; Cvrček, Jan; Kubeček, Václav; Zhao, Beibei; Ma, Weiwei; Jiang, Dapeng; Su, Liangbi


    Laser radiation in the wavelength range around 2 μm is required for its specific properties - it is very suitable for medical applications, remote sensing, or pumping of optical parametric oscillators to generate ultrafast pulses in the mid-IR region further exploited in nonlinear optics. Crystals as YLF, YAG, LLF, and GdVO4 doped by holmium were already investigated and found suitable for the tunable laser generation around 2.1 mμ. Only a few works are devoted to the laser operation of holmium-doped fluorides as CaF2. In this work, pulsed and continuous-wave laser operation of a modified- Bridgman-grown Ho:CaF2 active crystal at room temperature is reported. A commercial 50 W 1940 nm Tm-fiber laser was used to pump a laser oscillator based on a novel 10 mm long 0.5 at.% Ho:CaF2 active crystal placed in the Peltiercooled holder. In the pulsed regime (10 ms, 10 Hz), the laser slope efficiency of 53 % with respect to the absorbed pump power was achieved. The laser generated at the central wavelength of 2085 nm with the maximum mean output power of 365 mW corresponding to the power amplitude of 3.65 W. In the continuous wave regime, the maximum output power was 1.11 W with the slope efficiency of 41 % with respect to the absorbed pump power. To our best knowledge this is the first demonstration of this laser active material operating in the CW regime at room temperature. The tuning range over 60 nm from 2034 to 2094 nm was achieved using a birefringent filter showing the possibility to develop a mode-locked laser system generating pulses in the sub-picosecond range.

  7. Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy. (United States)

    Hsu, Paul S; Kulatilaka, Waruna D; Jiang, Naibo; Gord, James R; Roy, Sukesh


    We investigate the feasibility of transmitting high-power, ultraviolet (UV) laser pulses through long optical fibers for laser-induced-fluorescence (LIF) spectroscopy of the hydroxyl radical (OH) and nitric oxide (NO) in reacting and non-reacting flows. The fundamental transmission characteristics of nanosecond (ns)-duration laser pulses are studied at wavelengths of 283 nm (OH excitation) and 226 nm (NO excitation) for state-of-the-art, commercial UV-grade fibers. It is verified experimentally that selected fibers are capable of transmitting sufficient UV pulse energy for single-laser-shot LIF measurements. The homogeneous output-beam profile resulting from propagation through a long multimode fiber is ideal for two-dimensional planar-LIF (PLIF) imaging. A fiber-coupled UV-LIF system employing a 6 m long launch fiber is developed for probing OH and NO. Single-laser-shot OH- and NO-PLIF images are obtained in a premixed flame and in a room-temperature NO-seeded N(2) jet, respectively. Effects on LIF excitation lineshapes resulting from delivering intense UV laser pulses through long fibers are also investigated. Proof-of-concept measurements demonstrated in the current work show significant promise for fiber-coupled UV-LIF spectroscopy in harsh diagnostic environments such as gas-turbine test beds.

  8. Recent progress on gas sensor based on quantum cascade lasers and hollow fiber waveguides (United States)

    Liu, Ningwu; Sun, Juan; Deng, Hao; Ding, Junya; Zhang, Lei; Li, Jingsong


    Mid-infrared laser spectroscopy provides an ideal platform for trace gas sensing applications. Despite this potential, early MIR sensing applications were limited due to the size of the involved optical components, e.g. light sources and sample cells. A potential solution to this demand is the integration of hollow fiber waveguide with novelty quantum cascade lasers.Recently QCLs had great improvements in power, efficiency and wavelength range, which made the miniaturized platforms for gas sensing maintaining or even enhancing the achievable sensitivity conceivable. So that the miniaturization of QCLs and HWGs can be evolved into a mini sensor, which may be tailored to a variety of real-time and in situ applications ranging from environmental monitoring to workplace safety surveillance. In this article, we introduce QCLs and HWGs, display the applications of HWG based on QCL gas sensing and discuss future strategies for hollow fiber coupled quantum cascade laser gas sensor technology.

  9. Group velocity locked vector dissipative solitons in a high repetition rate fiber laser

    CERN Document Server

    Luo, Yiyang; Li, Lei; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Fu, Songnian; Zhao, Luming


    Vectorial nature of dissipative solitons (DSs) with high repetition rates is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectra, which can be considered as an auxiliary indicator of the group velocity locked vector DSs.

  10. Fiber Bragg grating sensors written by femtosecond laser pulses in micro-structured fiber for downhole pressure monitoring (United States)

    Huang, J.-Y.; Van Roosbroeck, J.; Bueno Martinez, A.; Geernaert, T.; Berghmans, F.; Caucheteur, C.; Van Hoe, B.; Lindner, E.; Vlekken, J.


    In this paper, we demonstrate that femtosecond laser pulse written fiber Bragg gratings (FBGs) fabricated in specialty highly birefringent micro-structured optical fiber (MSF) can be used for high pressure and high temperature monitoring in downhole applications. The design of the micro-structure allows encoding the pressure information into the spectral separation between the two Bragg peaks reflected by the obtained MS-FBG. We obtained a differential pressure sensitivity of 3.30 pm/bar over a pressure range from atmospheric up to 1400 bar and at temperatures between 40 °C and 290 °C. Owing to the negligible differential pressure-temperature cross-sensitivity of 6.06E-3 bar/°C, the proposed MSFBG sensor is an ideal candidate for pressure monitoring in the presence of high temperature transients.

  11. Wavelength-switchable passively mode-locked fiber laser with mechanically exfoliated molybdenum ditelluride on side-polished fiber (United States)

    Wang, Guomei


    We experimentally investigated the nonlinear saturable absorption characteristics of molybdenum ditelluride (MoTe2) and demonstrated a wavelength-switchable mode-locked erbium-doped fiber laser (EDFL) by using MoTe2 thin film on side-polished fiber (SPF) as saturable absorber. Here, the MoTe2 thin film was efficiently fabricated via mechanical exfoliation method and transferred onto the SPF with the assistance of polydimethylsiloxane (PDMS). MoTe2-covered SPF (MSPF) exhibits the nonlinear saturable absorption for pulses with different polarization states. Optical solitons with spectral bandwidth of 1.06 (1.31) nm centered at ∼1559 (∼1528) nm and pulse duration of 2.46 (2.04) ps can be obtained from the EDFL by adjusting the polarization controller (PC) properly. The time-bandwidth product (TBP) of the pulses was calculated as 0.322 (0.344).

  12. Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining

    Directory of Open Access Journals (Sweden)

    Wei-Te Wu


    Full Text Available This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10−4 RIU (linear fitting R2 = 0.954 was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10−5 RIU, and greater linearity at R2 = 0.999.

  13. Fabrication quality analysis of a fiber optic refractive index sensor created by CO2 laser machining. (United States)

    Chen, Chien-Hsing; Yeh, Bo-Kuan; Tang, Jaw-Luen; Wu, Wei-Te


    This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10(-4) RIU (linear fitting R2 = 0.954) was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10(-5) RIU, and greater linearity at R2 = 0.999.

  14. Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water. (United States)

    Pratisto, H; Frenz, M; Ith, M; Altermatt, H J; Jansen, E D; Weber, H P


    Because of the high absorption of near-infrared laser radiation in biological tissue, erbium lasers and holmium lasers emitting at 3 and 2 µm, respectively, have been proven to have optimal qualities for cutting or welding and coagulating tissue. To combine the advantages of both wavelengths, we realized a multiwavelength laser system by simultaneously guiding erbium and holmium laser radiation by means of a single zirconium fluoride (ZrF(4)) fiber. Laser-induced channel formation in water and poly(acrylamide) gel was investigated by the use of a time-resolved flash-photography setup, while pressure transients were recorded simultaneously with a needle hydrophone. The shapes and depths of vapor channels produced in water and in a submerged gel after single erbium and after combination erbium-holmium radiation delivered by means of a 400-µm ZrF(4) fiber were measured. Transmission measurements were performed to determine the amount of pulse energy available for tissue ablation. The effects of laser wavelength and the delay time between pulses of different wavelengths on the photomechanical and photothermal responses of meniscal tissue were evaluated in vitro by the use of histology. It was observed that the use of a short (200-µs, 100-mJ) holmium laser pulse as a prepulse to generate a vapor bubble through which the ablating erbium laser pulse can be transmitted (delay time, 100 µs) increases the cutting depth in meniscus from 450 to 1120 µm as compared with the depth following a single erbium pulse. The results indicate that a combination of erbium and holmium laser radiation precisely and efficiently cuts tissue under water with 20-50-µm collateral tissue damage.

  15. Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber. (United States)

    Pang, M; He, W; St J Russell, P


    We report a Tm-doped soliton fiber laser passively mode-locked by intense optoacoustic interactions in a short length of solid-core silica photonic crystal fiber (PCF) with a nanobore in core-center. A repetition rate of 1.446 GHz pulse is achieved, corresponding to the 52nd harmonic of the 27.8 MHz cavity round-trip frequency. Strong optoacoustic interactions in this PCF-based, Tm-doped fiber laser ensure stable and repeatable gigahertz-rate pulse train generation at 1.85 μm wavelength, with a high supermode noise suppression ratio and low pulse timing jitter.


    African Journals Online (AJOL)

    30 juin 2012 ... continuous signal in a rare-earth doped fiber amplifier can generate high enough intensities to excite Brillouin ... Such back-reflection is detrimental for amplifier applications and consequently it has been studied .... le paramètre de dichroïsme du pompage. β est le paramètre de saturation croisée.Γ est le.

  17. Variable configuration fiber optic laser doppler vibrometer system (United States)

    Posada-Roman, Julio E.; Jackson, David A.; Garcia-Souto, Jose A.


    A multichannel heterodyne fiber optic vibrometer is demonstrated which can be operated at ranges in excess of 50 m. The system is designed to measure periodic signals, impacts, rotation, 3D strain, and vibration mapping. The displacement resolution of each channel exceeds 1 nm. The outputs from all channels are simultaneous, and the number of channels can be increased by using optical switches.

  18. Fiber (United States)

    ... fiber you get from the food. Fiber-rich foods offer health benefits when eaten raw or cooked. Alternative Names Diet - fiber; Roughage; Bulk; Constipation - fiber Patient Instructions Constipation - ...

  19. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers. (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong


    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  20. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong


    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers. PMID:28358045