WorldWideScience

Sample records for twisted beams subject

  1. Natural vibration of pre-twisted shear deformable beam systems subject to multiple kinds of initial stresses

    Science.gov (United States)

    Leung, A. Y. T.; Fan, J.

    2010-05-01

    Free vibration and buckling of pre-twisted beams exhibit interesting coupling phenomena between compression, moments and torque and have been the subject of extensive research due to their importance as models of wind turbines and helicopter rotor blades. The paper investigates the influence of multiple kinds of initial stresses due to compression, shears, moments and torque on the natural vibration of pre-twisted straight beam based on the Timoshenko theory. The derivation begins with the three-dimensional Green strain tensor. The nonlinear part of the strain tensor is expressed as a product of displacement gradient to derive the strain energy due to initial stresses. The Frenet formulae in differential geometry are employed to treat the pre-twist. The strain energy due to elasticity and the linear kinetic energy are obtained in classical sense. From the variational principle, the governing equations and the associated natural boundary conditions are derived. It is noted that the first mode increases together with the pre-twisted angle but the second decreases seeming to close the first two modes together for natural frequencies and compressions. The gaps close monotonically as the angle of twist increases for natural frequencies and buckling compressions. However, unlike natural frequencies and compressions, the closeness is not monotonic for buckling shears, moments and torques.

  2. Holographic generation of highly twisted electron beams

    CERN Document Server

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wavefront corresponding to the electron's wavefunction forms a helical structure with a number of twists given by the \\emph{angular speed}. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a \\emph{conventional} electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nano-fabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200$\\hbar$. Based on a novel technique the value of orbital angular momentum of the generated beam are measured, then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic momen...

  3. Do twisted laser beams evoke nuclear hyperpolarization?

    Science.gov (United States)

    Schmidt, A. B.; Andrews, D. L.; Rohrbach, A.; Gohn-Kreuz, C.; Shatokhin, V. N.; Kiselev, V. G.; Hennig, J.; von Elverfeldt, D.; Hövener, J.-B.

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5 nm and various topological charges. We acquired 1H and 19F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5 mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  4. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    Science.gov (United States)

    Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.; Han, S.-M.; Pedersen, T. R.; Scales, W. A.

    2015-10-01

    Nonlinear interactions of high power HF radio waves in the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska is the world's largest heating facility, yielding effective radiated powers in the gigawatt range. New results are present from HAARP experiments using a "twisted beam" excitation mode. Analysis of twisted beam heating shows that the SEE results obtained are identical to more traditional patterns. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region from a pencil beam. The ring heating pattern may be more conducive to the creation of stable artificial airglow layers because of the horizontal structure of the ring. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  5. Investigation of Beam-RF Interactions in Twisted Waveguide Accelerating Structures Using Beam Tracking Codes

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Jeffrey A [ORNL; Zhang, Yan [ORNL; Kang, Yoon W [ORNL; Galambos, John D [ORNL; Hassan, Mohamed H [ORNL; Wilson, Joshua L [ORNL

    2009-01-01

    Investigations of the RF properties of certain twisted waveguide structures show that they support favorable accelerating fields. This makes them potential candidates for accelerating cavities. Using the particle tracking code, ORBIT, We examine the beam - RF interaction in the twisted cavity structures to understand their beam transport and acceleration properties. The results will show the distinctive properties of these new structures for particle transport and acceleration, which have not been previously analyzed.

  6. Generation and application of the twisted beam with orbital angular momentum

    Institute of Scientific and Technical Information of China (English)

    Mingwei Gao; Chunqing Gao; Zhifeng Lin

    2007-01-01

    The twisted Laguerre-Gaussian beam was generated by transforming of Hermite-Gaussian beams through an optical system consisting of three rotated cylindrical lenses. The intensity distribution and phase structure of the twisted hollow beam were theoretically analyzed by using Collins diffraction integral. By utilizing the method of mode decomposition, the theory of transformation was analyzed. In the experiment,micro particles were trapped and rotated by this twisted beam.

  7. Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light

    CERN Document Server

    Seipt, D; Fritzsche, S

    2014-01-01

    The inverse Compton scattering of laser light on high-energetic twisted electrons is investigated with the aim to construct spatially structured x-ray beams. In particular, we analyze how the properties of the twisted electrons, such as the topological charge and aperture angle of the electron Bessel beam, affects the energy and angular distribution of scattered x-rays. We show that with suitably chosen initial twisted electron states one can synthesize tailor-made x-ray beam profiles with a well-defined spatial structure, in a way not possible with ordinary plane-wave electron beams.

  8. Twist-4 contributions to semi-inclusive deeply inelastic scatterings with polarized beam and target

    CERN Document Server

    Wei, Shu-yi; Chen, Kai-bao; Liang, Zuo-tang

    2016-01-01

    We present for the first time the complete twist-4 result for the semi-inclusive deeply inelastic scattering $e^- N \\to e^-qX$ with polarized electron and proton beams at the tree level of pQCD. The calculations have been carried out using the formulism obtained after collinear expansion where the multiple gluon scattering are taken into account and gauge links are obtained automatically in a systematical way. The results show in particular that there are twist-4 contributions to all the eight twist-2 structure functions for $e^- N \\to e^-hX$ that correspond to the eight twist-2 transverse momentum dependent parton distribution functions. Such higher twist effects could be very significant and therefore have important impacts on extracting these three-dimensional parton distribution functions from the asymmetry data on $e^- N \\to e^-hX$. We suggest also an approximate way for a rough estimation of such higher twist contributions.

  9. Thermoelastic buckling analysis of pre-twisted functionally graded beams with temperature-dependent material properties

    Science.gov (United States)

    Shenas, Amin Ghorbani; Malekzadeh, Parviz; Ziaee, Sima

    2017-04-01

    As a first endeavor, the thermal buckling behavior of pre-twisted functionally graded (FG) beams with temperature-dependent material properties is investigated. The governing stability equations are derived based on the third-order shear deformation theory (TSDT) in conjunction with the adjacent equilibrium state criterion under the von Kármán's nonlinear kinematic assumptions using the Chebyshev-Ritz method. The Chebyshev polynomials multiplied with some suitable boundary functions are used as the basis functions, which allow one to analyze the beams with different boundary conditions. The extracted system of nonlinear algebraic eigenvalue equations is solved iteratively to obtain the critical temperature rise. The convergence behavior together with accuracy of the solution method and the correctness of formulation are demonstrated through different examples. Then, the influences of the linear and nonlinear variation of the angle of twist along the beam axis, the value of twist angle, length-to-thickness ratio, thickness-to-width ratio, material gradient index and temperature dependence of material properties on the critical temperature rise of the pre-twisted FG beams under different boundary conditions are investigated. It is shown that the pre-twist angle increases the thermal buckling resistance of the pre-twisted FG beams, but the temperature dependence of material properties reduces it.

  10. Naked eye picometer resolution in a Michelson interferometer using conjugated twisted beams.

    Science.gov (United States)

    Emile, Olivier; Emile, Janine

    2017-01-15

    Michelson interferometry is one of the most widely used techniques for accuracy measurements. Its main characteristic feature is to infer a displacement in one of the arms of the interferometer from a phase measurement. Two different twisted beams, also called vortex beams, with opposite twisted rotations in each arm of the interferometer interfere in a daisy flower-like pattern. The number of petals is twice the topological charge. Their position depends on the relative phase of the beams. Naked eye detection of 44 pm displacements is achieved. The sensitivity of such an interferometer together with possible further improvements, and applications are then discussed.

  11. SOLUTION OF GENERALIZED COORDINATE FOR WARPING FOR NATURALLY CURVED AND TWISTED BEAMS

    Institute of Scientific and Technical Information of China (English)

    虞爱民; 易明

    2004-01-01

    A theoretical method for static analysis of naturally curved and twisted beams under complicated loads was presented, with special attention devoted to the solving process of governing equations which take into account the effects of torsion-related warping as well as transverse shear deformations. These governing equations, in special cases, can be readily solved and yield the solutions to the problem. The solutions can be used for the analysis of the beams, including the calculation of various internal forces, stresses, strains and displacements. The present theory will be used to investigate the stresses and displacements of a plane curved beam subjected to the action of horizontal and vertical distributed loads. The numerical results obtained by the present theory are found to be in very good agreement with the results of the FEM results. Besides, the present theory is not limited to the beams with a double symmetric cross-section, it can also be extended to those with arbitrary cross-sectional shape.

  12. Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals.

    Science.gov (United States)

    Shemer, Keren; Voloch-Bloch, Noa; Shapira, Asia; Libster, Ana; Juwiler, Irit; Arie, Ady

    2013-12-15

    We experimentally demonstrate that the orbital angular momentum (OAM) of a second harmonic (SH) beam, generated within twisted nonlinear photonic crystals, depends both on the OAM of the input pump beam and on the quasi-angular momentum of the crystal. In addition, when the pump's radial index is zero, the radial index of the SH beam is equal to that of the nonlinear crystal. Furthermore, by mixing two noncollinear pump beams in this crystal, we generate, in addition to the SH beams, a new "virtual beam" having multiple values of OAM that are determined by the nonlinear process.

  13. Twisted light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-12-01

    Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...

  14. Propagation of Partially Coherent Twisted Anisotropic Gaussian-Schell Model Beams in the Spatial-Frequency Domain

    Institute of Scientific and Technical Information of China (English)

    蔡阳健; 林强

    2002-01-01

    The generalized Collins formula for partially coherent beams through axially non-symmetrical optical systems in the spatial-frequency domain is derived by means of the tensor method. Based on this formula, the tensor ABCD law in the spatial-frequency domain for partially coherent twisted anisotropic Gaussian-Schell model (GSM) beams is derived, which governs the transformation of the twisted anisotropic GSM beams in the spatialfrequency domain. An example of an application is provided.

  15. Photonic quantum walk in a single beam with twisted light

    CERN Document Server

    Cardano, Filippo; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Marrucci, Lorenzo

    2014-01-01

    Inspired by the classical phenomenon of random walk, the concept of quantum walk has emerged recently as a powerful platform for the dynamical simulation of complex quantum systems, entanglement production and universal quantum computation. Such a wide perspective motivates a renewing search for efficient, scalable and stable implementations of this quantum process. Photonic approaches have hitherto mainly focused on multi-path schemes, requiring interferometric stability and a number of optical elements that scales quadratically with the number of steps. Here we report the experimental realization of a quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous indistinguishable photons. The whole process develops in a single light beam, with no need of interferometers, and requires optical resources scaling linearly with the number of steps. Our demonstration introduces a novel versatile photonic platform for implementing quantum simulations, b...

  16. Determination of the topological charge of a twisted beam with a Fresnel bi-prism

    Science.gov (United States)

    Emile, Olivier; Emile, Janine; Brousseau, Christian

    2014-12-01

    The self-interference pattern of a Laguerre Gaussian beam using a Fresnel bi-prism is shown to be very different from what could be expected from a usual laser beam. It resembles the interference pattern that could be obtained using a double slit experiment. The interferences are shifted and the topological charge and its sign can be readily determined considering the shift order of the pattern only. However, since there is no diffraction nor absorption losses unlike in a double slit interference, such a set up could be used even for low power twisted beams or beams with high topological charge. Even fractional topological charges could be determined with an absolute precision of 0.05.

  17. Chiasmatic Narrative and Twisted Subjectivity in Kanai Mieko's Boshizô

    Directory of Open Access Journals (Sweden)

    Mary A. Knighton

    2010-01-01

    Full Text Available The article provides a reading, from a psychoanalytic point of view, of Japanese writer Kanai Mieko’s short tale Boshizô (Portrait of Mother and Child, published in 1992, as a “twisted” or “contorted” parable of the construction of female subjectivity. Establishing connections between the form and the content of the novel, the essay analyzes how Kanai’s use of the rhetorical figure of the chiasmus structures the internal narrative of the novel at the same time that it reflects the process of formation of female subjectivity and desire. The novel becomes, thus, a staging of the female Oedipus complex which plays out its twists.

  18. Formulation of the twisted-light--matter interaction at the phase singularity: beams with strong magnetic fields

    CERN Document Server

    Quinteiro, G F; Kuhn, T

    2016-01-01

    The formulation of the interaction of matter with singular light fields needs special care. In a recent article [Phys.~Rev.~A {\\bf 91}, 033808 (2015)] we have shown that the Hamiltonian describing the interaction of a twisted light beam having parallel orbital and spin angular momenta with a small object located close to the phase singularity can be expressed only in terms of the electric field of the beam. Here, we complement our studies by providing an interaction Hamiltonian for beams having antiparallel orbital and spin angular momenta. Such beams may exhibit unusually strong magnetic effects. We further extend our formulation to radially and azimuthally polarized beams. The advantages of our formulation are that for all beams the Hamiltonian is written solely in terms of the electric and magnetic fields of the beam and as such it is manifestly gauge-invariant. Furthermore it is intuitive by resembling the well-known expressions in the dipole-electric and dipole-magnetic moment approximations.

  19. More twists on optical twisters: of helico-conical beams, superpositions and combinations

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    nonseparable helical or azimuthal phase and the conical o r radial phase, and that have been shown to self-reconstruct after an obstruction . In this work, we deeanstruet the helico-conical beam (HCB) as a coherent superposition of Bessel-like beams, which carry arbitrary topological charge. Fromthis......-conical beam with seleetable number of multiple helix) as well as multihelical beams that emulate the diffractionfree properties of its constituent Bessel-like beams....

  20. Cone-beam Computed Tomographic Assessment of Canal Centering Ability and Transportation after Preparation with Twisted File and Bio RaCe Instrumentation.

    Directory of Open Access Journals (Sweden)

    Kiamars Honardar

    2014-08-01

    Full Text Available Use of rotary Nickel-Titanium (NiTi instruments for endodontic preparation has introduced a new era in endodontic practice, but this issue has undergone dramatic modifications in order to achieve improved shaping abilities. Cone-beam computed tomography (CBCT has made it possible to accurately evaluate geometrical changes following canal preparation. This study was carried out to compare canal centering ability and transportation of Twisted File and BioRaCe rotary systems by means of cone-beam computed tomography.Thirty root canals from freshly extracted mandibular and maxillary teeth were selected. Teeth were mounted and scanned before and after preparation by CBCT at different apical levels. Specimens were divided into 2 groups of 15. In the first group Twisted File and in the second, BioRaCe was used for canal preparation. Canal transportation and centering ability after preparation were assessed by NNT Viewer and Photoshop CS4 software. Statistical analysis was performed using t-test and two-way ANOVA.All samples showed deviations from the original axes of the canals. No significant differences were detected between the two rotary NiTi instruments for canal centering ability in all sections. Regarding canal transportation however, a significant difference was seen in the BioRaCe group at 7.5mm from the apex.Under the conditions of this in vitro study, Twisted File and BioRaCe rotary NiTi files retained original canal geometry.

  1. A viscoelastic orthotropic Timoshenko beam subjected to general transverse loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2008-12-01

    Full Text Available The investigation of lateral vibrations of a simply supported thin beam is the aim of this work. The analytical solution of the problem is derived based on the approximate Timoshenko beam theory for a general continuous loading acting on the upper beam face over the whole beam width and perpendicular to the beam axis. The material of the beam studied is assumed linear orthotropic viscoelastic. The generalized standard viscoelastic solid is chosen for representing of viscoelastic beam behaviour. Final system of partial integro-differential equations is solved by the standard method of integral transforms and resulting relations describing beam deflection, slope of the beam and corresponding stress and strain components are presented. Moreover, the derivation of final functions of beam deflection and slope of the beam for a specific impulse loading is presented and analytical results are compared with results obtained using numerical simulation in 2D (FEM. This confrontation shows very good agreement between results obtained. Furthermore, it was shown that the measure of agreement depends not only on the beam geometry.

  2. On the experimental validation, modeling, and optimization of bend-twist coupling in composite beams, tubes, and shafts

    Science.gov (United States)

    Rohde, Sean E.

    This document outlines the research performed on the design, manufacturing, modeling, and experimental testing of composite shafts possessing bend-twist coupling. A novel design for achieving this bend-twist coupling is presented. Closed form solutions modeling the behavior are derived for predicting the deformations of both tapered and non-tapered shafts possessing this novel design. The design and manufacturing of these shafts are detailed along with solutions to common problems faced. An experimental technique for quantifying the bend-twist coupling present in these shafts, using digital image correlation, is detailed. To understand how the shaft deforms under thermal changes, three separate analytical models are derived from three separate sets of assumptions. These are then compared to finite element analysis. Torsion experiments are performed on these shafts to determine the torsional strength and study how failure occurs. Micrographs were taken of these fractured shafts to observe the locations and manner of fracture. The design of these shafts is optimized as a function of performance objectives. Recommendations are then made for directions of future work.

  3. Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-crystal display with limited phase modulation

    Science.gov (United States)

    Cofré, Aaron; García-Martínez, Pascuala; Vargas, Asticio; Moreno, Ignacio

    2017-01-01

    In this work we propose the use of twisted-nematic liquid-crystal spatial light modulators (TN-LC-SLM) as a useful tool for training students in the manipulation of light beams with phase-only masks. In particular, we focus the work on the realization of phase-only gratings and phase-only spiral phases for the generation of vortex beams, beams carrying orbital angular momentum (OAM). Despite the extensive activity in this field, its experimental implementation for educational purposes is limited because it requires the use of very expensive high-resolution liquid-crystal on silicon (LCOS) SLMs. Here, we show that a low-cost experimental implementation can be done with older TNLC technology. However, these devices, intended for display applications, exhibit rather limited optical phase modulation properties in comparison with modern LCOS devices, such as a very low range of phase modulation and a general coupled intensity modulation. However, we show that a precise characterization of their retardance parameters permits their operation in useful modulation configurations. As examples, we include one continuous phase-only configuration useful for reproducing the optimal triplicator phase grating, and a binary π-phase modulation. We include experiments with the realization of different phase diffraction gratings, and their combination with spiral phase patterns and lens functions to generate a variety of vortex beams.

  4. Characterization of polymeric films subjected to lithium ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gary S. Groenewold; W. Roger Cannon; Paul A. Lessing; Recep Avci; Muhammedin Deliorman; Mark Wolfenden; Doug W. Akers; J. Keith Jewell

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with Hradical dot and OHradical dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O–methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were

  5. Characterization of polymeric films subjected to lithium ion beam irradiation

    Science.gov (United States)

    Groenewold, Gary S.; Cannon, W. Roger; Lessing, Paul A.; Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark; Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D.

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium-plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C-O and C-C bonds, which furnish radical intermediates that react by radical recombination with Hrad and OHrad . Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O-methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by

  6. Structural Optimization of Joined-Wing Beam Model with Bend-Twist Coupling Using Equivalent Static Loads

    Science.gov (United States)

    2009-06-01

    Sectional Analysis ( VABS ) . . . . . . 11 2.4 Calculation of Equivalent Static Loads . . . . . . . . . . . . . . . . . . . . 12 2.4.1 ESL for...showing locations of von Mises stress calculations . . . . . 23 3.4. Cross section view showing nodes used by VABS to calculate stress recovery points...section of the beam element. 2.3 Variational Asymptotic Beam Sectional Analysis ( VABS ) The Variational Asymptotic Beam Sectional Analysis ( VABS ) is a

  7. Characterization of polymeric films subjected to lithium ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, Gary S., E-mail: gary.groenewold@inl.gov [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Cannon, W. Roger; Lessing, Paul A. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark [Image and Chemical Analysis Laboratory, Montana State University, Bozeman, MT 59717 (United States); Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States)

    2013-02-01

    Highlights: ► Polyethylene glycol (PEG) and paraffinic polymers were subjected to Li ion irradiation. ► Small oligomers detected in irradiated PEG by electrospray ionization (ESI) mass spectrometry. ► Radiolytic scission observed in X-ray photoelectron and electrospray ionization mass spectra. ► Radiation modified paraffinics characterized by changes in non-ionic surfactant additives. ► Results suggest that extent of radiolysis, and radiolytic pathways can be inferred. -- Abstract: Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H{sub 2}O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with H{sup ·} and OH{sup ·}. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp{sup 2} carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H{sub 2}O or a H{sub 2}O–methanol solution, and

  8. Novel Properties of Twisted-Photon Absorption

    CERN Document Server

    Afanasev, Andrei; Mukherjee, Asmita

    2014-01-01

    We discuss novel features of twisted-photon absorption both by atoms and by micro-particles. First, we extend the treatment of atomic photoexcitation by twisted photons to include atomic recoil, derive generalized quantum selection rules and consider phenomena of forbidden atomic transitions. Second, we analyze the radiation pressure from twisted-photon beams on micro- and nano-sized particles and observe that for particular conditions the pressure is negative in a small area near the beam axis. A central part of the beam therefore acts as a "tractor beam".

  9. Experimental Studies on Behaviour of Reinforced Geopolymer Concrete Beams Subjected to Monotonic Static Loading

    Science.gov (United States)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Ramesh, G.

    2015-06-01

    This work describes the experimental investigation on behaviour of reinforced GPC beams subjected to monotonic static loading. The overall dimensions of the GPC beams are 250 mm × 300 mm × 2200 mm. The effective span of beam is 1600 mm. The beams have been designed to be critical in shear as per IS:456 provisions. The specimens were produced from a mix incorporating fly ash and ground granulated blast furnace slag, which was designed for a compressive strength of 40 MPa at 28 days. The reinforced concrete specimens are subjected to curing at ambient temperature under wet burlap. The parameters being investigated include shear span to depth ratio (a/d = 1.5 and 2.0). Experiments are conducted on 12 GPC beams and four OPCC control beams. All the beams are tested using 2000 kN servo-controlled hydraulic actuator. This paper presents the results of experimental studies.

  10. Twisting Somersault

    CERN Document Server

    Dullin, Holger R

    2015-01-01

    A complete description of twisting somersaults is given using a reduction to a time-dependent Euler equation for non-rigid body dynamics. The central idea is that after reduction the twisting motion is apparent in a body frame, while the somersaulting (rotation about the fixed angular momentum vector in space) is recovered by a combination of dynamic and geometric phase. In the simplest "kick-model" the number of somersaults $m$ and the number of twists $n$ are obtained through a rational rotation number $W = m/n$ of a (rigid) Euler top. This rotation number is obtained by a slight modification of Montgomery's formula [9] for how much the rigid body has rotated. Using the full model with shape changes that take a realistic time we then derive the master twisting-somersault formula: An exact formula that relates the airborne time of the diver, the time spent in various stages of the dive, the numbers $m$ and $n$, the energy in the stages, and the angular momentum by extending a geometric phase formula due to C...

  11. Oliver Twist

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and

  12. Oliver Twist

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and explo

  13. Twisted intramolecular charge transfer states : rotationally resolved fluorescence excitation spectra of 4,4 '-dimethylaminobenzonitrile in a molecular beam

    NARCIS (Netherlands)

    Nikolaev, A.E.; Myszkiewicz, G.; Berden, G.; Meerts, W.L.; Pfanstiel, J.F.; Pratt, D.W.

    2005-01-01

    We report the observation at high resolution of seven vibronic bands that appear within similar to200 cm(-1) of the electronic origin in the S-1-S-0 fluorescence excitation spectrum of 4,4(')-dimethylaminobenzonitrile (DMABN) in a molecular beam. Surprisingly, each band is found to be split into two

  14. Twisted baskets.

    Science.gov (United States)

    Hermann, Keith; Pratumyot, Yaowalak; Polen, Shane; Hardin, Alex M; Dalkilic, Erdin; Dastan, Arif; Badjić, Jovica D

    2015-02-23

    A preparative procedure for obtaining a pair of twisted molecular baskets, each comprising a chiral framework with either right ((P)-1syn) or left ((M)-1syn) sense of twist and six ester groups at the rim has been developed and optimized. The racemic (P/M)-1syn can be obtained in three synthetic steps from accessible starting materials. The resolution of (P/M)-1syn is accomplished by its transesterification with (1R,2S,5R)-(-)-menthol in the presence of a Ti(IV) catalyst to give diastereomeric 8(P) and 8(M). It was found that dendritic-like cavitands 8(P) and 8(M), in CD2Cl2, undergo self-inclusion ((1)H NMR spectroscopy) with a menthol moiety occupying the cavity of each host. Importantly, the degree of inclusion of the menthol group was ((1)H NMR spectroscopy) found to be greater in the case of 8(P) than 8(M). Accordingly, it is suggested that different folding characteristic of 8(P) and 8(M) ought to affect the physicochemical characteristics of the hosts to permit their effective separation by column chromatography. The absolute configuration of 8(P)/8(M), encompassing right- and left-handed "cups", was determined with the exciton chirality method and also verified in silico (DFT: B3LYP/TZVP). Finally, the twisted baskets are strongly fluorescent due to three naphthalene chromophores, having a high fluorescence quantum yield within the rigid framework of 8(P)/8(M).

  15. Design of a medical non-linear drilling device: the influence of twist and wear on the fatigue behaviour of NiTi wires subjected to bending rotation

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M.; Frenzel, J.; Eggeler, G. [Lehrstuhl Werkstoffwissenschaften, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Richter, J.; Groenemeyer, D. [Institut fuer Mikrotherapie, Universitaet Witten/ Herdecke (Germany)

    2004-05-01

    This paper considers fundamental and experimental aspects associated with the engineering design of a medical, non-linear drilling device which exploits shape memory pseudoelasticity of NiTi wires. For this application it is important that the NiTi wires have a good fatigue resistance. This is why the present authors have previously determined the influence of various parameters on cyclic life, crack growth and stress state of pseudoelastic wires subjected to bending rotation fatigue. The actual drilling device has to withstand twist in addition to bending rotation because the free rotation is constrained by friction between the drill head and the bone material. In addition, friction between the wire and a NiTi guiding tube results in wear and this may well promote fatigue crack nucleation. In this paper, we explain the function of the medical drill. We then report results on the effect of the additional parameters (1) twist and (2) wear on the fatigue life of thin pseudoelastic NiTi wires. We finally discuss the implications of our experimental results for the design process of the medical drilling device. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Dieser Artikel behandelt Voruntersuchungen fuer die Entwicklung eines medizinischen nicht-linearen Bohrsystems. Aus materialwissenschaftlicher Sicht spielt die Ermuedung der mechanischen Komponenten aus NiTi eine wichtige Rolle. Die Autoren haben in bisherigen Studien den Einfluss verschiedener Parameter auf Lebensdauer, Risswachstum und Spannungszustand in pseudoelastischen Draehten waehrend Umlaufbiegung ermittelt. Der Draht im eigentlichen Bohrsystem wird jedoch nicht ausschliesslich durch reine Umlaufbiegung, sondern zusaetzlich durch eine Verdrillung aufgrund der Reibung zwischen Bohrkopf und Knochengewebe, belastet. Ausserdem bewirkt die Reibung zwischen dem Draht und einem Fuehrungsrohr aus NiTi Verschleiss; diese Materialschaedigung stellt einen weiteren Mechanismus zur Risseinleitung dar. In

  16. Behavior of the sandwich beam subjected to bending as a function of the core density

    Directory of Open Access Journals (Sweden)

    Nikolić Ružica R.

    2016-01-01

    Full Text Available The sandwich beam can be considered as the multi-layered structure with a symmetrical cross-section. In this paper is assumed that the structure is created by periodical repetition of a unit cell. The influence of its size on the beam’s static behavior in bending was analyzed. The variation of the unit cells number affects the size of the cell, so the static analysis was performed – the flexural stiffness and the beam’s deflection were determined as functions of the unit cells number. The two configurations of the sandwich beams were considered: the beam with the constant cross-section along its length and the beam with the periodically variable cross-section. The graphs of the beam’s flexural stiffness and deflection variations in terms of the unit cells number were obtained. It was concluded that after a certain number of the cells, the core’s density does not further influence the behavior of the sandwich beam, under the given loading conditions. The conclusion from comparison of the two configurations is that the sandwich beam with the variable cross-section behaves somewhat better than the beam with the constant cross-section. The FEM analysis has verified all the conclusions from the analytical solution about the sandwich beams behavior when subjected to bending.

  17. Hybrid neural network model for the design of beam subjected to bending and shear

    Indian Academy of Sciences (India)

    H Sudarsana Rao; B Ramesh Babu

    2007-10-01

    There is no direct method for design of beams. In general the dimensions of the beam and reinforcement are initially assumed and then the interaction formula is used to verify the suitability of chosen dimensions. This approach necessitates few trials for coming up with an economical and safe design. This paper demonstrates the applicability of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) for the design of beams subjected to moment and shear. A hybrid neural network model which combines the features of feed forward neural networks and genetic algorithms has been developed for the design of beam subjected to moment and shear. The network has been trained with design data obtained from design experts in the field. The hybrid neural network model learned the design of beam in just 1000 training cycles. After successful learning, the model predicted the depth of the beam, area of steel, spacing of stirrups required for new problems with accuracy satisfying all design constraints. The various stages involved in the development of a genetic algorithm based neural network model are addressed at length in this paper.

  18. Calculation of force distribution for a periodically supported beam subjected to moving loads

    Science.gov (United States)

    Hoang, T.; Duhamel, D.; Foret, G.; Yin, H. P.; Joyez, P.; Caby, R.

    2017-02-01

    In this study, a novel model for a periodically supported beam subjected to moving loads was developed using a periodicity condition on reaction forces. This condition, together with Fourier transforms and Dirac combs, forms a relation between the beam displacement and support reaction forces. This relation explains the force distribution at the supports, and holds for any type of support and foundation behaviors. Based on this relation, a system equivalence for a periodically supported beam is presented in this paper. An application to non-ballasted viscoelastic supports is presented as an example and the results clearly match the existing model. Next, an approximation of real-time responses was developed for the moving loads as periodic series. The comparison shows that this approximation can be used for a limited number of loads if the distances between loads are sufficiently large. The system equivalence for a periodically supported beam is efficient for supports with linear behavior, and could be extended to other behaviors.

  19. Dynamic Analysis of a Timoshenko Beam Subjected to an Accelerating Mass Using Spectral Element Method

    Directory of Open Access Journals (Sweden)

    Guangsong Chen

    2014-01-01

    Full Text Available This paper presents formulations for a Timoshenko beam subjected to an accelerating mass using spectral element method in time domain (TSEM. Vertical displacement and bending rotation of the beam were interpolated by Lagrange polynomials supported on the Gauss-Lobatto-Legendre (GLL points. By using GLL integration rule, the mass matrix was diagonal and the dynamic responses can be obtained efficiently and accurately. The results were compared with those obtained in the literature to verify the correctness. The variation of the vibration frequencies of the Timoshenko and moving mass system was researched. The effects of inertial force, centrifugal force, Coriolis force, and tangential force on a Timoshenko beam subjected to an accelerating mass were investigated.

  20. Inverse problem of elastica of a variable-arc-length beam subjected to a concentrated load

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Zhang; Jialing Yang; Keren Wang

    2005-01-01

    An inverse problem of elastica of a variable-arclength beam subjected to a concentrated load is investigated.The beam is fixed at one end, and can slide freely over a hinge support at the other end. The inverse problem is to determine the value of the load when the deflection of the action point of the load is given. Based on the elasitca equations and the elliptic integrals, a set of nonlinear equations for the inverse problem are derived, and an analytical solution by means of iterations and Quasi-Newton method is presented. From the results, the relationship between the loads and deflections of the loading point is obtained.

  1. Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load

    Science.gov (United States)

    Wang, Yuewu; Wu, Dafang

    2016-10-01

    Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.

  2. ELASTIC-PLASTIC DYNAMIC RESPONSE OF A CANTILEVER BEAM SUBJECTED TO OBLIQUE IMPACT AT ITS TIP

    Institute of Scientific and Technical Information of China (English)

    Xi Feng; Liu Feng

    2005-01-01

    By employing large deformation governing equations expressed in the form of finite difference, the dynamic responses of an elastic, perfectly plastic cantilever subjected to an oblique impact at its tip was numerically studied. Through analyzing the instantaneous distribution of the yield function (ψ= |M/Mo|+ (N/No)2), bending moment and axial force during the early stage of the response, the elastic-plastic deformation mechanism and the influence of axial component of an oblique impact on the dynamic response of a cantilever beam were discussed. The present analysis shows that the deformation mechanism of an elastic-plastic cantilever subjected to an obtained by using the rigid, perfectly plastic approach, the mode of shrinking plastic region that occurred instantly after the oblique impact and the mode of stationary hinge were both confirmed.The primary features of the deformation mechanism are captured by both analysis methods. It has also been found that the beam's deformation is mainly controlled by the axial component of the oblique impact in the early phase of the dynamic response, the deformation mechanism is obviously different from the case of a transverse impact. With further development of the response,the axial component attenuates rapidly and gives negligible contribution to the yielding of the beam cross-section. At the same time, the bending moments along the cantilever develop gradually and dominate the beam's deformation. The numerical results indicate that the mass, impact speed and oblique angle are the important factors that influence the elastic-plastic dynamic response of a cantilever beam.

  3. Stress wave propagation in a composite beam subjected to transverse impact.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang; Song, Bo; Jin, Huiqing

    2010-08-01

    Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate

  4. Analytical solution and semi-analytical solution for anisotropic functionally graded beam subject to arbitrary loading

    Institute of Scientific and Technical Information of China (English)

    HUANG DeJin; DING Haodiang; CHEN WeiQiu

    2009-01-01

    Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams sub-ject to an arbitrary load, which can be expanded in terms of sinusoidal series. For plane stress prob-lems, the stress function is assumed to consist of two parts, one being a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (y), and the other a linear polynomial of x with unknown coefficients depending on y. The governing equa-tions satisfied by these y-dependent functions are derived. The expressions for stresses, resultant forces and displacements are then deduced, with integral constants determinable from the boundary conditions. While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness, the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.

  5. Analytical solution and semi-analytical solution for anisotropic functionally graded beam subject to arbitrary loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams subject to an arbitrary load,which can be expanded in terms of sinusoidal series.For plane stress problems,the stress function is assumed to consist of two parts,one being a product of a trigonometric function of the longitudinal coordinate(x) and an undetermined function of the thickness coordinate(y),and the other a linear polynomial of x with unknown coefficients depending on y.The governing equations satisfied by these y-dependent functions are derived.The expressions for stresses,resultant forces and displacements are then deduced,with integral constants determinable from the boundary conditions.While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness,the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness.The present analysis is applicable to beams with various boundary conditions at the two ends.Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.

  6. THERMAL POST-BUCKLING OF AN ELASTIC BEAMS SUBJECTED TO A TRANSVERSELY NON-UNIFORM TEMPERATURE RISING

    Institute of Scientific and Technical Information of China (English)

    李世荣; 程昌钧; 周又和

    2003-01-01

    Based on the nonlinear geometric theory of axially extensible beams and by usingthe shooting method, the thermal post-buckling responses of an elastic beams, withimmovably simply supported ends and subjected to a transversely non-uniformly distributedtemperature rising, were investigated. Especially, the influences of the transversetemperature change on the thermal post-buckling deformations were examined and thecorresponding characteristic curves were plotted. The numerical results show that theequilibrium paths of the beam are similar to what of an initially deformed beam because ofthe thermal bending moment produced in the beam by the transverse temperature change.

  7. Observation of subluminal twisted light in vacuum

    CERN Document Server

    Bouchard, Frédéric; Mand, Harjaspreet; Boyd, Robert W; Karimi, Ebrahim

    2015-01-01

    Einstein's theory of relativity establishes the speed of light in vacuum, c, as a fundamental constant. However, the speed of light pulses can be altered significantly in dispersive materials. While significant control can be exerted over the speed of light in such media, no experimental demonstration of altered light speeds has hitherto been achieved in vacuum for ``twisted'' optical beams. We show that ``twisted'' light pulses exhibit subluminal velocities in vacuum, being slowed by 0.1\\% relative to c. This work does not challenge relativity theory, but experimentally supports a body of theoretical work on the counterintuitive vacuum group velocities of twisted pulses. These results are particularly important given recent interest in applications of twisted light to quantum information, communication and quantum key distribution.

  8. Analytical solution for functionally graded anisotropic cantilever beam subjected to linearly distributed load

    Institute of Scientific and Technical Information of China (English)

    HUANG De-jin; DING Hao-jiang; CHEN Wei-qiu

    2007-01-01

    The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation.The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.

  9. ANALYTICAL SOLUTION FOR FIXED-FIXED ANISOTROPIC BEAM SUBJECTED TO UNIFORM LOAD

    Institute of Scientific and Technical Information of China (English)

    DING Hao-jiang; HUANG De-jin; WANG Hui-ming

    2006-01-01

    The analytical solutions of the stresses and displacements were obtained for fixed-fixed anisotropic beams subjected to uniform load. A stress function involving unknown coefficients was constructed, and the general expressions of stress and displacement were obtained by means of Airy stress function method. Two types of the description for the fixed end boundary condition were considered. The introduced unknown coefficients in stress function were determined by using the boundary conditions. The analytical solutions for stresses and displacements were finally obtained. Numerical tests show that the analytical solutions agree with the FEM results. The analytical solution supplies a classical example for the elasticity theory.

  10. Second-Order Nonlinear Analysis of Steel Tapered Beams Subjected to Span Loading

    Directory of Open Access Journals (Sweden)

    Ali Hadidi

    2014-03-01

    Full Text Available A second-order elastic analysis of tapered steel members with I-shaped sections subjected to span distributed and concentrated loadings is developed. Fixed end forces and moments as well as exact stiffness matrix of tapered Timoshenko-Euler beam are obtained with exact geometrical properties of sections. The simultaneous action of bending moment, shear, and axial force including P−δ effects is also considered in the analysis. A computer code has been developed in MATLAB software using a power series method to solve governing second-order differential equation of equilibrium with variable coefficients for beams with distributed span loading. A generalized matrix condensation technique is then utilized for analysis of beams with concentrated span loadings. The accuracy and efficiency of the results of the proposed method are verified through comparing them to those obtained from other approaches such as finite element methods, which indicates the robustness and time saving of this method even for large scale frames with tapered members.

  11. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  12. Wire harness twisting aid

    Science.gov (United States)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  13. Twisted network programming essentials

    CERN Document Server

    Fettig, Abe

    2005-01-01

    Twisted Network Programming Essentials from O'Reilly is a task-oriented look at this new open source, Python-based technology. The book begins with recommendations for various plug-ins and add-ons to enhance the basic package as installed. It then details Twisted's collection simple network protocols, and helper utilities. The book also includes projects that let you try out the Twisted framework for yourself. For example, you'll find examples of using Twisted to build web services applications using the REST architecture, using XML-RPC, and using SOAP. Written for developers who want to s

  14. DYNAMICS OF STRONGLY TWISTED RELATIVISTIC MAGNETOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Parfrey, Kyle [Astronomy Department, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Beloborodov, Andrei M.; Hui, Lam, E-mail: parfrey@astro.princeton.edu [Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027 (United States)

    2013-09-10

    Magnetar magnetospheres are believed to be strongly twisted due to shearing of the stellar crust by internal magnetic stresses. We present time-dependent axisymmetric simulations showing in detail the evolution of relativistic force-free magnetospheres subjected to slow twisting through large angles. When the twist amplitude is small, the magnetosphere moves quasi-statically through a sequence of equilibria of increasing free energy. At some twist amplitude the magnetosphere becomes tearing-mode unstable to forming a resistive current sheet, initiating large-scale magnetic reconnection in which a significant fraction of the magnetic free energy can be dissipated. This ''critical'' twist angle is insensitive to the resistive length scale. Rapid shearing temporarily stabilizes the magnetosphere beyond the critical angle, allowing the magnetosphere of a rapidly differentially rotating star to store and dissipate more free energy. In addition to these effects, shearing the surface of a rotating star increases the spindown torque applied to the star. If shearing is much slower than rotation, the resulting spikes in spindown rate can occur on timescales anywhere from the long twisting timescale to the stellar spin period or shorter, depending both on the stellar shear distribution and the existing distribution of magnetospheric twists. A model in which energy is stored in the magnetosphere and released by a magnetospheric instability therefore predicts large changes in the measured spindown rate before soft gamma repeater giant flares.

  15. ANALYTICAL SOLUTION FOR BENDING BEAM SUBJECT TO LATERAL FORCE WITH DIFFERENT MODULUS

    Institute of Scientific and Technical Information of China (English)

    姚文娟; 叶志明

    2004-01-01

    A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.

  16. Overregularity in Oliver Twist

    Institute of Scientific and Technical Information of China (English)

    孔祥曼

    2015-01-01

    Oliver Twist is one of the earliest works of Charles Dickens. In this novel, the author uses many writing skills which impress the readers a lot. This paper gives a brief description of overregularity in Oliver Twist at the phonological and syntactical levels.

  17. Multi-twist optical Mobius strips

    CERN Document Server

    Freund, Isaac

    2009-01-01

    Circularly polarized Gauss-Laguerre GL(0,0) and GL(0,1) laser beams that cross at their waists at a small angle are shown to generate a quasi-paraxial field that contains an axial line of circular polarization, a C line, surrounded by polarization ellipses whose major and minor axes generate multi-twist Mobius strips with twist numbers that increase with distance from the C point. These Mobius strips are interpreted in terms of Berry's phase for parallel transport of the ellipse axes around the C point.

  18. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps......Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...... where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...

  19. Radiative Capture of Twisted Electrons by Bare Ions

    CERN Document Server

    Matula, Oliver; Serbo, Valeriy G; Surzhykov, Andrey; Fritzsche, Stephan

    2014-01-01

    Recent advances in the production of twisted electron beams with a subnanometer spot size offer unique opportunities to explore the role of orbital angular momentum (OAM) in basic atomic processes. In the present work, we address one of these processes: radiative recombination of twisted electrons with bare ions. Based on the density matrix formalism and the non-relativistic Schr\\"odinger theory, analytical expressions are derived for the angular distribution and the linear polarization of photons emitted due to the capture of twisted electrons into the ground state of (hydrogen-like) ions. We show that these angular and polarization distributions are sensitive to both, the transverse momentum and the topological charge of the electron beam. To observe in particular the value of this charge, we propose an experiment that makes use of the coherent superposition of two twisted beams.

  20. Efficacy of Twisted File Adaptive, Reciproc and ProTaper Universal Retreatment instruments for root-canal-filling removal: A cone-beam computed tomography study.

    Science.gov (United States)

    Akbulut, Makbule Bilge; Akman, Melek; Terlemez, Arslan; Magat, Guldane; Sener, Sevgi; Shetty, Heeresh

    2016-01-01

    The aim of this study was to evaluate the efficacy of Twisted File (TF) Adaptive, Reciproc, and ProTaper Universal Retreatment (UR) System instruments for removing root-canal-filling. Sixty single rooted teeth were decoronated, instrumented and obturated. Preoperative CBCT scans were taken and the teeth were retreated with TF Adaptive, Reciproc, ProTaper UR, or hand files (n=15). Then, the teeth were rescanned, and the percentage volume of the residual root-canal-filling material was established. The total time for retreatment was recorded, and the data was statistically analyzed. The statistical ranking of the residual filling material volume was as follows: hand file=TF Adaptive>ProTaper UR=Reciproc. The ProTaper UR and Reciproc systems required shorter periods of time for retreatment. Root canal filling was more efficiently removed by using Reciproc and ProTaper UR instruments than TF Adaptive instruments and hand files. The TF Adaptive system was advantageous over hand files with regard to operating time.

  1. Twisted equivariant matter

    CERN Document Server

    Freed, Daniel S

    2012-01-01

    We show how general principles of symmetry in quantum mechanics lead to twisted notions of a group representation. This framework generalizes both the classical 3-fold way of real/complex/quaternionic representations as well as a corresponding 10-fold way which has appeared in condensed matter and nuclear physics. We establish a foundation for discussing continuous families of quantum systems. Having done so, topological phases of quantum systems can be defined as deformation classes of continuous families of gapped Hamiltonians. For free particles there is an additional algebraic structure on the deformation classes leading naturally to notions of twisted equivariant K-theory. In systems with a lattice of translational symmetries we show that there is a canonical twisting of the equivariant K-theory of the Brillouin torus. We give precise mathematical definitions of two invariants of the topological phases which have played an important role in the study of topological insulators. Twisted equivariant K-theor...

  2. Twisted analytic torsion

    Institute of Scientific and Technical Information of China (English)

    MATHAI; Varghese

    2010-01-01

    We review the Reidemeister, Ray-Singer’s analytic torsion and the Cheeger-Mller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsion of invariant forms are inverse to each other for any dimension.

  3. Twisted Analytic Torsion

    CERN Document Server

    Mathai, Varghese

    2009-01-01

    We review the Reidemeister and Ray-Singer's analytic torsions and the Cheeger-M"uller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsions are inverse to each other for any dimensions.

  4. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    Science.gov (United States)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  5. Twisted radio waves and twisted thermodynamics.

    Science.gov (United States)

    Kish, Laszlo B; Nevels, Robert D

    2013-01-01

    We present and analyze a gedanken experiment and show that the assumption that an antenna operating at a single frequency can transmit more than two independent information channels to the far field violates the Second Law of Thermodynamics. Transmission of a large number of channels, each associated with an angular momenta 'twisted wave' mode, to the far field in free space is therefore not possible.

  6. Shear Behavior of Novel Prestressed Concrete Beam Subjected to Monotonic and Cyclic Loading

    Institute of Scientific and Technical Information of China (English)

    余芳; 姚大立; 贾金青; 吴锋

    2014-01-01

    Prestressed steel ultrahigh-strength reinforced concrete (PSURC) beam is a new type of prestressed con-crete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, load-deflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capac-ity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear perform-ance of both uncycled and cycled beams were also discussed and compared, respectively.

  7. Electric Twist Beam (eTB)—The Compact Solution for Electric Driving%电动扭力梁(eTB)—紧凑型电驱动解决方案

    Institute of Scientific and Technical Information of China (English)

    Christoph Elbers; Shinya Kamo; 朱治国

    2014-01-01

    作为多种与电驱技术相关的解决方案之一,采埃孚公司正致力于一种底盘集成式电驱技术的研发.目标是通过研究车轮单独驱动技术的潜在应用,并基于当前的电驱技术发展水平,找到一种具有优势的电驱解决方案.研究成果是一种被称为“电动扭力梁”(eTB-Electric Twist Beam)的紧凑型电驱动车桥.其第一台样品已在2011年法兰克福车展(IAA)进行过展示.随后,该底盘集成式电驱系统得到了进一步的开发,并在试验台架和实际样车上,进行了多种功能验证.

  8. Forced Vibration of a Timoshenko Beam Subjected to Stationary and Moving Loads Using the Modal Analysis Method

    Directory of Open Access Journals (Sweden)

    Taehyun Kim

    2017-01-01

    Full Text Available The modal analysis method (MAM is very useful for obtaining the dynamic responses of a structure in analytical closed forms. In order to use the MAM, accurate information is needed on the natural frequencies, mode shapes, and orthogonality of the mode shapes a priori. A thorough literature survey reveals that the necessary information reported in the existing literature is sometimes very limited or incomplete, even for simple beam models such as Timoshenko beams. Thus, we present complete information on the natural frequencies, three types of mode shapes, and the orthogonality of the mode shapes for simply supported Timoshenko beams. Based on this information, we use the MAM to derive the forced vibration responses of a simply supported Timoshenko beam subjected to arbitrary initial conditions and to stationary or moving loads (a point transverse force and a point bending moment in analytical closed form. We then conduct numerical studies to investigate the effects of each type of mode shape on the long-term dynamic responses (vibrations, the short-term dynamic responses (waves, and the deformed shapes of an example Timoshenko beam subjected to stationary or moving point loads.

  9. Duration of load behaviour of different sized straight timber beams subjected to bending in variable climate

    DEFF Research Database (Denmark)

    Hanhijärvi, A.; Galimard, P.; Hoffmeyer, Preben

    1998-01-01

    The paper is the second in a series which sums up the results of an extensive project to quantify the duration-of-load (DOL) effect on different sized timber beams in different climates. The paper deals with straight (unnotched) beams. The results of various DOL-tests of stepwise and constant ben...

  10. AN ELASTIC STRESS ANALYSIS FOR A POLYMER MATRIX COMPOSITE CANTILEVER BEAM SUBJECTED TO A SINGLE TRANSVERSE FORCE

    Directory of Open Access Journals (Sweden)

    Ayla TEKİN

    2004-03-01

    Full Text Available In this study, elasto-plastic stress analysis is carried out in a polymer matrix composite cantilever beam of arbitrary fiber orientation subjected to a single transverse force applied to the free end by using the anisotropic elasticity theory. The residual stress component of ?x and yield points are determined for 0°, 30°, 45°, 60° and 90° fiber orientation angles. The yielding begins for 0° and 90° fiber orientation angles at the upper and lower surfaces of the beam at the same distances from the free end. It is seen that the yielding begins for 30°, 45° and 60° fiber orientation angles at the upper surface of the beam. The intensity of the residual stress component of ?x is maximum at the upper and lower surfaces of the beam. In this study, the residual stress component of ?x obtained for the polymer matrix composite thermoplastic cantilever beam reinforced by reinforced unidirectional fibers is compared with that of the thermoplastic cantilever beam reinforced by woven Cr-Ni steel fibers.

  11. Effect of boundary conditions and convection on thermally induced motion of beams subjected to internal heating

    Institute of Scientific and Technical Information of China (English)

    MALIK Pravin; KADOLI Ravikiran; GANESAN N.

    2007-01-01

    Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the beam are analyzed taking into consideration that the temperature gradient is independent as well as dependent on the beam displacement. The effect of length to thickness ratio of the beam on the thermally induced vibration is also investigated. The type of boundary conditions has its influence on the magnitude of dynamic displacement and dynamic thermal moment. A sustained thermally induced motion is observed with progress of time when the temperature gradient being evaluated is dependent on the forced convection generated due to beam motion. A finite element method (FEM) is used to solve the structural equation of motion as well as the heat transfer equation.

  12. Vibration of Timoshenko beam on hysteretically damped elastic foundation subjected to moving load

    Science.gov (United States)

    Luo, WeiLi; Xia, Yong; Weng, Shun

    2015-08-01

    The vibration of beams on foundations under moving loads has many applications in several fields, such as pavements in highways or rails in railways. However, most of the current studies only consider the energy dissipation mechanism of the foundation through viscous behavior; this assumption is unrealistic for soils. The shear rigidity and radius of gyration of the beam are also usually excluded. Therefore, this study investigates the vibration of an infinite Timoshenko beam resting on a hysteretically damped elastic foundation under a moving load with constant or harmonic amplitude. The governing differential equations of motion are formulated on the basis of the Hamilton principle and Timoshenko beam theory, and are then transformed into two algebraic equations through a double Fourier transform with respect to moving space and time. Beam deflection is obtained by inverse fast Fourier transform. The solution is verified through comparison with the closed-form solution of an Euler-Bernoulli beam on a Winkler foundation. Numerical examples are used to investigate: (a) the effect of the spatial distribution of the load, and (b) the effects of the beam properties on the deflected shape, maximum displacement, critical frequency, and critical velocity. These findings can serve as references for the performance and safety assessment of railway and highway structures.

  13. Twisted derivations of Hopf algebras

    CERN Document Server

    Davydov, Alexei

    2012-01-01

    In the paper we introduce the notion of twisted derivation of a bialgebra. Twisted derivations appear as infinitesimal symmetries of the category of representations. More precisely they are infinitesimal versions of twisted automorphisms of bialgebras. Twisted derivations naturally form a Lie algebra (the tangent algebra of the group of twisted automorphisms). Moreover this Lie algebra fits into a crossed module (tangent to the crossed module of twisted automorphisms). Here we calculate this crossed module for universal enveloping algebras and for the Sweedler's Hopf algebra.

  14. NONLINEAR ANALYSIS OF CFRP- PRESTRESSED CONCRETE BEAMS SUBJECTED TO INCREMENTAL STATIC LOADING BY FINITE ELEMENTS

    Directory of Open Access Journals (Sweden)

    Husain M. Husain

    2013-05-01

    Full Text Available In this work a program is developed to carry out the nonlinear analysis (material nonlinearity of prestressed concrete beams using tendons of carbon fiber reinforced polymer (CFRP instead of steel. The properties of this material include high strength, light weight, and insusceptibility to corrosion and magnetism. This material is still under investigation, therefore it needs continuous work to make it beneficial in concrete design. Four beams which are tested experimentally by Yan et al. are examined by the developed computer program to reach a certain analytical approach of the design and analysis of such beams because there is no available restrictions or recommendations covering this material in the codes. The program uses the finite element analysis by dividing the beams into isoparametric 20-noded brick elements. The results obtained are good in comparison with experimental results.

  15. Helicoids, wrinkles, and loops in twisted ribbons.

    Science.gov (United States)

    Chopin, Julien; Kudrolli, Arshad

    2013-10-25

    We investigate the instabilities of a flat elastic ribbon subject to twist under tension and develop an integrated phase diagram of the observed shapes and transitions. We find that the primary buckling mode switches from being localized longitudinally along the length of the ribbon to transverse above a triple point characterized by a crossover tension that scales with ribbon elasticity and aspect ratio. Far from threshold, the longitudinally buckled ribbon evolves continuously into a self-creased helicoid with focusing of the curvature along the triangular edges. Further twist causes an anomalous transition to loops compared with rods due to the self-rigidity induced by the creases. When the ribbon is twisted under high tension, transverse wrinkles are observed due to the development of compressive stresses with higher harmonics for greater width-to-length ratios. Our results can be used to develop functional structures using a wide range of elastic materials and length scales.

  16. Damage evaluation in metal structures subjected to high energy deposition due to particle beams

    CERN Document Server

    Peroni, L; Dallocchio, A

    2011-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV pro...

  17. Exact dynamic stiffness matrix of non-symmetric thin-walled curved beams subjected to initial axial force

    Science.gov (United States)

    Nam-Il, Kim; Moon-Young, Kim

    2005-06-01

    An improved numerical method to exactly evaluate the dynamic element stiffness matrix is proposed for the spatially coupled free vibration analysis of non-symmetric thin-walled curved beams subjected to uniform axial force. For this purpose, firstly equations of motion, boundary conditions and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next systems of linear algebraic equations with non-symmetric matrices are constructed by introducing 14 displacement parameters and transforming the fourth-order simultaneous differential equations into the first-order simultaneous equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact 14×14 element stiffness matrix is determined using force-deformation relations. In order to demonstrate the validity and the accuracy of this study, the spatially coupled natural frequencies of non-symmetric thin-walled curved beams subjected to uniform compressive and tensile forces are evaluated and compared with analytical and finite element solutions using Hermitian curved beam elements or ABAQUS's shell element. In addition, some results by the parametric study are reported.

  18. Dynamic behavior of pre- and post-instability of an axisymmetric elastic beam subjected to axial leakage flow

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K.; Morikazu, H.; Shintani, A. [Osaka Prefectural Univ., Mechanical Systems Engineering, Graduate School of Engineering (Japan)

    2004-07-01

    The dynamic behavior of an axisymmetric elastic beam subjected to axial leakage flow is investigated numerically and experimentally. The coupled equations of motion for a fluid and a beam structure are derived using the Navier-Stokes equation for an axial leakage flow-path and the Euler-Bernoulli beam theory. The variation in the dynamic behavior during pre- and post-instability is investigated with respect to increasing axial leakage flow velocity. The experiment was performed to determine the critical velocity of the unstable dynamic behavior of an axisymmetric elastic beam confined in a concentric cylinder subjected to axial leakage flow through a small annulus, and to measure the variation of the dynamic behavior during pre- and post-instability when the unstable phenomenon with the lower predominant frequency is shifted to the higher. The relationships between the axial flow velocities and the unstable phenomena are clarified for the transition from the lower mode to the higher mode by comparing the numerical simulation results with experimental observations. (authors)

  19. Coupled Bending-Bending-Torsion Vibration of a Rotating Pre-Twisted Beam with Aerofoil Cross-Section and Flexible Root by Finite Element Method

    Directory of Open Access Journals (Sweden)

    Bulent Yardimoglu

    2004-01-01

    Full Text Available The purpose of this paper is to extend a previously published beam model of a turbine blade including the centrifugal force field and root flexibility effects on a finite element model and to demonstrate the performance, accuracy and efficiency of the extended model for computing the natural frequencies. Therefore, only the modifications due to rotation and elastic root are presented in great detail. Considering the shear center effect on the transverse displacements, the geometric stiffness matrix due to the centrifugal force is developed from the geometric strain energy expression based on the large deflections and the increase of torsional stiffness because of the axial stress. In this work, the root flexibility of the blade is idealized by a continuum model unlike the discrete model approach of a combination of translational and rotational elastic springs, as used by other researchers. The cross-section properties of the fir-tree root of the blade considered as an example are expressed by assigning proper order polynomial functions similar to cross-sectional properties of a tapered blade. The correctness of the present extended finite element model is confirmed by the experimental and calculated results available in the literature. Comparisons of the present model results with those in the literature indicate excellent agreement.

  20. Bend-twist coupling potential of wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Berggreen, Christian

    2014-01-01

    In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed...... and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient for a generic beam is introduced based on the Euler-Bernoulli beam formulation. By applying the developed method for analysis of a commercial wind turbine blade structure it is demonstrated that a bend......-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling...

  1. SpaceTwist

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Jensen, Christian Søndergaard; Xuegang, Huang

    2008-01-01

    -based matching generally fall short in offering practical query accuracy guarantees. Our proposed framework, called SpaceTwist, rectifies these shortcomings for k nearest neighbor (kNN) queries. Starting with a location different from the user's actual location, nearest neighbors are retrieved incrementally...

  2. Reweighting twisted boundary conditions

    CERN Document Server

    Bussone, Andrea; Hansen, Martin; Pica, Claudio

    2015-01-01

    Imposing twisted boundary conditions on the fermionic fields is a procedure extensively used when evaluating, for example, form factors on the lattice. Twisting is usually performed for one flavour and only in the valence, and this causes a breaking of unitarity. In this work we explore the possibility of restoring unitarity through the reweighting method. We first study some properties of the approach at tree level and then we stochastically evaluate ratios of fermionic determinants for different boundary conditions in order to include them in the gauge averages, avoiding in this way the expensive generation of new configurations for each choice of the twisting angle, $\\theta$. As expected the effect of reweighting is negligible in the case of large volumes but it is important when the volumes are small and the twisting angles are large. In particular we find a measurable effect for the plaquette and the pion correlation function in the case of $\\theta=\\pi/2$ in a volume $16\\times 8^3$, and we observe a syst...

  3. The twisted Mellin transform

    OpenAIRE

    Wang, Zuoqin

    2007-01-01

    The "twisted Mellin transform" is a slightly modified version of the usual classical Mellin transform on $L^2(\\mathbb R)$. In this short note we investigate some of its basic properties. From the point of views of combinatorics one of its most important interesting properties is that it intertwines the differential operator, $df/dx$, with its finite difference analogue, $\

  4. Numerical Behavior Reproduction of a Truss Structure and Beam, Subjected to Concentrated Load

    Directory of Open Access Journals (Sweden)

    Nedelcu Dorian

    2010-10-01

    Full Text Available The paper deals with a numerical reproduction of a real experiment consisting of the same restraints and concentrated load applied to a truss structure and beam; the numerical reproduction was performed with SolidWorks software, where both geometrical reconstruction and finite element analysis were made. The goals of the analysis was to compare the numerical with experimental results and to evaluate the best structure using the structural response criteria.

  5. Static analysis of offshore risers with a geometrically-exact 3D beam model subjected to unilateral contact

    Science.gov (United States)

    Neto, Alfredo Gay; Martins, Clóvis A.; Pimenta, Paulo M.

    2014-01-01

    In offshore applications there are elements that can be modeled as long beams, such as umbilical cables, flexible and rigid pipes and hoses, immersed in the sea water, suspended from the floating unit to the seabed. The suspended part of these elements is named "riser" and is subjected to the ocean environment loads, such as waves and sea current. This work presents a structural geometrically-exact 3D beam model, discretized using the finite element method for riser modeling. An updated Lagrangian framework for the rotation parameterization has been used for the description of the exact kinematics. The goal is to perform a complete static analysis, considering the oceanic loads and the unilateral contact with the seabed, extending the current standard analysis for situations in which very large rotations occurs, in particular, large torsion. Details of the nonlinear 3D model and loads from oceanic environment are discussed, including the contact unilateral constraint.

  6. Twisted aspirin crystals.

    Science.gov (United States)

    Cui, Xiaoyan; Rohl, Andrew L; Shtukenberg, Alexander; Kahr, Bart

    2013-03-06

    Banded spherulites of aspirin have been crystallized from the melt in the presence of salicylic acid either generated from aspirin decomposition or added deliberately (2.6-35.9 mol %). Scanning electron microscopy, X-ray diffraction analysis, and optical polarimetry show that the spherulites are composed of helicoidal crystallites twisted along the growth directions. Mueller matrix imaging reveals radial oscillations in not only linear birefringence, but also circular birefringence, whose origin is explained through slight (∼1.3°) but systematic splaying of individual lamellae in the film. Strain associated with the replacement of aspirin molecules by salicylic acid molecules in the crystal structure is computed to be large enough to work as the driving force for the twisting of crystallites.

  7. Twisted quantum doubles

    Directory of Open Access Journals (Sweden)

    Daijiro Fukuda

    2004-01-01

    Full Text Available Using diagrammatic pictures of tensor contractions, we consider a Hopf algebra (Aop⊗ℛλA** twisted by an element ℛλ∈A*⊗Aop corresponding to a Hopf algebra morphism λ:A→A. We show that this Hopf algebra is quasitriangular with the universal R-matrix coming from ℛλ when λ2=idA, generalizing the quantum double construction which corresponds to the case λ=idA.

  8. Twist planet drive

    Science.gov (United States)

    Vranish, John M. (Inventor)

    1996-01-01

    A planetary gear system includes a sun gear coupled to an annular ring gear through a plurality of twist-planet gears, a speeder gear, and a ground structure having an internal ring gear. Each planet gear includes a solid gear having a first half portion in the form of a spur gear which includes vertical gear teeth and a second half portion in the form of a spur gear which includes helical gear teeth that are offset from the vertical gear teeth and which contact helical gear teeth on the speeder gear and helical gear teeth on the outer ring gear. One half of the twist planet gears are preloaded downward, while the other half are preloaded upwards, each one alternating with the other so that each one twists in a motion opposite to its neighbor when rotated until each planet gear seats against the sun gear, the outer ring gear, the speeder gear, and the inner ring gear. The resulting configuration is an improved stiff anti-backlash gear system.

  9. Twisted Ribbons: Theory, Experiment and Applications

    Science.gov (United States)

    Chopin, Julien; Davidovitch, Benjamin; Silva, Flavio A.; Toledo Filho, Romildo D.; Kudrolli, Arshad

    2014-03-01

    We investigate, experimentally and theoretically, the buckling and wrinkling instabilities of a pre-stretched ribbon upon twisting and propose strategies for the fabrication of structured yarns. Our experiment consists in a thin elastic sheet in the form of a ribbon which is initially stretched by a fixed load and then subjected to a twist by rotating the ends through a prescribed angle. We show that a wide variety of shapes and instabilities can be obtained by simply varying the applied twist and tension. The observed structures which include helicoids with and without longitudinal and transverse wrinkles, and spontaneous creases, can be organized in a phase diagram with the tension and twist angle as control parameters [J. Chopin and A. Kudrolli, PRL (2013)]. Using a far-from-threshold analysis and a slender body approximation, we provide a comprehensive understanding of the longitudinal and transverse instabilities and show that several regimes emerge depending on subtle combinations of loading and geometrical parameters. Further, we show that the wrinkling instabilities can be manipulated to fabricate structured yarns which may be used to encapsulate amorphous materials or serve as efficient reinforcements for cement-based composites. COPPETEC / CNPq - Science Without Border Program

  10. Fractography of Fatigue Fracture Surface in Silumin Subjected to Electron-Beam Processing

    Science.gov (United States)

    Konovalov, S. V.; Aksenova, K. V.; Gromov, V. E.; Ivanov, Yu F.; Semina, O. A.

    2016-08-01

    The surface modification of the eutectic silumin with high-intensity pulsed electron beam has been carried out. Multi-cycle fatigue tests were performed and irradiation mode made possible the increase in the silumin fatigue life more than 3.5 times was determined. Studies of the structure of the surface irradiation and surface fatigue fracture of silumin in the initial (unirradiated) state and after modification with intense pulsed electron beam were carried out by methods of scanning electron microscopy. It has been shown, that in mode of partial melting of the irradiation surface the modification process of silicon plates is accompanied by the formation of numerous large micropores along the boundary plate/matrix and microcracks located in the silicon plates. A multi-modal structure (grain size within 30-50 μm with silicon particles up to 10 μm located on the boundaries) is formed in stable melting mode, as well as subgrain structure in the form of crystallization cells from 100 to 250 μm in size). Formation of a multi-modal, multi-phase, submicro- and nanosize structure assisting to a significant increase in the critical length of the crack, the safety coefficient and decrease in step of cracks for loading cycle was the main cause for the increase in silumin fatigue life.

  11. Random seismic response and sensitivity analysis of uncertain multi-span continuous beams subjected to spatially varying ground motions

    Science.gov (United States)

    Li, Y. Y.; Zhang, Y. H.

    2016-09-01

    An analytical method is formulated for the seismic analysis of multi-span continuous beams with random structural parameters subjected to spatially varying ground motions. An earthquake-induced ground motion is modelled as a stationary random process defined by power spectral density function, and the spatial variation is considered. The physical parameters of the multi-span beams are random and modelled as continuous random Gaussian variables. The stationary random responses are determined as approximate explicit functions of the structural parameters. Direct differentiation of these functions with respect to the structural parameters provides analytical expressions of the sensitivities of the stationary responses. On the basis of Taylor expansion, the statistic moments of the random responses are obtained. Taking the four-span beam as an illustrative example, the mean value and standard deviation of the random responses are computed and compared with those from Monte Carlo simulation to demonstrate the accuracy of the proposed method. Results are illustrated for the influence of different structural parameters on the statistic moments of the random responses. It is found that randomness in Young's modulus and the mass per unit length has approximate equivalent and significant influence on the random responses, while that of damping is negligible.

  12. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading.

    Science.gov (United States)

    Dung, Cao Vu; Sasaki, Eiichi

    2016-04-27

    Polyvinylidene Flouride (PVDF) is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental "stress-averaging" mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted to simulate the "stress-averaging" mechanism of a PVDF sensor attached on a cantilever beam subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever beam's modal properties, and electronic signal conditioning. Impact tests and FEM analysis were also carried out to verify the numerical simulation results. The results of impact tests indicate the excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of the cantilever beam. There is a good agreement between the PVDF sensor's output voltage predicted by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to generate higher output voltage than a smaller one at the same location. However, the effect of sensor location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading.

  13. The Gravitational Field of a Twisted Skyrmion

    CERN Document Server

    Hadi, Miftachul; Husein, Andri

    2015-01-01

    We study nonlinear sigma model, especially Skyrme model without twist and Skyrme model with twist: twisted Skyrme model. Twist term, $mkz$, is indicated in vortex solution. We are interested to construct a space-time containing a string with Lagrangian plus a twist. To add gravity, we replace $\\eta^{\\mu\

  14. Properties of twisted ferromagnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, Mihails; Cebers, Andrejs [University of Latvia, Zellu 8, LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv

    2009-02-01

    The full set of equations for twisted ferromagnetic filaments is derived. The linear stability analysis of twisted ferromagnetic filament is carried out. Two different types of the buckling instability are found - monotonous and oscillatory. The first in the limit of large twist leads to the shape of filament reminding pearls on the string, the second to spontaneous rotation of the filament, which may constitute the working of chiral microengine.

  15. Formulation of the twisted-light--matter interaction at the phase singularity: the twisted-light gauge

    CERN Document Server

    Quinteiro, G F; Kuhn, T

    2014-01-01

    Twisted light is light carrying orbital angular momentum. The profile of such a beam is a ring-like structure with a node at the beam axis, where a phase singularity exits. Due to the strong spatial inhomogeneity the mathematical description of twisted light-matter interaction is non-trivial, in particular at the phase singularity, where the commonly used dipole-moment approximation cannot be applied. In this paper we show theoretically that, if the polarization and the orbital angular momentum of the twisted light beam have the same sign, a Hamiltonian similar to the dipole-moment approximation can be derived. However, if the signs of polarization and orbital angular momentum differ, the magnetic parts of the light beam become of significant importance and an interaction Hamiltonian which only accounts for electric fields, as in the dipole moment approximation, is inappropriate. We discuss the consequences of these findings for twisted light excitation of semiconductor nanostructures, e. g. a quantum dot, pl...

  16. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  17. Experimental Observations of Nuclear Activity in Deuterated Materials Subjected to a Low-Energy Photon Beam

    Science.gov (United States)

    Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.; hide

    2017-01-01

    Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.

  18. Twisting formula of epsilon factors

    Indian Academy of Sciences (India)

    SAZZAD ALI BISWAS

    2017-09-01

    For characters of a non-Archimedean local field we have explicit formula for epsilon factors. But in general, we do not have any generalized twisting formula of epsilon factors. In this paper, we give a generalized twisting formula of epsilon factorsvia local Jacobi sums.

  19. Twisted supergravity and its quantization

    CERN Document Server

    Costello, Kevin

    2016-01-01

    Twisted supergravity is supergravity in a background where the bosonic ghost field takes a non-zero value. This is the supergravity counterpart of the familiar concept of twisting supersymmetric field theories. In this paper, we give conjectural descriptions of type IIA and IIB supergravity in $10$ dimensions. Our conjectural descriptions are in terms of the closed-string field theories associated to certain topological string theories, and we conjecture that these topological string theories are twists of the physical string theories. For type IIB, the results of arXiv:1505.6703 show that our candidate twisted supergravity theory admits a unique quantization in perturbation theory. This is despite the fact that the theories, like the original physical theories, are non-renormalizable. Although we do not prove our conjectures, we amass considerable evidence. We find that our candidates for the twisted supergravity theories contain the residual supersymmetry one would expect. We also prove (using heavily a res...

  20. Twisted bialgebroids versus bialgebroids from a Drinfeld twist

    Science.gov (United States)

    Borowiec, Andrzej; Pachoł, Anna

    2017-02-01

    Bialgebroids (respectively Hopf algebroids) are bialgebras (Hopf algebras) over noncommutative rings. Drinfeld twist techniques are particularly useful in the (deformation) quantization of Lie algebras as well as the underlying module algebras (=quantum spaces). A smash product construction combines both of them into the new algebra which, in fact, does not depend on the twist. However, we can turn it into a bialgebroid in a twist-dependent way. Alternatively, one can use Drinfeld twist techniques in a category of bialgebroids. We show that both the techniques indicated in the title—the twisting of a bialgebroid or constructing a bialgebroid from the twisted bialgebra—give rise to the same result in the case of a normalized cocycle twist. This can be useful for the better description of a quantum deformed phase space. We argue that within this bialgebroid framework one can justify the use of deformed coordinates (i.e. spacetime noncommutativity), which are frequently postulated in order to explain quantum gravity effects.

  1. Torsional Strengthening of RC Beams Using GFRP Composites

    Science.gov (United States)

    Patel, Paresh V.; Jariwala, Vishnu H.; Purohit, Sharadkumar P.

    2016-09-01

    Fiber reinforced polymer as an external reinforcement is used extensively for axial, flexural and shear strengthening in structural systems. The strengthening of members subjected to torsion is recently being explored. The loading mechanism of beams located at the perimeter of buildings which carry loads from slabs, joists and beams from one side of the member generates torsion that are transferred from the beams to the columns. In this work an experimental investigation on the improvement of the torsional resistance of reinforced concrete beams using Glass Fiber Reinforced Polymer (GFRP) is presented. Total 24 RC beams have been cast in this work. Ten beams of dimension 150 mm × 150 mm × 1300 mm are subjected to pure torsion while fourteen beams of 150 mm × 150 mm × 1700 mm are subjected to combined torsion and bending. Two beams in each category are designated as control specimen and remaining beams are strengthened by GFRP wrapping of different configurations. Pure torsion on specimens is applied using specially fabricated support mechanism and universal testing machine. For applying combined torsion and bending a loading frame and test set up are fabricated. Measurements of angle of twist at regular interval of torque, torsion at first crack, and ultimate torque, are obtained for all specimens. Results of different wrapping configurations are compared for control and strengthened beams to suggest effective GFRP wrapping configuration.

  2. Cone-Beam Computed Tomographic Assessment of Mandibular Condylar Position in Patients with Temporomandibular Joint Dysfunction and in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Maryam Paknahad

    2015-01-01

    Full Text Available Statement of the Problem. The clinical significance of condyle-fossa relationships in the temporomandibular joint is a matter of controversy. Different studies have evaluated whether the position of the condyle is a predictor of the presence of temporomandibular disorder. Purpose. The purpose of the present study was to investigate the condylar position according to gender in patients with temporomandibular disorder (TMD and healthy controls using cone-beam computed tomography. Materials and Methods. CBCT of sixty temporomandibular joints in thirty patients with TMD and sixty joints of thirty subjects without TMJ disorder was evaluated in this study. The condylar position was assessed on the CBCT images. The data were analyzed using Pearson chi-square test. Results. No statistically significant differences were found regarding the condylar position between symptomatic and asymptomatic groups. Posterior condylar position was more frequently observed in women and anterior condylar position was more prevalent in men in the symptomatic group. However, no significant differences in condylar position were found in asymptomatic subjects according to gender. Conclusion. This study showed no apparent association between condylar positioning and clinical findings in TMD patients.

  3. Cone-Beam Computed Tomographic Assessment of Mandibular Condylar Position in Patients with Temporomandibular Joint Dysfunction and in Healthy Subjects.

    Science.gov (United States)

    Paknahad, Maryam; Shahidi, Shoaleh; Iranpour, Shiva; Mirhadi, Sabah; Paknahad, Majid

    2015-01-01

    Statement of the Problem. The clinical significance of condyle-fossa relationships in the temporomandibular joint is a matter of controversy. Different studies have evaluated whether the position of the condyle is a predictor of the presence of temporomandibular disorder. Purpose. The purpose of the present study was to investigate the condylar position according to gender in patients with temporomandibular disorder (TMD) and healthy controls using cone-beam computed tomography. Materials and Methods. CBCT of sixty temporomandibular joints in thirty patients with TMD and sixty joints of thirty subjects without TMJ disorder was evaluated in this study. The condylar position was assessed on the CBCT images. The data were analyzed using Pearson chi-square test. Results. No statistically significant differences were found regarding the condylar position between symptomatic and asymptomatic groups. Posterior condylar position was more frequently observed in women and anterior condylar position was more prevalent in men in the symptomatic group. However, no significant differences in condylar position were found in asymptomatic subjects according to gender. Conclusion. This study showed no apparent association between condylar positioning and clinical findings in TMD patients.

  4. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  5. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading

    Directory of Open Access Journals (Sweden)

    Cao Vu Dung

    2016-04-01

    Full Text Available Polyvinylidene Flouride (PVDF is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental “stress-averaging” mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted to simulate the “stress-averaging” mechanism of a PVDF sensor attached on a cantilever beam subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever beam’s modal properties, and electronic signal conditioning. Impact tests and FEM analysis were also carried out to verify the numerical simulation results. The results of impact tests indicate the excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of the cantilever beam. There is a good agreement between the PVDF sensor’s output voltage predicted by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to generate higher output voltage than a smaller one at the same location. However, the effect of sensor location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading.

  6. Cone-Beam Computed Tomography Analysis of the Nasopharyngeal Airway in Nonsyndromic Cleft Lip and Palate Subjects.

    Science.gov (United States)

    Al-Fahdawi, Mahmood Abd; Farid, Mary Medhat; El-Fotouh, Mona Abou; El-Kassaby, Marwa Abdelwahab

    2017-03-01

      To assess the nasopharyngeal airway volume, cross-sectional area, and depth in previously repaired nonsyndromic unilateral cleft lip and palate versus bilateral cleft lip and palate patients compared with noncleft controls using cone-beam computed tomography with the ultimate goal of finding whether cleft lip and palate patients are more liable to nasopharyngeal airway obstruction.   A retrospective analysis comparing bilateral cleft lip and palate, unilateral cleft lip and palate, and control subjects. Significance at P ≤ .05.   Cleft Care Center and the outpatient clinic that are both affiliated with our faculty.   Cone-beam computed tomography data were selected of 58 individuals aged 9 to 12 years: 14 with bilateral cleft lip and palate and 20 with unilateral cleft lip and palate as well as 24 age- and gender-matched noncleft controls.   Volume, depth, and cross-sectional area of nasopharyngeal airway were measured.   Patients with bilateral cleft lip and palate showed significantly larger nasopharyngeal airway volume than controls and patients with unilateral cleft lip and palate (P cleft lip and palate showed significantly larger cross-sectional area than those with unilateral cleft lip and palate (P .05). Patients with bilateral cleft lip and palate showed significantly larger depth than controls and those with unilateral cleft lip and palate (P cleft lip and palate showed insignificant nasopharyngeal airway volume, cross-sectional area, and depth compared with controls (P > .05).   Unilateral and bilateral cleft lip and palate patients did not show significantly less volume, cross-sectional area, or depth of nasopharyngeal airway than controls. From the results of this study we conclude that unilateral and bilateral cleft lip and palate patients at the studied age and stage of repaired clefts are not more prone to nasopharyngeal airway obstruction than controls.

  7. Semantic Deviation in Oliver Twist

    Institute of Scientific and Technical Information of China (English)

    康艺凡

    2016-01-01

    Dickens, with his adeptness with language, applies semantic deviation skillfully in his realistic novel Oliver Twist. However, most studies and comments home and abroad on it mainly focus on such aspects as humanity, society, and characters. Therefore, this thesis will take a stylistic approach to Oliver Twist from the perspective of semantic deviation, which is achieved by the use of irony, hyperbole, and pun and analyze how the application of the technique makes the novel attractive.

  8. Null twisted geometries

    CERN Document Server

    Speziale, Simone

    2013-01-01

    We define and investigate a quantisation of null hypersurfaces in the context of loop quantum gravity on a fixed graph. The main tool we use is the parametrisation of the theory in terms of twistors, which has already proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra with space-like faces, and SU(2) by the little group ISO(2). The main difference is that the simplicity constraints present in the formalims are all first class, and the symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the polyhedra is lost, and the result is a much simpler, abelian geometric picture. It can be described by an Euclidean singular structure on the 2-dimensional space-like surface defined by a foliation of space-time by null hypersurfaces. This geometric structure is na...

  9. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view

    Energy Technology Data Exchange (ETDEWEB)

    Lofthag-Hansen, Sara, E-mail: sara.lofthag-hansen@vgregion.se [Department of Oral and Maxillofacial Radiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); Clinic of Oral and Maxillofacial Radiology, Public Dental Health, Gothenburg (Sweden); Thilander-Klang, Anne, E-mail: anne.thilander-klang@vgregion.se [Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Groendahl, Kerstin, E-mail: kerstin.grondahl@lj.se [Department of Oral and Maxillofacial Radiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); Department of Oral and Maxillofacial Radiology, The Institute for Postgraduate Dental Education, Joenkoeping (Sweden)

    2011-11-15

    Aims: To evaluate subjective image quality for two diagnostic tasks, periapical diagnosis and implant planning, for cone beam computed tomography (CBCT) using different exposure parameters and fields of view (FOVs). Materials and methods: Examinations were performed in posterior part of the jaws on a skull phantom with 3D Accuitomo (FOV 3 cm x 4 cm) and 3D Accuitomo FPD (FOVs 4 cm x 4 cm and 6 cm x 6 cm). All combinations of 60, 65, 70, 75, 80 kV and 2, 4, 6, 8, 10 mA with a rotation of 180{sup o} and 360{sup o} were used. Dose-area product (DAP) value was determined for each combination. The images were presented, displaying the object in axial, cross-sectional and sagittal views, without scanning data in a random order for each FOV and jaw. Seven observers assessed image quality on a six-point rating scale. Results: Intra-observer agreement was good ({kappa}{sub w} = 0.76) and inter-observer agreement moderate ({kappa}{sub w} = 0.52). Stepwise logistic regression showed kV, mA and diagnostic task to be the most important variables. Periapical diagnosis, regardless jaw, required higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Overall ranking of FOVs gave 4 cm x 4 cm, 6 cm x 6 cm followed by 3 cm x 4 cm. Conclusions: This study has shown that exposure parameters should be adjusted according to diagnostic task. For this particular CBCT brand a rotation of 180{sup o} gave good subjective image quality, hence a substantial dose reduction can be achieved without loss of diagnostic information.

  10. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view.

    Science.gov (United States)

    Lofthag-Hansen, Sara; Thilander-Klang, Anne; Gröndahl, Kerstin

    2011-11-01

    To evaluate subjective image quality for two diagnostic tasks, periapical diagnosis and implant planning, for cone beam computed tomography (CBCT) using different exposure parameters and fields of view (FOVs). Examinations were performed in posterior part of the jaws on a skull phantom with 3D Accuitomo (FOV 3 cm×4 cm) and 3D Accuitomo FPD (FOVs 4 cm×4 cm and 6 cm×6 cm). All combinations of 60, 65, 70, 75, 80 kV and 2, 4, 6, 8, 10 mA with a rotation of 180° and 360° were used. Dose-area product (DAP) value was determined for each combination. The images were presented, displaying the object in axial, cross-sectional and sagittal views, without scanning data in a random order for each FOV and jaw. Seven observers assessed image quality on a six-point rating scale. Intra-observer agreement was good (κw=0.76) and inter-observer agreement moderate (κw=0.52). Stepwise logistic regression showed kV, mA and diagnostic task to be the most important variables. Periapical diagnosis, regardless jaw, required higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Overall ranking of FOVs gave 4 cm×4 cm, 6 cm×6 cm followed by 3 cm×4 cm. This study has shown that exposure parameters should be adjusted according to diagnostic task. For this particular CBCT brand a rotation of 180° gave good subjective image quality, hence a substantial dose reduction can be achieved without loss of diagnostic information. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. NanoARPES of twisted bilayer graphene on SiC: absence of velocity renormalization for small angles.

    Science.gov (United States)

    Razado-Colambo, I; Avila, J; Nys, J-P; Chen, C; Wallart, X; Asensio, M-C; Vignaud, D

    2016-06-06

    The structural and electronic properties of twisted bilayer graphene (TBG) on SiC(000) grown by Si flux-assisted molecular beam epitaxy were investigated using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy with nanometric spatial resolution. STM images revealed a wide distribution of twist angles between the two graphene layers. The electronic structure recorded in single TBG grains showed two closely-spaced Dirac π bands associated to the two stacked layers with respective twist angles in the range 1-3°. The renormalization of velocity predicted in previous theoretical calculations for small twist angles was not observed.

  12. Multiple linear regression models for shear strength prediction and design of simplysupported deep beams subjected to symmetrical point loads

    Directory of Open Access Journals (Sweden)

    Panatchai Chetchotisak

    2015-09-01

    Full Text Available Because of nonlinear strain distributions caused either by abrupt changes in geometry or in loading in deep beam, the approach for conventional beams is not applicable. Consequently, strut-and-tie model (STM has been applied as the most rational and simple method for strength prediction and design of reinforced concrete deep beams. A deep beam is idealized by the STM as a truss-like structure consisting of diagonal concrete struts and tension ties. There have been numerous works proposing the STMs for deep beams. However, uncertainty and complexity in shear strength computations of deep beams can be found in some STMs. Therefore, improvement of methods for predicting the shear strengths of deep beams are still needed. By means of a large experimental database of 406 deep beam test results covering a wide range of influencing parameters, several shapes and geometry of STM and six state-of-the-art formulation of the efficiency factors found in the design codes and literature, the new STMs for predicting the shear strength of simply supported reinforced concrete deep beams using multiple linear regression analysis is proposed in this paper. Furthermore, the regression diagnostics and the validation process are included in this study. Finally, two numerical examples are also provided for illustration.

  13. Twisting wire scanner

    CERN Document Server

    Gharibyan, V; Krouptchenkov, I; Nölle, D; Tiessen, H; Werner, M; Wittenburg, K

    2012-01-01

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  14. Bend-twist coupling potential of wind turbine blades

    Science.gov (United States)

    Fedorov, V.; Berggreen, C.

    2014-06-01

    In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient for a generic beam is introduced based on the Euler-Bernoulli beam formulation. By applying the developed method for analysis of a commercial wind turbine blade structure it is demonstrated that a bend-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling into a blade on such important blade structural properties as bending and torsional stiffness is demonstrated.

  15. Nonlinear Dynamic Analysis of an Inclined Timoshenko Beam Subjected to a Moving Mass/Force with Beam’s Weight Included

    Directory of Open Access Journals (Sweden)

    Ahmad Mamandi

    2011-01-01

    Full Text Available In this study, the nonlinear vibrations analysis of an inclined pinned-pinned self-weight Timoshenko beam made of linear, homogenous and isotropic material with a constant cross section and finite length subjected to a traveling mass/force with constant velocity is investigated. The nonlinear coupled partial differential equations of motion for the rotation of warped cross section, longitudinal and transverse displacements are derived using the Hamilton's principle. These nonlinear coupled PDEs are solved by applying the Galerkin's method to obtain dynamic responses of the beam. The dynamic magnification factor and normalized time histories of mid-point of the beam are obtained for various load velocity ratios and the outcome results have been compared to the results with those obtained from linear solution. The influence of the large deflections caused by a stretching effect due to the beam's fixed ends is captured. It was seen that existence of quadratic-cubic nonlinear terms in the nonlinear governing coupled PDEs of motion causes stiffening (hardening behavior of the dynamic responses of the self-weight beam under the act of a traveling mass as well as equivalent concentrated moving force. Furthermore, in a case where the object leaves the beam, its planar motion path is derived and the targeting accuracy is investigated and compared with those from the rigid solution assumption.

  16. Large deflections of non-prismatic nonlinearly elastic cantilever beams subjected to non-uniform continuous load and a concentrated load at the free end

    Institute of Scientific and Technical Information of China (English)

    Miha Brojan; Matjaz Cebron; Franc Kosel

    2012-01-01

    This work studies large deflections of slender,non-prismatic cantilever beams subjected to a combined loading which consists of a non-uniformly distributed continuous load and a concentrated load at the free end of the beam.The material of the cantilever is assumed to be nonlinearly elastic.Different nonlinear relations between stress and strain in tensile and compressive domain are considered.The accuracy of numerical solutions is evaluated by comparing them with results from previous studies and with a laboratory experiment.

  17. Polarization twist in perovskite ferrielectrics.

    Science.gov (United States)

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-09-02

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms.

  18. Experiments with twisted light

    Science.gov (United States)

    Courtial, J.; O'Holleran, K.

    2007-06-01

    The generic that is, stable under perturbations nodes of the field in a monochromatic light beam are optical vortices. We describe here their connection to Chladni's nodal lines in the oscillations of metal plates, as well as a few experiments that have been performed with optical vortices. We will describe how optical vortices can be generated experimentally; how it can be shown that they possess orbital angular momentum; how individual photons can be sorted according to their vortex state; and how optical vortices can be used to demonstrate higher-dimensional quantum entanglement.

  19. Drinfel'd basis of twisted Yangians

    CERN Document Server

    Belliard, Samuel

    2014-01-01

    We present a quantization of a Lie bi-ideal structure for twisted half-loop algebras of finite dimensional simple complex Lie algebras. We obtain Drinfel'd basis formalism and algebra closure relations of twisted Yangians for all symmetric pairs of simple Lie algebras and for simple twisted even half-loop Lie algebras. We also give an explicit form of twisted Yangians in Drinfel'd basis for the sl3 Lie algebra.

  20. Properly twisted groups and their algebras

    CERN Document Server

    Bales, John W

    2011-01-01

    A twist property is developed which imparts certain properties on the twisted group algebra. These include an involution * satisfying (xy)*=y*x* and an inner product satisfying = and =. Examples of twisted group algebras having this property are the Cayley-Dickson algebras and Clifford algebras.

  1. Coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments

    Science.gov (United States)

    Liu, Yang; Shu, Dong-Wei

    2014-08-01

    Delaminations in structures may significantly reduce the stiffness and strength of the structures and may affect their vibration characteristics. As structural components, beams have been used for various purposes, in many of which beams are often subjected to axial loads and static end moments. In the present study, an analytical solution is developed to study the coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments. Euler-Bernoulli beam theory and the "free mode" assumption in delamination vibration are adopted. This is the first study of the influences of static end moments upon the effects of delaminations on natural frequencies, critical buckling loads and critical moments for lateral instability. The results show that the effects of delamination on reducing natural frequencies, critical buckling load and critical moment for lateral instability are aggravated by the presence of static end moment. In turn, the effects of static end moments on vibration and instability characteristics are affected by the presence of delamination. The analytical results of this study can serve as a benchmark for finite element method and other numerical solutions.

  2. "Oliver Twist": A Teacher's Guide.

    Science.gov (United States)

    Cashion, Carol; Fischer, Diana

    This teacher's guide for public television's 3-part adaptation of Charles Dickens's "Oliver Twist" provides information that will help enrich students' viewing of the series, whether or not they read the novel. The guide includes a wide range of discussion and activity ideas; there is also a series Web site and a list of Web resources.…

  3. Helically twisted photonic crystal fibres.

    Science.gov (United States)

    Russell, P St J; Beravat, R; Wong, G K L

    2017-02-28

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Authors.

  4. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  5. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Beravat, R.; Wong, G. K. L.

    2017-01-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069771

  6. CCR7 regulates Twist to induce the epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Li, Kexin; Xu, Baofeng; Xu, Guangying; Liu, Rui

    2016-01-01

    As reported, the CC chemokine receptor 7 (CCR7) trigger a series of signaling cascades in the epithelial-mesenchymal transition (EMT) of some malignancies. Meanwhile, Twist promotes EMT in pancreatic ductal adenocarcinoma (PDAC) progression. Here, effects of Twist on CCR7-induced EMT in the PDAC were investigated in detail. The immunohistochemistry was used to detect the expression of Twist, and then, in vitro assays were applied. The expression rate of Twist was 72.0 % in PDAC samples and closely correlated with tumor-node-metastasis (TNM) stage and invasion. When PDAC cell line PANC1 was subjected to CCL19 stimulation, the expression of p-ERK, p-AKT, Twist, N-cadherin, MMP9, and α-smooth muscle actin (α-SMA) was induced, while the GSK1120212, BEZ235, and MK2206 prohibited the increase of Twist and EMT biomarkers. For another thing, the si-Twist treatment attenuated CCL19-stimulated EMT occurrence, migration, and invasion phenotypes of PANC1 cells. In conclusion, CCR7 pathway up-regulates Twist expression via ERK and PI3K/AKT signaling to manage the EMT of PDAC. Our work allows for clinical gene or protein-targeted regimen of PDAC patients in the near future.

  7. Renormalization constants for 2-twist operators in twisted mass QCD

    CERN Document Server

    Alexandrou, C; Korzec, T; Panagopoulos, H; Stylianou, F

    2010-01-01

    Perturbative and non-perturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the non-perturbative evaluation of the one-derivative twist-2 vector and axial vector operators. Non-perturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing $a$ corresponding to $\\beta=3.9, 4.05, 4.20$. Subtraction of ${\\cal O}(a^2)$ terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to ${\\cal O}(a^2)$. The renormalization conditions are defined in the RI$'$-MOM scheme, for both perturbative and non-perturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set...

  8. The twist box domain is required for Twist1-induced prostate cancer metastasis.

    Science.gov (United States)

    Gajula, Rajendra P; Chettiar, Sivarajan T; Williams, Russell D; Thiyagarajan, Saravanan; Kato, Yoshinori; Aziz, Khaled; Wang, Ruoqi; Gandhi, Nishant; Wild, Aaron T; Vesuna, Farhad; Ma, Jinfang; Salih, Tarek; Cades, Jessica; Fertig, Elana; Biswal, Shyam; Burns, Timothy F; Chung, Christine H; Rudin, Charles M; Herman, Joseph M; Hales, Russell K; Raman, Venu; An, Steven S; Tran, Phuoc T

    2013-11-01

    Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master regulator of the epithelial-mesenchymal transition (EMT) that promotes cancer metastasis. Structure-function relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of the conserved Twist box domain for metastatic phenotypes in prostate cancer. Evidence suggests that Twist1 is overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a transactivation mutant, Twist1-F191G, in prostate cancer cells using in vitro assays, which mimic various stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro. Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extrathoracic metastases in vivo using the experimental lung metastasis assay. The Twist box was required for prostate cancer cells to colonize metastatic lung lesions and extrathoracic metastases. Comparative genomic profiling revealed transcriptional programs directed by the Twist box that were associated with cancer progression, such as Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in prostate cancer cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and prostate cancer metastasis. Targeting the Twist box domain of Twist1 may effectively limit prostate cancer metastatic potential. ©2013 AACR.

  9. "Twisted" black holes are unphysical

    CERN Document Server

    Gray, Finnian; Schuster, Sebastian; Visser, Matt

    2016-01-01

    So-called "twisted" black holes have recently been proposed by Zhang (1609.09721 [gr-qc]), and further considered by Chen and Jing (1610.00886 [gr-qc]), and more recently by Ong (1610.05757 [gr-qc]). While these spacetimes are certainly Ricci-flat, and so mathematically satisfy the vacuum Einstein equations, they are also merely minor variants on Taub--NUT spacetimes. Consequently they exhibit several unphysical features that make them quite unreasonable as realistic astrophysical objects. Specifically, these "twisted" black holes are not (globally) asymptotically flat. Furthermore, they contain closed timelike curves that are not hidden behind any event horizon --- the most obvious of these closed timelike curves are small azimuthal circles around the rotation axis, but the effect is more general. The entire region outside the horizon is infested with closed timelike curves.

  10. Polarization twist in perovskite ferrielectrics

    Science.gov (United States)

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  11. Polarization twist in perovskite ferrielectrics

    Science.gov (United States)

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-09-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms.

  12. Twisted Chern-Simons supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, L. [Dipartimento di Scienze e Innovazione Tecnologica, Univ. del Piemonte Orientale, Alessandria (Italy); INFN Gruppo collegato di Alessandria (Italy)

    2014-09-11

    We present a noncommutative version of D = 5 Chern-Simons supergravity, where noncommutativity is encoded in a *-product associated to an abelian Drinfeld twist. The theory is invariant under diffeomorphisms, and under the *-gauge supergroup SU(2,2 vertical stroke 4), including Lorentz and N = 4 local supersymmetries. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Counting Polyominoes on Twisted Cylinders

    OpenAIRE

    Barequet, Gill; Moffie, Micha; Ribó, Ares; Rote, Günter

    2005-01-01

    International audience; We improve the lower bounds on Klarner's constant, which describes the exponential growth rate of the number of polyominoes (connected subsets of grid squares) with a given number of squares. We achieve this by analyzing polyominoes on a different surface, a so-called $\\textit{twisted cylinder}$ by the transfer matrix method. A bijective representation of the "states'' of partial solutions is crucial for allowing a compact representation of the successive iteration vec...

  14. New twist on artificial muscles

    Science.gov (United States)

    Haines, Carter S.; Li, Na; Spinks, Geoffrey M.; Aliev, Ali E.; Di, Jiangtao; Baughman, Ray H.

    2016-01-01

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy. PMID:27671626

  15. Energy loss spectroscopy of Buckminster C60 with twisted electrons: Influence of orbital angular momentum transfer on plasmon generation

    CERN Document Server

    Schüler, M

    2016-01-01

    Recent experimental progress in creating and controlling singular electron beams that carry orbital angular momentum allows for new types of local spectroscopies. We theoretically investigate the twisted-electron energy loss spectroscopy (EELS) from the C60 fullerene. Of particular interest are the strong multipolar collective excitations and their selective response to the orbital angular momentum of the impinging electron beam. Based on ab-initio calculations for the collective response we compute EELS signals with twisted electron beams and uncover the interplay between the plasmon polarity and the amount of angular momentum transfer.

  16. The XXZ model with anti-periodic twisted boundary conditions

    CERN Document Server

    Niekamp, Sönke; Frahm, Holger

    2009-01-01

    We derive functional equations for the eigenvalues of the XXZ model subject to anti-diagonal twisted boundary conditions by means of fusion of transfer matrices and by Sklyanin's method of separation of variables. Our findings coincide with those obtained using Baxter's method and are compared to the recent solution of Galleas. As an application we study the finite size scaling of the ground state energy of the model in the critical regime.

  17. The XXZ model with anti-periodic twisted boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Niekamp, Soenke; Wirth, Tobias; Frahm, Holger [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany)

    2009-05-15

    We derive functional equations for the eigenvalues of the XXZ model subject to anti-diagonal twisted boundary conditions by means of fusion of transfer matrices and by Sklyanin's method of separation of variables. Our findings coincide with those obtained using Baxter's method and are compared to the recent solution of Galleas. As an application we study the finite size scaling of the ground-state energy of the model in the critical regime.

  18. Noncommutative principal bundles through twist deformation

    CERN Document Server

    Aschieri, Paolo; Pagani, Chiara; Schenkel, Alexander

    2016-01-01

    We construct noncommutative principal bundles deforming principal bundles with a Drinfeld twist (2-cocycle). If the twist is associated with the structure group then we have a deformation of the fibers. If the twist is associated with the automorphism group of the principal bundle, then we obtain noncommutative deformations of the base space as well. Combining the two twist deformations we obtain noncommutative principal bundles with both noncommutative fibers and base space. More in general, the natural isomorphisms proving the equivalence of a closed monoidal category of modules and its twist related one are used to obtain new Hopf-Galois extensions as twists of Hopf-Galois extensions. A sheaf approach is also considered, and examples presented.

  19. Using spatial reliability in the probabilistic study of concrete structures: The example of a reinforced concrete beam subjected to carbonation inducing corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Defaux, G.; Pendola, M. [PHIMECA Engineering, 1 allee Alan Turing, 63170 Aubiere (France); Sudret, B. [EDF R and D, Department of Materials and Mechanics of Components, Site des Renardieres, 77818 Moret-sur-Loing Cedex (France)

    2006-07-01

    Several methods, simple or more sophisticated, are tested to determine useful information for reliability problems involving spatial variability. The methods are developed around a simple example of a reinforced concrete beam subjected to carbonation inducing corrosion. A point-in-space reliability analysis is conducted to estimate a first indicator on the length to be replaced. Then, random field are introduced and are taken into account in the reliability problem using simulations methods to determine the empirical cumulative density function (CDF) of the length to be repaired and its moments. Finally, analytical formulations are used to estimate the same moments but with small computational effort. (authors)

  20. The Twist Limit for Bipolar Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  1. DVCS amplitude with kinematical twist-3 terms

    CERN Document Server

    Radyushkin, A V

    2000-01-01

    We compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude we include the operators of twist-3 which appear as total derivatives of twist-2 operators. Our results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. We find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term.

  2. Influence of twist angle on crack propagation of nanoscale bicrystal nickel film based on molecular dynamics simulation

    Science.gov (United States)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2017-03-01

    Tensile deformation of nanoscale bicrystal nickel film with twist grain boundary, which includes various twist angles, is investigated via molecular dynamics simulation to obtain the influence of twist angle on crack propagation. The twist angle has a significant influence on crack propagation. At the tensile strain of 0.667, as for the twist angles of 0°, 3.54° and 7.05°, the bicrystal nickel films are subjected to complete fracture, while as for the twist angles of 16.1° and 33.96°, no complete fracture occurs in the bicrystal nickel films. When the twist angles are 16.1° and 33.96°, the dislocations emitted from the crack tip are almost unable to go across the grain boundary and enter into the other grain along the slip planes {111}. There should appear a critical twist angle above which the crack propagation is suppressed at the grain boundary. The higher energy in the grain boundary with larger twist angle contributes to facilitating the movement of the glissile dislocation along the grain boundary rather than across the grain boundary, which leads to the propagation of the crack along the grain boundary.

  3. Twisted conjugacy in braid groups

    CERN Document Server

    González-Meneses, Juan

    2011-01-01

    In this note we solve the twisted conjugacy problem for braid groups, i.e. we propose an algorithm which, given two braids $u,v\\in B_n$ and an automorphism $\\phi \\in Aut (B_n)$, decides whether $v=(\\phi (x))^{-1}ux$ for some $x\\in B_n$. As a corollary, we deduce that each group of the form $B_n \\rtimes H$, a semidirect product of the braid group $B_n$ by a torsion-free hyperbolic group $H$, has solvable conjugacy problem.

  4. Twisting the N=2 string

    Science.gov (United States)

    Ketov, Sergei V.; Lechtenfeld, Olaf; Parkes, Andrew J.

    1995-03-01

    The most general homogeneous monodromy conditions in N=2 string theory are classified in terms of the conjugacy classes of the global symmetry group U(1,1)⊗openZ2. For classes which generate a discrete subgroup Γ, the corresponding target space backgrounds openC1,1/Γ include half spaces, complex orbifolds, and tori. We propose a generalization of the intercept formula to matrix-valued twists, but find massless physical states only for Γ=open1 (untwisted) and Γ=openZ2 (in the manner of Mathur and Mukhi), as well as for Γ being a parabolic element of U(1,1). In particular, the 16 openZ2-twisted sectors of the N=2 string are investigated, and the corresponding ground states are identified via bosonization and BRST cohomology. We find enough room for an extended multiplet of ``spacetime'' supersymmetry, with the number of supersymmetries being dependent on global ``spacetime'' topology. However, world-sheet locality for the chiral vertex operators does not permit interactions among all massless ``spacetime'' fermions.

  5. Symmetry fractionalization and twist defects

    Science.gov (United States)

    Tarantino, Nicolas; Lindner, Netanel H.; Fidkowski, Lukasz

    2016-03-01

    Topological order in two-dimensions can be described in terms of deconfined quasiparticle excitations—anyons—and their braiding statistics. However, it has recently been realized that this data does not completely describe the situation in the presence of an unbroken global symmetry. In this case, there can be multiple distinct quantum phases with the same anyons and statistics, but with different patterns of symmetry fractionalization—termed symmetry enriched topological order. When the global symmetry group G, which we take to be discrete, does not change topological superselection sectors—i.e. does not change one type of anyon into a different type of anyon—one can imagine a local version of the action of G around each anyon. This leads to projective representations and a group cohomology description of symmetry fractionalization, with the second cohomology group {H}2(G,{{ A }}{{abelian}}) being the relevant group. In this paper, we treat the general case of a symmetry group G possibly permuting anyon types. We show that despite the lack of a local action of G, one can still make sense of a so-called twisted group cohomology description of symmetry fractionalization, and show how this data is encoded in the associativity of fusion rules of the extrinsic ‘twist’ defects of the symmetry. Furthermore, building on work of Hermele (2014 Phys. Rev. B 90 184418), we construct a wide class of exactly-solvable models which exhibit this twisted symmetry fractionalization, and connect them to our formal framework.

  6. Multiple Twisted -Euler Numbers and Polynomials Associated with -Adic -Integrals

    Directory of Open Access Journals (Sweden)

    Jang Lee-Chae

    2008-01-01

    Full Text Available By using -adic -integrals on , we define multiple twisted -Euler numbers and polynomials. We also find Witt's type formula for multiple twisted -Euler numbers and discuss some characterizations of multiple twisted -Euler Zeta functions. In particular, we construct multiple twisted Barnes' type -Euler polynomials and multiple twisted Barnes' type -Euler Zeta functions. Finally, we define multiple twisted Dirichlet's type -Euler numbers and polynomials, and give Witt's type formula for them.

  7. Large N reduction on a twisted torus

    CERN Document Server

    González-Arroyo, A; Neuberger, H

    2005-01-01

    We consider SU(N) lattice gauge theory at infinite N defined on a torus with a CP invariant twist. Massless fermions are incorporated in an elegant way, while keeping them quenched. We present some numerical results which suggest that twisting can make numerical simulations of planar QCD more efficient.

  8. Stress effects in twisted highly birefringent fibers

    Science.gov (United States)

    Wolinski, Tomasz R.

    1994-03-01

    Hydrostatic pressure and uniaxial longitudinal strain effects in twisted highly birefringent optical fibers have been investigated from the point of the Marcuse mode-coupling theory. The problem is analyzed in terms of local normal modes of the ideal fiber and in the limit of weak twist, where large linear birefringence dominates over twist effect, and therefore twist coupling between local modes is not effective. The authors present the results of birefringence measurements in highly birefringent bow-tie fibers influenced simultaneously by hydrostatic pressure up to 100 MPa and twisting the result for highly birefringent elliptical-core fibers influenced by uniaxial longitudinal strain up to 4000 (mu) (epsilon) and twisting effect. The birefringence measurement method is based on twist-induced effects and has been successfully applied in a stress environment. The experiment was conducted with a specially designed stress generating device that makes it possible to simultaneously generate various mechanical perturbations such as hydrostatic and radial pressure, axial strain and twist, allowing study of their influence on mode propagation in optical fibers. A comparison with theoretical results as well as with pervious experimental data on stress influence on the beat length parameter in highly birefringent fibers is also provided.

  9. Decay constants from twisted mass QCD

    CERN Document Server

    Dimopoulos, P; Michael, C; Simula, S; Urbach, C

    2008-01-01

    We present results for chiral extrapolations of the mass and decay constants of the rho meson. The data sets used are the nf=2 unquenched gauge configurations generated with twisted mass fermions by the European Twisted Mass Collaboration. We describe a calculation of three decay constants in charmonium and explain why they are required.

  10. Twisting theory for weak Hopf algebras

    Institute of Scientific and Technical Information of China (English)

    CHEN Ju-zhen; ZHANG Yan; WANG Shuan-hong

    2008-01-01

    The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf algebra to generalize the result from Oeckl (2000).

  11. N=4 Twisted Superspace from Dirac-Kahler Twist and Off-shell SUSY Invariant Actions in Four Dimensions

    CERN Document Server

    Kato, J; Miyake, A; Kato, Junji; Kawamoto, Noboru; Miyake, Akiko

    2005-01-01

    We propose N=4 twisted superspace formalism in four dimensions by introducing Dirac-Kahler twist. In addition to the BRST charge as a scalar counter part of twisted supercharge we find vector and tensor twisted supercharges. By introducing twisted chiral superfield we explicitly construct off-shell twisted N=4 SUSY invariant action. We can propose variety of supergauge invariant actions by introducing twisted vector superfield. We may, however, need to find further constraints to identify twisted N=4 super Yang-Mills action. We propose a superconnection formalism of twisted superspace where constraints play a crucial role. It turns out that N=4 superalgebra of Dirac-Kahler twist can be decomposed into N=2 sectors. We can then construct twisted N=2 super Yang-Mills actions by the superconnection formalism of twisted superspace in two and four dimensions.

  12. Hidden Beauty in Twisted Viking Neck Rings

    CERN Document Server

    Olsen, Kasper

    2010-01-01

    Many hoards found in Ireland, Scotland, Orkney Islands, and Scandinavia demonstrate the vikings ability to fabricate beautiful arm and neck rings of twisted silver and gold rods. Characteristic for such rings is the uniform appearance of the twisted pattern along the length of the arm ring, as well as from one arm ring to another, also when found at distant geographical locations. How can the appearance of the twisted wires be so perfectly repetitive? We demonstrate that the answer is that the vikings utilized a self-forming motif: The pattern arises from a twisting of the wires to a maximally rotated configuration. That is why the twist patterns in these arm and neck rings are beautiful, repetitive, and universal.

  13. Probabilistic buckling analysis of the beam steel structures subjected to fire by the stochastic finite element method

    Directory of Open Access Journals (Sweden)

    Świta P.

    2016-05-01

    Full Text Available The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the stability in the issues related to the influence of high temperature resulting from a fire directly connected with the reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra system to get the analytical polynomial functions relating the critical pressure (or force and several random design parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming that the input random parameters have all Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the First Order Reliability Method (FORM by an application of the limit function as a difference in-between critical pressure and maximum compression stress determined in the given structures to verify their durability according to the demands of EU engineering designing codes related to the fire situation.

  14. Probabilistic buckling analysis of the beam steel structures subjected to fire by the stochastic finite element method

    Science.gov (United States)

    Świta, P.; Kamiński, M.

    2016-05-01

    The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the stability in the issues related to the influence of high temperature resulting from a fire directly connected with the reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra system to get the analytical polynomial functions relating the critical pressure (or force) and several random design parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming that the input random parameters have all Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the First Order Reliability Method (FORM) by an application of the limit function as a difference in-between critical pressure and maximum compression stress determined in the given structures to verify their durability according to the demands of EU engineering designing codes related to the fire situation.

  15. A new approach for elasto-plastic finite strain analysis of cantilever beams subjected to uniform bending moment

    Indian Academy of Sciences (India)

    GOKHAN T TAYYAR

    2016-04-01

    The reliability and limits of solutions for static structural analysis depend on the accuracy of the curvature and deflection calculations. Even if the material model is close to the actual material behavior, physically unrealistic deflections or divergence problems are unavoidable in the analysis if an appropriate fundamental kinematic theory is not chosen. Moreover, accurate deflection calculation plays an important role in ultimate strength analysis where in-plane stresses are considered. Therefore, a more powerful method is neededto achieve reliable deflection calculation and modeling. For this purpose, a new advanced step was developed by coupling the elasto-plastic material behavior with precise general planar kinematic analysis. The deflection is generated precisely without making geometric assumptions or using differential equations of the deflection curve. An analytical finite strain solution was derived for an elasto-plastic prismatic/non-prismatic rectangular cross-sectioned beam under a uniform moment distribution. A comparison of the analytical results with thosefrom the Abaqus FEM software package reveals a coherent correlation.

  16. Comparison of Cone Beam Computed Tomography-Derived Alveolar Bone Density Between Subjects with and without Aggressive Periodontitis

    Science.gov (United States)

    Al-Zahrani, Mohammad S.; Elfirt, Eman Y.; Al-Ahmari, Manea M.; Yamany, Ibrahim A.; Alabdulkarim, Maher A.

    2017-01-01

    Introduction Understanding the changes in bone density of patients affected by aggressive periodontitis could be useful in early disease detection and proper treatment planning. Aim The aim of this study was to compare alveolar bone density in patients affected with aggressive periodontitis and periodontally healthy individuals using Cone Beam Computed Tomography (CBCT). Materials and Methods This cross-sectional study was conducted on 20 patients with a confirmed diagnosis of aggressive periodontitis. Twenty periodontally healthy patients attending the dental clinics for implant placement or extraction of impacted third molars served as controls. Alveolar bone density was measured using CBCT scanning. Comparisons between aggressive periodontitis group and controls for age and alveolar bone density of the anterior and posterior regions were performed using an independent sample t-test. Multivariable linear regression models were also performed. Results The differences between groups in regard to age, anterior and posterior alveolar bone density was not statistically significant (pperiodontitis patients was not different from periodontally healthy individuals. Further studies are needed to confirm these findings. PMID:28274060

  17. Vibrations of twisted cantilevered plates - Summary of previous and current studies

    Science.gov (United States)

    Leissa, A. W.; Macbain, J. C.; Kielb, R. E.

    1984-01-01

    This work summarizes a comprehensive study made of the free vibrations of twisted, cantilevered plates of rectangular planform. Numerous theoretical and experimental investigations previously made by others have resulted in frequency results which disagree considerably. To clarify the problem a joint industry/government/university research effort was initiated to obtain comprehensive theoretical and experimental results for models having useful ranges of aspect ratios, thickness ratios and twist angles. Theoretical data came from 19 independent computer analyses, including finite element, shell theory and beam theory idealizations. Two independent sets of experimental data were also obtained. The theoretical and experimental results are summarized and compared.

  18. Using cone-beam CT as a low-dose 3D imaging technique for the extremities: initial experience in 50 subjects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ambrose J.; Chang, Connie Y.; Palmer, William E. [Massachusetts General Hospital, Department of Radiology, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Thomas, Bijoy J. [Universal College of Medical Sciences, Department of Radiology, Bhairahawa (Nepal); MacMahon, Peter J. [Mater Misericordiae University Hospital, Department of Radiology, Dublin 7 (Ireland)

    2015-06-01

    To prospectively evaluate a dedicated extremity cone-beam CT (CBCT) scanner in cases with and without orthopedic hardware by (1) comparing its imaging duration and image quality to those of radiography and multidetector CT (MDCT) and (2) comparing its radiation dose to that of MDCT. Written informed consent was obtained for all subjects for this IRB-approved, HIPAA-compliant study. Fifty subjects with (1) fracture of small bones, (2) suspected intraarticular fracture, (3) fracture at the site of complex anatomy, or (4) a surgical site difficult to assess with radiography alone were recruited and scanned on an extremity CBCT scanner prior to FDA approval. Same-day radiographs were performed in all subjects. Some subjects also underwent MDCT within 1 month of CBCT. Imaging duration and image quality were compared between CBCT and radiographs. Imaging duration, effective radiation dose, and image quality were compared between CBCT and MDCT. Fifty-one CBCT scans were performed in 50 subjects. Average imaging duration was shorter for CBCT than radiographs (4.5 min vs. 6.6 min, P = 0.001, n = 51) and MDCT (7.6 min vs. 10.9 min, P = 0.01, n = 7). Average estimated effective radiation dose was less for CBCT than MDCT (0.04 mSv vs. 0.13 mSv, P = 0.02, n = 7). CBCT images yielded more diagnostic information than radiographs in 23/51 cases and more diagnostic information than MDCT in 1/7 cases, although radiographs were superior for detecting hardware complications. CBCT performs high-resolution imaging of the extremities using less imaging time than radiographs and MDCT and lower radiation dose than MDCT. (orig.)

  19. Effect of pump depletion and cross-focusing on twisted terahertz radiation generation

    Science.gov (United States)

    Sobhani, Hassan; Dehghan, Mehdi; Dadar, Elham

    2017-02-01

    In this paper, the pump depletion and cross-focusing effects on the generation of twisted terahertz radiation are investigated. Based on the beating of two Laguerre-Gaussian lasers in a radial plasma channel, a twisted terahertz radiation can be produced. In the presence of pump depletion, the lasers power is consumed. So, the ponderomotive force nonlinearity decreases and the output terahertz field approaches to a saturation value. Under competition between the diffraction and nonlinearity effects, the amplitude of laser beam width oscillation grows. When the incident laser beams have non-similar topological charge numbers, the normalized generated terahertz amplitude is low and the pump depletion effect on the laser beam width evolution is ignorable.

  20. Twisted spacetime in Einstein gravity

    CERN Document Server

    Zhang, Hongsheng

    2016-01-01

    We find a vacuum stationary twisted solution in four-dimensional Einstein gravity. Its frame dragging angular velocities are antisymmetric with respect to the equatorial plane. It possesses a symmetry of joint inversion of time and parity with respect to the equatorial plane. Its Arnowitt-Deser-Misner (ADM) mass and angular momentum are zero. It is curved but regular all over the manifold. Its Komar mass and Komar angular momentum are also zero. Its infinite red-shift surface coincides with its event horizon, since the event horizon does not rotate. Furthermore we extend this solution to the massive case, and find some similar properties. This solution is a stationary axisymmetric solution, but not Kerr. It explicitly proves that pure Einstein gravity permits different rotational mode other than Kerr. Our results demonstrate that the Einstein theory may have much more rich structures than what we ever imagine.

  1. Dynamics of bisolitonic matter waves in a Bose-Einstein condensate subjected to an atomic beam splitter and gravity

    CERN Document Server

    Dikande, Alain Moise; Ebobenow, Joseph

    2010-01-01

    A theoretical scheme for an experimental implementation involving bisolitonic matter waves from an attractive Bose-Einstein condensate, is considered within the framework of a non-perturbative approach to the associate Gross-Pitaevskii equation. The model consists of a single condensate subjected to an expulsive harmonic potential creating a double-condensate structure, and a gravitational potential that induces atomic exchanges between the two overlapping post condensates. Using a non-isospectral scattering transform method, exact expressions for the bright-matter-wave bisolitons are found in terms of double-lump envelopes with the co-propagating pulses displaying more or less pronounced differences in their widths and tails depending on the mass of atoms composing the condensate.

  2. Twisting cracks in Bouligand structures.

    Science.gov (United States)

    Suksangpanya, Nobphadon; Yaraghi, Nicholas A; Kisailus, David; Zavattieri, Pablo

    2017-06-10

    The Bouligand structure, which is found in many biological materials, is a hierarchical architecture that features uniaxial fiber layers assembled periodically into a helicoidal pattern. Many studies have highlighted the high damage-resistant performance of natural and biomimetic Bouligand structures. One particular species that utilizes the Bouligand structure to achieve outstanding mechanical performance is the smashing Mantis Shrimp, Odontodactylus Scyllarus (or stomatopod). The mantis shrimp generates high speed, high acceleration blows using its raptorial appendage to defeat highly armored preys. The load-bearing part of this appendage, the dactyl club, contains an interior region [16] that consists of a Bouligand structure. This region is capable of developing a significant amount of nested twisting microcracks without exhibiting catastrophic failure. The development and propagation of these microcracks are a source of energy dissipation and stress relaxation that ultimately contributes to the remarkable damage tolerance properties of the dactyl club. We develop a theoretical model to provide additional insights into the local stress intensity factors at the crack front of twisting cracks formed within the Bouligand structure. Our results reveal that changes in the local fracture mode at the crack front leads to a reduction of the local strain energy release rate, hence, increasing the necessary applied energy release rate to propagate the crack, which is quantified by the local toughening factor. Ancillary 3D simulations of the asymptotic crack front field were carried out using a J-integral to validate the theoretical values of the energy release rate and the local stress intensity factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Compton scattering of twisted light: angular distribution and polarization of scattered photons

    CERN Document Server

    Stock, S; Fritzsche, S; Seipt, D

    2015-01-01

    Compton scattering of twisted photons is investigated within a non-relativistic framework using first-order perturbation theory. We formulate the problem in the density matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light.

  4. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    Science.gov (United States)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  5. Study of Young's double slit interference pattern from a Laguerre Gaussian beam

    CERN Document Server

    Emile, olivier

    2013-01-01

    The interference pattern of a Laguerre Gaussian beam in a double slit experiment is reported. Whereas a typical laser beam phase front is planar, a Laguerre Gaussian beam exhibits a wave front that is twisting along the direction of propagation. This leads to a distorted interference pattern. The topological charge also called the order of the twisted beam can be then readily and simply determined. More precisely, the naked eye resolution of the distortion shift of the interference pattern directly informs about the number of twists made as well as on the sign of the twist. These results are in very good agreement with theoretical calculations that offer a general description of the double slit interference with twisted beams.

  6. Assessment of Left Ventricular Global Twist in Essential Hypertensive Heart by Speckle Tracking Imaging

    Institute of Scientific and Technical Information of China (English)

    Wei HAN; Mingxing XIE; Xinfang WANG; Qing LU

    2008-01-01

    The left ventdcular twist was evaluated by 2-dimensional ultrasound speckle-tracking imaging (STI) in 50 patients with hypertension with normal geometric left ventricle (LV) and 45 normal subjects as control group. The mean value of LV rotation was obtained at each plane using STI. LV twist and twist velocity were defined as apical rotation/rotation rate relative to the base re- spectively. To adjust the intersubject differences in heart rates, the time sequence were normalized. The results showed that peak twist developed near the end of systole. Peak LV twist was significantly higher in patients with hypertension than normal controls (P<0.001). The diastolic untwisting mainly occurred in early diastole (≈38%). Compared with normal controls, untwisting rate (Untw R) in pa- tients with hypertension was significantly reduced (P<0.001), and untwisting half-time (UHT) was significantly delayed (P<0.05). This study demonstrated that STI has a potential ability to evaluate the early change of heart function in patients with hypertension by measuring the twist of LV.

  7. Twisted spectral geometry for the standard model

    Science.gov (United States)

    Martinetti, Pierre

    2015-07-01

    In noncommutative geometry, the spectral triple of a manifold does not generate bosonic fields, for fluctuations of the Dirac operator vanish. A Connes-Moscovici twist forces the commutative algebra to be multiplied by matrices. Keeping the space of spinors untouched, twisted-fluctuations then yield perturbations of the spin connection. Applied to the spectral triple of the Standard Model, a similar twist yields the scalar field needed to stabilize the vacuum and to make the computation of the Higgs mass compatible with its experimental value.

  8. Twist1 Is Essential for Tooth Morphogenesis and Odontoblast Differentiation.

    Science.gov (United States)

    Meng, Tian; Huang, Yanyu; Wang, Suzhen; Zhang, Hua; Dechow, Paul C; Wang, Xiaofang; Qin, Chunlin; Shi, Bing; D'Souza, Rena N; Lu, Yongbo

    2015-12-04

    Twist1 is a basic helix-loop-helix-containing transcription factor that is expressed in the dental mesenchyme during the early stages of tooth development. To better delineate its roles in tooth development, we generated Twist1 conditional knockout embryos (Twist2(Cre) (/+);Twist1(fl/fl)) by breeding Twist1 floxed mice (Twist1(fl/fl)) with Twist2-Cre recombinase knockin mice (Twist2(Cre) (/+)). The Twist2(Cre) (/+);Twist1(fl/fl) embryos formed smaller tooth germs and abnormal cusps during early tooth morphogenesis. Molecular and histological analyses showed that the developing molars of the Twist2(Cre) (/+);Twist1(fl/fl) embryos had reduced cell proliferation and expression of fibroblast growth factors 3, 4, 9, and 10 and FGF receptors 1 and 2 in the dental epithelium and mesenchyme. In addition, 3-week-old renal capsular transplants of embryonic day 18.5 Twist2(Cre) (/+);Twist1(fl/fl) molars showed malformed crowns and cusps with defective crown dentin and enamel. Immunohistochemical analyses revealed that the implanted mutant molars had defects in odontoblast differentiation and delayed ameloblast differentiation. Furthermore, in vitro ChIP assays demonstrated that Twist1 was able to bind to a specific region of the Fgf10 promoter. In conclusion, our findings suggest that Twist1 plays crucial roles in regulating tooth development and that it may exert its functions through the FGF signaling pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Topological hypermultiplet on N=2 twisted superspace in four dimensions

    CERN Document Server

    Kato, J; Kato, Junji; Miyake, Akiko

    2005-01-01

    We propose a N=2 twisted superspace formalism with a central charge in four dimensions by introducing a Dirac-K\\"ahler twist. Using this formalism, we construct a twisted hypermultiplet action and find an explicit form of fermionic scalar, vector and tensor transformations. We construct a off-shell Donaldson-Witten theory coupled to the twisted hypermultiplet. We show that this action possesses N=4 twisted supersymmetry at on-shell level. It turns out that four-dimensional Dirac-K\\"ahler twist is equivalent to the Marcus's twist.

  10. Transmission properties of cryogenic twisted pair filters

    Energy Technology Data Exchange (ETDEWEB)

    Song, Woon; Rehman, Mushtaq; Chong, Yonuk [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Ryu, Sangwan [Chonnam National University, Gwangju (Korea, Republic of)

    2010-12-15

    We fabricated a cryogenic low pass filter that consists of twisted pairs of manganin wires wrapped in copper tape and measured its transmission characteristics at frequencies up to 18 GHz. The dependence of the microwave transmission characteristics on the filter length was studied, which showed that a filter of length 1.0 m had a 70-dB attenuation at 1 GHz. We also studied the dependence of common- and differential-mode transmission on the number of twists per unit length and found that the number of twists per unit length affects differential-mode transmission but not common-mode transmission. Because the shielded twisted pair filter is more compact than a conventional copper powder filter, it can solve the space and thermal load issues when many cables are required for precision electronic transport experiments at low temperatures.

  11. Mutations in the human TWIST gene.

    Science.gov (United States)

    Gripp, K W; Zackai, E H; Stolle, C A

    2000-01-01

    Saethre-Chotzen syndrome is a relatively common craniosynostosis disorder with autosomal dominant inheritance. Mutations in the TWIST gene have been identified in patients with Saethre-Chotzen syndrome. The TWIST gene product is a transcription factor with DNA binding and helix-loop-helix domains. Numerous missense and nonsense mutations cluster in the functional domains, without any apparent mutational hot spot. Two novel point mutations and one novel polymorphism are included in this review. Large deletions including the TWIST gene have been identified in some patients with learning disabilities or mental retardation, which are not typically part of the Saethre-Chotzen syndrome. Comprehensive studies in patients with the clinical diagnosis of Saethre-Chotzen syndrome have demonstrated a TWIST gene abnormality in about 80%, up to 37% of which may be large deletions [Johnson et al., 1998]. The gene deletions and numerous nonsense mutations are suggestive of haploinsufficiency as the disease-causing mechanism. No genotype phenotype correlation was apparent.

  12. Twisted Vector Bundles on Pointed Nodal Curves

    Indian Academy of Sciences (India)

    Ivan Kausz

    2005-05-01

    Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich’s and Vistoli’s twisted bundles and Gieseker vector bundles.

  13. Gerbes and twisted orbifold quantum cohomology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,we construct an orbifold quantum cohomology twisted by a flat gerbe. Then we compute these invariants in the case of a smooth manifold and a discrete torsion on a global quotient orbifold.

  14. Deformed and twisted black holes with NUTs

    CERN Document Server

    Krtous, Pavel; Frolov, Valeri P; Kolar, Ivan

    2015-01-01

    We construct a new class of vacuum black hole solutions whose geometry is deformed and twisted by the presence of NUT charges. The solutions are obtained by `unspinning' the general Kerr-NUT-(A)dS spacetimes, effectively switching off some of their rotation parameters. The resulting geometry has a structure of warped space with the Kerr-like Lorentzian part warped to a Euclidean metric of deformed and/or twisted sphere, with the deformation and twist characterized by the `Euclidean NUT' parameters. In the absence of NUTs, the solution reduces to a well known Kerr-(A)dS black hole with several rotations switched off. New geometries inherit the original symmetry of the Kerr-NUT-(A)dS family, namely, they possess the full Killing tower of hidden and explicit symmetries. As expected, for vanishing NUT, twist, and deformation parameters, the symmetry is further enlarged.

  15. Gerbes and twisted orbifold quantum cohomology

    Institute of Scientific and Technical Information of China (English)

    PAN JianZhong; RUAN YongBin; YIN XiaoQin

    2008-01-01

    In this paper, we construct an orbifold quantum cohomology twisted by a flat gerbe.Then we compute these invariants in the case of a smooth manifold and a discrete torsion on a global quotient orbifold.

  16. Deformed and twisted black holes with NUTs

    Science.gov (United States)

    Krtouš, Pavel; Kubizňák, David; Frolov, Valeri P.; Kolář, Ivan

    2016-06-01

    We construct a new class of vacuum black hole solutions whose geometry is deformed and twisted by the presence of NUT charges. The solutions are obtained by ‘unspinning’ the general Kerr-NUT-(A)dS spacetimes, effectively switching off some of their rotation parameters. The resulting geometry has a structure of warped space with the Kerr-like Lorentzian part warped to a Euclidean metric of a deformed and/or twisted sphere, with the deformation and twist characterized by the ‘Euclidean NUT’ parameters. In the absence of NUTs, the solution reduces to a well known Kerr-(A)dS black hole with several rotations switched off. New geometries inherit the original symmetry of the Kerr-NUT-(A)dS family, namely, they possess the full Killing tower of hidden and explicit symmetries. As expected, for vanishing NUT, twist, and deformation parameters, the symmetry is further enlarged.

  17. Genomic pathways modulated by Twist in breast cancer

    OpenAIRE

    Vesuna, Farhad; Bergman, Yehudit; Raman, Venu

    2017-01-01

    Background The basic helix-loop-helix transcription factor TWIST1 (Twist) is involved in embryonic cell lineage determination and mesodermal differentiation. There is evidence to indicate that Twist expression plays a role in breast tumor formation and metastasis, but the role of Twist in dysregulating pathways that drive the metastatic cascade is unclear. Moreover, many of the genes and pathways dysregulated by Twist in cell lines and mouse models have not been validated against data obtaine...

  18. DDalphaAMG for Twisted Mass Fermions

    CERN Document Server

    Bacchio, Simone; Finkenrath, Jacob; Frommer, Andreas; Kahl, Karsten; Rottmann, Matthias

    2016-01-01

    We present the Adaptive Aggregation-based Domain Decomposition Multigrid method extended to the twisted mass fermion discretization action. We show comparisons of results as a function of tuning the parameters that enter the twisted mass version of the DDalphaAMG library (https://github.com/sbacchio/DDalphaAMG). Moreover, we linked the DDalphaAMG library to the tmLQCD software package and give details on the performance of the multigrid solver during HMC simulations at the physical point.

  19. Twisted Covariant Noncommutative Self-dual Gravity

    CERN Document Server

    Estrada-Jimenez, S; Obregón, O; Ramírez, C

    2008-01-01

    A twisted covariant formulation of noncommutative self-dual gravity is presented. The recent formulation introduced by J. Wess and coworkers for constructing twisted Yang-Mills fields is used. It is shown that the noncommutative torsion is solved at any order of the $\\theta$-expansion in terms of the tetrad and the extra fields of the theory. In the process the first order expansion in $\\theta$ for the Pleba\\'nski action is explicitly obtained.

  20. OAM mode converter in twisted fibers

    DEFF Research Database (Denmark)

    Usuga Castaneda, Mario A.; Beltran-Mejia, Felipe; Cordeiro, Cristiano

    2014-01-01

    We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA.......We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA....

  1. On Supermultiplet Twisting and Spin-Statistics

    CERN Document Server

    Hubsch, Tristan

    2012-01-01

    Twisting of off-shell supermultiplets in models with 1+1-dimensional spacetime has been discovered in 1984, and was shown to be a generic feature of off-shell representations in worldline supersymmetry two decades later. It is shown herein that in all supersymmetric models with spacetime of four or more dimensions, this type of twisting, if nontrivial, necessarily maps regular (non-ghost) supermultiplets to ghost supermultiplets.

  2. On Supermultiplet Twisting and Spin-Statistics

    OpenAIRE

    Hubsch, Tristan

    2012-01-01

    Twisting of off-shell supermultiplets in models with 1+1-dimensional spacetime has been discovered in 1984, and was shown to be a generic feature of off-shell representations in worldline supersymmetry two decades later. It is shown herein that in all supersymmetric models with spacetime of four or more dimensions, this off-shell supermultiplet twisting, if non-trivial, necessarily maps regular (non-ghost) supermultiplets to ghost supermultiplets. This feature is shown to be ubiquitous in all...

  3. The gradient flow in a twisted box

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Alberto [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-08-15

    We study the perturbative behavior of the gradient flow in a twisted box. We apply this information to define a running coupling using the energy density of the flow field. We study the step-scaling function and the size of cutoff effects in SU(2) pure gauge theory. We conclude that the twisted gradient flow running coupling scheme is a valid strategy for step-scaling purposes due to the relatively mild cutoff effects and high precision.

  4. Twisted Boundary Conditions in Lattice Simulations

    CERN Document Server

    Sachrajda, Christopher T C

    2004-01-01

    By imposing twisted boundary conditions on quark fields it is possible to access components of momenta other than integer multiples of 2pi/L on a lattice with spatial volume L^3. We use Chiral Perturbation Theory to study finite-volume effects with twisted boundary conditions for quantities without final-state interactions, such as meson masses, decay constants and semileptonic form factors, and confirm that they remain exponentially small with the volume. We show that this is also the case for "partially twisted" boundary conditions, in which (some of) the valence quarks satisfy twisted boundary conditions but the sea quarks satisfy periodic boundary conditions. This observation implies that it is not necessary to generate new gluon configurations for every choice of the twist angle, making the method much more practicable. For K->pipi decays we show that the breaking of isospin symmetry by the twisted boundary conditions implies that the amplitudes cannot be determined in general (on this point we disagree ...

  5. A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi, E-mail: hiro.orad@tmd.ac.jp [Oral and Maxillofacial Radiology, Division of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 1138549 (Japan); Honda, Eiichi [Oral and Maxillofacial Radiology, Division of Oral Health Sciences, The University of Tokushima Graduate School (Japan); Tetsumura, Akemi; Kurabayashi, Tohru [Oral and Maxillofacial Radiology, Division of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 1138549 (Japan)

    2011-03-15

    Purpose: Multi-slice CT (MSCT) and cone-beam CT (CBCT) are widely used in dental practice. This study compared the spatial resolution of these CT systems to elucidate which CT modalities should be selected for various clinical cases. Materials and methods: As MSCT and CBCT apparatuses, Somatom Sensation 64 and 3D Accuitomo instruments, respectively, were used. As an objective evaluation of spatial resolution of these CT systems, modulation transfer function (MTF) analysis was performed employing an over-sampling method. The results of MTF analysis were confirmed with a line-pair test using CATPHAN. As a subjective evaluation, a microstructure visualization ability study was performed using a Jcl:SD rat and a head CT phantom. Results: MTF analysis showed that for the in-plane direction, the z-axis ultrahigh resolution mode (zUHR) of the Sensation 64 and 3D Accuitomo instruments had higher spatial resolutions than the conventional mode (64x) of the Sensation 64, but for the longitudinal direction, the 3D Accuitomo had clearly higher spatial resolution than either mode of the Sensation 64. A line-pair test study and microstructure visualization ability studies confirmed the results for MTF analysis. However, images of the rat and the CT phantom revealed that the 3D Accuitomo demonstrated the failure to visualize the soft tissues along with aliasing and beam-hardening artifacts, which were not observed in the Sensation 64. Conclusions: This study successfully applied spatial resolution analysis using MSCT and CBCT systems in a comparative manner. These findings could help in deciding which CT modality should be selected for various clinical cases.

  6. Generation of the Stigmatic Beam with Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    高春清; 魏光辉; Horst WEBER

    2001-01-01

    The stigmatic beam with orbital angular momentum is generated by transforming the Hermite-Gaussian beamof a diode-pumped Nd:YAG laser through a rotated cylindrical optical system. Behind the transformation optics,the output beam has an intensity distribution of ring shape and a twist phase. The beam transformation istheoretically calculated and the result has been confirmed in the experiments.

  7. Comparison of composite rotor blade models: A coupled-beam analysis and an MSC/NASTRAN finite-element model

    Science.gov (United States)

    Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.

    1987-01-01

    A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.

  8. 结合锥形束CT评价两种镍钛器械预备老年人磨牙弯曲根管的效果%Clinical evaluating of Twisted Files (TF) and ProTaper nickel-titanium rotary instruments in preparation of molar curved root canals in the elder combining with cone beam computed tomography

    Institute of Scientific and Technical Information of China (English)

    张秀琴; 王楠; 孟敏

    2014-01-01

    目的:比较镍钛器械Twisted Files(TF)和ProTaper 在老年人磨牙弯曲根管预备中的临床应用效果。方法:选择2011年8月至2013年8月在我科门诊就诊的有弯曲根管的牙髓炎或根尖周炎的老年患者磨牙90颗,随机分成三组,每组30颗, T 组和P 组分别采用机用镍钛器械Twisted Files(TF)和ProTaper 以冠向下技术预备根管, K 组采用手用不锈钢K 锉以逐步后退法预备根管,全部患牙均采用冷牙胶侧方加压技术充填。记录三组病例根管预备时间和器械折断数,根据治疗前、中、后的X 线片评价根管预备和充填情况,通过锥形束CT 记录预备前后距离根尖3mm 处根管偏移值。结果: T 组、P 组均能保持原根管的弯曲和走向,根管预备的锥度和流畅度好,根管充填质量高, T 组的偏移量比P 组和K 组的偏移量小,三组间差异有统计学意义(P<0.05)。T 组的操作时间比P 组和K 组短,三组间差异有统计学意义(P<0.05)。预备过程中T 组未发生器械折断, P 组3例发生器械折断。结论: TF 相对与Protaper 用于预备老年人磨牙弯曲根管,效率较高,成形效果佳,较安全,更适合于狭窄弯曲的老年根管。%Objective:To study and evaluate clinical application of Twisted File (TF) and ProTaper , two nickel-titanium instruments, during molar root canal preparation in elderly people.Methods:A total of 90 teeth with curved root canals , collected from August 2011 to August 2013 in Department of Stomatology, Affliliated Hospital of Jining Medical College, were prepared by TF(group t) ,ProTaper( groups p) with crown down technique in test groups and by stainless steel K files with Step-back technique in control group (group k).All root canals were filled with cold lateral condensation technique. The root canal preparation time and the numbers of broken equipment were recorded. The evaluation of preparation and root canal therapy

  9. Soft tissue twisting injuries of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Magee, T.; Shapiro, M. [Neuroimaging Inst., Melbourne, FL (United States)

    2001-08-01

    Twisting injuries occur as a result of differential motion of different tissue types in injuries with some rotational force. These injuries are well described in brain injuries but, to our knowledge, have not been described in the musculoskeletal literature. We correlated the clinical examination and MR findings of 20 patients with twisting injuries of the soft tissues around the knee. Design and patients: We prospectively followed the clinical courses of 20 patients with knee injuries who had clinical histories and MR findings to suggest twisting injuries of the subcutaneous tissues. Patients with associated internal derangement of the knee (i.e., meniscal tears, ligamentous or bone injuries) were excluded from this study. MR findings to suggest twisting injuries included linear areas of abnormal dark signal on T1-weighted sequences and abnormal bright signal on T2-weighted or short tau inversion recovery (STIR) sequences and/or signal to suggest hemorrhage within the subcutaneous tissues. These MR criteria were adapted from those established for indirect musculotendinous junction injuries. Results: All 20 patients presented with considerable pain that suggested internal derangement on physical examination by the referring orthopedic surgeons. All presented with injuries associated with rotational force. The patients were placed on a course of protected weight-bearing of the affected extremity for 4 weeks. All patients had pain relief by clinical examination after this period of protected weight-bearing. Twisting injuries of the soft tissues can result in considerable pain that can be confused with internal derangement of the knee on physical examination. Soft tissue twisting injuries need to be recognized on MR examinations as they may be the cause of the patient's pain despite no MR evidence of internal derangement of the knee. The demonstration of soft tissue twisting injuries in a patient with severe knee pain but no documented internal derangement on MR

  10. The structure and properties of filler metal-free laser beam welded joints in steel S700MC subjected to TMCP

    Science.gov (United States)

    Górka, Jacek; Stano, Sebastian

    2016-12-01

    The research-related tests aimed to determine the effect of filer-metal free laser beam welding on the structure and properties of 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP). The nondestructive tests revealed that the welded joints represented quality level B according to the requirements of standard 13919-1. The destructive tests revealed that the joints were characterised by tensile strength being by approximately 5% lower than that of the base material. The tests of thin foils performed using a high-resolution scanning transmission electron microscope revealed that filler metal-free welding led to the increased amount of alloying microagents (Ti and Nb) in the weld (particularly near fusion line) in comparison with welding performed using a filler metal. The significant content of hardening phases in the welds during cooling resulted in considerable precipitation hardening through finedispersive (Ti,Nb)(C,N) type precipitates (several nm in size) leading to the deterioration of plastic properties. The destructive tests revealed that the joints were characterised by tensile strength being by approximately 5% lower than that of the base material. The increase in the concentration of microagents responsible for steel hardening (Ti and Nb) also contributed to the decrease in weld toughness being below the allowed value of 25 J/cm2.

  11. Electrostatic twisted modes in multi-component dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ikram, M. [Department of Physics, Hazara University, Mansehra 21300 (Pakistan)

    2016-01-15

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular mode numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.

  12. Accurate measurement of the helical twisting power of chiral dopants

    Science.gov (United States)

    Kosa, Tamas; Bodnar, Volodymyr; Taheri, Bahman; Palffy-Muhoray, Peter

    2002-03-01

    We propose a method for the accurate determination of the helical twisting power (HTP) of chiral dopants. In the usual Cano-wedge method, the wedge angle is determined from the far-field separation of laser beams reflected from the windows of the test cell. Here we propose to use an optical fiber based spectrometer to accurately measure the cell thickness. Knowing the cell thickness at the positions of the disclination lines allows determination of the HTP. We show that this extension of the Cano-wedge method greatly increases the accuracy with which the HTP is determined. We show the usefulness of this method by determining the HTP of ZLI811 in a variety of hosts with negative dielectric anisotropy.

  13. Localized topological states in Bragg multihelicoidal fibers with twist defects

    Science.gov (United States)

    Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.

    2016-06-01

    We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.

  14. Noncommutative geometry in string and twisted Hopf algebra of diffeomorphism

    Science.gov (United States)

    Watamura, Satoshi

    2011-09-01

    We discuss the Hopf algebra structure in string theory and present the twist quantization as a unified formulation of the world sheet quantization of the string and the symmetry of the target spacetime. Applying it to the case with a nonzero B-field background, we explain a method to decompose the twist into two successive twists. There are two different possibilities of decomposition: The first is a natural decomposition from the viewpoint of the twist quantization, leading to a new type of twisted Poincaré symmetry. The second decomposition reveals the relation of our formulation to the twisted Poincaré symmetry on the Moyal type noncommutative space.

  15. Twisted electron-acoustic waves in plasmas

    Science.gov (United States)

    Aman-ur-Rehman, Ali, S.; Khan, S. A.; Shahzad, K.

    2016-08-01

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number qeff accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  16. Experimental Investigation of Heat Transfer Using “Twisted Aluminium Tape”

    Directory of Open Access Journals (Sweden)

    Mr.B.Meganathan M.E,

    2015-03-01

    Full Text Available Heat exchanger has a wide industrial and engineering applications. Increasing the efficiency of heat exchanger will increase the overall performance of the unit. This paper is about increasing the heat transfer coefficient of heat exchanger by causing a turbulence in the liquid flow through the pipe. For causing the turbulence, liquid flow is subjected to a Twisted Aluminium Tape (TAT which will increase the Reynolds number of flow. This will ensure heat transfer through the length of flow and thus there will be an increased heat transfer rate. The increased turbulence and higher shear caused by Twisted Aluminium Tape (TAT will offer resistance to fouling also.

  17. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Seval Pinarbasi

    2012-01-01

    Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.

  18. Exotic twisted equivariant cohomology of loop spaces,twisted Bismut-Chern character and T-duality

    CERN Document Server

    Han, Fei

    2014-01-01

    We define completed periodic {\\em exotic twisted $\\mathbb{T}$-equivariant cohomology} for loop spaces of smooth manifolds. We then show that the twisted Bismut-Chern character, defined on the twisted K-theory of the smooth manifold, twisted by a gerbe with connection, takes values in the completed periodic exotic twisted $\\mathbb{T}$-equivariant cohomology of the loop space of the smooth manifold. We establish a localisation theorem for the completed periodic exotic twisted $\\mathbb{T}$-equivariant cohomology for loop spaces and apply it to establish T-duality in a background flux in type II String Theory from a loop space perspective.

  19. Unraveling cellulose microfibrils: a twisted tale.

    Science.gov (United States)

    Hadden, Jodi A; French, Alfred D; Woods, Robert J

    2013-10-01

    Molecular dynamics (MD) simulations of cellulose microfibrils are pertinent to the paper, textile, and biofuels industries for their unique capacity to characterize dynamic behavior and atomic-level interactions with solvent molecules and cellulase enzymes. While high-resolution crystallographic data have established a solid basis for computational analysis of cellulose, previous work has demonstrated a tendency for modeled microfibrils to diverge from the linear experimental structure and adopt a twisted conformation. Here, we investigate the dependence of this twisting behavior on computational approximations and establish the theoretical basis for its occurrence. We examine the role of solvent, the effect of nonbonded force field parameters [partial charges and van der Waals (vdW) contributions], and the use of explicitly modeled oxygen lone pairs in both the solute and solvent. Findings suggest that microfibril twisting is favored by vdW interactions, and counteracted by both intrachain hydrogen bonds and solvent effects at the microfibril surface.

  20. Analysis of gun barrel rifling twist

    Science.gov (United States)

    Sun, Jia; Chen, Guangsong; Qian, Linfang; Liu, Taisu

    2017-05-01

    Aiming at the problem of gun barrel rifling twist, the constraint relation between rifling and projectile is investigated. The constraint model of rifling and projectile is established and the geometric relation between the twist and the motion of projectile is analyzed. Based on the constraint model, according to the rotating band that is fired, the stress and the motion law of the rotating band in bore are analyzed. The effects to rotating band (double rotating band or wide driving band) caused by different rifling (rib rifling, increasing rifling and combined rifling) are also investigated. The model is demonstrated by several examples. The results of numerical examples and the constraint mode show that the uncertainty factors will be brought in the increasing rifling and combined rifling during the projectile move in the bore. According to the amplitude and the strength of the twist acting on rotating band, the steady property of rotational motion of the projectile, the rib rifling is a better choose.

  1. Blind analysis results of the TWIST experiment

    CERN Document Server

    Hillairet, A; Bueno, J F; Davydov, Y I; Depommier, P; Faszer, W; Fujiwara, M C; Gagliardi, C A; Gaponenko, A; Grossheim, A; Gill, D R; Gumplinger, P; Hasinoff, M D; Henderson, R S; Hu, J; Koetke, D D; MacDonald, R P; Marshall, G M; Mathie, E W; Mischke, R E; Olchanski, K; Olin, A; Openshaw, R; Poutissou, J -M; Poutissou, R; Selivanov, V; Sheffer, G; Shin, B; Stanislaus, T D S; Tacik, R; Tribble, R E

    2010-01-01

    The TRIUMF Weak Interaction Symmetry Test (TWIST) experiment was designed to test the standard model at high precision in the purely leptonic decay of polarized muons. A general four-fermion interaction model is used to describe the muon decay. TWIST measures three of the four muon decay parameters of this model, $\\rho$, $\\delta$ and $P_{\\mu}^{\\pi} \\xi$, from the shape of the momentum-angle spectrum. The results of this model independent approach are compared to the standard model predictions and used to constrain new physics. Our collaboration has finalized the blind analysis of the final experimental data taken in 2006 and 2007. This analysis mostly reached our goal of a precision of an order of magnitude improvement over the pre-TWIST measurements.

  2. Dynamical Twisted Mass Fermions with Light Quarks

    CERN Document Server

    Boucaud, P; Farchioni, F; Frezzotti, R; Giménez, V; Herdoiza, G; Jansen, K; Lubicz, V; Martinelli, G; McNeile, C; Michael, C; Montvay, I; Palao, D; Papinutto, Mauro; Pickavance, J; Rossi, G C; Scorzato, L; Shindler, A; Simula, S; Urbach, C; Wenger, U; Boucaud, Ph.

    2007-01-01

    We present results of dynamical simulations with 2 flavours of degenerate Wilson twisted mass quarks at maximal twist in the range of pseudo scalar masses from 300 to 550 MeV. The simulations are performed at one value of the lattice spacing a \\lesssim 0.1 fm. In order to have O(a) improvement and aiming at small residual cutoff effects, the theory is tuned to maximal twist by requiring the vanishing of the untwisted quark mass. Precise results for the pseudo scalar decay constant and the pseudo scalar mass are confronted with chiral perturbation theory predictions and the low energy constants F, \\bar{l}_3 and \\bar{l}_4 are evaluated with small statistical errors.

  3. Matrix theory compactifications on twisted tori

    CERN Document Server

    Chatzistavrakidis, Athanasios

    2012-01-01

    We study compactifications of Matrix theory on twisted tori and non-commutative versions of them. As a first step, we review the construction of multidimensional twisted tori realized as nilmanifolds based on certain nilpotent Lie algebras. Subsequently, matrix compactifications on tori are revisited and the previously known results are supplemented with a background of a non-commutative torus with non-constant non-commutativity and an underlying non-associative structure on its phase space. Next we turn our attention to 3- and 6-dimensional twisted tori and we describe consistent backgrounds of Matrix theory on them by stating and solving the conditions which describe the corresponding compactification. Both commutative and non-commutative solutions are found in all cases. Finally, we comment on the correspondence among the obtained solutions and flux compactifications of 11-dimensional supergravity, as well as on relations among themselves, such as Seiberg-Witten maps and T-duality.

  4. On reweighting for twisted boundary conditions

    CERN Document Server

    Bussone, Andrea; Hansen, Martin; Pica, Claudio

    2016-01-01

    We consider the possibility of using reweighting techniques in order to correct for the breaking of unitarity when twisted boundary conditions are imposed on valence fermions in simulations of lattice gauge theories. We start by studying the properties of reweighting factors and their variances at tree-level. That leads us to the introduction of a factorization for the fermionic reweighting determinant. In the numerical, stochastic, implementation of the method, we find that the effect of reweighting is negligible in the case of large volumes but it is sizeable when the volumes are small and the twisting angles are large. More importantly, we find that for un-improved Wilson fermions, and in small volumes, the dependence of the critical quark mass on the twisting angle is quite pronounced and results in large violations of the continuum dispersion relation.

  5. Analysis and design of bend-twist coupled wind turbine blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander R.

    2016-01-01

    Bend-twist coupling allows wind turbine blades to self-alleviate sudden inflow changes, as in gusty or turbulent conditions, resulting in reduced ultimate and fatigue loads. If the coupling is introduced by changing the fibre direction of the anisotropic blade material, the assumptions of classical...... beam theory are not necessarily valid. This chapter reviews the effects of anisotropic material on the structural response of beams and identifies those relevant for wind turbine blade analysis. A framework suitable for the structural analysis of wind turbine blades is proposed and guidance...

  6. Local index formula and twisted spectral triples

    CERN Document Server

    Moscovici, Henri

    2009-01-01

    We prove a local index formula for a class of twisted spectral triples of type III modeled on the transverse geometry of conformal foliations with locally constant transverse conformal factor. Compared with the earlier proof of the untwisted case, the novel aspect resides in the fact that the twisted analogues of the JLO entire cocycle and of its retraction are no longer cocycles in their respective Connes bicomplexes. We show however that the passage to the infinite temperature limit, respectively the integration along the full temperature range against the Haar measure of the positive half-line, has the remarkable effect of curing in both cases the deviations from the cocycle identity.

  7. On Supermultiplet Twisting and Spin-Statistics

    Science.gov (United States)

    Hübsch, T.

    2013-10-01

    Twisting of off-shell supermultiplets in models with (1+1)-dimensional spacetime has been discovered in 1984, and was shown to be a generic feature of off-shell representations in worldline supersymmetry two decades later. It is shown herein that in all supersymmetric models with spacetime of four or more dimensions, this off-shell supermultiplet twisting, if nontrivial, necessarily maps regular (non-ghost) supermultiplets to ghost supermultiplets. This feature is shown to be ubiquitous in all fully off-shell supersymmetric models with (BV/BRST-treated) constraints.

  8. Effects Of Twist On Ceramic Threads

    Science.gov (United States)

    Sawko, Paul M.; Tran, Huy Kim

    1989-01-01

    Report describes study of effects of yarn twist and other manufacturing parameters on strength of ceramic sewing threads. Three types of thread considered; silica, aluminoborosilicate (ABS) with 14 percent boria, and ABS with 2 percent boria. For silica thread, best twist found 300 turns per meter. Produced highest break strength at temperatures up to about 540 degree C. Overall strengths of both ABS threads higher than silica thread. Threads used to stitch insulating blankets for reusable spacraft; must resist high temperatures and high aerodynamic loads of reentry into atmosphere of Earth.

  9. Spectral flows and twisted topological theories

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1995-01-01

    We analyze the action of the spectral flows on N=2 twisted topological theories. We show that they provide a useful mapping between the two twisted topological theories associated to a given N=2 superconformal theory. This mapping can also be viewed as a topological algebra automorphism. In particular null vectors are mapped into null vectors, considerably simplifying their computation. We give the level 2 results. Finally we discuss the spectral flow mapping in the case of the DDK and KM realizations of the topological algebra.

  10. Longitudinal patterning of twisted light

    CERN Document Server

    Dorrah, Ahmed H; Mojahedi, Mo

    2016-01-01

    Light beams with azimuthal phase dependence [$exp(i \\ell\\phi)$] carry orbital angular momentum (OAM) which differs fundamentally from spin angular momentum (SAM) associated with polarization. Striking difference between the two momenta is manifested in the allowable values: where SAM is limited to $\\hbar k_0$ per photon, the OAM has unbounded value of $\\ell\\hbar$ per photon ($\\ell$ is integer), thus dramatically exceeding the value of SAM \\cite{Ref1,Ref2, Ref3}. OAM has thus been utilized in optical trapping \\cite{Ref4}, imaging\\cite{Ref2}, and material processing \\cite{Ref5}. Furthermore, the unbounded degrees-of-freedom in OAM states have been deployed in data communications \\cite{Ref6}. Here, we report an \\textit{exceptional} behavior for a class of light beams---known as Frozen Waves (FWs)---whose intensity and azimuthal phase profiles can be controlled along the propagation direction, at will. Accordingly, we generate rotating light patterns that can change their sense of rotation and order of phase twis...

  11. A non-commuting twist in the partition function

    CERN Document Server

    Govindarajan, Suresh

    2012-01-01

    We compute a twisted index for an orbifold theory when the twist generating group does not commute with the orbifold group. The twisted index requires the theory to be defined on moduli spaces that are compatible with the twist. This is carried out for CHL models at special points in the moduli space where they admit dihedral symmetries. The commutator subgroup of the dihedral groups are cyclic groups that are used to construct the CHL orbifolds. The residual reflection symmetry is chosen to act as a `twist' on the partition function. The reflection symmetries do not commute with the orbifolding group and hence we refer to this as a non-commuting twist. We count the degeneracy of half-BPS states using the twisted partition function and find that the contribution comes mainly from the untwisted sector. We show that the generating function for these twisted BPS states are related to the Mathieu group M_{24}.

  12. On Twisting Real Spectral Triples by Algebra Automorphisms

    Science.gov (United States)

    Landi, Giovanni; Martinetti, Pierre

    2016-11-01

    We systematically investigate ways to twist a real spectral triple via an algebra automorphism and in particular, we naturally define a twisted partner for any real graded spectral triple. Among other things, we investigate consequences of the twisting on the fluctuations of the metric and possible applications to the spectral approach to the Standard Model of particle physics.

  13. On Twisting Real Spectral Triples by Algebra Automorphisms

    Science.gov (United States)

    Landi, Giovanni; Martinetti, Pierre

    2016-08-01

    We systematically investigate ways to twist a real spectral triple via an algebra automorphism and in particular, we naturally define a twisted partner for any real graded spectral triple. Among other things, we investigate consequences of the twisting on the fluctuations of the metric and possible applications to the spectral approach to the Standard Model of particle physics.

  14. Twisting singular solutions of Bethe's equations

    CERN Document Server

    Nepomechie, Rafael I

    2014-01-01

    The Bethe equations for the periodic XXX and XXZ spin chains admit singular solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to be physical, in which case they correspond to genuine eigenvalues and eigenvectors of the Hamiltonian.

  15. Disconnected Loops with Twisted Mass Lattice QCD

    CERN Document Server

    Wilcox, W; Morgan, R; Lewis, R; Wilcox, Walter; Darnell, Dean; Morgan, Ron; Lewis, Randy

    2005-01-01

    We give a general introduction and discussion of the issues involved in using the twisted mass formulation of lattice fermions in the context of disconnected loop calculations, including a short orientation on the present experimental situation for nucleon strange quark form factors. A prototype calculation of the disconnected part of the nucleon scalar form factor is described.

  16. Phase diagram of twisted mass lattice QCD

    Science.gov (United States)

    Sharpe, Stephen R.; Wu, Jackson M.

    2004-11-01

    We use the effective chiral Lagrangian to analyze the phase diagram of two-flavor twisted mass lattice QCD as a function of the normal and twisted masses, generalizing previous work for the untwisted theory. We first determine the chiral Lagrangian including discretization effects up to next-to-leading order (NLO) in a combined expansion in which m2π/(4πfπ)2˜aΛ (a being the lattice spacing, and Λ=ΛQCD). We then focus on the region where m2π/(4πfπ)2˜(aΛ)2, in which case competition between leading and NLO terms can lead to phase transitions. As for untwisted Wilson fermions, we find two possible phase diagrams, depending on the sign of a coefficient in the chiral Lagrangian. For one sign, there is an Aoki phase for pure Wilson fermions, with flavor and parity broken, but this is washed out into a crossover if the twisted mass is nonvanishing. For the other sign, there is a first order transition for pure Wilson fermions, and we find that this transition extends into the twisted mass plane, ending with two symmetrical second order points at which the mass of the neutral pion vanishes. We provide graphs of the condensate and pion masses for both scenarios, and note a simple mathematical relation between them. These results may be of importance to numerical simulations.

  17. Gluon polarization and higher twist effects

    CERN Document Server

    Leader, Elliot; Stamenov, Dimiter

    2008-01-01

    We examine the influence of the recent CLAS and COMPASS experiments on our understanding of higher twist (HT) effects and the gluon polarization, and show how EIC could discriminate between negative and positive gluon polarizations. We comment on the issue of HT and the recent DSSV analysis.

  18. HOMOCLINIC TWIST BIFURCATIONS WITH Z(2) SYMMETRY

    NARCIS (Netherlands)

    ARONSON, DG; VANGILS, SA; KRUPA, M

    1994-01-01

    We analyze bifurcations occurring in the vicinity of a homoclinic twist point for a generic two-parameter family of Z2 equivariant ODEs in four dimensions. The results are compared with numerical results for a system of two coupled Josephson junctions with pure capacitive load.

  19. Redefining B twisted topological sigma models

    NARCIS (Netherlands)

    Jonghe, F. de; Termonia, P.; Troost, W.; Vandoren, S.

    2007-01-01

    The recently proposed procedure to perform the topological B-twist in rigid N = 2 models is applied to the case of the o model on a Kähler manifold. This leads to an alternative description of Witten’s topological o model, which allows for a proper BRST interpretation and ghost number assignement. W

  20. Generalized Weyl modules for twisted current algebras

    Science.gov (United States)

    Makedonskyi, I. A.; Feigin, E. B.

    2017-08-01

    We introduce the notion of generalized Weyl modules for twisted current algebras. We study their representation-theoretic and combinatorial properties and also their connection with nonsymmetric Macdonald polynomials. As an application, we compute the dimension of the classical Weyl modules in the remaining unknown case.

  1. Analysis of Cohesion inOliver Twist

    Institute of Scientific and Technical Information of China (English)

    程文文

    2016-01-01

    Cohesion is an important concept in the study of stylistics. This thesis aims to study the applications of cohesion in the Charles Dicken’ world-famous novelOliver Twist, including both the grammatical and lexical cohesive devices in the work.

  2. Energy Release in Driven Twisted Coronal Loops

    Science.gov (United States)

    Bareford, M. R.; Gordovskyy, M.; Browning, P. K.; Hood, A. W.

    2016-01-01

    We investigate magnetic reconnection in twisted magnetic fluxtubes, representing coronal loops. The main goal is to establish the influence of the field geometry and various thermodynamic effects on the stability of twisted fluxtubes and on the size and distribution of heated regions. In particular, we aim to investigate to what extent the earlier idealised models, based on the initially cylindrically symmetric fluxtubes, are different from more realistic models, including the large-scale curvature, atmospheric stratification, thermal conduction and other effects. In addition, we compare the roles of Ohmic heating and shock heating in energy conversion during magnetic reconnection in twisted loops. The models with straight fluxtubes show similar distribution of heated plasma during the reconnection: it initially forms a helical shape, which subsequently becomes very fragmented. The heating in these models is rather uniformly distributed along fluxtubes. At the same time, the hot plasma regions in curved loops are asymmetric and concentrated close to the loop tops. Large-scale curvature has a destabilising influence: less twist is needed for instability. Footpoint convergence normally delays the instability slightly, although in some cases, converging fluxtubes can be less stable. Finally, introducing a stratified atmosphere gives rise to decaying wave propagation, which has a destabilising effect.

  3. Modified super twisting controller for servicing to uncontrolled spacecraft

    Institute of Scientific and Technical Information of China (English)

    Binglong Chen; Yunhai Geng

    2015-01-01

    A relative position and attitude coupled sliding mode control er is proposed by combining the standard super twisting (ST) control and basic linear algorithm for autonomous rendezvous and docking. It is schemed for on-orbit servicing to a tumbling non-cooperative target spacecraft subjected to external disturbances. A coupled dynamic model is established including both kinemati-cal and dynamic coupled effect of relative rotation on relative translation, which il ustrates the relative movement between the docking port located in target spacecraft and another in service spacecraft. The modified super twisting (MST) control algorithm containing linear compensation items is schemed to manipulate the relative position and attitude synchronously. The correction provides more robustness and convergence velocity for dealing with linearly growing perturbations than the ST control algorithm. Moreover, the stability characteristic of closed-loop system is ana-lyzed by Lyapunov method. Numerical simulations are adopted to verify the analysis with the comparison between MST and ST control algorithms. Simulation results demonstrate that the pro-posed MST control er is characterized by high precision, strong robustness and fast convergence velocity to attenuate the linearly increasing perturbations.

  4. Higher Twist Distribution Amplitudes of the Nucleon in QCD

    CERN Document Server

    Braun, V M; Mahnke, N; Stein, E

    2000-01-01

    We present the first systematic study of higher-twist light-cone distribution amplitudes of the nucleon in QCD. We find that the valence three-quark state is described at small transverse separations by eight independent distribution amplitudes. One of them is leading twist-3, three distributions are twist-4 and twist-5, respectively, and one is twist-6. A complete set of distribution amplitudes is constructed, which satisfies equations of motion and constraints that follow from conformal expansion. Nonperturbative input parameters are estimated from QCD sum rules.

  5. The Clinical Use of Left Ventricular Twist Degree in Chronic Heart Failure Subjects by Three-dimensional Ultrasound Speckle Tracking Imaging%三维斑点追踪技术在慢性心力衰竭患者左室扭转运动中的应用研究

    Institute of Scientific and Technical Information of China (English)

    张艳丽; 王小丛; 赵丽荣; 装莉平; 于微

    2012-01-01

    Objective This study was performed to assess left ventricle twist degree in patients with chronic heart failure by three-dimensional ultrasound speckle tracking imaging. Methods The apical 4-chamber and 2-chamber views were acquired in thirty-two patients with chronic heart failure and thirty-three healthy volunteers .using 3D-trace software to measure values of left ventricle end-diastolic volumes (LVEDV) , end-systolic volumes(LVESV) ,left ventricular ejection fraction (LVEF),basal segment twist degree(BTW),middle segment twist degree(MTW) .apical segment twist degree( ATW) ,left ventricular global twist degree(LVTW). Values were compared in two groups, the correlations between LVEF and LVTW,BTW,MTW, ATW were analyzed respectively. Results LVEF,LVTW,MTW, ATW in CHF patients were lower than the control group .the correlations between BTW,MTW, ATW,LVTW and LVEF were found (0. 557,0. 926,0. 932,0. 945. P<0. 01 for all). Conclusions The left ventricular function was impaired in patients with CHF. The left ventricular twist can be studied by three-dimensional ultrasound speckle tracking imaging, which would be a new tool for the evaluation of left ventricular systolic function.%目的 应用三维斑点追踪显像技术研究慢性心力衰竭患者(CHF)左室扭转的运动特征,探讨其临床价值.方法 CHF组患者30例,年龄匹配的健康志愿者(对照组)33例,采集标准的四腔心及两腔心切面,进行全容积图像存储,应用3D-trace软件进行脱机分析,软件自动分析计算左心室舒张末期容积(LVEDV),左室收缩末期容积(LVESV),左室射血分数(LVEF),左室基底段收缩期扭转角度峰值(BTW),中间段收缩期扭转角度峰值(MTW),心尖段收缩期扭转角度峰值(ATW),左室整体收缩期扭转角度峰值(LVTW).结果 CHF组LVEF,LVTW,MTW,ATW均较正常组减低,BTW、MTW、ATW、LVTW与LVEF之间有明显的相关性,相关系数分别为0.557,0.926,0.932,0.945.结论 CHF患者左心收缩功能明显降

  6. Kinetic theory of twisted waves: Application to space plasmas having superthermal population of species

    Science.gov (United States)

    Arshad, Kashif; Poedts, Stefaan; Lazar, Marian

    2017-04-01

    Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The

  7. Non-destructive splitter of twisted light

    CERN Document Server

    Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2015-01-01

    Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spectra will split. When mode and impedance matches between the cavity and one OAM-carried beam are achieved, this beam will transmit through the cavity, and other beam will be reflected without being destroyed their spatial shapes. In this case, the cavity acts like a polarized beam splitter. The transmitting beam can be selected at your will. The splitting efficiency can reach unity if the cavity is lossless and it completely matches with the beam. Beams carry multi-OAMs can also be effectively split by cascading ring cavi...

  8. Effective cross-section distribution of anisotropic piezocomposite actuators for wing twist

    Science.gov (United States)

    Cesnik, Carlos E. S.; Park, Ryan S.; Palacios, Rafael

    2003-08-01

    The twist actuation of piezocomposite actuators embedded in a composite wing is numerically investigated. Parametric analysis of the actuation authority is conducted for wing cross sections with double and triple cells, considering different distributions of anisotropic piezocomposite actuators. The variational asymptotic beam cross-sectional (VABS) analysis is used to compute the airfoil stiffness, actuation force and mass properties. As a result, the regions with the highest specific actuation are determined and a cost-effective way of adding active material to the cross section is proposed. Results indicate that 50% of the maximum mass penalty associated with the addition of active plies is responsible for generating approximately 80% of the maximum available induced twist.

  9. Spin-Orbit Twisted Spin Waves: Group Velocity Control

    Science.gov (United States)

    Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.

    2016-09-01

    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.

  10. General relativistic neutron stars with twisted magnetosphere

    CERN Document Server

    Pili, A G; Del Zanna, L

    2014-01-01

    Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided to investigate the effects of different current distributions on the overall magnetic field structure.

  11. Twisted black hole is Taub-NUT

    Science.gov (United States)

    Ong, Yen Chin

    2017-01-01

    Recently a purportedly novel solution of the vacuum Einstein field equations was discovered: it supposedly describes an asymptotically flat twisted black hole in 4-dimensions whose exterior spacetime rotates in a peculiar manner—the frame dragging in the northern hemisphere is opposite from that of the southern hemisphere, which results in a globally vanishing angular momentum. Furthermore it was shown that the spacetime has no curvature singularity. We show that the geometry of this black hole spacetime is nevertheless not free of pathological features. In particular, it harbors a rather drastic conical singularity along the axis of rotation. In addition, there exist closed timelike curves due to the fact that the constant r and constant t surfaces are not globally Riemannian. In fact, none of these are that surprising since the solution is just the Taub-NUT geometry. As such, despite the original claim that the twisted black hole might have observational consequences, it cannot be.

  12. Twisted mass QCD at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ilgenfritz, E.M.; Mueller-Preussker, M.; Petschlies, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lombardo, M.P. [Istituto Nazionale di Fisica Nucleare, LNF, Frascati (Italy); Philipsen, O.; Zeidlewicz, L. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Sternbeck, A. [Adelaide Univ. (Australia). CSSM School of Chemistry and Physics

    2007-10-15

    We discuss the use of Wilson fermions with twisted mass for simulations of QCD thermodynamics. As a prerequisite for a future analysis of the finite-temperature transition making use of automatic {partial_derivative} (a) improvement, we investigate the phase structure in the space spanned by the hopping parameter {kappa}, the coupling {beta}, and the twisted mass parameter {mu}. We present results for N{sub f}=2 degenerate quarks on a 16{sup 3} x 8 lattice, for which we investigate the possibility of an Aoki phase existing at strong coupling and vanishing {mu}, as well as of a thermal phase transition at moderate gauge couplings and non-vanishing {mu}. (orig.)

  13. Magnetic Field Twisting by Intergranular Downdrafts

    Science.gov (United States)

    Taroyan, Youra; Williams, Thomas

    2016-10-01

    The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.

  14. Factorising the 3D Topologically Twisted Index

    CERN Document Server

    Cabo-Bizet, Alejandro

    2016-01-01

    In this work, path integral representations of the 3D topologically twisted index were studied. First, the index can be "factorised" into a couple of "blocks". The "blocks" being the partition functions of a type A semi-topological twisting of 3D N = 2 SYM placed on $\\mathbb{S}_2\\times (0, \\pi)$ and $\\mathbb{S}_2 \\times (\\pi, 2 \\pi)$ respectively. Second, as the path integral of the aforementioned theory over $\\mathbb{S}_2$ times $\\mathbb{S}_1$ with a point excluded. In this way we recover the sum over fluxes from integration over the real path and without sacrificing positive definiteness of the bosonic part of the localising action. We also reproduce the integration over the complex contour by using the localising term with positive definite bosonic part.

  15. Tinkertoys for the Twisted D-Series

    CERN Document Server

    Chacaltana, Oscar; Trimm, Anderson

    2013-01-01

    We study 4D N=2 superconformal field theories that arise from the compactification of 6D N=(2,0) theories of type D_N on a Riemann surface, in the presence of punctures twisted by a Z_2 outer automorphism. Unlike the untwisted case, the family of SCFTs is in general parametrized, not by M_{g,n}, but by a branched cover thereof. The classification of these SCFTs is carried out explicitly in the case of the D_4 theory, in terms of three-punctured spheres and cylinders, and we provide tables of properties of twisted punctures for the D_5 and D_6 theories. We find realizations of Spin(8) and Spin(7) gauge theories with matter in all combinations of vector and spinor representations with vanishing beta-function, as well as Sp(3) gauge theories with matter in the 3-index traceless antisymmetric representation.

  16. Valve-aided twisted Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Rajkumar, M.; Saha, U.K.

    2006-05-15

    Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].

  17. Overlap fermions on a twisted mass sea

    CERN Document Server

    Bär, O; Schäefer, S; Scorzato, L; Shindler, A

    2006-01-01

    We present first results of a mixed action project. We analyze gauge configurations generated with two flavors of dynamical twisted mass fermions. Neuberger's overlap Dirac operator is used for the valence sector. The various choices in the setup of the simulation are discussed. We employ chiral perturbation theory to describe the effects of using different actions in the sea and valence sector at non-zero lattice spacing.

  18. Disconnected diagrams with twisted-mass fermions

    CERN Document Server

    Abdel-Rehim, Abdou; Constantinou, Martha; Finkenrath, Jacob; Hadjiyiannakou, Kyriakos; Jansen, Karl; Kallidonis, Christos; Koutsou, Giannis; Avilés-Casco, Alejandro Vaquero

    2016-01-01

    The latest results from the Twisted-Mass collaboration on disconnected diagrams at the physical value of the pion mass are presented. In particular, we focus on the sigma terms, the axial charges and the momentum fraction, all of them for the nucleon. A detailed error analysis for each observable follows, showing the strengths and weaknesses of the one-end trick. Alternatives are discussed.

  19. DNA Packaging in Bacteriophage: Is Twist Important?

    OpenAIRE

    Spakowitz, Andrew James; Wang, Zhen-Gang

    2005-01-01

    We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with...

  20. On rectangular HOMFLY for twist knots

    CERN Document Server

    Kononov, Ya

    2016-01-01

    As a new step in the study of rectangularly-colored knot polynomials, we reformulate the prescription of arXiv:1606.06015 for twist knots in the double-column representations $R=[rr]$ in terms of skew Schur polynomials. These, however, are mysteriously shifted from the standard topological locus, what makes further generalization to arbitrary $R=[r^s]$ not quite straightforward.

  1. Ferromagnetic nanoparticles suspensions in twisted nematic

    Science.gov (United States)

    Cîrtoaje, Cristina; Petrescu, Emil; Stan, Cristina; Creangă, Dorina

    2016-05-01

    Ferromagnetic nanoparticles insertions in nematic liquid crystals (NLC) in twisted configuration are studied and a theoretical model is proposed to explain the results. Experimental observation revealed that nanoparticles tend to overcrowd in long strings parallel to the rubbing direction of the alignment substrate of the LC cell. Their behavior under external field was studied and their interaction with their nematic host is described using elastic continuum theory.

  2. Twisted Radiation by Electrons in Spiral Motion

    CERN Document Server

    Katoh, M; Mirian, N S; Konomi, T; Taira, Y; Kaneyasu, T; Hosaka, M; Yamamoto, N; Mochihashi, A; Takashima, Y; Kuroda, K; Miyamoto, A; Miyamoto, K; Sasaki, S

    2016-01-01

    We theoretically show that a single free electron in circular/spiral motion radiates an electromagnetic wave possessing helical phase structure and carrying orbital angular momentum. We experimentally demonstrate it by double-slit diffraction on radiation from relativistic electrons in spiral motion. We show that twisted photons should be created naturally by cyclotron/synchrotron radiations or Compton scatterings in various situations in astrophysics. We propose promising laboratory vortex photon sources in various wavelengths ranging from radio wave to gamma-rays.

  3. Twisted spectral geometry for the standard model

    CERN Document Server

    Martinetti, Pierre

    2015-01-01

    The Higgs field is a connection one-form as the other bosonic fields, provided one describes space no more as a manifold M but as a slightly non-commutative generalization of it. This is well encoded within the theory of spectral triples: all the bosonic fields of the standard model - including the Higgs - are obtained on the same footing, as fluctuations of a generalized Dirac operator by a matrix-value algebra of functions on M. In the commutative case, fluctuations of the usual free Dirac operator by the complex-value algebra A of smooth functions on M vanish, and so do not generate any bosonic field. We show that imposing a twist in the sense of Connes-Moscovici forces to double the algebra A, but does not require to modify the space of spinors on which it acts. This opens the way to twisted fluctuations of the free Dirac operator, that yield a perturbation of the spin connection. Applied to the standard model, a similar twist yields in addition the extra scalar field needed to stabilize the electroweak v...

  4. Design, Manufacture and Testing of A Bend-Twist D-Spar

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Cheng-Huat; Tsai, Stephen W.

    1999-06-01

    Studies have indicated that an adaptive wind turbine blade design can significantly enhance the performance of the wind turbine blade on energy capture and load mitigation. In order to realize the potential benefits of aeroelastic tailoring, a bend-twist D-spar, which is the backbone of a blade, was designed and fabricated to achieve the objectives of having maximum bend-twist coupling and fulfilling desirable structural properties (031 & GJ). Two bend-twist D-spars, a hybrid of glass and carbon fibers and an all-carbon D-spar, were fabricated using a bladder process. One of the D-spars, the hybrid D-spar, was subjected to a cantilever static test and modal testing. Various parameters such as materials, laminate schedule, thickness and internal rib were examined in designing a bend-twist D-spar. The fabrication tooling, the lay-up process and the joint design for two symmetric clamshells are described in this report. Finally, comparisons between the experimental test results and numerical results are presented. The comparisons indicate that the numerical analysis (static and modal analysis) agrees well with test results.

  5. Measurement of the lifetime of Pb$^{52+}$, Pb$^{53+}$ and Pb$^{54+}$ beams at 4.2 MeV per nucleon subject to electron cooling

    CERN Document Server

    Baird, S A; Carli, Christian; Chanel, M; Lefèvre, P; Ley, R; MacCaferri, R; Maury, S; Meshkov, I N; Möhl, D; Molinari, G; Motsch, F; Mulder, H; Tranquille, G; Varenne, F

    1995-01-01

    By measuring the lifetime of stored beams, the recombination of the ions with cooling electrons was investigated. Rates found are larger than expected for radiative electron capture and significantly higher for Pb53+ than for Pb54+ and Pb52+. These results are important for the design of the lead ion injection system for the Large Hadron Collider and for recombination theories.

  6. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT) Part I. On subjective image quality

    NARCIS (Netherlands)

    Liang, X.; Jacobs, R.; Hassan, B.; Li, L.M.; Pauwels, R.; Corpas, L.; Souza, P.C.; Martens, W.; Alonso, A.; Lambrichts, I.

    2010-01-01

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileo

  7. Saethre-Chotzen syndrome caused by TWIST 1 gene mutations: functional differentiation from Muenke coronal synostosis syndrome.

    Science.gov (United States)

    Kress, Wolfram; Schropp, Christian; Lieb, Gabriele; Petersen, Birgit; Büsse-Ratzka, Maria; Kunz, Jürgen; Reinhart, Edeltraut; Schäfer, Wolf-Dieter; Sold, Johanna; Hoppe, Florian; Pahnke, Jan; Trusen, Andreas; Sörensen, Niels; Krauss, Jürgen; Collmann, Hartmut

    2006-01-01

    The Saethre-Chotzen syndrome (SCS) is an autosomal dominant craniosynostosis syndrome with uni- or bilateral coronal synostosis and mild limb deformities. It is caused by loss-of-function mutations of the TWIST 1 gene. In an attempt to delineate functional features separating SCS from Muenke's syndrome, we screened patients presenting with coronal suture synostosis for mutations in the TWIST 1 gene, and for the Pro250Arg mutation in FGFR3. Within a total of 124 independent pedigrees, 39 (71 patients) were identified to carry 25 different mutations of TWIST 1 including 14 novel mutations, to which six whole gene deletions were added. The 71 patients were compared with 42 subjects from 24 pedigrees carrying the Pro250Arg mutation in FGFR3 and 65 subjects from 61 pedigrees without a detectable mutation. Classical SCS associated with a TWIST 1 mutation could be separated phenotypically from the Muenke phenotype on the basis of the following features: low-set frontal hairline, gross ptosis of eyelids, subnormal ear length, dilated parietal foramina, interdigital webbing, and hallux valgus or broad great toe with bifid distal phalanx. Functional differences were even more important: intracranial hypertension as a consequence of early progressive multisutural fusion was a significant problem in SCS only, while mental delay and sensorineural hearing loss were associated with the Muenke's syndrome. Contrary to previous reports, SCS patients with complete loss of one TWIST allele showed normal mental development.

  8. Twisted Grosse-Wulkenhaar $\\phi^{\\star 4}$ model: dynamical noncommutativity and Noether currents

    CERN Document Server

    Hounkonnou, Mahouton Norbert

    2009-01-01

    This paper addresses the computation of Noether currrents for the renormalizable Grosse-Wulkenhaar (GW) $\\phi^{\\star 4}$ model subjected to a dynamical noncomutativity realized through a twisted Moyal product. The noncommutative (NC) energy-momentum tensor (EMT), angular momentum tensor (AMT) and the dilatation current (DC) are explicitly derived. The breaking of translation and rotation invariances has been avoided via a constraint equation.

  9. Expression of Twist Gene in Primary Liver Cancer

    Institute of Scientific and Technical Information of China (English)

    XU Jing; CHEN Xiaoping

    2007-01-01

    In order to investigate the possibility of overexpression of Twist in primary liver cancer (PLC), the Twist expression was detected by using immunohistochemical analysis and RT-PCR assay in 45 patients with PLC. Control tissues were obtained from 9 patients with liver hemangioma. It was found that in 36 (80.0%) out of 45 PLC patients, cancerous regions showed positive cytoplasm and nucleus staining for Twist with a diffuse pattern. In noncancerous adjacent areas and control liver tissues, the expression of Twist was 57.8% and 22.2% respectively. The results of RT-PCR assay re- vealed that the expression of Twist was stronger in the cancerous tissues than that in the noncancer- ous adjacent tissues. It was suggested that the expression of Twist was up-regulated in PLC, which play an important role in the progression of PLC.

  10. Twisted exponential sums of polynomials in one variable

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The twisted T-adic exponential sums associated to a polynomial in one variable are studied.An explicit arithmetic polygon in terms of the highest two exponents of the polynomial is proved to be a lower bound of the Newton polygon of the C-function of the twisted T-adic exponential sums.This bound gives lower bounds for the Newton polygon of the L-function of twisted p-power order exponential sums.

  11. Negative Regulatory Role of TWIST1 on SNAIL Gene Expression.

    Science.gov (United States)

    Forghanifard, Mohammad Mahdi; Ardalan Khales, Sima; Farshchian, Moein; Rad, Abolfazl; Homayouni-Tabrizi, Masoud; Abbaszadegan, Mohammad Reza

    2017-01-01

    Epithelial-mesenchymal transition (EMT) is crucial for specific morphogenetic movements during embryonic development as well as pathological processes of tumor cell invasion and metastasis. TWIST and SNAIL play vital roles in both developmental and pathological EMT. Our aim in this study was to investigate the functional correlation between TWIST1 and SNAIL in human ESCC cell line (KYSE-30). The packaging cell line GP293T was cotransfected with either control retroviral pruf-IRES-GFP plasmid or pruf-IRES-GFP-hTWIST1 and pGP plasmid. The KYSE-30 ESCC cells were transduced with produced viral particles and examined with inverted fluorescence microscope. DNA was extracted from transduced KYSE-30 cells and analyzed for copy number of integrated retroviral sequences in the target cell genome. The concentration of retroviral particles was determined by Real-time PCR. After RNA extraction and cDNA synthesis, the mRNA expression of TWIST1 and SNAIL was assessed by comparative real-time PCR amplification. Ectopic expression of TWIST1 in KYSE-30, dramatically reduces SNAIL expression. Retroviral transduction enforced TWIST1 overexpression in GFP-hTWIST1 nearly 9 folds in comparison with GFP control cells, and interestingly, this TWIST1 enforced expression caused a - 7 fold decrease of SNAIL mRNA expression in GFP-hTWIST1 compared to GFP control cells. Inverse correlation of TWIST1 and SNAIL mRNA levels may introduce novel molecular gene expression pathway controlling EMT process during ESCC aggressiveness and tumorigenesis. Consequently, these data extend the spectrum of biological activities of TWIST1 and propose that therapeutic repression of TWIST1 may be an effective strategy to inhibit cancer cell invasion and metastasis.

  12. CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-11-07

    This report focuses on human-evaluated characteristics, including beam quality, shadow quality, and color quality. Using a questionnaire that included rank-ordering, opinions on 27 of the Report 20 PAR38 lamps were gathered during a demonstration event for members of the local Illuminating Engineering Society (IES) chapter. This was not a rigorous scientific experiment, and the data should not be extrapolated beyond the scope of the demonstration. The results suggest that many of the LED products compared favorably to halogen PAR38 benchmarks in all attributes considered. LED lamps using a single-emitter design were generally preferred for their beam quality and shadow quality, and the IES members' ranking of color quality did not always match the rank according to the color rendering index (CRI).

  13. DOE CALiPER Program, Report 20.1 Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.; Poplawski, Michael E.; Miller, Naomi J.

    2013-10-01

    This report focuses on human-evaluated characteristics, including beam quality, shadow quality, and color quality. Using a questionnaire that included rank ordering, opinions on 27 of the Report 20 PAR38 lamps were gathered during a demonstration event for members of the local Illuminating Engineering Society (IES) chapter. This was not a rigorous scientific experiment, and the data should not be extrapolated beyond the scope of the demonstration. The results suggest that many of the LED products compared favorably to halogen PAR38 benchmarks in all attributes considered. LED lamps using a single-emitter design were generally preferred for their beam quality and shadow quality, and the IES members ranking of color quality did not always match the rank according to the color rendering index (CRI).

  14. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  15. A twist tale of cancer metastasis and tumor angiogenesis.

    Science.gov (United States)

    Tseng, Jen-Chieh; Chen, Hsiao-Fan; Wu, Kou-Juey

    2015-11-01

    Twist1 is an evolutionally conserved transcription factor. Originally identified in Drosophila as a key regulator for mesoderm development, it was later implicated in many human diseases, including Saethre-Chotzen syndrome and cancer. Twist1's involvement in cancer has been well recognized. Driven by hypoxia-induced factor-1 (HIF-1), Twist1 has been considered as a proto-oncogene and its overexpression has been observed in a wide variety of human cancers. High expression level of Twist1 is closely related to tumor aggressiveness and metastatic potential. In cancer cells, Twist1 has been shown to function as a key regulator of epithelial-mesenchymal transition (EMT), a critical process for metastasis initiation. Twist1 has also been implicated in maintaining cancer stemness for self-renewal and chemoresistance. This review first summarizes the roles of Twist1 in embryo development and Saethre-Chotzen syndrome followed by a discussion of Twist1's critical functions in cancer. In particular, the review focuses on the recent discovery of Twist1's capability to promote endothelial transdifferentiation of cancer cells beyond EMT.

  16. Twist1 activity thresholds define multiple functions in limb development

    OpenAIRE

    Krawchuk, Dayana; Weiner, Shoshana J; Chen, You-Tzung; Lu, Benson; Costantini, Frank; Behringer, Richard R.; Laufer, Ed

    2010-01-01

    The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1−/− embryos die at midgestation. However, studies on early limb buds found that Twist1−/− mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional...

  17. Nematic twist cell: Strong chirality induced at the surfaces

    Science.gov (United States)

    Lin, Tzu-Chieh; Nemitz, Ian R.; Pendery, Joel S.; Schubert, Christopher P. J.; Lemieux, Robert P.; Rosenblatt, Charles

    2013-04-01

    A nematic twist cell having a thickness gradient was filled with a mixture containing a configurationally achiral liquid crystal (LC) and chiral dopant. A chiral-based linear electrooptic effect was observed on application of an ac electric field. This "electroclinic effect" varied monotonically with d, changing sign at d =d0 where the chiral dopant exactly compensated the imposed twist. The results indicate that a significant chiral electrooptic effect always exists near the surfaces of a twist cell containing molecules that can be conformationally deracemized. Additionally, this approach can be used to measure the helical twisting power (HTP) of a chiral dopant in a liquid crystal.

  18. Optical Möbius strips and twisted ribbon cloaks.

    Science.gov (United States)

    Freund, Isaac

    2014-02-15

    Optical Möbius strips that surround points of circular polarization, C points, in a generic three-dimensional optical field are cloaked by lines of twisted ribbons attached to the C points. When cloaking occurs, the observable signed twist index that counts the number of half-twists (one or three), and also measures the handedness (right or left), of a generic Möbius strip is determined by the twisted ribbon cloaks. Although some cloaks can be detached, they can never all be removed.

  19. Twisted rudder for reducing fuel-oil consumption

    Directory of Open Access Journals (Sweden)

    Kim Jung-Hun

    2014-09-01

    Full Text Available Three twisted rudders fit for large container ships have been developed; 1 the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2 the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3 the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed

  20. Finite-dimensional representations of twisted hyper loop algebras

    CERN Document Server

    Bianchi, Angelo

    2012-01-01

    We investigate the category of finite-dimensional representations of twisted hyper loop algebras, i.e., the hyperalgebras associated to twisted loop algebras over finite-dimensional simple Lie algebras. The main results are the classification of the irreducible modules, the definition of the universal highest-weight modules, called the Weyl modules, and, under a certain mild restriction on the characteristic of the ground field, a proof that the simple modules and the Weyl modules for the twisted hyper loop algebras are isomorphic to appropriate simple and Weyl modules for the non-twisted hyper loop algebras, respectively, via restriction of the action.

  1. Modelling of Nonthermal Microwave Emission From Twisted Magnetic Loops

    CERN Document Server

    Sharykin, I N

    2016-01-01

    Microwave gyrosynchrotron radio emission generated by nonthermal electrons in twisted magnetic loops is modelled using the recently developed simulation tool GX Simulator. We consider isotropic and anisotropic pitch-angle distributions. The main scope of the work is to understand impact of the magnetic field twisted topology on resulted radio emission maps. We have found that nonthermal electrons inside twisted magnetic loops produce gyrosynchrotron radio emission with peculiar polarization distribution. The polarization sign inversion line is inclined relatively to the axis of the loop. Radio emission source is more compact in the case of less twisted loop, considering anisotropic pitch-angle distribution of nonthermal electrons.

  2. Twist decomposition of proton structure from BFKL and BK amplitudes

    CERN Document Server

    Motyka, Leszek

    2014-01-01

    An analysis of twist composition of Balitsky-Kovchegov (BK) amplitude is performed in the double logarithmic limit. In this limit the BK evolution of color dipole -- proton scattering is equivalent to BFKL evolution which follows from vanishing of the Bartels vertex in the collinear limit. We perform twist decomposition of the BFKL/BK amplitude for proton structure functions and find compact analytic expressions that provide accurate approximations for higher twist amplitudes. The BFKL/BK higher twist amplitudes are much smaller than those following from eikonal saturation models.

  3. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Directory of Open Access Journals (Sweden)

    Lingxiao Zheng

    Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  4. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    Science.gov (United States)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  5. Equilibrium shapes of twisted magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, Mihails; Cirulis, Teodors; Cebers, Andrejs [University of Latvia, Zellu 8, LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv

    2009-06-12

    It is shown that ferromagnetic filaments with free and unclamped ends undergo buckling instabilities under the action of twist. Solutions of nonlinear equations describing the buckled shapes are found, and it is shown that the transition to the buckled shape is subcritical if the magnetization is parallel to the field and supercritical when the magnetization of the straight filament is opposite to the external field. Solutions with the localized curvature distribution are found in the case of long filaments. The class of solutions corresponding to helices is described, and the behavior of coiled ferromagnetic and superparamagnetic filaments is compared.

  6. Non-destructive identification of twisted light.

    Science.gov (United States)

    Li, Pengyun; Wang, Bo; Song, Xinbing; Zhang, Xiangdong

    2016-04-01

    The non-destructive identification of the orbital angular momentum (OAM) is essential to various applications in the optical information processing. Here, we propose and demonstrate experimentally an efficient method to identify non-destructively the OAM by using a modified Mach-Zehnder interferometer. Our schemes are applicable not only to the case with integer charges, but also to optical vortices with noninteger charges. Our Letter presents the first experimental demonstration of the non-destructive identification of twisted light with integer or noninteger topological charges, which has potential applications in the OAM-based data transmission for optical communications.

  7. Instanton corrections to twist-two operators

    CERN Document Server

    Alday, Luis F

    2016-01-01

    We present the calculation of the leading instanton contribution to the scaling dimensions of twist-two operators with arbitrary spin and to their structure constants in the OPE of two half-BPS operators in $\\mathcal N=4$ SYM. For spin-two operators we verify that, in agreement with $\\mathcal N=4$ superconformal Ward identities, the obtained expressions coincide with those for the Konishi operator. For operators with high spin we find that the leading instanton correction vanishes. This arises as the result of a rather involved calculation and requires a better understanding.

  8. Berry phase transition in twisted bilayer graphene

    Science.gov (United States)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  9. Quantum mass correction for the twisted kink

    CERN Document Server

    Pawellek, Michael

    2008-01-01

    We present an analytic result for the 1-loop quantum mass correction in semiclassical quantization for the twisted \\phi^4 kink on S^1 without explicit knowledge of the fluctuation spectrum. For this purpose we use the contour integral representation of the spectral zeta function. By solving the Bethe ansatz equations for the n=2 Lame equation we obtain an analytic expression for the corresponding spectral discriminant. We discuss the renormalization issues of this model. An energetically preferred size for the compact space is finally obtained.

  10. Scaled Fractional Fourier Transform for Partially Coherent Beams

    Institute of Scientific and Technical Information of China (English)

    蔡阳健; 林强

    2003-01-01

    The definition of scaled fractional Fourier transform (SFRT) is extended to partially coherent beams based directly on the cross-spectral density. Based on this formula, an equivalent tensor ABCD law for the SFRT of partially coherent twisted anisotropic Gaussian-Schell model beams is derived. The derived formulae provide a powerful tool for analysing and calculating the SFRT of partially coherent beams. An application example is provided.

  11. Needleless electrospinning with twisted wire spinneret.

    Science.gov (United States)

    Holopainen, Jani; Penttinen, Toni; Santala, Eero; Ritala, Mikko

    2015-01-16

    A needleless electrospinning setup named 'Needleless Twisted Wire Electrospinning' was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm(2) and masses up to 1.15 g were prepared. High production rates of 5.23 g h(-1) and 1.40 g h(-1) were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning.

  12. Twisting the [ital N]=2 string

    Energy Technology Data Exchange (ETDEWEB)

    Ketov, S.V.; Lechtenfeld, O. (Institut fuer Theoretische Physik, Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany)); Parkes, A.J. (Department of Artificial Intelligence, 80 South Bridge, Edinburgh EH1 9HN (United Kingdom))

    1995-03-15

    The most general homogeneous monodromy conditions in [ital N]=2 string theory are classified in terms of the conjugacy classes of the global symmetry group U(1,1)[direct product][ital openZ][sub 2]. For classes which generate a discrete subgroup [Gamma], the corresponding target space backgrounds [ital openC][sup 1,1]/[Gamma] include half spaces, complex orbifolds, and tori. We propose a generalization of the intercept formula to matrix-valued twists, but find massless physical states only for [Gamma]=[ital open]1 (untwisted) and [Gamma]=[ital openZ][sub 2] (in the manner of Mathur and Mukhi), as well as for [Gamma] being a parabolic element of U(1,1). In particular, the 16 [ital openZ][sub 2]-twisted sectors of the [ital N]=2 string are investigated, and the corresponding ground states are identified via bosonization and BRST cohomology. We find enough room for an extended multiplet of spacetime'' supersymmetry, with the number of supersymmetries being dependent on global spacetime'' topology. However, world-sheet locality for the chiral vertex operators does not permit interactions among all massless spacetime'' fermions.

  13. Twisting Fluorescence through Extrinsic Chiral Antennas.

    Science.gov (United States)

    Yan, Chen; Wang, Xiaolong; Raziman, T V; Martin, Olivier J F

    2017-03-22

    Plasmonic antennas and planar structures have been undergoing intensive developments in order to control the scattering and absorption of light. One specific class, extrinsic chiral surfaces, that does not possess 2-fold rotational symmetry exhibits strong asymmetric transmission for different circular polarizations under obliquely incident illumination. In this work, we show that the design of those surfaces can be optimized with complex multipolar resonances in order to twist the fluorescence emission from nearby molecules. While this emission is usually dipolar and linearly polarized, the interaction with these resonances twists it into a multipolar radiation pattern with opposite helicity in different directions. The proposed structure maximizes this effect and provides control over the polarization of light. Splitting of left- and right-handed circularly polarized light is experimentally obtained in the backward direction. These results highlight the intricate interplay between the near-field absorption and the far-field scattering of a plasmonic nanostructure and are further used for modifying the emission of incoherent quantum sources. Our finding can potentially lead to the development of polarization- and angle-resolved ultracompact optical devices.

  14. Twisted Alexander polynomials of hyperbolic knots

    CERN Document Server

    Dunfield, Nathan M; Jackson, Nicholas

    2011-01-01

    We study a twisted Alexander polynomial naturally associated to a hyperbolic knot in an integer homology 3-sphere via a lift of the holonomy representation to SL(2, C). It is an unambiguous symmetric Laurent polynomial whose coefficients lie in the trace field of the knot. It contains information about genus, fibering, and chirality, and moreover is powerful enough to sometimes detect mutation. We calculated this invariant numerically for all 313,209 hyperbolic knots in S^3 with at most 15 crossings, and found that in all cases it gave a sharp bound on the genus of the knot and determined both fibering and chirality. We also study how such twisted Alexander polynomials vary as one moves around in an irreducible component X_0 of the SL(2, C)-character variety of the knot group. We show how to understand all of these polynomials at once in terms of a polynomial whose coefficients lie in the function field of X_0. We use this to help explain some of the patterns observed for knots in S^3, and explore a potential...

  15. Twisted geometries, twistors and conformal transformations

    CERN Document Server

    Långvik, Miklos

    2016-01-01

    The twisted geometries of spin network states are described by simple twistors, isomorphic to null twistors with a time-like direction singled out. The isomorphism depends on the Immirzi parameter, and reduces to the identity when the parameter goes to infinity. Using this twistorial representation we study the action of the conformal group SU(2,2) on the classical phase space of loop quantum gravity, described by twisted geometry. The generators of translations and conformal boosts do not preserve the geometric structure, whereas the dilatation generator does. It corresponds to a 1-parameter family of embeddings of T*SL(2,C) in twistor space, and its action preserves the intrinsic geometry while changing the extrinsic one - that is the boosts among polyhedra. We discuss the implication of this action from a dynamical point of view, and compare it with a discretisation of the dilatation generator of the continuum phase space, given by the Lie derivative of the group character. At leading order in the continuu...

  16. How the embryonic brain tube twists

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Forsch, Nickolas; Taber, Larry

    2014-03-01

    During early development, the tubular brain of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This deformation is one of the major organ-level symmetry-breaking events in development. Available evidence suggests that bending is caused by differential growth, but the mechanism for torsion remains poorly understood. Since the heart almost always loops in the same direction that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is virtually nonexistent, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. In addition, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model is used to interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''.

  17. Structure of twisted and buckled bilayer graphene

    Science.gov (United States)

    Jain, Sandeep K.; Juričić, Vladimir; Barkema, Gerard T.

    2017-03-01

    We study the atomic structure of twisted bilayer graphene, with very small mismatch angles (θ ∼ {0.28}0), a topic of intense recent interest. We use simulations, in which we combine a recently presented semi-empirical potential for single-layer graphene, with a new term for out-of-plane deformations, (Jain et al 2015 J. Phys. Chem. C 119 9646) and an often-used interlayer potential (Kolmogorov et al 2005 Phys. Rev. B 71 235415). This combination of potentials is computationally cheap but accurate and precise at the same time, allowing us to study very large samples, which is necessary to reach very small mismatch angles in periodic samples. By performing large scale atomistic simulations, we show that the vortices appearing in the Moiré pattern in the twisted bilayer graphene samples converge to a constant size in the thermodynamic limit. Furthermore, the well known sinusoidal behavior of energy no longer persists once the misorientation angle becomes very small (θ \\lt {1}0). We also show that there is a significant buckling after the relaxation in the samples, with the buckling height proportional to the system size. These structural properties have direct consequences on the electronic and optical properties of bilayer graphene.

  18. 压电弹性层合梁在电场作用下的二维解析解%Analytical Solution to the Piezoelastic Laminated Beam Subjected to Electric Field

    Institute of Scientific and Technical Information of China (English)

    林启荣; 金占礼; 刘正兴

    2001-01-01

    由压电弹性介质的二维本构关系,通过假设电势分布和利用应力边界条件,得到其应力函数.由此假设弹性体的应力函数,利用几何方程分别得到弹性和压电体的位移,最后利用应力边界条件、应力和位移连续条件以及位移边界条件,推导出一端固支带压电层的弹性梁在电场作用下的位移、应力分布的解析表达式,并给出了算例.%Based on the two-dimensional constitutive relationship of piezoelastic material, an analytical solution to a cantilever beam with piezoelectric layers subjected to electric field was derived together with an example. The stress function of the piezoelectric layer was obtained through the assumed electric potential and using the stress boundary condition, thereby the stress function of the elastic beam was assumed. The displacements of the piezoelectric layers and the elastic beam can be obtained using the stress boundary, the stress and displacement continuity condition and the displacement boundary conditions.

  19. Cellularity of diagram algebras as twisted semigroup algebras

    CERN Document Server

    Wilcox, Stewart

    2010-01-01

    The Temperley-Lieb and Brauer algebras and their cyclotomic analogues, as well as the partition algebra, are all examples of twisted semigroup algebras. We prove a general theorem about the cellularity of twisted semigroup algebras of regular semigroups. This theorem, which generalises a recent result of East about semigroup algebras of inverse semigroups, allows us to easily reproduce the cellularity of these algebras.

  20. Behaviour at infinity of solutions of twisted convolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Volchkov, Valerii V; Volchkov, Vitaly V [Donetsk National University, Donetsk (Ukraine)

    2012-02-28

    We obtain a precise characterization of the minimal rate of growth at infinity of non-trivial solutions of twisted convolution equations in unbounded domains of C{sup n}. As an application, we obtain definitive versions of the two-radii theorem for twisted spherical means.

  1. On the commutator length of a Dehn twist

    CERN Document Server

    Szepietowski, Blazej

    2010-01-01

    We show that on a nonorientable surface of genus at least 7 any power of a Dehn twist is equal to a single commutator in the mapping class group and the same is true, under additional assumptions, for the twist subgroup, and also for the extended mapping class group of an orientable surface of genus at least 3.

  2. Quadratic Twists of Rigid Calabi–Yau Threefolds Over

    DEFF Research Database (Denmark)

    Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko

    2013-01-01

    We consider rigid Calabi–Yau threefolds defined over Q and the question of whether they admit quadratic twists. We give a precise geometric definition of the notion of a quadratic twists in this setting. Every rigid Calabi–Yau threefold over Q is modular so there is attached to it a certain newfo...

  3. Design optimization of a twist compliant mechanism with nonlinear stiffness

    Science.gov (United States)

    Tummala, Y.; Frecker, M. I.; Wissa, A. A.; Hubbard, J. E., Jr.

    2014-10-01

    A contact-aided compliant mechanism called a twist compliant mechanism (TCM) is presented in this paper. This mechanism has nonlinear stiffness when it is twisted in both directions along its axis. The inner core of the mechanism is primarily responsible for its flexibility in one twisting direction. The contact surfaces of the cross-members and compliant sectors are primarily responsible for its high stiffness in the opposite direction. A desired twist angle in a given direction can be achieved by tailoring the stiffness of a TCM. The stiffness of a compliant twist mechanism can be tailored by varying thickness of its cross-members, thickness of the core and thickness of its sectors. A multi-objective optimization problem with three objective functions is proposed in this paper, and used to design an optimal TCM with desired twist angle. The objective functions are to minimize the mass and maximum von-Mises stress observed, while minimizing or maximizing the twist angles under specific loading conditions. The multi-objective optimization problem proposed in this paper is solved for an ornithopter flight research platform as a case study, with the goal of using the TCM to achieve passive twisting of the wing during upstroke, while keeping the wing fully extended and rigid during the downstroke. Prototype TCMs have been fabricated using 3D printing and tested. Testing results are also presented in this paper.

  4. Twisted tubular photobioreactor fluid dynamics evaluation for energy consumption minimization

    NARCIS (Netherlands)

    Gómez-Pérez, C.A.; Espinosa Oviedo, J.J.; Montenegro Ruiz, L.C.; Boxtel, van A.J.B.

    2017-01-01

    This paper discusses a new tubular PhotoBioReactor (PBR) called twisted tubular PBR. The geometry of a twisted tubular PBR induces swirl mixing to guarantee good exposure of microalgae to Light-Dark (LD) cycles and to the nutrients and dissolved CO 2 . The paper analyses the energy uptake for fluid

  5. Resonances and higher twist in polarized lepton-nucleon scattering

    CERN Document Server

    Edelmann, J; Kaiser, N; Weise, W

    2000-01-01

    We present a detailed analysis of resonance contributions in the context of higher twist effects in the moments of the proton spin structure function g_1. For each of these moments, it is found that there exists a characteristic Q^2 region in which (perturbative) higher twist corrections coexist with (non-perturbative) resonance contribution of comparable magnitude.

  6. Twisted Fock representations of noncommutative Kähler manifolds

    Science.gov (United States)

    Sako, Akifumi; Umetsu, Hiroshi

    2016-09-01

    We introduce twisted Fock representations of noncommutative Kähler manifolds and give their explicit expressions. The twisted Fock representation is a representation of the Heisenberg like algebra whose states are constructed by applying creation operators to a vacuum state. "Twisted" means that creation operators are not Hermitian conjugate of annihilation operators in this representation. In deformation quantization of Kähler manifolds with separation of variables formulated by Karabegov, local complex coordinates and partial derivatives of the Kähler potential with respect to coordinates satisfy the commutation relations between the creation and annihilation operators. Based on these relations, we construct the twisted Fock representation of noncommutative Kähler manifolds and give a dictionary to translate between the twisted Fock representations and functions on noncommutative Kähler manifolds concretely.

  7. Landau damping of Langmuir twisted waves with kappa distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Arshad, Kashif, E-mail: kashif.arshad.butt@gmail.com; Aman-ur-Rehman [Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650 (Pakistan); Mahmood, Shahzad [Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)

    2015-11-15

    The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and are illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].

  8. Analysis list: Twist1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Twist1 Embryo,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Tw...ist1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Twist1.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/target/Twist1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Twist1.Embryo.tsv,http://dbarchive.bioscien...cedbc.jp/kyushu-u/mm9/colo/Twist1.Neural.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Embryo.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Neural.gml ...

  9. Twisted Fock Representations of Noncommutative K\\"ahler Manifolds

    CERN Document Server

    Sako, Akifumi

    2016-01-01

    We introduce twisted Fock representations of noncommutative K\\"ahler manifolds and give their explicit expressions. The twisted Fock representation is a representation of the Heisenberg like algebra whose states are constructed by acting creation operators on a vacuum state. "Twisted" means that creation operators are not hermitian conjugate of annihilation operators in this representation. In deformation quantization of K\\"ahler manifolds with separation of variables formulated by Karabegov, local complex coordinates and partial derivatives of the K\\"ahler potential with respect to coordinates satisfy the commutation relations between the creation and annihilation operators. Based on these relations, we construct the twisted Fock representation of noncommutative K\\"ahler manifolds and give a dictionary to translate between the twisted Fock representations and functions on noncommutative K\\"ahler manifolds concretely.

  10. On the performance analysis of Savonius rotor with twisted blades

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Rajkumar, M. Jaya [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781 039 (India)

    2006-09-15

    The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0{sup o}). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle. (author)

  11. 负弯矩作用下钢筋混凝土U型叠合梁受力性能研究%Performance of reinforced concrete U-shaped composite beams subjected to negative moment

    Institute of Scientific and Technical Information of China (English)

    张斌; 薛伟辰

    2012-01-01

    The reinforced concrete U-shaped composite beam which is composed of precast U-shaped beam,precast slabs and cast-in-place ( CIP) concrete, is investigated in this paper. The performance of the reinforced concrete U-shaped composite beam and the cast-in-place concrete control specimen subjected to negative moment was evaluated in terms of failure pattern, flexural strength,ductility and slips based on the monotonic static loading tests. The results showed that both specimens behaved in ductile manner. The flexural strength of reinforced concrete U-shaped composite beam was about 1% lower than that of the control specimen. The displacement ductility of tbe precast specimen were about 17% higher than that of corresponding control specimen. The slip between precast beam and precast slab and the slip between precast slab and CIP concrete were less than 0. 5 mm under the peak load. The results in this paper are useful to expand the application of reinforced concrete U-shaped composite beam.%针对一种由预制U型梁、预制板和现浇板组成的新型钢筋混凝土叠合梁,开展了负弯矩作用下钢筋混凝土U型叠合梁与现浇对比梁的足尺模型试验,对其破坏形态、截面承载力、位移延性和滑移等进行了较为系统的研究.研究表明:负弯矩作用下叠合梁和现浇梁均发生了受弯破坏;达到峰值荷载时叠合梁中预制板与现浇层之间、预制梁与预制板之间和预制梁与现浇层之间的最大滑移值均不大于0.5mm;叠合梁的负弯矩截面抗弯承载力较现浇梁约低1%;叠合梁的位移延性系数为8.16,较现浇梁的位移延性系数高17%.本文研究成果可为这种新型钢筋混凝土U型叠合梁的工程应用提供技术依据和参考.

  12. 单调荷载作用下高强混凝土梁受弯性能尺寸效应研究%Size effect on flexural behavior of reinforced high-strength concrete beams subjected to monotonic loading

    Institute of Scientific and Technical Information of China (English)

    车轶; 郑新丰; 王金金; 宋玉普

    2012-01-01

    Reinforced high-strength concrete beams subjected to bending were tested to investigate the effect of depth on flexural behavior of beams.The geometry of specimens varied in cross sections with the depth-width ratios of the cross sections,the shear span ratios and longitudinal reinforcement ratios of specimens being constant.C70 concrete was used to cast the specimens and HRB 400 steel bars were used for the longitudinal reinforcement.The influence of beam depth on the nominal cracking moment,nominal yield moment,nominal ultimate flexural moment,ductility,and plastic rotation capacity of high-strength concrete beams was investigated.It is shown that there is no apparent size effect on nominal cracking moment,nominal yield moment and nominal ultimate moment of reinforced high-strength concrete beams.But the displacement ductility ratio and plastic rotation capacity show significant size effect.The displacement ductility factor and the rotational capacity of high-strength concrete beam decrease with the increasing of cross section.%进行了不同截面尺寸高强混凝土梁的弯曲试验,研究了梁高对其受弯性能的影响。试件采用C70高强混凝土,纵向受力钢筋采用HRB400级钢筋。试件截面尺寸不同,截面长宽比、剪跨比和配筋率等参数保持一致。分析了不同截面尺寸对高强混凝土梁的名义开裂弯矩、名义屈服弯矩、名义极限弯矩、延性以及塑性转动能力的影响。研究结果表明,高强混凝土梁的名义开裂弯矩、名义屈服弯矩和名义极限弯矩无明显尺寸效应,而试件的位移延性系数和塑性铰区的塑性转动能力则表现出明显的尺寸效应,随截面尺寸的增大梁的位移延性系数和塑性铰区塑性转动能力有所降低。

  13. Quasi-static thermoelastic analysis for a semi-infinite plane subjected to a Gaussian heat source: Beam missteering of the storage ring in the APS

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, I.C.; Howell, J.

    1995-07-01

    A two-dimensional, semi-infinite analytical solution of the transient temperature and the thermal stress due to heating from the bending magnet beam missteering in the APS has been developed. In order to solve the thermal stress analytically, an effective absorption function is introduced, and the transient temperature can be written as a function of the exponential integrals. At the origin where the peak power is applied, the effective stress is found to be the maximum and is undergoing simple compression along the longitudinal direction. The result utilizing finite element method (FEM) applied to the chamber cross section is also presented and agrees fairly well with the current analytical solution during the early small time scale.

  14. Twist1 activity thresholds define multiple functions in limb development.

    Science.gov (United States)

    Krawchuk, Dayana; Weiner, Shoshana J; Chen, You-Tzung; Lu, Benson C; Costantini, Frank; Behringer, Richard R; Laufer, Ed

    2010-11-01

    The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1(-/-) embryos die at midgestation. However, studies on early limb buds found that Twist1(-/-) mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity.

  15. Aeromechanical Evaluation of Smart-Twisting Active Rotor

    Science.gov (United States)

    Lim, Joon W.; Boyd, D. Douglas, Jr.; Hoffman, Frauke; van der Wall, Berend G.; Kim, Do-Hyung; Jung, Sung N.; You, Young H.; Tanabe, Yasutada; Bailly, Joelle; Lienard, Caroline; Delrieux, Yves

    2014-01-01

    An investigation of Smart-Twisting Active Rotor (STAR) was made to assess potential benefits of the current active twist rotor concept for performance improvement, vibration reduction, and noise alleviation. The STAR rotor is a 40% Mach-scaled, Bo105 rotor with an articulated flap-lag hinge at 3.5%R and no pre-cone. The 0-5 per rev active twist harmonic inputs were applied for various flight conditions including hover, descent, moderate to high speed level flights, and slowed rotor high advance ratio. For the analysis, the STAR partners used multiple codes including CAMRAD II, S4, HOST, rFlow3D, elsA, and their associated software. At the high thrust level in hover, the 0 per rev active twist with 80% amplitude increased figure of merit (FM) by 0.01-0.02 relative to the baseline. In descent, the largest BVI noise reduction was on the order of 2 to 5 dB at the 3 per rev active twist. In the high speed case (mu = 0.35), the 2 per rev actuation was found to be the most effective in achieving a power reduction as well as a vibration reduction. At the 2 per rev active twist, total power was reduced by 0.65% at the 60 deg active twist phase, and vibration was reduced by 47.6% at the 45 deg active twist phase. The use of the 2 per rev active twist appears effective for vibration reduction. In the high advance ratio case (mu = 0.70), the 0 per rev actuation appeared to have negligible impact on performance improvement. In summary, computational simulations successfully demonstrated that the current active twist concept provided a significant reduction of the maximum BVI noise in descent, a significant reduction of the vibration in the high speed case, a small improvement on rotor performance in hover, and a negligible impact on rotor performance in forward flight.

  16. Report of the group on beam-beam effects in circular colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1991-05-01

    We present a summary of the discussions and conclusions of the working group on beam-beam effects for circular colliders. This group was part of the larger beam-beam dynamics group at the 7th ICFA Workshop on Beam Dynamics, on the subject Beam-Beam and Beam-Radiation Interactions,'' held at UCLA, May 13--16, 1991. 15 refs.

  17. Twist-joints and double twist-joints in RNA structure.

    Science.gov (United States)

    Boutorine, Yury I; Steinberg, Sergey V

    2012-12-01

    Analysis of available RNA crystal structures has allowed us to identify a new family of RNA arrangements that we call double twist-joints, or DTJs. Each DTJ is composed of a double helix that contains two bulges incorporated into different strands and separated from each other by 2 or 3 bp. At each bulge, the double helix is over-twisted, while the unpaired nucleotides of both bulges form a complex network of stacking and hydrogen-bonding with nucleotides of helical regions. In total, we identified 14 DTJ cases, which can be combined in three groups based on common structural characteristics. One DTJ is found in a functional center of the ribosome, another DTJ mediates binding of the pre-tRNA to the RNase P, and two more DTJs form the sensing domains in the glycine riboswitch.

  18. On Torsion of Functionally Graded Elastic Beams

    Directory of Open Access Journals (Sweden)

    Marina Diaco

    2016-01-01

    Full Text Available The evaluation of tangential stress fields in linearly elastic orthotropic Saint-Venant beams under torsion is based on the solution of Neumann and Dirichlet boundary value problems for the cross-sectional warping and for Prandtl stress function, respectively. A skillful solution method has been recently proposed by Ecsedi for a class of inhomogeneous beams with shear moduli defined in terms of Prandtl stress function of corresponding homogeneous beams. An alternative reasoning is followed in the present paper for orthotropic functionally graded beams with shear moduli tensors defined in terms of the stress function and of the elasticity of reference inhomogeneous beams. An innovative result of invariance on twist centre is also contributed. Examples of functionally graded elliptic cross sections of orthotropic beams are developed, detecting thus new benchmarks for computational mechanics.

  19. Optical Twist Induced by Plasmonic Resonance

    Science.gov (United States)

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-06-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster.

  20. Twisted Light Transmission over 143 kilometers

    CERN Document Server

    Krenn, Mario; Fink, Matthias; Fickler, Robert; Ursin, Rupert; Malik, Mehul; Zeilinger, Anton

    2016-01-01

    Spatial modes of light can potentially carry a vast amount of information, making them promising candidates for both classical and quantum communication. However, the distribution of such modes over large distances remains difficult. Intermodal coupling complicates their use with common fibers, while free-space transmission is thought to be strongly influenced by atmospheric turbulence. Here we show the transmission of orbital angular momentum modes of light over a distance of 143 kilometers between two Canary Islands, which is 50 times greater than the maximum distance achieved previously. As a demonstration of the transmission quality, we use superpositions of these modes to encode a short message. At the receiver, an artificial neural network is used for distinguishing between the different twisted light superpositions. The algorithm is able to identify different mode superpositions with an accuracy of more than 80% up to the third mode order, and decode the transmitted message with an error rate of 8.33%....

  1. Twisted Polynomials and Forgery Attacks on GCM

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey;

    2015-01-01

    nonce misuse resistance, such as POET. The algebraic structure of polynomial hashing has given rise to security concerns: At CRYPTO 2008, Handschuh and Preneel describe key recovery attacks, and at FSE 2013, Procter and Cid provide a comprehensive framework for forgery attacks. Both approaches rely...... heavily on the ability to construct forgery polynomials having disjoint sets of roots, with many roots (“weak keys”) each. Constructing such polynomials beyond naïve approaches is crucial for these attacks, but still an open problem. In this paper, we comprehensively address this issue. We propose to use...... in an improved key recovery algorithm. As cryptanalytic applications of our twisted polynomials, we develop the first universal forgery attacks on GCM in the weak-key model that do not require nonce reuse. Moreover, we present universal weak-key forgeries for the nonce-misuse resistant AE scheme POET, which...

  2. Regular non-twisting S-branes

    CERN Document Server

    Obregón, O; Ryan, M P; Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.

    2004-01-01

    We construct a family of time and angular dependent, regular S-brane solutions which corresponds to a simple analytical continuation of the Zipoy-Voorhees 4-dimensional vacuum spacetime. The solutions are asymptotically flat and turn out to be free of singularities without requiring a twist in space. They can be considered as the simplest non-singular generalization of the singular S0-brane solution. We analyze the properties of a representative of this family of solutions and show that it resembles to some extent the asymptotic properties of the regular Kerr S-brane. The R-symmetry corresponds, however, to the general Lorentzian symmetry. Several generalizations of this regular solution are derived which include a charged S-brane and an additional dilatonic field.

  3. A Solvable Twisted One-Plaquette Model

    Science.gov (United States)

    Billó, M.; D'Adda, A.

    We solve a hot twisted Eguchi-Kawai model with only timelike plaquettes in the deconfined phase, by computing the quadratic quantum fluctuations around the classical vacuum. The solution of the model has some novel features: the eigenvalues of the timelike link variable are separated in L bunches, if L is the number of links of the original lattice in the time direction, and each bunch obeys a Wigner semicircular distribution of eigenvalues. This solution becomes unstable at a critical value of the coupling constant, where it is argued that a condensation of classical solutions takes place. This can be inferred by comparison with the heat-kernel model in the Hamiltonian limit, and the related Douglas-Kazakov phase transition in QCD2. As a byproduct of our solution, we can reproduce the dependence of the coupling constant from the parameter describing the asymmetry of the lattice, and compare it to previous results by Karsch.

  4. Twisted and Nontwisted Bifurcations Induced by Diffusion

    CERN Document Server

    Lin, X B

    1996-01-01

    We discuss a diffusively perturbed predator-prey system. Freedman and Wolkowicz showed that the corresponding ODE can have a periodic solution that bifurcates from a homoclinic loop. When the diffusion coefficients are large, this solution represents a stable, spatially homogeneous time-periodic solution of the PDE. We show that when the diffusion coefficients become small, the spatially homogeneous periodic solution becomes unstable and bifurcates into spatially nonhomogeneous periodic solutions. The nature of the bifurcation is determined by the twistedness of an equilibrium/homoclinic bifurcation that occurs as the diffusion coefficients decrease. In the nontwisted case two spatially nonhomogeneous simple periodic solutions of equal period are generated, while in the twisted case a unique spatially nonhomogeneous double periodic solution is generated through period-doubling. Key Words: Reaction-diffusion equations; predator-prey systems; homoclinic bifurcations; periodic solutions.

  5. Energy release in driven twisted coronal loops

    CERN Document Server

    Bareford, M R; Browning, P K; Hood, A W

    2015-01-01

    In the present study we investigate magnetic reconnection in twisted magnetic fluxtubes with different initial configurations. In all considered cases, energy release is triggered by the ideal kink instability, which is itself the result of applying footpoint rotation to an initially potential field. The main goal of this work is to establish the influence of the field topology and various thermodynamic effects on the energy release process. Specifically, we investigate convergence of the magnetic field at the loop footpoints, atmospheric stratification, as well as thermal conduction. In all cases, the application of vortical driving at the footpoints of an initally potential field leads to an internal kink instability. With the exception of the curved loop with high footpoint convergence, the global geometry of the loop change little during the simulation. Footpoint convergence, curvature and atmospheric structure clearly influences the rapidity with which a loop achieves instability as well as the size of t...

  6. Twisted accretion discs: Pt. 5; Viscous evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. (Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Astrophysik)

    1990-08-15

    The time-dependence of accretion discs with orbits tilted out of the symmetry plane is studied. The effects of mass inflow modulation, and tilt variation at the disc outer edge, are examined for both circumbinary discs and for discs around compact objects. The appendices extend the numerical work to some analytic examples of tilt diffusion and external forcing effects. It is also shown that the disc must not be treated as a rigid tilted object if global angular momentum is to be conserved. These results are relevant to the problem of long-term periodicities of the light curves in Her X1 and {epsilon} Aur, the S-type symmetry of radio jets, warped gas discs in galaxies and polar rings in Neptune. Twisted discs may also arise in star-forming regions. (author).

  7. Twisted Black Hole Is Taub-NUT

    CERN Document Server

    Ong, Yen Chin

    2016-01-01

    Recently a purportedly novel solution of the vacuum Einstein field equations was discovered: it supposedly describes an asymptotically flat twisted black hole in 4-dimensions whose exterior spacetime rotates in a peculiar manner -- the frame dragging in the northern hemisphere is opposite from that of the southern hemisphere, which results in a globally vanishing angular momentum. Furthermore it was shown that the spacetime has no curvature singularity. We show that the geometry of this black hole spacetime is nevertheless not free of pathological features. In particular, it harbors a rather drastic conical singularity along the axis of rotation. In addition, there exist closed timelike curves due to the fact that the constant r and constant t surfaces are not globally Riemannian. In fact, none of these are that surprising since the solution is just the Taub-NUT geometry.

  8. Unusual presentation of twisted ovarian cyst

    Directory of Open Access Journals (Sweden)

    Vineet V Mishra

    2016-01-01

    Full Text Available Ovarian torsion (also termed as adnexal torsion refers to partial or complete rotation of the ovary and a portion of fallopian tube along its supplying vascular pedicle. It occurs commonly in reproductive age group; more on the right side (60% and often presents with acute lower abdominal pain lasting for few hours and up to 24 h, accounting for 2.7% of acute gynecological conditions. It is one of the devastating conditions, hampering blood supply of ovary which may lead to total necrosis of ovarian tissue and complications, if not diagnosed and managed in time. Hence, we present a case on a twisted ovarian cyst in postmenopausal woman with unusual symptomatology leading to delayed diagnosis and loss of an ovary.

  9. Orbital angular momentum of helical necklace beams in colloid-based nonlinear optical metamaterials (Conference Presentation)

    Science.gov (United States)

    Walasik, Wiktor T.; Silahli, Salih Z.; Litchinitser, Natalia M.

    2016-09-01

    Colloidal metamaterials are a robust and flexible platform for engineering of optical nonlinearities and studies of light filamentation. To date, nonlinear propagation and modulation instability of Gaussian beams and optical vortices carrying orbital angular momentum were studied in such media. Here, we investigate the propagation of necklace beams and the conservation of the orbital angular momentum in colloidal media with saturable nonlinearity. We study various scenarios leading to generation of helical necklace beams or twisted beams, depending on the radius, power, and charge of the input vortex beam. Helical beams are build of two separate solitary beams with circular cross-sections that spiral around their center of mass as a result of the equilibrium between the attraction force of in-phase solitons and the centrifugal force associated with the rotational movement. A twisted beam is a single beam with an elliptical cross-section that rotates around it's own axis. We show that the orbital angular momentum is converted into the rotational motion at different rates for helical and twisted beams. While earlier studies reported that solitary beams are expelled form the initial vortex ring along straight trajectories tangent to the vortex ring, we show that depending on the charge and the power of the initial beam, these trajectories can diverge from the tangential direction and may be curvilinear. These results provide a detailed description of necklace beam dynamics in saturable nonlinear media and may be useful in studies of light filamentation in liquids and light propagation in highly scattering colloids and biological samples.

  10. β-catenin, Twist and Snail: Transcriptional regulation of EMT in smokers and COPD, and relation to airflow obstruction.

    Science.gov (United States)

    Mahmood, Malik Quasir; Walters, Eugene Haydn; Shukla, Shakti D; Weston, Steve; Muller, Hans Konrad; Ward, Chris; Sohal, Sukhwinder Singh

    2017-09-07

    COPD is characterised by poorly reversible airflow obstruction usually due to cigarette smoking. The transcription factor clusters of β-catenin/Snail1/Twist has been implicated in the process of epithelial mesenchymal transition (EMT), an intermediate between smoking and airway fibrosis, and indeed lung cancer. We have investigated expression of these transcription factors and their "cellular localization" in bronchoscopic airway biopsies from patients with COPD, and in smoking and non-smoking controls. An immune-histochemical study compared cellular protein expression of β-catenin, Snail1 and Twist, in these subject groups in 3 large airways compartment: epithelium (basal region), reticular basement membrane (Rbm) and underlying lamina propria (LP). β-catenin and Snail1 expression was generally high in all subjects throughout the airway wall with marked cytoplasmic to nuclear shift in COPD (P Snail1 expression, and to lesser extent of Twist, was related to airflow obstruction and to expression of a canonical EMT biomarker (S100A4). The β-catenin-Snail1-Twist transcription factor cluster is up-regulated and nuclear translocated in smokers and COPD, and their expression is closely related to both EMT activity and airway obstruction.

  11. Twisted boundary states in c=1 coset conformal field theories

    CERN Document Server

    Ishikawa, H; Ishikawa, Hiroshi; Yamaguchi, Atsushi

    2003-01-01

    We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the diagonal modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n)_1 \\oplus so(2n)_1/so(2n)_2, which is equivalent with the orbifold S^1/\\Z_2. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield the conformal boundary states that preserve only the Virasoro algebra.

  12. Heat Transfers Enhancement with Different Square Jagged Twisted Tapes

    Directory of Open Access Journals (Sweden)

    Mr. A.V.Gawandare

    2014-03-01

    Full Text Available The present experimental work are carried out with copper twisted tape inserts 3mm with 5.2,4.2 and 3.2 twists respectively. The inserts when placed in the path of the flow of the fluid, create a high degree of turbulence resulting in an increase in the heat transfer rate and the pressure drop. The work includes the determination of friction factor and heat transfer coefficient for various twisted wire inserts with varying twists and different materials. The Reynolds number is varied from 5000 to 16000. Correlations for Nusselt number and friction factor are developed for the twisted wire inserts from the obtained results. The results of varying twists in square jagged tape with different pitches have been compared with the values for the smooth tube. The 3mm thick with 3.2 twists copper insert shows increase in Nusselt number values by 76% however there is increase in friction factor by only 19.5% as compared to the smooth tube values.

  13. The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation.

    Science.gov (United States)

    Sun, Tong; Fu, Junjiang; Shen, Tao; Lin, Xia; Liao, Lan; Feng, Xin-Hua; Xu, Jianming

    2016-05-27

    Twist1 is a basic helix-loop-helix transcription factor that strongly promotes epithelial-to-mesenchymal transition, migration, invasion, and metastasis of cancer cells. The MAPK-phosphorylated Twist1 on its serine 68 (Ser(P)(68)-Twist1) has a significantly enhanced stability and function to drive cancer cell invasion and metastasis. However, the phosphatase that dephosphorylates Ser(P)(68)-Twist1 and destabilizes Twist1 has not been identified and characterized. In this study, we screened a serine/threonine phosphatase cDNA expression library in HEK293T cells with ectopically coexpressed Twist1. We found that the small C-terminal domain phosphatase 1 (SCP1) specifically dephosphorylates Ser(P)(68)-Twist1 in both cell-free reactions and living cells. SCP1 uses its amino acid residues 43-63 to interact with the N terminus of Twist1. Increased SCP1 expression in cells decreased Ser(P)(68)-Twist1 and total Twist1 proteins, whereas knockdown of SCP1 increased Ser(P)(68)-Twist1 and total Twist1 proteins. Furthermore, the levels of SCP1 are negatively correlated with Twist1 protein levels in several cancer cell lines. SCP1-dephosphorylated Twist1 undergoes fast degradation via the ubiquitin-proteasome pathway. Importantly, an increase in SCP1 expression in breast cancer cells with either endogenous or ectopically expressed Twist1 largely inhibits the Twist1-induced epithelial-to-mesenchymal transition phenotype and the migration and invasion capabilities of these cells. These results indicate that SCP1 is the phosphatase that counterregulates the MAPK-mediated phosphorylation of Ser(68)-Twist1. Thus, an increase in SCP1 expression and activity may be a useful strategy for eliminating the detrimental roles of Twist1 in cancer cells.

  14. Incidence of Deformation and Fracture of Twisted File Adaptive Instruments after Repeated Clinical Use

    Science.gov (United States)

    Gambarini, Gianluca; Piasecki, Lucila; Miccoli, Gabriele; Di Giorgio, Gianni; Carneiro, Everdan; Al-Sudani, Dina; Testarelli, Luca

    2016-01-01

    ABSTRACT Objectives The aim of the present study was to investigate the incidence of deformation and fracture of twisted file adaptive nickel-titanium instruments after repeated clinical use and to identify and check whether the three instruments within the small/medium sequence showed similar or different visible signs of metal fatigue. Material and Methods One-hundred twenty twisted file adaptive (TFA) packs were collected after clinically used to prepare three molars and were inspected for deformations and fracture. Results The overall incidence of deformation was 22.2%, which was not evenly distributed within the instruments: 15% for small/medium (SM)1 (n = 18), 38.33% for SM2 (n = 46) and 13.33% for the SM3 instruments (n = 16). The defect rate of SM2 instruments was statistically higher than the other two (P < 0.001). The fracture rate was 0.83% (n = 3), being two SM2 instruments and one SM3. Conclusions It was observed a very low defect rate after clinical use of twisted file adaptive rotary instruments. The untwisting of flutes was significantly more frequent than fracture, which might act as prevention for breakage. The results highlight the fact that clinicians should be aware that instruments within a sequence might be differently subjected to intracanal stress. PMID:28154749

  15. Tri-bimaximal mixing from twisted Friedberg-Lee symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Takeshi [National Tsing Hua University, Department of Physics, Hsinchu (China); Takahashi, Ryo [Osaka University, Department of Physics, Graduate School of Science, Osaka (Japan)

    2009-10-15

    We investigate the Friedberg-Lee (FL) symmetry and its promotion to include the {mu}-{tau} symmetry, and call this the twisted FL symmetry. Based on the twisted FL symmetry, two possible schemes are presented toward the realistic neutrino mass spectrum and the tri-bimaximal mixing. In the first scheme, we suggest the semi-uniform translation of the FL symmetry. The second one is based on the S{sub 3} permutation family symmetry. The breaking terms, which are twisted FL symmetric, are introduced. Some viable models in each scheme are also presented. (orig.)

  16. Tri-bimaximal mixing from twisted Friedberg-Lee symmetry

    Science.gov (United States)

    Araki, Takeshi; Takahashi, Ryo

    2009-10-01

    We investigate the Friedberg-Lee (FL) symmetry and its promotion to include the μ- τ symmetry, and call this the twisted FL symmetry. Based on the twisted FL symmetry, two possible schemes are presented toward the realistic neutrino mass spectrum and the tri-bimaximal mixing. In the first scheme, we suggest the semi-uniform translation of the FL symmetry. The second one is based on the S 3 permutation family symmetry. The breaking terms, which are twisted FL symmetric, are introduced. Some viable models in each scheme are also presented.

  17. Assembly and Folding of Twisted Baskets in Organic Solvents.

    Science.gov (United States)

    Pratumyot, Yaowalak; Chen, Shigui; Hu, Lei; Polen, Shane M; Hadad, Christopher M; Badjić, Jovica D

    2016-09-02

    A synthetic method for obtaining enantiopure and twisted baskets of type (P)-3 is described. These chiral cavitands were found to fold quinoline gates, at the rim of their twisted platform, in acetonitrile and give molecular capsules that assemble into large unilamellar vesicles. In a less polar dichloromethane, however, cup-shaped (P)-3 packed into vesicles but with the quinoline gates in an unfolded orientation. The ability of twisted baskets to form functional nanostructured materials could be of interest for building stereoselective sensors and catalysts.

  18. TWIST1 promotes invasion through mesenchymal change in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wakimoto Hiroaki

    2010-07-01

    Full Text Available Abstract Background Tumor cell invasion into adjacent normal brain is a mesenchymal feature of GBM and a major factor contributing to their dismal outcomes. Therefore, better understandings of mechanisms that promote mesenchymal change in GBM are of great clinical importance to address invasion. We previously showed that the bHLH transcription factor TWIST1 which orchestrates carcinoma metastasis through an epithelial mesenchymal transition (EMT is upregulated in GBM and promotes invasion of the SF767 GBM cell line in vitro. Results To further define TWIST1 functions in GBM we tested the impact of TWIST1 over-expression on invasion in vivo and its impact on gene expression. We found that TWIST1 significantly increased SNB19 and T98G cell line invasion in orthotopic xenotransplants and increased expression of genes in functional categories associated with adhesion, extracellular matrix proteins, cell motility and locomotion, cell migration and actin cytoskeleton organization. Consistent with this TWIST1 reduced cell aggregation, promoted actin cytoskeletal re-organization and enhanced migration and adhesion to fibronectin substrates. Individual genes upregulated by TWIST1 known to promote EMT and/or GBM invasion included SNAI2, MMP2, HGF, FAP and FN1. Distinct from carcinoma EMT, TWIST1 did not generate an E- to N-cadherin "switch" in GBM cell lines. The clinical relevance of putative TWIST target genes SNAI2 and fibroblast activation protein alpha (FAP identified in vitro was confirmed by their highly correlated expression with TWIST1 in 39 human tumors. The potential therapeutic importance of inhibiting TWIST1 was also shown through a decrease in cell invasion in vitro and growth of GBM stem cells. Conclusions Together these studies demonstrated that TWIST1 enhances GBM invasion in concert with mesenchymal change not involving the canonical cadherin switch of carcinoma EMT. Given the recent recognition that mesenchymal change in GBMs is

  19. Topological duality twist and brane instantons in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova andINFN - Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy)

    2014-06-30

    A variant of the topological twist, involving SL(2,ℤ) dualities and hence named topological duality twist, is introduced and explicitly applied to describe a U(1) N=4 super Yang-Mills theory on a Kähler space with holomorphically space-dependent coupling. Three-dimensional duality walls and two-dimensional chiral theories naturally enter the formulation of the duality twisted theory. Appropriately generalized, this theory is relevant for the study of Euclidean D3-brane instantons in F-theory compactifications. Some of its properties and implications are discussed.

  20. Twist Neutrality and the Diameter of the Nucleosome Core Particle

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper

    2012-01-01

    The diameter of the nucleosome core particle is the same for all the eukaryotes. Here we discuss the possibility that this selectiveness is consistent with a propensity for twist neutrality, in particular, for the double helical DNA to stay rotationally neutral when strained. Reorganization of DNA...... cannot be done without some level of temporal tensile stress, and as a consequence chiral molecules, such as helices, will twist under strain. The requirement that the nucleosome, constituting the nucleosome core particle and linker DNA, has a vanishing strain-twist coupling leads to a requirement...

  1. Differential forms and {kappa}-Minkowski spacetime from extended twist

    Energy Technology Data Exchange (ETDEWEB)

    Juric, Tajron; Meljanac, Stjepan [Rudjer Boskovic Institute, Zagreb (Croatia); Strajn, Rina [Jacobs University Bremen, Bremen (Germany)

    2013-07-15

    We analyze bicovariant differential calculus on {kappa}-Minkowski spacetime. It is shown that corresponding Lorentz generators and noncommutative coordinates compatible with bicovariant calculus cannot be realized in terms of commutative coordinates and momenta. Furthermore, {kappa}-Minkowski space and NC forms are constructed by twist related to a bicrossproduct basis. It is pointed out that the consistency condition is not satisfied. We present the construction of {kappa}-deformed coordinates and forms (super-Heisenberg algebra) using extended twist. It is compatible with bicovariant differential calculus with {kappa}-deformed igl(4)-Hopf algebra. The extended twist leading to {kappa}-Poincare-Hopf algebra is also discussed. (orig.)

  2. Testing mixed action approaches to meson spectroscopy with twisted mass sea quarks

    CERN Document Server

    Berlin, Joshua; Wagner, Marc

    2013-01-01

    We explore and compare three mixed action setups with Wilson twisted mass sea quarks and different valence quark actions: (1) Wilson twisted mass, (2) Wilson twisted mass + clover and (3) Wilson + clover. Our main goal is to reduce lattice discretization errors in mesonic spectral quantities, in particular to reduce twisted mass parity and isospin breaking.

  3. The Heterodimeric TWIST1-E12 Complex Drives the Oncogenic Potential of TWIST1 in Human Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Laurent Jacqueroud

    2016-05-01

    Full Text Available The TWIST1 embryonic transcription factor displays biphasic functions during the course of carcinogenesis. It facilitates the escape of cells from oncogene-induced fail-safe programs (senescence, apoptosis and their consequent neoplastic transformation. Additionally, it promotes the epithelial-to-mesenchymal transition and the initiation of the metastatic spread of cancer cells. Interestingly, cancer cells recurrently remain dependent on TWIST1 for their survival and/or proliferation, making TWIST1 their Achilles’ heel. TWIST1 has been reported to form either homodimeric or heterodimeric complexes mainly in association with the E bHLH class I proteins. These complexes display distinct, sometimes even antagonistic, functions during development and unequal prometastatic functions in prostate cancer cells. Using a tethered dimer strategy, we successively assessed the ability of TWIST1 dimers to cooperate with an activated version of RAS in human mammary epithelial cell transformation, to provide mice with the ability to spontaneously develop breast tumors, and lastly to maintain a senescence program at a latent state in several breast cancer cell lines. We demonstrate that the TWIST1-E12 complex, unlike the homodimer, is an oncogenic form of TWIST1 in mammary epithelial cells and that efficient binding of both partners is a prerequisite for its activity. The detection of the heterodimer in human premalignant lesions by a proximity ligation assay, at a stage preceding the initiation of the metastatic cascade, is coherent with such an oncogenic function. TWIST1-E protein heterodimeric complexes may thus constitute the main active forms of TWIST1 with regard to senescence inhibition over the time course of breast tumorigenesis.

  4. Shadow casted by a twisted and rotating black hole

    CERN Document Server

    Chen, Songbai

    2016-01-01

    Zhang have obtained recently a twisted rotating black hole metric, which is a vacuum solution in four-dimensional Einstein gravity. This black hole solution has a rotation parameter, but without the total angular moment. Here, we have investigated the shadow casted by a twisted rotating black hole. Our results show that the shape of the shadow of the twisted rotating black hole is a standard round disk and does not depend on the inclination angle of the observer. It means that although the twisted rotating black hole has a rotation parameter, its shadow possesses the same behaviors as the common static black hole rather than the usual Kerr-like black holes. Moreover, we find that the marginally circular orbit radius of photon is independent of the direction of photon around the black hole. The value of the marginally circular orbit radius of photon and the size of shadow increase monotonously with the rotation parameter.

  5. Cayley-Dickson and Clifford Algebras as Twisted Group Algebras

    CERN Document Server

    Bales, John W

    2011-01-01

    The effect of some properties of twisted groups on the associated algebras, particularly Cayley-Dickson and Clifford algebras. It is conjectured that the Hilbert space of square-summable sequences is a Cayley-Dickson algebra.

  6. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  7. Quarks with Twisted Boundary Conditions in the Epsilon Regime

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen; Brian C. Tiburzi

    2005-05-01

    We study the effects of twisted boundary conditions on the quark fields in the epsilon regime of chiral perturbation theory. We consider the SU(2){sub L} x SU(2){sub R} chiral theory with non-degenerate quarks and the SU(3){sub L} x SU(3){sub R} chiral theory with massless up and down quarks and massive strange quarks. The partition function and condensate are derived for each theory. Because flavor-neutral Goldstone bosons are unaffected by twisted boundary conditions chiral symmetry is still restored in finite volumes. The dependence of the condensate on the twisting parameters can be used to extract the pion decay constant from simulations in the epsilon regime. The relative contribution to the partition function from sectors of different topological charge is numerically insensitive to twisted boundary conditions.

  8. Spectrum of a duality-twisted Ising quantum chain

    CERN Document Server

    Grimm, U

    2002-01-01

    The Ising quantum chain with a peculiar twisted boundary condition is considered. This boundary condition, first introduced in the framework of the spin-1/2 XXZ Heisenberg quantum chain, is related to the duality transformation, which becomes a symmetry of the model at the critical point. Thus, at the critical point, the Ising quantum chain with the duality-twisted boundary is translationally invariant, similar as in the case of the usual periodic or antiperiodic boundary conditions. The complete energy spectrum of the Ising quantum chain is calculated analytically for finite systems, and the conformal properties of the scaling limit are investigated. This provides an explicit example of a conformal twisted boundary condition and a corresponding generalised twisted partition function.

  9. The Kostant partition functions for twisted Kac-Moody algebras

    Directory of Open Access Journals (Sweden)

    Ranabir Chakrabarti

    2000-01-01

    Full Text Available Employing the method of generating functions and making use of some infinite product identities like Euler, Jacobi's triple product and pentagon identities we derive recursion relations for Kostant's partition functions for the twisted Kac-Moody algebras.

  10. Polanski lavastas filmi "Oliver Twist" oma lastele / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2005-01-01

    Mängufilm "Oliver Twist" Charles Dickensi romaani ainetel esilinastus Prahas, kus toimusid ka filmivõtted. Tšehhi, Suurbritannia, Prantsusmaa ja Itaalia koostöös valminud filmi lavastas Roman Polanski

  11. Õnnetu saatusega Oliver Twist Polanski meelevallas / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2005-01-01

    Mängufilm Charles Dickensi romaani järgi "Oliver Twist" : stsenarist Ronald Harwood : režissöör Roman Polanski : nimiosas Barney Clark, Fagin - Ben Kingsley : Suurbritannia - Tšehhi - Prantsusmaa - Itaalia 2005

  12. Polarisation of microwave emission from reconnecting twisted coronal loops

    CERN Document Server

    Gordovskyy, Mykola; Kontar, Eduard

    2016-01-01

    Magnetic reconnection and particle acceleration due to the kink instability in twisted coronal loops can be a viable scenario for confined solar flares. Detailed investigation of this phenomenon requires reliable methods for observational detection of magnetic twist in solar flares, which may not be possible solely through extreme UV and soft X-ray thermal emission. The gradient of microwave polarisation across flaring loops can serve as one of the detection criteria. The aim of this study is to investigate the effect of magnetic twist in flaring coronal loops on the polarisation of gyro-synchrotron microwave emission, and determine whether microwave emission polarisation could provide a means for observational detection. We use time-dependent magnetohydrodynamic and test-particle models, developed using LARE3D and GCA codes to investigate twisted coronal loops relaxing following the kink-instability, and calculate synthetic microwave emission maps (I and V Stokes components) using GX simulator. It is found t...

  13. Twistted ξ-(α,β expansive mappings in metric spaces

    Directory of Open Access Journals (Sweden)

    Poonam Nagpal

    2016-04-01

    Full Text Available In this paper, we introduce a pair of twisted ζ-(α,β expansive mappings in metric spaces and prove fixed point theorems for these mappings. Some examples are also provided to support our main results.

  14. Polanski lavastas filmi "Oliver Twist" oma lastele / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2005-01-01

    Mängufilm "Oliver Twist" Charles Dickensi romaani ainetel esilinastus Prahas, kus toimusid ka filmivõtted. Tšehhi, Suurbritannia, Prantsusmaa ja Itaalia koostöös valminud filmi lavastas Roman Polanski

  15. Õnnetu saatusega Oliver Twist Polanski meelevallas / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2005-01-01

    Mängufilm Charles Dickensi romaani järgi "Oliver Twist" : stsenarist Ronald Harwood : režissöör Roman Polanski : nimiosas Barney Clark, Fagin - Ben Kingsley : Suurbritannia - Tšehhi - Prantsusmaa - Itaalia 2005

  16. A Stylistic Analysis of Register Theory in Oliver Twist

    Institute of Scientific and Technical Information of China (English)

    刘鑫

    2015-01-01

    Stylistic analysis refers to the linguistic approach to literature.Stylistics will mainly focus on the register theory,taking Charles Dickens' masterpiece Oliver Twist as a good example to demonstrate how the register theory is embodied in the work.

  17. The Kostant partition functions for twisted Kac-Moody algebras

    OpenAIRE

    Ranabir Chakrabarti; Santhanam, Thalanayar S.

    2000-01-01

    Employing the method of generating functions and making use of some infinite product identities like Euler, Jacobi's triple product and pentagon identities we derive recursion relations for Kostant's partition functions for the twisted Kac-Moody algebras.

  18. Applying Twisted Boundary Conditions for Few-body Nuclear Systems

    CERN Document Server

    Körber, Christopher

    2015-01-01

    We describe and implement twisted boundary conditions for the deuteron and triton systems within finite-volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twists angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length $L\\approx8-14$ fm. Of particular importance is our derivation and numerical verification of three-body analogue of `i-periodic' twist angles that eliminate the leading order finite-volume effects to the three-body binding energy.

  19. Double twist helical nanofilaments in bent-core liquid crystals

    Science.gov (United States)

    Zhang, Cuiyu; Diorio, Nicholas; Lavrentovich, Oleg D.; Jakli, Antal

    2014-03-01

    Cryo-TEM observations on 40-150 nm films of four bent-core liquid crystal materials in their helical nanofilament (HNF) phase show that the filaments get deformed near the substrate, and the subsequent arrays of nanofilaments are not parallel, but twisted with respect to each other. The effect can explain the mysterious properties of the HNF materials, such as structural color and ambidextrous optical activity. The observed double twist structure was not expected in the previous models of this phase. Being principally different from the packing of molecules in the twist grain boundary (TGB) and blue (BP) phases, the double-twist structure of HNF expands the rich word of nanostructured organic materials. This work was financially supported by NSF DMR-0964765 and DMR 1104850. The cryo-TEM facility was supported by the Ohio Research Scholars Program. We are grateful for Prof. G. Heppke and Dr. D. Lotsch for providing the PnOPIMB materials for us.

  20. A Stylistic Analysis of Register Theory in Oliver Twist

    Institute of Scientific and Technical Information of China (English)

    刘鑫

    2015-01-01

    Stylistic analysis refers to the linguistic approach to literature.Stylistics will mainly focus on the register theory,taking Charles Dickens’ masterpiece Oliver Twist as a good example to demonstrate how the register theory is embodied in the work.

  1. Representations of Knot Groups and Twisted Alexander Polynomials

    Institute of Scientific and Technical Information of China (English)

    Xiao Song LIN

    2001-01-01

    We present a twisted version of the Alexander polynomial associated with a matrix representation of the knot group. Examples of two knots with the same Alexander module but differenttwisted Alexander polynomials are given.

  2. The Algebra of Formal Twisted Pseudodifferential Symbols and a Noncommutative Residue

    Science.gov (United States)

    Zadeh, Farzad Fathi; Khalkhali, Masoud

    2010-10-01

    Motivated by Connes-Moscovici’s notion of a twisted spectral triple, we define an algebra of formal twisted pseudodifferential symbols with respect to a twisting of the base algebra. We extend the Adler-Manin trace and the logarithmic cocycle on the algebra of pseudodifferential symbols to our twisted setting. We also give a general method to construct twisted pseudodifferential symbols on crossed product algebras.

  3. A super-twisted Dirac operator and Novikov inequalities

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A super-twisted Dirac operator is constructed and deformed suitably.Following Shubin's approach to Novikov inequalities associated to the deformed de Rham-Hodge operator,we give a formula for the index of the super-twisted Dirac operator,and Novikov type inequalities for the deformed operator.In particular,we obtain a purely analytic proof of the Hopf index theorem for general vector bundles.

  4. A super-twisted Dirac operator and Novikov inequalities

    Institute of Scientific and Technical Information of China (English)

    冯惠涛; 郭恩力

    2000-01-01

    A s黳er-twisted Dirac operator is constructed and deformed suitably. Following Shubin’s approach to Novikov inequalities associated to the deformed de Rham-Hodge operator, we give a for-mula for the index of the super-twisted Dirac operator, and Novikov type inequalities for the deformed operator, In particular, we obtain a purely analytic proof of the Hopf index theorem for general vector bundles.

  5. Geometry of Quantum Group Twists, Multidimensional Jackson Calculus and Regularization

    OpenAIRE

    Demichev, A. P.

    1995-01-01

    We show that R-matricies of all simple quantum groups have the properties which permit to present quantum group twists as transitions to other coordinate frames on quantum spaces. This implies physical equivalence of field theories invariant with respect to q-groups (considered as q-deformed space-time groups of transformations) connected with each other by the twists. Taking into account this freedom we study quantum spaces of the special type: with commuting coordinates but with q-deformed ...

  6. Dehn twists and free subgroups of symplectic mapping class groups

    CERN Document Server

    Keating, Ailsa

    2012-01-01

    Given two Lagrangian spheres in an exact symplectic manifold, we find conditions under which the Dehn twists about them generate a free non-abelian subgroup of the symplectic mapping class group. This extends a result of Ishida for Riemann surfaces. The proof generalises the categorical version of Seidel's long exact sequence to arbitrary powers of a fixed Dehn twist. We also show that the Milnor fibre of any isolated degenerate hypersurface singularity contains such pairs of spheres.

  7. Topological Twisted Sigma Model with H-flux Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Wu-yen

    2006-08-18

    In this paper we revisit the topological twisted sigma model with H-flux. We explicitly expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. we show that the resulting action consists of a BRST exact term and pullback terms, which only depend on one of the two generalized complex structures and the B-field. We then discuss the topological feature of the model.

  8. Blade tip vortex measurements on actively twisted rotor blades

    Science.gov (United States)

    Bauknecht, André; Ewers, Benjamin; Schneider, Oliver; Raffel, Markus

    2017-05-01

    Active rotor control concepts, such as active twist actuation, have the potential to effectively reduce the noise and vibrations of helicopter rotors. The present study focuses on the experimental investigation of active twist for the reduction of blade-vortex interaction (BVI) effects on a model rotor. Results of a large-scale smart-twisting active rotor test under hover conditions are described. This test investigated the effects of individual blade twist control on the blade tip vortices. The rotor blades were actuated with peak torsion amplitudes of up to 2° and harmonic frequencies of 1-5/rev with different phase angles. Time-resolved stereoscopic particle image velocimetry was carried out to study the effects of active twist on the strength and trajectories of the tip vortices between ψ _ {v}= 3.6° and 45.7° of vortex age. The analysis of the vortex trajectories revealed that the 1/rev active twist actuation mainly caused a vertical deflection of the blade tip and the corresponding vortex trajectories of up to 1.3% of the rotor radius R above and -1%R below the unactuated condition. An actuation with frequencies of 2 and 3/rev significantly affected the shapes of the vortex trajectories and caused negative vertical displacements of the vortices relative to the unactuated case of up to 2%R within the first 35° of wake age. The 2 and 3/rev actuation also had the most significant effects on the vortex strength and altered the initial peak swirl velocity by up to -34 and +31% relative to the unactuated value. The present aerodynamic investigation reveals a high control authority of the active twist actuation on the strength and trajectories of the trailing blade tip vortices. The magnitude of the evoked changes indicates that the active twist actuation constitutes an effective measure for the mitigation of BVI-induced noise on helicopters.

  9. Twisted Bundle on Noncommutative Space and U(1) Instanton

    CERN Document Server

    Ho, P M

    2000-01-01

    We study the notion of twisted bundles on noncommutative space. Due to theexistence of projective operators in the algebra of functions on thenoncommutative space, there are twisted bundles with non-constant dimension.The U(1) instanton solution of Nekrasov and Schwarz is such an example. As amathematical motivation for not excluding such bundles, we find gaugetransformations by which a bundle with constant dimension can be equivalent toa bundle with non-constant dimension.

  10. Alfven eigenmode structure during off-axis neutral beam injection

    NARCIS (Netherlands)

    Tobias, B.; Bass, E. M.; Classen, I.G.J.; Domier, C.W.; Grierson, B. A.; Heidbrink, W. W.; N C Luhmann Jr.,; Nazikian, R.; Park, H. K.; Spong, D. A.; VanZeeland, M. A.

    2012-01-01

    The spatial structure of Alfven eigenmodes on the DIII-D tokamak is compared for contrasting fast ion deposition profiles resulting from on- and off-axis neutral beam injection (NBI). In both cases, poloidal mode rotation and eigenmode twist, or radial phase variation, are correlated with the direct

  11. Twist decomposition of Drell-Yan structure functions: phenomenological implications

    Science.gov (United States)

    Brzemiński, Dawid; Motyka, Leszek; Sadzikowski, Mariusz; Stebel, Tomasz

    2017-01-01

    The forward Drell-Yan process in pp scattering at the LHC at √{S} = 14 TeV is considered. We analyze the Drell-Yan structure functions assuming the dominance of a Compton-like emission of a virtual photon from a fast quark scattering off the small x gluons. The color dipole framework is applied to perform quantitatively the twist decomposition of all the Drell-Yan structure functions. Two models of the color dipole scattering are applied: the Golec-Biernat-Wüsthoff model and the dipole cross section obtained from the Balitsky-Fadin-Kuraev-Lipatov evolution equation. The two models have essentially different higher twist content and the gluon transverse momentum distribution and lead to different significant effects beyond the collinear leading twist description. It is found that the gluon transverse momentum effects are significant in the Drell-Yan structure functions for all Drell-Yan pair masses M, and the higher twist effects become important for M ≲ 10GeV. It is found that the structure function W TT related to the A 2 angular coefficient and the Lam-Tung observable A 0 - A 2 are particularly sensitive to the gluon k T effects and to the higher twist effects. A procedure is suggested how to disentangle the higher twist effects from the gluon transverse momentum effects.

  12. Twist-induced Magnetosphere Reconfiguration for Intermittent Pulsars

    CERN Document Server

    Huang, Lei; Tong, Hao

    2016-01-01

    We propose that the magnetosphere reconfiguration induced by magnetic twists in the closed field line region can account for the mode-switching of intermittent pulsars. We carefully investigate the properties of axisymmetric force-free pulsar magnetospheres with magnetic twists in closed field line region around the polar caps. The magnetosphere with twisted closed lines leads to enhanced spin-down rates. The enhancement in spin-down rate depends on the size of region with twisted closed lines. Typically, it is increased by a factor of $\\sim2$, which is consistent with the intermittent pulsars' spin down behavior during the `off' and `on' states. We find there is a threshold of maximal twist angle $\\Delta\\phi_{\\rm thres}\\sim1$. The magnetosphere is stable only if the closed line twist angle is less than $\\Delta\\phi_{\\rm thres}$. Beyond this value, the magnetosphere becomes unstable and gets untwisted. The spin-down rate would reduce to its off-state value. The quasi-periodicity in spin-down rate change can be...

  13. Universal corner entanglement from twist operators

    CERN Document Server

    Bueno, Pablo; Witczak-Krempa, William

    2015-01-01

    The entanglement entropy in three-dimensional conformal field theories (CFTs) receives a logarithmic contribution characterized by a regulator-independent function $a(\\theta)$ when the entangling surface contains a sharp corner with opening angle $\\theta$. In the limit of a smooth surface ($\\theta\\rightarrow\\pi$), this corner contribution vanishes as $a(\\theta)=\\sigma\\,(\\theta-\\pi)^2$. In arXiv:1505.04804, we provided evidence for the conjecture that for any $d=3$ CFT, this corner coefficient $\\sigma$ is determined by $C_T$, the coefficient appearing in the two-point function of the stress tensor. Here, we argue that this is a particular instance of a much more general relation connecting the analogous corner coefficient $\\sigma_n$ appearing in the $n$th R\\'enyi entropy and the scaling dimension $h_n$ of the corresponding twist operator. In particular, we find the simple relation $h_n/\\sigma_n=(n-1)\\pi$. We show how it reduces to our previous result as $n\\rightarrow 1$, and explicitly check its validity for f...

  14. DNA packaging in bacteriophage: is twist important?

    Science.gov (United States)

    Spakowitz, Andrew James; Wang, Zhen-Gang

    2005-06-01

    We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces.

  15. Twisted light transmission over 143 km

    Science.gov (United States)

    Krenn, Mario; Handsteiner, Johannes; Fink, Matthias; Fickler, Robert; Ursin, Rupert; Malik, Mehul; Zeilinger, Anton

    2016-11-01

    Spatial modes of light can potentially carry a vast amount of information, making them promising candidates for both classical and quantum communication. However, the distribution of such modes over large distances remains difficult. Intermodal coupling complicates their use with common fibers, whereas free-space transmission is thought to be strongly influenced by atmospheric turbulence. Here, we show the transmission of orbital angular momentum modes of light over a distance of 143 km between two Canary Islands, which is 50× greater than the maximum distance achieved previously. As a demonstration of the transmission quality, we use superpositions of these modes to encode a short message. At the receiver, an artificial neural network is used for distinguishing between the different twisted light superpositions. The algorithm is able to identify different mode superpositions with an accuracy of more than 80% up to the third mode order and decode the transmitted message with an error rate of 8.33%. Using our data, we estimate that the distribution of orbital angular momentum entanglement over more than 100 km of free space is feasible. Moreover, the quality of our free-space link can be further improved by the use of state-of-the-art adaptive optics systems.

  16. Roots of Dehn twists about separating curves

    CERN Document Server

    Rajeevsarathy, Kashyap

    2011-01-01

    Let $C$ be a curve in a closed orientable surface $F$ of genus $g \\geq 2$ that separates $F$ into subsurfaces $\\widetilde {F_i}$ of genera $g_i$, for $i = 1,2$. We study the set of roots in $\\Mod(F)$ of the Dehn twist $t_C$ about $C$. All roots arise from pairs of $C_{n_i}$-actions on the $\\widetilde{F_i}$, where $n=\\lcm(n_1,n_2)$ is the degree of the root, that satisfy a certain compatibility condition. The $C_{n_i}$ actions are of a kind that we call nestled actions, and we classify them using tuples that we call data sets. The compatibility condition can be expressed by a simple formula, allowing a classification of all roots of $t_C$ by compatible pairs of data sets. We use these data set pairs to classify all roots for $g = 2$ and $g = 3$. We show that there is always a root of degree at least $2g^2+2g$, while $n \\leq 4g^2+2g$. We also give some additional applications.

  17. Baryon masses with dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Koutsou, G; Baron, R; Guichon, P; Brinet, M; Carbonell, J; Drach, V; Liu, Z; Pène, O; Urbach, C

    2007-01-01

    We present results on the mass of the nucleon and the $\\Delta$ using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of 690-300 MeV on lattices of size 2.1 fm and 2.7 fm. We check for cutoff effects by evaluating these baryon masses on lattices of spatial size 2.1 fm with lattice spacings $a(\\beta=3.9)=0.0855(6)$ fm and $a(\\beta=4.05)=0.0666(6)$ fm, determined from the pion sector and find them to be within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. The nucleon mass at the physical point provides a determination of the lattice spacing. Using heavy baryon chiral perturbation theory at ${\\cal O}(p^3)$ we find $a(\\beta=3.9)=0.0879(12)$ fm, with a systematic error due to the chiral extrapolation estimated to be about the same as the statistical error. This value of the lattice spacing is in good agreement with the value determined from the pion se...

  18. Dark Matter in a twisted bottle

    CERN Document Server

    Arbey, Alexandre; Deandrea, Aldo; Kubik, Bogna

    2013-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the direct product of the real projective plane with the standard four-dimensional Minkowski space-time and discuss its relevance as a model of a weakly interacting Dark Matter candidate. One important difference with other typical UED models is the origin of the symmetry leading to the stability of the dark matter particle. This symmetry in our case is a remnant of the six-dimensional Minkowski space-time symmetry partially broken by the compactification. Another important difference is the very small mass splitting between the ...

  19. Dark Matter in a twisted bottle

    Science.gov (United States)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Deandrea, Aldo; Kubik, Bogna

    2013-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the direct product of the real projective plane with the standard four-dimensional Minkowski space-time and discuss its relevance as a model of a weakly interacting Dark Matter candidate. One important difference with other typical UED models is the origin of the symmetry leading to the stability of the dark matter particle. This symmetry in our case is a remnant of the six-dimensional Minkowski space-time symmetry partially broken by the compactification. Another important difference is the very small mass splitting between the particles of a given Kaluza-Klein tier, which gives a very important role to co-annihilation effects. Finally the role of higher Kaluza-Klein tiers is also important and is discussed together with a detailed numerical description of the influence of the resonances.

  20. 2-SMC of Electro-Hydraulic Drives Using the Twisting Algorithm

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2012-01-01

    In this paper a controller utilizing second order sliding modes, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD), is proposed. The proposed controller requires pressure measurements, and only the signs of the valve spool position and piston...... position- and velocity. The main objective is to introduce a control concept that provide for increased performance compared to linear controllers, in the presence of the inherent nonlinear nature characterizing such systems. To accomplish this task, a controller based on the twisting algorithm...... and knowledge of system gain variations is proposed. Results demonstrate strong robustness when subjected to parameter perturbations and that control chattering is eliminated....

  1. Super Twisting Second Order Sliding Mode Control for Position Tracking Control of Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    In this paper a control strategy based on second order sliding modes, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD), is proposed. The main target is to overcome problems with linear controllers deteriorating performance due to the strong...... nonlinearities characterizing VCD's. The proposed controller requires pressure-, valve- and piston position measurements, and is based on the so-called super twisting algorithm and compensation of controlgain nonlinearities. Simulation results demonstrate strong robustness when subjected to large perturbations...

  2. Drag-based composite super-twisting sliding mode control law design for Mars entry guidance

    Science.gov (United States)

    Zhao, Zhenhua; Yang, Jun; Li, Shihua; Guo, Lei

    2016-06-01

    In this paper, the drag-based trajectory tracking guidance problem is investigated for Mars entry vehicle subject to uncertainties. A composite super twisting sliding mode control method based on finite-time disturbance observer is proposed for guidance law design. The proposed controller not only eliminates the effects of matched and mismatched disturbances due to uncertainties of atmospheric models and vehicle aerodynamics but also guarantees the continuity of control action. Numerical simulations are carried out on the basis of Mars Science Laboratory mission, where the results show that the proposed methods can improve the Mars entry guidance precision as compared with some existing guidance methods including PID and ADRC.

  3. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    Science.gov (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  4. Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces

    Energy Technology Data Exchange (ETDEWEB)

    Posik, Matthew; Flay, David; Parno, Diana; Allada, Kalyan; Armstrong, Whitney; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; Deng, Xiaoyan; Deur, Alexandre; Dutta, Chiranjib; El Fassi, Lamiaa; Franklin, Gregg; Friend, Megan; Gao, Haiyan; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Gomez, Javier; Guo, Lei; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, J; Hyde, Charles; Ibrahim Abdalla, Hassan; Jiang, Xiaodong; Jin, Ge; Katich, Joseph; Kelleher, Aidan; Kolarkar, Ameya; Korsch, Wolfgang; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lukhanin, Oleksandr; Mamyan, Vahe; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Mihovilovic, Miha; Moffit, Bryan; Muangma, Navaphon; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Nuruzzaman, nfn; Oh, Yongseok; Peng, Jen-chieh; Qian, Xin; Qiang, Yi; Rakhman, Abdurahim; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Hashemi Shabestari, Mitra; Shahinyan, Albert; Sirca, Simon; Solvignon-Slifer, Patricia; Subedi, Ramesh; Sulkosky, Vincent; Tobias, William; Troth, Wolfgang; Wang, Diancheng; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Zhihong; Yuan, Lulin; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao

    2014-07-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3He target. In this dedicated experiment, the spin structure function g2 on 3He was determined with precision at large x, and the neutron twist-three matrix element dn2 was measured at ?Q2? of 3.21 and 4.32 GeV2/c2, with an absolute precision of about 10?5. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ?Q2?= 5 GeV2/c2. Combining dn2 and a newly extracted twist-four matrix element, fn2, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.

  5. A Precision Measurement of the Neutron Twist-3 Matrix Element $d_2^n$: Probing Color Forces

    CERN Document Server

    Posik, M; Parno, D S; Allada, K; Armstrong, W; Averett, T; Benmokhtar, F; Bertozzi, W; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Choi, S; Chudakov, E; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; Deng, X; Deur, A; Dutta, C; Fassi, L El; Franklin, G B; Friend, M; Gao, H; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Gomez, J; Guo, L; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Hyde, C; Ibrahim, H F; Jiang, X; Jin, G; Katich, J; Kelleher, A; Kolarkar, A; Korsch, W; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Long, E; Lukhanin, A; Mamyan, V; McNulty, D; Meziani, Z -E; Michaels, R; Mihovilovič, M; Moffit, B; Muangma, N; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Nuruzzaman,; Oh, Y; Peng, J C; Qian, X; Qiang, Y; Rakhman, A; Riordan, S; Saha, A; Sawatzky, B; Shabestari, M H; Shahinyan, A; Širca, S; Solvignon, P; Subedi, R; Sulkosky, V; Tobias, A; Troth, W; Wang, D; Wang, Y; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X

    2014-01-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken $x$ (0.25 $ \\le x \\le $ 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized $^3$He target. In this dedicated experiment, the spin structure function $g_2$ on $^3$He was determined with precision at large $x$, and the neutron twist-three matrix element $d_2^n$ was measured at $\\left$ of 3.21 and 4.32 GeV$^2$/$c^2$, with an absolute precision of about $10^{-5}$. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at $\\left =$ 5 GeV$^2$/$c^2$. Combining $d_2^n$ and a newly extracted twist-four matrix element, $f_2^n$, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.

  6. Performance of twist-coupled blades on variable speed rotors

    Energy Technology Data Exchange (ETDEWEB)

    Lobitz, D.W.; Veers, P.S.; Laino, D.J.

    1999-12-07

    The load mitigation and energy capture characteristics of twist-coupled HAWT blades that are mounted on a variable speed rotor are investigated in this paper. These blades are designed to twist toward feather as they bend with pretwist set to achieve a desirable twist distribution at rated power. For this investigation, the ADAMS-WT software has been modified to include blade models with bending-twist coupling. Using twist-coupled and uncoupled models, the ADAMS software is exercised for steady wind environments to generate C{sub p} curves at a number of operating speeds to compare the efficiencies of the two models. The ADAMS software is also used to generate the response of a twist-coupled variable speed rotor to a spectrum of stochastic wind time series. This spectrum contains time series with two mean wind speeds at two turbulence levels. Power control is achieved by imposing a reactive torque on the low speed shaft proportional to the RPM squared with the coefficient specified so that the rotor operates at peak efficiency in the linear aerodynamic range, and by limiting the maximum RPM to take advantage of the stall controlled nature of the rotor. Fatigue calculations are done for the generated load histories using a range of material exponents that represent materials from welded steel to aluminum to composites, and results are compared with the damage computed for the rotor without twist-coupling. Results indicate that significant reductions in damage are achieved across the spectrum of applied wind loading without any degradation in power production.

  7. Homozygous Nonsense Mutations in TWIST2 Cause Setleis Syndrome

    Science.gov (United States)

    Tukel, Turgut; Šošić, Dražen; Al-Gazali, Lihadh I.; Erazo, Mónica; Casasnovas, Jose; Franco, Hector L.; Richardson, James A.; Olson, Eric N.; Cadilla, Carmen L.; Desnick, Robert J.

    2010-01-01

    The focal facial dermal dysplasias (FFDDs) are a group of inherited developmental disorders in which the characteristic diagnostic feature is bitemporal scar-like lesions that resemble forceps marks. To date, the genetic defects underlying these ectodermal dysplasias have not been determined. To identify the gene defect causing autosomal-recessive Setleis syndrome (type III FFDD), homozygosity mapping was performed with genomic DNAs from five affected individuals and 26 members of the consanguineous Puerto Rican (PR) family originally described by Setleis and colleagues. Microsatellites D2S1397 and D2S2968 were homozygous in all affected individuals, mapping the disease locus to 2q37.3. Haplotype analyses of additional markers in the PR family and a consanguineous Arab family further limited the disease locus to ∼3 Mb between D2S2949 and D2S2253. Of the 29 candidate genes in this region, the bHLH transcription factor, TWIST2, was initially sequenced on the basis of its known involvement in murine facial development. Homozygous TWIST2 nonsense mutations, c.324C>T and c.486C>T, were identified in the affected members of the Arab and PR families, respectively. Characterization of the expressed mutant proteins, p.Q65X and p.Q119X, by electrophoretic mobility shift assays and immunoblot analyses indicated that they were truncated and unstable. Notably, Setleis syndrome patients and Twist2 knockout mice have similar facial features, indicating the gene's conserved role in mammalian development. Although human TWIST2 and TWIST1 encode highly homologous bHLH transcription factors, the finding that TWIST2 recessive mutations cause an FFDD and dominant TWIST1 mutations cause Saethre-Chotzen craniocynostosis suggests that they function independently in skin and bone development. PMID:20691403

  8. Extension-twist coupling optimization in composite rotor blades

    Science.gov (United States)

    Ozbay, Serkan

    2005-07-01

    For optimal rotor performance in a tiltrotor aircraft the difference in the inflow and the rotor speeds between the hover and cruise flight modes suggests different blade twist and chord distributions. The blade twist rates in current tiltrotor applications are defined based upon a compromise between the figure of merit in hover and propeller efficiency in airplane mode. However, when each operation mode is considered separately the optimum blade distributions are found to be considerably different. Passive blade twist control, which uses the inherent variation in centrifugal forces on a rotor blade to achieve optimum blade twist distributions in each flight mode through the use of extension-twist coupled composite rotor blades, has been considered for performance improvement of tiltrotor aircraft over the last two decades. The challenge for this concept is to achieve the desired twisting deformations in the rotor blade without altering the aeroelastic characteristics of the vehicle. A concept referred to as the sliding mass concept is proposed in this work in order to increase the twist change with rotor speed for a closed-cell composite rotor blade cross-section to practical levels for performance improvement in a tiltrotor aircraft. The concept is based on load path changes for the centrifugal forces by utilizing non-structural masses readily available on a conventional blade, such as the leading edge balancing mass. A multilevel optimization technique based on the simulated annealing method is applied to improve the performance of the XV15 tiltrotor aircraft. A cross-sectional analysis tool, VABS together with a multibody dynamics code, DYMORE are integrated into the optimization process. The optimization results revealed significant improvements in the power requirement in hover while preserving cruise efficiency. It is also shown that about 21% of the improvement is provided through the sliding mass concept pointing to the additional flexibility the concept

  9. Exact special twist method for quantum Monte Carlo simulations

    Science.gov (United States)

    Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro

    2016-12-01

    We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.

  10. BKM Lie superalgebras from counting twisted CHL dyons

    CERN Document Server

    Govindarajan, Suresh

    2010-01-01

    Following Sen[arXiv:0911.1563], we study the counting of (`twisted') BPS states that contribute to twisted helicity trace indices in four-dimensional CHL models with N=4 supersymmetry. The generating functions of half-BPS states, twisted as well as untwisted, are given in terms of multiplicative eta products with the Mathieu group, M_{24}, playing an important role. These multiplicative eta products enable us to construct Siegel modular forms that count twisted quarter-BPS states. The square-roots of these Siegel modular forms turn out be precisely a special class of Siegel modular forms, the dd-modular forms, that have been classified by Clery and Gritsenko[arXiv:0812.3962]. We show that each one of these dd-modular forms arise as the Weyl-Kac-Borcherds denominator formula of a rank-three Borcherds-Kac-Moody Lie superalgebra. The walls of the Weyl chamber are in one-to-one correspondence with the walls of marginal stability in the corresponding CHL model for twisted dyons as well as untwisted ones. This lead...

  11. The trouble with twisting (2,0) theory

    CERN Document Server

    Anderson, Louise

    2013-01-01

    We consider a twisted version of the abelian (2,0) theory placed upon a Lorenzian six-manifold with a product structure, $M_6=C \\times M_4 $. This is done by an investigation of the free tensor multiplet on the level of equations of motion, where the problem of its formulation in Euclidean signature is circumvented by letting the time-like direction lie in the two-manifold $C$ and performing a topological twist along $M_4$ alone. A compactification on $C$ is shown to be necessary to enable the possibility of finding a topological field theory. The hypothetical twist along a Euclidean $C$ is argued to amount to the correct choice of linear combination of the two supercharges scalar on $M_4$. It may be slightly surprising that this is not the same linear combination as in the well known Donaldson-Witten twist. A more surprising fact however, is that this twisted theory contains no $Q$-exact and covariantly conserved stress tensor unless $M_4$ has vanishing curvature. This is to our knowledge a phenomenon which ...

  12. The trouble with twisting (2,0) theory

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Louise; Linander, Hampus [Department of Fundamental Physics, Chalmers University of Technology,S-412 96 Göteborg (Sweden)

    2014-03-12

    We consider a twisted version of the abelian (2,0) theory placed upon a Lorentzian six-manifold with a product structure, M{sub 6}=C×M{sub 4}. This is done by an investigation of the free tensor multiplet on the level of equations of motion, where the problem of its formulation in Euclidean signature is circumvented by letting the time-like direction lie in the two-manifold C and performing a topological twist along M{sub 4} alone. A compactification on C is shown to be necessary to enable the possibility of finding a topological field theory. The hypothetical twist along a Euclidean C is argued to amount to the correct choice of linear combination of the two supercharges scalar on M{sub 4}. This procedure is expected and conjectured to result in a topological field theory, but we arrive at the surprising conclusion that this twisted theory contains no Q-exact and covariantly conserved stress tensor unless M{sub 4} has vanishing curvature. This is to our knowledge a phenomenon which has not been observed before in topological field theories. In the literature, the setup of the twisting used here has been suggested as the origin of the conjectured AGT-correspondence, and our hope is that this work may somehow contribute to the understanding of it.

  13. THE NONLINEAR EVOLUTION OF A TWIST IN A MAGNETIC SHOCKTUBE

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas; Taroyan, Youra [Department of Physics, IMPACS, Aberystwyth University, Aberystwyth (United Kingdom); Fedun, Viktor [Space Systems Laboratory, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield (United Kingdom)

    2016-02-01

    The interaction between a small twist and a horizontal chromospheric shocktube is investigated. The magnetic flux tube is modeled using 1.5-D magnetohydrodynamics. The presence of a supersonic yet sub-Alfvénic flow along the flux tube allows the Alfvénic pulse driven at the photospheric boundary to become trapped and amplified between the stationary shock front and photosphere. The amplification of the twist leads to the formation of slow and fast shocks. The pre-existing stationary shock is destabilized and pushed forward as it merges with the slow shock. The propagating fast shock extracts the kinetic energy of the flow and launches rapid twists of 10–15 km s{sup −1} upon each reflection. A cavity is formed between the slow and fast shocks where the flux tube becomes globally twisted within less than an hour. The resultant highly twisted magnetic flux tube is similar to those prone to kink instabilities, which may be responsible for solar eruptions. The generated torsional flux is calculated.

  14. Probing Viscoelasticity of Cholesteric Liquid Crystals in a Twisting Cell

    Science.gov (United States)

    Angelo, Joseph; Moheghi, Alireza; Diorio, Nick; Jakli, Antal

    2013-03-01

    Viscoelastic properties of liquid crystals are typically studied either using Poiseuille flow, which can be produced by a pressure gradient in a capillary tube,[2] or Couette flow, which can be generated by a shear between concentric cylinders.[3] We use a different method in which we twist the liquid crystal sandwiched between two cylindrical glass plates, one of which can rotate about its center, the other of which is fixed. When the cell is twisted, there is a force proportional to the twist angle and the twist elastic constant, and inversely proportional to the pitch and sample thickness, normal to the substrates due to the change in pitch in the cholesteric liquid crystal (CLC). Measuring this force on various CLCs with known pitch we could obtain the twist elastic constants. In addition to the equilibrium force, we observed a transient force during the rotation, which is related to the flow of the material, thus allowing us to determine the Leslie viscosity component α1, which typically cannot be assessed by other methods. We expect this apparatus to be a useful tool to study the visco-elastic properties of liquid crystals. The authors acknowledge support from NSF grant DMR-0907055.

  15. Higher twist effects in deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pirnay, Bjoern Michael

    2016-08-01

    In this work we explore the effects of higher twist power corrections on the deeply virtual Compton scattering process. The calculation of the helicity amplitudes for all possible polarization combinations is performed within the framework of QCD operator product expansion. As a result the known accuracy of the amplitudes is improved to include the (kinematic) twist-4 contributions. For the most part the analysis focuses on spin-1/2 targets, the answers for scalar targets conveniently emerge as a byproduct. We investigate the analytical structure of these corrections and prove consistency with QCD factorization. We give an estimation of the numerical impact of the sub-leading twist contributions for proton targets with the help of a phenomenological model for the nonperturbative proton generalized parton distributions. We compare different twist approximations and relate predictions for physical observables to experiments performed by the Hall A, CLAS, HERMES, H1 and ZEUS collaborations. The estimate also includes a numerical study for planned COMPASS-II runs. Throughout the analysis special emphasis is put on the convention dependence induced by finite twist truncation of scattering amplitudes.

  16. BKM Lie superalgebras from counting twisted CHL dyons

    Science.gov (United States)

    Govindarajan, Suresh

    2011-05-01

    Following Sen, we study the counting of (`twisted') BPS states that contribute to twisted helicity trace indices in four-dimensional CHL models with mathcal{N} = 4 supersymmetry. The generating functions of half-BPS states, twisted as well as untwisted, are given in terms of multiplicative eta products with the Mathieu group, M 24, playing an important role. These multiplicative eta products enable us to construct Siegel modular forms that count twisted quarter-BPS states. The square-roots of these Siegel modular forms turn out be precisely a special class of Siegel modular forms, the dd-modular forms, that have been classified by Clery and Gritsenko. We show that each one of these dd-modular forms arise as the Weyl-Kac-Borcherds denominator formula of a rank-three Borcherds-Kac-Moody Lie superalgebra. The walls of the Weyl chamber are in one-to-one correspondence with the walls of marginal stability in the corresponding CHL model for twisted dyons as well as untwisted ones. This leads to a periodic table of BKM Lie superalgebras with properties that are consistent with physical expectations.

  17. Interfacial Atomic Structure of Twisted Few-Layer Graphene.

    Science.gov (United States)

    Ishikawa, Ryo; Lugg, Nathan R; Inoue, Kazutoshi; Sawada, Hidetaka; Taniguchi, Takashi; Shibata, Naoya; Ikuhara, Yuichi

    2016-02-18

    A twist in bi- or few-layer graphene breaks the local symmetry, introducing a number of intriguing physical properties such as opening new bandgaps. Therefore, determining the twisted atomic structure is critical to understanding and controlling the functional properties of graphene. Combining low-angle annular dark-field electron microscopy with image simulations, we directly determine the atomic structure of twisted few-layer graphene in terms of a moiré superstructure which is parameterized by a single twist angle and lattice constant. This method is shown to be a powerful tool for accurately determining the atomic structure of two-dimensional materials such as graphene, even in the presence of experimental errors. Using coincidence-site-lattice and displacement-shift-complete theories, we show that the in-plane translation state between layers is not a significant structure parameter, explaining why the present method is adequate not only for bilayer graphene but also a few-layered twisted graphene.

  18. Curvature regulation of the ciliary beat through axonemal twist

    Science.gov (United States)

    Sartori, Pablo; Geyer, Veikko F.; Howard, Jonathon; Jülicher, Frank

    2016-10-01

    Cilia and flagella are hairlike organelles that propel cells through fluid. The active motion of the axoneme, the motile structure inside cilia and flagella, is powered by molecular motors of the axonemal dynein family. These motors generate forces and torques that slide and bend the microtubule doublets within the axoneme. To create regular waveforms, the activities of the dyneins must be coordinated. It is thought that coordination is mediated by stresses due to radial, transverse, or sliding deformations, and which build up within the moving axoneme and feed back on dynein activity. However, which particular components of the stress regulate the motors to produce the observed waveforms of the many different types of flagella remains an open question. To address this question, we describe the axoneme as a three-dimensional bundle of filaments and characterize its mechanics. We show that regulation of the motors by radial and transverse stresses can lead to a coordinated flagellar motion only in the presence of twist. We show that twist, which could arise from torque produced by the dyneins, couples curvature to transverse and radial stresses. We calculate emergent beating patterns in twisted axonemes resulting from regulation by transverse stresses. The resulting waveforms are similar to those observed in flagella of Chlamydomonas and sperm. Due to the twist, the waveform has nonplanar components, which result in swimming trajectories such as twisted ribbons and helices, which agree with observations.

  19. The epsilon regime with twisted mass Wilson fermions

    CERN Document Server

    Bar, Oliver; Shindler, Andrea

    2010-01-01

    We investigate the leading lattice spacing effects in mesonic two-point correlators computed with twisted mass Wilson fermions in the epsilon-regime. By generalizing the procedure already introduced for the untwisted Wilson chiral effective theory, we extend the continuum chiral epsilon expansion to twisted mass WChPT. We define different regimes, depending on the relative power counting for the quark masses and the lattice spacing. We explicitly compute, for arbitrary twist angle, the leading O(a^2) corrections appearing at NLO in the so-called GSM^* regime. As in untwisted WChPT, we find that in this situation the impact of explicit chiral symmetry breaking due to lattice artefacts is strongly suppressed. Of particular interest is the case of maximal twist, which corresponds to the setup usually adopted in lattice simulations with twisted mass Wilson fermions. The formulae we obtain can be matched to lattice data to extract physical low energy couplings, and to estimate systematic uncertainties coming from ...

  20. Comments on twisted indices in 3d supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Closset, Cyril [Simons Center for Geometry and PhysicsState University of New York, Stony Brook, NY 11794 (United States); Kim, Heeyeon [Perimeter Institute for Theoretical Physics31 Caroline Street North, Waterloo, N2L 2Y5, Ontario (Canada)

    2016-08-09

    We study three-dimensional N=2 supersymmetric gauge theories on Σ{sub g}×S{sup 1} with a topological twist along Σ{sub g}, a genus-g Riemann surface. The twisted supersymmetric index at genus g and the correlation functions of half-BPS loop operators on S{sup 1} can be computed exactly by supersymmetric localization. For g=1, this gives a simple UV computation of the 3d Witten index. Twisted indices provide us with a clean derivation of the quantum algebra of supersymmetric Wilson loops, for any Yang-Mills-Chern-Simons-matter theory, in terms of the associated Bethe equations for the theory on ℝ{sup 2}×S{sup 1}. This also provides a powerful and simple tool to study 3d N=2 Seiberg dualities. Finally, we study A- and B-twisted indices for N=4 supersymmetric gauge theories, which turns out to be very useful for quantitative studies of three-dimensional mirror symmetry. We also briefly comment on a relation between the S{sup 2}×S{sup 1} twisted indices and the Hilbert series of N=4 moduli spaces.

  1. Interfacial Atomic Structure of Twisted Few-Layer Graphene

    Science.gov (United States)

    Ishikawa, Ryo; Lugg, Nathan R.; Inoue, Kazutoshi; Sawada, Hidetaka; Taniguchi, Takashi; Shibata, Naoya; Ikuhara, Yuichi

    2016-02-01

    A twist in bi- or few-layer graphene breaks the local symmetry, introducing a number of intriguing physical properties such as opening new bandgaps. Therefore, determining the twisted atomic structure is critical to understanding and controlling the functional properties of graphene. Combining low-angle annular dark-field electron microscopy with image simulations, we directly determine the atomic structure of twisted few-layer graphene in terms of a moiré superstructure which is parameterized by a single twist angle and lattice constant. This method is shown to be a powerful tool for accurately determining the atomic structure of two-dimensional materials such as graphene, even in the presence of experimental errors. Using coincidence-site-lattice and displacement-shift-complete theories, we show that the in-plane translation state between layers is not a significant structure parameter, explaining why the present method is adequate not only for bilayer graphene but also a few-layered twisted graphene.

  2. Iterative methods for overlap and twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa, T. [Univ. di Milano Bicocca (Italy); Jansen, K.; Shindler, A.; Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Nagai, K.I. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy); Scorzato, L. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), Villazzano (Italy); Urbach, C. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Wenger, U. [ETH Zuerich (Switzerland). Inst. fuer Theoretische Physik

    2006-09-15

    We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

  3. Adaptive dual-layer super-twisting control and observation

    Science.gov (United States)

    Edwards, Christopher; Shtessel, Yuri

    2016-09-01

    In this paper, a super-twisting-like structure with adaptive gains is proposed. The structure is parameterised by two scalar gains, both of which adapt, and by an additional time-varying term. The magnitudes of the adaptive terms are allowed to both increase and decrease as appropriate so that they are as small as possible, in the sense that they do not unnecessarily over-bound the uncertainty, and yet are large enough to sustain a sliding motion. In the paper, a new time varying gain is incorporated into the traditional super-twisting architecture. The proposed adaption law has a dual-layer structure which is formally analyzed using Lyapunov techniques. The additional term has the effect of simplifying the stability analysis whilst guaranteeing the second-order sliding mode properties of the traditional super-twisting scheme.

  4. Template preparation of twisted nanoparticles of mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen

    2011-01-01

    Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.

  5. Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups

    CERN Document Server

    Mubeena, T

    2011-01-01

    Given an automorphism $\\phi:\\Gamma\\lr \\Gamma$, one has an action of $\\Gamma$ on itself by $\\phi$-twisted conjugacy, namely, $g.x=gx\\phi(g^{-1})$. The orbits of this action are called $\\phi$-twisted conjugacy classes. One says that $\\Gamma$ has the $R_\\infty$-property if there are infinitely many $\\phi$-twisted conjugacy classes for every automorphism $\\phi$ of $\\Gamma$. In this paper we show that $\\SL(n,\\bz)$ and its congruence subgroups have the $R_\\infty$-property. Further we show that any (countable) abelian extension of $\\Gamma$ has the $R_\\infty$-property where $\\Gamma$ is a torsion free non-elementary hyperbolic group, or $\\SL(n,\\bz), \\Sp(2n,\\bz)$ or a principal congruence subgroup of $\\SL(n,\\bz)$ or the fundamental group of a complete Riemannian manifold of constant negative curvature.

  6. Twists of Pl\\"ucker coordinates as dimer partition functions

    CERN Document Server

    Scott, Jeanne

    2013-01-01

    The homogeneous coordinate ring of the Grassmannian Gr(k,n) has a cluster structure defined in terms of planar diagrams known as Postnikov diagrams. The cluster corresponding to such a diagram consists entirely of Pl\\"ucker coordinates. We introduce a twist map on Gr(k,n) related to the BZ-twist, and give an explicit Laurent expansion for the twist of an arbitrary Pl\\"ucker coordinate, in terms of the cluster variables associated with a fixed Postnikov diagram. The expansion arises as a (scaled) dimer partition function of a weighted version of the bipartite graph dual to the Postnikov diagram, modified by a boundary condition determined by the Pl\\"ucker coordinate.

  7. On the Stern sequence and its twisted version

    CERN Document Server

    Allouche, Jean-Paul

    2012-01-01

    In a recent preprint on ArXiv, Bacher introduced a twisted version of the Stern sequence. His paper contains in particular three conjectures relating the generating series for the Stern sequence and for the twisted Stern sequence. Soon afterwards Coons published two papers in {\\it Integers}: first he proved these conjectures, second he used his result to obtain a correlation-type identity for the Stern sequence. We recall here a simple result of Reznick and we state a similar result for the twisted Stern sequence. We deduce an easy proof of Coons' identity, and a simple proof of Bacher's conjectures. Furthermore we prove identities similar to Coons' for variations on the Stern sequence that include Bacher's sequence.

  8. Iterative methods for overlap and twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa, T. [Univ. di Milano Bicocca (Italy); Jansen, K.; Shindler, A.; Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Nagai, K.I. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy); Scorzato, L. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), Villazzano (Italy); Urbach, C. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Wenger, U. [ETH Zuerich (Switzerland). Inst. fuer Theoretische Physik

    2006-09-15

    We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

  9. A Topological Approach to Bend-Twist Maps with Applications

    Directory of Open Access Journals (Sweden)

    Anna Pascoletti

    2011-01-01

    Full Text Available In this paper we reconsider, in a purely topological framework, the concept of bend-twist map previously studied in the analytic setting by Tongren Ding in (2007. We obtain some results about the existence and multiplicity of fixed points which are related to the classical Poincaré-Birkhoff twist theorem for area-preserving maps of the annulus; however, in our approach, like in Ding (2007, we do not require measure-preserving conditions. This makes our theorems in principle applicable to nonconservative planar systems. Some of our results are also stable for small perturbations. Possible applications of the fixed point theorems for topological bend-twist maps are outlined in the last section.

  10. Group dualities, T-dualities, and twisted K-theory

    CERN Document Server

    Mathai, Varghese

    2016-01-01

    This paper explores further the connection between Langlands duality and T-duality for compact simple Lie groups, which appeared in work of Daenzer-Van Erp and Bunke-Nikolaus. We show that Langlands duality gives rise to isomorphisms of twisted K-groups, but that these K-groups are trivial except in the simplest case of SU(2) and SO(3). Along the way we compute explicitly the map on $H^3$ induced by a covering of compact simple Lie groups, which is either 1 or 2 depending in a complicated way on the type of the groups involved. We also give a new method for computing twisted K-theory using the Segal spectral sequence, giving simpler computations of certain twisted K-theory groups of compact Lie groups relevant for D-brane charges in WZW theories and rank-level dualities. Finally we study a duality for orientifolds based on complex Lie groups with an involution.

  11. Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots

    Science.gov (United States)

    Ham, J.-Y.; Lee, J.

    2016-09-01

    We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the A-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the A-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope -4n+2 turns out to be 2. Bibliography: 39 titles.

  12. Anomalous phase shift in a twisted quantum loop

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Hisao [Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Shima, Hiroyuki, E-mail: taira@eng.hokudai.ac.j [Department of Applied Mathematics 3, LaCaN, Universitat Politecnica de Catalunya (UPC), Barcelona 08034 (Spain)

    2010-09-03

    The coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm-like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.

  13. Folding DNA into twisted and curved nanoscale shapes.

    Science.gov (United States)

    Dietz, Hendrik; Douglas, Shawn M; Shih, William M

    2009-08-01

    We demonstrate the ability to engineer complex shapes that twist and curve at the nanoscale from DNA. Through programmable self-assembly, strands of DNA are directed to form a custom-shaped bundle of tightly cross-linked double helices, arrayed in parallel to their helical axes. Targeted insertions and deletions of base pairs cause the DNA bundles to develop twist of either handedness or to curve. The degree of curvature could be quantitatively controlled, and a radius of curvature as tight as 6 nanometers was achieved. We also combined multiple curved elements to build several different types of intricate nanostructures, such as a wireframe beach ball or square-toothed gears.

  14. Noncommutative geometry, Grand Symmetry and twisted spectral triple

    CERN Document Server

    Devastato, Agostino

    2015-01-01

    In the noncommutative geometry approach to the standard model we discuss the possibility to derive the extra scalar field sv- initially suggested by particle physicist to stabilize the electroweak vacuum - from a "grand algebra" that contains the usual standard model algebra. We introduce the Connes-Moscovici twisted spectral triples for the Grand Symmetry model, to cure a technical problem, that is the appearance, together with the field sv, of unbounded vectorial terms. The twist makes these terms bounded, and also permits to understand the breaking making the computation of the Higgs mass compatible with the 126 GeV experimental value.

  15. Exponential reduction of finite volume effects with twisted boundary conditions

    CERN Document Server

    Cherman, Aleksey; Wagman, Michael L; Yaffe, Laurence G

    2016-01-01

    Flavor-twisted boundary conditions can be used for exponential reduction of finite volume artifacts in flavor-averaged observables in lattice QCD calculations with $SU(N_f)$ light quark flavor symmetry. Finite volume artifact reduction arises from destructive interference effects in a manner closely related to the phase averaging which leads to large $N_c$ volume independence. With a particular choice of flavor-twisted boundary conditions, finite volume artifacts for flavor-singlet observables in a hypercubic spacetime volume are reduced to the size of finite volume artifacts in a spacetime volume with periodic boundary conditions that is four times larger.

  16. Duality and conformal twisted boundaries in the Ising model

    CERN Document Server

    Grimm, U

    2002-01-01

    There has been recent interest in conformal twisted boundary conditions and their realisations in solvable lattice models. For the Ising and Potts quantum chains, these amount to boundary terms that are related to duality, which is a proper symmetry of the model at criticality. Thus, at criticality, the duality-twisted Ising model is translationally invariant, similar to the more familiar cases of periodic and antiperiodic boundary conditions. The complete finite-size spectrum of the Ising quantum chain with this peculiar boundary condition is obtained.

  17. Moments of meson distribution functions with dynamical twisted mass fermions

    CERN Document Server

    Baron, R; Carbonell, J; Jansen, K; Liu, Z; Pène, O; Urbach, C

    2007-01-01

    We present our preliminary results on the lowest moment of quark distribution functions of the pion using two flavor dynamical simulations with Wilson twisted mass fermions at maximal twist. The calculation is done in a range of pion masses from 300 to 500 MeV. A stochastic source method is used to reduce inversions in calculating propagators. Finite volume effects at the lowest quark mass are examined by using two different lattice volumes. Our results show that we achieve statistical errors of only a few percent. We plan to compute renormalization constants non-perturbatively and extend the calculation to two more lattice spacings and to the nucleons.

  18. Note on twisted elliptic genus of K3 surface

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Tohru, E-mail: eguchi@yukawa.kyoto-u.ac.j [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hikami, Kazuhiro, E-mail: KHikami@gmail.co [Department of Mathematics, Naruto University of Education, Tokushima 772-8502 (Japan)

    2011-01-03

    We discuss the possibility of Mathieu group M{sub 24} acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M{sub 24} so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M{sub 24}. In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.

  19. Brief Analysis of the Semantic Deviation in Oliver Twist

    Institute of Scientific and Technical Information of China (English)

    黄二靓

    2016-01-01

    As one of the foremost critical realist writers of the Victorian era, Charles Dickens is adept at using language to create all kinds of characters in a humorous or ironic tone. Therefore he received massive popularity for his unique style in storytelling. Oliver Twist is one of Charles Dickens's masterpieces and also the most appropriate choice for the stylistic study on Charles Dickens. This thesis endeavors to explore the aesthetic effect of semantic deviation appearing in Oliver Twist so that we can have a better comprehension about the excellent writing skill of Charles Dickens.

  20. A universal coefficient theorem for twisted K-theory

    CERN Document Server

    Khorami, Mehdi

    2010-01-01

    In this paper, we recall the definition of twisted K-theory in various settings. We prove that for a twist $\\tau$ corresponding to a three dimensional integral cohomology class of a space X, there exist a "universal coefficient" isomorphism K_{*}^{\\tau}(X)\\cong K_{*}(P_{\\tau})\\otimes_{K_{*}(\\mathbb{C}P^{\\infty})} \\hat{K}_{*} where $P_\\tau$ is the total space of the principal $\\mathbb{C}P^{\\infty}$-bundle induced over X by $\\tau$ and $\\hat K_*$ is obtained form the action of $\\mathbb{C}P^{\\infty}$ on K-theory.

  1. Stability Analysis of The Twisted Superconducting Semilocal Strings

    CERN Document Server

    Garaud, Julien

    2007-01-01

    We study the stability properties of the twisted vortex solutions in the semilocal Abelian Higgs model with a global $\\mathbf{SU}(2)$ invariance. This model can be viewed as the Weinberg-Salam theory in the limit where the non-Abelian gauge field decouples, or as a two component Ginzburg-Landau theory. The twisted vortices are characterized by a constant global current ${\\cal I}$, and for ${\\cal I}\\to 0$ they reduce to the semilocal strings, that is to the Abrikosov-Nielsen-Olesen vortices embedded into the semilocal model. Solutions with ${\\cal I}\

  2. Noncommutative geometry, Grand Symmetry and twisted spectral triple

    Science.gov (United States)

    Devastato, Agostino

    2015-08-01

    In the noncommutative geometry approach to the standard model we discuss the possibility to derive the extra scalar field sv - initially suggested by particle physicist to stabilize the electroweak vacuum - from a “grand algebra” that contains the usual standard model algebra. We introduce the Connes-Moscovici twisted spectral triples for the Grand Symmetry model, to cure a technical problem, that is the appearance, together with the field sv, of unbounded vectorial terms. The twist makes these terms bounded, and also permits to understand the breaking making the computation of the Higgs mass compatible with the 126 GeV experimental value.

  3. Standard Test Method for Measuring the Curved Beam Strength of a Fiber-Reinforced Polymer-Matrix Composite - (View Full Text) D6416/D6416M-01(2007) Standard Test Method for Two-Dimensional Flexural Properties of Simply Supported Sandwich Composite Plates Subjected to a Distributed Load

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    Standard Test Method for Measuring the Curved Beam Strength of a Fiber-Reinforced Polymer-Matrix Composite - (View Full Text) D6416/D6416M-01(2007) Standard Test Method for Two-Dimensional Flexural Properties of Simply Supported Sandwich Composite Plates Subjected to a Distributed Load

  4. Wilson Loops and Area-Preserving Diffeomorphisms in Twisted Noncommutative Gauge Theory

    CERN Document Server

    Riccardi, M; Riccardi, Mauro; Szabo, Richard J.

    2007-01-01

    We use twist deformation techniques to analyse the behaviour under area-preserving diffeomorphisms of quantum averages of Wilson loops in Yang-Mills theory on the noncommutative plane. We find that while the classical gauge theory is manifestly twist covariant, the holonomy operators break the quantum implementation of the twisted symmetry in the usual formal definition of the twisted quantum field theory. These results are deduced by analysing general criteria which guarantee twist invariance of noncommutative quantum field theories. From this a number of general results are also obtained, such as the twisted symplectic invariance of noncommutative scalar quantum field theories with polynomial interactions and the existence of a large class of holonomy operators with both twisted gauge covariance and twisted symplectic invariance.

  5. Simulating QCD at the physical point with N{sub f}=2 Wilson twisted mass fermions at maximal twist

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rehim, A. [The Cyprus Institute, Nicosia (Cyprus). CaSToRC; Alexandrou, C. [The Cyprus Institute, Nicosia (Cyprus). CaSToRC; Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Burger, F. [DESY Zeuthen (Germany). NIC; Collaboration: European Twisted Mass Collaboration; and others

    2015-12-15

    We present simulations of QCD using N{sub f}=2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at a∼0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces O(a{sup 2}) cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.

  6. Simulating QCD at the Physical Point with $N_f=2$ Wilson Twisted Mass Fermions at Maximal Twist

    CERN Document Server

    Abdel-Rehim, A; Burger, F; Constantinou, M; Dimopoulos, P; Frezzotti, R; Hadjiyiannakou, K; Jansen, K; Kallidonis, C; Kostrzewa, B; Koutsou, G; Mangin-Brinet, M; Petschlies, M; Pientka, G; Rossi, G C; Urbach, C; Wenger, U

    2015-01-01

    We present simulations of QCD using Nf=2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at ~0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.

  7. On the space of connections having non-trivial twisted harmonic spinors

    Energy Technology Data Exchange (ETDEWEB)

    Bei, Francesco, E-mail: bei@math.hu-berlin.de [Institut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin (Germany); Waterstraat, Nils, E-mail: n.waterstraat@kent.ac.uk [School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury, Kent CT2 7NF (United Kingdom)

    2015-09-15

    We consider Dirac operators on odd-dimensional compact spin manifolds which are twisted by a product bundle. We show that the space of connections on the twisting bundle which yields an invertible operator has infinitely many connected components if the untwisted Dirac operator is invertible and the dimension of the twisting bundle is sufficiently large.

  8. Effect and mechanism of the Twist gene on invasion and metastasis of gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Geng-Qiu Luo; Jing-He Li; Ji-Fang Wen; Yan-Hong Zhou; Yong-Bin Hu; Jian-Hua Zhou

    2008-01-01

    AIM: To study the effect of the transfected Twist gene on invasion and metastasis of gastric carcinoma cells and the possible mechanisms involved.METHODS: Human gastric carcinoma MKN28 cells were stably transfected with Twist sense plasmid, and MKN45 cells were stably transfected with Twist antisense plasmid using the lipofectamine transfection technique.RT-PCR,Western blotting, ENSA, gelatin zymography assay, and in vitro invasion and migration assays were performed.Nude mice metastasis models were established by the abdominal cavity transfer method.RESULTS: Cell models (TwistS-MKN28) that steadily expressed high Twist protein were obtained.Compared with MKN28 and pcDNA3-MKN28 cells, adherence,migration and invasion ability of TwistS-MKN28 cells were clearly raised.The number of cancer nodules was increased significantly in the abdominal cavity and liver of nude mice inoculated with TwistS-MKN28 cells.Overexpression of Twist in MKN28 cells increased Tcf-4/Lef DNA binding activity, and promoted expression of Tcf-4's downstream target genes cyclin Dt and HMP-2.However, suppression of Twist (TwistAS-NKN45) inhibited MKN45 cell invasion and the expression of cyclin D1 was reduced.The activity of MMP-2 was also decreased.CONCLUSION: These results indicate that Twist promotes gastric cancer cell migration, invasion and metastasis, and Twist may play an important role in Wnt/Tcf-4 signaling.

  9. Gauge theory on twisted kappa-Minkowski: old problems and possible solutions

    CERN Document Server

    Dimitrijevic, Marija; Pachol, Anna

    2014-01-01

    We review the application of twist deformation formalism and the construction of noncommutative gauge theory on kappa-Minkowski space-time. We compare two different types of twists: the Abelian and the Jordanian one. In each case we provide the twisted differential calculus and consider U(1) gauge theory. Different methods of obtaining a gauge invariant action and related problems are thoroughly discussed.

  10. Gauge Theory on Twisted kappa-Minkowski: Old Problems and Possible Solutions

    Science.gov (United States)

    Dimitrijević, Marija; Jonke, Larisa; Pachoł, Anna

    2014-06-01

    We review the application of twist deformation formalism and the construction of noncommutative gauge theory on κ-Minkowski space-time. We compare two different types of twists: the Abelian and the Jordanian one. In each case we provide the twisted differential calculus and consider {U}(1) gauge theory. Different methods of obtaining a gauge invariant action and related problems are thoroughly discussed.

  11. Twist decomposition of Drell-Yan structure functions: phenomenological implications

    CERN Document Server

    Brzeminski, Dawid; Sadzikowski, Mariusz; Stebel, Tomasz

    2016-01-01

    The forward Drell--Yan process in $pp$ scattering at the LHC at $\\sqrt{S}=14$ TeV is considered. We analyze the Drell--Yan structure functions assuming the dominance of a Compton-like emission of a virtual photon from a fast quark scattering off the small $x$ gluons. The color dipole framework is applied to perform quantitatively the twist decomposition of all the Drell--Yan structure functions. Two models of the color dipole scattering are applied: the Golec-Biernat--W\\"{u}sthoff model and the dipole cross section obtained from the Balitsky--Fadin--Kuraev--Lipatov evolution equation. The two models have essentially different higher twist content and the gluon transverse momentum distribution and lead to different significant effects beyond the collinear leading twist description. It is found that the gluon transverse momentum effects are significant in the Drell--Yan structure functions for all Drell--Yan pair masses $M$, and the higher twist effects become important for $M \\lesssim 10$ GeV. It is found that...

  12. Twisting singular solutions of Betheʼs equations

    Science.gov (United States)

    Nepomechie, Rafael I.; Wang, Chunguang

    2014-12-01

    The Bethe equations for the periodic XXX and XXZ spin chains admit singular solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to be physical, in which case they correspond to genuine eigenvalues and eigenvectors of the Hamiltonian.

  13. DVCS on the nucleon to the twist-3 accuracy

    CERN Document Server

    Kivel, N A

    2001-01-01

    The amplitude of the deeply virtual Compton scattering off nucleon is computed to the twist-3 accuracy in the Wandzura-Wilczek (WW) approximation. The result is presented in the form which can be easily used for analysis of DVCS observables.

  14. Renormalization of four-fermion operators for higher twist calculations

    CERN Document Server

    Capitani, S; Horsley, R; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A

    1999-01-01

    The evaluation of the higher twist contributions to Deep Inelastic Scattering amplitudes involves a non trivial choice of operator bases for the higher orders of the OPE expansion of the two hadronic currents. In this talk we discuss the perturbative renormalization of the four-fermion operators that appear in the above bases.

  15. Photoelectric Effect for Twist-deformed Space-time

    Science.gov (United States)

    Daszkiewicz, M.

    In this article, we investigate the impact of twisted space-time on the photoelectric effect, i.e., we derive the $\\theta$-deformed threshold frequency. In such a way we indicate that the space-time noncommutativity strongly enhances the photoelectric process.

  16. Exploring the epsilon regime with twisted mass fermions

    CERN Document Server

    Jansen, K; Shindler, A; Urbach, C; Wenger, U

    2007-01-01

    In this proceeding contribution we report on a first study in order to explore the so called epsilon regime with Wilson twisted mass (Wtm) fermions. To show the potential of this approach we give a preliminary determination of the chiral condensate.

  17. A mod 2 index theorem for the twisted Signature operator

    Institute of Scientific and Technical Information of China (English)

    张伟平

    1999-01-01

    A mod 2 index theorem for the twisted Signature operator on 4q+1 dimensional manifolds is established. This result generalizes a result of Farber and Turaev, which was proved for the case of orthogonal flat bundles, to arbitrary real vector bundles. It also provides an analytic interpretation of the sign of the Poincar(?)-Reidemeister scalar product defined by Farber and Turaev.

  18. Action of the cork twist on Floer homology

    CERN Document Server

    Akbulut, Selman

    2011-01-01

    We utilize the Ozsvath-Szabo contact invariant to detect the action of involutions on certain homology spheres that are surgeries on symmetric links, generalizing a previous result of Akbulut and Durusoy. Potentially this may be useful to detect different smooth structures on 4-manifolds by cork twisting operation.

  19. Twist-related locomotion of a snake-like robot

    Institute of Scientific and Technical Information of China (English)

    Ye Changlong; Ma Shugen; Li Bin; Wang Yuechao; Jing Tao

    2006-01-01

    As a hyper-redundant robot, a 3D snake-like robot can perform many other configurations and types of locomotion adapted to environment except for mimicking the natural snake locomotion. The natural snake locomotion usually limits locomotion capability of the robot because of inadequacy in the mechanism and actuation to imitate characters of natural snake such as the too many DOFs and the characteristics of the muscle. In order to apply snake-like robots to the unstructured environment, the researchers have designed many gaits for increasing the adaptability to a variety of surroundings. The twist-related locomotion is an effective gait achieved by jointly driving the pitching-DOF and yawing-DOF, with which the snakelike robot can move on rough ground and even climb up some obstacles. In this paper, the twist-related locomotion function is firstly solved, and simplified to be expressible by sine or cosine function. The 2D locomotion such as V-shape and U-shape is achieved. Also by applying it to the serpentine locomotion or other types of locomotion, the snake-like robot can complete composite locomotion that combines the serpentine locomotion or others with twist-related locomotion. Then we extend the twist-related locomotion to 3D space. Finally, the experimental results are presented to validate all above analyses.

  20. Twist and its effect on ACL graft forces.

    NARCIS (Netherlands)

    Arnold, M.P.; Blankevoort, L.; Ham, A. ten; Verdonschot, N.J.J.; Kampen, A. van

    2004-01-01

    Graft tension is a controversial topic in anterior cruciate ligament (ACL) surgery. Evidence suggests a narrow range of graft tensions, which allow the graft to remodel to a stable and mature neoligament. In previous cadaver experiments, we showed that twisting the graft could modulate the graft for

  1. Higher-Twist Dynamics in Large Transverse Momentum Hadron Production

    Energy Technology Data Exchange (ETDEWEB)

    Arleo, Francois; /Annecy, LAPTH; Brodsky, Stanley J.; /SLAC; Hwang, Dae Sung; /Sejong U.; Sickles, Anne M.; /Brookhaven

    2009-12-17

    A scaling law analysis of the world data on inclusive large-p{sub {perpendicular}} hadron production in hadronic collisions is carried out. A significant deviation from leading-twist perturbative QCD predictions at next-to-leading order is reported. The observed discrepancy is largest at high values of x{sub {perpendicular}} = 2p{sub {perpendicular}}/{radical}s. In contrast, the production of prompt photons and jets exhibits the scaling behavior which is close to the conformal limit, in agreement with the leading-twist expectation. These results bring evidence for a non-negligible contribution of higher-twist processes in large-p{sub {perpendicular}} hadron production in hadronic collisions, where the hadron is produced directly in the hard subprocess rather than by gluon or quark jet fragmentation. Predictions for scaling exponents at RHIC and LHC are given, and it is suggested to trigger the isolated large-p{sub {perpendicular}} hadron production to enhance higher-twist processes.

  2. Twisted Conformal Algebra and Quantum Statistics of Harmonic Oscillators

    Directory of Open Access Journals (Sweden)

    J. Naji

    2014-01-01

    Full Text Available We consider noncommutative two-dimensional quantum harmonic oscillators and extend them to the case of twisted algebra. We obtained modified raising and lowering operators. Also we study statistical mechanics and thermodynamics and calculated partition function which yields the free energy of the system.

  3. Determinant of twisted chiral Dirac Operator on the Lattice

    OpenAIRE

    Fosco, C. D.; Randjbar-Daemi, S.

    1995-01-01

    Using the overlap formulation, we calculate the fermionic determinant on the lattice for chiral fermions with twisted boundary conditions in two dimensions. When the lattice spacing tends to zero we recover the results of the usual string-theory continuum calculations.

  4. Twisted accretion discs. Pt. 3. Application to Epsilon Aurigae

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.

    1987-04-15

    Twisting and alignment in a steady-state circumbinary accretion disc is studied. It is then used to account for observed features in the scenario of Epsilon Aurigae as a triple. The alignment depends on viscosity in the disc, but it is always substantial and leads to a tilted slab-like profile when viewed edge-on.

  5. Design studies for twist-coupled wind turbine blades.

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Ulyses (Wichita State University, Wichita, KS); Locke, James (Wichita State University, Wichita, KS)

    2004-06-01

    This study presents results obtained for four hybrid designs of the Northern Power Systems (NPS) 9.2-meter prototype version of the ERS-100 wind turbine rotor blade. The ERS-100 wind turbine rotor blade was designed and developed by TPI composites. The baseline design uses e-glass unidirectional fibers in combination with {+-}45-degree and random mat layers for the skin and spar cap. This project involves developing structural finite element models of the baseline design and carbon hybrid designs with and without twist-bend coupling. All designs were evaluated for a unit load condition and two extreme wind conditions. The unit load condition was used to evaluate the static deflection, twist and twist-coupling parameter. Maximum deflections and strains were determined for the extreme wind conditions. Linear and nonlinear buckling loads were determined for a tip load condition. The results indicate that carbon fibers can be used to produce twist-coupled designs with comparable deflections, strains and buckling loads to the e-glass baseline.

  6. Real bundle gerbes, orientifolds and twisted KR-homology

    CERN Document Server

    Hekmati, Pedram; Szabo, Richard J; Vozzo, Raymond F

    2016-01-01

    We introduce a notion of Real bundle gerbes on manifolds equipped with an involution. We elucidate their relation to Jandl gerbes and prove that they are classified by their Real Dixmier-Douady class in Grothendieck's equivariant sheaf cohomology. We show that the Grothendieck group of Real bundle gerbe modules is isomorphic to twisted KR-theory for a torsion Real Dixmier-Douady class. Building on the Baum-Douglas model for K-homology and the orientifold construction in string theory, we introduce geometric cycles for twisted KR-homology groups using Real bundle gerbe modules. We prove that this defines a real-oriented generalised homology theory dual to twisted KR-theory for Real closed manifolds, and more generally for Real finite CW-complexes, for any Real Dixmier-Douady class. This is achieved by defining an explicit natural transformation to analytic twisted KR-homology and proving that it is an isomorphism. Our constructions give a new framework for the classification of orientifolds in string theory, p...

  7. Twist and its effect on ACL graft forces

    NARCIS (Netherlands)

    Arnold, MP; Blankevoort, L; ten Ham, A; Verdonschot, N; van Kampen, A

    2004-01-01

    Graft tension is a controversial topic in anterior cruciate ligament (ACL) surgery. Evidence suggests a narrow range of graft tensions, which allow the graft to remodel to a stable and mature neoligament. In previous cadaver experiments, we showed that twisting the graft could modulate the graft for

  8. Nucleon Structure in Lattice QCD using twisted mass fermions

    CERN Document Server

    Alexandrou, C; Korzec, T; Carbonell, J; Harraud, P A; Papinutto, M; Guichon, P; Jansen, K

    2010-01-01

    We present results on the nucleon form factors and moments of generalized parton distributions obtained within the twisted mass formulation of lattice QCD. We include a discussion of lattice artifacts by examining results at different volumes and lattice spacings. We compare our results with those obtained using different discretization schemes and to experiment.

  9. Nucleon form factors with dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Brinet, M; Carbonell, J; Drach, V; Harraud, P A; Korzec, T; Koutsou, G

    2008-01-01

    The electromagnetic and axial form factors of the nucleon are evaluated in twisted mass QCD with two degenerate flavors of light, dynamical quarks. The axial charge g_A, magnetic moment and the Dirac and Pauli radii are determined for pion masses in the range 300 MeV to 500 MeV.

  10. Static-light meson masses from twisted mass lattice QCD

    CERN Document Server

    Jansen, K; Shindler, A; Wagner, M

    2008-01-01

    We compute the static-light meson spectrum using two-flavor Wilson twisted mass lattice QCD. We have considered five different values for the light quark mass corresponding to 300 MeV < m_PS < 600 MeV. We have extrapolated our results, to make predictions regarding the spectrum of B and B_s mesons.

  11. Photoelectric effect for twist-deformed space-time

    CERN Document Server

    Daszkiewicz, Marcin

    2016-01-01

    In this article, we investigate the impact of twisted space-time on the photoelectric effect, i.e., we derive the $\\theta$-deformed threshold frequency. In such a way we indicate that the space-time noncommutativity strongly enhances the photoelectric process.

  12. Fractional Fourier transform for partially coherent beam in spatial-frequency domain

    Institute of Scientific and Technical Information of China (English)

    Cai Yang-Jian; Lin Qiang

    2004-01-01

    By using Fourier transform and the tensor analysis method, the fractional Fourier transform (FRT) in the spatialfrequency domain for partially coherent beams is derived. Based on the FRT in the spatial-frequency domain, an analytical transform formula is derived for a partially coherent twisted anisotropic Gaussian-Schell model (GSM) beam passing through the FRT system. The connections between the FRT formula and the generalized diffraction integral formulae for partially coherent beams through an aligned optical system and a misaligned optical system in the spatialfrequency domain are discussed, separately. By using the derived formula, the intensity distribution of partially coherent twisted anisotropic GSM beams in the FRT plane are studied in detail. The formula derived provide a convenient tool for analysing and calculating the FRTs of the partially coherent beams in spatial-frequency domain.

  13. Stability of twisted rods, helices and buckling solutions in three dimensions

    KAUST Repository

    Majumdar, Apala

    2014-11-03

    © 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.

  14. Super twisting controller for on-orbit servicing to non-cooperative target

    Directory of Open Access Journals (Sweden)

    Chen Binglong

    2015-02-01

    Full Text Available A relative position and attitude coupled controller is proposed for rendezvous and docking between two docking ports located in different spacecraft. It is concerned with servicing to a tumbling non-cooperative target spacecraft in arbitrary orbit subjected to external disturbances. By considering both kinematic and dynamical coupled effects of relative rotation on relative translation, a coupled dynamic model is established to represent the relative motion of docking port on target spacecraft with respect to another on the service spacecraft. The spacecraft control is based on the second order sliding mode algorithm of super twisting (ST. It is schemed to manipulate the relative position and attitude synchronously. A formal proof of the finite time convergence property of the closed-loop system is derived theoretically by the second method of Lyapunov. Numerical simulations with the designed ST controller are presented to validate the analytic analysis by contrast with the twisting control algorithm. Simulation results demonstrate that the proposed relative position and attitude integrated controller is characterized by high precision, strong robustness and high reliability.

  15. Twist neutrality, a zero sum rule for oriented closed space curves with applications to circular DNA

    CERN Document Server

    Bohr, Jakob

    2013-01-01

    The interplay between global constraints and local material properties of chain molecules is a subject of emerging interest. Molecules that are intrinsically chiral, such as double-stranded DNA, is one example. They exhibit a non-vanishing strain-twist coupling, which depends on the local geometry, i.e. on curvature and torsion, yet the paths of closed loops are restricted by White's theorem. We suggest that the reciprocation of these principles leads to a twist neutrality condition. I.e. to a zero sum rule for the incremental change in the rate of winding along the curve. This has direct implications for plasmids. For small circular microDNAs it follows that there must exist a minimum length for these to be double-stranded. A first estimate of this minimum length is 120 base pairs. This is not far from the 80 base pairs which is about the smallest length observed in experimental studies. Slightly longer microDNAs are better described as an ellipse and a relationship between length and eccentricity for these ...

  16. Super twisting controller for on-orbit servicing to non-cooperative target

    Institute of Scientific and Technical Information of China (English)

    Chen Binglong; Geng Yunhai

    2015-01-01

    A relative position and attitude coupled controller is proposed for rendezvous and dock-ing between two docking ports located in different spacecraft. It is concerned with servicing to a tumbling non-cooperative target spacecraft in arbitrary orbit subjected to external disturbances. By considering both kinematic and dynamical coupled effects of relative rotation on relative trans-lation, a coupled dynamic model is established to represent the relative motion of docking port on target spacecraft with respect to another on the service spacecraft. The spacecraft control is based on the second order sliding mode algorithm of super twisting (ST). It is schemed to manipulate the relative position and attitude synchronously. A formal proof of the finite time convergence property of the closed-loop system is derived theoretically by the second method of Lyapunov. Numerical simulations with the designed ST controller are presented to validate the analytic analysis by con-trast with the twisting control algorithm. Simulation results demonstrate that the proposed relative position and attitude integrated controller is characterized by high precision, strong robustness and high reliability.

  17. "Something covered with an old blanket": Nancy and other dead mothers in Oliver Twist.

    Science.gov (United States)

    Tatum, Karen Elizabeth

    2005-09-01

    In Powers of Horror: An Essay on Abjection, Julia Kristeva outlines her theory of abjection as a simultaneous fascination and horror stemming from sensorial reminders of the subject's primal, psychological relation to the mother. In this essay, I show how these psychological perspectives can potentially result in acts of physical violence, which I call the "abject response." Applied to literature, a study of the abject response explains why sexually active female characters, such as Nancy, the prostitute, in Oliver Twist, suffer extreme acts of physical violence: not simply because they are sexual, as critics of Victorian domestic ideology most often argue, but rather because their particularly female bodies give them an agency which threatens to destroy the mastery of women on which Victorian male identity is based. Reading Oliver Twist through the lens of Kristeva reveals the ways in which Sikes, Nancy's murderer, psychically links her sexuality to the fatal potential he perceives in her body. This threatening construction of women's sexuality derives from an imbalanced focus in the male psyche on the repulsion aspect of abjection, a focus socially inscribed as a threatening power, which is used to justify violent usurpations of the feminine in masculine constructions of gender.

  18. Primary Parametric Resonance of Inclined Beam Subjected to Harmonic Excitation in Temperature Field%温度场中斜梁受简谐激励的主参数共振

    Institute of Scientific and Technical Information of China (English)

    李高峰; 杨志安; 赵雪娟; 王丽

    2011-01-01

    以温度场中斜梁受简谐激励的非线性振动方程为基础,应用非线性振动的多尺度法,求得非线性振动系统主参数共振的一次近似解,并进行定常解稳定性分析和数值计算;分析了温度、长度、面积、激励等参数对主参数共振幅频响应曲线的影响。数值结果表明,系统主参数共振的共振区很窄,随着温度和长度的减小,系统主参数共振的共振区增大。%Based on nonlinear vibration equation of inclined beam subjected to harmonic excitation in temperature field, the first approximate solution of primary parametric resonance of the nonlinear vibration system is obtained by means of the method of multiple scales for nonlinear oscillations. Results of numerical analysis of the influence of temperature and the ratio of length to height on amplitude frequency response curves are as follows. An analysis is made of stability of steady state solutions and the resonant region of the primary paratric resonance system is narrow. With the decreasing of the temperature and the ratio of length to height, the resonant region of primary parametric resonance of the system increases.

  19. Small x behavior of parton distributions. A study of higher twist effects

    CERN Document Server

    Illarionov, A Yu; Parente, G; Illarionov, Alexei Yu.; Kotikov, Anatoly V.; Parente, Gonzalo

    2004-01-01

    Higher twist corrections to the structure function F_2 at small x are studied for the case of a flat initial condition for the twist-two QCD evolution in the next-to-leading order approximation. We present an analytical parameterization of the contributions from the twist-two and higher twist operators of the Wilson operator product expansion. Higher twist terms are evaluated using two different approaches, one motivated by BFKL and the other motivated by the renormalon formalism. The results of the latter approach are in very good agreement with deep inelastic scattering data from HERA.

  20. Automatic O(a) improvement for twisted mass QCD in the presence of spontaneous symmetry breaking

    Science.gov (United States)

    Aoki, Sinya; Bär, Oliver

    2006-08-01

    In this paper we present a proof for automatic O(a) improvement in twisted mass lattice QCD at maximal twist, which uses only the symmetries of the leading part in the Symanzik effective action. In the process of the proof we clarify that the twist angle is dynamically determined by vacuum expectation values in the Symanzik theory. For maximal twist according to this definition, we show that scaling violations of all quantities which have nonzero values in the continuum limit are even in a. In addition, using Wilson chiral perturbation theory, we investigate this definition for maximal twist and compare it to other definitions which were already employed in actual simulations.

  1. Measurements of TRACE 171A Twisting Coronal Loop Fans about a Twisted Magnetic Flux Tube Originating From Below the Photosphere

    Science.gov (United States)

    Nightingale, R. W.; Ma, G.; Ji, E.

    2009-12-01

    In our previous studies of rotating sunspots about their umbral centers over the past decade, we have been measuring the rotation at the photosphere of the cross sections of large, twisted magnetic flux tubes passing through from below. Many such rotating sunspots have been found and reported in the literature and at earlier meetings [e.g., Brown et al., Sol. Phys. 216, 79, 2003; Yan et al., ApJ 682, L65, 2008; Nightingale et al., Fall AGU Mtg. 2007]. Here we are attempting to measure the rotation of 1 million degree K EUV loops seen in TRACE 171A images emerging from what may be a large 6000 deg K magnetic flux tube (invisible at EUV), which may be the extension of the associated rotating sunspot up in the corona, for active region 9114 on August 8 - 10, 2000. These nonpotential EUV loops appear to be attached at their other end to nonrotating opposite polarity magnetic flux regions and also appear to be flipping around like a twisted jump rope that is attached to a wall at one end. In movies of these twisted coronal loop fans the rotation appears obvious, but is difficult to measure, because of the constant motion and change of intensity of the fans, which tend to obscure each other and the apparent tube center. We will show movies over the 3 days of the twisted loop fans, and details and first results of our measurements, which appear to be similar to those previously found for the associated rotating sunspot down at the photosphere. We will discuss how the twisted magnetic flux tube energizes the corona, carrying energy up from beneath the photosphere. This work was supported by NASA under the TRACE contract NAS5-38099.

  2. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  3. A Search for Higher Twist Effects in the Neutron Spin Structure Function gn2(x,Q2)

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin [College of William and Mary, Williamsburg, VA (United States)

    2003-08-01

    Jefferson Lab experiment E97-103 measured the spin structure function gn2(x,Q2) from a Q2 of 0.58 to 1.36 with a nearly constant x of 0.2. Combining this data with a fit to the world gn1 data, the size of higher twist contributions to the spin structure functions can be extracted using the Wandzura-Wilczek relation. These higher twist contributions result from quark-gluon correlations and are expected to be larger as Q2 decreases. This experiment was performed in Hall A with a longitudinally polarized electron beam and a high density polarized 3He target. The physics motivation and an overview of the experiment will be presented.

  4. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  5. Noncommutative connections on bimodules and Drinfeld twist deformation

    CERN Document Server

    Aschieri, Paolo

    2012-01-01

    Given a Hopf algebra H, we study modules and bimodules over an algebra A that carry an H-action, as well as their morphisms and connections. Bimodules naturally arise when considering noncommutative analogues of tensor bundles. For quasitriangular Hopf algebras and bimodules with an extra quasi-commutativity property we induce connections on the tensor product over A of two bimodules from connections on the individual bimodules. This construction applies to arbitrary connections, i.e. not necessarily H-equivariant ones, and further extends to the tensor algebra generated by a bimodule and its dual. Examples of these noncommutative structures arise in deformation quantization via Drinfeld twists of the commutative differential geometry of a smooth manifold, where the Hopf algebra H is the universal enveloping algebra of vector fields (or a finitely generated Hopf subalgebra). We extend the Drinfeld twist deformation theory of modules and algebras to morphisms and connections that are not necessarily H-equivari...

  6. Deformations of Fell bundles and twisted graph algebras

    Science.gov (United States)

    Raeburn, Iain

    2016-11-01

    We consider Fell bundles over discrete groups, and the C*-algebra which is universal for representations of the bundle. We define deformations of Fell bundles, which are new Fell bundles with the same underlying Banach bundle but with the multiplication deformed by a two-cocycle on the group. Every graph algebra can be viewed as the C*-algebra of a Fell bundle, and there are are many cocycles of interest with which to deform them. We thus obtain many of the twisted graph algebras of Kumjian, Pask and Sims. We demonstate the utility of our approach to these twisted graph algebras by proving that the deformations associated to different cocycles can be assembled as the fibres of a C*-bundle.

  7. Geometry of quantum group twists, multidimensional Jackson calculus and regularization

    CERN Document Server

    Demichev, A P

    1995-01-01

    We show that R-matricies of all simple quantum groups have the properties which permit to present quantum group twists as transitions to other coordinate frames on quantum spaces. This implies physical equivalence of field theories invariant with respect to q-groups (considered as q-deformed space-time groups of transformations) connected with each other by the twists. Taking into account this freedom we study quantum spaces of the special type: with commuting coordinates but with q-deformed differential calculus and construct GL_r(N) invariant multidimensional Jackson derivatives. We consider a particle and field theory on a two-dimensional q-space of this kind and come to the conclusion that only one (time-like) coordinate proved to be discretized.

  8. Progress in the Determination of Polarized PDFs and Higher Twist

    CERN Document Server

    Leader, Elliot; Stamenov, Dimiter B

    2007-01-01

    The impact of the recent very precise CLAS and COMPASS g1/F1 data on polarized parton densities and higher twist effects is discussed. It is demonstrated that the low Q^2 CLAS data improve essentially our knowledge of higher twist corrections to the spin structure function g1, while the large Q^2 COMPASS data influence mainly the strange quark and gluon polarizations. It is also shown that the uncertainties in the determination of the polarized parton densities are significantly reduced. We find also that the present inclusive DIS data cannot rule out a negative polarized and changing in sign gluon densities. The present status of the proton spin sum rule is discussed.

  9. Sweep-twist adaptive rotor blade : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  10. Twisted inhomogeneous Diophantine approximation and badly approximable sets

    CERN Document Server

    Harrap, Stephen

    2010-01-01

    For any real pair i, j geq 0 with i+j=1 let Bad(i, j) denote the set of (i, j)-badly approximable pairs. That is, Bad(i, j) consists of irrational vectors x:=(x_1, x_2) in R^2 for which there exists a positive constant c(x) such that max {||qx_1||^(-i), ||qx_2||^(-j)} > c(x)/q for all q in N. Building on a result of Kurzweil, a new characterization of the set Bad(i, j) in terms of `well-approximable' vectors in the area of `twisted' inhomogeneous Diophantine approximation is established. In addition, it is shown that Bad^x(i, j), the `twisted' inhomogeneous analogue of Bad(i, j), has full Hausdorff dimension 2 when x is chosen from the set Bad(i, j).

  11. Noncommutative fields and actions of twisted Poincaré algebra

    Science.gov (United States)

    Chaichian, M.; Kulish, P. P.; Tureanu, A.; Zhang, R. B.; Zhang, Xiao

    2008-04-01

    Within the context of the twisted Poincaré algebra, there exists no noncommutative analog of the Minkowski space interpreted as the homogeneous space of the Poincaré group quotiented by the Lorentz group. The usual definition of commutative classical fields as sections of associated vector bundles on the homogeneous space does not generalize to the noncommutative setting, and the twisted Poincaré algebra does not act on noncommutative fields in a canonical way. We make a tentative proposal for the definition of noncommutative classical fields of any spin over the Moyal space, which has the desired representation theoretical properties. We also suggest a way to search for noncommutative Minkowski spaces suitable for studying noncommutative field theory with deformed Poincaré symmetries.

  12. Noncommutative fields and actions of twisted Poincare algebra

    CERN Document Server

    Chaichian, M; Tureanu, A; Zhang, R B; Zhang, Xiao

    2007-01-01

    Within the context of the twisted Poincar\\'e algebra, there exists no noncommutative analogue of the Minkowski space interpreted as the homogeneous space of the Poincar\\'e group quotiented by the Lorentz group. The usual definition of commutative classical fields as sections of associated vector bundles on the homogeneous space does not generalise to the noncommutative setting, and the twisted Poincar\\'e algebra does not act on noncommutative fields in a canonical way. We make a tentative proposal for the definition of noncommutative classical fields of any spin over the Moyal space, which has the desired representation theoretical properties. We also suggest a way to search for noncommutative Minkowski spaces suitable for studying noncommutative field theory with deformed Poincar\\'e symmetries.

  13. Generalized Rogers-Ramanujan identities for twisted affine algebras

    Science.gov (United States)

    Genish, Arel; Gepner, Doron

    2017-07-01

    The characters of parafermionic conformal field theories are given by the string functions of affine algebras, which are either twisted or untwisted algebras. Expressions for these characters as generalized Rogers-Ramanujan algebras have been established for the untwisted affine algebras. However, we study the identities for the string functions of the twisted affine Lie algebras. A conjecture for the string functions was proposed by Hatayama et al., for the unit fields, which expresses the string functions as Rogers-Ramanujan type sums. Here we propose to check the Hatayama et al. conjecture, using Lie algebraic theoretic methods. We use Freudenthal’s formula, which we computerized, to verify the identities for all the algebras at low rank and low level. We find complete agreement with the conjecture.

  14. Higher twist effects in DIS: an outline of diquark contributions

    Energy Technology Data Exchange (ETDEWEB)

    Anselmino, M. [Turin Univ. (Italy). Dipt. di Fisica Teorica]|[Istituto Nazionale di Fisica Nucleare, Turin (Italy); Caruso, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1996-12-01

    A quark-diquark picture of the nucleon, previously introduced in the description of a several exclusive and inclusive processes at intermediate Q{sup 2} values, is found to accurately model the higher-twist data on the unpolarized proton structure function F{sub 2}{sup p}(x,Q{sup 2}). The main results of the model are summarized. The emerging set of parameters is consistent with the diquark properties suggested by other experimental and theoretical analyses. Higher-twist corrections to the Bjorken and Gottfried sum rule are also estimated in the framework of the same quark-diquark model. The resulting corrections to both sum rules turn out to be negligible. (author). 23 refs.; Contribution to the Diquark III Conference, Torino, Italy.

  15. On Signatures of Twisted Magnetic Flux Tube Emergence

    CERN Document Server

    Dominguez, Santiago Vargas; Green, Lucie; van Driel-Gesztelyi, Lidia; Hood, Alan

    2011-01-01

    Recent studies of NOAA active region 10953, by Okamoto {\\it et al.} ({\\it Astrophys. J. Lett.} {\\bf 673}, 215, 2008; {\\it Astrophys. J.} {\\bf 697}, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To investigate this scenario, MacTaggart and Hood ({\\it Astrophys. J. Lett.} {\\bf 716}, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures observed by Okamoto {\\it et al.} (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures that can be verified by the observations. The first is an increase in the unsigned magnetic fl...

  16. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.

    Science.gov (United States)

    Zhao, Y; Belkin, M A; Alù, A

    2012-05-29

    Optical metamaterials are usually based on planarized, complex-shaped, resonant nano-inclusions. Three-dimensional geometries may provide a wider set of functionalities, including broadband chirality to manipulate circular polarization at the nanoscale, but their fabrication becomes challenging as their dimensions get smaller. Here we introduce a new paradigm for the realization of optical metamaterials, showing that three-dimensional effects may be obtained without complicated inclusions, but instead by tailoring the relative orientation within the lattice. We apply this concept to realize planarized, broadband bianisotropic metamaterials as stacked nanorod arrays with a tailored rotational twist. Because of the coupling among closely spaced twisted plasmonic metasurfaces, metamaterials realized with conventional lithography may effectively operate as three-dimensional helical structures with broadband bianisotropic optical response. The proposed concept is also shown to relax alignment requirements common in three-dimensional metamaterial designs. The realized sample constitutes an ultrathin, broadband circular polarizer that may be directly integrated within nanophotonic systems.

  17. Twist-three at five loops, Bethe Ansatz and wrapping

    CERN Document Server

    Beccaria, M; Lukowski, T; Zieme, S

    2009-01-01

    We present a formula for the five-loop anomalous dimension of N=4 SYM twist-three operators in the sl(2) sector. We obtain its asymptotic part from the Bethe Ansatz and finite volume corrections from the generalized Luescher formalism, considering scattering processes of spin chain magnons with virtual particles that travel along the cylinder. The complete result respects the expected large spin scaling properties and passes non-trivial tests including reciprocity constraints. We analyze the pole structure and find agreement with a conjectured resummation formula. In analogy with the twist-two anomalous dimension at four-loops, wrapping effects are of order log^2 M/M^2 for large values of the spin.

  18. Green functions and twist correlators for $N$ branes at angles

    CERN Document Server

    Pesando, Igor

    2012-01-01

    We compute the Green functions and correlator functions for N twist fields for branes at angles on T^2 and we show that there are N-2 different configurations labeled by an integer M which is roughly associated with the number of obtuse angles of the configuration. In order to perform this computation we use a SL(2,R) invariant formulation and geometric constraints instead of Pochammer contours. In particular the M=1 or M=N-1 amplitude can be expressed without using transcendental functions. We determine the amplitudes normalization from N -> N-1 reduction without using the factorization into the untwisted sector. Both the amplitudes normalization and the OPE of two twist fields are unique (up to one constant) when the \\epsilon 1-\\epsilon symmetry is imposed. For consistency we find also an infinite number of relations among Lauricella hypergeometric functions.

  19. A twisted generalization of Lie-Yamaguti algebras

    CERN Document Server

    Gaparayi, Donatien

    2010-01-01

    A twisted generalization of Lie-Yamaguti algebras, called Hom-Lie-Yamaguti algebras, is defined. Hom-Lie-Yamaguti algebras generalize Hom-Lie triple systems (and susequently ternary Hom-Nambu algebras) and Hom-Lie algebras in the same way as Lie-Yamaguti algebras generalize Lie triple systems and Lie algebras. It is shown that the category of Hom-Lie-Yamaguti algebras is closed under twisting by self-morphisms. Constructions of Hom-Lie-Yamaguti algebras from classical Lie-Yamaguti algebras and Malcev algebras are given. It is observed that, when the ternary operation of a Hom-Lie-Yamaguti algebra expresses through its binary one in a specific way, then such a Hom-Lie-Yamaguti algebra is a Hom-Malcev algebra.

  20. Evolution of chirality-odd twist-3 fragmentation functions

    Science.gov (United States)

    Ma, J. P.; Zhang, G. P.

    2017-09-01

    We derive the complete set of evolutions of chirality-odd twist-3 fragmentation functions at one-loop level. There are totally nine real twist-3 fragmentation functions, among which seven are independent. The renormalization-scale dependence of the nine functions has an important implication for studies of single transverse-spin asymmetries. We find that the evolutions of the three complex fragmentation functions defined by quark-gluon-quark operator are mixed with themselves. There is no mixing with the fragmentation functions defined only with bilinear quark field operators. In the large-Nc limit the evolutions of the three complex fragmentation functions are simplified and reduced to six homogeneous equations.

  1. Small gaps between zeros of twisted L-functions

    CERN Document Server

    Conrey, J B; Soundararajan, K

    2012-01-01

    We use the asymptotic large sieve, developed by the authors, to prove that if the Generalized Riemann Hypothesis is true, then there exist many Dirichlet L-functions that have a pair of consecutive zeros closer together than 0.37 times their average spacing. More generally, we investigate zero spacings within the family of twists by Dirichlet characters of a fixed L-function and give precise bounds for small gaps which depend only on the degree of the L-function.

  2. Photoswitching of helical twisting power by chiral photochromic diarylethene dopants

    Science.gov (United States)

    Yamaguchi, Tadatsugu; Irie, Masahiro

    2002-12-01

    Two kinds of chiral diarylethene derivatives were synthesized and used as dopants for photoresponsive liquid crystals. Both derivatives underwent thermally irreversible and fatigue resistant photochromic reactions and exhibited reversible circular diochroism (CD) spectral changes. Large photostimulated pitch chances of chiral nematic K-15 liquid crystals were observed by the addition of the derivatives as dopants. The relation between the optical rotation and the twisting power force was discussed.

  3. Twisted Hamiltonian Lie Algebras and Their Multiplicity-Free Representations

    Institute of Scientific and Technical Information of China (English)

    Ling CHEN

    2011-01-01

    We construct a class of new Lie algebras by generalizing the one-variable Lie algebras generated by the quadratic conformal algebras (or corresponding Hamiltonian operators) associated with Poisson algebras and a quasi-derivation found by Xu. These algebras can be viewed as certain twists of Xu's generalized Hamiltonian Lie algebras. The simplicity of these algebras is completely determined. Moreover, we construct a family of multiplicity-free representations of these Lie algebras and prove their irreducibility.

  4. Spin Squeezing of One-Axis Twisting Model

    Science.gov (United States)

    Li, Song-Song

    2017-09-01

    We investigate spin squeezing of the one-axis twisting model. By using short-time approximation solutions of the angular momentum operators, we analytically and numerically calculate the spin squeezing parameter. It is shown that smaller linear interaction can produce a stronger spin squeezing and maintain a longer time interval. It is also shown that the stronger spin squeezing can be achieved by increasing the number of particles.

  5. Leading Twist Parton Distribution Amplitudes in Heavy Vector Mesons

    Directory of Open Access Journals (Sweden)

    Gao Fei

    2016-01-01

    Full Text Available We employed QCD’s Dyson-Schwinger equations (DSEs for heavy quarks and obtained the leading twist parton distribution amplitudes (PDAs in heavy vector mesons J/Ψ and ϒ. We found that all of the amplitudes are narrower than the asymptotic form, while they deviate from δ function. This indicates that the interaction between the two continent quarks are still important in the mesons consisted of charm and bottom quarks.

  6. Mass of nonrelativistic meson from leading twist distribution amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V. V., E-mail: braguta@mail.ru [Institute for High Energy Physics (Russian Federation)

    2011-01-15

    In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.

  7. The Importance of Higher Twist Corrections in Polarized DIS

    CERN Document Server

    Leader, Elliot; Stamenov, D B

    2003-01-01

    The higher twist corrections $h^N(x)/Q^2$ to the spin dependent proton and neutron $g_1$ structure functions are extracted from the world data on $g_1(x,Q^2)$ in a model independent way and found to be non-negligible. Their role in determining the polarized parton densities in the nucleon is discussed. It is also considered how the results are influenced by the recent JLab and HERMES/d inclusive DIS data.

  8. Some new quasi-twisted ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2015-09-01

    Full Text Available Let [n, k, d]_q code be a linear code of length n, dimension k and minimum Hamming distance d over GF(q. One of the basic and most important problems in coding theory is to construct codes with best possible minimum distances. In this paper seven quasi-twisted ternary linear codes are constructed. These codes are new and improve the best known lower bounds on the minimum distance in [6].

  9. Gate induced monolayer behavior in twisted bilayer black phosphorus

    Science.gov (United States)

    Sevik, Cem; Wallbank, John R.; Gülseren, Oğuz; Peeters, François M.; Çakır, Deniz

    2017-09-01

    Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90°. These calculations are complemented with a simple k\\centerdot p model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90° twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90° simply by changing the direction of the applied electric field. In particular, a + 0.4 (-0.4) V {{{\\mathringA}}-1} out-of-plane electric field results in a  ˜60% increase in the hole effective mass along the \\mathbf{y} (\\mathbf{x} ) axis and enhances the m\\mathbf{y}\\ast/m\\mathbf{x}\\ast (m\\mathbf{x}\\ast/m\\mathbf{y}\\ast ) ratio as much as by a factor of 40. Our DFT and k\\centerdot p simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.

  10. Neutral mesons and disconnected diagrams in Twisted Mass QCD

    CERN Document Server

    Michael, C

    2007-01-01

    We evaluate properties of neutral mesons in Nf=2 dynamical simulations of TMQCD at maximal twist. The pion is explored - establishing the size of the isospin splitting (an order a^2 effect). We investigate the eta' (the Nf=2 flavour singlet pseudoscalar meson) and neutral rho and scalar mesons. We show that disconnected diagrams can be evaluated very efficiently in TMQCD using variance reduction methods.

  11. Spin, twist and hadron structure in deep inelastic processes

    CERN Document Server

    Jaffe, R L

    1997-01-01

    These notes provide an introduction to polarization effects in deep inelastic processes in QCD. We emphasize recent work on transverse asymmetries, subdominant effects, and the role of polarization in fragmentation and in purely hadronic processes. After a review of kinematics and some basic tools of short distance analysis, we study the twist, helicity, chirality and transversity dependence of a variety of high energy processes sensitive to the quark and gluon substructure of hadrons.

  12. A sign assignment in totally twisted Khovanov homology

    OpenAIRE

    Manion, Andrew

    2011-01-01

    We lift the characteristic-2 totally twisted Khovanov homology of Roberts and Jaeger to a theory with integer coefficients. The result is a complex computing reduced odd Khovanov homology for knots. This complex is equivalent to a spanning-tree complex whose differential is explicit modulo a sign ambiguity coming from the need to choose a sign assignment in the definition of odd Khovanov homology.

  13. Expanding subjectivities

    DEFF Research Database (Denmark)

    Lundgaard Andersen, Linda; Soldz, Stephen

    2012-01-01

    A major theme in recent psychoanalytic thinking concerns the use of therapist subjectivity, especially “countertransference,” in understanding patients. This thinking converges with and expands developments in qualitative research regarding the use of researcher subjectivity as a tool to understa...

  14. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  15. Forced Vibrations of a Cantilever Beam

    Science.gov (United States)

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…

  16. Tri-Bimaximal Mixing from Twisted Friedberg-Lee Symmetry

    CERN Document Server

    Araki, Takeshi

    2008-01-01

    We consider the tri-bimaximal generation mixing in terms of the Friedberg-Lee (FL) symmetry. The symmetry is a kind of translational one for the fermion field operators. The symmetry with uniform translation for each generation of neutrinos can partially realize the desired form of the neutrino mass matrix for the tri-bimaximal mixing but should be improved to obtain the experimentally favored neutrino mass spectrum. It is firstly pointed out that patterns of the uniformity breaking are important for resulting form of the neutrino mass matrix. Then we propose a promotion of the FL symmetry to have the $\\mu - \\tau$ one, and call that the twisted FL symmetry. Based on the twisted FL symmetry, two possible schemes are also presented toward the realistic neutrino mass spectrum and the tri-bimaximal mixing. The first possible scheme is that the uniformity of the FL symmetry is broken by terms preserving the twisted FL one. The second one is based on the $S_3$ permutation family symmetry. The breaking terms, which ...

  17. Noncommutative spaces with twisted symmetries and second quantization

    CERN Document Server

    Fiore, Gaetano

    2010-01-01

    In a minimalistic view, the use of noncommutative coordinates can be seen just as a way to better express non-local interactions of a special kind: 1-particle solutions (wavefunctions) of the equation of motion in the presence of an external field may look simpler as functions of noncommutative coordinates. It turns out that also the wave-mechanical description of a system of n such bosons/fermions and its second quantization is simplified if we translate them in terms of their deformed counterparts. The latter are obtained by a general twist-induced *-deformation procedure which deforms in a coordinated way not just the spacetime algebra, but the larger algebra generated by any number n of copies of the spacetime coordinates and by the particle creation and annihilation operators. On the deformed algebra the action of the original spacetime transformations looks twisted. In a non-conservative view, we thus obtain a twisted covariant framework for QFT on the corresponding noncommutative spacetime consistent w...

  18. Report on twisted nematic and supertwisted nematic device characterization program

    Science.gov (United States)

    1995-01-01

    In this study we measured the optical characteristics of normally white twisted nematic (NWTN) and super twisted nematic (STN ) cells. Though no dynamic computer model was available, the static observations were compared with computer simulated behavior. The measurements were taken as a function of both viewing angle and applied voltage and included in the static case not only luminance but also contrast ratio and chromaticity . We employed the computer model Twist Cell Optics, developed at Kent State in conjunction with this study, and whose optical modeling foundation, Iike the ViDEOS program, is the 4 x 4 matrix method of Berreman. In order to resolve discrepancies between the experimental and modeled data the optical parameters of the individual cell components, where not known, were determined using refractometry, profilometry, and various forms of ellipsometry. The resulting agreement between experiment and model is quite good due primarily to a better understanding of the structure and optics of dichroic sheet polarizers. A description of the model and test cells employed are given in section 2. Section 3 contains the experimental data gathered and section 4 gives examples of the fit between model and experiment. Also included with this report are a pair of papers which resulted from the research and which detail the polarizer properties and some of the cell characterization methods.

  19. The phase diagram of twisted mass lattice QCD

    CERN Document Server

    Sharpe, S R; Sharpe, Stephen R.; Wu, Jackson M. S.

    2004-01-01

    We use the effective chiral Lagrangian to analyze the phase diagram of two-flavor twisted mass lattice QCD as a function of the normal and twisted masses, generalizing previous work for the untwisted theory. We first determine the chiral Lagrangian including discretization effects up to next-to-leading order (NLO) in a combined expansion in which m_\\pi^2/(4\\pi f_\\pi)^2 ~ a \\Lambda (a being the lattice spacing, and \\Lambda = \\Lambda_{QCD}). We then focus on the region where m_\\pi^2/(4\\pi f_\\pi)^2 ~ (a \\Lambda)^2, in which case competition between leading and NLO terms can lead to phase transitions. As for untwisted Wilson fermions, we find two possible phase diagrams, depending on the sign of a coefficient in the chiral Lagrangian. For one sign, there is an Aoki phase for pure Wilson fermions, with flavor and parity broken, but this is washed out into a crossover if the twisted mass is non-vanishing. For the other sign, there is a first order transition for pure Wilson fermions, and we find that this transitio...

  20. Microwave modulation characteristics of twisted liquid crystals with chiral dopant

    Directory of Open Access Journals (Sweden)

    Rui Yuan

    2017-01-01

    Full Text Available Adding a chiral dopant in twisted nematic (TN liquid crystal cell can stabilize the orientation of liquid crystal molecules, particularly in high TN (HTN or super TN (STN liquid crystal cells. The difference in pitches in liquid crystal is induced by the chiral dopant, and these different pitches affect the orientation of liquid crystal director under an external applied voltage and influence the characteristics of microwave modulation. To illustrate this point, the microwave phase shift per unit length (MPSL versus voltage is calculated on the basis of the elastic theory of liquid crystal and the finite-difference iterative method. Enhancing the pitch induced by the chiral dopant in liquid crystal increases the MPSLs, but the stability of the twisted structures is decreased. Thus, appropriate pitches of 100d, 4d, and 2d can be applied in TN, HTN, and STN cells with cell gap d to enhance the characteristics of microwave modulation and stabilize the structures in twisted cell. This method can improve the characteristics of liquid crystal microwave modulators such that the operating voltage and the size of such phase shifters can be decreased.

  1. Distribution of ferromagnetic moments in crystals under external twisting

    Energy Technology Data Exchange (ETDEWEB)

    Zavorotnev, Yu.D., E-mail: zavorotnev.yurii@gmail.com [Donetsk Institute for Physics and Engineering, NAS of Ukraine, 72 R.Luxemburg Street, 83114 Donetsk (Ukraine); Pashinskaya, E.H.; Varyukhin, V.N. [Donetsk Institute for Physics and Engineering, NAS of Ukraine, 72 R.Luxemburg Street, 83114 Donetsk (Ukraine); Popova, O.Yu. [Donetsk National Technical University, 58 Artema Street, 83001 Donetsk (Ukraine)

    2014-01-15

    In an easy-axis ferromagnet, the effect of superposition of severe plastic deformation by twisting (SPDT) perpendicular to the “easy axis” on the ferromagnetic order parameter (OP) distribution is studied. The consideration is carried out within the frameworks of phenomenological theory of Landau. It is shown that SPDT effects the results in occurrence of the normal component of the magnetic OP and periodical change of OP modulus. The law of distribution of the magnetic moment is determined by proximity of the temperature of the crystal and any phase transition. - Highlights: • The effect of application of external twisting deformation to a ferromagnetic crystal of easy-axis type is studied theoretically. • The deformation axis is directed normally to the easy axis of the crystal. • The consideration is carried out within the frameworks of a phenomenological model. • It is shown that in this case, a spiral long-period structure is formed. • Besides, spatial distribution of the modulus of ferromagnetic vector changes depending on the temperature and the twisting moment.

  2. Unwinding motion of a twisted active region filament

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  3. Unwinding motion of a twisted active-region filament

    CERN Document Server

    Yan, X L; Liu, J H; Kong, D F; Xu, C L

    2014-01-01

    To better understand the structures of active-region filaments and the eruption process, we study an active-region filament eruption in active region NOAA 11082 in detail on June 22, 2010. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament is consisted of twisted magnetic field lines. The total twist of the filament is at least 5$\\pi$ obtained by using time slice method. According to the morphology change during the filament eruption, it is found that the active-region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magn...

  4. Unwinding Motion of a Twisted Active Region Filament

    Science.gov (United States)

    Yan, X. L.; Xue, Z. K.; Liu, J. H.; Kong, D. F.; Xu, C. L.

    2014-12-01

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  5. Twist, Writhe & Helicity in the inner penumbra of a sunspot

    CERN Document Server

    Cobo, Basilio Ruiz

    2011-01-01

    The aim of this work is the determination of the twist, writhe, and self magnetic helicity of penumbral filaments located in an inner Sunspot penumbra. To this extent, we inverted data taken with the spectropolarimeter (SP) aboard {\\it Hinode} with the SIR (Stokes Inversion based on Response function) code. For the construction of a 3D geometrical model we applied a genetic algorithm minimizing the divergence of $\\vec{B}$ and the net magnetohydrodynamic force, consequently a force-free solution would be reached if possible. We estimated two proxies to the magnetic helicity frequently used in literature: the force-free parameter $\\alpha_z$ and the current helicity term $h_{c_{z}}$. We show that both proxies are only qualitative indicators of the local twist as the magnetic field in the area under study significantly departures from a force-free configuration. The local twist shows significant values only at the borders of bright penumbral filaments with opposite signs on each side. These locations are precisel...

  6. Twisted gauge theories in 3D Walker-Wang models

    CERN Document Server

    Wang, Zitao

    2016-01-01

    Three dimensional gauge theories with a discrete gauge group can emerge from spin models as a gapped topological phase with fractional point excitations (gauge charge) and loop excitations (gauge flux). It is known that 3D gauge theories can be "twisted", in the sense that the gauge flux loops can have nontrivial braiding statistics among themselves and such twisted gauge theories are realized in models discovered by Dijkgraaf and Witten. A different framework to systematically construct three dimensional topological phases was proposed by Walker and Wang and a series of examples have been studied. Can the Walker Wang construction be used to realize the topological order in twisted gauge theories? This is not immediately clear because the Walker-Wang construction is based on a loop condensation picture while the Dijkgraaf-Witten theory is based on a membrane condensation picture. In this paper, we show that the answer to this question is Yes, by presenting an explicit construction of the Walker Wang models wh...

  7. A robotic finger driven by twisted and coiled polymer actuator

    Science.gov (United States)

    Cho, Kyeong Ho; Song, Min Geun; Jung, Hosang; Park, Jungwoo; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-Do; Choi, Hyouk Ryeol

    2016-04-01

    Previous studies reported that a twisted and coiled polymer actuator (TCA) generates strong force and large stroke by heating. Nylon 6,6 is known to be the most suitable polymer material for TCA because it has high thermal expansion ratio, high softening point and high toughness which is able to sustain gigantic twisting. In order to find the optimal structure of TCA fabricated with silver-coated nylon sewing threads, an equipment for twist-insertion (structuralization), composed of single DC motor, a slider fabricated by 3D printer and a body frame, is developed. It can measure the behaviors of TCAs as well as fabricate TCAs with desired characteristics by structuralizing fibers with controlled rotation per minutes (RPM) and turns. Comparing performances of diverse structures of TCAs, the optimal structure for TCA is found. For the verification of the availability of the optimal TCA, a TCA-driven biomimetic finger is developed. Finally, we successfully demonstrate the flexion/extension of the finger by using the actuation of TCAs.

  8. Twisted Savonius turbine based marine current energy conversion system

    Science.gov (United States)

    Hassan, Md. Imtiaj

    The Ocean Network Seafloor Instrumentation (ONSFI) Project is a multidisciplinary research and development project that aims to design, fabricate and validate a proof-of-concept seafloor array of wireless marine sensors for use in monitoring seabed processes. The sensor pods, known as Seaformatics, will be powered by ocean bottom currents and will be able to communicate with each other and to the Internet through surface master units to facilitate observation of the ocean floor from the shore. This thesis explores the use of the twisted Savonius turbine as a means of converting the kinetic energy of the free flowing water into electrical energy for the pods. This will eliminate the need for battery replacement. A physical model of the turbine was constructed and tested in the Water Flume at the Marine Institute of Memorial University and in the Wind Tunnel in the Engineering Building at Memorial University. A mathematical model of the turbine was constructed in SolidWorks. This was tested in the Computational Fluid Dynamics or CFD software FLOW-3D. Experimental results were compared with CFD results and the agreement was reasonable. A twisted Savonius turbine emulator was developed to test a dc-dc boost converter. A low cost microcontroller based MPPT algorithm was developed to obtain maximum power from the turbine. Overall the thesis shows that the twisted Savonius turbine can provide the power needed by the sensor pods. It also shows that CFD is a viable way to study the performance of the Savonius type of turbine.

  9. Analysis and Parametric Investigation of Active Open Cross Section Thin Wall Beams

    Science.gov (United States)

    Griffiths, James

    The static behaviour of active Open Cross Section Thin Wall Beams (OCSTWB) with embedded Active/Macro Fibre Composites (AFCs/MFCs) has been investigated for the purpose of advancing the fundamental theory needed in the development of advanced smart structures. An efficient code that can analyze active OCSTWB using analytical equations has been studied. Various beam examples have been investigated in order to verify this recently developed analytical active OCSTWB analysis tool. The cross sectional stiffness constants and induced force, moments and bimoment predicted by this analytical code have been compared with those predicted by the 2-D finite element beam cross section analysis codes called the Variational Asymptotic Beam Sectional (VABS) analysis and the University of Michigan VABS (UM/VABS). Good agreement was observed between the results obtained from the analytical tool and VABS. The calculated cross sectional stiffness constants and induced force/moments, the constitutive relation and the six intrinstic static equilibrium equations for OCSTWB were all used together in a first-order accurate forward difference scheme in order to determine the average twist and deflections along the beam span. In order to further verify the analytical code, the static behaviour of a number of beam examples was investigated using 3-D Finite Element Analysis (FEA). For a particular cross section, the rigid body twist and displacements were minimized with the displacements of all the nodes in the 3-D FEA model that compose the cross section. This was done for a number of cross sections along the beam span in order to recover the global beam twist and displacement profiles from the 3-D FEA results. The global twist and deflections predicted by the analytical code agreed closely with those predicted by UM/VABS and 3-D FEA. The study was completed by a parametric investigation to determine the boundary conditions and the composite ply lay-ups of the active and passive plies that

  10. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Phuoc T Tran

    Full Text Available KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.

  11. Role of left ventricular twist mechanics in cardiomyopathies, dance of the helices

    Institute of Scientific and Technical Information of China (English)

    Floris; Kauer; Marcel; Leonard; Geleijnse; Bastiaan; Martijn; van; Dalen

    2015-01-01

    Left ventricular twist is an essential part of left ventricular function. Nevertheless, knowledge is limited in "the cardiology community" as it comes to twist mechanics. Fortunately the development of speckle tracking echocardiography, allowing accurate, reproducible and rapid bedside assessment of left ventricular twist, has boosted the interest in this important mechanical aspect of left ventricular deformation. Although the fundamental physiological role of left ventricular twist is undisputable, the clinical relevance of assessment of left ventricular twist in cardiomyopathies still needs to be established. The fact remains; analysis of left ventricular twist mechanics has already provided substantial pathophysiological understanding on a comprehensive variety of cardiomyopathies. It has become clear that increased left ventricular twist in for example hypertrophic cardiomyopathy may be an early sign of subendocardial(microvascular) dysfunction. Furthermore, decreased left ventricular twist may be caused by left ventricular dilatation or an extensive myocardial scar. Finally, the detection of left ventricular rigid body rotation in noncompaction cardiomyopathy may provide an indispensible method to objectively confirm this difficult diagnosis. All this endorses the value of left ventricular twist in the field of cardiomyopathies and may further encourage the implementation of left ventricular twist parameters in the "diagnostic toolbox" for cardiomyopathies.

  12. Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves.

    Directory of Open Access Journals (Sweden)

    Mary P Lee

    Full Text Available Twist1, a basic helix-loop-helix transcription factor, is expressed in mesenchymal precursor populations during embryogenesis and in metastatic cancer cells. In the developing heart, Twist1 is highly expressed in endocardial cushion (ECC valve mesenchymal cells and is down regulated during valve differentiation and remodeling. Previous studies demonstrated that Twist1 promotes cell proliferation, migration, and expression of primitive extracellular matrix (ECM molecules in ECC mesenchymal cells. Furthermore, Twist1 expression is induced in human pediatric and adult diseased heart valves. However, the Twist1 downstream target genes that mediate increased cell proliferation and migration during early heart valve development remain largely unknown. Candidate gene and global gene profiling approaches were used to identify transcriptional targets of Twist1 during heart valve development. Candidate target genes were analyzed for evolutionarily conserved regions (ECRs containing E-box consensus sequences that are potential Twist1 binding sites. ECRs containing conserved E-box sequences were identified for Twist1 responsive genes Tbx20, Cdh11, Sema3C, Rab39b, and Gadd45a. Twist1 binding to these sequences in vivo was determined by chromatin immunoprecipitation (ChIP assays, and binding was detected in ECCs but not late stage remodeling valves. In addition identified Twist1 target genes are highly expressed in ECCs and have reduced expression during heart valve remodeling in vivo, which is consistent with the expression pattern of Twist1. Together these analyses identify multiple new genes involved in cell proliferation and migration that are differentially expressed in the developing heart valves, are responsive to Twist1 transcriptional function, and contain Twist1-responsive regulatory sequences.

  13. INFLUENCE OF SELF-TAPPING SCREW ELECTRO-ARC MACHINING ON ITS TWISTING-IN IN SPECIMENS MADE OF VARIOUS MATERIALS AND TWISTING-OUT PROCEDURE

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2015-01-01

    Full Text Available The paper provides an experimental evaluation pertaining to the influence of steel self-tapping screw on its twisting-in specimens made of various materials and its twisting-out process. Main principles of the investigation methodology including description of  technological scheme of self-tapping screw electro-arc machining and specimens applied while executing the experiments and hardware measuring tools used for fixation of torque which has been applied to the self-tapping screw during its twisting-in in the specimen  and its twisting-out process have been presented in the paper. It has been established that the self-tapping screw electro-arc machining initiates formation of dimples (holes which have solidified metal flows along their edges. The flows give a cutting ability to the screw and so they exert an influence on the conditions of screw’s interaction with the specimen during its twisting-in and twisting-out processes.The paper presents results of experimental investigations that demonstrate an impact of self-tapping screw electro-arc machining on its twisting-in in the specimens made of various materials and twisting-out procedure. In particular, it has been ascertained that torque value applied to the self-tapping screw with modified surface during twisting-in process is less in comparison with the self-tapping screw having an initial state of its surface and in the case of its twisting-out process the value is higher. In this respect difference between the indicated torque values is increasing when material hardness of the specimen becomes higher. 

  14. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis.

    Science.gov (United States)

    Yang, Jing; Mani, Sendurai A; Donaher, Joana Liu; Ramaswamy, Sridhar; Itzykson, Raphael A; Come, Christophe; Savagner, Pierre; Gitelman, Inna; Richardson, Andrea; Weinberg, Robert A

    2004-06-25

    Metastasis is a multistep process during which cancer cells disseminate from the site of primary tumors and establish secondary tumors in distant organs. In a search for key regulators of metastasis in a murine breast tumor model, we have found that the transcription factor Twist, a master regulator of embryonic morphogenesis, plays an essential role in metastasis. Suppression of Twist expression in highly metastatic mammary carcinoma cells specifically inhibits their ability to metastasize from the mammary gland to the lung. Ectopic expression of Twist results in loss of E-cadherin-mediated cell-cell adhesion, activation of mesenchymal markers, and induction of cell motility, suggesting that Twist contributes to metastasis by promoting an epithelial-mesenchymal transition (EMT). In human breast cancers, high level of Twist expression is correlated with invasive lobular carcinoma, a highly infiltrating tumor type associated with loss of E-cadherin expression. These results establish a mechanistic link between Twist, EMT, and tumor metastasis.

  15. PERFORMANCE CHARACTERISTICS OF PARABOLIC SOLAR COLLECTOR WATER HEATER SYSTEM FITTED WITH NAIL TWISTED TAPES ABSORBER

    Directory of Open Access Journals (Sweden)

    K. SYED JAFAR

    2017-03-01

    Full Text Available In this paper, the experimental heat transfer, friction loss and thermal performance data for water flowing through the absorber tube fitted with two different twisted tape configurations in parabolic trough collector (PTC are presented. In the present work, a relative experimental study is carried out to investigate the performance of a PTC influenced by heat transfer through fluidabsorber wall mixing mechanism. The major findings of this experiment show that heat transport enhancement in the nail twisted tape collector perform significantly better than plain twisted tapes and also show that the smallest twisted tape ratio enhances the system performance remarkably maximizing the collector efficiency. The results suggest that the twisted tape and nail twisted tape would be a better option for high thermal energy collection in laminar region of the PTC system.

  16. Effect of Twisting and Stretching on Magneto Resistance and Spin Filtration in CNTs

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singh

    2017-08-01

    Full Text Available Spin-dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT and non-equilibrium green’s function (NEGF formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC, which results in higher magneto resistance (MR. Twisting allows spin-up current almost equivalent to the pristine CNT case, resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones, with pristine giving a higher spin filtration than twisted CNT.

  17. Modal Properties and Stability of Bend-Twist Coupled Wind Turbine Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander R.; Hansen, Morten Hartvig; Verelst, David Robert

    2016-01-01

    Coupling between bending and twist has a significant influence on the aeroelastic response of wind turbine blades. The coupling can arise from the blade geometry (e.g. sweep, prebending or deflection under load) or from the anisotropic properties of the blade material. Bend-twist coupling can...... be utilised to reduce the fatigue loads of wind turbine blades. In this study the effect of material based coupling on the aeroelastic modal properties and stability limits of the DTU 10 MW Reference Wind Turbine are investigated. The modal properties are determined by means of eigenvalue analysis around...... for flapwise (flap-twist coupling) or edgewise (edge-twist coupling) bending. Edge-twist coupling can increase or decrease the damping of the edgewise mode relative to the reference blade, depending on the operational condition of the turbine. Edge-twist to feather coupling for edgewise deflection towards...

  18. A Valence-Bond Nonequilibrium Solvation Model for a Twisting Cyanine Dye

    CERN Document Server

    McConnell, Sean; Olsen, Seth

    2014-01-01

    We study a two-state valence-bond electronic Hamiltonian model of non-equilibrium solvation during the excited-state twisting reaction of monomethine cyanines. These dyes are of interest because of the strong environment-dependent enhancement of their fluorescence quantum yield that results from suppression of competing non-radiative decay via twisted internal charge-transfer (TICT) states. For monomethine cyanines, where the ground state is a superposition of structures with different bond and charge localization, there are two twisting pathways with different charge localization in the excited state. The Hamiltonian designed to be as simple as possible consistent with a few well-enumerated assumptions. It is defined by three parameters and is a function of two $\\pi$-bond twisting angle coordinates and a single solvation coordinate. For parameters corresponding to symmetric monomethines, there are two low-energy twisting channels on the excited-state surface that lead to a manifold of twisted intramolecular ...

  19. Phase Diagram of Wilson and Twisted Mass Fermions at finite isospin chemical potential

    CERN Document Server

    Kieburg, M; Verbaarschot, J J M; Zafeiropoulos, S

    2014-01-01

    Wilson Fermions with untwisted and twisted mass are widely used in lattice simulations. Therefore one important question is whether the twist angle and the lattice spacing affect the phase diagram. We briefly report on the study of the phase diagram of QCD in the parameter space of the degenerate quark masses, isospin chemical potential, lattice spacing, and twist angle by employing chiral perturbation theory. Moreover we calculate the pion masses and their dependence on these four parameters.

  20. Twist, writhe and energy from the helicity of magnetic perturbed vortex filaments

    OpenAIRE

    de Andrade, Luiz Carlos Garcia

    2007-01-01

    The twist and writhe numbers and magnetic energy of an orthogonally perturbed vortex filaments are obtained from the computation of the magnetic helicity of geodesic and abnormal magnetohydrodynamical (MHD) vortex filament solutions. Twist is computed from a formula recently derived by Berger and Prior [J. Phys. A 39 (2006) 8321] and finally writhe is computed from the theorem that the helicity is proportional to the sum of twist and writhe. The writhe number is proportional to the total tors...