WorldWideScience

Sample records for twist2 frameshift mutation

  1. Homozygous Nonsense Mutations in TWIST2 Cause Setleis Syndrome

    Science.gov (United States)

    Tukel, Turgut; Šošić, Dražen; Al-Gazali, Lihadh I.; Erazo, Mónica; Casasnovas, Jose; Franco, Hector L.; Richardson, James A.; Olson, Eric N.; Cadilla, Carmen L.; Desnick, Robert J.

    2010-01-01

    The focal facial dermal dysplasias (FFDDs) are a group of inherited developmental disorders in which the characteristic diagnostic feature is bitemporal scar-like lesions that resemble forceps marks. To date, the genetic defects underlying these ectodermal dysplasias have not been determined. To identify the gene defect causing autosomal-recessive Setleis syndrome (type III FFDD), homozygosity mapping was performed with genomic DNAs from five affected individuals and 26 members of the consanguineous Puerto Rican (PR) family originally described by Setleis and colleagues. Microsatellites D2S1397 and D2S2968 were homozygous in all affected individuals, mapping the disease locus to 2q37.3. Haplotype analyses of additional markers in the PR family and a consanguineous Arab family further limited the disease locus to ∼3 Mb between D2S2949 and D2S2253. Of the 29 candidate genes in this region, the bHLH transcription factor, TWIST2, was initially sequenced on the basis of its known involvement in murine facial development. Homozygous TWIST2 nonsense mutations, c.324C>T and c.486C>T, were identified in the affected members of the Arab and PR families, respectively. Characterization of the expressed mutant proteins, p.Q65X and p.Q119X, by electrophoretic mobility shift assays and immunoblot analyses indicated that they were truncated and unstable. Notably, Setleis syndrome patients and Twist2 knockout mice have similar facial features, indicating the gene's conserved role in mammalian development. Although human TWIST2 and TWIST1 encode highly homologous bHLH transcription factors, the finding that TWIST2 recessive mutations cause an FFDD and dominant TWIST1 mutations cause Saethre-Chotzen craniocynostosis suggests that they function independently in skin and bone development. PMID:20691403

  2. Neomycin is more efficient than streptomycin in suppressing frameshift mutations.

    Science.gov (United States)

    Phoenix, P; Gravel, M; Herrington, M B; Brakier-Gingras, L

    1985-12-01

    The effects of streptomycin and neomycin on the phenotypic suppression of frameshift mutations in the lacZ gene of Escherichia coli and on the efficiency of suppression of amber mutations in T4 phage by the informational supE tRNA nonsense suppressor were compared. Neomycin stimulated much more efficiently than streptomycin the phenotypic suppression of frameshift mutations. Because neomycin favors mismatches of the central codon base whereas streptomycin favors mismatches of the first codon base, this result suggests that mismatching of the central codon base pair and shifting of the reading frame are two correlated phenomena. In contrast, both streptomycin and neomycin stimulated about equally the efficiency of the tRNA nonsense suppressor, an effect probably related to their interference with the proofreading control in tRNA selection.

  3. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment.

    Science.gov (United States)

    Atkins, John F; Björk, Glenn R

    2009-03-01

    Mutants of translation components which compensate for both -1 and +1 frameshift mutations showed the first evidence for framing malleability. Those compensatory mutants isolated in bacteria and yeast with altered tRNA or protein factors are reviewed here and are considered to primarily cause altered P-site realignment and not altered translocation. Though the first sequenced tRNA mutant which suppressed a +1 frameshift mutation had an extra base in its anticodon loop and led to a textbook "yardstick" model in which the number of anticodon bases determines codon size, this model has long been discounted, although not by all. Accordingly, the reviewed data suggest that reading frame maintenance and translocation are two distinct features of the ribosome. None of the -1 tRNA suppressors have anticodon loops with fewer than the standard seven nucleotides. Many of the tRNA mutants potentially affect tRNA bending and/or stability and can be used for functional assays, and one has the conserved C74 of the 3' CCA substituted. The effect of tRNA modification deficiencies on framing has been particularly informative. The properties of some mutants suggest the use of alternative tRNA anticodon loop stack conformations by individual tRNAs in one translation cycle. The mutant proteins range from defective release factors with delayed decoding of A-site stop codons facilitating P-site frameshifting to altered EF-Tu/EF1alpha to mutant ribosomal large- and small-subunit proteins L9 and S9. Their study is revealing how mRNA slippage is restrained except where it is programmed to occur and be utilized.

  4. A new β⁰-thalassemia frameshift mutation [β 48 (-T)] in a Uruguayan family.

    Science.gov (United States)

    Da Luz, J; López, P; Kimura, E M; Albuquerque, D M; Costa, F F; Sans, M; Sonati, M F

    2013-02-01

    We describe here a new frameshift mutation of β-thalassemia in a Uruguayan family with Italian ancestry [β48 (-T); HBB:c.146delT]. This frameshift results in formation of premature stop codon (TGA) 40 bp downstream and in a short unstable product that is degraded in the cell.

  5. Detection of frameshift mutations of RIZin gastric cancers with microsatellite instability

    Institute of Scientific and Technical Information of China (English)

    Kai-Feng Pan; You-Yong Lu; Wan-Guo Liu; Lian Zhang; Wei-Cheng You

    2004-01-01

    AIM: To study the frameshift mutations of the retinoblastomaprotein-interacting zinc finger gene RIZ in gastric cancer with microsatellite instability, and to identify two coding polyadenosine tracts of RIZ.METHODS: Frameshift mutations at (A)8 and (A)9 tracts of RIZwere detected in 70 human gastric cancer (HGC) specimens by DHPLC and DNA sequencing. Microsatelliteinstability (MSI) status was assessed by two mononucleotide markers, BAT26 and BAT25, by means of denaturing highperformance liquid chromatography (DHPLC).RESULTS: In 70 HGC samples, 8 (11.4%) were found positivefor instabilities at BAT26 and BAT25. In 7 of the 8 cases with instabilities at both BAT26 and BAT25 (MSI-H), 1 was unstable at BAT26 but stable at BAT25. Frameshift mutations were identified in 4 (57.1%) of the 7 samples with MSI-Hin the (A)9 tract of RIZ without mutations in the (A)8 tract.In contrast, frameshift mutations were found in neither of the polyadenosine tracts in 63 samples of MSI-L or MSI stable tumors. Pro704 LOH detection in 4 cases with frameshift mutations did not find LOH in these cases.CONCLUSION: Frameshift mutations of RIZ may play an important role in gastric cancers with MSI.

  6. Frameshift mutations in dentin phosphoprotein and dependence of dentin disease phenotype on mutation location.

    Science.gov (United States)

    Nieminen, Pekka; Papagiannoulis-Lascarides, Lisa; Waltimo-Siren, Janna; Ollila, Päivi; Karjalainen, Sara; Arte, Sirpa; Veerkamp, Jaap; Tallon Walton, Victoria; Chimenos Küstner, Eduard; Siltanen, Tarja; Holappa, Heidi; Lukinmaa, Pirjo-Liisa; Alaluusua, Satu

    2011-04-01

    We describe results from a mutational analysis of the region of the dentin sialophosphoprotein (DSPP) gene encoding dentin phosphoprotein (DPP) in 12 families with dominantly inherited dentin diseases. In eight families (five mutations in the N-terminal third of DPP), the clinical and radiologic features were uniform and compatible with dentin dysplasia type II (DD-II) with major clinical signs in the deciduous dentition. In the other families (four mutations in the more C-terminal part), the permanent teeth also were affected, and the diseases could be classified as variants of dentinogenesis imperfecta. Attrition was not prominent, but periapical infections were common. Discoloring with varying intensity was evident, and pulps and root canals were obliterated in the permanent dentition. All mutations caused a frameshift that replaced the Ser-Ser-Asx repeat by a code for a hydrophobic downstream sequence of approximately original length. We conclude that frameshift mutations in DSPP explain a significant part of dentin diseases. Furthermore, we propose that the location of the mutation is reflected in the phenotypic features as a gradient from DD-II to more severe disease that does not conform to the classic definitions of DI-II. Copyright © 2011 American Society for Bone and Mineral Research.

  7. Both microsatellite length and sequence context determine frameshift mutation rates in defective DNA mismatch repair.

    Science.gov (United States)

    Chung, Heekyung; Lopez, Claudia G; Holmstrom, Joy; Young, Dennis J; Lai, Jenny F; Ream-Robinson, Deena; Carethers, John M

    2010-07-01

    It is generally accepted that longer microsatellites mutate more frequently in defective DNA mismatch repair (MMR) than shorter microsatellites. Indeed, we have previously observed that the A10 microsatellite of transforming growth factor beta type II receptor (TGFBR2) frameshifts -1 bp at a faster rate than the A8 microsatellite of activin type II receptor (ACVR2), although both genes become frameshift-mutated in >80% of MMR-defective colorectal cancers. To experimentally determine the effect of microsatellite length upon frameshift mutation in gene-specific sequence contexts, we altered the microsatellite length within TGFBR2 exon 3 and ACVR2 exon 10, generating A7, A10 and A13 constructs. These constructs were cloned 1 bp out of frame of EGFP, allowing a -1 bp frameshift to drive EGFP expression, and stably transfected into MMR-deficient cells. Subsequent non-fluorescent cells were sorted, cultured for 7-35 days and harvested for EGFP analysis and DNA sequencing. Longer microsatellites within TGFBR2 and ACVR2 showed significantly higher mutation rates than shorter ones, with TGFBR2 A13, A10 and A7 frameshifts measured at 22.38x10(-4), 2.17x10(-4) and 0.13x10(-4), respectively. Surprisingly, shorter ACVR2 constructs showed three times higher mutation rates at A7 and A10 lengths than identical length TGFBR2 constructs but comparably lower at the A13 length, suggesting influences from both microsatellite length as well as the sequence context. Furthermore, the TGFBR2 A13 construct mutated into 33% A11 sequences (-2 bp) in addition to expected A12 (-1 bp), indicating that this construct undergoes continual subsequent frameshift mutation. These data demonstrate experimentally that both the length of a mononucleotide microsatellite and its sequence context influence mutation rate in defective DNA MMR.

  8. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome

    DEFF Research Database (Denmark)

    Clendenning, Mark; Senter, Leigha; Hampel, Heather;

    2008-01-01

    on immunohistochemical analysis. RESULTS: We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n=61). These individuals all display the rare allele (population...

  9. Escherichia coli frameshift mutation rate depends on the chromosomal context but not on the GATC content near the mutation site.

    Directory of Open Access Journals (Sweden)

    Mariana A Martina

    Full Text Available Different studies have suggested that mutation rate varies at different positions in the genome. In this work we analyzed if the chromosomal context and/or the presence of GATC sites can affect the frameshift mutation rate in the Escherichia coli genome. We show that in a mismatch repair deficient background, a condition where the mutation rate reflects the fidelity of the DNA polymerization process, the frameshift mutation rate could vary up to four times among different chromosomal contexts. Furthermore, the mismatch repair efficiency could vary up to eight times when compared at different chromosomal locations, indicating that detection and/or repair of frameshift events also depends on the chromosomal context. Also, GATC sequences have been proved to be essential for the correct functioning of the E. coli mismatch repair system. Using bacteriophage heteroduplexes molecules it has been shown that GATC influence the mismatch repair efficiency in a distance- and number-dependent manner, being almost nonfunctional when GATC sequences are located at 1 kb or more from the mutation site. Interestingly, we found that in E. coli genomic DNA the mismatch repair system can efficiently function even if the nearest GATC sequence is located more than 2 kb away from the mutation site. The results presented in this work show that even though frameshift mutations can be efficiently generated and/or repaired anywhere in the genome, these processes can be modulated by the chromosomal context that surrounds the mutation site.

  10. Escherichia coli frameshift mutation rate depends on the chromosomal context but not on the GATC content near the mutation site.

    Science.gov (United States)

    Martina, Mariana A; Correa, Elisa M E; Argaraña, Carlos E; Barra, José L

    2012-01-01

    Different studies have suggested that mutation rate varies at different positions in the genome. In this work we analyzed if the chromosomal context and/or the presence of GATC sites can affect the frameshift mutation rate in the Escherichia coli genome. We show that in a mismatch repair deficient background, a condition where the mutation rate reflects the fidelity of the DNA polymerization process, the frameshift mutation rate could vary up to four times among different chromosomal contexts. Furthermore, the mismatch repair efficiency could vary up to eight times when compared at different chromosomal locations, indicating that detection and/or repair of frameshift events also depends on the chromosomal context. Also, GATC sequences have been proved to be essential for the correct functioning of the E. coli mismatch repair system. Using bacteriophage heteroduplexes molecules it has been shown that GATC influence the mismatch repair efficiency in a distance- and number-dependent manner, being almost nonfunctional when GATC sequences are located at 1 kb or more from the mutation site. Interestingly, we found that in E. coli genomic DNA the mismatch repair system can efficiently function even if the nearest GATC sequence is located more than 2 kb away from the mutation site. The results presented in this work show that even though frameshift mutations can be efficiently generated and/or repaired anywhere in the genome, these processes can be modulated by the chromosomal context that surrounds the mutation site.

  11. Sensorineural hearing impairment in patients with Pmp22 duplication, deletion, and frameshift mutations.

    NARCIS (Netherlands)

    Verhagen, W.I.M.; Huygen, P.L.M.; Gabreëls-Festen, A.A.W.M.; Engelhart, M.J.; Mierlo, P.J. van; Engelen, B.G.M. van

    2005-01-01

    OBJECTIVE: To characterize and distinguish the types of sensorineural hearing impairment (SNHI) that occur in hereditary motor and sensory neuropathy Type 1a (HMSN-1a) and hereditary neuropathy with liability to pressure palsies (HNPP), which are caused by deletion or frameshift mutation. STUDY DESI

  12. Frameshift mutation hotspot identified in Smith-Magenis syndrome: case report and review of literature.

    Science.gov (United States)

    Truong, Hoa T; Dudding, Tracy; Blanchard, Christopher L; Elsea, Sarah H

    2010-10-08

    Smith-Magenis syndrome (SMS) is a complex syndrome involving intellectual disabilities, sleep disturbance, behavioural problems, and a variety of craniofacial, skeletal, and visceral anomalies. While the majority of SMS cases harbor an ~3.5 Mb common deletion on 17p11.2 that encompasses the retinoic acid induced-1 (RAI1) gene, some patients carry small intragenic deletions or point mutations in RAI1. We present data on two cases of Smith-Magenis syndrome with mutation of RAI1. Both cases are phenotypically consistent with SMS and RAI1 mutation but also have other anomalies not previously reported in SMS, including spontaneous pneumothoraces. These cases also illustrate variability in the SMS phenotype not previously shown for RAI1 mutation cases, including hearing loss, absence of self-abusive behaviours, and mild global delays. Sequencing of RAI1 revealed mutation of the same heptameric C-tract (CCCCCCC) in exon 3 in both cases (c.3103delC one case and and c.3103insC in the other), resulting in frameshift mutations. Of the seven reported frameshift mutations occurring in poly C-tracts in RAI1, four cases (~57%) occur at this heptameric C-tract. Collectively, these results indicate that this heptameric C-tract is a preferential hotspot for single nucleotide insertion/deletions (SNindels) and therefore, should be considered a primary target for analysis in patients suspected for mutations in RAI1. We expect that as more patients are sequenced for mutations in RAI1, the incidence of frameshift mutations in this hotspot will become more evident.

  13. Frameshift mutation hotspot identified in Smith-Magenis syndrome: case report and review of literature

    Directory of Open Access Journals (Sweden)

    Dudding Tracy

    2010-10-01

    Full Text Available Abstract Smith-Magenis syndrome (SMS is a complex syndrome involving intellectual disabilities, sleep disturbance, behavioural problems, and a variety of craniofacial, skeletal, and visceral anomalies. While the majority of SMS cases harbor an ~3.5 Mb common deletion on 17p11.2 that encompasses the retinoic acid induced-1 (RAI1 gene, some patients carry small intragenic deletions or point mutations in RAI1. We present data on two cases of Smith-Magenis syndrome with mutation of RAI1. Both cases are phenotypically consistent with SMS and RAI1 mutation but also have other anomalies not previously reported in SMS, including spontaneous pneumothoraces. These cases also illustrate variability in the SMS phenotype not previously shown for RAI1 mutation cases, including hearing loss, absence of self-abusive behaviours, and mild global delays. Sequencing of RAI1 revealed mutation of the same heptameric C-tract (CCCCCCC in exon 3 in both cases (c.3103delC one case and and c.3103insC in the other, resulting in frameshift mutations. Of the seven reported frameshift mutations occurring in poly C-tracts in RAI1, four cases (~57% occur at this heptameric C-tract. Collectively, these results indicate that this heptameric C-tract is a preferential hotspot for single nucleotide insertion/deletions (SNindels and therefore, should be considered a primary target for analysis in patients suspected for mutations in RAI1. We expect that as more patients are sequenced for mutations in RAI1, the incidence of frameshift mutations in this hotspot will become more evident.

  14. Frameshift mutation of WISP3 gene and its regional heterogeneity in gastric and colorectal cancers.

    Science.gov (United States)

    Lee, Ju Hwa; Choi, Youn Jin; Je, Eun Mi; Kim, Ho Shik; Yoo, Nam Jin; Lee, Sug Hyung

    2016-04-01

    WISP3 is involved in many cancer-related processes including epithelial-mesenchymal transition, cell death, invasion, and metastasis and is considered a tumor suppressor. The aim of our study was to find whether WISP3 gene was mutated and expressionally altered in gastric (GC) and colorectal cancers (CRCs). WISP3 gene possesses a mononucleotide repeat in the coding sequence that could be mutated in cancers with high microsatellite instability (MSI-H). We analyzed 79 GCs and 156 CRCs, and found that GCs (8.8%) and CRCs (10.5%) with MSI-H, but not those with microsatellite stable/low MSI, harbored a frameshift mutation. We also analyzed intratumoral heterogeneity (ITH) of the frameshift mutation in 16 CRCs and found that the WISP3 mutation exhibited regional ITH in 25% of the CRCs. In immunohistochemistry, loss of WISP3 expression was identified in 24% of GCs and 21% of CRCs. The loss of expression was more common in those with WISP3 mutation than with wild-type WISP3 and those with MSI-H than with microsatellite stable/low MSI. Our data indicate that WISP3 harbored not only frameshift mutation but also mutational ITH and loss of expression, which together might play a role in tumorigenesis of GC and CRC with MSI-H by inhibiting tumor suppressor functions of WISP3. Our data also suggest that mutation analysis in multiregions is needed for a proper evaluation of mutation status in GC and CRC with MSI-H.

  15. Novel dentin phosphoprotein frameshift mutations in dentinogenesis imperfecta type II.

    Science.gov (United States)

    Lee, K-E; Kang, H-Y; Lee, S-K; Yoo, S-H; Lee, J-C; Hwang, Y-H; Nam, K H; Kim, J-S; Park, J-C; Kim, J-W

    2011-04-01

    The dentin sialophosphoprotein (DSPP) gene encodes the most abundant non-collagenous protein in tooth dentin and DSPP protein is cleaved into several segments including the highly phosphorylated dentin phosphoprotein (DPP). Mutations in the DSPP gene have been solely related to non-syndromic form of hereditary dentin defects. We recruited three Korean families with dentinogenesis imperfecta (DGI) type II and sequenced the exons and exon-intron boundaries of the DSPP gene based on the candidate gene approach. Direct sequencing of PCR products and allele-specific cloning of the highly repetitive exon 5 revealed novel single base pair (bp) deletional mutations (c.2688delT and c.3560delG) introducing hydrophobic amino acids in the hydrophilic repeat domain of the DPP coding region. All affected members of the three families showed exceptionally rapid pulp chambers obliteration, even before tooth eruption. Individuals with the c.3560delG mutation showed only mild, yellowish tooth discoloration, in contrast to the affected individuals from two families with c.2688delT mutation. We believe that these results will help us to understand the molecular pathogenesis of DGI type II as well as the normal process of dentin biomineralization.

  16. A novel frameshift mutation of CHD7 in a Japanese patient with CHARGE syndrome.

    Science.gov (United States)

    Kohmoto, Tomohiro; Shono, Miki; Naruto, Takuya; Watanabe, Miki; Suga, Ken-Ichi; Nakagawa, Ryuji; Kagami, Shoji; Masuda, Kiyoshi; Imoto, Issei

    2016-01-01

    CHARGE syndrome is a rare autosomal dominant developmental disorder involving multiple organs. CHD7 is a major causative gene of CHARGE syndrome. We performed targeted-exome sequencing using a next-generation sequencer for molecular diagnosis of a 4-month-old male patient who was clinically suspected to have CHARGE syndrome, and report a novel monoallelic mutation in CHD7, NM_017780.3(CHD7_v001):c.2966del causing a reading frameshift [p.(Cys989Serfs*3)].

  17. Frameshift mutation in the PTCH2 gene can cause nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Fujii, Katsunori; Ohashi, Hirofumi; Suzuki, Maiko; Hatsuse, Hiromi; Shiohama, Tadashi; Uchikawa, Hideki; Miyashita, Toshiyuki

    2013-12-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by developmental defects and tumorigenesis. The gene responsible for NBCCS is PTCH1, encoding a receptor for the secreted protein, sonic hedgehog. Recently, a Chinese family with NBCCS carrying a missense mutation in PTCH2, a close homolog of PTCH1, was reported. However, the pathological significance of missense mutations should be discussed cautiously. Here, we report a 13-year-old girl diagnosed with NBCCS based on multiple keratocystic odontogenic tumors and rib anomalies carrying a frameshift mutation in the PTCH2 gene (c.1172_1173delCT). Considering the deleterious nature of the frameshift mutation, our study further confirmed a causative role for the PTCH2 mutation in NBCCS. The absence of typical phenotypes in this case such as palmar/plantar pits, macrocephaly, falx calcification, hypertelorism and coarse face, together with previously reported cases, suggested that individuals with NBCCS carrying a PTCH2 mutation may have a milder phenotype than those with a PTCH1 mutation.

  18. A novel mitochondrial MTND5 frameshift mutation causing isolated complex I deficiency, renal failure and myopathy.

    Science.gov (United States)

    Alston, Charlotte L; Morak, Monika; Reid, Christopher; Hargreaves, Iain P; Pope, Simon A S; Land, John M; Heales, Simon J; Horvath, Rita; Mundy, Helen; Taylor, Robert W

    2010-02-01

    Isolated complex I deficiency is the most commonly reported enzyme defect in paediatric mitochondrial disorders, and may arise due to mutations in nuclear-encoded structural or assembly genes, or the mitochondrial genome. We present the clinical, biochemical and molecular genetic data in a young girl whose clinical picture is dominated by chronic renal failure, myopathy and persistent lactic acidosis. An isolated complex I deficiency in muscle was identified due to a novel mutation (m.12425delA) in the MTND5 gene. This single nucleotide deletion is heteroplasmic and detectable in several tissues from the proband but not her mother, suggesting a de novo mutation event. The description of the first frameshift mutation in a mitochondrial complex I gene affirms mitochondrial DNA mutations as an important cause of isolated complex I deficiency in children and the importance of whole mitochondrial genome sequencing in the diagnostic work-up to elucidate the underlying molecular genetic abnormality and provide important genetic advice.

  19. Frequent alteration of MLL3 frameshift mutations in microsatellite deficient colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Watanabe

    Full Text Available BACKGROUND: MLL3 is a histone 3-lysine 4 methyltransferase with tumor-suppressor properties that belongs to a family of chromatin regulator genes potentially altered in neoplasia. Mutations in MLL3 were found in a whole genome analysis of colorectal cancer but have not been confirmed by a separate study. METHODS AND RESULTS: We analyzed mutations of coding region and promoter methylation in MLL3 using 126 cases of colorectal cancer. We found two isoforms of MLL3 and DNA sequencing revealed frameshift and other mutations affecting both isoforms of MLL3 in colorectal cancer cells and 19 of 134 (14% primary colorectal samples analyzed. Moreover, frameshift mutations were more common in cases with microsatellite instability (31% both in CRC cell lines and primary tumors. The largest isoform of MLL3 is transcribed from a CpG island-associated promoter that has highly homology with a pseudo-gene on chromosome 22 (psiTPTE22. Using an assay which measured both loci simultaneously we found prominent age related methylation in normal colon (from 21% in individuals less than 25 years old to 56% in individuals older than 70, R = 0.88, p<0.001 and frequent hypermethylation (83% in both CRC cell lines and primary tumors. We next studied the two loci separately and found that age and cancer related methylation was solely a property of the pseudogene CpG island and that the MLL3 loci was unmethylated. CONCLUSIONS: We found that frameshift mutations of MLL3 in both CRC cells and primary tumor that were more common in cases with microsatellite instability. Moreover, we have shown CpG island-associated promoter of MLL3 gene has no DNA methylation in CRC cells but also primary tumor and normal colon, and this region has a highly homologous of pseudo gene (psiTPTE22 that was age relate DNA methylation.

  20. Genetic mosaicism of a frameshift mutation in the RET gene in a family with Hirschsprung disease.

    Science.gov (United States)

    Müller, Charlotte M; Haase, Michael G; Kemnitz, Ivonne; Fitze, Guido

    2014-05-10

    Mutations and polymorphisms in the RET gene are a major cause of Hirschsprung disease (HSCR). Theoretically, all true heterozygous patients with a new manifestation of a genetically determined disease must have parents with a genetic mosaicism of some extent. However, no genetic mosaicism has been described for the RET gene in HSCR yet. Therefore, we analyzed families with mutations in the RET gene for genetic mosaicism in the parents of the patients. Blood samples were taken from patients with HSCR and their families/parents to sequence the RET coding region. Among 125 families with HSCR, 33 families with RET mutations were analyzed. In one family, we detected a frameshift mutation due to a loss of one in a row of four cytosines in codon 117/118 of the RET gene (c.352delC) leading to a frameshift mutation in the protein (p.Leu118Cysfs*105) that affected two siblings. In the blood sample of the asymptomatic father we found a genetic mosaicism of this mutation which was confirmed in two independent samples of saliva and hair roots. Quantification of peak-heights and comparison with different mixtures of normal and mutated plasmid DNA suggested that the mutation occurred in the early morula stadium of the founder, between the 4- and 8-cell stages. We conclude that the presence of a RET mutation leading to loss of one functional allele in 20 to 25% of the cells is not sufficient to cause HSCR. The possibility of a mosaicism has to be kept in mind during genetic counseling for inherited diseases.

  1. Paternal Somatic Mosaicism of a Novel Frameshift Mutation in ELANE Causing Severe Congenital Neutropenia.

    Science.gov (United States)

    Kim, Hee-Jung; Song, Min-Jung; Lee, Ki-O; Kim, Sun-Hee; Kim, Hee-Jin

    2015-12-01

    Severe congenital neutropenia (SCN) is a bone marrow failure disease with an autosomal dominant inheritance from mutations in ELANE. Here, we report a 7-week-old Korean male with SCN. His elder sister died from pneumonia at 2 years. Direct sequencing of ELANE in the proband identified a heterozygous novel frameshift mutation: c.658delC (p.Arg220Glyfs20*). Family study involving his asymptomatic parents with normal cell counts revealed that his father had the same mutation, but at a lower burden than expected in a typical heterozygous state. Further molecular investigation demonstrated somatic mosaicism with ~18% mutant alleles. We concluded the proband inherited the mutation from his somatic mosaic father.

  2. A novel fibrinogen B beta chain frameshift mutation causes congenital afibrinogenaemia.

    Science.gov (United States)

    Zhang, Jian; Zhao, Xiaojuan; Wang, Zhaoyue; Yu, Ziqiang; Cao, Lijuan; Zhang, Wei; Bai, Xia; Ruan, Changgeng

    2013-07-01

    Congenital afibrinogenaemia is a rare autosomal recessive disorder caused by various mutations within the fibrinogen genes FGA, FGB and FGG. Ins/del mutations in FGB are extremely rare. We report a patient with afibrinogenaemia who suffered from umbilical cord bleeding and repeated bleeding episodes. His plasma fibrinogen levels could not be detected using the Clauss method and immunological methods. Molecular analyses revealed homozygosity in a novel four bases insertion in codon 40 of FGB exon 2 (g. 2833_2834 ins GTTT), which resulted in a truncated 50-residue polypeptide that contained 11 exceptional abnormal residues. In the transient expression experiments, mutant fibrinogen could be detected at higher level than wild-type fibrinogen in COS-7 cell lysates but not in culture media. These results suggest that the homozygous mutation in FGB could be responsible for congenital afibrinogenaemia in this patient. This frameshift mutation could impair fibrinogen assembly and secretion without influencing the protein synthesis.

  3. Somatic frameshift mutations in the Bloom syndrome BLM gene are frequent in sporadic gastric carcinomas with microsatellite mutator phenotype

    Directory of Open Access Journals (Sweden)

    Matei Irina

    2001-08-01

    Full Text Available Abstract Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP positive and negative gastric carcinomas (GCs. Methods We analyzed 50 gastric carcinomas (GCs for mutations in the BLM poly(A tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases but not in any of the MMP negative GCs (0/35 cases. The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %, BAX (27%, hMSH6 (20%,hMSH3 (13%, CBL (13%, IGFIIR (7%, RECQL (0% and WRN (0%. Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors.

  4. A novel mitochondrial ATP6 frameshift mutation causing isolated complex V deficiency, ataxia and encephalomyopathy.

    Science.gov (United States)

    Jackson, Christopher B; Hahn, Dagmar; Schröter, Barbara; Richter, Uwe; Battersby, Brendan J; Schmitt-Mechelke, Thomas; Marttinen, Paula; Nuoffer, Jean-Marc; Schaller, André

    2017-06-01

    We describe a novel frameshift mutation in the mitochondrial ATP6 gene in a 4-year-old girl associated with ataxia, microcephaly, developmental delay and intellectual disability. A heteroplasmic frameshift mutation in the MT-ATP6 gene was confirmed in the patient's skeletal muscle and blood. The mutation was not detectable in the mother's DNA extracted from blood or buccal cells. Enzymatic and oxymetric analysis of the mitochondrial respiratory system in the patients' skeletal muscle and skin fibroblasts demonstrated an isolated complex V deficiency. Native PAGE with subsequent immunoblotting for complex V revealed impaired complex V assembly and accumulation of ATPase subcomplexes. Whilst northern blotting confirmed equal presence of ATP8/6 mRNA, metabolic (35)S-labelling of mitochondrial translation products showed a severe depletion of the ATP6 protein together with aberrant translation product accumulation. In conclusion, this novel isolated complex V defect expands the clinical and genetic spectrum of mitochondrial defects of complex V deficiency. Furthermore, this work confirms the benefit of native PAGE as an additional diagnostic method for the identification of OXPHOS defects, as the presence of complex V subcomplexes is associated with pathogenic mutations of mtDNA. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Early frameshift mutation in PIGA identified in a large XLID family without neonatal lethality.

    Science.gov (United States)

    Belet, Stefanie; Fieremans, Nathalie; Yuan, Xuan; Van Esch, Hilde; Verbeeck, Jelle; Ye, Zhaohui; Cheng, Linzhao; Brodsky, Brett R; Hu, Hao; Kalscheuer, Vera M; Brodsky, Robert A; Froyen, Guy

    2014-03-01

    The phosphatidylinositol glycan class A (PIGA) protein is a member of the glycosylphosphatidylinositol anchor pathway. Germline mutations in PIGA located at Xp22.2 are thought to be lethal in males. However, a nonsense mutation in the last coding exon was recently described in two brothers with multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2) who survived through birth likely because of the hypomorphic nature of the truncated protein, but died in their first weeks of life. Here, we report on a frameshift mutation early in the PIGA cDNA (c.76dupT; p.Y26Lfs*3) that cosegregates with the disease in a large family diagnosed with a severe syndromic form of X-linked intellectual disability. Unexpectedly, CD59 surface expression suggested the production of a shorter PIGA protein with residual functionality. We provide evidence that the second methionine at position 37 may be used for the translation of a 36 amino acids shorter PIGA. Complementation assays confirmed that this shorter PIGA cDNA was able to partially rescue the surface expression of CD59 in a PIGA-null cell line. Taken together, our data strongly suggest that the early frameshift mutation in PIGA produces a truncated hypomorph, which is sufficient to rescue the lethality in males but not the MCAHS2-like phenotype.

  6. The CFTR frameshift mutation 3905insT and its effect at transcript and protein level.

    Science.gov (United States)

    Sanz, Javier; von Känel, Thomas; Schneider, Mircea; Steiner, Bernhard; Schaller, André; Gallati, Sabina

    2010-02-01

    Cystic fibrosis (CF) is one of the most common genetic diseases in the Caucasian population and is characterized by chronic obstructive pulmonary disease, exocrine pancreatic insufficiency, and elevation of sodium and chloride concentrations in the sweat and infertility in men. The disease is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a protein that functions as chloride channel at the apical membrane of different epithelia. Owing to the high genotypic and phenotypic disease heterogeneity, effects and consequences of the majority of the CFTR mutations have not yet been studied. Recently, the frameshift mutation 3905insT was identified as the second most frequent mutation in the Swiss population and found to be associated with a severe phenotype. The frameshift mutation produces a premature termination codon (PTC) in exon 20, and transcripts bearing this PTC are potential targets for degradation through nonsense-mediated mRNA decay (NMD) and/or for exon skipping through nonsense-associated alternative splicing (NAS). Using RT-PCR analysis in lymphocytes and different tissue types from patients carrying the mutation, we showed that the PTC introduced by the mutation does neither elicit a degradation of the mRNA through NMD nor an alternative splicing through NAS. Moreover, immunocytochemical analysis in nasal epithelial cells revealed a significantly reduced amount of CFTR at the apical membrane providing a possible molecular explanation for the more severe phenotype observed in F508del/3905insT compound heterozygotes compared with F508del homozygotes. However, further experiments are needed to elucidate the fate of the 3905insT CFTR in the cell after its biosynthesis.

  7. The sequence spectrum of frameshift reversions obtained with a novel adaptive mutation assay in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Erich Heidenreich

    2016-12-01

    Full Text Available Research on the mechanisms of adaptive mutagenesis in resting, i.e. non-replicating cells relies on appropriate mutation assays. Here we provide a novel procedure for the detection of frameshift-reverting mutations in yeast. Proliferation of non-reverted cells in this assay is suppressed by the lack of a fermentable carbon source. The test allele was constructed in a way that the reversions mimic microsatellite instability, a condition often found in cancer cells. We show the cell numbers during these starvation conditions and provide a DNA sequence spectrum of a representative set of revertants. The data in this article support the publication "Glucose starvation as a selective tool for the study of adaptive mutations in Saccharomyces cerevisiae" (Heidenreich and Steinboeck, 2016 [1].

  8. Frameshift mutation of UVRAG: Switching a tumor suppressor to an oncogene in colorectal cancer.

    Science.gov (United States)

    He, Shanshan; Liang, Chengyu

    2015-01-01

    Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths in the Western world. It has a nearly 50% metastasis rate and only a subset of patients respond to current treatment strategy. UVRAG, a key autophagy effector and a guardian of chromosomal stability, is truncated by a frameshift (FS) mutation in CRC with microsatellite instability (MSI). However, the pathological and clinical significance of this UVRAG truncation remains less understood. Our recent study discovered that this FS mutation yields a much shortened form of the UVRAG protein, which counteracts most of the tumor-suppressor functions of wild-type (WT) UVRAG in autophagy, centrosome stability, and DNA repair in a dominant-negative fashion. Whereas this truncated mutation of UVRAG promotes tumorigenesis, epithelial-to-mesenchymal transition, and metastasis, it appears to sensitize CRC tumors to adjuvant chemotherapy, making it a potential molecular marker to individualize therapeutic approach in CRC.

  9. Microsatellite instability derived JAK1 frameshift mutations are associated with tumor immune evasion in endometrioid endometrial cancer

    NARCIS (Netherlands)

    Stelloo, Ellen; Versluis, Marco A; Nijman, Hans W; de Bruyn, Marco; Plat, Annechien; Osse, Elisabeth M; van Dijk, Reinhardt H; Nout, Remi A; Creutzberg, Carien L; de Bock, Geertruida H; Smit, Vincent T; Bosse, Tjalling; Hollema, Harry

    2016-01-01

    JAK1 frameshift mutations may promote cancer cell immune evasion by impeding upregulation of the antigen presentation pathway in microsatellite unstable endometrial cancers (ECs). This study investigated the JAK1 mutation frequency, its functional implication in immune evasion and its prognostic sig

  10. On the codon assignment of chain termination signals and the minimization of the effects of frameshift mutations

    CERN Document Server

    Jestin, J L

    1997-01-01

    It has been suggested that the minimization of the probability for lethal mutations is a major constraint shaping the genetic code, with the finding that the genetic code is highly protective against transition mutations. Here, we show that recent data on polymerase-induced frameshifts provide a rationale for the codon assignment of chain termination signals (CTS).

  11. Detection of coding microsatellite frameshift mutations in DNA mismatch repair-deficient mouse intestinal tumors.

    Science.gov (United States)

    Woerner, Stefan M; Tosti, Elena; Yuan, Yan P; Kloor, Matthias; Bork, Peer; Edelmann, Winfried; Gebert, Johannes

    2015-11-01

    Different DNA mismatch repair (MMR)-deficient mouse strains have been developed as models for the inherited cancer predisposing Lynch syndrome. It is completely unresolved, whether coding mononucleotide repeat (cMNR) gene mutations in these mice can contribute to intestinal tumorigenesis and whether MMR-deficient mice are a suitable molecular model of human microsatellite instability (MSI)-associated intestinal tumorigenesis. A proof-of-principle study was performed to identify mouse cMNR-harboring genes affected by insertion/deletion mutations in MSI murine intestinal tumors. Bioinformatic algorithms were developed to establish a database of mouse cMNR-harboring genes. A panel of five mouse noncoding mononucleotide markers was used for MSI classification of intestinal matched normal/tumor tissues from MMR-deficient (Mlh1(-/-) , Msh2(-/-) , Msh2(LoxP/LoxP) ) mice. cMNR frameshift mutations of candidate genes were determined by DNA fragment analysis. Murine MSI intestinal tumors but not normal tissues from MMR-deficient mice showed cMNR frameshift mutations in six candidate genes (Elavl3, Tmem107, Glis2, Sdccag1, Senp6, Rfc3). cMNRs of mouse Rfc3 and Elavl3 are conserved in type and length in their human orthologs that are known to be mutated in human MSI colorectal, endometrial and gastric cancer. We provide evidence for the utility of a mononucleotide marker panel for detection of MSI in murine tumors, the existence of cMNR instability in MSI murine tumors, the utility of mouse subspecies DNA for identification of polymorphic repeats, and repeat conservation among some orthologous human/mouse genes, two of them showing instability in human and mouse MSI intestinal tumors. MMR-deficient mice hence are a useful molecular model system for analyzing MSI intestinal carcinogenesis.

  12. A CNGB1 frameshift mutation in Papillon and Phalene dogs with progressive retinal atrophy.

    Directory of Open Access Journals (Sweden)

    Saija J Ahonen

    Full Text Available Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA or degeneration resembles human retinitis pigmentosa (RP and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10(-8 with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes.

  13. Back-translation for discovering distant protein homologies in the presence of frameshift mutations

    Directory of Open Access Journals (Sweden)

    Noé Laurent

    2010-01-01

    Full Text Available Abstract Background Frameshift mutations in protein-coding DNA sequences produce a drastic change in the resulting protein sequence, which prevents classic protein alignment methods from revealing the proteins' common origin. Moreover, when a large number of substitutions are additionally involved in the divergence, the homology detection becomes difficult even at the DNA level. Results We developed a novel method to infer distant homology relations of two proteins, that accounts for frameshift and point mutations that may have affected the coding sequences. We design a dynamic programming alignment algorithm over memory-efficient graph representations of the complete set of putative DNA sequences of each protein, with the goal of determining the two putative DNA sequences which have the best scoring alignment under a powerful scoring system designed to reflect the most probable evolutionary process. Our implementation is freely available at http://bioinfo.lifl.fr/path/. Conclusions Our approach allows to uncover evolutionary information that is not captured by traditional alignment methods, which is confirmed by biologically significant examples.

  14. A novel frameshift mutation in PMP22 accounts for hereditary neuropathy with liability to pressure palsies.

    Science.gov (United States)

    Young, P; Wiebusch, H; Stögbauer, F; Ringelstein, B; Assmann, G; Funke, H

    1997-02-01

    Peripheral myelin protein PMP22 deficiency is associated with hereditary neuropathy with liability to pressure palsies (HNPP). Most HNPP cases are caused by a 1.5-megabase deletion in chromosome 17p11.2-12, a region that contains the PMP22 gene, whereas point mutations leading to HNPP are extremely rare. We have identified a family with clinical and electrophysiologic features of HNPP,in which all affected members are heterozygous carriers of a single base insertion in codon 94. This mutation is predicted to alter the reading frame and to result in a delayed termination signal. We conclude that the functional consequences of the frameshift are equivalent to those of the PMP22 deletion allele.

  15. A Frameshift Mutation in KIT is Associated with White Spotting in the Arabian Camel

    Science.gov (United States)

    Holl, Heather; Isaza, Ramiro; Mohamoud, Yasmin; Ahmed, Ayeda; Almathen, Faisal; Youcef, Cherifi; Gaouar, Semir; Antczak, Douglas F.; Brooks, Samantha

    2017-01-01

    While the typical Arabian camel is characterized by a single colored coat, there are rare populations with white spotting patterns. White spotting coat patterns are found in virtually all domesticated species, but are rare in wild species. Theories suggest that white spotting is linked to the domestication process, and is occasionally associated with health disorders. Though mutations have been found in a diverse array of species, fewer than 30 genes have been associated with spotting patterns, thus providing a key set of candidate genes for the Arabian camel. We obtained 26 spotted camels and 24 solid controls for candidate gene analysis. One spotted and eight solid camels were whole genome sequenced as part of a separate project. The spotted camel was heterozygous for a frameshift deletion in KIT (c.1842delG, named KITW1 for White spotting 1), whereas all other camels were wild-type (KIT+/KIT+). No additional mutations unique to the spotted camel were detected in the EDNRB, EDN3, SOX10, KITLG, PDGFRA, MITF, and PAX3 candidate white spotting genes. Sanger sequencing of the study population identified an additional five KITW1/KIT+ spotted camels. The frameshift results in a premature stop codon five amino acids downstream, thus terminating KIT at the tyrosine kinase domain. An additional 13 spotted camels tested KIT+/KIT+, but due to phenotypic differences when compared to the KITW1/KIT+ camels, they likely represent an independent mutation. Our study suggests that there are at least two causes of white spotting in the Arabian camel, the newly described KITW1 allele and an uncharacterized mutation. PMID:28282952

  16. A Novel WRN Frameshift Mutation Identified by Multiplex Genetic Testing in a Family with Multiple Cases of Cancer.

    Science.gov (United States)

    Yang, Liu; Wang, Guosheng; Zhao, Xinyi; Ye, Song; Shen, Peng; Wang, Weilin; Zheng, Shusen

    2015-01-01

    Next-generation sequencing technology allows simultaneous analysis of multiple susceptibility genes for clinical cancer genetics. In this study, multiplex genetic testing was conducted in a Chinese family with multiple cases of cancer to determine the variations in cancer predisposition genes. The family comprises a mother and her five daughters, of whom the mother and the eldest daughter have cancer and the secondary daughter died of cancer. We conducted multiplex genetic testing of 90 cancer susceptibility genes using the peripheral blood DNA of the mother and all five daughters. WRN frameshift mutation is considered a potential pathogenic variation according to the guidelines of the American College of Medical Genetics. A novel WRN frameshift mutation (p.N1370Tfs*23) was identified in the three cancer patients and in the youngest unaffected daughter. Other rare non-synonymous germline mutations were also detected in DICER and ELAC2. Functional mutations in WRN cause Werner syndrome, a human autosomal recessive disease characterized by premature aging and associated with genetic instability and increased cancer risk. Our results suggest that the WRN frameshift mutation is important in the surveillance of other members of this family, especially the youngest daughter, but the pathogenicity of the novel WRN frameshift mutation needs to be investigated further. Given its extensive use in clinical genetic screening, multiplex genetic testing is a promising tool in clinical cancer surveillance.

  17. Novel MLH1 frameshift mutation in an extended hereditary nonpolyposis colorectal cancer family

    Institute of Scientific and Technical Information of China (English)

    Tanya Kirilova Kadiyska; Nadja Bogdanova; Ivo Marinov Kremensky; Radka Petrova Kaneva; Dimitar Georgiev Nedin; Alexandrina Borisova Alexandrova; Antonina Todorova Gegova; Stoyan Ganchev Lalchev; Tatyana Christova; Vanio Ivanov Mitev; Juergen Horst

    2006-01-01

    AIM: To present novel frameshift mutation c.31delC [p.L11X] in the MLH1 gene identified in an extended Bulgarian hereditary non-polyposis colorectal cancer (HNPCC) family and to analyze the molecular and clinical findings within the pedigree concerning the proposal of adequate individual prophylactic strategy for all mutation carriers.METHODS: The pedigree of the family consists of 42 members in four generations. Search for mutations in the MLH1 and hMSH2 genes was performed in the proband. After PCR amplification of all exons including flanking intronic regions, amplicons were directly sequenced.RESULTS: The mutation was found in nine from the thirteen pedigree members who signed informed consent to participate in the study. In three adenocarcinomas,microsatellite instability and lack of the MLH1 protein expression were detected. The only one tubulovillous adenoma analyzed was microsatellite stable and the MLH1 protein showed an intact staining.CONCLUSION: The newly described mutation c.31delC is HNPCC causative. Besides the typical clinical features of the syndrome, we found a specific pathologic manifestation such as moderate to high differentiated adenocarcinomas of the colon. One of the mutation carriers developed a benign giant cell soft tissue tumor. The primary tumor localizations were frequently extracolonic and detailed yearly gastrointestinal and gynecological examinations have been proposed to the mutation carriers.We emphasize the importance of including the HNPCC genetic counseling and testing as well in the following surveillance of all patients at risk in the services covered by the health insurance in Bulgaria.

  18. A CHRNE frameshift mutation causes congenital myasthenic syndrome in young Jack Russell Terriers.

    Science.gov (United States)

    Rinz, Caitlin J; Lennon, Vanda A; James, Fiona; Thoreson, James B; Tsai, Kate L; Starr-Moss, Alison N; Humphries, H Dale; Guo, Ling T; Palmer, Anthony C; Clark, Leigh Anne; Shelton, G Diane

    2015-12-01

    Congenital myasthenic syndromes (CMSs) are a group of rare genetic disorders of the neuromuscular junction resulting in structural or functional causes of fatigable weakness that usually begins early in life. Mutations in pre-synaptic, synaptic and post-synaptic proteins have been demonstrated in human cases, with more than half involving aberrations in nicotinic acetylcholine receptor (AChR) subunits. CMS was first recognized in dogs in 1974 as an autosomal recessive trait in Jack Russell Terriers (JRTs). A deficiency of junctional AChRs was demonstrated. Here we characterize a CMS in 2 contemporary cases of JRT littermates with classic clinical and electromyographic findings, and immunochemical confirmation of an approximately 90% reduction in AChR protein content. Loci encoding the 5 AChR subunits were evaluated using microsatellite markers, and CHRNB1 and CHRNE were identified as candidate genes. Sequences of the splice sites and exons of both genes revealed a single base insertion in exon 7 of CHRNE that predicts a frameshift mutation and a premature stop codon. We further demonstrated this pathogenic mutation in CHRNE in archival tissues from unrelated JRTs studied 34 years ago.

  19. A frameshift mutation in GRXCR2 causes recessively inherited hearing loss.

    Science.gov (United States)

    Imtiaz, Ayesha; Kohrman, David C; Naz, Sadaf

    2014-05-01

    More than 360 million humans are affected with some degree of hearing loss, either early or later in life. A genetic cause for the disorder is present in a majority of the cases. We mapped a locus (DFNB101) for hearing loss in humans to chromosome 5q in a consanguineous Pakistani family. Exome sequencing revealed an insertion mutation in GRXCR2 as the cause of moderate-to-severe and likely progressive hearing loss in the affected individuals of the family. The frameshift mutation is predicted to affect a conserved, cysteine-rich region of GRXCR2, and to result in an abnormal extension of the C-terminus. Functional studies by cell transfections demonstrated that the mutant protein is unstable and mislocalized relative to wild-type GRXCR2, consistent with a loss-of-function mutation. Targeted disruption of Grxcr2 is concurrently reported to cause hearing loss in mice. The structural abnormalities in this animal model suggest a role for GRXCR2 in the development of stereocilia bundles, specialized structures on the apical surface of sensory cells in the cochlea that are critical for sound detection. Our results indicate that GRXCR2 should be considered in differential genetic diagnosis for individuals with early onset, moderate-to-severe and progressive hearing loss.

  20. Clinical and neurocognitive characterization of a family with a novel MED12 gene frameshift mutation.

    Science.gov (United States)

    Lesca, Gaetan; Moizard, Marie-Pierre; Bussy, Gerald; Boggio, Dominique; Hu, Hao; Haas, Stefan A; Ropers, Hans-Hilger; Kalscheuer, Vera M; Des Portes, Vincent; Labalme, Audrey; Sanlaville, Damien; Edery, Patrick; Raynaud, Martine; Lespinasse, James

    2013-12-01

    FG syndrome, Lujan syndrome, and Ohdo syndrome, the Maat-Kievit-Brunner type, have been described as distinct syndromes with overlapping non-specific features and different missense mutations of the MED12 gene have been reported in all of them. We report a family including 10 males and 1 female affected with profound non-specific intellectual disability (ID) which was linked to a 30-cM region extending from Xp11.21 (ALAS2) to Xq22.3 (COL4A5). Parallel sequencing of all X-chromosome exons identified a frameshift mutation (c.5898dupC) of MED12. Mutated mRNA was not affected by non-sense mediated RNA decay and induced an additional abnormal isoform due to activation of cryptic splice-sites in exon 41. Dysmorphic features common to most affected males were long narrow face, high forehead, flat malar area, high nasal bridge, and short philtrum. Language was absent or very limited. Most patients had a friendly personality. Cognitive impairment, varying from borderline to profound ID was similarly observed in seven heterozygous females. There was no correlation between cognitive function and X-chromosome inactivation profiles in blood cells. The severe degree of ID in male patients, as well as variable cognitive impairment in heterozygous females suggests that the duplication observed in the present family may have a more severe effect on MED12 function than missense mutations. In a cognitively impaired male from this family, who also presented with tall stature and dysmorphism and did not have the MED12 mutation, a 600-kb duplication at 17p13.3 including the YWHAE gene, was found in a mosaic state.

  1. Two new Rett syndrome families and review of the literature: expanding the knowledge of MECP2 frameshift mutations

    Directory of Open Access Journals (Sweden)

    Eiklid Kristin L

    2011-08-01

    Full Text Available Abstract Background Rett syndrome (RTT is an X-linked dominant neurodevelopmental disorder, which is usually caused by de novo mutations in the MECP2 gene. More than 70% of the disease causing MECP2 mutations are eight recurrent C to T transitions, which almost exclusively arise on the paternally derived X chromosome. About 10% of the RTT cases have a C-terminal frameshift deletion in MECP2. Only few RTT families with a segregating MECP2 mutation, which affects female carriers with a phenotype of mental retardation or RTT, have been reported in the literature. In this study we describe two new RTT families with three and four individuals, respectively, and review the literature comparing the type of mutations and phenotypes observed in RTT families with those observed in sporadic cases. Based on these observations we also investigated origin of mutation segregation to further improve genetic counselling. Methods MECP2 mutations were identified by direct sequencing. XCI studies were performed using the X-linked androgen receptor (AR locus. The parental origin of de novo MECP2 frameshift mutations was investigated using intronic SNPs. Results In both families a C-terminal frameshift mutation segregates. Clinical features of the mutation carriers vary from classical RTT to mild mental retardation. XCI profiles of the female carriers correlate to their respective geno-/phenotypes. The majority of the de novo frameshift mutations occur on the paternally derived X chromosome (7/9 cases, without a paternal age effect. Conclusions The present study suggests a correlation between the intrafamilial phenotypic differences observed in RTT families and their respective XCI pattern in blood, in contrast to sporadic RTT cases where a similar correlation has not been demonstrated. Furthermore, we found de novo MECP2 frameshift mutations frequently to be of paternal origin, although not with the same high paternal occurrence as in sporadic cases with C to T

  2. Selective translational repression of truncated proteins from frameshift mutation-derived mRNAs in tumors.

    Directory of Open Access Journals (Sweden)

    Kwon Tae You

    2007-05-01

    Full Text Available Frameshift and nonsense mutations are common in tumors with microsatellite instability, and mRNAs from these mutated genes have premature termination codons (PTCs. Abnormal mRNAs containing PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD system. However, PTCs located within 50-55 nucleotides of the last exon-exon junction are not recognized by NMD (NMD-irrelevant, and some PTC-containing mRNAs can escape from the NMD system (NMD-escape. We investigated protein expression from NMD-irrelevant and NMD-escape PTC-containing mRNAs by Western blotting and transfection assays. We demonstrated that transfection of NMD-irrelevant PTC-containing genomic DNA of MARCKS generates truncated protein. In contrast, NMD-escape PTC-containing versions of hMSH3 and TGFBR2 generate normal levels of mRNA, but do not generate detectable levels of protein. Transfection of NMD-escape mutant TGFBR2 genomic DNA failed to generate expression of truncated proteins, whereas transfection of wild-type TGFBR2 genomic DNA or mutant PTC-containing TGFBR2 cDNA generated expression of wild-type protein and truncated protein, respectively. Our findings suggest a novel mechanism of gene expression regulation for PTC-containing mRNAs in which the deleterious transcripts are regulated either by NMD or translational repression.

  3. A novel frameshift mutation in CX46 associated with hereditary dominant cataracts in a Chinese family

    Directory of Open Access Journals (Sweden)

    Xiu-Kun Cui

    2017-05-01

    Full Text Available AIM: To investigate the genetic mutations that are associated the hereditary autosomal dominant cataract in a Chinese family. METHODS: A Chinese family consisting of 20 cataract patients (including 9 male and 11 female and 2 unaffected individuals from 5 generations were diagnosed to be a typical autosomal dominant cataract pedigree. Genomic DNA samples were extracted from the peripheral blood cells of the participants in this pedigree. Exon sequence was used for genetic mutation screening. In silico analysis was used to study the structure characteristics of connexin 46 (CX46 mutant. Immunoblotting was conduceted for testing the expression of CX46. RESULTS: To determine the involved genetic mutations, 11 well-known cataract-associated genes (cryaa, cryab, crybb1, crybb2, crygc, crygd, Gja3, Gja8, Hsf4, Mip and Pitx3 were chosen for genetic mutation test by using exon sequencing. A novel cytosine insertion at position 1195 of CX46 cDNA (c.1194_1195ins C was found in the samples of 5 tested cataract patients but not in the unaffected 2 individuals nor in normal controls, which resulted in 30 amino acids more extension in CX46C-terminus (cx46fs400 compared with the wild-type CX46. In silico protein structure analysis indicated that the mutant showed distinctive hydrophobicity and protein secondary structure compared with the wild-type CX46. The immunoblot results revealed that CX46 protein, which expressed in the aging cataract lens tissues, was absence in the proband lens. In contrast, CX50, alpha A-crystallin and alphaB-crystallin expressed equally in both proband and aging cataract tissues. Those results revealed that the cx46fs400 mutation could impair CX46 protein expression. CONCLUSION: The insertion of cytosine at position 1195 of CX46 cDNA is a novel mutation site that is associated with the autosomal dominant cataracts in this Chinese family. The C-terminal frameshift mutation is involved in regulating CX46 protein expression.

  4. Frameshift mutations in dentin phosphoprotein and dependence of dentin disease phenotype on mutation location

    NARCIS (Netherlands)

    P. Nieminen; L. Papagiannoulis-Lascarides; J. Waltimo-Siren; P. Ollila; S. Karjalainen; S. Arte; J. Veerkamp; V. Tallon Walton; E. Chimenos Küstner; T. Siltanen; H. Holappa; P.L. Lukinmaa; S. Alaluusua

    2011-01-01

    We describe results from a mutational analysis of the region of the dentin sialophosphoprotein (DSPP) gene encoding dentin phosphoprotein (DPP) in 12 families with dominantly inherited dentin diseases. In eight families (five mutations in the N-terminal third of DPP), the clinical and radiologic fea

  5. A frameshift mutation in GON4L is associated with proportionate dwarfism in Fleckvieh cattle.

    Science.gov (United States)

    Schwarzenbacher, Hermann; Wurmser, Christine; Flisikowski, Krzysztof; Misurova, Lubica; Jung, Simone; Langenmayer, Martin C; Schnieke, Angelika; Knubben-Schweizer, Gabriela; Fries, Ruedi; Pausch, Hubert

    2016-03-31

    Low birth weight and postnatal growth restriction are the most evident symptoms of dwarfism. Accompanying skeletal aberrations may compromise the general condition and locomotion of affected individuals. Several paternal half-sibs with a low birth weight and a small size were born in 2013 in the Fleckvieh cattle population. Affected calves were strikingly underweight at birth in spite of a normal gestation length and had craniofacial abnormalities such as elongated narrow heads and brachygnathia inferior. In spite of a normal general condition, their growth remained restricted during rearing. We genotyped 27 affected and 10,454 unaffected animals at 44,672 single nucleotide polymorphisms and performed association tests followed by homozygosity mapping, which allowed us to map the locus responsible for growth failure to a 1.85-Mb segment on bovine chromosome 3. Analysis of whole-genome re-sequencing data from one affected and 289 unaffected animals revealed a 1-bp deletion (g.15079217delC, rs723240647) in the coding region of the GON4L gene that segregated with the dwarfism-associated haplotype. We showed that the deletion induces intron retention and premature termination of translation, which can lead to a severely truncated protein that lacks domains that are likely essential to normal protein function. The widespread use of an undetected carrier bull for artificial insemination has resulted in a tenfold increase in the frequency of the deleterious allele in the female population. A frameshift mutation in GON4L is associated with autosomal recessive proportionate dwarfism in Fleckvieh cattle. The mutation has segregated in the population for more than 50 years without being recognized as a genetic disorder. However, the widespread use of an undetected carrier bull for artificial insemination caused a sudden accumulation of homozygous calves with dwarfism. Our findings provide the basis for genome-based mating strategies to avoid the inadvertent mating of carrier

  6. CCR4 frameshift mutation identifies a distinct group of adult T cell leukaemia/lymphoma with poor prognosis.

    Science.gov (United States)

    Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-04-01

    Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology.

  7. Novel Mutation of Cleidocranial Dysplasia-related Frameshift Runt-related Transcription Factor 2 in a Sporadic Chinese Case

    Science.gov (United States)

    Qin, Xue-Yan; Jia, Pei-Zeng; Zhao, Hua-Xiang; Li, Wei-Ran; Chen, Feng; Lin, Jiu-Xiang

    2017-01-01

    Background: Cleidocranial dysplasia (CCD) is an autosomal dominant disease that affects the skeletal system. Common symptoms of CCD include hypoplasia or aplasia of the clavicles, delayed or even absent closure of the fontanels, midface hypoplasia, short stature, and delayed eruption of permanent and supernumerary teeth. Previous studies reported a connection between CCD and the haploinsufficiency of runt-related transcription factor 2 (RUNX2). Here, we report a sporadic Chinese case presenting typical symptoms of CCD. Methods: We made genetic testing on this sporadic Chinese case and identified a novel RUNX2 frameshift mutation: c.1111dupT. In situ immunofluorescence microscopy and osteocalcin promoter luciferase assay were performed to compare the functions of the RUNX2 mutation with those of wild-type RUNX2. Results: RUNX2 mutation was observed in the perinuclear region, cytoplasm, and nuclei. In contrast, wild-type RUNX2 was confined in the nuclei, which indicated that the subcellular compartmentalization of RUNX2 mutation was partially perturbed. The transactivation function on osteocalcin promoter of the RUNX2 mutation was obviously abrogated. Conclusions: We identified a sporadic CCD patient carrying a novel insertion/frameshift mutation of RUNX2. This finding expanded our understanding of CCD-related phenotypes. PMID:28091408

  8. A novel frameshift mutation in FGA (c.1846 del A) leading to congenital afibrinogenemia in a consanguineous Syrian family.

    Science.gov (United States)

    Levrat, Emmanuel; Aboukhamis, Imad; de Moerloose, Philippe; Farho, Jaafar; Chamaa, Sahar; Reber, Guido; Fort, Alexandre; Neerman-Arbez, Marguerite

    2011-03-01

    Congenital afibrinogenemia is a rare autosomal recessive coagulation disorder characterized essentially by bleeding symptoms, but miscarriages and, paradoxically, thromboembolic events can also occur. Most reported mutations leading to congenital afibrinogenemia are located in FGA encoding the fibrinogen A α-chain. In this study, we analysed 12 individuals from a consanguineous Syrian family with reduced or absent fibrinogen levels: those with fibrinogen levels around 1 g/l (n = 7) were found to be heterozygous for a novel frameshift mutation in FGA exon 5 (c.1846 del A) and those with undetectable fibrinogen levels (n = 5) were homozygous for the same mutation. This novel frameshift mutation is the most C-terminal causative FGA mutation identified to date in afibrinogenemic patients. The resulting aberrant Aα-chain (p.Thr616HisfsX32) is most likely synthesized, but is less efficiently assembled and/or secreted into the circulation given the phenotype of asymptomatic hypofibrinogenemia in heterozygous individuals and bleeding diathesis in homozygous individuals.

  9. A frameshift mutation in the cubilin gene (CUBN in Border Collies with Imerslund-Grasbeck syndrome (selective cobalamin malabsorption.

    Directory of Open Access Journals (Sweden)

    Marta Owczarek-Lipska

    Full Text Available Imerslund-Gräsbeck syndrome (IGS or selective cobalamin malabsorption has been described in humans and dogs. IGS occurs in Border Collies and is inherited as a monogenic autosomal recessive trait in this breed. Using 7 IGS cases and 7 non-affected controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 3.53 Mb interval on chromosome 2. We re-sequenced the genome of one affected dog at ∼10× coverage and detected 17 non-synonymous variants in the critical interval. Two of these non-synonymous variants were in the cubilin gene (CUBN, which is known to play an essential role in cobalamin uptake from the ileum. We tested these two CUBN variants for association with IGS in larger cohorts of dogs and found that only one of them was perfectly associated with the phenotype. This variant, a single base pair deletion (c.8392delC, is predicted to cause a frameshift and premature stop codon in the CUBN gene. The resulting mutant open reading frame is 821 codons shorter than the wildtype open reading frame (p.Q2798Rfs*3. Interestingly, we observed an additional nonsense mutation in the MRC1 gene encoding the mannose receptor, C type 1, which was in perfect linkage disequilibrium with the CUBN frameshift mutation. Based on our genetic data and the known role of CUBN for cobalamin uptake we conclude that the identified CUBN frameshift mutation is most likely causative for IGS in Border Collies.

  10. Dravet syndrome with favourable cognitive and behavioral development due to a novel SCN1A frameshift mutation.

    Science.gov (United States)

    Jiang, Peifang; Shen, Jue; Yu, Yonglin; Jiang, Lihua; Xu, Jialu; Xu, Lu; Yu, Huimin; Gao, Feng

    2016-07-01

    Children with Dravet syndrome (DS) often have severe cognitive, behaviour and motor impairments. Patients with truncating mutations would logically have the more severe phenotype. Here we present a case of DS with an unusually favourable cognitive and behavioral development with a novel SCN1A frameshift mutation (c.4233-4234insAT). Under regular following up for ten years, the patient had normal expressive language and mild motor clumsiness. It is suggested that besides the type of SCN1A mutation, other mechanisms may be existed to influence the SCN1A phenotype, such as modifier genes, developmental variability, accumulation of somatic mutation in lifetime and environmental insults can all contribute to the cognitive and behavioral outcome.

  11. A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma.

    Science.gov (United States)

    Liu, Chunqiao; Widen, Sonya A; Williamson, Kathleen A; Ratnapriya, Rinki; Gerth-Kahlert, Christina; Rainger, Joe; Alur, Ramakrishna P; Strachan, Erin; Manjunath, Souparnika H; Balakrishnan, Archana; Floyd, James A; Li, Tiansen; Waskiewicz, Andrew; Brooks, Brian P; Lehmann, Ordan J; FitzPatrick, David R; Swaroop, Anand

    2016-04-01

    Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt-Frizzled (FZD) signaling in ocular development and directly implicate WNT-FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma.

  12. Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy.

    Science.gov (United States)

    Kozusko, Kristina; Tsang, Venessa H M; Bottomley, William; Cho, Yoon-Hi; Gandotra, Sheetal; Mimmack, Michael; Lim, Koini; Isaac, Iona; Patel, Satish; Saudek, Vladimir; O'Rahilly, Stephen; Srinivasan, Shubha; Greenfield, Jerry R; Barroso, Ines; Campbell, Lesley V; Savage, David B

    2015-01-01

    Perilipin 1 is a lipid droplet coat protein predominantly expressed in adipocytes, where it inhibits basal and facilitates stimulated lipolysis. Loss-of-function mutations in the PLIN1 gene were recently reported in patients with a novel subtype of familial partial lipodystrophy, designated as FPLD4. We now report the identification and characterization of a novel heterozygous frameshift mutation affecting the carboxy-terminus (439fs) of perilipin 1 in two unrelated families. The mutation cosegregated with a similar phenotype including partial lipodystrophy, severe insulin resistance and type 2 diabetes, extreme hypertriglyceridemia, and nonalcoholic fatty liver disease in both families. Poor metabolic control despite maximal medical therapy prompted two patients to undergo bariatric surgery, with remarkably beneficial consequences. Functional studies indicated that expression levels of the mutant protein were lower than wild-type protein, and in stably transfected preadipocytes the mutant protein was associated with smaller lipid droplets. Interestingly, unlike the previously reported 398 and 404 frameshift mutants, this variant binds and stabilizes ABHD5 expression but still fails to inhibit basal lipolysis as effectively as wild-type perilipin 1. Collectively, these findings highlight the physiological need for exquisite regulation of neutral lipid storage within adipocyte lipid droplets, as well as the possible metabolic benefits of bariatric surgery in this serious disease.

  13. A frameshift mutation in HTRA1 expands CARASIL syndrome and peripheral small arterial disease to the Chinese population.

    Science.gov (United States)

    Cai, Bin; Zeng, Jiabin; Lin, Yi; Lin, Yu; Lin, WenPing; Lin, Wei; Li, Zhiwen; Wang, Ning

    2015-08-01

    Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a rare hereditary cerebral artery disease. The HtrA serine protease 1 (HTRA1) gene has been identified as the causative gene of CARASIL. Here, we report a novel mutation in the HTRA1 gene in a CARASIL pedigree and explore its pathogenesis at the protein level. Subcutaneous tissue biopsy and HTRA1 gene analysis were performed in a CARASIL patient, and HTRA1 and TGF-β1 protein expression in subcutaneous tissue and cultured fibroblasts from the proband were detected by immunohistochemistry and western blotting. A 28-year-old male proband and his brother experienced recurrent stroke, hair loss and low back pain. Abnormalities in the proband were found in the elastic plate of subcutaneous small arteries, and a novel homozygous frameshift mutation (c.161_162insAG), leading to the formation of a stop codon 159 amino acids downstream of the insertion (p.Gly56Alafs*160) was detected. Reduced HTRA1 protein and increased TGF-β1 expression were detected in subcutaneous tissue and in cultured fibroblasts. A frameshift mutation in the HTRA1 gene detected in a CARASIL pedigree resulted in reduced HTRA1 protein and increased TGF-β1 expression, which may cause severe CARASIL and peripheral small arterial disease.

  14. Whole-exome sequencing reveals a novel frameshift mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in the Indian population.

    Science.gov (United States)

    Zhou, Yu; Saikia, Bibhuti B; Jiang, Zhilin; Zhu, Xiong; Liu, Yuqing; Huang, Lulin; Kim, Ramasamy; Yang, Yin; Qu, Chao; Hao, Fang; Gong, Bo; Tai, Zhengfu; Niu, Lihong; Yang, Zhenglin; Sundaresan, Periasamy; Zhu, Xianjun

    2015-10-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 50 genes. To identify genetic mutations underlying autosomal recessive RP (arRP), we performed whole-exome sequencing study on two consanguineous marriage Indian families (RP-252 and RP-182) and 100 sporadic RP patients. Here we reported novel mutation in FAM161A in RP-252 and RP-182 with two patients affected with RP in each family. The FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. By whole-exome sequencing we identified several homozygous genomic regions, one of which included the recently identified FAM161A gene mutated in RP28-linked arRP. Sequencing analysis revealed the presence of a novel homozygous frameshift mutation p.R592FsX2 in both patients of family RP-252 and family RP-182. In 100 sporadic Indian RP patients, this novel homozygous frameshift mutation p.R592FsX2 was identified in one sporadic patient ARRP-S-I-46 by whole-exome sequencing and validated by Sanger sequencing. Meanwhile, this homozygous frameshift mutation was absent in 1000 ethnicity-matched control samples screened by direct Sanger sequencing. In conclusion, we identified a novel homozygous frameshift mutations of RP28-linked RP gene FAM161A in Indian population.

  15. A CNGB1 frameshift mutation in Papillon and Phalène dogs with progressive retinal atrophy.

    Science.gov (United States)

    Ahonen, Saija J; Arumilli, Meharji; Lohi, Hannes

    2013-01-01

    Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) or degeneration resembles human retinitis pigmentosa (RP) and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD) of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10(-8)) with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes.

  16. Hb Filottrano [codon 120 (-A)]: a novel frameshift mutation in exon 3 of the β-globin gene causing dominantly inherited β-thalassemia intermedia.

    Science.gov (United States)

    Amato, Antonio; Cappabianca, Maria Pia; Perri, Maria; Zaghis, Ivo; Mastropietro, Fabrizio; Ponzini, Donatella; Di Biagio, Paola; Piscitelli, Roberta

    2012-01-01

    We report a novel frameshift mutation in exon 3 of the β-globin gene, that, in the heterozygous state, leads to a β-thalassemia intermedia (β-TI) phenotype (marked anemia, splenomegaly, hyperbilirubinemia, jaundice, unbalanced synthesis of α/non-α chains in a 34-year-old Italian woman. This frameshift mutation, due to the deletion of the first nucleotide (-A) at codon 120, results in a β-globin chain that is elongated to 156 amino acid residues. These highly unstable abnormal chains precipitate in the erythroblasts as inclusion bodies, thus causing inefficient erythropoiesis and ultimately resulting in the observed dominant clinical phenotype.

  17. A novel frameshift mutation in the cylindromatosis (CYLD) gene in a Chinese family with multiple familial trichoepithelioma.

    Science.gov (United States)

    Wu, J W; Xiao, S X; Huo, J; An, J G; Ren, J W

    2014-11-01

    Multiple familial trichoepithelioma (MFT) (OMIM: 601606) is an autosomal dominantly inherited disorder characterized by numerous, skin-colored papules and nodules with pilar differentiation. Recently, several mutations in the cylindromatosis (CYLD) gene have been reported in MFT. In this study, a mutation analysis of the CYLD was conducted in a Chinese pedigree of typical MFT. Affected individuals were identified through probands from Shanxi Province, China. Lesional skin biopsy of the proband revealed the typical histopathological characteristics of trichoepithelioma. Individuals belonging to five consecutive generations were similarly affected, which indicated an autosomal dominant inheritance pattern. Genomic DNA was extracted from peripheral blood lymphocytes using standard phenol/chloroform extraction method. All the coding exons (4-20) and exon-intron boundaries of the CYLD gene were amplified by polymerase chain reaction (PCR). Direct sequencing of all PCR products amplified from the complete coding regions of the CYLD gene was performed to identify mutations. Sequencing of the CYLD gene was performed in a further 100 unrelated, unaffected control individuals to exclude the possibility of polymorphism. A novel heterozygous frameshift mutation c.1169_1170delCA (p.Thr390Argfs) was identified in exon 10 of the CYLD gene in the affected family members. This mutation was also detected in unaffected family members, but not in the unrelated, healthy individuals who were also analyzed. Our study expands the database on the CYLD gene mutations in MFT and should be useful in providing genetic counseling and prenatal diagnosis for families affected by MFT.

  18. Multiple nevoid basal cell carcinoma syndrome associated with congenital orbital teratoma, caused by a PTCH1 frameshift mutation.

    Science.gov (United States)

    Rodrigues, A L; Carvalho, A; Cabral, R; Carneiro, V; Gilardi, P; Duarte, C P; Puente-Prieto, J; Santos, P; Mota-Vieira, L

    2014-07-25

    Gorlin-Goltz syndrome, or nevoid basal cell carcinoma syndrome (NBCCS), is a rare autosomal dominant disorder caused by mutations in the PTCH1 gene and shows a high level of penetrance and variable expressivity. The syndrome is characterized by developmental abnormalities or neoplasms and is diagnosed with 2 major criteria, or with 1 major and 2 minor criteria. Here, we report a new clinical manifestation associated with this syndrome in a boy affected by NBCCS who had congenital orbital teratoma at birth. Later, at the age of 15 years, he presented with 4 major and 4 minor criteria of NBCCS, including multiple basal cell carcinoma and 2 odontogenic keratocysts of the jaw, both confirmed by histology, more than 5 palmar pits, calcification of the cerebral falx, extensive meningeal calcifications, macrocephaly, hypertelorism, frontal bosses, and kyphoscoliosis. PTCH1 mutation analysis revealed the heterozygous germline mutation c.290dupA. This mutation generated a frameshift within exon 2 and an early premature stop codon (p.Asn97LysfsX43), predicting a truncated protein with complete loss of function. Identification of this mutation is useful for genetic counseling. Although the clinical symptoms are well-known, our case contributes to the understanding of phenotypic variability in NBCCS, highlighting that PTCH1 mutations cannot be used for predicting disease burden and reinforces the need of a multidisciplinary team in the diagnosis, treatment, and follow-up of NBCCS patients.

  19. Functional analysis of a promoter variant identified in the CFTR gene in cis of a frameshift mutation.

    Science.gov (United States)

    Viart, Victoria; Des Georges, Marie; Claustres, Mireille; Taulan, Magali

    2012-02-01

    In monogenic diseases, the presence of several sequence variations in the same allele may complicate our understanding of genotype-phenotype relationships. We described new alterations identified in a cystic fibrosis (CF) patient harboring a 48C>G promoter sequence variation associated in cis of a 3532AC>GTA mutation and in trans with the F508del mutation. Functional analyses including in vitro experiments confirmed the deleterious effect of the 3532GTA frameshift mutation through the creation of a premature termination codon. The analyses also revealed that the 48G promoter variant has a negative effect on both transcription and mRNA level, thus demonstrating the importance of analyzing all mutations or sequence variations with potential impact on CF transmembrane conductance regulator processing, even when the two known disease-causing mutations have already been detected. Our results emphasize the need to perform, wherever possible, functional studies that may greatly assist the interpretation of the disease-causing potential of rare mutation-associated sequence variations.

  20. A novel frameshift mutation in the AFG3L2 gene in a patient with spinocerebellar ataxia.

    Science.gov (United States)

    Musova, Zuzana; Kaiserova, Michaela; Kriegova, Eva; Fillerova, Regina; Vasovcak, Peter; Santava, Alena; Mensikova, Katerina; Zumrova, Alena; Krepelova, Anna; Sedlacek, Zdenek; Kanovsky, Petr

    2014-06-01

    Spinocerebellar ataxia type 28 (SCA28) is an autosomal dominant neurodegenerative disorder caused by missense AFG3L2 mutations. To examine the occurrence of SCA28 in the Czech Republic, we screened 288 unrelated ataxic patients with hereditary (N = 49) and sporadic or unknown (N = 239) form of ataxia for mutations in exons 15 and 16, the AFG3L2 mutation hotspots. A single significant variant, frameshift mutation c.1958dupT leading to a premature termination codon, was identified in a patient with slowly progressive speech and gait problems starting at the age of 68 years. Neurological examination showed cerebellar ataxia, mild Parkinsonian features with predominant bradykinesia, polyneuropathy of the lower limbs, and cognitive decline. However, other common SCA28 features like pyramidal tract signs (lower limb hyperreflexia, positive Babinski sign), ophthalmoparesis or ptosis were absent. The mutation was also found in a patient's unaffected daughter in whom a targeted examination at 53 years of age revealed mild imbalance signs. RNA analysis showed a decreased ratio of the transcript from the mutated AFG3L2 allele relative to the normal transcript in the peripheral lymphocytes of both patients. The ratio was increased by puromycin treatment, indicating that the mutated transcript can be degraded via nonsense-mediated RNA decay. The causal link between the mutation and the phenotype of the patient is currently unclear but a pathogenic mechanism based on AFG3L2 haploinsufficiency rather than the usual dominant-negative effect of missense AFG3L2 mutations reported in SCA28, cannot be excluded.

  1. Coding Microsatellite Frameshift Mutations Accumulate in Atherosclerotic Carotid Artery Lesions: Evaluation of 26 Cases and Literature Review.

    Science.gov (United States)

    Kurz, Carolin; Hakimi, Maani; Kloor, Matthias; Grond-Ginsbach, Caspar; Gross-Weissmann, Marie-Luise; Böckler, Dittmar; von Knebel Doeberitz, Magnus; Dihlmann, Susanne

    2015-06-09

    Somatic DNA alterations are known to occur in atherosclerotic carotid artery lesions; however, their significance is unknown. The accumulation of microsatellite mutations in coding DNA regions may reflect a deficiency of the DNA mismatch repair (MMR) system. Alternatively, accumulation of these coding microsatellite mutations may indicate that they contribute to the pathology. To discriminate between these two possibilities, we compared the mutation frequencies in coding microsatellites (likely functionally relevant) with those in noncoding microsatellites (likely neutral). Genomic DNA was isolated from carotid endarterectomy (CEA) specimens of 26 patients undergoing carotid surgery and from 15 nonatherosclerotic control arteries. Samples were analyzed by DNA fragment analysis for instability at three noncoding (BAT25, BAT26, CAT25) and five coding (AIM2, ACVR2, BAX, CASP5, TGFBR2) microsatellite loci, with proven validity for detection of microsatellite instability in neoplasms. We found an increased frequency of coding microsatellite mutations in CEA specimens compared with control specimens (34.6 versus 0%; p = 0.0013). Five CEA specimens exhibited more than one frameshift mutation, and ACVR2 and CASP5 were affected most frequently (5/26 and 6/26). Moreover, the rate of coding microsatellite alterations (15/130) differed significantly from that of noncoding alterations (0/78) in CEA specimens (p = 0.0013). In control arteries, no microsatellite alterations were observed, neither in coding nor in noncoding microsatellite loci. In conclusion, the specific accumulation of coding mutations suggests that these mutations play a role in the pathogenesis of atherosclerotic carotid lesions, since the absence of mutations in noncoding microsatellites argues against general microsatellite instability, reflecting MMR deficiency.

  2. Phenotype diversity in familial cylindromatosis: a frameshift mutation in the tumor suppressor gene CYLD underlies different tumors of skin appendages.

    Science.gov (United States)

    Poblete Gutiérrez, Pamela; Eggermann, Thomas; Höller, Daniela; Jugert, Frank K; Beermann, Torsten; Grussendorf-Conen, Elke-Ingrid; Zerres, Klaus; Merk, Hans F; Frank, Jorge

    2002-08-01

    Familial cylindromatosis (turban tumor syndrome; Brooke-Spiegler syndrome) (OMIM numbers 123850, 132700, 313100, and 605041) is a rare autosomal dominantly inherited tumor syndrome. The disorder can present with cutaneous adnexal tumors such as cylindromas, trichoepitheliomas, and spiradenomas, and tumors preferably develop in hairy areas of the body such as head and neck. In affected families, mutations have been demonstrated in the CYLD gene located on chromosome 16q12-13 and reveal the characteristic attributes of a tumor suppressor. Here, we studied familial cylindromatosis in a multigeneration family of German origin. Clinically, some individuals only revealed discrete small skin-colored tumors localized in the nasolabial region whereas one family member showed expansion of multiple big tumors on the trunk and in a turban-like fashion on the scalp. Histologically, cylindromas as well as epithelioma adenoides cysticum were found. We detected a frameshift mutation in the CYLD gene, designated 2253delG, underlying the disorder and were able to show that a single mutation can result in distinct clinical and histologic expression in familial cylindromatosis. The reasons for different expression patterns of the same genetic defect in this disease remain elusive, however. Identification of mutations in the CYLD gene enable us to rapidly confirm putative diagnoses on the genetic level and to provide affected families with genetic counseling.

  3. A frameshift mutation in the canine HEXB gene in toy poodles with GM2 gangliosidosis variant 0 (Sandhoff disease).

    Science.gov (United States)

    Rahman, Mohammad M; Chang, Hye-Sook; Mizukami, Keijiro; Hossain, Mohammad A; Yabuki, Akira; Tamura, Shinji; Kitagawa, Masato; Mitani, Sawane; Higo, Takashi; Uddin, Mohammad M; Uchida, Kazuyuki; Yamato, Osamu

    2012-12-01

    GM2 gangliosidosis variant 0 (Sandhoff disease, SD) is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations in the HEXB gene. Toy poodles recently were reported as the second breed of dog with SD. The present paper describes the molecular defect of this canine SD as the first identification of a pathogenic mutation in the canine HEXB gene. Genomic and complementary DNA sequences covering exonic regions of the canine HEXB gene, except exon 1, were analysed using DNA and RNA in an affected dog. A homozygous single base pair deletion of guanine in exon 3 was identified at nucleotide position 283 of the putative open reading frame (c.283delG). This mutation has the potential to cause a frameshift resulting in the alteration of valine at amino acid position 59 to a stop codon (p.V59fsX). Genotyping using the mutagenically separated PCR method demonstrated a correlation between phenotype and genotype in dogs with a pedigree related to the disease and that the mutation was rare in a randomly-selected population of toy poodles. These results strongly suggest that the deletion is pathogenic.

  4. A new Frameshift mutation on the α2-globin gene causing α⁺-thalassemia: codon 43 (TTC>-TC or TTC>T-C).

    Science.gov (United States)

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Barro, Claire; Francina, Alain

    2012-01-01

    We report a new mutation on the α2-globin gene causing α(+)-thalassemia (α(+)-thal) with a deletion of a single nucleotide (T) at amino acid residue 43 [HBA2:c.130delT or HBA2:c.131delT]. This frameshift deletion gives rise to a premature termination codon at codon 47.

  5. Selection on length mutations after frameshift can explain the origin and retention of the AP3/DEF-like paralogues in Impatiens

    NARCIS (Netherlands)

    Janssens, S.; Viaene, T.; Huysmans, S.; Huysmans, S.; Smets, E.F.; Geuten, K.

    2008-01-01

    Evolution of class B genes through gene duplication has been proposed as an evolutionary mechanism that contributed to the enormous floral diversity. Frameshift mutations are a likely mechanism to explain the divergent C-terminal sequences of MIKC gene subfamilies. So far, the inferences for framesh

  6. A novel frameshift mutation in KCNQ4 in a family with autosomal recessive non-syndromic hearing loss.

    Science.gov (United States)

    Wasano, Koichiro; Mutai, Hideki; Obuchi, Chie; Masuda, Sawako; Matsunaga, Tatsuo

    2015-08-01

    Mutation of KCNQ4 has been reported to cause autosomal dominant non-syndromic hearing loss (DFNA2A) that usually presents as progressive hearing loss starting from mild to moderate hearing loss during childhood. Here, we identified a novel KCNQ4 mutation, c.1044_1051del8, in a family with autosomal recessive non-syndromic hearing loss. The proband was homozygous for the mutation and was born to consanguineous parents; she showed severe hearing loss that was either congenital or of early childhood onset. The proband had a sister who was heterozygous for the mutation but showed normal hearing. The mutation caused a frameshift that eliminated most of the cytoplasmic C-terminus, including the A-domain, which has an important role for protein tetramerization, and the B-segment, which is a binding site for calmodulin (CaM) that regulates channel function via Ca ions. The fact that the heterozygote had normal hearing indicates that sufficient tetramerization and CaM binding sites were present to preserve a normal phenotype even when only half the proteins contained an A-domain and B-segment. On the other hand, the severe hearing loss in the homozygote suggests that complete loss of the A-domain and B-segment in the protein caused loss of function due to the failure of tetramer formation and CaM binding. This family suggests that some KCNQ4 mutations can cause autosomal recessive hearing loss with more severe phenotype in addition to autosomal dominant hearing loss with milder phenotype. This genotype-phenotype correlation is analogous to that in KCNQ1 which causes autosomal dominant hereditary long QT syndrome 1 with milder phenotype and the autosomal recessive Jervell and Lange-Nielsen syndrome 1 with more severe phenotype due to deletion of the cytoplasmic C-terminus of the potassium channel.

  7. A novel frameshift mutation in BLM gene associated with high sister chromatid exchanges (SCE) in heterozygous family members.

    Science.gov (United States)

    Ben Salah, Ghada; Hadj Salem, Ikhlas; Masmoudi, Abderrahmen; Kallabi, Fakhri; Turki, Hamida; Fakhfakh, Faiza; Ayadi, Hamadi; Kamoun, Hassen

    2014-11-01

    The Bloom syndrome (BS) is an autosomic recessive disorder comprising a wide range of abnormalities, including stunted growth, immunodeficiency, sun sensitivity and increased frequency of various types of cancer. Bloom syndrome cells display a high level of genetic instability, including a 10-fold increase in the sister chromatid exchanges (SCE) level. Bloom syndrome arises through mutations in both alleles of the BLM gene, which was identified as a member of the RecQ helicase family. In this study, we screened a Tunisian family with three BS patients. Cytogenetic analysis showed several chromosomal aberrations, and an approximately 14-fold elevated SCE frequency in BS cells. A significant increase in SCE frequency was observed in some family members but not reaching the BS patients values, leading to suggest that this could be due to the heterozygous profile. Microsatellite genotyping using four fluorescent dye-labeled microsatellite markers revealed evidence of linkage to BLM locus and the healthy members, sharing higher SCE frequency, showed heterozygous haplotypes as expected. Additionally, the direct BLM gene sequencing identified a novel homozygous frameshift mutation c.3617-3619delAA (p.K1207fsX9) in BS patients and a heterozygous BLM mutation in the family members with higher SCE frequency. Our findings suggest that this latter mutation likely leads to a reduced BLM activity explaining the homologous recombination repair defect and, therefore, the increase in SCE. Based on the present data, the screening of this mutation could contribute to the rapid diagnosis of BS. The genetic confirmation of the mutation in BLM gene provides crucial information for genetic counseling and prenatal diagnosis.

  8. A novel frameshift mutation and infrequent clinical findings in two cases with Dyggve-Melchior-Clausen syndrome.

    Science.gov (United States)

    Seven, Mehmet; Koparir, Erkan; Gezdirici, Alper; Aydin, Hatip; Skladny, Heyko; Fenercioğlu, Elif; Güven, Gülgün; Karataş, Ömer Faruk; Koparir, Asuman; Özen, Mustafa; Ulucan, Hakan

    2014-01-01

    Dyggve-Melchior-Clausen syndrome (DMC) (MIM #223800) is a rare autosomal-recessive type of skeletal dysplasia accompanied by variable degrees of intellectual disability (ID). It is characterized by progressive spondyloepimetaphyseal dysplasia leading to disproportionate short stature, microcephaly, and coarse facies. The radiographic appearance of generalized platyspondyly with double-humped end plates and the lace-like appearance of iliac crests are pathognomonic in this syndrome. The disorder results from mutations in the dymeclin (DYM) mapped to the 18q12-12.1 chromosomal region. Here, we report two cases with DMC: one with disproportionate short stature, developmental delay, and severe ID with a novel frameshift mutation (c.1028_1056del29) leading to a premature stop codon, and the second patient with classical clinical and radiological features of DMC with mild ID and rectal prolapse, which is very rare. The clinical diagnosis was confirmed with molecular analysis of DYM with a known mutation at c.580C>T (p.R194X). The parents and sibling of the second patient were heterozygous carriers with mild skeletal changes and short stature.

  9. α(+)-Thalassemia Due to a Frameshift Mutation of the α2-Globin Gene [codons 55/56 (+T) or HBA2: c.168dup].

    Science.gov (United States)

    Waye, John S; Eng, Barry; Hanna, Meredith; Hohenadel, Betty-Ann; Nakamura, Lisa M; Walker, Lynda

    2015-01-01

    We report a case of α(+)-thalassemia (α(+)-thal) trait in a Chinese-Canadian family caused by a novel frameshift mutation of the α2-globin gene, specifically the duplication of a single nucleotide at amino acid codon 56 [HBA2: c.168dup]. The mutation results in substitution of a termination codon (TAA) for lysine (AAG) at amino acid position 56.

  10. NOD2 3020insC frameshift mutation is not associated with inflammatory bowel disease in Chinese patients of Han nationality

    Institute of Scientific and Technical Information of China (English)

    Qiu-Sha Guo; Bing Xia; Yi Jiang; Yan Qü; Jing Li

    2004-01-01

    AIM: An insertion mutation at nucleotide 3020 (3020insC) in the Caspase recruitment domain gene (CARD15),originally reported as NOD2, is strongly associated with Crohn's disease. The C-insertion mutation at nucleotide 3020 (3020inC) in the leucine-rich repeat (LRR) region results in a frameshift in the 10th LRR followed by a premature stop codon. This truncation mutation is responsible for the inability to activate nuclear factor (NF)-κB in response to bacterial lipopolysaccharide (LPS). The present study aimed to genotype NOD2/CARD15 gene 3020insC frameshift mutation in Chinese patients with inflammatory bowel disease.METHODS: We genotyped an insertion polymorphism affecting the leucine-rich region of the protein product by the allele specific PCR in 74 unrelated patients with ulcerative colitis of Han nationality in Hubei Province of China, 15 patients with Crohn's disease and 172 healthy individuals.RESULTS: No significant differences were found in the genotype and allele frequencies of the C-insertion mutation of NOD2 gene among patients with Crohn's disease and ulcerative colitis and healthy controls.CONCLUSION: NOD2 gene 3020insC frameshift mutation is not a major contributor to the susceptibility to both Crohn's disease and ulcerative colitis in Chinese Han patients.

  11. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds.

    Science.gov (United States)

    Fontanesi, L; Scotti, E; Allain, D; Dall'olio, S

    2014-04-01

    In rabbit, the dilute locus is determined by a recessive mutated allele (d) that causes the dilution of both eumelanic and pheomelanic pigmentations. In mice, similar phenotypes are determined by mutations in the myosin VA, Rab27a and melanophilin (MLPH) genes. In this study, we investigated the rabbit MLPH gene and showed that a mutation in this gene appears responsible for the dilute coat colour in this species. Checkered Giant F1 families segregating for black and grey (diluted or blue) coat colour were first genotyped for a complex indel in intron 1 of the MLPH gene that was completely associated with the coat colour phenotype (θ = 0.00; LOD = 4.82). Then, we sequenced 6357 bp of the MLPH gene in 18 rabbits of different coat colours, including blue animals. A total of 165 polymorphisms were identified: 137 were in non-coding regions and 28 were in coding exons. One of them was a frameshift deletion in exon 5. Genotyping the half-sib families confirmed the complete cosegregation of this mutation with the blue coat colour. The mutation was analysed in 198 rabbits of 23 breeds. All Blue Vienna and all other blue/grey/ash rabbits in other breeds (Californian, Castor Rex, Checkered Giant, English Spot, Fairy Marburg and Fairy Pearly) were homozygous for this deletion. The identification of MLPH as the responsible gene for the dilute locus in rabbit provides a natural animal model for human Griscelli syndrome type 3 and a new mutant to study the role of this gene on pigmentation. © 2013 Stichting International Foundation for Animal Genetics.

  12. De novo MECP2 frameshift mutation in a boy with moderate mental retardation, obesity and gynaecomastia.

    NARCIS (Netherlands)

    Kleefstra, T.; Yntema, H.G.; Oudakker, A.R.; Romein, T.; Sistermans, E.A.; Nillessen, W.; Bokhoven, J.H.L.M. van; Vries, L.B.A. de; Hamel, B.C.J.

    2002-01-01

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the MECP2 gene, with apparent lethality in male embryos. However, recent studies indicate that mutations in the MECP2 gene can cause congenital encephalopathy, an Angelman-like phenotype and even nonspecific mental

  13. A homozygous frameshift mutation in the HOXC13 gene underlies pure hair and nail ectodermal dysplasia in a Syrian family.

    Science.gov (United States)

    Farooq, Muhammad; Kurban, Mazen; Fujimoto, Atsushi; Fujikawa, Hiroki; Abbas, Ossama; Nemer, Georges; Saliba, Jessica; Sleiman, Rima; Tofaili, Mona; Kibbi, Abdul-Ghani; Ito, Masaaki; Shimomura, Yutaka

    2013-04-01

    Pure hair and nail ectodermal dysplasia (PHNED) is a rare genetic disorder characterized by hypotrichosis or complete alopecia, as well as nail dystrophy. Mutations in the type II hair keratin gene KRT85 and the HOXC13 gene on chromosome 12q have recently been identified in families with autosomal-recessive PHNED. In the present study, we have analyzed a consanguineous Syrian family with an affected girl having complete alopecia and nail dystrophy since birth. The family clearly showed linkage to chromosome 12q13.13-12q14.3, which excluded the KRT85 gene. Sequencing of another candidate gene HOXC13 within the linkage interval identified a homozygous frameshift mutation (c.355delC; p.Leu119Trpfs*20). Expression studies in cultured cells revealed that the mutant HOXC13 protein mislocalized within the cytoplasm, and failed to upregulate the promoter activities of its target genes. Our results strongly suggest crucial roles of the HOXC13 gene in the development of hair and nails in humans.

  14. Whole exome sequencing identifies a novel frameshift mutation in GPC3 gene in a patient with overgrowth syndrome.

    Science.gov (United States)

    Das Bhowmik, Aneek; Dalal, Ashwin

    2015-11-10

    Overgrowth syndromes are a heterogeneous group of diseases characterized by focal or generalized overgrowth. Many of the syndromes have overlapping clinical features and it is difficult to diagnose the condition based on clinical features alone. In the present study we report on a patient with overgrowth syndrome where extensive investigation did not reveal the cause of disease. Finally exome sequencing revealed a novel hemizygous single base pair deletion in exon 8 of GPC3 gene (chrX:132670203delA) resulting in a frameshift and creating a new stop codon at 62 amino acids downstream to codon 564 (c.1692delT; p.Leu565SerfsTer63) of the protein. The mutation was confirmed by Sanger sequencing. The mother was found to be heterozygous for the mutation. This variation is not reported in the 1000 Genomes, Exome Variant Server (EVS), Exome Aggregation Consortium (ExAC) and dbSNP databases and the region is conserved across primates. Exome sequencing was helpful in establishing diagnosis of Simpson-Golabi-Behmel syndrome type 1 (SGBS1) in a patient with unknown overgrowth syndrome.

  15. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs.

    Science.gov (United States)

    Fyfe, John C; Hemker, Shelby L; Venta, Patrick J; Fitzgerald, Caitlin A; Outerbridge, Catherine A; Myers, Sherry L; Giger, Urs

    2013-08-01

    Cobalamin malabsorption accompanied by selective proteinuria is an autosomal recessive disorder known as Imerslund-Gräsbeck syndrome in humans and was previously described in dogs due to amnionless (AMN) mutations. The resultant vitamin B12 deficiency causes dyshematopoiesis, lethargy, failure to thrive, and life-threatening metabolic disruption in the juvenile period. We studied 3 kindreds of border collies with cobalamin malabsorption and mapped the disease locus in affected dogs to a 2.9Mb region of homozygosity on canine chromosome 2. The region included CUBN, the locus encoding cubilin, a peripheral membrane protein that in concert with AMN forms the functional intrinsic factor-cobalamin receptor expressed in ileum and a multi-ligand receptor in renal proximal tubules. Cobalamin malabsorption and proteinuria comprising CUBN ligands were demonstrated by radiolabeled cobalamin uptake studies and SDS-PAGE, respectively. CUBN mRNA and protein expression were reduced ~10 fold and ~20 fold, respectively, in both ileum and kidney of affected dogs. DNA sequencing demonstrated a single base deletion in exon 53 predicting a translational frameshift and early termination codon likely triggering nonsense mediated mRNA decay. The mutant allele segregated with the disease in the border collie kindred. The border collie disorder indicates that a CUBN mutation far C-terminal from the intrinsic factor-cobalamin binding site can abrogate receptor expression and cause Imerslund-Gräsbeck syndrome.

  16. A newly described bovine type 2 scurs syndrome segregates with a frame-shift mutation in TWIST1.

    Directory of Open Access Journals (Sweden)

    Aurélien Capitan

    Full Text Available The developmental pathways involved in horn development are complex and still poorly understood. Here we report the description of a new dominant inherited syndrome in the bovine Charolais breed that we have named type 2 scurs. Clinical examination revealed that, despite a strong phenotypic variability, all affected individuals show both horn abnormalities similar to classical scurs phenotype and skull interfrontal suture synostosis. Based on a genome-wide linkage analysis using Illumina BovineSNP50 BeadChip genotyping data from 57 half-sib and full-sib progeny, this locus was mapped to a 1.7 Mb interval on bovine chromosome 4. Within this region, the TWIST1 gene encoding a transcription factor was considered as a strong candidate gene since its haploinsufficiency is responsible for the human Saethre-Chotzen syndrome, characterized by skull coronal suture synostosis. Sequencing of the TWIST1 gene identified a c.148_157dup (p.A56RfsX87 frame-shift mutation predicted to completely inactivate this gene. Genotyping 17 scurred and 20 horned founders of our pedigree as well as 48 unrelated horned controls revealed a perfect association between this mutation and the type 2 scurs phenotype. Subsequent genotyping of 32 individuals born from heterozygous parents showed that homozygous mutated progeny are completely absent, which is consistent with the embryonic lethality reported in Drosophila and mouse suffering from TWIST1 complete insufficiency. Finally, data from previous studies on model species and a fine description of type 2 scurs symptoms allowed us to propose different mechanisms to explain the features of this syndrome. In conclusion, this first report on the identification of a potential causal mutation affecting horn development in cattle offers a unique opportunity to better understand horn ontogenesis.

  17. A Frame-Shift Mutation in CAV1 Is Associated with a Severe Neonatal Progeroid and Lipodystrophy Syndrome.

    Science.gov (United States)

    Schrauwen, Isabelle; Szelinger, Szabolcs; Siniard, Ashley L; Kurdoglu, Ahmet; Corneveaux, Jason J; Malenica, Ivana; Richholt, Ryan; Van Camp, Guy; De Both, Matt; Swaminathan, Shanker; Turk, Mari; Ramsey, Keri; Craig, David W; Narayanan, Vinodh; Huentelman, Matthew J

    2015-01-01

    A 3-year-old female patient presenting with an unknown syndrome of a neonatal progeroid appearance, lipodystrophy, pulmonary hypertension, cutis marmorata, feeding disorder and failure to thrive was investigated by whole-genome sequencing. This revealed a de novo, heterozygous, frame-shift mutation in the Caveolin1 gene (CAV1) (p.Phe160X). Mutations in CAV1, encoding the main component of the caveolae in plasma membranes, cause Berardinelli-Seip congenital lipodystrophy type 3 (BSCL). Although BSCL is recessive, heterozygous carriers either show a reduced phenotype of partial lipodystrophy, pulmonary hypertension, or no phenotype. To investigate the pathogenic mechanisms underlying this syndrome in more depth, we performed next generation RNA sequencing of peripheral blood, which showed several dysregulated pathways in the patient that might be related to the phenotypic progeroid features (apoptosis, DNA repair/replication, mitochondrial). Secondly, we found a significant down-regulation of known Cav1 interaction partners, verifying the dysfunction of CAV1. Other known progeroid genes and lipodystrophy genes were also dysregulated. Next, western blotting of lysates of cultured fibroblasts showed that the patient shows a significantly decreased expression of wild-type CAV1 protein, demonstrating a loss-of-function mutation, though her phenotype is more severe that other heterozygotes with similar mutations. This phenotypic variety could be explained by differences in genetic background. Indications for this are supported by additional rare variants we found in AGPAT2 and LPIN1 lipodystrophy genes. CAV1, AGPAT2 and LPIN1 all play an important role in triacylglycerol (TAG) biosynthesis in adipose tissue, and the defective function in different parts of this pathway, though not all to the same extend, could contribute to a more severe lipoatrophic phenotype in this patient. In conclusion, we report, for the first time, an association of CAV1 dysfunction with a syndrome

  18. Frameshift mutations in the insulin gene leading to prolonged molecule of insulin in two families with Maturity-Onset Diabetes of the Young.

    Science.gov (United States)

    Dusatkova, Lenka; Dusatkova, Petra; Vosahlo, Jan; Vesela, Klara; Cinek, Ondrej; Lebl, Jan; Pruhova, Stepanka

    2015-04-01

    Mutations in the insulin (INS) gene rarely occur in patients with Maturity-Onset Diabetes of the Young (MODY). We aimed to describe in detail two MODY families with INS mutations. The INS gene was screened by direct sequencing. The probands and their affected relatives underwent a mixed-meal test. Mutation predictions were modeled using I-TASSER and were visualized by Swiss-PdbViewer. A novel heterozygous frameshift mutation p.Gln78fs in the INS gene was found in three generations of patients with clinically distinct diabetes. The single nucleotide deletion (c.233delA) is predicted to change and prolong amino acid sequence, resulting in aberrant proinsulin without native structures of C-peptide and A-chain. In the second family, the heterozygous mutation c.188-31G>A within the terminal intron was detected. The mother and her daughter were misdiagnosed as having type 1 diabetes since the ages of 6 and 2 years, respectively. This result is in contrast to the previously described carrier of the same mutation who was diagnosed with permanent neonatal diabetes. We identified a novel coding frameshift mutation and an intronic mutation in the INS gene leading to childhood-onset diabetes. INS mutations may result in various phenotypes, suggesting that additional mechanisms may be involved in the pathogenesis and clinical manifestation of diabetes.

  19. A Tumor-Specific Neo-Antigen Caused by a Frameshift Mutation in BAP1 Is a Potential Personalized Biomarker in Malignant Peritoneal Mesothelioma.

    Science.gov (United States)

    Lai, Jun; Zhou, Zhan; Tang, Xiao-Jing; Gao, Zhi-Bin; Zhou, Jie; Chen, Shu-Qing

    2016-05-14

    Malignant peritoneal mesothelioma (MPM) is an aggressive rare malignancy associated with asbestos exposure. A better understanding of the molecular pathogenesis of MPM will help develop a targeted therapy strategy. Oncogene targeted depth sequencing was performed on a tumor sample and paired peripheral blood DNA from a patient with malignant mesothelioma of the peritoneum. Four somatic base-substitutions in NOTCH2, NSD1, PDE4DIP, and ATP10B and 1 insert frameshift mutation in BAP1 were validated by the Sanger method at the transcriptional level. A 13-amino acids neo-peptide of the truncated Bap1 protein, which was produced as a result of this novel frameshift mutation, was predicted to be presented by this patient's HLA-B protein. The polyclonal antibody of the synthesized 13-mer neo-peptide was produced in rabbits. Western blotting results showed a good antibody-neoantigen specificity, and Immunohistochemistry (IHC) staining with the antibody of the neo-peptide clearly differentiated neoplastic cells from normal cells. A search of the Catalogue of Somatic Mutations in Cancer (COSMIC) database also revealed that 53.2% of mutations in BAP1 were frameshift indels with neo-peptide formation. An identified tumor-specific neo-antigen could be the potential molecular biomarker for personalized diagnosis to precisely subtype rare malignancies such as MPM.

  20. Non-homologous end joining dependency of {gamma}-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, Erich [Institute of Cancer Research, Division of Molecular Genetics, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)]. E-mail: erich.heidenreich@meduniwien.ac.at; Eisler, Herfried [Institute of Cancer Research, Division of Molecular Genetics, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)

    2004-11-22

    There is a strong selective pressure favoring adaptive mutations which relieve proliferation-limiting adverse living conditions. Due to their importance for evolution and pathogenesis, we are interested in the mechanisms responsible for the formation of such adaptive, gain-of-fitness mutations in stationary-phase cells. During previous studies on the occurrence of spontaneous reversions of an auxotrophy-causing frameshift allele in the yeast Saccharomyces cerevisiae, we noticed that about 50% of the adaptive reversions depended on a functional non-homologous end joining (NHEJ) pathway of DNA double-strand break (DSB) repair. Here, we show that the occasional NHEJ component Pol4, which is the yeast ortholog of mammalian DNA polymerase lambda, is not required for adaptive mutagenesis. An artificially imposed excess of DSBs by {gamma}-irradiation resulted in a dramatic increase in the incidence of adaptive, cell cycle arrest-releasing frameshift reversions. By the use of DNA ligase IV-deficient strains we detected that the majority of the {gamma}-induced adaptive mutations were also dependent on a functional NHEJ pathway. This suggests that the same mutagenic NHEJ mechanism acts on spontaneously arising as well as on ionizing radiation-induced DSBs. Inaccuracy of the NHEJ repair pathway may extensively contribute to the incidence of frameshift mutations in resting (non-dividing) eukaryotic cells, and thus act as a driving force in tumor development.

  1. Molecular phenotype and bleeding risks of an inherited platelet disorder in a family with a RUNX1 frameshift mutation.

    Science.gov (United States)

    Badin, M S; Iyer, J K; Chong, M; Graf, L; Rivard, G E; Waye, J S; Paterson, A D; Pare, G; Hayward, C P M

    2017-05-01

    Inherited defects in RUNX1 are important causes of platelet function disorders. Our goals were to evaluate RUNX1-related platelet disorders among individuals evaluated for uncharacterized, inherited platelet function disorders and test a proof of concept that bleeding risks could be quantitatively estimated for typical families with an inherited platelet function disorder. Index cases with an uncharacterized inherited platelet function disorder were subjected to exome sequencing with confirmation of RUNX1 mutations by Sanger sequencing. Laboratory findings were obtained from medical records and persistence of platelet non-muscle myosin heavy chain IIB (MYH10), a biomarker of RUNX1 defects, was assessed by Western blotting. Bleeding histories were assessed using standardized assessment tools. Bleeding risks were estimated as odds ratios (OR) using questionnaire data for affected individuals compared to controls. Among 12 index cases who had their exomes sequenced, one individual from a family with eight study participants had a c.583dup in RUNX1 that segregated with the disease and was predicted to cause a frameshift and RUNX1 haploinsufficiency. Unlike unaffected family members (n = 2), affected family members (n = 6) had increased bleeding scores and abnormal platelet aggregation and dense granule release responses to agonists but only some had thrombocytopenia and/or dense granule deficiency. This family's mutation was associated with persistence of MYH10 in platelets and increased risks (OR 11-440) for wound healing problems and mild bleeding symptoms, including bleeding interfering with lifestyle in women. Inherited platelet dysfunction due to a RUNX1 haploinsufficiency mutation significantly increases bleeding risks. © 2017 John Wiley & Sons Ltd.

  2. T-cell factor-4 frameshift mutations occur frequently in human microsatellite instability-high colorectal carcinomas but do not contribute to carcinogenesis.

    Science.gov (United States)

    Ruckert, Stefan; Hiendlmeyer, Elke; Brueckl, Wolfgang M; Oswald, Ursula; Beyser, Kurt; Dietmaier, Wolfgang; Haynl, Angela; Koch, Claudia; Rüschoff, Josef; Brabletz, Thomas; Kirchner, Thomas; Jung, Andreas

    2002-06-01

    Colorectal carcinomas with microsatellite instability accumulate errors in short repetitive DNA repeats, especially mono and dinucleotide repeats. One such error-prone A(9) monorepeat is found in exon 17 of the TCF-4 gene. TCF-4 and beta-catenin form a transcription complex, which is important for both maintenance of normal epithelium and development of colorectal tumors. To elucidate the relevance of frameshift mutations in the TCF-4 in colorectal carcinogenesis, a variety of investigations in human tumors and cell lines was performed. It was found that mutations in the TCF-4 A(9) repeat do not contribute to tumorigenesis and seem to be passenger mutations.

  3. A novel frameshift mutation in FGF14 causes an autosomal dominant episodic ataxia.

    Science.gov (United States)

    Choquet, Karine; La Piana, Roberta; Brais, Bernard

    2015-07-01

    Episodic ataxias (EAs) are a heterogeneous group of neurological disorders characterized by recurrent attacks of ataxia. Mutations in KCNA1 and CACNA1A account for the majority of EA cases worldwide. We recruited a two-generation family affected with EA of unknown subtype and performed whole-exome sequencing on two affected members. This revealed a novel heterozygous mutation c.211_212insA (p.I71NfsX27) leading to a premature stop codon in FGF14. Mutations in FGF14 are known to cause spinocerebellar ataxia type 27 (SCA27). Sanger sequencing confirmed segregation within the family. Our findings expand the phenotypic spectrum of SCA27 by underlining the possible episodic nature of this ataxia.

  4. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming.

    Science.gov (United States)

    Fallon, Padraic G; Sasaki, Takashi; Sandilands, Aileen; Campbell, Linda E; Saunders, Sean P; Mangan, Niamh E; Callanan, John J; Kawasaki, Hiroshi; Shiohama, Aiko; Kubo, Akiharu; Sundberg, John P; Presland, Richard B; Fleckman, Philip; Shimizu, Nobuyoshi; Kudoh, Jun; Irvine, Alan D; Amagai, Masayuki; McLean, W H Irwin

    2009-05-01

    Loss-of-function mutations in the FLG (filaggrin) gene cause the semidominant keratinizing disorder ichthyosis vulgaris and convey major genetic risk for atopic dermatitis (eczema), eczema-associated asthma and other allergic phenotypes. Several low-frequency FLG null alleles occur in Europeans and Asians, with a cumulative frequency of approximately 9% in Europe. Here we report a 1-bp deletion mutation, 5303delA, analogous to common human FLG mutations, within the murine Flg gene in the spontaneous mouse mutant flaky tail (ft). We demonstrate that topical application of allergen to mice homozygous for this mutation results in cutaneous inflammatory infiltrates and enhanced cutaneous allergen priming with development of allergen-specific antibody responses. These data validate flaky tail as a useful model of filaggrin deficiency and provide experimental evidence for the hypothesis that antigen transfer through a defective epidermal barrier is a key mechanism underlying elevated IgE sensitization and initiation of cutaneous inflammation in humans with filaggrin-related atopic disease.

  5. A frameshift mutation in the cubilin gene (CUBN) in Beagles with Imerslund-Gräsbeck syndrome (selective cobalamin malabsorption).

    Science.gov (United States)

    Drögemüller, Michaela; Jagannathan, Vidhya; Howard, Judith; Bruggmann, Rémy; Drögemüller, Cord; Ruetten, Maja; Leeb, Tosso; Kook, Peter H

    2014-02-01

    Mammals are unable to synthesize cobalamin or vitamin B12 and rely on the uptake of dietary cobalamin. The cubam receptor expressed on the intestinal endothelium is required for the uptake of cobalamin from the gut. Cubam is composed of two protein subunits, amnionless and cubilin, which are encoded by the AMN and CUBN genes respectively. Loss-of-function mutations in either the AMN or the CUBN gene lead to hereditary selective cobalamin malabsorption or Imerslund-Gräsbeck syndrome (IGS). We investigated Beagles with IGS and resequenced the whole genome of one affected Beagle at 15× coverage. The analysis of the AMN and CUBN candidate genes revealed a homozygous deletion of a single cytosine in exon 8 of the CUBN gene (c.786delC). This deletion leads to a frameshift and early premature stop codon (p.Asp262Glufs*47) and is, thus, predicted to represent a complete loss-of-function allele. We tested three IGS-affected and 89 control Beagles and found perfect association between the IGS phenotype and the CUBN:c.786delC variant. Given the known role of cubilin in cobalamin transport, which has been firmly established in humans and dogs, our data strongly suggest that the CUBN:c.786delC variant is causing IGS in the investigated Beagles.

  6. NF1 frameshift mutation (c.6520_6523delGAGA) association with nervous system tumors and bone abnormalities in a Chinese patient with neurofibromatosis type 1.

    Science.gov (United States)

    Su, S Y; Zhou, X; Pang, X M; Chen, C Y; Li, S H; Liu, J L

    2016-04-07

    Neurofibromatosis type 1, also known as NF1 or von Recklinghausen's disease, is a common neurocutaneous syndrome that presents with multiple café-au-lait patches, skinfold freckling, dermatofibromas, neurofibromas, and Lisch nodules. The mutations of the gene NF1, encoding the protein neurofibromin, have been identified as the cause of this disease. Here, we report a clinical and molecular study of a Chinese patient with multiple café-au-lait skin freckles, dermatofibroma, central and peripheral nervous system tumors, and bone abnormalities attributed to NF1. The patient showed >6 café-au-lait spots on the body and multiple dermatofibromas. A brain glioma and multiple nerve sheath tumors inside and outside the vertebral canal were identified by magnetic resonance imaging, which also showed multiple intercostal nerve schwannomas and hydrocephalies above the cerebellar tentorium. Talipes equinus was also apparent. A mutation analysis of the NF1 gene revealed a novel frameshift mutation in exon 43, consisting of a heterozygous deletion of four nucleotides (GAGA) between positions 6520 and 6523. No NF1 mutations were detected in the patient's parents or younger brother. These results extend the list of known mutations in this gene. The absence of the NF1 mutation in the healthy family members suggests that it is responsible for the NF1 phenotype. To our knowledge, this frameshift mutation represents a novel NF1 case, and may be associated with nervous system tumors and bone abnormalities.

  7. Identification of a novel COL1A1 frameshift mutation, c.700delG, in a Chinese osteogenesis imperfecta family.

    Science.gov (United States)

    Wang, Xiran; Pei, Yu; Dou, Jingtao; Lu, Juming; Li, Jian; Lv, Zhaohui

    2015-03-01

    Osteogenesis imperfecta (OI) is a family of genetic disorders associated with bone loss and fragility. Mutations associated with OI have been found in genes encoding the type I collagen chains. People with OI type I often produce insufficient α1-chain type I collagen because of frameshift, nonsense, or splice site mutations in COL1A1 or COL1A2. This report is of a Chinese daughter and mother who had both experienced two bone fractures. Because skeletal fragility is predominantly inherited, we focused on identifying mutations in COL1A1 and COL1A2 genes. A novel mutation in COL1A1, c.700delG, was detected by genomic DNA sequencing in the mother and daughter, but not in their relatives. The identification of this mutation led to the conclusion that they were affected by mild OI type I. Open reading frame analysis indicated that this frameshift mutation would truncate α1-chain type I collagen at residue p263 (p.E234KfsX264), while the wild-type protein would contain 1,464 residues. The clinical data were consistent with the patients' diagnosis of mild OI type I caused by haploinsufficiency of α1-chain type I collagen. Combined with previous reports, identification of the novel mutation COL1A1-c.700delG in these patients suggests that additional genetic and environmental factors may influence the severity of OI.

  8. Identification of a novel COL1A1 frameshift mutation, c.700delG, in a Chinese osteogenesis imperfecta family

    Science.gov (United States)

    Wang, Xiran; Pei, Yu; Dou, Jingtao; Lu, Juming; Li, Jian; Lv, Zhaohui

    2015-01-01

    Osteogenesis imperfecta (OI) is a family of genetic disorders associated with bone loss and fragility. Mutations associated with OI have been found in genes encoding the type I collagen chains. People with OI type I often produce insufficient α1-chain type I collagen because of frameshift, nonsense, or splice site mutations in COL1A1 or COL1A2. This report is of a Chinese daughter and mother who had both experienced two bone fractures. Because skeletal fragility is predominantly inherited, we focused on identifying mutations in COL1A1 and COL1A2 genes. A novel mutation in COL1A1, c.700delG, was detected by genomic DNA sequencing in the mother and daughter, but not in their relatives. The identification of this mutation led to the conclusion that they were affected by mild OI type I. Open reading frame analysis indicated that this frameshift mutation would truncate α1-chain type I collagen at residue p263 (p.E234KfsX264), while the wild-type protein would contain 1,464 residues. The clinical data were consistent with the patients’ diagnosis of mild OI type I caused by haploinsufficiency of α1-chain type I collagen. Combined with previous reports, identification of the novel mutation COL1A1-c.700delG in these patients suggests that additional genetic and environmental factors may influence the severity of OI. PMID:25983617

  9. A Frame-Shift Mutation in CAV1 Is Associated with a Severe Neonatal Progeroid and Lipodystrophy Syndrome.

    Directory of Open Access Journals (Sweden)

    Isabelle Schrauwen

    Full Text Available A 3-year-old female patient presenting with an unknown syndrome of a neonatal progeroid appearance, lipodystrophy, pulmonary hypertension, cutis marmorata, feeding disorder and failure to thrive was investigated by whole-genome sequencing. This revealed a de novo, heterozygous, frame-shift mutation in the Caveolin1 gene (CAV1 (p.Phe160X. Mutations in CAV1, encoding the main component of the caveolae in plasma membranes, cause Berardinelli-Seip congenital lipodystrophy type 3 (BSCL. Although BSCL is recessive, heterozygous carriers either show a reduced phenotype of partial lipodystrophy, pulmonary hypertension, or no phenotype. To investigate the pathogenic mechanisms underlying this syndrome in more depth, we performed next generation RNA sequencing of peripheral blood, which showed several dysregulated pathways in the patient that might be related to the phenotypic progeroid features (apoptosis, DNA repair/replication, mitochondrial. Secondly, we found a significant down-regulation of known Cav1 interaction partners, verifying the dysfunction of CAV1. Other known progeroid genes and lipodystrophy genes were also dysregulated. Next, western blotting of lysates of cultured fibroblasts showed that the patient shows a significantly decreased expression of wild-type CAV1 protein, demonstrating a loss-of-function mutation, though her phenotype is more severe that other heterozygotes with similar mutations. This phenotypic variety could be explained by differences in genetic background. Indications for this are supported by additional rare variants we found in AGPAT2 and LPIN1 lipodystrophy genes. CAV1, AGPAT2 and LPIN1 all play an important role in triacylglycerol (TAG biosynthesis in adipose tissue, and the defective function in different parts of this pathway, though not all to the same extend, could contribute to a more severe lipoatrophic phenotype in this patient. In conclusion, we report, for the first time, an association of CAV1 dysfunction

  10. Postmortem diagnosis of Marfan syndrome in a case of sudden death due to aortic rupture: Detection of a novel FBN1 frameshift mutation.

    Science.gov (United States)

    Wang, Yunyun; Chen, Shu; Wang, Rongshuai; Huang, Sizhe; Yang, Mingzhen; Liu, Liang; Liu, Qian

    2016-04-01

    To investigate the sudden death of a 36-year-old Chinese man, a medicolegal autopsy was performed, combining forensic pathological examinations and genetic sequencing analysis to diagnose the cause of death. Genomic DNA samples were extracted from blood and subjected to high-throughput sequencing. Major findings included a dilated aortic root with a ruptured and dissected aorta and consequent tamponade of the pericardial sac. Moreover, arachnodactyly and other skeletal deformities were noted. By sequencing the fibrillin-1 gene (FBN1), five genetic variations were found, including four previously known single nucleotide polymorphisms (SNPs) and a novel frameshift mutation, leading to the diagnosis of Marfan syndrome. The frameshift mutation (c.4921delG, p.glu1641llysFsX9) detected in exon 40 led to a stop codon after the next 8 amino acids. The four SNPs included a splice site mutation (c.3464-5 G>A, rs11853943), a synonymous mutation (p.Asn625Asn, rs25458), and two missense mutations (p.Pro1148Ala, rs140598; p.Cys472Tyr, rs4775765). Genetic screening was recommended for the relatives as it was reported that the father and brother of the deceased had died at the ages of 40 and 25, respectively, from sudden cardiac failure. The son of the deceased lacked the relevant mutations. This report emphasizes the important contribution of medicolegal postmortem analysis on the molecular pathogenesis study of Marfan syndrome and early diagnosis of at-risk relatives.

  11. Frameshift mutation of a histone methylation-related gene SETD1B and its regional heterogeneity in gastric and colorectal cancers with high microsatellite instability.

    Science.gov (United States)

    Choi, Youn Jin; Oh, Hye Rim; Choi, Mi Ryoung; Gwak, Min; An, Chang Hyeok; Chung, Yeun Jun; Yoo, Nam Jin; Lee, Sug Hyung

    2014-08-01

    Histone methyltransferase (HMT), which catalyzes a histone methylation, is frequently altered in cancers at mutation and expression levels. The aims of this study were to explore whether SETD1B, SETDB2, and SETD2, SET domain-containing HMT genes, are mutated and expressionally altered in gastric (GC) and colorectal cancers (CRC). In a public database, we found that SETD1B, SETDB2, and SETD2 had mononucleotide repeats in coding sequences that might be mutation targets in cancers with microsatellite instability (MSI). We analyzed the mutations in 76 GCs and 93 CRCs and found SETD1B (38.7% of GC and 35.6% of CRC with high MSI [MSI-H]), SETDB2 (11.1% of CRC with MSI-H), and SETD2 frameshift mutations (6.7% of CRC with MSI-H). These mutations were not found in stable MSI/low MSI. In addition, we analyzed intratumoral heterogeneity (ITH) of SETD1B mutation in 6 CRCs and found that 2 CRCs harbored regional ITH of SETD1B. We also analyzed SETD1B expression in GC and CRC by immunohistochemistry. Loss of SETD1B expression was identified in 15% to 55% of the GC and CRC with respect to the MSI status. Of note, the loss of expression was more common in those with SETD1B mutations than those with wild-type SETD1B. We identified alterations of SET domain-containing HMT at various levels (frameshift mutations, genetic ITH, and expression loss), which together might play a role in tumorigenesis of GC and CRC with MSI-H. Our data suggest that mutation analysis in multiple regions is needed for a better evaluation of mutation status in CRC with MSI-H.

  12. A large deletion/insertion-induced frameshift mutation of the androgen receptor gene in a family with a familial complete androgen insensitivity syndrome.

    Science.gov (United States)

    Cong, Peikuan; Ye, Yinghui; Wang, Yue; Lu, Lingping; Yong, Jing; Yu, Ping; Joseph, Kimani Kagunda; Jin, Fan; Qi, Ming

    2012-06-01

    Androgen insensitivity syndrome (AIS) is an X-linked recessive genetic disorder with a normal 46, XY karyotype caused by abnormality of the androgen receptor (AR) gene. One Chinese family consisting of the proband and 5 other members with complete androgen insensitivity syndrome (CAIS) was investigated. Mutation analysis by DNA sequencing on all 8 exons and flanking intron regions of the AR gene revealed a unique large deletion/insertion mutation in the family. A 287 bp deletion and 77 bp insertion (c.933_1219delins77) mutation at codon 312 resulted in a frameshift which caused a premature stop (p.Phe312Aspfs*7) of polypeptide formation. The proband's mother and grandmother were heterozygous for the mutant allele. The proband's father, uncle and grandfather have the normal allele. From the pedigree constructed from mutational analysis of the family, it is revealed that the probably pathogenic mutation comes from the maternal side.

  13. Novel NTRK1 Frameshift Mutation in Congenital Insensitivity to Pain With Anhidrosis.

    Science.gov (United States)

    Liu, Sen; Wu, Nan; Liu, Jiaqi; Ming, Xuan; Chen, Jun; Pavelec, Derek; Su, Xinlin; Qiu, Guixing; Tian, Ye; Giampietro, Philip; Wu, Zhihong

    2015-09-01

    Congenital insensitivity to pain with anhidrosis is a rare autosomal recessive disorder. It has been reported that the defect in the NTRK1 gene encoding tropomyosin-related kinase A (TrkA) can cause congenital insensitivity to pain with anhidrosis. Nerve growth factor (NGF), the product of NGFB, mediates biological effects by binding to and activating tropomyosin-related kinase A. In addition, necdin (encoded by NDN) is also essential in nerve growth factor-tropomyosin-related kinase A pathway. We performed mutation analysis in NTRK1, NGFB, and NDN genes in a Chinese Han 17-year-old female patient with congenital insensitivity to pain with anhidrosis and her healthy family members. As a result, the patient was found to have a novel insertion in exon 7 (c.727insT) of NTRK1, which causes premature termination, and a single nucleotide polymorphism (rs2192206 G>A) in NDN. Our findings imply that the genetic variations of the nerve growth factor-tropomyosin-related kinase A pathway play an important role in congenital insensitivity to pain with anhidrosis.

  14. Detection of Frameshift Mutations of the Transforming Growth Factor Receptor Ⅱ in Gastric Cancers with Microsatellite Instability

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Xin Geng; Yanyun Li; Yuchuan Wang; Yanni Li; Linsheng Zhao; Weiming Zhang

    2006-01-01

    OBJECTIVE To study the relationship among microsatellite instability (MSI), frameshift mutations (FM) of the transforming growth factor β receptor Ⅱ (TGFβR Ⅱ), methylation state of the hMLH1 promoter and hMLH1 protein expression level in gastric cancers, and to explore their relationship to gastric carcinogenesis.METHODS DNA was isolated from 101 gastric specimens and 5 microsatellite loci were detected. PCR, electrophoresis on denatured polyacrylamide gels and silver staining were performed to detect the MSI. The FMs of TGFβR Ⅱ were also screened with the same method. HMLH1 methylation was analyzed by methylation specific PCR (MSP) and sequencing. HMLH1 protein expression was detected using immunohistochemistry.RESULTS The incidence of MSIs was 53.7% and 0% in the cancers and normal tissues, respectively, with the frequency of MSIs being significantly higher in the gastric cancers compared to the normal gastric tissues (P<0.05). The frequency of hMLH1 methylation was 41.5%(17/41) in the gastric cancers and 0%(0/60) in the normal group. Decreased hMLH1 expression was observed in 94.1%(16/17) of cases exhibiting methylation. FMs of TGFβR Ⅱ were identified in 5 (62.5%) of the 8 samples with MSIH. In contrast, FMs were not found in MSI-L or microsatellite stable (MSS) cases.CONCLUSION MSIs and FMs of TGFβR Ⅱ may play an important role in gastric carcinogenesis. HMLH1 methylation is an important modification of the DNA which results in inactivation of hMLH1 and mismatch repair defects which lead to MSIs and FMs of TGFβR Ⅱ.

  15. VHL Frameshift Mutation as Target of Nonsense-Mediated mRNA Decay in Drosophila melanogaster and Human HEK293 Cell Line

    Directory of Open Access Journals (Sweden)

    Lucia Micale

    2009-01-01

    Full Text Available There are many well-studied examples of human phenotypes resulting from nonsense or frameshift mutations that are modulated by Nonsense-Mediated mRNA Decay (NMD, a process that typically degrades transcripts containing premature termination codons (PTCs in order to prevent translation of unnecessary or aberrant transcripts. Different types of germline mutations in the VHL gene cause the von Hippel-Lindau disease, a dominantly inherited familial cancer syndrome with a marked phenotypic variability and age-dependent penetrance. By generating the Drosophila UAS:Upf1D45B line we showed the possible involvement of NMD mechanism in the modulation of the c.172delG frameshift mutation located in the exon 1 of Vhl gene. Further, by Quantitative Real-time PCR (QPCR we demonstrated that the corresponding c.163delG human mutation is targeted by NMD in human HEK 293 cells. The UAS:Upf1D45B line represents a useful system to identify novel substrates of NMD pathway in Drosophila melanogaster. Finally, we suggest the possible role of NMD on the regulation of VHL mutations.

  16. A frameshift mutation in the cubilin gene (CUBN) in Border Collies with Imerslund-Gräsbeck syndrome (selective cobalamin malabsorption).

    Science.gov (United States)

    Owczarek-Lipska, Marta; Jagannathan, Vidhya; Drögemüller, Cord; Lutz, Sabina; Glanemann, Barbara; Leeb, Tosso; Kook, Peter H

    2013-01-01

    Imerslund-Gräsbeck syndrome (IGS) or selective cobalamin malabsorption has been described in humans and dogs. IGS occurs in Border Collies and is inherited as a monogenic autosomal recessive trait in this breed. Using 7 IGS cases and 7 non-affected controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 3.53 Mb interval on chromosome 2. We re-sequenced the genome of one affected dog at ∼10× coverage and detected 17 non-synonymous variants in the critical interval. Two of these non-synonymous variants were in the cubilin gene (CUBN), which is known to play an essential role in cobalamin uptake from the ileum. We tested these two CUBN variants for association with IGS in larger cohorts of dogs and found that only one of them was perfectly associated with the phenotype. This variant, a single base pair deletion (c.8392delC), is predicted to cause a frameshift and premature stop codon in the CUBN gene. The resulting mutant open reading frame is 821 codons shorter than the wildtype open reading frame (p.Q2798Rfs*3). Interestingly, we observed an additional nonsense mutation in the MRC1 gene encoding the mannose receptor, C type 1, which was in perfect linkage disequilibrium with the CUBN frameshift mutation. Based on our genetic data and the known role of CUBN for cobalamin uptake we conclude that the identified CUBN frameshift mutation is most likely causative for IGS in Border Collies.

  17. A novel NF1 frame-shift mutation (c.702_703delGT) in a Chinese family with neurofibromatosis type 1.

    Science.gov (United States)

    Cai, S P; Fan, N; Chen, J; Xia, Z L; Wang, Y; Zhou, X M; Yin, Y; Wen, T L; Xia, Q J; Liu, X Y; Wang, H Y

    2014-07-24

    This study aimed to characterize the clinical features of a Chinese pedigree with neurofibromatosis type 1 (NF1) and to identify mutations in the NF1 gene. In this three-generation family containing 8 members, 5 had been diagnosed with NF1 and the others were asymptomatic. All members of the family underwent complete medical examinations. Molecular genetic analyses were performed on all subjects included in the study. All exons of NF1 were amplified by polymerase chain reaction, sequenced, and compared with a reference database. Possible changes in function of the protein induced by amino acid variants were predicted by bioinformatic analysis. In this family, the 5 patients presented different clinical phenotypes, but all manifested typical café-au-lait macules. One novel frame-shift mutation, c.702_703delGT, in exon 7 of NF1 was identified in all affected family members, but not in the unaffected family members or in 102 normal controls. This mutation generates a premature stop codon at amino acid position 720. Additionally, a synonymous mutation c.702 G>A was found in 3 family members, including 2 affected and 1 normal individuals. In conclusion, our study suggests that a novel c.702_703delGT frame-shift mutation in NF1 is likely to be responsible for the pathogenesis of NF1 in this family. To the best of our knowledge, it is the first time that a c.702_703delGT mutation has been identified in a family with neurofibromatosis type 1.

  18. Exome sequencing identifies a novel frameshift mutation of MYO6 as the cause of autosomal dominant nonsyndromic hearing loss in a Chinese family.

    Science.gov (United States)

    Cheng, Jing; Zhou, Xueya; Lu, Yu; Chen, Jing; Han, Bing; Zhu, Yuhua; Liu, Liyang; Choy, Kwong-Wai; Han, Dongyi; Sham, Pak C; Zhang, Michael Q; Zhang, Xuegong; Yuan, Huijun

    2014-11-01

    Autosomal dominant types of nonsyndromic hearing loss (ADNSHL) are typically postlingual in onset and progressive. High genetic heterogeneity, late onset age, and possible confounding due to nongenetic factors hinder the timely molecular diagnoses for most patients. In this study, exome sequencing was applied to investigate a large Chinese family segregating ADNSHL in which we initially failed to find strong evidence of linkage to any locus by whole-genome linkage analysis. Two affected family members were selected for sequencing. We identified two novel mutations disrupting known ADNSHL genes and shared by the sequenced samples: c.328C>A in COCH (DFNA9) resulting in a p.Q110K substitution and a deletion c. 2814_2815delAA in MYO6 (DFNA22) causing a frameshift alteration p.R939Tfs*2. The pathogenicity of novel coding variants in ADNSHL genes was carefully evaluated by analysis of co-segregation with phenotype in the pedigree and in light of established genotype-phenotype correlations. The frameshift deletion in MYO6 was confirmed as the causative variant for this pedigree, whereas the missense mutation in COCH had no clinical significance. The results allowed us to retrospectively identify the phenocopy in one patient that contributed to the negative finding in the linkage scan. Our clinical data also supported the emerging genotype-phenotype correlation for DFNA22.

  19. Frameshift Mutation in KIT is Associated with  White Spotting in the Arabian Camel

    Directory of Open Access Journals (Sweden)

    Heather Holl

    2017-03-01

    Full Text Available While the typical Arabian camel is characterized by a single colored coat, there are rare populations with white spotting patterns. White spotting coat patterns are found in virtually all domesticated species, but are rare in wild species. Theories suggest that white spotting is linked to the domestication process, and is occasionally associated with health disorders. Though mutations have been found in a diverse array of species, fewer than 30 genes have been associated with spotting patterns, thus providing a key set of candidate genes for the Arabian camel. We obtained 26 spotted camels and 24 solid controls for candidate gene analysis. One spotted and eight solid camels were whole genome sequenced as part of a separate project. The spotted camel was heterozygous for a frameshift deletion in KIT (c.1842delG, named KITW1 for White spotting 1, whereas all other camels were wild‐type (KIT+/KIT+. No additional mutations unique to the spotted camel were detected in the EDNRB, EDN3, SOX10, KITLG, PDGFRA, MITF, and PAX3 candidate white spotting genes. Sanger sequencing of the study population identified an additional five kITW1/KIT+ spotted camels. The frameshift results in a premature stop codon five amino acids downstream, thus terminating KIT at the tyrosine kinase domain. An additional 13 spotted camels tested KIT+/KIT+, but due to phenotypic differences when compared to the KITW1/KIT+ camels, they likely represent an independent mutation. Our study suggests that there are at least two causes of white spotting in the Arabian camel, the newly described KITW1 allele and an uncharacterized mutation.

  20. Epistatic participation of REV1 and REV3 in the formation of UV-induced frameshift mutations in cell cycle-arrested yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, Erich [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)]. E-mail: erich.heidenreich@meduniwien.ac.at; Eisler, Herfried [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria); Steinboeck, Ferdinand [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)

    2006-01-29

    Mutations arising in times of cell cycle arrest may provide a selective advantage for unicellular organisms adapting to environmental changes. For multicellular organisms, however, they may pose a serious threat, in that such mutations in somatic cells contribute to carcinogenesis and ageing. The budding yeast Saccharomyces cerevisiae presents a convenient model system for studying the incidence and the mechanisms of stationary-phase mutation in a eukaryotic organism. Having studied the emergence of frameshift mutants after several days of starvation-induced cell cycle arrest, we previously reported that all (potentially error-prone) translesion synthesis (TLS) enzymes identified in S. cerevisiae did not contribute to the basal level of spontaneous stationary-phase mutations. However, we observed that an increased frequency of stationary-phase frameshift mutations, brought about by a defective nucleotide excision repair (NER) pathway or by UV irradiation, was dependent on Rev3p, the catalytic subunit of the TLS polymerase zeta (Pol {zeta}). Employing the same two conditions, we now examined the effect of deletions of the genes coding for polymerase eta (Pol {eta}) (RAD30) and Rev1p (REV1). In a NER-deficient strain background, the increased incidence of stationary-phase mutations was only moderately influenced by a lack of Pol {eta} but completely reduced to wild type level by a knockout of the REV1 gene. UV-induced stationary-phase mutations were abundant in wild type and rad30{delta} strains, but substantially reduced in a rev1{delta} as well as a rev3{delta} strain. The similarity of the rev1{delta} and the rev3{delta} phenotype and an epistatic relationship evident from experiments with a double-deficient strain suggests a participation of Rev1p and Rev3p in the same mutagenic pathway. Based on these results, we propose that the response of cell cycle-arrested cells to an excess of exo- or endogenously induced DNA damage includes a novel replication

  1. Chromosomal instability associated with a novel BLM frameshift mutation (c.1980-1982delAA) in two unrelated Tunisian families with Bloom syndrome.

    Science.gov (United States)

    Ben Salah, G; Salem, I Hadj; Masmoudi, A; Ben Rhouma, B; Turki, H; Fakhfakh, F; Ayadi, H; Kamoun, H

    2014-10-01

    The Bloom syndrome (BS) is an autosomal recessive disorder associated with dwarfism, immunodeficiency, reduced fertility and cancer risk. BS cells show genomic instability, particularly an hyper exchange between the sister chromatids due to a defective processing of the DNA replication intermediates. It is caused by mutations in the BLM gene which encodes a member of the RecQ family of DExH box DNA helicases. In this study, we reported cytogenetic, BLM linkage and mutational analyses for two affected Tunisian families. The Cytogenetic parameters were performed by chromosomal aberration (CA) and sister chromatid exchange (SCE) assays and results showed a significant increase in mean frequency of CA and SCE in BS cells. BLM linkage performed by microsatellite genotyping revealed homozygous haplotypes for the BS patients, evidence of linkage to BLM gene. Mutational analysis by direct DNA sequencing revealed a novel frameshift mutation (c.1980-1982delAA) in exon 8 of BLM gene, resulting in a truncated protein (p.Lys662fsX5). The truncated protein could explain genomic instability and its related symptoms in the BS patients. The screening of this mutation is useful for BS diagnosis confirmation in Tunisian families.

  2. Phenotypic variability in a seven-generation Swedish family segregating autosomal dominant hearing impairment due to a novel EYA4 frameshift mutation.

    Science.gov (United States)

    Frykholm, Carina; Klar, Joakim; Arnesson, Hanna; Rehnman, Anna-Carin; Lodahl, Marianne; Wedén, Ulla; Dahl, Niklas; Tranebjærg, Lisbeth; Rendtorff, Nanna D

    2015-05-25

    Linkage to an interval overlapping the DFNA10 locus on chromosome 6q22-23 was found through genome wide linkage analysis in a seven-generation Swedish family segregating postlingual, autosomal dominant nonsyndromic sensorineural hearing impairment. A novel heterozygous frame-shift mutation (c.579_580insTACC, p.(Asp194Tyrfs*52)) in EYA4 was identified that truncates the so-called variable region of the protein. The mutation is predicted to result in haploinsufficiency of the EYA4 product. No evidence for dilated cardiomyopathy was found in the family, contrasting to a previous family with a deletion resulting in a similar truncation in the variable region. A highly variable age of onset was seen in the mutation carriers. For assessment of the aetiology of this variability, clinical and audiometric data analyses were performed. The affected family members all had similar cross-sectional and longitudinal deterioration of pure tone average (PTA) once the process of hearing deterioration had started, and no gender, parent-of-origin or family branch differences on PTA could be found. Age at onset varied between the family branches. In summary, this is the ninth published genetically verified DFNA10 family. The results imply that unidentified factors, genetic or environmental, other than the EYA4 mutation, are of importance for the age at onset of DFNA10, and that mutation early in the variable region of the EYA4 protein can occur in the absence of dilated cardiomyopathy.

  3. Molecular characterization of WFS1 in an Iranian family with Wolfram syndrome reveals a novel frameshift mutation associated with early symptoms.

    Science.gov (United States)

    Sobhani, Maryam; Tabatabaiefar, Mohammad Amin; Rajab, Asadollah; Kajbafzadeh, Abdol-Mohammad; Noori-Daloii, Mohammad Reza

    2013-10-10

    Wolfram syndrome (WS) is a rare autosomal recessive neurodegenerative disorder that represents a likely source of childhood diabetes especially among countries in the consanguinity belt. The main responsible gene is WFS1 for which over one hundred mutations have been reported from different ethnic groups. The aim of this study was to identify the molecular etiology of WS and to perform a possible genotype-phenotype correlation in Iranian kindred. An Iranian family with two patients was clinically studied and WS was suspected. Genetic linkage analysis via 5 STR markers was carried out. For identification of mutations, DNA sequencing of WFS1 including all the exons, exon-intron boundaries and the promoter was performed. Linkage analysis indicated linkage to the WFS1 region. After DNA sequencing of WFS1, one novel pathogenic mutation, which causes frameshift alteration c.2177_2178insTCTTC (or c.2173_2177dupTCTTC) in exon eight, was found. The genotype-phenotype correlation analysis suggests that the presence of the homozygous mutation may be associated with early onset of disease symptoms. This study stresses the necessity of considering the molecular analysis of WFS1 in childhood diabetes with some symptoms of WS.

  4. A Novel Frameshift Mutation of the ALDOB Gene in a Korean Girl Presenting with Recurrent Hepatitis Diagnosed as Hereditary Fructose Intolerance.

    Science.gov (United States)

    Choi, Hae-Won; Lee, Yeoun Joo; Oh, Seak Hee; Kim, Kyung Mo; Ryu, Jeong-Min; Lee, Beom Hee; Kim, Gu-Hwan; Yoo, Han-Wook

    2012-01-01

    Hereditary fructose intolerance is an autosomal recessive disorder that is caused by a deficiency in fructose-1-phosphate aldolase (Aldolase B). Children can present with hypoglycemia, jaundice, elevated liver enzymes and hepatomegaly after intake of dietary fructose. Long-term intake of fructose in undiagnosed patients can result in hepatic failure or renal failure. We experienced a case of hereditary fructose intolerance presenting as recurrent hepatitis-like episodes. Detailed evaluation of her dietary habits revealed her avoidance of sweetened foods and fruits. Genetic analysis of ALDOB revealed that she is a homozygote for a novel frameshifting mutation c[758_759insT]+[758_759insT] (p.[val25 3fsX24]+[val253fsX24]). This report is the first of a Korean patient diagnosed with hereditary fructose intolerance using only molecular testing without undergoing intravenous fructose tolerance test or enzyme assay.

  5. A novel frameshift mutation in exon 4 causing a deficiency of high-molecular-weight kininogen in a patient with splenic infarction.

    Science.gov (United States)

    Fukushima, Noriyasu; Itamura, Hidekazu; Wada, Hideo; Ikejiri, Makoto; Igarashi, Yuko; Masaki, Hiroya; Sano, Masayuki; Komiyama, Yutaka; Ichinohe, Tatsuo; Kimura, Shinya

    2014-01-01

    High-molecular-weight kininogen (HMWK) deficiency is a very rare hereditary disorder. We herein report a case of HMWK deficiency with splenic infarction. The HMWK activity of the proband was markedly decreased (0.9%). Direct sequencing of his HMWK gene showed a homozygous "TC" insertion at c523-524 in exon 4. This insertion led to an amino acid substitution, Ser175Ser, resulting in a frameshift mutation and a premature stop codon in amino acid 183. Furthermore, the HMWK activity was also reduced in the patient's three children, who exhibited the heterozygous "TC" insertion at c523-524 in exon 4. This is the first report of this gene alteration in a patient with HMWK deficiency.

  6. A novel COL4A1 frameshift mutation in familial kidney disease: the importance of the C-terminal NC1 domain of type IV collagen

    Science.gov (United States)

    Gale, Daniel P.; Oygar, D. Deren; Lin, Fujun; Oygar, P. Derin; Khan, Nadia; Connor, Thomas M.F.; Lapsley, Marta; Maxwell, Patrick H.; Neild, Guy H.

    2016-01-01

    Background Hereditary microscopic haematuria often segregates with mutations of COL4A3, COL4A4 or COL4A5 but in half of families a gene is not identified. We investigated a Cypriot family with autosomal dominant microscopic haematuria with renal failure and kidney cysts. Methods We used genome-wide linkage analysis, whole exome sequencing and cosegregation analyses. Results We identified a novel frameshift mutation, c.4611_4612insG:p.T1537fs, in exon 49 of COL4A1. This mutation predicts truncation of the protein with disruption of the C-terminal part of the NC1 domain. We confirmed its presence in 20 family members, 17 with confirmed haematuria, 5 of whom also had stage 4 or 5 chronic kidney disease. Eleven family members exhibited kidney cysts (55% of those with the mutation), but muscle cramps or cerebral aneurysms were not observed and serum creatine kinase was normal in all individuals tested. Conclusions Missense mutations of COL4A1 that encode the CB3 [IV] segment of the triple helical domain (exons 24 and 25) are associated with HANAC syndrome (hereditary angiopathy, nephropathy, aneurysms and cramps). Missense mutations of COL4A1 that disrupt the NC1 domain are associated with antenatal cerebral haemorrhage and porencephaly, but not kidney disease. Our findings extend the spectrum of COL4A1 mutations linked with renal disease and demonstrate that the highly conserved C-terminal part of the NC1 domain of the α1 chain of type IV collagen is important in the integrity of glomerular basement membrane in humans. PMID:27190376

  7. A novel frameshift mutation of the mtDNA COIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-like syndrome.

    Science.gov (United States)

    Tiranti, V; Corona, P; Greco, M; Taanman, J W; Carrara, F; Lamantea, E; Nijtmans, L; Uziel, G; Zeviani, M

    2000-11-01

    We report on a novel frameshift mutation in the mtDNA gene encoding cytochrome c oxidase (COX) subunit III. The proband is an 11-year-old girl with a negative family history and an apparently healthy younger brother. Since 4 years of age, she has developed a progressive spastic paraparesis associated with ophthalmoparesis and moderate mental retardation. The presence of severe lactic acidosis and Leigh-like lesions of putamina prompted us to perform muscle and skin biopsies. In both, a profound, isolated defect of COX was found by histochemical and biochemical assays. Sequence analysis of muscle mtDNA resulted in the identification of a virtually homoplasmic frameshift mutation in the COIII gene, due to the insertion of an extra C at nucleotide position 9537 of mtDNA. Although the 9537C(ins) does not impair transcription of COIII, no full-length COX III protein was detected in mtDNA translation assays in vivo. Western blot analysis of two-dimensional blue-native electrophoresis showed a reduction of specific crossreacting material and the accumulation of early-assembly intermediates of COX, whereas the fully assembled complex was absent. One of these intermediates had an electrophoretic mobility different from those seen in controls, suggesting the presence of a qualitative abnormality of COX assembly. Immunostaining with specific antibodies failed to detect the presence of several smaller subunits in the complex lacking COX III, in spite of the demonstration that these subunits were present in the crude mitochondrial fraction of patient's cultured fibroblasts. Taken together, the data indicate a role for COX III in the incorporation and maintenance of smaller COX subunits within the complex.

  8. Late-onset progressive retinal atrophy in the Gordon and Irish Setter breeds is associated with a frameshift mutation in C2orf71.

    Science.gov (United States)

    Downs, L M; Bell, J S; Freeman, J; Hartley, C; Hayward, L J; Mellersh, C S

    2013-04-01

    Progressive retinal atrophy (PRA) in dogs is characterised by the degeneration of the photoreceptor cells of the retina, resulting in vision loss and eventually complete blindness. The condition affects more than 100 dog breeds and is known to be genetically heterogeneous between breeds. Around 14 mutations have now been identified that are associated with PRA in around 49 breeds, but for the majority of breeds the mutation(s) responsible have yet to be identified. Using genome-wide association with 16 Gordon Setter PRA cases and 22 controls, we identified a novel PRA locus, termed rod-cone degeneration 4 (rcd4), on CFA17 (Praw  = 2.22 × 10(-8) , Pgenome  = 2.00 × 10(-5) ), where a 3.2-Mb region was homozygous within cases. A frameshift mutation was identified in C2orf71, a gene located within this region. This variant was homozygous in 19 of 21 PRA cases and was at a frequency of approximately 0.37 in the Gordon Setter population. Approximately 10% of cases in our study (2 of 21) are not associated with this C2orf71 mutation, indicating that PRA in this breed is genetically heterogeneous and caused by at least two mutations. This variant is also present in a number of Irish Setter dogs with PRA and has an estimated allele frequency of 0.26 in the breed. The function of C2orf71 remains unknown, but it is important for retinal development and function and has previously been associated with autosomal recessive retinitis pigmentosa in humans.

  9. A novel insertion-induced frameshift mutation of the SLC26A4 gene in a Korean family with Pendred syndrome.

    Science.gov (United States)

    Sagong, Borum; Seok, Jun Ho; Kwon, Tae-Jun; Kim, Un-Kyung; Lee, Sang-Heun; Lee, Kyu-Yup

    2012-10-15

    Pendred syndrome (PS) is an autosomal recessive disorder characterized by congenital bilateral sensorineural hearing loss, goiter, and incomplete iodide organification. Patients with PS also have structural anomalies of the inner ear such as enlarged vestibular aqueducts (EVA) and Mondini's malformation. The goiter, which is a major clinical manifestation of PS, usually develops around adolescence. PS is caused by biallelic mutations of the SLC26A4 gene, while nonsyndromic bilateral EVA is associated with zero or one SLC26A4 mutant allele. We report here a Korean family including a young female with PS who had goiter and progressive, fluctuating sensorineural hearing loss that could be partially recovered by oral steroid treatment. Genetic investigation revealed compound heterozygous mutations for p.R677AfsX11, a novel frameshift mutation, and p.H723R in the SLC26A4 gene. Our findings provide detailed information regarding the distribution of mutant alleles for PS and may serve as a foundation for studies to comprehend the genetic portion of syndromic hearing loss.

  10. Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27.

    Science.gov (United States)

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O; Marks, Harold; Flanigan, Kevin M; Moore, Steven A

    2015-03-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11 years; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAinsGG), in which seven base pairs are deleted and two are inserted. Although this predicts an amino-acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both the siblings developed progressive HF secondary to early-onset DCM. In addition, their 7-year-old nephew with delayed gross motor development, mild proximal muscle weakness and markedly elevated serum creatine kinase level (>13 000 IU l(-1)) at 16 months was recently demonstrated to have the familial DMD mutation. Here, we report a novel genotype of BMD with early-onset DCM and progressive lethal HF during early adolescence.

  11. Identification of A Novel SBF2 Frameshift Mutation in Charcot-Marie-Tooth Disease Type 4B2 Using Whole-exome Sequencing

    Institute of Scientific and Technical Information of China (English)

    Meiyan Chen; Xin Yi; Ming Qi; Jing Wu; Ning Liang; Lihui Tang; Yanhua Chen; Huishuang Chen; Wei Wei; Tianying Wei; Hui Huang

    2014-01-01

    Charcot–Marie–Tooth disease type 4B2 with early-onset glaucoma (CMT4B2, OMIM 604563) is a genetically-heterogeneous childhood-onset neuromuscular disorder. Here, we report the case of a 15-year-old male adolescent with lower extremity weakness, gait abnormalities, foot deformities and early-onset glaucoma. Since clinical diagnosis alone was insufficient for providing pathogenetic evidence to indicate that the condition belonged to a consanguineous family, we applied whole-exome sequencing to samples from the patient, his parents and his younger brother, assuming that the patient’s condition is transmitted in an autosomal recessive pattern. A frame-shift mutation, c.4571delG (P.Gly1524Glufs*42), was revealed in the CMT4B2-related gene SBF2 (also known as MTMR13, MIM 607697), and this mutation was found to be homozygous in the proband and heterozygous in his parents and younger brother. Together with the results of clinical diagnosis, this case was diagnosed as CMT4B2. Our finding further demonstrates the use of whole-exome sequencing in the diagnosis and treatment of rare diseases.

  12. A patient with a unique frameshift mutation in GPC3, causing Simpson-Golabi-Behmel syndrome, presenting with craniosynostosis, penoscrotal hypospadias, and a large prostatic utricle.

    Science.gov (United States)

    Villarreal, Diana D; Villarreal, Humberto; Paez, Ana Maria; Peppas, Dennis; Lynch, Jane; Roeder, Elizabeth; Powers, George C

    2013-12-01

    We present a Hispanic male with the clinical and molecular diagnosis of Simpson-Golabi-Behmel syndrome (SGBS). The patient was born with multiple anomalies not entirely typical of SGBS patients, including penoscrotal hypospadias, a large prostatic utricle, and left coronal craniosynostosis. In addition, he demonstrated endocrine anomalies including a low random cortisol level suspicious for adrenal insufficiency and low testosterone level. To our knowledge, this is the first report of a prostatic utricle in SGBS and the second report of craniosynostosis. The unique disease-causing mutation likely arose de novo in the mother. It is a deletion-insertion that leads to a frameshift at the p.p. S359 [corrected] residue of GPC3 and a premature stop codon after five more amino acids. p. S359 [corrected] is the same residue that is normally cleaved by the Furin convertase, although the significance of this novel mutation with respect to the patient's multiple anomalies is unknown. We present this case as the perinatal course of a patient with unique features of SGBS and a confirmed molecular diagnosis.

  13. Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC, encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase.

    Science.gov (United States)

    Li, X; Liu, L; Ji, J; Chen, Q; Hua, X; Jiang, Y; Feng, Y; Yu, Y

    2015-03-01

    Acinetobacter baumannii is an important pathogen of healthcare-associated infections and shows multidrug resistance. With the increasing application of tigecycline, isolates resistant to this antibiotic are of growing concern clinically. However, the definitive mechanism of tigecycline resistance remains unclear. To explore the mechanism of tigecycline resistance in A. baumannii, a tigecycline-resistant strain was obtained by increasing the concentration of the antimicrobial in liquid culture. Three mutations were identified by the whole genome comparison, including one synonymous substitution in a hypothetical protein and a frameshift mutation in plsC and omp38. The plsC gene was confirmed to cause decreased susceptibility to tigecycline by a complementation experiment and cellular membrane change was detected by flow cytometry. By measuring the relative growth rate, the fitness cost of plsC was estimated to be approximately 8 %. In conclusion, plsC was found to play an important role in tigecycline resistance in A. baumannii. The minor fitness cost of plsC indicates a high risk of the emergence and development of tigecycline resistance in A. baumannii.

  14. Identification of a novel SBF2 frameshift mutation in charcot-marie-tooth disease type 4B2 using whole-exome sequencing.

    Science.gov (United States)

    Chen, Meiyan; Wu, Jing; Liang, Ning; Tang, Lihui; Chen, Yanhua; Chen, Huishuang; Wei, Wei; Wei, Tianying; Huang, Hui; Yi, Xin; Qi, Ming

    2014-10-01

    Charcot-Marie-Tooth disease type 4B2 with early-onset glaucoma (CMT4B2, OMIM 604563) is a genetically-heterogeneous childhood-onset neuromuscular disorder. Here, we report the case of a 15-year-old male adolescent with lower extremity weakness, gait abnormalities, foot deformities and early-onset glaucoma. Since clinical diagnosis alone was insufficient for providing pathogenetic evidence to indicate that the condition belonged to a consanguineous family, we applied whole-exome sequencing to samples from the patient, his parents and his younger brother, assuming that the patient's condition is transmitted in an autosomal recessive pattern. A frame-shift mutation, c.4571delG (P.Gly1524Glufs∗42), was revealed in the CMT4B2-related gene SBF2 (also known as MTMR13, MIM 607697), and this mutation was found to be homozygous in the proband and heterozygous in his parents and younger brother. Together with the results of clinical diagnosis, this case was diagnosed as CMT4B2. Our finding further demonstrates the use of whole-exome sequencing in the diagnosis and treatment of rare diseases.

  15. Identification of A Novel SBF2 Frameshift Mutation in Charcot–Marie–Tooth Disease Type 4B2 Using Whole-exome Sequencing

    Directory of Open Access Journals (Sweden)

    Meiyan Chen

    2014-10-01

    Full Text Available Charcot–Marie–Tooth disease type 4B2 with early-onset glaucoma (CMT4B2, OMIM 604563 is a genetically-heterogeneous childhood-onset neuromuscular disorder. Here, we report the case of a 15-year-old male adolescent with lower extremity weakness, gait abnormalities, foot deformities and early-onset glaucoma. Since clinical diagnosis alone was insufficient for providing pathogenetic evidence to indicate that the condition belonged to a consanguineous family, we applied whole-exome sequencing to samples from the patient, his parents and his younger brother, assuming that the patient’s condition is transmitted in an autosomal recessive pattern. A frame-shift mutation, c.4571delG (P.Gly1524Glufs∗42, was revealed in the CMT4B2-related gene SBF2 (also known as MTMR13, MIM 607697, and this mutation was found to be homozygous in the proband and heterozygous in his parents and younger brother. Together with the results of clinical diagnosis, this case was diagnosed as CMT4B2. Our finding further demonstrates the use of whole-exome sequencing in the diagnosis and treatment of rare diseases.

  16. A frameshift mutation in golden retriever dogs with progressive retinal atrophy endorses SLC4A3 as a candidate gene for human retinal degenerations.

    Directory of Open Access Journals (Sweden)

    Louise M Downs

    Full Text Available Progressive retinal atrophy (PRA in dogs, the canine equivalent of retinitis pigmentosa (RP in humans, is characterised by vision loss due to degeneration of the photoreceptor cells in the retina, eventually leading to complete blindness. It affects more than 100 dog breeds, and is caused by numerous mutations. RP affects 1 in 4000 people in the Western world and 70% of causal mutations remain unknown. Canine diseases are natural models for the study of human diseases and are becoming increasingly useful for the development of therapies in humans. One variant, prcd-PRA, only accounts for a small proportion of PRA cases in the Golden Retriever (GR breed. Using genome-wide association with 27 cases and 19 controls we identified a novel PRA locus on CFA37 (p(raw = 1.94×10(-10, p(genome = 1.0×10(-5, where a 644 kb region was homozygous within cases. A frameshift mutation was identified in a solute carrier anion exchanger gene (SLC4A3 located within this region. This variant was present in 56% of PRA cases and 87% of obligate carriers, and displayed a recessive mode of inheritance with full penetrance within those lineages in which it segregated. Allele frequencies are approximately 4% in the UK, 6% in Sweden and 2% in France, but the variant has not been found in GRs from the US. A large proportion of cases (approximately 44% remain unexplained, indicating that PRA in this breed is genetically heterogeneous and caused by at least three mutations. SLC4A3 is important for retinal function and has not previously been associated with spontaneously occurring retinal degenerations in any other species, including humans.

  17. Impaired surface αβγ GABA(A) receptor expression in familial epilepsy due to a GABRG2 frameshift mutation.

    Science.gov (United States)

    Tian, Mengnan; Mei, Davide; Freri, Elena; Hernandez, Ciria C; Granata, Tiziana; Shen, Wangzhen; Macdonald, Robert L; Guerrini, Renzo

    2013-02-01

    The purpose of the study was to explore the pathogenic mechanisms underlying generalized epilepsy and febrile seizures plus (GEFS+) in a family with a novel γ2 subunit gene (GABRG2) frameshift mutation. Four affected and one unaffected individuals carried a c.1329delC GABRG2 mutation resulting in a subunit [γ2S(S443delC)] with a modified and elongated carboxy-terminus that is different from that of the wildtype γ2S subunit. We expressed the wildtype γ2S subunit and the predicted mutant γ2S(S443delC) subunit cDNAs in HEK293T cells and performed immunoblotting, flow cytometry and electrophysiology studies. The mutant subunit was translated as a stable protein that was larger than the wildtype γ2S subunit and was retained in the ER and not expressed on the cell surface membrane, suggesting GABRG2 haploinsufficiency. Peak GABA-evoked currents recorded from cells cotransfected with wildtype α1 and β2 subunits and mutant γ2S subunits were significantly decreased and were comparable to α1β2 receptor currents. S443delC is the first GABR epilepsy mutation predicted to abolish the natural stop codon and produce a stop codon in the 3' UTR that leads to translation of an extended peptide. The GEFS+ phenotype observed in this family is likely caused by γ2S subunit loss-of-function and possibly to dominant-negative suppression of α1β2γ2 receptors. Many GABRG2 truncation mutations result in GEFS+, but the spectrum of phenotypic severity is wider, ranging from asymptomatic individuals to the Dravet syndrome. Mechanisms influencing the severity of the phenotype are therefore complex and difficult to correlate with its demonstrable functional effects.

  18. A three generation X-linked family with Kabuki syndrome phenotype and a frameshift mutation in KDM6A.

    Science.gov (United States)

    Lederer, Damien; Shears, Debbie; Benoit, Valérie; Verellen-Dumoulin, Christine; Maystadt, Isabelle

    2014-05-01

    Kabuki syndrome is a rare malformation syndrome characterized by a typical facial appearance, skeletal anomalies, cardiac malformation, and mild to moderate intellectual disability. In 55-80% of patients with Kabuki syndrome, a mutation in MLL2 is identified. Recently, eight patients with Kabuki syndrome and a mutation in KDM6A were described. In this report, we describe two brothers with a mutation in KDM6A inherited from their mother and maternal grandmother. The two boys have Kabuki-like phenotypes whereas the mother and grandmother present with attenuated phenotypes. This family represents the first instance of hereditary X-linked Kabuki syndrome. We present a short literature review of the patients described with a mutation in KDM6A.

  19. A novel frameshift mutation of POU4F3 gene associated with autosomal dominant non-syndromic hearing loss

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Keun [Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu (Korea, Republic of); Park, Hong-Joon [Soree Ear Clinic, Seoul (Korea, Republic of); Lee, Kyu-Yup [Vestibulocochlear Research Center, College of Medicine, Wonkwang University, Iksan (Korea, Republic of); Park, Rekil, E-mail: rkpark@wku.ac.kr [Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kim, Un-Kyung, E-mail: kimuk@knu.ac.kr [Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu (Korea, Republic of)

    2010-06-04

    Autosomal dominant mutations in the transcription factor POU4F3 gene are associated with non-syndromic hearing loss in humans; however, there have been few reports of mutations in this gene worldwide. We performed a mutation analysis of the POU4F3 gene in 42 unrelated Koreans with autosomal dominant non-syndromic hearing loss, identifying a novel 14-bp deletion mutation in exon 2 (c.662del14) in one patient. Audiometric examination revealed severe bilateral sensorineural hearing loss in this patient. The novel mutation led to a truncated protein that lacked both functional POU domains. We further investigated the functional distinction between wild-type and mutant POU4F3 proteins using in vitro assays. The wild-type protein was completely localized in the nucleus, while the truncation of protein seriously affected its nuclear localization. In addition, the mutant failed to activate reporter gene expression. This is the first report of a POU4F3 mutation in Asia, and moreover our data suggest that further investigation will need to delineate ethnicity-specific genetic background for autosomal dominant non-syndromic hearing loss within Asian populations.

  20. Novel frameshift mutation in the CACNA1A gene causing a mixed phenotype of episodic ataxia and familiar hemiplegic migraine.

    Science.gov (United States)

    Kinder, S; Ossig, C; Wienecke, M; Beyer, A; von der Hagen, M; Storch, A; Smitka, M

    2015-01-01

    Episodic ataxia type 2 (EA2, MIM#108500) is the most common form of EA and an autosomal-dominant inherited disorder characterized by paroxysmal episodes of ataxia. The disease causative gene CACNA1A encodes for the alpha 1A subunit of the voltage-gated P/Q-type calcium channel. We report on a family with a novel mutation in the CACNA1A gene. The clinical symptoms within the family varied from the typical clinical presentation of EA2 with dysarthria, gait ataxia and oculomotor symptoms to migraine and dystonia. A novel nonsense mutation of the CACNA1A gene was identified in all affected family members and is most likely the disease causing molecular defect. The pharmacological treatment with acetazolamide (AAA) was successful in three family members so far. Treatment with AAA led to a reduction of migraine attacks and an improvement of the dystonia. This relationship confirmed the hypothesis that this novel mutation results in a heterogeneous phenotype and confutes the coincidence with common migraine. Dystonia is potentially included as a further part of the phenotype spectrum of CACNA1A gene mutations. Copyright © 2014. Published by Elsevier Ltd.

  1. Clinical and Molecular Characterization of a Novel PLIN1 Frameshift Mutation Identified in Patients With Familial Partial Lipodystrophy

    OpenAIRE

    Kozusko, Kristina; Tsang, Venessa H M; Bottomley, William; Cho, Yoon-Hi; Gandotra, Sheetal; Mimmack, Michael; Lim, Koini; Isaac, Iona; Patel, Satish; Saudek, Vladimir; O’Rahilly, Stephen; Srinivasan, Shubha; Greenfield, Jerry R.; Barroso, Ines; Campbell, Lesley V.

    2015-01-01

    This is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/db14-0104 Perilipin 1 is a lipid droplet coat protein predominantly expressed in adipocytes, where it inhibits basal and facilitates stimulated lipolysis. Loss-of-function mutations in the PLIN1 gene were recently reported in patients with a novel subtype of familial partial lipodystrophy, designated as FPLD4. We now report the identification and chara...

  2. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs

    OpenAIRE

    Fyfe, John C.; Hemker, Shelby L.; Venta, Patrick J.; Fitzgerald, Caitlin A.; Outerbridge, Catherine A.; Myers, Sherry L.; Giger, Urs

    2013-01-01

    Cobalamin malabsorption accompanied by selective proteinuria is an autosomal recessive disorder known as Imerslund-Gräsbeck syndrome in humans and was previously described in dogs due to amnionless (AMN) mutations. The resultant vitamin B12 deficiency causes dyshematopoiesis, lethargy, failure to thrive, and life-threatening metabolic disruption in the juvenile period. We studied 3 kindreds of border collies with cobalamin malabsorption and mapped the disease locus in affected dogs to a 2.9 M...

  3. A complex phenotype in a child with familial HDL deficiency due to a novel frameshift mutation in APOA1 gene (apoA-IGuastalla).

    Science.gov (United States)

    Pisciotta, Livia; Vitali, Cecilia; Favari, Elda; Fossa, Paola; Adorni, Maria Pia; Leone, Daniela; Artom, Nathan; Fresa, Raffaele; Calabresi, Laura; Calandra, Sebastiano; Bertolini, Stefano

    2015-01-01

    We describe a kindred with high-density lipoprotein (HDL) deficiency due to APOA1 gene mutation in which comorbidities affected the phenotypic expression of the disorder. An overweight boy with hypertriglyceridemia (HTG) and HDL deficiency (HDL cholesterol 0.39 mmol/L, apoA-I 40 mg/dL) was investigated. We sequenced the candidate genes for HTG (LPL, APOC2, APOA5, GPIHBP1, LMF1) and HDL deficiency (LCAT, ABCA1 and APOA1), analyzed HDL subpopulations, measured cholesterol efflux capacity (CEC) of sera and constructed a model of the mutant apoA-I. No mutations in HTG-related genes, ABCA1 and LCAT were found. APOA1 sequence showed that the proband, his mother and maternal grandfather were heterozygous of a novel frameshift mutation (c.546_547delGC), which generated a truncated protein (p.[L159Afs*20]) containing 177 amino acids with an abnormal C-terminal tail of 19 amino acids. Trace amounts of this protein were detectable in plasma. Mutation carriers had reduced levels of LpA-I, preβ-HDL and large HDL and no detectable HDL-2 in their plasma; their sera had a reduced CEC specifically the ABCA1-mediated CEC. Metabolic syndrome in the proband explains the extremely low HDL cholesterol level (0.31 mmol/L), which was half of that found in the other carriers. The proband's mother and grandfather, both presenting low plasma low-density lipoprotein cholesterol, were carriers of the β-thalassemic trait, a condition known to be associated with a reduced low-density lipoprotein cholesterol and a reduced prevalence of cardiovascular disease. This trait might have delayed the development of atherosclerosis related to HDL deficiency. In these heterozygotes for apoA-I truncation, the metabolic syndrome has deleterious effect on HDL system, whereas β-thalassemia trait may delay the onset of cardiovascular disease. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  4. A cis-eQTL of HLA-DRB1 and a frameshift mutation of MICA contribute to the pattern of association of HLA alleles with cervical cancer.

    Science.gov (United States)

    Chen, Dan; Gyllensten, Ulf

    2014-04-01

    The association of classic human leukocyte antigen (HLA) alleles with risk of cervical cancer has been extensively studied, and a protective effect has consistently been found for DRB1*1301, DQA1*0103, and/or DQB1*0603 (these three alleles are in perfect linkage disequilibrium [LD] and often occur on the same haplotype in Europeans), while reports have differed widely with respect to the effect of HLA-B*07, DRB1*1501, and/or DQB1*0602 (the last two alleles are also in perfect LD in Europeans). It is not clear whether the reported HLA alleles are responsible for the differences in cervical cancer susceptibility, or if functional variants at other locations within the major histocompatibility complex (MHC) region may explain the effect. In order to assess the relative contribution of both classic HLA alleles and single-nucleotide polymorphisms (SNPs) within the MHC region to cervical cancer susceptibility, we have imputed classic HLA alleles in 1034 cervical cancer patients and 3948 controls in a Swedish population for an integrated analysis. We found that the protective haplotype DRB1*1301-DQA1*0103-DQB1*0603 has a direct effect on cervical cancer and always occurs together with the C allele of a HLA-DRB1 cis-eQTL (rs9272143), which increases the expression of HLA-DRB1. The haplotype rs9272143C-DRB1*1301-DQA1*0103-DQB1*0603 conferred the strongest protection against cervical cancer (odds ratio [OR] = 0.41, 95% confidence interval [CI] = 0.32-0.52, P = 6.2 × 10(-13)). On the other hand, the associations with HLA-B*0702 and DRB1*1501-DQB1*0602 are attributable to the joint effects of both the HLA-DRB1 cis-eQTL (rs9272143) and a frameshift mutation (G inserion of rs67841474, also known as A5.1) of the MHC class I polypeptide-related sequence A gene (MICA). Variation in LD between the classic HLA loci, rs9272143 and rs67841474 between populations may explain the different associations of HLA-B*07 and DRB1*1501-DQB1*0602 with cervical cancer between studies. The

  5. ß-Spectrin São PauloII, a novel frameshift mutation of the ß-spectrin gene associated with hereditary spherocytosis and instability of the mutant mRNA

    Directory of Open Access Journals (Sweden)

    Bassères D.S.

    2002-01-01

    Full Text Available Hereditary spherocytosis (HS is a common inherited anemia characterized by the presence of spherocytic red cells. Defects in several membrane protein genes have been involved in the pathogenesis of HS. ß-Spectrin-related HS seems to be common. We report here a new mutation in the ß-spectrin gene coding region in a patient with hereditary spherocytosis. The patient presented acanthocytosis and spectrin deficiency and, at the DNA level, a novel frameshift mutation leading to HS, i.e., a C deletion at codon 1392 (ß-spectrin São PauloII, exon 20. The mRNA encoding ß-spectrin São PauloII was very unstable and the mutant protein was not detected in the membrane or in other cellular compartments. It is interesting to note that frameshift mutations of the ß-spectrin gene at the 3' end allow the insertion of the mutant protein in the red cell membrane, leading to a defect in the auto-association of the spectrin dimers and consequent elliptocytosis. On the other hand, ß-spectrin São PauloII protein was absent in the red cell membrane, leading to spectrin deficiency, HS and the presence of acanthocytes.

  6. Identification of a recurrent frameshift mutation at the LDLR exon 14 (c.2027delG, p.(G676Afs*33)) causing familial hypercholesterolemia in Saudi Arab homozygous children.

    Science.gov (United States)

    Al-Allaf, Faisal A; Alashwal, Abdullah; Abduljaleel, Zainularifeen; Taher, Mohiuddin M; Siddiqui, Shahid S; Bouazzaoui, Abdellatif; Abalkhail, Hala; Aun, Rakan; Al-Allaf, Ahmad F; AbuMansour, Iman; Azhar, Zohor; Ba-Hammam, Faisal A; Khan, Wajahatullah; Athar, Mohammad

    2016-01-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease, predominantly caused by variants in the low-density lipoprotein (LDL) receptor gene (LDLR). Herein, we describe genetic analysis of severely affected homozygous FH patients who were mostly resistant to statin therapy and were managed on an apheresis program. We identified a recurrent frameshift mutation p.(G676Afs*33) in exon 14 of the LDLR gene in 9 probands and their relatives in an apparently unrelated Saudi families. We also describe a three dimensional homology model of the LDL receptor protein (LDLR) structure and examine the consequence of the frameshift mutation p.(G676Afs*33), as this could affect the LDLR structure in a region involved in dimer formation, and protein stability. This finding of a recurrent mutation causing FH in the Saudi population could serve to develop a rapid genetic screening procedure for FH, and the 3D-structure analysis of the mutant LDLR, may provide tools to develop a mechanistic model of the LDLR function.

  7. Case Report: Whole exome sequencing reveals a novel frameshift deletion mutation p.G2254fs in COL7A1 associated with autosomal recessive dystrophic epidermolysis bullosa [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Shamsudheen Karuthedath Vellarikkal

    2016-07-01

    Full Text Available Dystrophic epidermolysis bullosa simplex (DEB is a phenotypically diverse inherited skin fragility disorder. It is majorly manifested by appearance of epidermal bullae upon friction caused either by physical or environmental trauma. The phenotypic manifestations also include appearance of milia, scarring all over the body and nail dystrophy. DEB can be inherited in a recessive or dominant form and the recessive form of DEB (RDEB is more severe. In the present study, we identify a novel p.G2254fs mutation in COL7A1 gene causing a sporadic case of RDEB by whole exome sequencing (WES. Apart from adding a novel frameshift Collagen VII mutation to the repertoire of known mutations reported in the disease, to the best of our knowledge, this is the first report of a genetically characterized case of DEB from India.

  8. Case Report: Whole exome sequencing reveals a novel frameshift deletion mutation p.G2254fs in COL7A1 associated with autosomal recessive dystrophic epidermolysis bullosa [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Shamsudheen Karuthedath Vellarikkal

    2016-05-01

    Full Text Available Dystrophic epidermolysis bullosa simplex (DEB is a phenotypically diverse inherited skin fragility disorder. It is majorly manifested by appearance of epidermal bullae upon friction caused either by physical or environmental trauma. The phenotypic manifestations also include appearance of milia, scarring all over the body and nail dystrophy. DEB can be inherited in a recessive or dominant form and the recessive form of DEB (RDEB is more severe. In the present study, we identify a novel p.G2254fs mutation in COL7A1 gene causing a sporadic case of RDEB by whole exome sequencing (WES. Apart from adding a novel frameshift Collagen VII mutation to the repertoire of known mutations reported in the disease, to the best of our knowledge, this is the first report of a genetically characterized case of DEB from India.

  9. Production of truncated MBD4 protein by frameshift mutation in DNA mismatch repair-deficient cells enhances 5-fluorouracil sensitivity that is independent of hMLH1 status.

    Science.gov (United States)

    Suzuki, Satoshi; Iwaizumi, Moriya; Tseng-Rogenski, Stephanie; Hamaya, Yasushi; Miyajima, Hiroaki; Kanaoka, Shigeru; Sugimoto, Ken; Carethers, John M

    2016-07-02

    Methyl-CpG binding domain protein 4 (MBD4) is a DNA glycosylase that can remove 5-fluorodeoxyuracil from DNA as well as repair T:G or U:G mismatches. MBD4 is a target for frameshift mutation with DNA mismatch repair (MMR) deficiency, creating a truncated MBD4 protein (TruMBD4) that lacks its glycosylase domain. Here we show that TruMBD4 plays an important role for enhancing 5-fluorouracil (5FU) sensitivity in MMR-deficient colorectal cancer cells. We found biochemically that TruMBD4 binds to 5FU incorporated into DNA with higher affinity than MBD4. TruMBD4 reduced the 5FU affinity of the MMR recognition complexes that determined 5FU sensitivity by previous reports, suggesting other mechanisms might be operative to trigger cytotoxicity. To analyze overall 5FU sensitivity with TruMBD4, we established TruMBD4 overexpression in hMLH1-proficient or -deficient colorectal cancer cells followed by treatment with 5FU. 5FU-treated TruMBD4 cells demonstrated diminished growth characteristics compared to controls, independently of hMLH1 status. Flow cytometry revealed more 5FU-treated TruMBD4 cells in S phase than controls. We conclude that patients with MMR-deficient cancers, which show characteristic resistance to 5FU therapy, may be increased for 5FU sensitivity via secondary frameshift mutation of the base excision repair gene MBD4.

  10. A stochastic model of translation with -1 programmed ribosomal frameshifting

    Science.gov (United States)

    Bailey, Brenae L.; Visscher, Koen; Watkins, Joseph

    2014-02-01

    Many viruses produce multiple proteins from a single mRNA sequence by encoding overlapping genes. One mechanism to decode both genes, which reside in alternate reading frames, is -1 programmed ribosomal frameshifting. Although recognized for over 25 years, the molecular and physical mechanism of -1 frameshifting remains poorly understood. We have developed a mathematical model that treats mRNA translation and associated -1 frameshifting as a stochastic process in which the transition probabilities are based on the energetics of local molecular interactions. The model predicts both the location and efficiency of -1 frameshift events in HIV-1. Moreover, we compute -1 frameshift efficiencies upon mutations in the viral mRNA sequence and variations in relative tRNA abundances, predictions that are directly testable in experiment.

  11. A frameshift mutation in the HuP2 paired domain of the probable human homolog of murine Pax-3 is responsible for Waardenburg syndrome type 1 in an Indonesian family.

    Science.gov (United States)

    Morell, R; Friedman, T B; Moeljopawiro, S; Hartono; Soewito; Asher, J H

    1992-07-01

    Waardenburg syndrome type 1 (WS1) is an autosomal dominant disorder characterized by deafness, dystopia canthorum, heterochromia iridis, white forelock, and premature greying. A similar phenotype is caused in the mouse by mutations in the Pax-3 gene. This observation, together with comparisons of conserved syntenies in the murine and human genetic maps, suggested that at least some WS1 mutations should occur in HuP2, the probable human homolog of Pax-3. Two mutations in the HuP2 sequence of individuals with WS1 have been reported recently. Both of them occur in the highly conserved paired box region of the gene, which encodes a DNA binding domain. The functional consequences of these mutations are at present speculative. We report here a 14 bp deletion in the paired domain encoded by exon 2 of HuP2 in an Indonesian family segregating for WS1. This frameshift mutation results in a premature termination codon in exon 3. The HuP2 product is a truncated protein lacking most of the paired domain and all of the predicted homeo domain. We propose that the WS1 phenotype in this family is due to loss of function of HuP2 and discuss two mechanisms for the dominant effect of this mutation.

  12. A Stochastic Model of RNA Translation with Frameshifting

    Science.gov (United States)

    Bailey, Brenae

    2011-10-01

    Many viruses can produce different proteins from the same RNA sequence by encoding them in overlapping genes. One mechanism that causes the ribosomes of infected cells to decode both genes is called programmed ribosomal frameshifting (PRF). Although PRF has been recognized for 25 years, the mechanism is not well understood. We have developed a model that treats RNA translation as a stochastic process in which the transition probabilities are based on the free energies of local molecular interactions. The model reproduces observed translation rates and frameshift efficiencies, and can be used to predict the effects of mutations in the viral RNA sequence on both the mean translation rate and the frameshift efficiency.

  13. A new β(0) frameshift mutation, HBB: c.44delT (p.Leu14ArgfsX5), identified in an Argentinean family associated with secondary genetic modifiers of β-thalassemia.

    Science.gov (United States)

    Pepe, Carolina; Eberle, Silvia Eandi; Chaves, Alejandro; Milanesio, Berenice; Aguirre, Fernando M; Gómez, Vanesa Avalos; Diaz, Lilian; Mansini, Adrian P; Fernandez, Diego A; Sciuccati, Gabriela; Candas, Andrea; Cervio, Carolina; Bonduel, Mariana; Feliú-Torres, Aurora

    2014-01-01

    β-Thalassemia intermedia (β-TI) patients present with a wide spectrum of phenotypes depending on the presence of primary, secondary, and tertiary genetic modifiers which modulate, by different mechanisms, the degree of imbalance between α and β chains. Here we describe a new β(0) frameshift mutation, HBB: c.44delT (p.Leu14ArgfsX5), identified in four members of a family, associated with secondary genetic modifiers in three of them. The different genotype present in this family was suspected after hematological analysis and thorough observation of blood smears highlighting their importance in the identification of β-TI patients among members of the same family.

  14. Novel frameshift mutation in the p16/INK4A tumor suppressor gene in canine breast cancer alters expression from the p16/INK4A/p14ARF locus.

    Science.gov (United States)

    Lutful Kabir, Farruk M; Agarwal, Payal; Deinnocentes, Patricia; Zaman, Jishan; Bird, Allison Church; Bird, R Curtis

    2013-01-01

    The INK4 family of cyclin-dependent kinase inhibitors (CKI) encode important cell cycle regulators that tightly control cell cycle during G1 to S phase. These related genes are considered tumor suppressors as loss of function contributes to the malignant phenotype. Expression of CKIs p16, p14ARF, or p15 were defective in six different canine mammary tumor (CMT) cell lines compared to normal thoracic canine fibroblasts. This suggests CKI defects are frequently responsible for neoplastic transformation in canine mammary carcinomas. p16 and p14ARF are two alternatively spliced products derived from the canine p16/INK4A/p14ARF gene locus. Despite omissions in the published p16 transcript and canine genome and the presence of GC-rich repeats, we determined the complete coding sequence of canine p16 revealing a deletion and frameshift mutation in p16 exon 1α in CMT28 cells. In addition, we determined canine p14ARF mRNA and protein sequences. Mapping of these mutations uncovered important aspects of p16 and p14ARF expression and defects in CMT28 cells shifting the p16 reading frame into p14ARF making a fusion protein that was predicted to be truncated, unstable and devoid of structural and functional integrity. This data describes an important neoplastic mechanism in the p16/INK4A/p14ARF locus in a spontaneous canine model of breast cancer. Copyright © 2012 Wiley Periodicals, Inc.

  15. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang [Univ. of Illinois, Chicago, IL (United States)

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

  16. One Novel Frameshift Mutation on Exon 64 of COL7A1 Gene in an Iranian Individual Suffering Recessive Dystrophic Epidermolysis Bullosa.

    Science.gov (United States)

    Khaniani, Mahmoud Shekari; Sohrabi, Nasrin; Derakhshan, Neda Mansoori; Derakhshan, Sima Mansoori

    2015-01-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is an extremely rare subtype of bullous dermatosis caused by the COL7A1 gene mutation. After genomic DNA extraction from the peripheral blood sample of all subjects (3 pedigree members and 3 unrelated control individuals), COL7A1 gene screening was performed by PCR amplification and direct DNA sequencing of all of the coding exons and flanking intronic regions. Genetic analysis of the COL7A1 gene in an affected individual revealed a novel mutation: c.5493delG (p.K1831Nfs*10) in exon 64 of the COL7A1 gene in homozygous state. This mutation was not discovered in 3 unrelated Iranian control individuals. These data suggest that c.5493delG may influence the phenotype of RDEB. The result of this case report contributes to the expanding database on COL7A1 mutations.

  17. A novel deletion-frameshift mutation in the S1 region of HERG gene in a Chinese family with long QT syndrome

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; ZHANG Ping; LI Xue-bin; WU Cun-cao; GUO Ji-hong

    2013-01-01

    Background The congenital Long QT syndrome (LQTS) is a hereditary cardiac channelopathy that is characterized by a prolonged QT interval,syncope,ventricular arrhythmias,and sudden death.The chromosome 7-linked type 2 congenital LQTS (LQT2) is caused by gene mutations in the human ether-a-go-go-related gene (HERG).Methods A Chinese family diagnosed with LQTS were screened for KCNQ1,HERG and SCN5A,using polymerase chain reaction (PCR),direct sequencing,and clong sequencing.We also investigated the mRNA expression of the HERG gene.Results We identified a novel i414fs+98X mutation in the HERG gene.The deletion mutation of 14-bp in the first transmembrane segment (S1) introduced premature termination codons (PTCs) at the end of exon 6.This mutation would result in a serious phenotype if the truncated proteins co-assembled with normal subunit to form the defective channels.But only the proband was symptomatic.Conclusions We found that the mRNA level of the HERG gene was significantly lower in 1414fs+98X carriers than in noncarriers.We found a novel 1414fs+98X mutation.The mRNA level supports that NMD mechanism might regulate the novel mutation.

  18. Reverse genetic screen for loss-of-function mutations uncovers a frameshifting deletion in the melanophilin gene accountable for a distinctive coat color in Belgian Blue cattle.

    Science.gov (United States)

    Li, Wanbo; Sartelet, Arnaud; Tamma, Nico; Coppieters, Wouter; Georges, Michel; Charlier, Carole

    2016-02-01

    In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10-bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large-scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild-type allele at the co-dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named 'cool gray'. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.

  19. 颅锁骨发育不良的三个RUNX2基因新突变%Identification of three novel frameshift mutations in the RUNX2 gene in three sporadic Chinese cases with cleidocranial dysplasia

    Institute of Scientific and Technical Information of China (English)

    齐展; 杨威; 孟岩; 刘雅萍

    2014-01-01

    目的 通过对3例散发的颅锁骨发育不良患者进行RUNX2基因编码区的扩增及测序,寻找RUNX2基因突变,为家系进行遗传咨询和产前诊断提供依据.方法 抽取患者及其父母外周血,提取基因组DNA,PCR扩增RUNX2基因的7个编码外显子并测序;并对患者突变所在外显子的PCR产物经T-A克隆后再次测序.结果 例1的RUNX2第1外显子发生了1个80bp的c.227_306del杂合性缺失突变,引起读码框移位并提前出现终止密码(p.Ala76GlyfsX58);例2的RUNX2第2外显子发生了1个c.471_472dupGG杂合重复突变,亦导致读码框改变及提前出现终止密码(p.Ala158GlyfsX19);例3的R UNX2第17显子发生了1个c.1321dupT杂合重复突变,同样导致读码框改变和提前出现终止密码(p.Ser370PhefsX13).这三个移码突变经查询HGMD突变数据库及国内外文献均未见报道.结论 发现了3种新的导致颅锁骨发育不良的RUNX2基因突变,新的突变扩展了RUNX2基因的突变谱,可为这些家系提供准确可靠的遗传咨询和产前诊断.%Objective To investigate the molecular etiology of three patients with sporadic cleidocranial dysplasia (CCD) and to provide genetic counseling and prenatal diagnosis for the family members based on the identified mutations.Methods Genomic DNA was extracted from peripheral blood samples using a standard method.All 7 coding exons of the RUNX2 gene and their flanking intronic sequences were amplified by PCR and sequenced directly.The PCR products of the exons with mutations from the three patients were cloned into a T-vector.Positive clones were sequenced.Results The three patients who have the typical CCD phenotypes involving clavicles,calvarium,stature,and teeth have carried various frameshift mutations in the RUNX2 gene.Patient 1 has a gross deletion of 80 nucleotides in exon 1 (c.227_306del),which caused a frameshift beginning at the Q/A repeat of the polypeptide and a premature termination (p.Ala76GlyfsX58).Patient

  20. β-Thalassemia major resulting from compound heterozygosity for HBB: c.92+2T>C [formerly known as IVS-I-2 (T>C)] and a novel β(0)-thalassemia frameshift mutation: HBB: c.209delG; p.Gly70Valfs*20.

    Science.gov (United States)

    Kluge, Michelle L; Hoyer, James D; Swanson, Kenneth C; Oliveira, Jennifer L

    2014-01-01

    A novel β(0)-thalassemia (β-thal) frameshift mutation, HBB: c.209delG; p.Gly70Valfs*20, is described in a 21-year-old African American female with β-thalassemia major (β-TM) due to compound heterozygosity for the β(0)-thal mutation HBB: c.92+2T>C [formerly known as IVS-I-2 (T>C)] and HBB: c.209delG. The combination of these mutations demonstrates a complete lack of β-globin chain synthesis, evidenced by the proband having no Hb A present.

  1. Phenotypic variability in a seven-generation Swedish family segregating autosomal dominant hearing impairment due to a novel EYA4 frameshift mutation

    DEFF Research Database (Denmark)

    Frykholm, Carina; Klar, Joakim; Arnesson, Hanna;

    2015-01-01

    -sectional and longitudinal deterioration of pure tone average (PTA) once the process of hearing deterioration had started, and no gender, parent-of-origin or family branch differences on PTA could be found. Age at onset varied between the family branches. In summary, this is the ninth published genetically verified DFNA10...... family. The results imply that unidentified factors, genetic or environmental, other than the EYA4 mutation, are of importance for the age at onset of DFNA10, and that mutation early in the variable region of the EYA4 protein can occur in the absence of dilated cardiomyopathy....

  2. An AP4B1 frameshift mutation in siblings with intellectual disability and spastic tetraplegia further delineates the AP-4 deficiency syndrome.

    Science.gov (United States)

    Abdollahpour, Hengameh; Alawi, Malik; Kortüm, Fanny; Beckstette, Michael; Seemanova, Eva; Komárek, Vladimír; Rosenberger, Georg; Kutsche, Kerstin

    2015-02-01

    The recently proposed adaptor protein 4 (AP-4) deficiency syndrome comprises a group of congenital neurological disorders characterized by severe intellectual disability (ID), delayed or absent speech, hereditary spastic paraplegia, and growth retardation. AP-4 is a heterotetrameric protein complex with important functions in vesicle trafficking. Mutations in genes affecting different subunits of AP-4, including AP4B1, AP4E1, AP4S1, and AP4M1, have been reported in patients with the AP-4 deficiency phenotype. We describe two siblings from a non-consanguineous couple who presented with severe ID, absent speech, microcephaly, growth retardation, and progressive spastic tetraplegia. Whole-exome sequencing in the two patients identified the novel homozygous 2-bp deletion c.1160_1161delCA (p.(Thr387Argfs*30)) in AP4B1. Sanger sequencing confirmed the mutation in the siblings and revealed it in the heterozygous state in both parents. The AP4B1-associated phenotype has previously been assigned to spastic paraplegia-47. Identification of a novel AP4B1 alteration in two patients with clinical manifestations highly similar to other individuals with mutations affecting one of the four AP-4 subunits further supports the observation that loss of AP-4 assembly or functionality underlies the common clinical features in these patients and underscores the existence of the clinically recognizable AP-4 deficiency syndrome.

  3. Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy associated with a novel frameshift mutation at the 3' terminus of the FBN1-gene.

    Science.gov (United States)

    Graul-Neumann, Luitgard M; Kienitz, Tina; Robinson, Peter N; Baasanjav, Sevjidmaa; Karow, Benjamin; Gillessen-Kaesbach, Gabriele; Fahsold, Raimund; Schmidt, Hartmut; Hoffmann, Katrin; Passarge, Eberhard

    2010-11-01

    We report on a 25-year-old woman with pronounced generalized lipodystrophy and a progeroid aspect since birth, who also had Marfan syndrome (MFS; fulfilling the Ghent criteria) with mild skeletal features, dilated aortic bulb, dural ectasia, bilateral subluxation of the lens, and severe myopia in addition to the severe generalized lipodystrophy. She lacked insulin resistance, hypertriglyceridemia, hepatic steatosis, and diabetes. Mutation analysis in the gene encoding fibrillin 1 (FBN1) revealed a novel de novo heterozygous deletion, c.8155_8156del2 in exon 64. The severe generalized lipodystrophy in this patient with progeroid features has not previously been described in other patients with MFS and FBN1 mutations. We did not find a mutation in genes known to be associated with congenital lipodystrophy (APGAT2, BSCL2, CAV1, PTRF-CAVIN, PPARG, LMNB2) or with Hutchinson-Gilford progeria (ZMPSTE24, LMNA/C). Other progeria syndromes were considered unlikely because premature greying, hypogonadism, and scleroderma-like skin disease were not present. Our patient shows striking similarity to two patients who have been published in this journal by O'Neill et al. [O'Neill et al. (2007); Am J Med Genet Part A 143A:1421-1430] with the diagnosis of neonatal progeroid syndrome (NPS). This condition also known as Wiedemann-Rautenstrauch syndrome is a rare disorder characterized by accelerated aging and lipodystrophy from birth, poor postnatal weight gain, and characteristic facial features. The course is usually progressive with early lethality. However this entity seems heterogeneous. We suggest that our patient and the two similar cases described before represent a new entity, a subgroup of MFS with overlapping features to NPS syndrome.

  4. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences.

    Science.gov (United States)

    Antonov, Ivan; Baranov, Pavel; Borodovsky, Mark

    2013-01-01

    Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events).

  5. Four-base codons ACCA, ACCU and ACCC are recognized by frameshift suppressor sufJ.

    Science.gov (United States)

    Bossi, L; Roth, J R

    1981-08-01

    The frameshift suppressor sufJ acts to correct a set of +1 frameshift mutations having very different sequences at their mutant sites. This suppressor acts by reading a 4 base codon located near, but not at, the site of each suppressible mutation. Suppression thus necessitates out-of-phase translation of the short stretch of mRNA between the site of action of the suppressor tRNA and the site of the frameshift mutation. We have identified the site read by sufJ by mutationally creating a series of such sites in the neighborhood of a previously nonsuppressible frameshift mutation. Each of the newly generated sites was formed by base substitution. Four independently generated sites were analyzed by DNA sequencing. At each site the quadruplet codon ACCX was generated (where X is A, U or C). Thus sufJ is able to read a 4 base codon in which any of three bases is acceptable in the fourth position. This is the first frameshift suppressor that does not read a run of three repeated bases in the first three positions of its codon.

  6. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    Science.gov (United States)

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  7. A mutant RNA pseudoknot that promotes ribosomal frameshifting in mouse mammary tumor virus.

    Science.gov (United States)

    Kang, H; Tinoco, I

    1997-05-15

    A single A-->G mutation that changes a potential A.U base pair to a G.U pair at the junction of the stems and loops of a non-frameshifting pseudoknot dramatically increases its frameshifting efficiency in mouse mammary tumor virus. The structure of the non-frameshifting pseudoknot APK has been found to be very different from that of pseudoknots that cause efficient frameshifting [Kang,H., Hines,J.V. and Tinoco,I. (1995) J. Mol. Biol. , 259, 135-147]. The 3-dimensional structure of the mutant pseudoknot was determined by restrained molecular dynamics based on NMR-derived interproton distance and torsion angle constraints. One striking feature of the mutant pseudoknot compared with the parent pseudoknot is that a G.U base pair forms at the top of stem 2, thus leaving only 1 nt at the junction of the two stems. The conformation is very different from that of the previously determined non-frameshifting parent pseudoknot, which lacks the A.U base pair at the top of the stem and has 2 nt between the stems. However, the conformation is quite similar to that of efficient frameshifting pseudoknots whose structures were previously determined by NMR. A single adenylate residue intervenes between the two stems and interrupts their coaxial stacking. This unpaired nucleotide produces a bent structure. The structural similarity among the efficient frameshifting pseudoknots indicates that a specific conformation is required for ribosomal frameshifting, further implying a specific interaction of the pseudoknot with the ribosome.

  8. 携带I172N和R483框移突变的21-羟化酶缺乏症1例及文献复习%21-hydroxylase deficiency carrying I172N and R483 frameshift mutations:a case report and literature review

    Institute of Scientific and Technical Information of China (English)

    雍曾花; 王晓英; 姚合斌

    2014-01-01

    目的:分析1例单纯男性化型21-羟化酶缺乏症(21-OHD)基因突变特点与临床表型的关系,探讨其激素治疗的必要性。方法收集患者的临床资料,提取患者外周血DNA,用PCR扩增和DNA测序方法鉴定CYP21A2基因突变位点,并与NCBI网站和人类细胞色素P450(CYP)相关的CYP21A2基因突变数据库比对,进一步分析患者基因突变特点与临床表型的关系。结果患者主要表现为外生殖器男性化和声音低沉。基因测序结果显示为复合杂合突变,一个等位基因为T518 A突变,导致I172 N错义突变;另一个等位基因为1451-1452 GG→C突变,导致R483框移突变,这是至今报道很少的一种罕见突变。这种复合杂合突变主要引起单纯男性化表现。结论 R483框移突变是CYP21 A2基因的一种罕见突变,从分子遗传学方面证实了对患者的诊断,也很好地解释了患者的临床表型。对于育龄期女性患者激素治疗更有必要性。%Objective To analyze the genetic characteristic and clinical phenotype of a Chinese patient with 21 hydrosylase deficiency (21-OHD), and to explore the necessity of hormone glucocorticoid therapy .Methods Collect clinical data, extracted peripheral blood DNA , amplified by PCR and DNA sequencing to identify CYP 21A2 gene mutations, and with NCBI website and human cytochrome P 450 ( CYP) CYP21A2 gene mutation associated database comparison , further analysis patients with mutations in the relationship between the characteristics and clinical phenotype .Results The patient presented with a deep voice and masculine genitalia .Gene sequencing results are shown as compound heterozygous mutation , an allele T518A mutation in I172N missense mutation;another allele for the 1451-1452GG→C mutation, resulting in R483 frameshift mutation, which is so far very few reports A rare mutation .This compound heterozygous mutation mainly caused purely mascu-line performance

  9. 完全型雄激素不敏感综合征雄激素受体基因突变的鉴定与分析%Identification of a novel frameshift mutation of human androgen receptor gene in a patient featuring complete androgen insensitivity syndrome

    Institute of Scientific and Technical Information of China (English)

    谢建红; 瞿京辉; 肖奇志; 周玉球

    2013-01-01

    目的 对l例完全型雄激素不敏感综合征(complete androgen insensitivity syndrome,CAIS)患者的雄激素受体(androgen receptor,AR)基因进行分析,寻找潜在的突变位点,并进一步分析其发病原因.方法 提取患者外周血全基因组DNA,扩增位于X染色体AR基因8个外显子及邻近外显子与内含子剪切位点DNA序列,对扩增产物直接进行DNA序列测定,与GenBank中的基因序列进行比对.结果 该患者AR基因在第6外显子核苷酸序列3507位点缺失一个碱基C而引起移码突变,致使在第808位密码子出现终止密码子(TGA)使得翻译提前终止形成截短的雄激素受体蛋白.该突变可能诱导雄激素受体结合能力发生功能上的变异,导致CAIS的发生.结论 AR基因第6外显子核苷酸序列3507位点缺失碱基C引起的移码突变是一种导致CAIS新的基因突变方式,该研究丰富了AR基因突变谱,为了解CAIS的发病机制提供了新的依据.%Objective To identify potential mutation of human androgen receptor (AR) gene in a patient with complete androgen insensitivity syndrome (CAIS).Methods DNA sequences of 8 exons and exon/intron boundaries of the AR gene were amplified with PCR and directly sequenced.Results DNA sequencing revealed a frameshift mutation due to deletion of nucleotide C at position 3507 in exon 6,which gave rise to a stop codon resulting premature termination for translation.Conclusion A novel frameshift mutation in exon 6 of AR gene probably underlies the disease in our patient.

  10. Stimulation of ribosomal frameshifting by antisense LNA

    Science.gov (United States)

    Yu, Chien-Hung; Noteborn, Mathieu H. M.; Olsthoorn, René C. L.

    2010-01-01

    Programmed ribosomal frameshifting is a translational recoding mechanism commonly used by RNA viruses to express two or more proteins from a single mRNA at a fixed ratio. An essential element in this process is the presence of an RNA secondary structure, such as a pseudoknot or a hairpin, located downstream of the slippery sequence. Here, we have tested the efficiency of RNA oligonucleotides annealing downstream of the slippery sequence to induce frameshifting in vitro. Maximal frameshifting was observed with oligonucleotides of 12–18 nt. Antisense oligonucleotides bearing locked nucleid acid (LNA) modifications also proved to be efficient frameshift-stimulators in contrast to DNA oligonucleotides. The number, sequence and location of LNA bases in an otherwise DNA oligonucleotide have to be carefully manipulated to obtain optimal levels of frameshifting. Our data favor a model in which RNA stability at the entrance of the ribosomal tunnel is the major determinant of stimulating slippage rather than a specific three-dimensional structure of the stimulating RNA element. PMID:20693527

  11. Structure and Function of the Ribosomal Frameshifting Pseudoknot RNA from Beet Western Yellow Virus

    Energy Technology Data Exchange (ETDEWEB)

    Egli, M.; Sarkhel, S.; Minasov, G.; Rich, A.

    2010-03-05

    Many viruses reprogram ribosomes to produce two different proteins from two different reading frames. So-called -1 frameshifting often involves pairwise alignment of two adjacent tRNAs at a 'slippery' sequence in the ribosomal A and P sites such that an overlapping codon is shifted upstream by one base relative to the zero frame. In the majority of cases, an RNA pseudoknot located downstream stimulates this type of frameshift. Crystal structures of the frameshifting RNA pseudoknot from Beet Western Yellow Virus (BWYV) have provided a detailed picture of the tertiary interactions stabilizing this folding motif, including a minor-groove triplex and quadruple-base interactions. The structure determined at atomic resolution revealed the locations of several magnesium ions and provided insights into the role of structured water stabilizing the RNA. Systematic in vitro and in vivo mutational analyses based on the structural results revealed specific tertiary interactions and regions in the pseudoknot that drastically change frameshifting efficiency. Here, we summarize recent advances in our understanding of pseudoknot-mediated ribosomal frameshifting on the basis of the insights gained from structural and functional studies of the RNA pseudoknot from BWYV.

  12. 我国汉族人群FⅧ基因14号外显子poly A区缺失或插入A热点突变分析%Frameshift mutations in poly A stretches of exon 14 in the factor Ⅷ gene and its possible mechanism

    Institute of Scientific and Technical Information of China (English)

    梁茜; 丁秋兰; 许冠群; 张利伟; 戴菁; 陆晔玲; 王学锋; 奚晓东; 王鸿利

    2012-01-01

    Objective To analysis frameshift mutations in poly A stretches of exon 14 in factor Ⅷ (FⅧ) gene. Methods The APTT, FT, TT, Fg, FⅧ:C, vWF:Ag, vWF:Act were tested to make phenotypic diagnosis. LD-PCR was used to detect FⅧ gene intron 22 inversion and two sets sequence specific PCR was adopted to detect FⅧ gene intron 1 inversion. The promoter and all 26 extrons of FⅧ gene and its flank sequences were directly sequeneed. The AccuCopy method was employed to investigate copy number variations (CNVs). The multiplex PCR was performed to analysis a novel panel of the 6 short tandem repeats (FⅧp226, FVⅧUpl46, FⅧIntl3, FⅧInt25, FⅧDown48 and DXS1073) and amelogenin locus (the sex-typing marker) for genetic counseling. Results In all the 343 HA families, 32 were frameshift mutations in poly A stretches of exon 14 in FⅧ gene (9.33%), which account for 42.11% of small deletions/insertion. In the 32 cases, 21 HA families were sporadic, and 10 unrelated hemophdia families were due to de novo mutations. Interestingly, part of the hemophilia A patients manifested as mild to moderately severe phertotype, with the clotting activities of FⅧ (FⅧ:C) more than 2%. Conclusions Frameshift mutations in poly A stretches at position g.96418_96425(A8) and g.95674_95683(A9) of exon 14 in FⅧ gene are proved to be the mutation hot spots of HA. Potential mechanism of the high mutability of these regions may be due to polymerase errors or slippage during replication. At the same time, errors in DNA replication or RNA transcription/translation may result in a partial restoration of the correct reading frame, and ameliorate an expected severe phenotype.%目的:对FⅧ基因14号外显子poly A区缺失或插入A进行热点突变分析.方法:采用活化部分凝血活酶时间、凝血酶原时间、凝血酶时间、纤维蛋白原、凝血因子Ⅷ活性(FⅧ:C)及血管性血友病因子抗原及活性(vWF:Ag、vWF:Act)等测定进行血友病A表型诊断,用长链

  13. Twist-2 at seven loops in planar N=4 SYM theory: Full result and analytic properties

    CERN Document Server

    Marboe, Christian

    2016-01-01

    The anomalous dimension of twist-2 operators of arbitrary spin in planar N=4 SYM theory is found at seven loops by using the quantum spectral curve to compute values at fixed spin, and reconstructing the general result using the LLL-algorithm together with modular arithmetic. The result of the analytic continuation to negative spin is presented, and its relation with the recently computed correction to the BFKL and double-logarithmic equation is discussed.

  14. Twist-2 at seven loops in planar N=4 SYM theory: full result and analytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Marboe, Christian [School of Mathematics, Trinity College Dublin,College Green, Dublin 2 (Ireland); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin (Germany); Velizhanin, Vitaly [Theoretical Physics Division, NRC “Kurchatov Institute”,Petersburg Nuclear Physics Institute, Orlova Roscha,Gatchina, 188300 St. Petersburg (Russian Federation); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin (Germany)

    2016-11-04

    The anomalous dimension of twist-2 operators of arbitrary spin in planar N=4 SYM theory is found at seven loops by using the quantum spectral curve to compute values at fixed spin, and reconstructing the general result using the LLL-algorithm together with modular arithmetic. The result of the analytic continuation to negative spin is presented, and its relation with the recently computed correction to the BFKL and double-logarithmic equation is discussed.

  15. Twist2 Is Upregulated in Early Stages of Repair Following Acute Kidney Injury

    Science.gov (United States)

    Grunz-Borgmann, Elizabeth A.; Nichols, LaNita A.; Wang, Xinhui; Parrish, Alan R.

    2017-01-01

    The aging kidney is a marked by a number of structural and functional changes, including an increased susceptibility to acute kidney injury (AKI). Previous studies from our laboratory have shown that aging male Fischer 344 rats (24 month) are more susceptible to apoptosis-mediated injury than young counterparts. In the current studies, we examined the initial injury and early recovery phases of mercuric chloride-induced AKI. Interestingly, the aging kidney had decreased serum creatinine compared to young controls 1 day following mercuric chloride injury, but by day 4, serum creatinine was significantly elevated, suggesting that the aging kidney did not recover from injury. This conclusion is supported by the findings that serum creatinine and kidney injury molecule-1 (Kim-1) gene expression remain elevated compared to young controls at 10 days post-injury. To begin to elucidate mechanism(s) underlying dysrepair in the aging kidney, we examined the expression of Twist2, a helix-loop-helix transcription factor that may mediate renal fibrosis. Interestingly, Twist2 gene expression was elevated following injury in both young and aged rats, and Twist2 protein expression is elevated by mercuric chloride in vitro. PMID:28208580

  16. Identification of a novel frameshift mutation in PITX2 gene in a Chinese family with Axenfeld-Rieger syndrome%一种新的PITX2基因缺失/插入移码突变引起的Axenfeld-Rieger综合征研究

    Institute of Scientific and Technical Information of China (English)

    Hou-fa YIN; Xiao-yun FANG; Chong-fei JIN; Jin-fu YIN; Jin-yu LI; Su-juan ZHAO; Qi MIAO; Feng-wei SONG

    2014-01-01

    , unrelated to the family, for comparison. Structural models of the wild type and mutant homeodomain of PITX2 were investigated by SWISS-MODEL. Results: Affected individuals exhibited variable ocular phenotypes, whereas the systemic anomalies were similar. After direct sequencing and cloning sequencing, a heterozygous deletion/insertion mutation c.198_201delinsTTTCT (p.M66Ifs*133) was revealed in exon 5 of PITX2. This mutation co-segregated with all affected individuals in the family and was not found either in unaffected family members or in 100 unrelated controls. Conclusions: We detected a novel frameshift mutation p.M66Ifs*133 in PITX2 in a Chinese family with ARS. Although PITX2 mutations and polymorphisms have been re-ported from various ethnic groups, we report for the first time the identification of a novel deletion/insertion mutation that causes frameshift mutation in the homeodomain of PITX2 protein.

  17. A case of cerebrotendinous xanthomatosis mimicking the clinical phenotype of mitochondrial disease with a novel frame-shift mutation (c. 43_44 delGG) in CYP27A1 gene exon 1.

    Science.gov (United States)

    Koge, Junpei; Hayashi, Shintaro; Yamaguchi, Hiroo; Tateishi, Takahisa; Murai, Hiroyuki; Kira, Jun-Ichi

    2016-10-28

    A 37-old-male with a history of early childhood mental retardation was admitted to our hospital. He experienced recurrent syncopes at 23 years old, and at age 35 gait disturbance and hearing impairment developed gradually and worsened over time. His grandparents were in a consanguineous marriage. He was of short stature and absent of tendon xanthomas. Neurological examinations revealed scanning speech, dysphagia, right sensorineural hearing loss, spasticity in both upper and lower extremities, and spastic gait. Tendon reflexes were brisk throughout, and Babinski and Chaddock reflexes were both positive bilaterally. Laboratory tests revealed elevated lactate and pyruvate concentrations in both serum and cerebrospinal fluid. Fluid attenuated inversion recovery magnetic resonance imaging showed high intensity lesions in the bilateral cerebellar hemispheres, pyramidal tracts in the brainstem, and internal capsules symmetrically. Brain magnetic resonance spectroscopy measurements revealed an elevated lactate/creatine plus phosphocreatine ratio and a decreased N-acetyl-aspartate/creatine plus phosphocreatine ratio in the cerebellum. At this point, mitochondrial diseases, particularly myoclonic epilepsy with ragged-red fibers (MERRF), to be the most likely cause. We performed a biopsy of his left biceps brachii muscle, showing variations in fiber size with occasional central nuclei and very few ragged-red fibers. Blood mitochondrial respiratory enzyme assays showed normal values with elevated citrate synthase activity, and mitochondrial DNA analyses for MERRF revealed no pathogenic mutations. We then explored other possibilities and detected an elevated serum cholestanol concentration of 20.4 μg/ml (reference value mimicking mitochondrial diseases, but with negative results for muscle pathology or genetic analyses. The measurements of serum cholestanol concentrations might be useful in diagnosing such atypical cases.

  18. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.

    Science.gov (United States)

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi

    2009-12-01

    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  19. Isolation of Murine Bone Marrow Derived Mesenchymal Stem Cells using Twist2 Cre Transgenic Mice

    Science.gov (United States)

    Liu, Yaling; Wang, Liping; Fatahi, Reza; Kronenberg, Mark; Kalajzic, Ivo; Rowe, David; Li, Yingcui; Maye, Peter

    2010-01-01

    While human bone marrow derived mesenchymal stem cells (BMSCs) are of great interest for their potential therapeutic value, its murine equivalent remains an important basic research model that can provide critical insights into the biology of this progenitor cell population. Here we present a novel transgenic strategy that allowed for the selective identification and isolation of murine BMSCs at the early stages of stromal cell culture. This strategy involved crossing Twist2 –Cre mice with Cre reporter mice such as Z/EG or Ai9, which express EGFP or Tomato fluorescent protein, respectively, upon Cre mediated excision of a stop sequence. Using this approach, we identified an adherent fluorescent protein+ cell population (T2C+) that is present during the earliest stages of colony formation and by day 5 of culture represents ~20% of the total cell population. Cell surface profiling by flow cytometry showed that T2C+ cells are highly positive for SCA1 and CD29 and negative for CD45, CD117, TIE2, and TER119. Isolation of T2C+ cells by FACS selected for a cell population with skeletal potential that can be directed to differentiate into osteoblasts, adipocytes, or chondrocytes. We also demonstrated in a calvarial bone defect model that T2C+ cells retain a strong efficacy for osteogenic repair and can support a hematopoietic environment. Collectively, these studies provide evidence that the Twist2-Cre x Cre reporter breeding strategy can be used to positively identify and isolate multipotent murine BMSCs. PMID:20673822

  20. The phenotype of many independently isolated +1 frameshift suppressor mutants supports a pivotal role of the P-site in reading frame maintenance.

    Science.gov (United States)

    Jäger, Gunilla; Nilsson, Kristina; Björk, Glenn R

    2013-01-01

    The main features of translation are similar in all organisms on this planet and one important feature of it is the way the ribosome maintain the reading frame. We have earlier characterized several bacterial mutants defective in tRNA maturation and found that some of them correct a +1 frameshift mutation; i.e. such mutants possess an error in reading frame maintenance. Based on the analysis of the frameshifting phenotype of such mutants we proposed a pivotal role of the ribosomal grip of the peptidyl-tRNA to maintain the correct reading frame. To test the model in an unbiased way we first isolated many (467) independent mutants able to correct a +1 frameshift mutation and thereafter tested whether or not their frameshifting phenotypes were consistent with the model. These 467+1 frameshift suppressor mutants had alterations in 16 different loci of which 15 induced a defective tRNA by hypo- or hypermodifications or altering its primary sequence. All these alterations of tRNAs induce a frameshift error in the P-site to correct a +1 frameshift mutation consistent with the proposed model. Modifications next to and 3' of the anticodon (position 37), like 1-methylguanosine, are important for proper reading frame maintenance due to their interactions with components of the ribosomal P-site. Interestingly, two mutants had a defect in a locus (rpsI), which encodes ribosomal protein S9. The C-terminal of this protein contacts position 32-34 of the peptidyl-tRNA and is thus part of the P-site environment. The two rpsI mutants had a C-terminal truncated ribosomal protein S9 that destroys its interaction with the peptidyl-tRNA resulting in +1 shift in the reading frame. The isolation and characterization of the S9 mutants gave strong support of our model that the ribosomal grip of the peptidyl-tRNA is pivotal for the reading frame maintenance.

  1. Structure and dynamics of the HIV-1 frameshift element RNA.

    Science.gov (United States)

    Low, Justin T; Garcia-Miranda, Pablo; Mouzakis, Kathryn D; Gorelick, Robert J; Butcher, Samuel E; Weeks, Kevin M

    2014-07-08

    The HIV-1 ribosomal frameshift element is highly structured, regulates translation of all virally encoded enzymes, and is a promising therapeutic target. The prior model for this motif contains two helices separated by a three-nucleotide bulge. Modifications to this model were suggested by SHAPE chemical probing of an entire HIV-1 RNA genome. Novel features of the SHAPE-directed model include alternate helical conformations and a larger, more complex structure. These structural elements also support the presence of a secondary frameshift site within the frameshift domain. Here, we use oligonucleotide-directed structure perturbation, probing in the presence of formamide, and in-virion experiments to examine these models. Our data support a model in which the frameshift domain is anchored by a stable helix outside the conventional domain. Less stable helices within the domain can switch from the SHAPE-predicted to the two-helix conformation. Translational frameshifting assays with frameshift domain mutants support a functional role for the interactions predicted by and specific to the SHAPE-directed model. These results reveal that the HIV-1 frameshift domain is a complex, dynamic structure and underscore the importance of analyzing folding in the context of full-length RNAs.

  2. Twist-2 Generalized TMDs and the Spin/Orbital Structure of the Nucleon

    CERN Document Server

    Kanazawa, K; Metz, A; Pasquini, B; Schlegel, M

    2014-01-01

    Generalized transverse-momentum dependent parton distributions (GTMDs) encode the most general parton structure of hadrons. Here we focus on two twist-2 GTMDs which are denoted by $F_{1,4}$ and $G_{1,1}$ in parts of the literature. As already shown previously, both GTMDs have a close relation to orbital angular momentum of partons inside a hadron. However, recently even the mere existence of $F_{1,4}$ and $G_{1,1}$ has been doubted. We explain why this claim does not hold. We support our model-independent considerations by calculating the two GTMDs in the scalar diquark model and in the quark-target model, where we also explicitly check the relation to orbital angular momentum. In addition, we compute $F_{1,4}$ and $G_{1,1}$ at large transverse momentum in perturbative Quantum Chromodynamics and show that they are nonzero.

  3. DVL3 Alleles Resulting in a −1 Frameshift of the Last Exon Mediate Autosomal-Dominant Robinow Syndrome

    Science.gov (United States)

    White, Janson J.; Mazzeu, Juliana F.; Hoischen, Alexander; Bayram, Yavuz; Withers, Marjorie; Gezdirici, Alper; Kimonis, Virginia; Steehouwer, Marloes; Jhangiani, Shalini N.; Muzny, Donna M.; Gibbs, Richard A.; van Bon, Bregje W.M.; Sutton, V. Reid; Lupski, James R.; Brunner, Han G.; Carvalho, Claudia M.B.

    2016-01-01

    Robinow syndrome is a rare congenital disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features. Recent reports have identified, in individuals with dominant Robinow syndrome, a specific type of variant characterized by being uniformly located in the penultimate exon of DVL1 and resulting in a −1 frameshift allele with a premature termination codon that escapes nonsense-mediated decay. Here, we studied a cohort of individuals who had been clinically diagnosed with Robinow syndrome but who had not received a molecular diagnosis from variant studies of DVL1, WNT5A, and ROR2. Because of the uniform location of frameshift variants in DVL1-mediated Robinow syndrome and the functional redundancy of DVL1, DVL2, and DVL3, we elected to pursue direct Sanger sequencing of the penultimate exon of DVL1 and its paralogs DVL2 and DVL3 to search for potential disease-associated variants. Remarkably, targeted sequencing identified five unrelated individuals harboring heterozygous, de novo frameshift variants in DVL3, including two splice acceptor mutations and three 1 bp deletions. Similar to the variants observed in DVL1-mediated Robinow syndrome, all variants in DVL3 result in a −1 frameshift, indicating that these highly specific alterations might be a common cause of dominant Robinow syndrome. Here, we review the current knowledge of these peculiar variant alleles in DVL1- and DVL3-mediated Robinow syndrome and further elucidate the phenotypic features present in subjects with DVL1 and DVL3 frameshift mutations. PMID:26924530

  4. Model of the pathway of −1 frameshifting: Long pausing

    Directory of Open Access Journals (Sweden)

    Ping Xie

    2016-03-01

    Full Text Available It has been characterized that the programmed ribosomal −1 frameshifting often occurs at the slippery sequence on the presence of a downstream mRNA pseudoknot. In some prokaryotic cases such as the dnaX gene of Escherichia coli, an additional stimulatory signal—an upstream, internal Shine–Dalgarno (SD sequence—is also necessary to stimulate the efficient −1 frameshifting. However, the molecular and physical mechanism of the −1 frameshifting is poorly understood. Here, we propose a model of the pathway of the −1 translational frameshifting during ribosome translation of the dnaX −1 frameshift mRNA. With the model, the single-molecule fluorescence data (Chen et al. (2014 [29] on the dynamics of the shunt either to long pausing or to normal translation, the tRNA transit and sampling dynamics in the long-paused rotated state, the EF-G sampling dynamics, the mean rotated-state lifetimes, etc., are explained quantitatively. Moreover, the model is also consistent with the experimental data (Yan et al. (2015 [30] on translocation excursions and broad branching of frameshifting pathways. In addition, we present some predicted results, which can be easily tested by future optical trapping experiments.

  5. Three-point correlator of twist-2 light-ray operators in N=4 SYM in BFKL approximation

    Energy Technology Data Exchange (ETDEWEB)

    Balitsky, Ian [Old Dominion University, Norfolk, VA (United States). Physics Dept.; JLAB, Newport News, VA (United States). Theory Group; Kazakov, Vladimir [Ecole Normale Superieure, Paris (France). LPT; Pierre et Marie Curie Univ., Paris (France); Sobko, Evgeny [DESY Hamburg (Germany). Theory Group

    2015-11-15

    We present calculation of the correlation function of three twist-2 operators in the BFKL limit. The calculation is performed in N=4 SYM but the result is valid in other gauge theories such as QCD. The obtained leading order structure constant is exact for any number of colors.

  6. Overlapping DSPP mutations cause dentin dysplasia and dentinogenesis imperfecta.

    Science.gov (United States)

    McKnight, D A; Simmer, J P; Hart, P S; Hart, T C; Fisher, L W

    2008-12-01

    Dentinogenesis imperfecta (DGI) and dentin dysplasia (DD) are allelic disorders due to mutations in DSPP. Typically, the phenotype breeds true within a family. Recently, two reports showed that 3 different net -1 bp frameshift mutations early in DSPP's repeat domain caused DD, whereas 6 more 3' frameshift mutations were associated with DGI. Here we identify a DD kindred with a novel -1 bp frameshift (c.3141delC) that falls within the portion of the DSPP repeat domain previously associated solely with the DGI phenotype. This new frameshift mutation shows that overlapping DSPP mutations can give rise to either DGI or DD phenotypes. Furthermore, the consistent kindred presentation of the DD or DGI phenotype appears to be dependent on an as-yet-undescribed genetic modifier closely linked to DSPP.

  7. CARD15 Gene 3020insC Mutation with Inflammatory Bowel Diseases Patients in the Black Sea Region of Turkey

    Directory of Open Access Journals (Sweden)

    Ilhami Gok

    2014-06-01

    CONCLUSION: This study is to investigate a relation between CARD15/NOD2 3020insC frameshift mutation and in patients with IBD in the Turkish Population. C-insertion frameshift mutation is a major contributor to the susceptibility to both CD and UC, but it is not specific to patients with CD in Turkish population.

  8. Translation with frameshifting of ribosome along mRNA transcript

    CERN Document Server

    Li, Jingwei

    2015-01-01

    Translation is an important process for prokaryotic and eukaryotic cells to produce necessary proteins for cell growth. Numerious experiments have been performed to explore the translational properties. Diverse models have also been developed to determine the biochemical mechanism of translation. However, to simplify the majority of the existing models, the frameshifting of ribosome along the mRNA transcript is neglected, which actually occurs in real cells and has been extensively experimentally studied. The frameshifting of ribosome evidently influences the efficiency and speed of translation, considering that the peptide chains synthesized by shifted ribosomes will not fold into functional proteins and will degrade rapidly. In this study, a theoretical model is presented to describe the translational process based on the model for totally asymmetric simple exclusion process. In this model, the frameshifting of the ribosome along the mRNA transcript and the attachment/detachment of the ribosome to/from the ...

  9. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes

    NARCIS (Netherlands)

    Marchegiani, Shannon; Davis, Taylor; Tessadori, Federico; van Haaften, Gijs; Brancati, Francesco; Hoischen, Alexander; Huang, Haigen; Valkanas, Elise; Pusey, Barbara; Schanze, Denny; Venselaar, Hanka; Vulto-van Silfhout, Anneke T; Wolfe, Lynne A; Tifft, Cynthia J; Zerfas, Patricia M; Zambruno, Giovanna; Kariminejad, Ariana; Sabbagh-Kermani, Farahnaz; Lee, Janice; Tsokos, Maria G; Lee, Chyi-Chia R; Ferraz, Victor; da Silva, Eduarda Morgana; Stevens, Cathy A; Roche, Nathalie; Bartsch, Oliver; Farndon, Peter; Bermejo-Sanchez, Eva; Brooks, Brian P; Maduro, Valerie; Dallapiccola, Bruno; Ramos, Feliciano J; Chung, Hon-Yin Brian; Le Caignec, Cédric; Martins, Fabiana; Jacyk, Witold K; Mazzanti, Laura; Brunner, Han G; Bakkers, Jeroen; Lin, Shuo; Malicdan, May Christine V; Boerkoel, Cornelius F; Gahl, William A; de Vries, Bert B A; van Haelst, Mieke M; Zenker, Martin; Markello, Thomas C

    2015-01-01

    Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and

  10. Structural diversity of frameshifting signals : reprogramming the programmed

    NARCIS (Netherlands)

    Yu, Chien-Hung

    2011-01-01

    Programmed ribosomal frameshifting (PRF) is one kind of recoding events that is mostly utilized by RNA viruses to synthesize more proteins with defined ratio from their compact genome and it is known that the stoichiometric is critical to virus infection and propagation. Two cis-acting RNA elements

  11. The phenotype of many independently isolated +1 frameshift suppressor mutants supports a pivotal role of the P-site in reading frame maintenance.

    Directory of Open Access Journals (Sweden)

    Gunilla Jäger

    Full Text Available The main features of translation are similar in all organisms on this planet and one important feature of it is the way the ribosome maintain the reading frame. We have earlier characterized several bacterial mutants defective in tRNA maturation and found that some of them correct a +1 frameshift mutation; i.e. such mutants possess an error in reading frame maintenance. Based on the analysis of the frameshifting phenotype of such mutants we proposed a pivotal role of the ribosomal grip of the peptidyl-tRNA to maintain the correct reading frame. To test the model in an unbiased way we first isolated many (467 independent mutants able to correct a +1 frameshift mutation and thereafter tested whether or not their frameshifting phenotypes were consistent with the model. These 467+1 frameshift suppressor mutants had alterations in 16 different loci of which 15 induced a defective tRNA by hypo- or hypermodifications or altering its primary sequence. All these alterations of tRNAs induce a frameshift error in the P-site to correct a +1 frameshift mutation consistent with the proposed model. Modifications next to and 3' of the anticodon (position 37, like 1-methylguanosine, are important for proper reading frame maintenance due to their interactions with components of the ribosomal P-site. Interestingly, two mutants had a defect in a locus (rpsI, which encodes ribosomal protein S9. The C-terminal of this protein contacts position 32-34 of the peptidyl-tRNA and is thus part of the P-site environment. The two rpsI mutants had a C-terminal truncated ribosomal protein S9 that destroys its interaction with the peptidyl-tRNA resulting in +1 shift in the reading frame. The isolation and characterization of the S9 mutants gave strong support of our model that the ribosomal grip of the peptidyl-tRNA is pivotal for the reading frame maintenance.

  12. Abetalipoproteinemia: A novel mutation of microsomal triglyceride ...

    African Journals Online (AJOL)

    Hager Barakizou

    2016-01-25

    Jan 25, 2016 ... molecular genetics in a Tunisian child having a novel mutation of MTP gene. 2. ... ABL is caused by MTP gene frameshift, non-sense and splice site mutations which ... and its variations could be associated with central obesity, ele- vated liver enzymes, and alcoholic fatty liver disease [5]. It has recently been ...

  13. Four loop anomalous dimension of the third and fourth moments of the non-singlet twist-2 operator in QCD

    CERN Document Server

    Velizhanin, V N

    2014-01-01

    We present the result of a calculation for the third and fourth moments of the non-singlet four-loop anomalous dimension of Wilson twist-2 operators in QCD with full color and flavour structures. We discuss also a general expressions for some contributions to the full four-loop anomalous dimension obtained with the help of the method, based on LLL-algorithm, which was proposed earlier by us for the reconstruction of a general form of the anomalous dimension from a fixed values.

  14. An Expanded CAG Repeat in Huntingtin Causes +1 Frameshifting.

    Science.gov (United States)

    Saffert, Paul; Adamla, Frauke; Schieweck, Rico; Atkins, John F; Ignatova, Zoya

    2016-08-26

    Maintenance of triplet decoding is crucial for the expression of functional protein because deviations either into the -1 or +1 reading frames are often non-functional. We report here that expression of huntingtin (Htt) exon 1 with expanded CAG repeats, implicated in Huntington pathology, undergoes a sporadic +1 frameshift to generate from the CAG repeat a trans-frame AGC repeat-encoded product. This +1 recoding is exclusively detected in pathological Htt variants, i.e. those with expanded repeats with more than 35 consecutive CAG codons. An atypical +1 shift site, UUC C at the 5' end of CAG repeats, which has some resemblance to the influenza A virus shift site, triggers the +1 frameshifting and is enhanced by the increased propensity of the expanded CAG repeats to form a stem-loop structure. The +1 trans-frame-encoded product can directly influence the aggregation of the parental Htt exon 1.

  15. Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome.

    Science.gov (United States)

    Reuschenbach, Miriam; Kloor, Matthias; Morak, Monika; Wentzensen, Nicolas; Germann, Anja; Garbe, Yvette; Tariverdian, Mirjam; Findeisen, Peter; Neumaier, Michael; Holinski-Feder, Elke; von Knebel Doeberitz, Magnus

    2010-06-01

    High level microsatellite instability (MSI-H) occurs in about 15% of colorectal cancer (CRCs), either as sporadic cancers or in the context of hereditary non-polyposis cancer or Lynch syndrome. In MSI-H CRC, mismatch repair deficiency leads to insertion/deletion mutations at coding microsatellites and thus to the translation of frameshift peptides (FSPs). FSPs are potent inductors of T cell responses in vitro and in vivo. The present study aims at the identification of FSP-specific humoral immune responses in MSI-H CRC and Lynch syndrome. Sera from patients with history of MSI-H CRC (n = 69), healthy Lynch syndrome mutation carriers (n = 31) and healthy controls (n = 52) were analyzed for antibodies against FSPs using peptide ELISA. Reactivities were measured against FSPs derived from genes frequently mutated in MSI-H CRCs, AIM2, TGFBR2, CASP5, TAF1B, ZNF294, and MARCKS. Antibody reactivity against FSPs was significantly higher in MSI-H CRC patients than in healthy controls (P = 0.036, Mann-Whitney) and highest in patients with shortest interval between tumor resection and serum sampling. Humoral immune responses in patients were most frequently directed against FSPs derived from mutated TAF1B (11.6%, 8/69) and TGFBR2 (10.1%, 7/69). Low level FSP-specific antibodies were also detected in healthy mutation carriers. Our results show that antibody responses against FSPs are detectable in MSI-H CRC patients and healthy Lynch syndrome mutation carriers. Based on the high number of defined FSP antigens, measuring FSP-specific humoral immune responses is a highly promising tool for future diagnostic application in MSI-H cancer patients.

  16. Identification of six pathogenic RAD51C mutations via mutational screening of 1228 Danish individuals with increased risk of hereditary breast and/or ovarian cancer

    DEFF Research Database (Denmark)

    Jønson, Lars; Ahlborn, Lise B; Steffensen, Ane Y;

    2016-01-01

    significance of missense and intronic variants was predicted by in silico analysis. We identified six families with a pathogenic mutation in RAD51C, including three frameshift mutations, one nonsense mutation, and 2 missense mutations. Overall, pathogenic RAD51C mutations were identified in 0.5 % of Danish...

  17. Transformation of MCF-10A cells by random mutagenesis with frameshift mutagen ICR191: A model for identifying candidate breast-tumor suppressors

    Directory of Open Access Journals (Sweden)

    Matsui Sei-Ichi

    2008-06-01

    Full Text Available Abstract Background Widely accepted somatic mutation theory of carcinogenesis states that mutations in oncogenes and tumor suppressor genes in genomes of somatic cells is the cause of neoplastic transformation. Identifying frequent mutations in cancer cells suggests the involvement of mutant genes in carcinogenesis. Results To develop an in vitro model for the analysis of genetic alterations associated with breast carcinogenesis, we used random mutagenesis and selection of human non-tumorigenic immortalized breast epithelial cells MCF-10A in tissue-culture conditions that mimic tumor environment. Random mutations were generated in MCF-10A cells by cultivating them in a tissue-culture medium containing the frameshift-inducing agent ICR191. The first selective condition we used to transform MCF1-10A cells was cultivation in a medium containing mutagen at a concentration that allowed cell replication despite p53 protein accumulation induced by mutagen treatment. The second step of selection was either cell cultivation in a medium with reduced growth-factor supply or in a medium that mimics a hypoxia condition or growing in soft agar. Using mutagenesis and selection, we have generated several independently derived cultures with various degrees of transformation. Gene Identification by Nonsense-mediated mRNA decay Inhibition (GINI analysis has identified the ICR191-induced frameshift mutations in the TP53, smoothelin, Ras association (RalGDS/AF-6 domain family 6 (RASSF6 and other genes in the transformed MCF-10A cells. The TP53 gene mutations resulting in the loss of protein expression had been found in all independently transformed MCF-10A cultures, which form large progressively growing tumors with sustained angiogenesis in nude mice. Conclusion Identifying genes containing bi-allelic ICR191-induced frameshift mutations in the transformed MCF-10A cells generated by random mutagenesis and selection indicates putative breast-tumor suppressors. This

  18. Somatic mutations of APC gene in carcinomas from hereditary non-polyposis colorectal cancer patients

    Institute of Scientific and Technical Information of China (English)

    Jian Huang; Shu Zheng; Shen-Hang Jin; Su-Zhan Zhang

    2004-01-01

    AIM: To investigate the mutational features of adenomatous polyposis coii (APC) gene and its possible arising mechanism in hereditary non-polyposis colorectal cancers (HNPCC).METHODS: PCR-based In Vitro Synthesized Protein Test (IVSP) assay and sequencing analysis were used to confirm somatic mutations of whole APC gene in 19 HNPCC cases. RESULTS: Eleven cases with 13 mutations were determined to harbor APC mutations. The prevalence of APC mutation was 58%(11/19). The mutations consisted of 9 frameshift and 4 nonsense ones, indicating that there were more frameshift mutations (69%). The frameshift mutations allexhibited deletion or insertion of 1-2 bp and most of them (7/9) happened at simple nucleotide repeat sequences, particularly within (A)n tracts (5/9). All point mutations presented C-to-T transitions at CpG sites. CONCLUSION: Mutations of APC gene were detected in more than half of HNPCC, indicating that its mutation was a common molecular event and might play an important role in the tumorigenesis of HNPCC. Locations of frameshift mutations at simple nucleotide repeat sequences and point mutations at CpG sites suggested that many mutations probably derived from endogenous processes including mismatch repair (MMR) deficiency. Defective MMR might affect the nature of APC mutations in HNPCC and likely occur earlier than APC mutational inactivation in some patients.

  19. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation

    Energy Technology Data Exchange (ETDEWEB)

    Lobanov, Alexei V.; Heaphy, Stephen M.; Turanov, Anton A.; Gerashchenko, Maxim V.; Pucciarelli, Sandra; Devaraj, Raghul R.; Xie, Fang; Petyuk, Vladislav A.; Smith, Richard D.; Klobutcher, Lawrence A.; Atkins, John F.; Miceli, Cristina; Hatfield, Dolph L.; Baranov, Pavel V.; Gladyshev, Vadim N.

    2016-11-21

    The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3' mRNA end, rather than its occurrence or sequence context, appeared to designate termination. Thus, a ‘stop codon’ is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.

  20. KRIT1 mutations in three Japanese pedigrees with hereditary cavernous malformation

    Science.gov (United States)

    Hirota, Kengo; Akagawa, Hiroyuki; Kikuchi, Asami; Oka, Hideki; Hino, Akihiko; Mitsuyama, Tetsuryu; Sasaki, Toshiyuki; Onda, Hideaki; Kawamata, Takakazu; Kasuya, Hidetoshi

    2016-01-01

    Cerebral cavernous malformation is a neurovascular abnormality that can cause seizures, focal neurological deficits and intracerebral hemorrhage. Familial forms of this condition are characterized by de novo formation of multiple lesions and are autosomal-dominantly inherited via CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10 mutations. We identified three truncating mutations in KRIT1 from three Japanese families with CCMs: a novel frameshift mutation, a known frameshift mutation and a known splice-site mutation that had not been previously analyzed for aberrant splicing. PMID:27766163

  1. Dystrophin in frameshift deletion patients with Becker Muscular Dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, S.B.; Ray, P.N.; Worton, R.G.; Sherratt, T.G.; Heckmatt, J.Z.; Dubowitz, V.; Strong, P.N.; Miller, G. (Penn State College of Medicine, Hershey, PA (United States)); Shokeir, M. (Univ. Hospital, Saskatchewan (Canada))

    1992-09-01

    In a previous study the authors identified 14 cases with Duchenne muscular dystrophy (DMD) or its milder variant, Becker muscular dystrophy (BMD), with a deletion of exons 3-7, a deletion that would be expected to shift the translational reading frame of the mRNA and give a severe phenotype. They have examined dystrophin and its mRNA from muscle biopsies of seven cases with either mild or intermediate phenotypes. In all cases they detected slightly lower-molecular-weight dystrophin in 12%-15% abundance relative to the normal. By sequencing amplified mRNA they have found that exon 2 is spliced to exon 8, a splice that produces a frameshifted mRNA, and have found no evidence for alternate splicing that might be involved in restoration of dystrophin mRNA reading frame in the patients with a mild phenotype. Other transcriptional and posttranscriptional mechanisms such as cryptic promoter, ribosomal frameshifting, and reinitiation are suggested that might play some role in restoring the reading frame. 34 refs., 5 figs. 1 tab.

  2. Compound heterozygous ASPM mutations in Pakistani MCPH families

    DEFF Research Database (Denmark)

    Muhammad, Farooq; Mahmood Baig, Shahid; Hansen, Lars;

    2009-01-01

    confirmed compound heterozygosity in two and homozygous mutations in 20 families, respectively, showing that up to 10% of families with MCPH caused by ASPM are compound heterozygous. In total we identified 16 different nonsense or frameshift mutations of which 12 were novel thereby increasing the number...

  3. Selection and characterization of small molecules that bind the HIV-1 frameshift site RNA.

    Science.gov (United States)

    Marcheschi, Ryan J; Mouzakis, Kathryn D; Butcher, Samuel E

    2009-10-16

    HIV-1 requires a -1 translational frameshift to properly synthesize the viral enzymes required for replication. The frameshift mechanism is dependent upon two RNA elements, a seven-nucleotide slippery sequence (UUUUUUA) and a downstream RNA structure. Frameshifting occurs with a frequency of approximately 5%, and increasing or decreasing this frequency may result in a decrease in viral replication. Here, we report the results of a high-throughput screen designed to find small molecules that bind to the HIV-1 frameshift site RNA. Out of 34,500 compounds screened, 202 were identified as positive hits. We show that one of these compounds, doxorubicin, binds the HIV-1 RNA with low micromolar affinity (K(d) = 2.8 microM). This binding was confirmed and localized to the RNA using NMR. Further analysis revealed that this compound increased the RNA stability by approximately 5 degrees C and decreased translational frameshifting by 28% (+/-14%), as measured in vitro.

  4. Familial Dilated Cardiomyopathy Caused by a Novel Frameshift in the BAG3 Gene.

    Science.gov (United States)

    Toro, Rocio; Pérez-Serra, Alexandra; Campuzano, Oscar; Moncayo-Arlandi, Javier; Allegue, Catarina; Iglesias, Anna; Mangas, Alipio; Brugada, Ramon

    2016-01-01

    Dilated cardiomyopathy, a major cause of chronic heart failure and cardiac transplantation, is characterized by left ventricular or biventricular heart dilatation. In nearly 50% of cases the pathology is inherited, and more than 60 genes have been reported as disease-causing. However, in 30% of familial cases the mutation remains unidentified even after comprehensive genetic analysis. This study clinically and genetically assessed a large Spanish family affected by dilated cardiomyopathy to search for novel variations. Our study included a total of 100 family members. Clinical assessment was performed in alive, and genetic analysis was also performed in alive and 1 deceased relative. Genetic screening included resequencing of 55 genes associated with sudden cardiac death, and Sanger sequencing of main disease-associated genes. Genetic analysis identified a frame-shift variation in BAG3 (p.H243Tfr*64) in 32 patients. Genotype-phenotype correlation identified substantial heterogeneity in disease expression. Of 32 genetic carriers (one deceased), 21 relatives were clinically affected, and 10 were asymptomatic. Seventeen of the symptomatic genetic carriers exhibited proto-diastolic septal knock by echocardiographic assessment. We report p.H243Tfr*64_BAG3 as a novel pathogenic variation responsible for familial dilated cardiomyopathy. This variation correlates with a more severe phenotype of the disease, mainly in younger individuals. Genetic analysis in families, even asymptomatic individuals, enables early identification of individuals at risk and allows implementation of preventive measures.

  5. Familial Dilated Cardiomyopathy Caused by a Novel Frameshift in the BAG3 Gene.

    Directory of Open Access Journals (Sweden)

    Rocio Toro

    Full Text Available Dilated cardiomyopathy, a major cause of chronic heart failure and cardiac transplantation, is characterized by left ventricular or biventricular heart dilatation. In nearly 50% of cases the pathology is inherited, and more than 60 genes have been reported as disease-causing. However, in 30% of familial cases the mutation remains unidentified even after comprehensive genetic analysis. This study clinically and genetically assessed a large Spanish family affected by dilated cardiomyopathy to search for novel variations.Our study included a total of 100 family members. Clinical assessment was performed in alive, and genetic analysis was also performed in alive and 1 deceased relative. Genetic screening included resequencing of 55 genes associated with sudden cardiac death, and Sanger sequencing of main disease-associated genes. Genetic analysis identified a frame-shift variation in BAG3 (p.H243Tfr*64 in 32 patients. Genotype-phenotype correlation identified substantial heterogeneity in disease expression. Of 32 genetic carriers (one deceased, 21 relatives were clinically affected, and 10 were asymptomatic. Seventeen of the symptomatic genetic carriers exhibited proto-diastolic septal knock by echocardiographic assessment.We report p.H243Tfr*64_BAG3 as a novel pathogenic variation responsible for familial dilated cardiomyopathy. This variation correlates with a more severe phenotype of the disease, mainly in younger individuals. Genetic analysis in families, even asymptomatic individuals, enables early identification of individuals at risk and allows implementation of preventive measures.

  6. Translational Maintenance of Frame: Mutants of Saccharomyces Cerevisiae with Altered -1 Ribosomal Frameshifting Efficiences

    OpenAIRE

    Dinman, J D; Wickner, R B

    1994-01-01

    A special site on the (+) strand of the L-A dsRNA virus induces about 2% of ribosomes translating the gag open reading frame to execute a -1 frameshift and thus produce the viral gag-pol fusion protein. Using constructs in which a -1 ribosomal frameshift at this site was necessary for expression of lacZ we isolated chromosomal mutants in which the efficiency of frameshifting was increased. These mutants comprise eight genes, named mof (maintenance of frame). The mof1-1, mof2-1, mof4-1, mof5-1...

  7. Translational Maintenance of Frame: Mutants of Saccharomyces Cerevisiae with Altered -1 Ribosomal Frameshifting Efficiences

    OpenAIRE

    Dinman, J D; Wickner, R B

    1994-01-01

    A special site on the (+) strand of the L-A dsRNA virus induces about 2% of ribosomes translating the gag open reading frame to execute a -1 frameshift and thus produce the viral gag-pol fusion protein. Using constructs in which a -1 ribosomal frameshift at this site was necessary for expression of lacZ we isolated chromosomal mutants in which the efficiency of frameshifting was increased. These mutants comprise eight genes, named mof (maintenance of frame). The mof1-1, mof2-1, mof4-1, mof5-1...

  8. Common Β- Thalassaemia Mutations in

    Directory of Open Access Journals (Sweden)

    P Azarfam

    2005-01-01

    Full Text Available Introduction: β –Thalassaemia was first explained by Thomas Cooly as Cooly’s anaemia in 1925. The β- thalassaemias are hereditary autosomal disorders with decreased or absent β-globin chain synthesis. The most common genetic defects in β-thalassaemias are caused by point mutations, micro deletions or insertions within the β-globin gene. Material and Methods: In this research , 142 blood samples (64 from childrens hospital of Tabriz , 15 samples from Shahid Gazi hospital of Tabriz , 18 from Urumia and 45 samples from Aliasghar hospital of Ardebil were taken from thalassaemic patients (who were previously diagnosed .Then 117 non-familial samples were selected . The DNA of the lymphocytes of blood samples was extracted by boiling and Proteinase K- SDS procedure, and mutations were detected by ARMS-PCR methods. Results: From the results obtained, eleven most common mutations,most of which were Mediterranean mutations were detected as follows; IVS-I-110(G-A, IVS-I-1(G-A ،IVS-I-5(G-C ,Frameshift Codon 44 (-C,( codon5(-CT,IVS-1-6(T-C, IVS-I-25(-25bp del ,Frameshift 8.9 (+G ,IVS-II-1(G-A ,Codon 39(C-T, Codon 30(G-C the mutations of the samples were defined. The results showed that Frameshift 8.9 (+G, IVS-I-110 (G-A ,IVS-II-I(G-A, IVS-I-5(G-C, IVS-I-1(G-A , Frameshift Codon 44(-C , codon5(-CT , IVS-1-6(T-C , IVS-I-25(-25bp del with a frequency of 29.9%, 25.47%,17.83%, 7.00%, 6.36% , 6.63% , 3.8% , 2.5% , 0.63% represented the most common mutations in North - west Iran. No mutations in Codon 39(C-T and Codon 30(G-C were detected. Cunclusion: The frequency of the same mutations in patients from North - West of Iran seems to be different as compared to other regions like Turkey, Pakistan, Lebanon and Fars province of Iran. The pattern of mutations in this region is more or less the same as in the Mediterranean region, but different from South west Asia and East Asia.

  9. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators.

    Directory of Open Access Journals (Sweden)

    Tony S Cardno

    Full Text Available Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag, and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using -1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 μM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that

  10. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.

    Science.gov (United States)

    Atkins, John F; Loughran, Gary; Bhatt, Pramod R; Firth, Andrew E; Baranov, Pavel V

    2016-09-06

    Genetic decoding is not 'frozen' as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational 'correction' of problem or 'savior' indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5' or 3' of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3' from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Identification of a Danish breast/ovarian cancer family double heterozygote for BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Steffensen, Ane Y; Jønson, Lars; Ejlertsen, Bent;

    2010-01-01

    (RT)-PCR analysis revealed that the BRCA2 mutation results in skipping of exon 7, thereby introducing a frameshift and a premature stop codon. We therefore classify the mutation as disease causing. Since the BRCA1 Arg1699Gln mutation is also suggested to be disease-causing, we consider this family...

  12. Dynamic motions of the HIV-1 frameshift site RNA.

    Science.gov (United States)

    Mouzakis, Kathryn D; Dethoff, Elizabeth A; Tonelli, Marco; Al-Hashimi, Hashim; Butcher, Samuel E

    2015-02-03

    The HIV-1 frameshift site (FS) plays a critical role in viral replication. During translation, the HIV-1 FS transitions from a 3-helix to a 2-helix junction RNA secondary structure. The 2-helix junction structure contains a GGA bulge, and purine-rich bulges are common motifs in RNA secondary structure. Here, we investigate the dynamics of the HIV-1 FS 2-helix junction RNA. Interhelical motions were studied under different ionic conditions using NMR order tensor analysis of residual dipolar couplings. In 150 mM potassium, the RNA adopts a 43°(±4°) interhelical bend angle (β) and displays large amplitude, anisotropic interhelical motions characterized by a 0.52(±0.04) internal generalized degree of order (GDOint) and distinct order tensor asymmetries for its two helices (η = 0.26(±0.04) and 0.5(±0.1)). These motions are effectively quenched by addition of 2 mM magnesium (GDOint = 0.87(±0.06)), which promotes a near-coaxial conformation (β = 15°(±6°)) of the two helices. Base stacking in the bulge was investigated using the fluorescent purine analog 2-aminopurine. These results indicate that magnesium stabilizes extrahelical conformations of the bulge nucleotides, thereby promoting coaxial stacking of helices. These results are highly similar to previous studies of the HIV transactivation response RNA, despite a complete lack of sequence similarity between the two RNAs. Thus, the conformational space of these RNAs is largely determined by the topology of their interhelical junctions.

  13. De Novo Mutations in the Genome Organizer CTCF Cause Intellectual Disability

    NARCIS (Netherlands)

    Gregor, A.; Oti, M.O.; Kouwenhoven, E.N.; Hoyer, J.; Sticht, H.; Ekici, A.B.; Kjaergaard, S.; Rauch, A.; Stunnenberg, H.G.; Uebe, S.; Vasileiou, G.; Reis, A.; Zhou, H.; Zweier, C.

    2013-01-01

    An increasing number of genes involved in chromatin structure and epigenetic regulation has been implicated in a variety of developmental disorders, often including intellectual disability. By trio exome sequencing and subsequent mutational screening we now identified two de novo frameshift mutation

  14. Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss

    NARCIS (Netherlands)

    Yariz, K.O.; Duman, D.; Seco, C.Z.; Dallman, J.; Huang, M.; Peters, T.A.; Sirmaci, A.; Lu, N.; Schraders, M.; Skromne, I.; Oostrik, J.; Diaz-Horta, O.; Young, J.I.; Tokgoz-Yilmaz, S.; Konukseven, O.; Shahin, H.; Hetterschijt, L.; Kanaan, M.; Oonk, A.M.M.; Edwards, Y.J.; Li, H.; Atalay, S.; Blanton, S.; Desmidt, A.A.; Liu, X.Z.; Pennings, R.J.E.; Lu, Z.; Chen, Z.Y.; Kremer, J.M.J.; Tekin, M.

    2012-01-01

    Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Here we present OTOGL mutations, a homozygous one base pair deletion (c.1430 delT) causing a frameshift (p.Val477Glufs( *)25) in a large consanguineous family and two compound heterozygous mutations, c.547C>T (p.Arg1

  15. Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency

    DEFF Research Database (Denmark)

    Munthe-Fog, Lea; Hummelshøj, Tina; Honoré, Christian

    2009-01-01

    Ficolin-3, encoded by the FCN3 gene and expressed in the lung and liver, is a recognition molecule in the lectin pathway of the complement system. Heterozygosity for an FCN3 frameshift mutation (rs28357092), leading to a distortion of the C-terminal end of the molecule, occurs in people without d...

  16. Mutational screening of the RB1 gene in Italian patients with retinoblastoma reveals 11 novel mutations.

    Science.gov (United States)

    Sampieri, Katia; Hadjistilianou, Theodora; Mari, Francesca; Speciale, Caterina; Mencarelli, Maria Antonietta; Cetta, Francesco; Manoukian, Siranoush; Peissel, Bernard; Giachino, Daniela; Pasini, Barbara; Acquaviva, Antonio; Caporossi, Aldo; Frezzotti, Renato; Renieri, Alessandra; Bruttini, Mirella

    2006-01-01

    Retinoblastoma (RB, OMIM#180200) is the most common intraocular tumour in infancy and early childhood. Constituent mutations in the RB1 gene predispose individuals to RB development. We performed a mutational screening of the RB1 gene in Italian patients affected by RB referred to the Medical Genetics of the University of Siena. In 35 unrelated patients, we identified germline RB1 mutations in 6 out of 9 familial cases (66%) and in 7 out of 26 with no family history of RB (27%). Using the single-strand conformational polymorphism (SSCP) technique, 11 novel mutations were detected, including 3 nonsense, 5 frameshift and 4 splice-site mutations. Only two of these mutations (1 splice site and 1 missense) were previously reported. The mutation spectrum reflects the published literature, encompassing predominately nonsense or frameshift and splicing mutations. RB1 germline mutation was detected in 37% of our cases. Gross rearrangements outside the investigated region, altered DNA methylation, or mutations in non-coding regions, may be the cause of disease in the remainder of the patients. Some cases, e.g. a case of incomplete penetrance, or variable expressivity ranging from retinoma to multiple tumours, are discussed in detail. In addition, a case of pre-conception genetic counselling resolved by rescue of banked cordonal blood of the affected deceased child is described.

  17. Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria

    OpenAIRE

    Ovunc, Bugsu; Otto, Edgar A.; Vega-Warner, Virginia; Saisawat, Pawaree; Ashraf, Shazia; Ramaswami, Gokul; Fathy, Hanan M.; Schoeb, Dominik; Chernin, Gil; Lyons, Robert H.; Engin YILMAZ; Hildebrandt, Friedhelm

    2011-01-01

    In two siblings of consanguineous parents with intermittent nephrotic-range proteinuria, we identified a homozygous deleterious frameshift mutation in the gene CUBN, which encodes cubulin, using exome capture and massively parallel re-sequencing. The mutation segregated with affected members of this family and was absent from 92 healthy individuals, thereby identifying a recessive mutation in CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations cause a hereditary fo...

  18. Renormalization of quark propagator, vertex functions and twist-2 operators from twisted-mass lattice QCD at $N_f$=4

    CERN Document Server

    Blossier, Benoît; Guichon, Pierre; Morénas, Vincent; Pène, Olivier; Rodríguez-Quintero, Jose; Zafeiropoulos, Savvas

    2014-01-01

    We present a precise non-perturbative determination of the renormalization constants in the mass independent RI'-MOM scheme. The lattice implementation uses the Iwasaki gauge action and four degenerate dynamical twisted mass fermions. The gauge configurations are provided by the ETM Collaboration. Renormalization constants for scalar, pseudo-scalar, vector and axial operators, as well as the quark propagator renormalization, are computed at three different values of the lattice spacing, two volumes and several twisted mass parameters. The method we developed allows for a precise cross-check of the running, thanks to the particular proper treatment of hypercubic artifacts. Results for the twist-2 operator $O_{44}$ are also presented.

  19. A novel AMER1 frameshift mutation in a girl with osteopathia striata with cranial sclerosis.

    Science.gov (United States)

    Enomoto, Yumi; Tsurusaki, Yoshinori; Harada, Noriaki; Aida, Noriko; Kurosawa, Kenji

    2017-10-09

    Osteopathia striata with cranial sclerosis (OSCS) (MIM #300373) is a rare X-linked dominant bone dysplasia characterized by cranial sclerosis and linear striations in the long bones of females, and fetal or neonatal lethality in affected males. This article is protected by copyright. All rights reserved.

  20. A frameshift mutation in LRSAM1 is responsible for a dominant hereditary polyneuropathy.

    NARCIS (Netherlands)

    Weterman, M.A.J.; Sorrentino, V.; Kasher, P.R.; Jakobs, M.E.; Engelen, B.G.M. van; Fluiter, K.; Wissel, M.B. de; Sizarov, A.; Nurnberg, G.; Nurnberg, P.; Zelcer, N.; Schelhaas, H.J.; Baas, F.

    2012-01-01

    Despite the high number of genes identified in hereditary polyneuropathies/Charcot-Marie-Tooth (CMT) disease, the genetic defect in many families is still unknown. Here we report the identification of a new gene for autosomal dominant axonal neuropathy in a large three-generation family. Linkage ana

  1. Mutations in Danish patients with long QT syndrome and the identification of a large founder family with p.F29L in KCNH2

    DEFF Research Database (Denmark)

    Christiansen, Michael; Hedley, Paula L; Theilade, Juliane;

    2014-01-01

    , in 31.2% of cases, was based on the type of mutation identified (nonsense, insertion/deletion, frameshift or splice-site). Functional data was available for 22.7% of the missense mutations. None of the mutations were found in 364 Danish alleles and only three, all functionally characterised, were...

  2. Revealing −1 Programmed Ribosomal Frameshifting Mechanisms by Single-Molecule Techniques and Computational Methods

    Directory of Open Access Journals (Sweden)

    Kai-Chun Chang

    2012-01-01

    Full Text Available Programmed ribosomal frameshifting (PRF serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1 PRF mechanism among viruses.

  3. Mutation rates of TGFBR2 and ACVR2 coding microsatellites in human cells with defective DNA mismatch repair.

    Directory of Open Access Journals (Sweden)

    Heekyung Chung

    Full Text Available Microsatellite instability promotes colonic tumorigenesis through generating frameshift mutations at coding microsatellites of tumor suppressor genes, such as TGFBR2 and ACVR2. As a consequence, signaling through these TGFbeta family receptors is abrogated in DNA Mismatch repair (MMR-deficient tumors. How these mutations occur in real time and mutational rates of these human coding sequences have not previously been studied. We utilized cell lines with different MMR deficiencies (hMLH1-/-, hMSH6-/-, hMSH3-/-, and MMR-proficient to determine mutation rates. Plasmids were constructed in which exon 3 of TGFBR2 and exon 10 of ACVR2 were cloned +1 bp out of frame, immediately after the translation initiation codon of an enhanced GFP (EGFP gene, allowing a -1 bp frameshift mutation to drive EGFP expression. Mutation-resistant plasmids were constructed by interrupting the coding microsatellite sequences, preventing frameshift mutation. Stable cell lines were established containing portions of TGFBR2 and ACVR2, and nonfluorescent cells were sorted, cultured for 7-35 days, and harvested for flow cytometric mutation detection and DNA sequencing at specific time points. DNA sequencing revealed a -1 bp frameshift mutation (A9 in TGFBR2 and A7 in ACVR2 in the fluorescent cells. Two distinct fluorescent populations, M1 (dim, representing heteroduplexes and M2 (bright, representing full mutants were identified, with the M2 fraction accumulating over time. hMLH1 deficiency revealed 11 (5.91 x 10(-4 and 15 (2.18 x 10(-4 times higher mutation rates for the TGFBR2 and ACVR2 microsatellites compared to hMSH6 deficiency, respectively. The mutation rate of the TGFBR2 microsatellite was approximately 3 times higher in both hMLH1 and hMSH6 deficiencies than the ACVR2 microsatellite. The -1 bp frameshift mutation rates of TGFBR2 and ACVR2 microsatellite sequences are dependent upon the human MMR background.

  4. Annexin A2 binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus.

    Directory of Open Access Journals (Sweden)

    Hoyun Kwak

    Full Text Available Annexin A2 (ANXA2 is a protein implicated in diverse cellular functions, including exocytosis, DNA synthesis and cell proliferation. It was recently proposed to be involved in RNA metabolism because it was shown to associate with some cellular mRNA. Here, we identified ANXA2 as a RNA binding protein (RBP that binds IBV (Infectious Bronchitis Virus pseudoknot RNA. We first confirmed the binding of ANXA2 to IBV pseudoknot RNA by ultraviolet crosslinking and showed its binding to RNA pseudoknot with ANXA2 protein in vitro and in the cells. Since the RNA pseudoknot located in the frameshifting region of IBV was used as bait for cellular RBPs, we tested whether ANXA2 could regulate the frameshfting of IBV pseudoknot RNA by dual luciferase assay. Overexpression of ANXA2 significantly reduced the frameshifting efficiency from IBV pseudoknot RNA and knockdown of the protein strikingly increased the frameshifting efficiency. The results suggest that ANXA2 is a cellular RBP that can modulate the frameshifting efficiency of viral RNA, enabling it to act as an anti-viral cellular protein, and hinting at roles in RNA metabolism for other cellular mRNAs.

  5. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting

    DEFF Research Database (Denmark)

    Hansen, Thomas Møller; Reihani, S Nader S; Oddershede, Lene B

    2007-01-01

    the Infectious Bronchitis Virus were used, differing by one base pair in the first stem. In Escherichia coli, these two pseudoknots caused frameshifting frequencies that differed by a factor of two. We used optical tweezers to unfold the pseudoknots. The pseudoknot giving rise to the highest degree...

  6. Calreticulin Mutations in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Noa Lavi

    2014-10-01

    Full Text Available With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph− myeloproliferative neoplasms (MPNs in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET and primary myelofibrosis (PMF. At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations and recurrent 5-bp insertions (type 2 mutations in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review.

  7. Mutations in components of the Wnt signaling pathway in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Kai-Feng Pan; Wan-Guo Liu; Lian Zhang; Wei-Cheng You; You-Yong Lu

    2008-01-01

    AIM:To explore the contribution of AXIN1,AXIN2 and beta-catenin,components of Wnt signaling pathway,to the carcinogenesis of gastric cancer(GC),we examined AXIN1,AXIN2 exon7 and CTNNB1(encoding betacatenin) exon3 mutations in 70 GCs.METHODS:The presence of mutations was identified by polymerase chain reaction(PCR)-based denaturing high-performance liquid chromatography and direct DNA sequencing.Beta-catenin expression was detected by immunohistochemical analysis.RESULTS:Among the 70 GCs,5(7.1%)had mutations in one or two of these three components.A frameshift mutation(1 bp deletion)in exon7 of AXIN2 was found in one case.Four cases,including the case with a mutation in AXIN2,had frameshift mutations and missense mutations in AXIN1.Five single nucleotide polymorphisms (SNPs),334 C>T,874 C>T,1396 G>A,1690 C>T and 1942 T>G,were identified in AXTN1.A frameshift mutation(27 bp deletion) spanning exon3 of CTNNB1 was observed in one case.All four cases with mutations in AXIN1 and AXIN2 showed nuclear betacatenin expression.CONCLUSION:These data indicate that the mutations in AXIN1 and AXIN2 may contribute to gastric carcinogenesis.

  8. Profile of TP53 gene mutations in sinonasal cancer

    DEFF Research Database (Denmark)

    Holmila, Reetta; Bornholdt, Jette; Suitiala, Tuula

    2010-01-01

    %) frameshift or nonsense mutations, and 36 (23%) intronic or silent mutations. In coding region, the most common base change detected was C-->T transition (43/125; 34% of base changes in the coding region). G-->T transversions occurred at a frequency of 10% (12/125), which is less than reported in mutation...... not been reported before as frequently mutated in head and neck cancer or human cancer in general. About half of all tumours with TP53 mutations carried more than one mutation. Interestingly, 86% (19/22) of the silent mutations detected had occurred in tumours with multiple mutations.......Genetic alterations underlying the development of the cancer of the nose and paranasal sinuses (sinonasal cancer, SNC), a rare cancer that can be included in the group of head and neck cancers, are still largely unknown. We recently reported that TP53 mutations are a common feature of SNC...

  9. THE ANALYSIS OF NF2 GENE MUTATION IN SPORADIC SCHWANNOMAS

    Institute of Scientific and Technical Information of China (English)

    卞留贯; 孙青芳; 沈建康; 赵卫国; 罗其中

    2002-01-01

    Objective To analyze the mutation of NF2 gene (exon 2,4,6 and 13) in schwannomas. Methods The NF2 gene mutation in 36 schwannomas were observed by PCR-SSCP and DNA sequence. The proliferative index of schwannoma was detected by immunohistochemistry. Results We found 13 mutations in 36 schwannomas, including 6 deletion or insertion resulting in a frameshift, 2 nonsense mutations, 2 missense mutations, and 3 alterations affecting acceptor or donor of splicing sites in E4,E6,E13. The proliferative index of schwannomas with mutation were significantly higher than those without mutation (P< 0.05). Conclusion NF2 gene mutation is the frequent event in the tumorigenesis of schwannomas, and there is some correlation between the mutation and clinical behavior(tumor proliferation).

  10. Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.

    Science.gov (United States)

    Näf, Ernst; Laubscher, Dominik; Hopfer, Helmut; Streit, Markus; Matyas, Gabor

    2016-01-01

    Germline mutation of the FLCN gene causes Birt-Hogg-Dubé syndrome (BHD), a rare autosomal dominant condition characterized by skin fibrofolliculomas, lung cysts, spontaneous pneumothorax and renal tumours. We identified a hitherto unreported pathogenic FLCN frameshift deletion c.563delT (p.Phe188Serfs*35) in a family of a 46-year-old woman presented with macrohematuria due to bilateral chromophobe renal carcinomas. A heritable renal cancer was suspected due to the bilaterality of the tumour and as the father of this woman had suffered from renal cancer. Initially, however, BHD was overlooked by the medical team despite the highly suggestive clinical presentation. We assume that BHD is underdiagnosed, at least partially, due to low awareness of this variable condition and to insufficient use of appropriate genetic testing. Our study indicates that BHD and FLCN testing should be routinely considered in patients with positive family or personal history of renal tumours. In addition, we demonstrate how patients and their families can play a driving role in initiating genetic diagnosis, presymptomatic testing of at-risk relatives, targeted disease management, and genetic counselling of rare diseases such as BHD.

  11. Founding BRCA1 mutations in hereditary breast and ovarian cancer in southern Sweden.

    OpenAIRE

    Johannsson, O; Ostermeyer, E A; Håkansson, S; Friedman, L S; Johansson, U; Sellberg, G.; Brøndum-Nielsen, K; Sele, V.; Olsson, H.; King, M C; Borg, A.

    1996-01-01

    Nine different germ-line mutations in the BRCA1 breast and ovarian cancer susceptibility gene were identified in 15 of 47 kindreds from southern Sweden, by use of SSCP and heteroduplex analysis of all exons and flanking intron region and by a protein-truncation test for exon 11, followed by direct sequencing. All but one of the mutations are predicted to give rise to premature translation termination and include seven frameshift insertions or deletions, a nonsense mutation, and a splice accep...

  12. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA*

    Science.gov (United States)

    Yordanova, Martina M.; Wu, Cheng; Andreev, Dmitry E.; Sachs, Matthew S.; Atkins, John F.

    2015-01-01

    The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3′ end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5′ and 3′ of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5′ of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5′ part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3′ part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3′ of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting. PMID:25998126

  13. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA.

    Science.gov (United States)

    Yordanova, Martina M; Wu, Cheng; Andreev, Dmitry E; Sachs, Matthew S; Atkins, John F

    2015-07-17

    The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3' end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5' and 3' of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5' of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5' part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3' part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3' of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The Evolutionary Potential of Phenotypic Mutations.

    Science.gov (United States)

    Yanagida, Hayato; Gispan, Ariel; Kadouri, Noam; Rozen, Shelly; Sharon, Michal; Barkai, Naama; Tawfik, Dan S

    2015-08-01

    Errors in protein synthesis, so-called phenotypic mutations, are orders-of-magnitude more frequent than genetic mutations. Here, we provide direct evidence that alternative protein forms and phenotypic variability derived from translational errors paved the path to genetic, evolutionary adaptations via gene duplication. We explored the evolutionary origins of Saccharomyces cerevisiae IDP3 - an NADP-dependent isocitrate dehydrogenase mediating fatty acids ß-oxidation in the peroxisome. Following the yeast whole genome duplication, IDP3 diverged from a cytosolic ancestral gene by acquisition of a C-terminal peroxisomal targeting signal. We discovered that the pre-duplicated cytosolic IDPs are partially localized to the peroxisome owing to +1 translational frameshifts that bypass the stop codon and unveil cryptic peroxisomal targeting signals within the 3'-UTR. Exploring putative cryptic signals in all 3'-UTRs of yeast genomes, we found that other enzymes related to NADPH production such as pyruvate carboxylase 1 (PYC1) might be prone to peroxisomal localization via cryptic signals. Using laboratory evolution we found that these translational frameshifts are rapidly imprinted via genetic single base deletions occurring within the very same gene location. Further, as exemplified here, the sequences that promote translational frameshifts are also more prone to genetic deletions. Thus, genotypes conferring higher phenotypic variability not only meet immediate challenges by unveiling cryptic 3'-UTR sequences, but also boost the potential for future genetic adaptations.

  15. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J

    2013-01-01

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomi...... rearrangements. However, a large number of mutations, including missense, silent, and intronic variants, are classified as variants of unknown clinical significance.......Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomic...

  16. Golden Retriever dogs with neuronal ceroid lipofuscinosis have a two-base-pair deletion and frameshift in CLN5.

    Science.gov (United States)

    Gilliam, D; Kolicheski, A; Johnson, G S; Mhlanga-Mutangadura, T; Taylor, J F; Schnabel, R D; Katz, M L

    2015-01-01

    We studied a recessive, progressive neurodegenerative disease occurring in Golden Retriever siblings with an onset of signs at 15 months of age. As the disease progressed these signs included ataxia, anxiety, pacing and circling, tremors, aggression, visual impairment and localized and generalized seizures. A whole genome sequence, generated with DNA from one affected dog, contained a plausibly causal homozygous mutation: CLN5:c.934_935delAG. This mutation was predicted to produce a frameshift and premature termination codon and encode a protein variant, CLN5:p.E312Vfs*6, which would lack 39 C-terminal amino acids. Eighteen DNA samples from the Golden Retriever family members were genotyped at CLN5:c.934_935delAG. Three clinically affected dogs were homozygous for the deletion allele; whereas, the clinically normal family members were either heterozygotes (n = 11) or homozygous for the reference allele (n = 4). Among archived Golden Retrievers DNA samples with incomplete clinical records that were also genotyped at the CLN5:c.934_935delAG variant, 1053 of 1062 were homozygous for the reference allele, 8 were heterozygotes and one was a deletion-allele homozygote. When contacted, the owner of this homozygote indicated that their dog had been euthanized because of a neurologic disease that progressed similarly to that of the affected Golden Retriever siblings. We have collected and stored semen from a heterozygous Golden Retriever, thereby preserving an opportunity for us or others to establish a colony of CLN5-deficient dogs.

  17. Rab-GDI complex dissociation factor expressed through translational frameshifting in filamentous ascomycetes.

    Directory of Open Access Journals (Sweden)

    Fabienne Malagnac

    Full Text Available In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium. The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild.

  18. Rab-GDI complex dissociation factor expressed through translational frameshifting in filamentous ascomycetes.

    Science.gov (United States)

    Malagnac, Fabienne; Fabret, Céline; Prigent, Magali; Rousset, Jean-Pierre; Namy, Olivier; Silar, Philippe

    2013-01-01

    In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium). The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild.

  19. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot

    Science.gov (United States)

    Su, L.; Chen, L.; Egli, M.; Berger, J. M.; Rich, A.

    1999-01-01

    Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. A pseudoknot has two stems that form a quasi-continuous helix and two connecting loops. A 1.6 A crystal structure of the beet western yellow virus (BWYV) pseudoknot reveals rotation and a bend at the junction of the two stems. A loop base is inserted in the major groove of one stem with quadruple-base interactions. The second loop forms a new minor-groove triplex motif with the other stem, involving 2'-OH and triple-base interactions, as well as sodium ion coordination. Overall, the number of hydrogen bonds stabilizing the tertiary interactions exceeds the number involved in Watson-Crick base pairs. This structure will aid mechanistic analyses of ribosomal frameshifting.

  20. Thermodynamic stability and statistical significance of potential stem-loop structures situated at the frameshift sites of retroviruses.

    OpenAIRE

    Le, S.Y.; Chen, J H; Maizel, J. V.

    1989-01-01

    RNA stem-loop structures situated just 3' to the frameshift sites of the retroviral gag-pol or gag-pro and pro-pol regions may make important contributions to frame-shifting in retroviruses. In this study, the thermodynamic stability and statistical significance of such secondary structural features relative to others in the sequence have been assessed using a newly developed method that combines calculations of the lowest free energy of formation of RNA secondary structures and the Monte Car...

  1. Mutational analysis of paediatric patients with tuberous sclerosis complex in Korea: genotype and epilepsy.

    Science.gov (United States)

    Lee, Jin Sook; Lim, Byung Chan; Chae, Jong-Hee; Hwang, Yong Seung; Seong, Moon-Woo; Park, Sung Sup; Kim, Ki Joong

    2014-12-01

    To date, only a few studies have reported that, in tuberous sclerosis, TSC2 mutations are more frequently associated with infantile spasms and cognitive impairment compared to TSC1 mutations. We analyzed the mutational spectrum of patients with tuberous sclerosis in Korea and attempted to explore the associations between genotype and seizure type/outcome. We performed mutational analyses on 70 unrelated patients with clinically confirmed tuberous sclerosis by using direct DNA sequencing and/or multiplex ligation-dependent probe amplification. The patients' medical records, including epilepsy type and outcome, were reviewed retrospectively. We identified pathogenic mutations in 55 patients (79%), 25 of which were novel. There were 12 TSC1 mutations and 43 TSC2 mutations. TSC1 mutations included 8 frameshift and 4 nonsense mutations. TSC2 mutations included 12 frameshift, 10 nonsense, 6 splicing, and 6 missense mutations, as well as 4 in-frame deletions and 5 large deletions. Fifty-eight patients had epilepsy (83%), including 19 patients with a history of infantile spasms. Compared to patients with TSC1 mutations, individuals with TSC2 mutations had a significantly higher frequency of epilepsy (p<0.05) and tended to have a higher frequency of infantile spasms (37% vs 17%; p<0.3). Most of the patients with TSC2 mutations who developed infantile spasms exhibited subsequent epilepsy (13/14; 93%). However, the presence/absence of infantile spasms did not influence seizure remission or cognitive outcome.

  2. Juvenil polypose-syndrom og hereditær hæmoragisk telangiektasi hos en patient med SMAD4-mutation

    DEFF Research Database (Denmark)

    Jelsig, Anne Marie; Tørring, Pernille Mathiesen; Wikman, Friedrik

    2014-01-01

    Germ line mutations in SMAD4 can cause both juvenile polyposis syndrome and hereditary haemorrhagic telangiectasia syndrome. In this case we present a 37-year-old man with a frameshift mutation in SMAD4. The patient had multiple polyps in the gastrointestinal tract and was diagnosed with colon ca...

  3. Depletion of Cognate Charged Transfer RNA Causes Translational Frameshifting within the Expanded CAG Stretch in Huntingtin

    Directory of Open Access Journals (Sweden)

    Hannah Girstmair

    2013-01-01

    Full Text Available Huntington disease (HD, a dominantly inherited neurodegenerative disorder caused by the expansion of a CAG-encoded polyglutamine (polyQ repeat in huntingtin (Htt, displays a highly heterogeneous etiopathology and disease onset. Here, we show that the translation of expanded CAG repeats in mutant Htt exon 1 leads to a depletion of charged glutaminyl-transfer RNA (tRNAGln-CUG that pairs exclusively to the CAG codon. This results in translational frameshifting and the generation of various transframe-encoded species that differently modulate the conformational switch to nucleate fibrillization of the parental polyQ protein. Intriguingly, the frameshifting frequency varies strongly among different cell lines and is higher in cells with intrinsically lower concentrations of tRNAGln-CUG. The concentration of tRNAGln-CUG also differs among different brain areas in the mouse. We propose that translational frameshifting may act as a significant disease modifier that contributes to the cell-selective neurotoxicity and disease course heterogeneity of HD on both cellular and individual levels.

  4. Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded CAG stretch in huntingtin.

    Science.gov (United States)

    Girstmair, Hannah; Saffert, Paul; Rode, Sascha; Czech, Andreas; Holland, Gudrun; Bannert, Norbert; Ignatova, Zoya

    2013-01-31

    Huntington disease (HD), a dominantly inherited neurodegenerative disorder caused by the expansion of a CAG-encoded polyglutamine (polyQ) repeat in huntingtin (Htt), displays a highly heterogeneous etiopathology and disease onset. Here, we show that the translation of expanded CAG repeats in mutant Htt exon 1 leads to a depletion of charged glutaminyl-transfer RNA (tRNA)(Gln-CUG) that pairs exclusively to the CAG codon. This results in translational frameshifting and the generation of various transframe-encoded species that differently modulate the conformational switch to nucleate fibrillization of the parental polyQ protein. Intriguingly, the frameshifting frequency varies strongly among different cell lines and is higher in cells with intrinsically lower concentrations of tRNA(Gln-CUG). The concentration of tRNA(Gln-CUG) also differs among different brain areas in the mouse. We propose that translational frameshifting may act as a significant disease modifier that contributes to the cell-selective neurotoxicity and disease course heterogeneity of HD on both cellular and individual levels.

  5. HMM-FRAME: accurate protein domain classification for metagenomic sequences containing frameshift errors

    Directory of Open Access Journals (Sweden)

    Sun Yanni

    2011-05-01

    Full Text Available Abstract Background Protein domain classification is an important step in metagenomic annotation. The state-of-the-art method for protein domain classification is profile HMM-based alignment. However, the relatively high rates of insertions and deletions in homopolymer regions of pyrosequencing reads create frameshifts, causing conventional profile HMM alignment tools to generate alignments with marginal scores. This makes error-containing gene fragments unclassifiable with conventional tools. Thus, there is a need for an accurate domain classification tool that can detect and correct sequencing errors. Results We introduce HMM-FRAME, a protein domain classification tool based on an augmented Viterbi algorithm that can incorporate error models from different sequencing platforms. HMM-FRAME corrects sequencing errors and classifies putative gene fragments into domain families. It achieved high error detection sensitivity and specificity in a data set with annotated errors. We applied HMM-FRAME in Targeted Metagenomics and a published metagenomic data set. The results showed that our tool can correct frameshifts in error-containing sequences, generate much longer alignments with significantly smaller E-values, and classify more sequences into their native families. Conclusions HMM-FRAME provides a complementary protein domain classification tool to conventional profile HMM-based methods for data sets containing frameshifts. Its current implementation is best used for small-scale metagenomic data sets. The source code of HMM-FRAME can be downloaded at http://www.cse.msu.edu/~zhangy72/hmmframe/ and at https://sourceforge.net/projects/hmm-frame/.

  6. The Effect of Conditional Inactivation of Beta 1 Integrins using Twist 2 Cre, Osterix Cre and Osteocalcin Cre Lines on Skeletal Phenotype

    Science.gov (United States)

    Shekaran, Asha; Shoemaker, James T.; Kavanaugh, Taylor E.; Lin, Angela S.; LaPlaca, Michelle C.; Fan, Yuhong; Guldberg, Robert E.; García, Andrés J.

    2014-01-01

    Skeletal development and growth are complex processes regulated by multiple microenvironmental cues, including integrin-ECM interactions. The β1 sub-family of integrins is the largest integrin sub-family and constitutes the main integrin binding partners of collagen I, the major ECM component of bone. As complete β1 integrin integrin knockout results in embryonic lethality, studies of β1 integrin function in vivo rely on tissue-specific gene deletions. While multiple in vitro studies indicate that β1 integrins are crucial regulators of osteogenesis and mineralization, in vivo osteoblast-specific perturbations of β1 integrins have resulted in mild and sometimes contradictory skeletal phenotypes. To further investigate the role of β1 integrins on skeletal phenotype, we used the Twist2-Cre, Osterix-Cre and Osteocalcin-Cre lines to generate conditional β1 integrin deletions, where cre is expressed primarily in mesenchymal condensation, pre-osteoblast, and mature osteoblast lineage cells respectively within these lines. Mice with Twist2-specific β1 integrin disruption were smaller, had impaired skeletal development, especially in the craniofacial and vertebral tissues at E19.5, and did not survive beyond birth. Osterix-specific β1 integrin deficiency resulted in viable mice which were normal at birth but displayed early defects in calvarial ossification, incisor eruption and growth as well as femoral bone mineral density, structure, and mechanical properties. Although these defects persisted into adulthood, they became milder with age. Finally, a lack of β1 integrins in mature osteoblasts and osteocytes resulted in minor alterations to femur structure but had no effect on mineral density, biomechanics or fracture healing. Taken together, our data indicate that β1 integrin expression in early mesenchymal condensations play an important role in skeletal ossification, while β1 integrin-ECM interactions in pre-osteoblast, odontoblast- and hypertrophic

  7. A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma

    DEFF Research Database (Denmark)

    Wadt, K.; Choi, J.; Chung, J.Y.;

    2012-01-01

    as paraganglioma, breast cancer, and suspected mesothelioma cases in the family. Bioinformatic analysis and splicing assays demonstrated that this mutation creates a strong cryptic splice donor, resulting in aberrant splicing and a truncating frameshift of the BAP1 transcript. Somatic loss of the wild-type allele...

  8. Eight new mtDNA sequences of glass sponges reveal an extensive usage of +1 frameshifting in mitochondrial translation.

    Science.gov (United States)

    Haen, Karri M; Pett, Walker; Lavrov, Dennis V

    2014-02-10

    Three previously studied mitochondrial genomes of glass sponges (phylum Porifera, class Hexactinellida) contained single nucleotide insertions in protein coding genes inferred as sites of +1 translational frameshifting. To investigate the distribution and evolution of these sites and to help elucidate the mechanism of frameshifting, we determined eight new complete or nearly complete mtDNA sequences from glass sponges and examined individual mitochondrial genes from three others. We found nine new instances of single nucleotide insertions in these sequences and analyzed them both comparatively and phylogenetically. The base insertions appear to have been gained and lost repeatedly in hexactinellid mt protein genes, suggesting no functional significance for the frameshifting sites. A high degree of sequence conservation, the presence of unusual tRNAs, and a distinct pattern of codon usage suggest the "out-of-frame pairing" model of translational frameshifting. Additionally, we provide evidence that relaxed selection pressure on glass sponge mtDNA - possibly a result of their low growth rates and deep-water lifestyle - has allowed frameshift insertions to be tolerated for hundreds of millions of years. Our study provides the first example of a phylogenetically diverse and extensive usage of translational frameshifting in animal mitochondrial coding sequences.

  9. Screening of 1331 Danish breast and/or ovarian cancer families identified 40 novel BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Jønson, Lars; Steffensen, Ane Y;

    2011-01-01

    Germ-line mutations in the tumour suppressor genes BRCA1 and BRCA2 predispose to breast and ovarian cancer. Since 1999 we have performed mutational screening of breast and/or ovarian cancer patients in East Denmark. During this period we have identified 40 novel sequence variations in BRCA1...... and BRCA2 in high risk breast and/or ovarian cancer families. The mutations were detected via pre-screening using dHPLC or high-resolution melting and direct sequencing. We identified 16 variants in BRCA1, including 9 deleterious frame-shift mutations, 2 intronic variants, 4 missense mutations, and 1...... synonymous variant. The remaining 24 variants were identified in BRCA2, including 10 deleterious mutants (6 frame-shift and 4 nonsense), 2 intronic variants, 10 missense mutations and 2 synonymous variants. The frequency of the variants of unknown significance was examined in control individuals. Moreover...

  10. Three new BLM gene mutations associated with Bloom syndrome.

    Science.gov (United States)

    Amor-Guéret, Mounira; Dubois-d'Enghien, Catherine; Laugé, Anthony; Onclercq-Delic, Rosine; Barakat, Abdelhamid; Chadli, Elbekkay; Bousfiha, Ahmed Aziz; Benjelloun, Meriem; Flori, Elisabeth; Doray, Bérénice; Laugel, Vincent; Lourenço, Maria Teresa; Gonçalves, Rui; Sousa, Silvia; Couturier, Jérôme; Stoppa-Lyonnet, Dominique

    2008-06-01

    Bloom's syndrome (BS) is a rare autosomal recessive disease predisposing patients to all types of cancers affecting the general population. BS cells display a high level of genetic instability, including a 10-fold increase in the rate of sister chromatid exchanges, currently the only objective criterion for BS diagnosis. We have developed a method for screening the BLM gene for mutations based on direct genomic DNA sequencing. A questionnaire based on clinical information, cytogenetic features, and family history was addressed to physicians prescribing BS genetic screening, with the aim of confirming or guiding diagnosis. We report here four BLM gene mutations, three of which have not been described before. Three of the mutations are frameshift mutations, and the fourth is a nonsense mutation. All these mutations introduce a stop codon, and may therefore be considered to have deleterious biological effect. This approach should make it possible to identify new mutations and to correlate them with clinical information.

  11. NPM1 mutations in therapy-related acute myeloid leukemia with uncharacteristic features

    DEFF Research Database (Denmark)

    Andersen, Morten Tolstrup; Andersen, Mette Klarskov; Christiansen, D.H.

    2008-01-01

    Frameshift mutations of the nucleophosmin gene (NPM1) were recently reported as a frequently occurring abnormality in patients with de novo acute myeloid leukemia (AML). To evaluate the frequency of NPM1 mutations in patients with therapy-related myelodysplasia (t-MDS) and therapy-related AML (t......-/-7, the most frequent abnormalities of t-MDS/t-AML, were not observed (P=0.002). This raises the question whether some of the cases presenting NPM1 mutations were in fact cases of de novo leukemia. The close association to class I mutations and the inverse association to class II mutations suggest...

  12. Identification of a novel BRCA1 nucleotide 4803delCC/c.4684delCC mutation and a nucleotide 249T>A/c.130T>A (p.Cys44Ser) mutation in two Greenlandic Inuit families

    DEFF Research Database (Denmark)

    Hansen, Thomas van Overeem; Jønson, Lars; Albrechtsen, Anders;

    2010-01-01

    identified in this population. Here, we describe the identification of a novel disease-causing BRCA1 nucleotide 4803delCC/c.4684delCC mutation in a Greenlandic Inuit with ovarian cancer. The mutation introduces a frameshift and a premature stop at codon 1572. We have also identified a BRCA1 nucleotide 249T...

  13. Functional analysis of a frame-shift mutant of the dihydropyridine receptor pore subunit (α1S expressing two complementary protein fragments

    Directory of Open Access Journals (Sweden)

    Mortenson Lindsay

    2001-12-01

    Full Text Available Abstract Background The L-type Ca2+ channel formed by the dihydropyridine receptor (DHPR of skeletal muscle senses the membrane voltage and opens the ryanodine receptor (RyR1. This channel-to-channel coupling is essential for Ca2+ signaling but poorly understood. We characterized a single-base frame-shift mutant of α1S, the pore subunit of the DHPR, that has the unusual ability to function voltage sensor for excitation-contraction (EC coupling by virtue of expressing two complementary hemi-Ca2+ channel fragments. Results Functional analysis of cDNA transfected dysgenic myotubes lacking α1S were carried out using voltage-clamp, confocal Ca2+ indicator fluoresence, epitope immunofluorescence and immunoblots of expressed proteins. The frame-shift mutant (fs-α1S expressed the N-terminal half of α1S (M1 to L670 and the C-terminal half starting at M701 separately. The C-terminal fragment was generated by an unexpected restart of translation of the fs-α1S message at M701 and was eliminated by a M701I mutation. Protein-protein complementation between the two fragments produced recovery of skeletal-type EC coupling but not L-type Ca2+ current. Discussion A premature stop codon in the II-III loop may not necessarily cause a loss of DHPR function due to a restart of translation within the II-III loop, presumably by a mechanism involving leaky ribosomal scanning. In these cases, function is recovered by expression of complementary protein fragments from the same cDNA. DHPR-RyR1 interactions can be achieved via protein-protein complementation between hemi-Ca2+ channel proteins, hence an intact II-III loop is not essential for coupling the DHPR voltage sensor to the opening of RyR1 channel.

  14. Contribution of the intercalated adenosine at the helical junction to the stability of the gag-pro frameshifting pseudoknot from mouse mammary tumor virus.

    Science.gov (United States)

    Theimer, C A; Giedroc, D P

    2000-03-01

    The mouse mammary tumor virus (MMTV) gag-pro frameshifting pseudoknot is an H-type RNA pseudoknot that contains an unpaired adenosine (A14) at the junction of the two helical stems required for efficient frameshifting activity. The thermodynamics of folding of the MMTV vpk pseudoknot have been compared with a structurally homologous mutant RNA containing a G x U to G-C substitution at the helical junction (U13C RNA), and an A14 deletion mutation in that context (U13CdeltaA14 RNA). Dual wavelength optical melting and differential scanning calorimetry reveal that the unpaired adenosine contributes 0.7 (+/-0.2) kcal mol(-1) at low salt and 1.4 (+/-0.2) kcal mol(-1) to the stability (deltaG(0)37) at 1 M NaCl. This stability increment derives from a favorable enthalpy contribution to the stability deltadeltaH = 6.6 (+/-2.1) kcal mol(-1) with deltadeltaG(0)37 comparable to that predicted for the stacking of a dangling 3' unpaired adenosine on a G-C or G x U base pair. Group 1A monovalent ions, NH4+, Mg2+, and Co(NH3)6(3+) ions stabilize the A14 and deltaA14 pseudoknots to largely identical extents, revealing that the observed differences in stability in these molecules do not derive from a differential or specific accumulation of ions in the A14 versus deltaA14 pseudoknots. Knowledge of this free energy contribution may facilitate the prediction of RNA pseudoknot formation from primary nucleotide sequence (Gultyaev et al., 1999, RNA 5:609-617).

  15. Molecular analysis of WT1 and KIT mutations in patients from an Indian population with de novo acute myeloid leukemia: determination of incidence, distribution patterns, and report of a novel KIT mutation.

    Science.gov (United States)

    Ahmad, Firoz; D'Souza, Wilma; Mandava, Swarna; Das, Bibhu Ranjan

    2011-05-01

    Mutations of the WT1 gene have been reported as the most common abnormality after NPM1 and FLT3 gene mutations in acute myeloid leukemia (AML), while KIT mutations are predominantly found in core-binding factor (CBF) AMLs. We report for the first time the prevalence and distribution patterns of WT1 and KIT mutations in an Indian population of 150. Overall, 10 (6.7%) and four (2.7%) of the cases had WT1 and KIT mutations, respectively. Of the six mutations observed in exon 7, five were frameshift while the remaining one case showed a substitution mutation. In contrast to exon 7, no frameshift mutation was detected in exon 9, where all mutations were substitution mutations. Interestingly, we observed a novel mutation in exon 8 of the KIT gene resulting from the deletion of nine nucleotides and insertion of three nucleotides affecting the extracellular domain of the KIT receptor, while Asp816Tyr and Asp816His were commonly found in exon 17 of the KIT gene. The WT1 mutation was more prevalent in normal karyotype AML while KIT was associated with t(8;21). With respect to FLT3 and NPM1 mutations, WT1 was more predominant in FLT3 positive cases and less in NPM1 mutation cases, while no KIT mutation was found in FLT3/NPM1 positive cases.

  16. HNPCC: Six new pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Epplen Joerg T

    2004-06-01

    Full Text Available Abstract Background Hereditary non-polyposis colorectal cancer (HNPCC is an autosomal dominant disease with a high risk for colorectal and endometrial cancer caused by germline mutations in DNA mismatch-repair genes (MMR. HNPCC accounts for approximately 2 to 5% of all colorectal cancers. Here we present 6 novel mutations in the DNA mismatch-repair genes MLH1, MSH2 and MSH6. Methods Patients with clinical diagnosis of HNPCC were counselled. Tumor specimen were analysed for microsatellite instability and immunohistochemistry for MLH1, MSH2 and MSH6 protein was performed. If one of these proteins was not detectable in the tumor mutation analysis of the corresponding gene was carried out. Results We identified 6 frameshift mutations (2 in MLH1, 3 in MSH2, 1 in MSH6 resulting in a premature stop: two mutations in MLH1 (c.2198_2199insAACA [p.N733fsX745], c.2076_2077delTG [p.G693fsX702], three mutations in MSH2 (c.810_811delGT [p.C271fsX282], c.763_766delAGTGinsTT [p.F255fsX282], c.873_876delGACT [p.L292fsX298] and one mutation in MSH6 (c.1421_1422dupTG [p.C475fsX480]. All six tumors tested for microsatellite instability showed high levels of microsatellite instability (MSI-H. Conclusions HNPCC in families with MSH6 germline mutations may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations.

  17. The mutational spectrum in Waardenburg syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Read, A.P.; Tassabehji, M.; Liu, X.Z. [and others

    1994-09-01

    101 individuals or families with Waardenburg syndrome (WS) or related abnormalities have been screened for mutations in the PAX3 gene. PAX3 mutations were seen in 19 of 35 individuals or families with features of Type I Waardenburg syndrome. None of the 47 Type 2 WS families showed any PAX3 mutation, nor did any of 19 individuals with other neural crest syndromes or pigmentary disturbances. PAX3 mutations included substitutions of highly conserved amino acids, splice site mutations, nonsense mutations and frameshifting deletions or insertions. One patient (with Type 1 WS, mental retardation and growth retardation) had a chromosomal deletion of 7-8 Mb encompassing the PAX3 gene. Mutations were seen in each of exons 2-6, with a concentration in the 5{prime} part of the paired box (exon 2) and the 3{prime} part of the homeobox (exon 6). There was no evident relation between the molecular change and the clinical manifestations in mutation carriers. We conclude that PAX3 dosage effects very specifically produce dystopia canthorum, the distinguishing feature of Type 1 WS, and variably produce the other features of Type 1 WS depending on genetic background or chance events. Two of the Type 2 families showed linkage to markers from 3p14, the location of the MITF gene. MITF encodes a basic helix-loop-helix-zipper protein which is the homologue of the mouse microphthalmia gene product. It is likely that mutations in MITF cause some but not all Type 2 WS.

  18. Identification of functional, endogenous programmed −1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae

    OpenAIRE

    2006-01-01

    In viruses, programmed −1 ribosomal frameshifting (−1 PRF) signals direct the translation of alternative proteins from a single mRNA. Given that many basic regulatory mechanisms were first discovered in viral systems, the current study endeavored to: (i) identify −1 PRF signals in genomic databases, (ii) apply the protocol to the yeast genome and (iii) test selected candidates at the bench. Computational analyses revealed the presence of 10 340 consensus −1 PRF signals in the yeast genome. Of...

  19. TP53 Mutational Spectrum in Endometrioid and Serous Endometrial Cancers.

    Science.gov (United States)

    Schultheis, Anne M; Martelotto, Luciano G; De Filippo, Maria R; Piscuglio, Salvatore; Ng, Charlotte K Y; Hussein, Yaser R; Reis-Filho, Jorge S; Soslow, Robert A; Weigelt, Britta

    2016-07-01

    Endometrial carcinomas (ECs) are heterogeneous at the genetic level. Although TP53 mutations are highly recurrent in serous endometrial carcinomas (SECs), these are also present in a subset of endometrioid endometrial carcinomas (EECs). Here, we sought to define the frequency, pattern, distribution, and type of TP53 somatic mutations in ECs by performing a reanalysis of the publicly available data from The Cancer Genome Atlas (TCGA). A total of 228 EECs (n=186) and SECs (n=42) from the TCGA data set, for which an integrated genomic characterization was performed, were interrogated for the presence and type of TP53 mutations, and for mutations in genes frequently mutated in ECs. TP53 mutations were found in 15% of EECs and 88% of SECs, and in 91% of copy-number-high and 35% of polymerase (DNA directed), epsilon, catalytic subunit (POLE) integrative genomic subtypes. In addition to differences in prevalence, variations in the type and pattern of TP53 mutations were observed between histologic types and between integrative genomic subtypes. TP53 hotspot mutations were significantly more frequently found in SECs (46%) than in EECs (15%). TP53-mutant EECs significantly more frequently harbored a co-occurring PTEN mutation than TP53-mutant SECs. Finally, a subset of TP53-mutant ECs (22%) was found to harbor frameshift or nonsense mutations. Given that nonsense and frameshift TP53 mutations result in distinct p53 immunohistochemical results that require careful interpretation, and that EECs and SECs display different patterns, types, and distributions of TP53 mutations, the use of the TP53/p53 status alone for the differential diagnosis of EECs and SECs may not be sufficient.

  20. Large-scale mass spectrometry-based analysis of Euplotes octocarinatus supports the high frequency of +1 programmed ribosomal frameshift

    Science.gov (United States)

    Wang, Ruanlin; Zhang, Zhiyun; Du, Jun; Fu, Yuejun; Liang, Aihua

    2016-01-01

    Programmed ribosomal frameshifting (PRF) is commonly used to express many viral and some cellular genes. We conducted a genome-wide investigation of +1 PRF in ciliate Euplotes octocarinatus through genome and transcriptome sequencing and our results demonstrated that approximately 11.4% of genes require +1 PRF to produce complete gene products. While nucleic acid-based evidence for candidate genes with +1 PRF is strong, only very limited information is available at protein levels to date. In this study, E. octocarinatus was subjected to large-scale mass spectrometry-based analysis to verify the high frequency of +1 PRF and 226 +1 PRF gene products were identified. Based on the amino acid sequences of the peptides spanning the frameshift sites, typical frameshift motif AAA-UAR for +1 PRF in Euplotes was identified. Our data in this study provide very useful insight into the understanding of the molecular mechanism of +1 PRF. PMID:27597422

  1. Orsay virus utilizes ribosomal frameshifting to express a novel protein that is incorporated into virions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongbing; Franz, Carl J.; Wu, Guang; Renshaw, Hilary; Zhao, Guoyan [Departments of Molecular Microbiology and Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 (United States); Firth, Andrew E. [Department of Pathology, University of Cambridge, Cambridge CB2 1QP (United Kingdom); Wang, David, E-mail: davewang@borcim.wustl.edu [Departments of Molecular Microbiology and Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 (United States)

    2014-02-15

    Orsay virus is the first identified virus that is capable of naturally infecting Caenorhabditis elegans. Although it is most closely related to nodaviruses, Orsay virus differs from nodaviruses in its genome organization. In particular, the Orsay virus RNA2 segment encodes a putative novel protein of unknown function, termed delta, which is absent from all known nodaviruses. Here we present evidence that Orsay virus utilizes a ribosomal frameshifting strategy to express a novel fusion protein from the viral capsid (alpha) and delta ORFs. Moreover, the fusion protein was detected in purified virus fractions, demonstrating that it is most likely incorporated into Orsay virions. Furthermore, N-terminal sequencing of both the fusion protein and the capsid protein demonstrated that these proteins must be translated from a non-canonical initiation site. While the function of the alpha–delta fusion remains cryptic, these studies provide novel insights into the fundamental properties of this new clade of viruses. - Highlights: • Orsay virus encodes a novel fusion protein by a ribosomal frameshifting mechanism. • Orsay capsid and fusion protein is translated from a non-canonical initiation site. • The fusion protein is likely incorporated into Orsay virions.

  2. The evolution of cellular deficiency in GATA2 mutation

    Science.gov (United States)

    Dickinson, Rachel E.; Milne, Paul; Jardine, Laura; Zandi, Sasan; Swierczek, Sabina I.; McGovern, Naomi; Cookson, Sharon; Ferozepurwalla, Zaveyna; Langridge, Alexander; Pagan, Sarah; Gennery, Andrew; Heiskanen-Kosma, Tarja; Hämäläinen, Sari; Seppänen, Mikko; Helbert, Matthew; Tholouli, Eleni; Gambineri, Eleonora; Reykdal, Sigrún; Gottfreðsson, Magnús; Thaventhiran, James E.; Morris, Emma; Hirschfield, Gideon; Richter, Alex G.; Jolles, Stephen; Bacon, Chris M.; Hambleton, Sophie; Haniffa, Muzlifah; Bryceson, Yenan; Allen, Carl; Prchal, Josef T.; Dick, John E.; Bigley, Venetia

    2014-01-01

    Constitutive heterozygous GATA2 mutation is associated with deafness, lymphedema, mononuclear cytopenias, infection, myelodysplasia (MDS), and acute myeloid leukemia. In this study, we describe a cross-sectional analysis of 24 patients and 6 relatives with 14 different frameshift or substitution mutations of GATA2. A pattern of dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency (DCML deficiency) with elevated Fms-like tyrosine kinase 3 ligand (Flt3L) was observed in all 20 patients phenotyped, including patients with Emberger syndrome, monocytopenia with Mycobacterium avium complex (MonoMAC), and MDS. Four unaffected relatives had a normal phenotype indicating that cellular deficiency may evolve over time or is incompletely penetrant, while 2 developed subclinical cytopenias or elevated Flt3L. Patients with GATA2 mutation maintained higher hemoglobin, neutrophils, and platelets and were younger than controls with acquired MDS and wild-type GATA2. Frameshift mutations were associated with earlier age of clinical presentation than substitution mutations. Elevated Flt3L, loss of bone marrow progenitors, and clonal myelopoiesis were early signs of disease evolution. Clinical progression was associated with increasingly elevated Flt3L, depletion of transitional B cells, CD56bright NK cells, naïve T cells, and accumulation of terminally differentiated NK and CD8+ memory T cells. These studies provide a framework for clinical and laboratory monitoring of patients with GATA2 mutation and may inform therapeutic decision-making. PMID:24345756

  3. Identification of a new complex deleterious mutation in exon 18 of the BRCA2 gene in a hereditary male/female breast cancer family.

    Science.gov (United States)

    Diez, Orland; Gutiérrez-Enríquez, Sara; Masas, Miriam; Tenés, Anna; Yagüe, Carme; Arcusa, Angels; Llort, Gemma

    2010-09-01

    We report a novel complex mutation that consists of a deletion of 12 bp and an insertion of 2 bp (c.8402_8413del12ins2bp) in the exon 18 of the BRCA2 gene. This is a frameshift mutation that causes a disruption of the translational reading frame resulting in a stop codon downstream in the 2729 position of the BRCA2 protein. The mutation was present in a Spanish hereditary male/female breast cancer family.

  4. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome.

    Science.gov (United States)

    Mouzakis, Kathryn D; Lang, Andrew L; Vander Meulen, Kirk A; Easterday, Preston D; Butcher, Samuel E

    2013-02-01

    The human immunodeficiency virus (HIV) requires a programmed -1 ribosomal frameshift for Pol gene expression. The HIV frameshift site consists of a heptanucleotide slippery sequence (UUUUUUA) followed by a spacer region and a downstream RNA stem-loop structure. Here we investigate the role of the RNA structure in promoting the -1 frameshift. The stem-loop was systematically altered to decouple the contributions of local and overall thermodynamic stability towards frameshift efficiency. No correlation between overall stability and frameshift efficiency is observed. In contrast, there is a strong correlation between frameshift efficiency and the local thermodynamic stability of the first 3-4 bp in the stem-loop, which are predicted to reside at the opening of the mRNA entrance channel when the ribosome is paused at the slippery site. Insertion or deletions in the spacer region appear to correspondingly change the identity of the base pairs encountered 8 nt downstream of the slippery site. Finally, the role of the surrounding genomic secondary structure was investigated and found to have a modest impact on frameshift efficiency, consistent with the hypothesis that the genomic secondary structure attenuates frameshifting by affecting the overall rate of translation.

  5. Improving Gene Expression by Introducing Upstream Frameshift and Stop Codon%利用移码突变和终止密码子提高下游目的基因的表达水平

    Institute of Scientific and Technical Information of China (English)

    陈斌; 张宝中; 范华昊; 何后军; 童贻刚; 李建彬; 米志强; 安小平; 李存; 刘大斌; 姜焕焕; 王娟; 黄芬

    2011-01-01

    Objectives : To improve the expression of gene of interest in a lentiviral vector with complicated gene distribution. Methods: Lentiviruses have complicated gene distributions such as overlapping Env, Rre, Rev and Tat on their genomes. To avoid damaging the reproduction efficiency of these vectors,it is better to retain as much as possible the original gene structure when replacing the unwanted Env gene with a gene of interest. A reporter gene luc was first inserted into the lentiviral vector in place of the Env gene. The resultant plasmid did not express detectable luciferase activity. In order to improve the target gene expression, a frameshift mutation and a stop codon upstream the luc gene were introduced. Results : After the introduction of the upstream frameshift mutation and a stop codon,the luciferase expression was greatly enhanced. Conclusion : By introducing frameshift mutation and stop codon in the upstream reading frame, the expression of the downstream open reading frame could be largely increased.%目的:在基因结构复杂的慢病毒载体插入报告基因并提高目的基因表达量.方法:慢病毒载体上有复杂的基因排列,为了不影响慢病毒载体的活性,必须尽量保留原有的基因,替换不必要的基因.首先将报告基因萤光素酶插入慢病毒载体替换基因Env后,结果检测不到报告基因的表达.为了提高报告基因的表达水平,将报告基因的读码框向后移动一个碱基,同时在其上游增加一个终止密码子,然后检测报告基因的表达水平.结果:通过移动报告基因的读码框同时在上游增加终止密码子,使报告基因的表达水平大大提高.结论:在构建基因表达载体时,通过改变目的基因与上游起始密码子ATG之间的相对位置以及增加终止密码子,可以大幅提高目的基因的表达水平.

  6. Somatic mutations of calreticulin in myeloproliferative neoplasms.

    Science.gov (United States)

    Klampfl, Thorsten; Gisslinger, Heinz; Harutyunyan, Ashot S; Nivarthi, Harini; Rumi, Elisa; Milosevic, Jelena D; Them, Nicole C C; Berg, Tiina; Gisslinger, Bettina; Pietra, Daniela; Chen, Doris; Vladimer, Gregory I; Bagienski, Klaudia; Milanesi, Chiara; Casetti, Ilaria Carola; Sant'Antonio, Emanuela; Ferretti, Virginia; Elena, Chiara; Schischlik, Fiorella; Cleary, Ciara; Six, Melanie; Schalling, Martin; Schönegger, Andreas; Bock, Christoph; Malcovati, Luca; Pascutto, Cristiana; Superti-Furga, Giulio; Cazzola, Mario; Kralovics, Robert

    2013-12-19

    Approximately 50 to 60% of patients with essential thrombocythemia or primary myelofibrosis carry a mutation in the Janus kinase 2 gene (JAK2), and an additional 5 to 10% have activating mutations in the thrombopoietin receptor gene (MPL). So far, no specific molecular marker has been identified in the remaining 30 to 45% of patients. We performed whole-exome sequencing to identify somatically acquired mutations in six patients who had primary myelofibrosis without mutations in JAK2 or MPL. Resequencing of CALR, encoding calreticulin, was then performed in cohorts of patients with myeloid neoplasms. Somatic insertions or deletions in exon 9 of CALR were detected in all patients who underwent whole-exome sequencing. Resequencing in 1107 samples from patients with myeloproliferative neoplasms showed that CALR mutations were absent in polycythemia vera. In essential thrombocythemia and primary myelofibrosis, CALR mutations and JAK2 and MPL mutations were mutually exclusive. Among patients with essential thrombocythemia or primary myelofibrosis with nonmutated JAK2 or MPL, CALR mutations were detected in 67% of those with essential thrombocythemia and 88% of those with primary myelofibrosis. A total of 36 types of insertions or deletions were identified that all cause a frameshift to the same alternative reading frame and generate a novel C-terminal peptide in the mutant calreticulin. Overexpression of the most frequent CALR deletion caused cytokine-independent growth in vitro owing to the activation of signal transducer and activator of transcription 5 (STAT5) by means of an unknown mechanism. Patients with mutated CALR had a lower risk of thrombosis and longer overall survival than patients with mutated JAK2. Most patients with essential thrombocythemia or primary myelofibrosis that was not associated with a JAK2 or MPL alteration carried a somatic mutation in CALR. The clinical course in these patients was more indolent than that in patients with the JAK2 V617F

  7. Solenopsis invicta virus 3: mapping of structural proteins, ribosomal frameshifting, and similarities to Acyrthosiphon pisum virus and kelp fly virus

    Science.gov (United States)

    Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the stru...

  8. Novel mutation in ATP13A2 widens the spectrum of Kufor-Rakeb syndrome (PARK9)

    DEFF Research Database (Denmark)

    Eiberg, H; Hansen, L; Korbo, L;

    2012-01-01

    caused by mutations in ATP13A2. We describe six patients from a consanguineous Greenlandic Inuit family, homozygous for a novel frame-shift mutation in exon 22 of ATP13A2 (c.2473C>AA, p.Leu825AsnfsX32). Disease onset varied from 10 to 29 years of age, the latest reported, and the clinical features were...

  9. Monitoring ribosomal frameshifting as a platform to screen anti-riboswitch drug candidates.

    Science.gov (United States)

    Yu, Chien-Hung; Olsthoorn, René C L

    2015-01-01

    Riboswitches are regions within mRNAs that can regulate downstream expression of genes through metabolite-induced alteration of their secondary structures. Due to the significant association of bacterial essential or virulence genes, bacterial riboswitches have become promising targets for development of putative antibacterial drugs. However, most of the screening systems to date are based on in vitro or bacterial systems, lacking the possibility to preobserve the adverse effects to the host's translation machinery. This chapter describes a novel screening method based on monitoring the riboswitch-induced -1 ribosomal frameshifting (-1 FS) efficiency in a mammalian cell-free lysate system using preQ1 class-I (preQ1-I) riboswitches as model target.

  10. The mitochondrial genome of the hexactinellid sponge Aphrocallistes vastus: Evidence for programmed translational frameshifting

    Directory of Open Access Journals (Sweden)

    Leys Sally P

    2008-01-01

    Full Text Available Abstract Background Mitochondrial genomes (mtDNA of numerous sponges have been sequenced as part of an ongoing effort to resolve the class-level phylogeny of the Porifera, as well as to place the various lower metazoan groups on the animal-kingdom tree. Most recently, the partial mtDNA of two glass sponges, class Hexactinellida, were reported. While previous phylogenetic estimations based on these data remain uncertain due to insufficient taxon sampling and accelerated rates of evolution, the mtDNA molecules themselves reveal interesting traits that may be unique to hexactinellids. Here we determined the first complete mitochondrial genome of a hexactinellid sponge, Aphrocallistes vastus, and compared it to published poriferan mtDNAs to further describe characteristics specific to hexactinellid and other sponge mitochondrial genomes. Results The A. vastus mtDNA consisted of a 17,427 base pair circular molecule containing thirteen protein-coding genes, divergent large and small subunit ribosomal RNAs, and a reduced set of 18 tRNAs. The A. vastus mtDNA showed a typical hexactinellid nucleotide composition and shared a large synteny with the other sequenced glass sponge mtDNAs. It also contained an unidentified open reading frame and large intergenic space region. Two frameshifts, in the cox3 and nad6 genes, were not corrected by RNA editing, but rather possessed identical shift sites marked by the extremely rare tryptophan codon (UGG followed by the common glycine codon (GGA in the +1 frame. Conclusion Hexactinellid mtDNAs have shown similar trends in gene content, nucleotide composition, and codon usage, and have retained a large gene syntenty. Analysis of the mtDNA of A. vastus has provided evidence diagnostic for +1 programmed translational frameshifting, a phenomenon disparately reported throughout the animal kingdom, but present in the hexactinellid mtDNAs that have been sequenced to date.

  11. Improve homology search sensitivity of PacBio data by correcting frameshifts.

    Science.gov (United States)

    Du, Nan; Sun, Yanni

    2016-09-01

    Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    Directory of Open Access Journals (Sweden)

    Gregory N. Thyssen

    2016-06-01

    Full Text Available Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes.

  13. A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2009-02-01

    Full Text Available Abstract Japanese encephalitis, West Nile, Usutu and Murray Valley encephalitis viruses form a tight subgroup within the larger Flavivirus genus. These viruses utilize a single-polyprotein expression strategy, resulting in ~10 mature proteins. Plotting the conservation at synonymous sites along the polyprotein coding sequence reveals strong conservation peaks at the very 5' end of the coding sequence, and also at the 5' end of the sequence encoding the NS2A protein. Such peaks are generally indicative of functionally important non-coding sequence elements. The second peak corresponds to a predicted stable pseudoknot structure whose biological importance is supported by compensatory mutations that preserve the structure. The pseudoknot is preceded by a conserved slippery heptanucleotide (Y CCU UUU, thus forming a classical stimulatory motif for -1 ribosomal frameshifting. We hypothesize, therefore, that the functional importance of the pseudoknot is to stimulate a portion of ribosomes to shift -1 nt into a short (45 codon, conserved, overlapping open reading frame, termed foo. Since cleavage at the NS1-NS2A boundary is known to require synthesis of NS2A in cis, the resulting transframe fusion protein is predicted to be NS1-NS2AN-term-FOO. We hypothesize that this may explain the origin of the previously identified NS1 'extension' protein in JEV-group flaviviruses, known as NS1'.

  14. A natural frameshift mutation in Campanula EIL2 correlates with ethylene insensitivity in flowers

    DEFF Research Database (Denmark)

    Jensen, Line; Hegelund, Josefine Nymark; Olsen, Andreas

    2016-01-01

    BACKGROUND: The phytohormone ethylene plays a central role in development and senescence of climacteric flowers. In ornamental plant production, ethylene sensitive plants are usually protected against negative effects of ethylene by application of chemical inhibitors. In Campanula, flowers...... are sensitive to even minute concentrations of ethylene. RESULTS: Monitoring flower longevity in three Campanula species revealed C. portenschlagiana (Cp) as ethylene sensitive, C. formanekiana (Cf) with intermediate sensitivity and C. medium (Cm) as ethylene insensitive. We identified key elements in ethylene...

  15. Improved metastasis-free survival in nonadjuvantly treated postmenopausal breast cancer patients with chemokine receptor 5 del32 frameshift mutations

    NARCIS (Netherlands)

    Span, P.N.; Pollakis, G.; Paxton, W.A.; Sweep, F.C.; Foekens, J.A.; Martens, J.W.; Sieuwerts, A.M.; Laarhoven, H.W. van

    2015-01-01

    The CC-chemokine receptor CCR5 has been associated with cancer progression and metastasis. CCR5 blockers such as Maraviroc are tested in metastatic cancer patients. A mutant allele of CCR5, CCR5-delta32 (CCR5del32), which encodes for a protein with a trans-dominant negative effect on the wildtype pr

  16. Genetic subgroup of small ruminant lentiviruses that infects sheep homozygous for TMEM154 frameshift deletion mutation A4delta53

    Science.gov (United States)

    Small Ruminant Lentivirus (SRLV) infections of sheep are influenced by genetics on both the host and pathogen sides. Genetic variation in the ovine transmembrane 154 (TMEM154) gene associates with infection susceptibility, and distinct SRLV genetic subtypes infect sheep in association with their TM...

  17. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome

    DEFF Research Database (Denmark)

    White, Janson; Mazzeu, Juliana F; Hoischen, Alexander

    2015-01-01

    Robinow syndrome is a genetically heterogeneous disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features and for which both autosomal-recessive and autosomal-dominant inheritance patterns have been described. Causative variants in the non-canonical ...

  18. Mutation analysis and prenatal diagnosis of EXT1 gene mutations in Chinese patients with multiple osteochondromas

    Institute of Scientific and Technical Information of China (English)

    ZHU Hai-yan; HU Ya-li; YANG Ying; WU Xing; ZHU Rui-fang; ZHU Xiang-yu; DUAN Hong-lei; ZHANG Ying; ZHOU Jin-yong

    2011-01-01

    Background Multiple osteochondromas (MO), an inherited autosomal dominant disorder, is characterized by the presence of multiple exostoses on the long bones. MO is caused by mutations in the EXT1 or EXT2 genes which encode glycosyltransferases implicated in heparin sulfate biosynthesis.Methods In this study, efforts were made to identify the underlying disease-causing mutations in patients from two MO families in China.Results Two novel EXT1 gene mutations were identified and no mutation was found in EXT2 gene. The mutation c.497T>A in exon 1 of the EXT1 gene was cosegregated with the disease phenotype in family 1 and formed a stop codon at amino acid site 166. The fetus of the proband was diagnosed negative. In family 2, the mutation c. 1430-1431delCC in exon 6 of the EXT1 gene would cause frameshift and introduce a premature stop codon after the reading frame being open for 42 amino acids. The fetus of this family inherited this mutation from the father.Conclusions Mutation analysis of two MO families in this study demonstrates its further application in MO genetic counseling and prenatal diagnosis.

  19. New mutation detection system of repackaged λ gt11 DNA containing LacZ gene

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; CAO Jia; WU Tao; YANG Lu-jun; SUN Hua-ming; YANG Ming-jie; QIAN Ping

    2002-01-01

    Objective: To establish a reformative detection system which has sound ability of providing information on molecular mutagenesis spectrum and the specificity of detection system of repackaged λ phage.Methods: LacZ gene, as mutational target gene and reporter gene, was applied into the detection system.The λ gt11 DNA treated with ENU (1-ethyl-1-nitrosourea) and 9-AA (9-aminoacridine) was repackaged in vitro. The packaged λ phage was then grown in E. coli Y1090 on a selective plate containing X-gel and IPTG. The survival and mutation frequencies were determined by counting the clear-plaque and blue-plaque,and the molecular mutation mechanism was studied by extracting and sequencing the LacZ gene of mutants.Results: The survival of repackaged λ phages treated with 9-AA and ENU apparently decreased in consistent dose-dependence. The mutation frequency of clear-plaque mutants showed a linear dose-related increase. The predominant mutations induced by 9-AA were ±1 frameshift mutation, and 9-AA induced -1 frameshift was much more effective than induced + 1 frameshift. 9-AA also induced substitutions with transversions more common. ENU-induced mutations were chiefly occurred at G: C sites. Substitutions induced by ENU were mainly G: C→A: T, G: C→C: G and A: T→T: A transversion. Conclusion: Mutation detection system of λgt11 DNA containing LacZ gene is proven better than that of λDNA without LacZ gene. The combination of survival, mutant frequency and sequence spectrum can not only increase the sensitivity and specificity of the new method, but also provide a better understanding of the molecular mechanism of mutation for ultimate extrapolation to risk assessment.

  20. Thymidine selectively enhances growth suppressive effects of camptothecin/irinotecan in MSI+ cells and tumors containing a mutation of MRE11

    DEFF Research Database (Denmark)

    Rodriguez, Rene; Hansen, Lasse Tengbjerg; Phear, Geraldine;

    2008-01-01

    is not a direct result of MMR, p53, or p21 status. However MMR-deficient cell lines containing an intronic frameshift mutation of MRE11 show greatest sensitivity to these agents. Increased sensitivity to this combination is also evident in vivo as thymidine enhances irinotecan-induced growth suppression of MMR...

  1. The silent mutation nucleotide 744 G --> A, Lys172Lys, in exon 6 of BRCA2 results in exon skipping

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Steffensen, Ane Y; Jønson, Lars

    2009-01-01

    Germ-line mutations in BRCA2 predispose to breast and ovarian cancer. Mutations are widespread throughout the gene and include disease-causing mutations as frameshift, nonsense, splicing mutations and large genomic rearrangements. However a large number of mutations, including missense, silent...... and intron variants are of unknown significance. Here, we describe the functional characterization of a silent mutation (nucleotide 744 G --> A/c.516 G --> A, Lys172Lys) in exon 6 of BRCA2 in a Danish family with breast and ovarian cancer. Exon trapping analysis showed that the mutation results in skipping...... of exon 6 and/or both exon 5 and 6, which was verified by RT-PCR analysis on RNA isolated from whole blood of the affected patient. We therefore conclude that the BRCA2 silent mutation Lys172Lys is a disease-causing mutation....

  2. Identification of a Danish breast/ovarian cancer family double heterozygote for BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Steffensen, Ane Y; Jønson, Lars; Ejlertsen, Bent;

    2010-01-01

    Mutations in the two breast cancer susceptibility genes BRCA1 and BRCA2 are associated with increased risk of breast and ovarian cancer. Patients with mutations in both genes are rarely reported and often involve Ashkenazi founder mutations. Here we report the first identification of a Danish...... breast and ovarian cancer family heterozygote for mutations in the BRCA1 and BRCA2 genes. The BRCA1 nucleotide 5215G > A/c.5096G > A mutation results in the missense mutation Arg1699Gln, while the BRCA2 nucleotide 859 + 4A > G/c.631 + 4A > G is novel. Exon trapping experiments and reverse transcriptase...... (RT)-PCR analysis revealed that the BRCA2 mutation results in skipping of exon 7, thereby introducing a frameshift and a premature stop codon. We therefore classify the mutation as disease causing. Since the BRCA1 Arg1699Gln mutation is also suggested to be disease-causing, we consider this family...

  3. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I.

    Directory of Open Access Journals (Sweden)

    Seung Bum Park

    Full Text Available Hepatitis C virus (HCV actively evades host interferon (IFN responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP and poly(IC. The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.

  4. A novel progranulin mutation causing frontotemporal lobar degeneration with heterogeneous phenotypic expression.

    Science.gov (United States)

    Rossi, Giacomina; Piccoli, Elena; Benussi, Luisa; Caso, Francesca; Redaelli, Veronica; Magnani, Giuseppe; Binetti, Giuliano; Ghidoni, Roberta; Perani, Daniela; Giaccone, Giorgio; Tagliavini, Fabrizio

    2011-01-01

    Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder characterized by behavioural disturbances and cognitive decline. Here we describe an Italian family with FTLD showing remarkable phenotypic heterogeneity. Based on low plasma levels of progranulin, we analyzed the progranulin gene (GRN) in two patients with early onset and found the novel frame-shift mutation T278SfsX7. mRNA analysis confirmed the null effect of the mutation. The patients were homozygous for H1 MAPT haplotype, a disease modifier factor that can account for early age at onset. Being predictive for GRN null mutations, plasma progranulin dosage should be included in diagnostic work-up of dementia.

  5. Rare mutations predisposing to familial adenomatous polyposis in Greek FAP patients

    Directory of Open Access Journals (Sweden)

    Danielidis Ioannis

    2005-04-01

    Full Text Available Abstract Background Familial Adenomatous Polyposis (FAP is caused by germline mutations in the APC (Adenomatous Polyposis Coli gene. The vast majority of APC mutations are point mutations or small insertions / deletions which lead to truncated protein products. Splicing mutations or gross genomic rearrangements are less common inactivating events of the APC gene. Methods In the current study genomic DNA or RNA from ten unrelated FAP suspected patients was examined for germline mutations in the APC gene. Family history and phenotype were used in order to select the patients. Methods used for testing were dHPLC (denaturing High Performance Liquid Chromatography, sequencing, MLPA (Multiplex Ligation – dependent Probe Amplification, Karyotyping, FISH (Fluorescence In Situ Hybridization and RT-PCR (Reverse Transcription – Polymerase Chain Reaction. Results A 250 Kbp deletion in the APC gene starting from intron 5 and extending beyond exon 15 was identified in one patient. A substitution of the +5 conserved nucleotide at the splice donor site of intron 9 in the APC gene was shown to produce frameshift and inefficient exon skipping in a second patient. Four frameshift mutations (1577insT, 1973delAG, 3180delAAAA, 3212delA and a nonsense mutation (C1690T were identified in the rest of the patients. Conclusion Screening for APC mutations in FAP patients should include testing for splicing defects and gross genomic alterations.

  6. Natural selection retains overrepresented out-of-frame stop codons against frameshift peptides in prokaryotes

    Directory of Open Access Journals (Sweden)

    Tse Herman

    2010-09-01

    Full Text Available Abstract Background Out-of-frame stop codons (OSCs occur naturally in coding sequences of all organisms, providing a mechanism of early termination of translation in incorrect reading frame so that the metabolic cost associated with frameshift events can be reduced. Given such a functional significance, we expect statistically overrepresented OSCs in coding sequences as a result of a widespread selection. Accordingly, we examined available prokaryotic genomes to look for evidence of this selection. Results The complete genome sequences of 990 prokaryotes were obtained from NCBI GenBank. We found that low G+C content coding sequences contain significantly more OSCs and G+C content at specific codon positions were the principal determinants of OSC usage bias in the different reading frames. To investigate if there is overrepresentation of OSCs, we modeled the trinucleotide and hexanucleotide biases of the coding sequences using Markov models, and calculated the expected OSC frequencies for each organism using a Monte Carlo approach. More than 93% of 342 phylogenetically representative prokaryotic genomes contain excess OSCs. Interestingly the degree of OSC overrepresentation correlates positively with G+C content, which may represent a compensatory mechanism for the negative correlation of OSC frequency with G+C content. We extended the analysis using additional compositional bias models and showed that lower-order bias like codon usage and dipeptide bias could not explain the OSC overrepresentation. The degree of OSC overrepresentation was found to correlate negatively with the optimal growth temperature of the organism after correcting for the G+C% and AT skew of the coding sequence. Conclusions The present study uses approaches with statistical rigor to show that OSC overrepresentation is a widespread phenomenon among prokaryotes. Our results support the hypothesis that OSCs carry functional significance and have been selected in the course of

  7. Mutation induction in Haemophilus influenzae by ICR-191 II. Role of DNA replication and repair

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, R.F.; Perdue, S.W.

    1981-01-01

    Evidence is presented to show that presumptive frameshift mutations induced in Haemophilus influenzae by ICR-191 are fixed very repidly, essentially at the time of treatment. DNA synthesis during treatment is essential for fixation, but DNA synthesis after treatment has no effect. The conclusion is drawn that the mutagen acts at the replication fork, possibly to stabilize misannealings arising in association with the discontinuities in the newly synthesized DNA. (JMT)

  8. A Genome-Wide Analysis of RNA Pseudoknots That Stimulate Efficient −1 Ribosomal Frameshifting or Readthrough in Animal Viruses

    Directory of Open Access Journals (Sweden)

    Xiaolan Huang

    2013-01-01

    Full Text Available Programmed −1 ribosomal frameshifting (PRF and stop codon readthrough are two translational recoding mechanisms utilized by some RNA viruses to express their structural and enzymatic proteins at a defined ratio. Efficient recoding usually requires an RNA pseudoknot located several nucleotides downstream from the recoding site. To assess the strategic importance of the recoding pseudoknots, we have carried out a large scale genome-wide analysis in which we used an in-house developed program to detect all possible H-type pseudoknots within the genomic mRNAs of 81 animal viruses. Pseudoknots are detected downstream from ~85% of the recoding sites, including many previously unknown pseudoknots. ~78% of the recoding pseudoknots are the most stable pseudoknot within the viral genomes. However, they are not as strong as some designed pseudoknots that exhibit roadblocking effect on the translating ribosome. Strong roadblocking pseudoknots are not detected within the viral genomes. These results indicate that the decoding pseudoknots have evolved to possess optimal stability for efficient recoding. We also found that the sequence at the gag-pol frameshift junction of HIV1 harbors potential elaborated pseudoknots encompassing the frameshift site. A novel mechanism is proposed for possible involvement of the elaborated pseudoknots in the HIV1 PRF event.

  9. De novo nonsense and frameshift variants of TCF20 in individuals with intellectual disability and postnatal overgrowth.

    Science.gov (United States)

    Schäfgen, Johanna; Cremer, Kirsten; Becker, Jessica; Wieland, Thomas; Zink, Alexander M; Kim, Sarah; Windheuser, Isabelle C; Kreiß, Martina; Aretz, Stefan; Strom, Tim M; Wieczorek, Dagmar; Engels, Hartmut

    2016-12-01

    Recently, germline variants of the transcriptional co-regulator gene TCF20 have been implicated in the aetiology of autism spectrum disorders (ASD). However, the knowledge about the associated clinical picture remains fragmentary. In this study, two individuals with de novo TCF20 sequence variants were identified in a cohort of 313 individuals with intellectual disability of unknown aetiology, which was analysed by whole exome sequencing using a child-parent trio design. Both detected variants - one nonsense and one frameshift variant - were truncating. A comprehensive clinical characterisation of the patients yielded mild intellectual disability, postnatal tall stature and macrocephaly, obesity and muscular hypotonia as common clinical signs while ASD was only present in one proband. The present report begins to establish the clinical picture of individuals with de novo nonsense and frameshift variants of TCF20 which includes features such as proportionate overgrowth and muscular hypotonia. Furthermore, intellectual disability/developmental delay seems to be fully penetrant amongst known individuals with de novo nonsense and frameshift variants of TCF20, whereas ASD is shown to be incompletely penetrant. The transcriptional co-regulator gene TCF20 is hereby added to the growing number of genes implicated in the aetiology of both ASD and intellectual disability. Furthermore, such de novo variants of TCF20 may represent a novel differential diagnosis in the overgrowth syndrome spectrum.

  10. A negative feedback modulator of antigen processing evolved from a frameshift in the cowpox virus genome.

    Directory of Open Access Journals (Sweden)

    Jiacheng Lin

    2014-12-01

    Full Text Available Coevolution of viruses and their hosts represents a dynamic molecular battle between the immune system and viral factors that mediate immune evasion. After the abandonment of smallpox vaccination, cowpox virus infections are an emerging zoonotic health threat, especially for immunocompromised patients. Here we delineate the mechanistic basis of how cowpox viral CPXV012 interferes with MHC class I antigen processing. This type II membrane protein inhibits the coreTAP complex at the step after peptide binding and peptide-induced conformational change, in blocking ATP binding and hydrolysis. Distinct from other immune evasion mechanisms, TAP inhibition is mediated by a short ER-lumenal fragment of CPXV012, which results from a frameshift in the cowpox virus genome. Tethered to the ER membrane, this fragment mimics a high ER-lumenal peptide concentration, thus provoking a trans-inhibition of antigen translocation as supply for MHC I loading. These findings illuminate the evolution of viral immune modulators and the basis of a fine-balanced regulation of antigen processing.

  11. Dissecting non-canonical interactions in frameshift-stimulating mRNA pseudoknots

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, Peter V. [University of Illinois at Urbana-Champaign, Department of Physics (United States); Giedroc, David P. [2128 TAMU, Texas A and M University, Department of Biochemistry and Biophysics (United States); Hennig, Mirko [Scripps Research Institute, MB33, Department of Molecular Biology (United States)], E-mail: hennig@musc.edu

    2006-07-15

    A variety of powerful NMR experiments have been introduced over the last few years that allow for the direct identification of different combinations of donor and acceptor atoms involved in hydrogen bonds in biomolecules. This ability to directly observe tertiary structural hydrogen bonds in solution tremendously facilitates structural studies of nucleic acids. We show here that an adiabatic HNN-COSY pulse scheme permits observation and measurement of J(N,N) couplings for nitrogen sites that are separated by up to 140 ppm in a single experiment at a proton resonance frequency of 500 MHz. Crucial hydrogen bond acceptor sites in nucleic acids, such as cytidine N3 nitrogens, can be unambiguously identified even in the absence of detectable H41 and H42 amino protons using a novel triple-resonance two-dimensional experiment, denoted H5(C5C4)N3. The unambiguous identification of amino nitrogen donor and aromatic nitrogen acceptor sites associated with both major groove as well as minor groove triple base pairs reveal the details of hydrogen bonding networks that stabilize the complex architecture of frameshift-stimulating mRNA pseudoknots. Another key tertiary interaction involving a 2'-OH hydroxyl proton that donates a hydrogen bond to an aromatic nitrogen acceptor in a cis Watson-Crick/sugar edge interaction can also be directly detected using a quantitative J(H,N) {sup 1}H,{sup 15}N-HSQC experiment.

  12. CAG tract of MJD-1 may be prone to frameshifts causing polyalanine accumulation.

    Science.gov (United States)

    Gaspar, C; Jannatipour, M; Dion, P; Laganière, J; Sequeiros, J; Brais, B; Rouleau, G A

    2000-08-12

    Machado-Joseph disease (MJD) is one of several disorders caused by the expansion of a coding CAG repeat (exp-CAG). The presence of intranuclear inclusions (INIs) in patients and cellular models of exp-CAG-associated diseases has lead to a nuclear toxicity model. Similar INIs are found in oculopharyngeal muscular dystrophy, which is caused by a short expansion of an alanine-encoding GCG repeat. Here we propose that transcriptional or translational frameshifts occurring within expanded CAG tracts result in the production and accumulation of polyalanine-containing mutant proteins. We hypothesize that these alanine polymers deposit in cells forming INIs and may contribute to nuclear toxicity. We show evidence that supports our hypothesis in lymphoblast cells from MJD patients, as well as in pontine neurons of MJD brain and in in vitro cell culture models of the disease. We also provide evidence that alanine polymers alone are harmful to cells and predict that a similar pathogenic mechanism may occur in the other CAG repeat disorders.

  13. Salt Effects on the Thermodynamics of a Frameshifting RNA Pseudoknot under Tension

    CERN Document Server

    Hori, Naoto; Thirumalai, D

    2016-01-01

    One of the key factors in -1 programmed ribosomal frameshifting (PRF) is a pseudoknot (PK) RNA. A number of single molecule experiments have been performed on PKs to decipher the mechanism of PRF. Motivated by the experiments, we performed simulations to describe the response of a PK over a range of mechanical forces ($f$s) and monovalent salt concentrations ($C$s). The coarse-grained simulations quantitatively reproduces the multistep thermal melting. The free energy changes obtained in simulations are in excellent agreement with experiments, thus validating our model. The predicted phase diagram shows that a sequence of structural transitions, populating distinct intermediates, occur as $f$ and $C$ are changed. The stem-loop tertiary interactions rupture first followed by unfolding of the $3^{\\prime}$-end hairpin ($\\textrm{U-I}$). Finally, the $5^{\\prime}$-end hairpin unravels producing a stretched state ($\\textrm{I-F}$). A theoretical analysis of the phase boundaries shows that the critical force for ruptu...

  14. Screening of 1331 Danish breast and/or ovarian cancer families identified 40 novel BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Jønson, Lars; Steffensen, Ane Y;

    2011-01-01

    Germ-line mutations in the tumour suppressor genes BRCA1 and BRCA2 predispose to breast and ovarian cancer. Since 1999 we have performed mutational screening of breast and/or ovarian cancer patients in East Denmark. During this period we have identified 40 novel sequence variations in BRCA1...... and BRCA2 in high risk breast and/or ovarian cancer families. The mutations were detected via pre-screening using dHPLC or high-resolution melting and direct sequencing. We identified 16 variants in BRCA1, including 9 deleterious frame-shift mutations, 2 intronic variants, 4 missense mutations, and 1...... interpreted as pathogenic, 3 missense mutations were suggested to be pathogenic based on in silico analysis, 6 mutations were suggested to be benign since they were identified in patients together with a well-known disease-causing BRCA1/BRCA2 mutation, while 12 were variants of unknown significance....

  15. Two novel NIPBL gene mutations in Chinese patients with Cornelia de Lange syndrome.

    Science.gov (United States)

    Mei, Libin; Liang, Desheng; Huang, Yanru; Pan, Qian; Wu, Lingqian

    2015-01-25

    Cornelia de Lange syndrome (CdLS) is a dominantly inherited developmental disorder characterized by distinctive facial features, mental retardation, and upper limb defects, with the involvement of multiple organs and systems. To date, mutations have been identified in five genes responsible for CdLS: NIPBL, SMC1A, SMC3, RAD21, and HDAC8. Here, we present a clinical and molecular characterization of five unrelated Chinese patients whose clinical presentation is consistent with that of CdLS. There were no chromosomal abnormalities in the five children. In three patients, DNA sequencing revealed a previously reported frameshift mutation c.2479delA (p.Arg827GlyfsX20), and two novel mutations including a heterozygous mutation c.6272 G>T (p.Cys2091Phe) and a frameshift mutation c.1672delA (p.Thr558LeufsX7) in NIPBL. For the remaining patients, large deletions and/or duplications within the NIPBL gene were excluded as playing a role in the pathogenesis, by Multiplex Ligation-dependent Probe Amplification (MLPA) analysis. These findings broaden the mutation spectrum of NIPBL and further our understanding of the diverse and variable effects of NIPBL mutations on CdLS. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang Yu-Fen

    2006-04-01

    Full Text Available Abstract Background The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. Methods The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE, followed by direct DNA sequencing to identify the mutations. Results Fourteen somatic mtDNA mutations were identified in 55% (11/20 of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64% were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. Conclusion Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations.

  17. Novel mutations in PXDN cause microphthalmia and anterior segment dysgenesis.

    Science.gov (United States)

    Choi, Alex; Lao, Richard; Ling-Fung Tang, Paul; Wan, Eunice; Mayer, Wasima; Bardakjian, Tanya; Shaw, Gary M; Kwok, Pui-Yan; Schneider, Adele; Slavotinek, Anne

    2015-03-01

    We used exome sequencing to study a non-consanguineous family with two children who had anterior segment dysgenesis, sclerocornea, microphthalmia, hypotonia and developmental delays. Sanger sequencing verified two Peroxidasin (PXDN) mutations in both sibs--a maternally inherited, nonsense mutation, c.1021C>T predicting p.(Arg341*), and a paternally inherited, 23-basepair deletion causing a frameshift and premature protein truncation, c.2375_2397del23, predicting p.(Leu792Hisfs*67). We re-examined exome data from 20 other patients with structural eye defects and identified two additional PXDN mutations in a sporadic male with bilateral microphthalmia, cataracts and anterior segment dysgenesis--a maternally inherited, frameshift mutation, c.1192delT, predicting p.(Tyr398Thrfs*40) and a paternally inherited, missense substitution that was predicted to be deleterious, c.947 A>C, predicting p.(Gln316Pro). Mutations in PXDN were previously reported in three families with congenital cataracts, microcornea, sclerocornea and developmental glaucoma. The gene is expressed in corneal epithelium and is secreted into the extracellular matrix. Defective peroxidasin has been shown to impair sulfilimine bond formation in collagen IV, a constituent of the basement membrane, implying that the eye defects result because of loss of basement membrane integrity in the developing eye. Our finding of a broader phenotype than previously appreciated for PXDN mutations is typical for exome-sequencing studies, which have proven to be highly effective for mutation detection in patients with atypical presentations. We conclude that PXDN sequencing should be considered in microphthalmia with anterior segment dysgenesis.

  18. Twelve novel Atm mutations identified in Chinese ataxia telangiectasia patients.

    Science.gov (United States)

    Huang, Yu; Yang, Lu; Wang, Jianchun; Yang, Fan; Xiao, Ying; Xia, Rongjun; Yuan, Xianhou; Yan, Mingshan

    2013-09-01

    Ataxia telangiectasia (A-T) is an autosomal recessive disease characterized mainly by progressive cerebellar ataxia, oculocutaneous telangiectasia, and immunodeficiency. This disease is caused by mutations of the ataxia telangiectasia mutated (Atm) gene. More than 500 Atm mutations that are responsible for A-T have been identified so far. However, there have been very few A-T cases reported in China, and only two Chinese A-T patients have undergone Atm gene analysis. In order to systemically investigate A-T in China and map their Atm mutation spectrum, we recruited eight Chinese A-T patients from six unrelated families nationwide. Using direct sequencing of genomic DNA and the multiplex ligation-dependent probe amplification, we identified twelve pathogenic Atm mutations, including one missense, four nonsense, five frameshift, one splicing, and one large genomic deletion. All the Atm mutations we identified were novel, and no homozygous mutation and founder-effect mutation were found. These results suggest that Atm mutations in Chinese populations are diverse and distinct largely from those in other ethnic areas.

  19. Detection of eight BRCA1 mutations in 10 breast/ovarian cancer families, including 1 family with male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sruewing, J.P.; Brody, L.C.; Erdos, M.R. [National Institute of Health, Bethesda, MD (United States)] [and others

    1995-07-01

    Genetic epidemiological evidence suggests that mutations in BRCA1 may be responsible for approximately one half of early onset familial breast cancer and the majority of familial breast/ovarian cancer. The recent cloning of BRCA1 allows for the direct detection of mutations, but the feasibility of presymptomatic screening for cancer susceptibility is unknown. We analyzed genomic DNA from one affected individual from each of 24 families with at least three cases of ovarian or breast cancer, using SSCP assays. Variant SSCP bands were subcloned and sequenced. Allele-specific oligonucleotide hybridization was used to verify sequence changes and to screen DNA from control individuals. Six frameshift and two missense mutations were detected in 10 different families. A frameshift mutation was detected in a male proband affected with both breast and prostate cancer. A 40-bp deletion was detected in a patient who developed intra-abdominal carcinomatosis 1 year after prophylactic oophorectomy. Mutations were detected throughout the gene, and only one was detected in more than a single family. These results provide further evidence that inherited breast and ovarian cancer can occur as a consequence of a wide array of BRCA1 mutations. These results suggests that development of a screening test for BRCA1 mutations will be technically challenging. The finding of a mutation in a family with male breast cancer, not previously thought to be related to BRCA1, also illustrates the potential difficulties of genetic counseling for individuals known to carry mutations. 37 refs., 1 fig., 1 tab.

  20. Mutation update on the CHD7 gene involved in CHARGE syndrome

    DEFF Research Database (Denmark)

    Janssen, Nicole; Bergman, Jorieke E H; Swertz, Morris A

    2012-01-01

    , for example, the central nervous system, eye, ear, nose, and mediastinal organs, are variably involved. In this article, we review all the currently described CHD7 variants, including 183 new pathogenic mutations found by our laboratories. In total, we compiled 528 different pathogenic CHD7 alterations from......CHD7 is a member of the chromodomain helicase DNA-binding (CHD) protein family that plays a role in transcription regulation by chromatin remodeling. Loss-of-function mutations in CHD7 are known to cause CHARGE syndrome, an autosomal-dominant malformation syndrome in which several organ systems...... 508 previously published patients with CHARGE syndrome and 294 unpublished patients analyzed by our laboratories. The mutations are equally distributed along the coding region of CHD7 and most are nonsense or frameshift mutations. Most mutations are unique, but we identified 94 recurrent mutations...

  1. Novel mutations in the transmembrane natriuretic peptide receptor NPR-B gene in four Indian families with acromesomelic dysplasia, type Maroteaux

    Indian Academy of Sciences (India)

    PRIYANKA SRIVASTAVA; MONI TUTEJA; ASHWIN DALAL; KAUSIK MANDAL; SHUBHA R. PHADKE

    2016-12-01

    Acromesomelic dysplasia, type Maroteaux is a disorder characterized by disproportionate short stature predominantly affecting the middle and distal segments of the upper and lower limbs. It is an autosomal recessive disorder due to mutation in NPR2 gene which impairs skeletal growth. To screen the mutations in the gene NPR2, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected individuals of four families and sequenced. Four homozygous mutations in four different families were identified. These include three novel mutations including a deletion frameshift mutation (p.Cys586Ter), one nonsense mutation (p.Arg479Ter), one missense mutation (p.Val187Asp) and one reported missense mutation (p.Tyr338Cys). The study describes phenotypes of Indian patients and expands the mutation spectrum of the disorder.

  2. A New PKD1 Mutation Discovered in a Chinese Family with Autosomal Polycystic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Zhendi Wang

    2014-04-01

    Full Text Available Background/Aims: Autosomal-dominant polycystic kidney disease (ADPKD, a heterogeneous genetic disorder characterized by massive kidney enlargement and progressive chronic kidney disease, is due to abnormal proliferation of renal tubular epithelium. ADPKD is known to be caused by mutations in PKD1 and PKD2 genes. Methods: In the present study, the mutation analysis of PKD genes was performed in a new Chinese family with ADPKD using Long-Range (LR PCR sequencing and targeted next-generation sequencing (targeted DNA-HiSeq. Results: A unique 28 bp deletion (c.12605_12632del28 in exon 46 of the PKD1 gene was identified in two affected family members by LR PCR method, but not in any unaffected relatives or unrelated controls. Higher accuracy and less missing detection presented in LR PCR method compared with targeted DNA-HiSeq. This mutation c.12605_12632del28 (p.Arg4202ProextX146 resulted in a delayed termination of amino acid code, and was highly speculated pathogenic in this ADPKD family. Moreover, this newly identified frame-shift change was compared to the PKD gene database, but no similar mutation was yet reported. Conclusion: A novel frame-shift mutation, c. 12605_12632del28, in the PKD1 gene was found in a Chinese ADPKD family. All evidence available suggested that it might be the mutation responsible for the disease in that family.

  3. Identification of a novel mutation in the human growth hormone receptor gene (GHR) in a patient with Laron syndrome.

    Science.gov (United States)

    Gennero, Isabelle; Edouard, Thomas; Rashad, Mona; Bieth, Eric; Conte-Aurio, Françoise; Marin, Françoise; Tauber, Maithé; Salles, Jean Pierre; El Kholy, Mohamed

    2007-07-01

    Deletions and mutations in the growth hormone receptor (GHR) gene are the underlying etiology of Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS), an autosomal recessive disease. Most patients are distributed in or originate from Mediterranean and Middle-Eastern countries. Sixty mutations have been described so far. We report a novel mutation in the GHR gene in a patient with LS. Genomic DNA sequencing of exon 5 revealed a TT insertion at nucleotide 422 after codon 122. The insertion resulted in a frameshift introducing a premature termination codon that led to a truncated receptor. We present clinical, biochemical and molecular evidence of LS as the result of this homozygous insertion.

  4. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    Science.gov (United States)

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  5. A mutation-promotive role of nucleotide excision repair in cell cycle-arrested cell populations following UV irradiation.

    Science.gov (United States)

    Heidenreich, Erich; Eisler, Herfried; Lengheimer, Theresia; Dorninger, Petra; Steinboeck, Ferdinand

    2010-01-01

    Growing attention is paid to the concept that mutations arising in stationary, non-proliferating cell populations considerably contribute to evolution, aging, and pathogenesis. If such mutations are beneficial to the affected cell, in the sense of allowing a restart of proliferation, they are called adaptive mutations. In order to identify cellular processes responsible for adaptive mutagenesis in eukaryotes, we study frameshift mutations occurring during auxotrophy-caused cell cycle arrest in the model organism Saccharomyces cerevisiae. Previous work has shown that an exposure of cells to UV irradiation during prolonged cell cycle arrest resulted in an increased incidence of mutations. In the present work, we determined the influence of defects in the nucleotide excision repair (NER) pathway on the incidence of UV-induced adaptive mutations in stationary cells. The mutation frequency was decreased in Rad16-deficient cells and further decreased in Rad16/Rad26 double-deficient cells. A knockout of the RAD14 gene, the ortholog of the human XPA gene, even resulted in a nearly complete abolishment of UV-induced mutagenesis in cell cycle-arrested cells. Thus, the NER pathway, responsible for a normally accurate repair of UV-induced DNA damage, paradoxically is required for the generation and/or fixation of UV-induced frameshift mutations specifically in non-replicating cells.

  6. Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Ionasescu, V.; Ionasescu, R.; Searby, C. [Univ. of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    1996-06-14

    We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these families showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.

  7. GJB2 (Cx26) gene mutations in Chinese patients with congenital sensorineural deafness and a report of one novel mutation

    Institute of Scientific and Technical Information of China (English)

    肖自安; 谢鼎华

    2004-01-01

    Background Mutations in GJB2 gene are a major cause of autosomal recessive congenital hearing loss and the cause in some rare cases of the autosomal dominant form. The purpose of This study was to investigate the frequency and the features of GJB2 mutations in the Chinese patients with congenital sensorineural deafness. Methods Using PCR amplifying the entire coding region of GJB2 gene and direct DNA sequencing to analyze mutations in this gene among unrelated 69 cases with autosomal recessive congenital nonsyndromic deafness and 27 cases of dominant congenital deafness and 35 sporadic cases. We also detected mutations in GJB2 in 100 control subjects with normal hearing.Results 17.4% (12/69) of the probands in the autosomal recessive, 7.4% (2/27) of dominant families and 5.7% (2/35) of the sporadic congenital deafness patients had deafness-causing mutations in GJB2, respectively. Nine types of the mutations in GJB2 were detected in the recessive and sporadic group. They consisted of five types of polymorphism, and four types of deafness-causing mutation with homozygous 35delG in 1 sporadic (1/35), and 235delC frameshift mutation in 1 sporadic (homozygotes) and 10 recessive patients (2 heterozygotes and 8 homozygotes), and homozygous 442G→A missense mutation and homozygous 465T→A nonsense mutation in 1 different recessive proband, respectively. The 465T→A that related to recessive deafness was a novel mutation found by this study. The homozygous (10/69, 14.5%) and the heterozygous (2/69, 2.9%) GJB2 mutation in the recessive patients (12/69, 17.4%) and the homozygotes in the sporadic patient (2/35, 5.7%) all had congenital severe to profound sensorineural hearing loss. 511G→A missense mutation and 299-300delAT frameshift mutation were found in two autosomal dominant congenital deafness families (2/27, 7.4%). The total mutation frequency of GJB2 was 12.2% (16/131) in the Chinese patients with congenital sensorineural deafness and 235delC was the most common

  8. Mutations in the PQBP1 gene prevent its interaction with the spliceosomal protein U5-15 kD.

    Science.gov (United States)

    Mizuguchi, Mineyuki; Obita, Takayuki; Serita, Tomohito; Kojima, Rieko; Nabeshima, Yuko; Okazawa, Hitoshi

    2014-04-30

    A loss-of-function of polyglutamine tract-binding protein 1 (PQBP1) induced by frameshift mutations is believed to cause X-linked mental retardation. However, the mechanism by which structural changes in PQBP1 lead to mental retardation is unknown. Here we present the crystal structure of a C-terminal fragment of PQBP1 in complex with the spliceosomal protein U5-15 kD. The U5-15 kD hydrophobic groove recognizes a YxxPxxVL motif in PQBP1, and mutations within this motif cause a loss-of-function phenotype of PQBP1 in vitro. The YxxPxxVL motif is absent in all PQBP1 frameshift mutants seen in cases of mental retardation. These results suggest a mechanism by which the loss of the YxxPxxVL motif could lead to the functional defects seen in this type of mental retardation.

  9. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2

    Science.gov (United States)

    Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; Aziz, A.; Godfrey, A.L.; Hinton, J.; Martincorena, I.; Van Loo, P.; Jones, A.V.; Guglielmelli, P.; Tarpey, P.; Harding, H.P.; Fitzpatrick, J.D.; Goudie, C.T.; Ortmann, C.A.; Loughran, S.J.; Raine, K.; Jones, D.R.; Butler, A.P.; Teague, J.W.; O’Meara, S.; McLaren, S.; Bianchi, M.; Silber, Y.; Dimitropoulou, D.; Bloxham, D.; Mudie, L.; Maddison, M.; Robinson, B.; Keohane, C.; Maclean, C.; Hill, K.; Orchard, K.; Tauro, S.; Du, M.-Q.; Greaves, M.; Bowen, D.; Huntly, B.J.P.; Harrison, C.N.; Cross, N.C.P.; Ron, D.; Vannucchi, A.M.; Papaemmanuil, E.; Campbell, P.J.; Green, A.R.

    2014-01-01

    BACKGROUND Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. RESULTS Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients. CONCLUSIONS Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with

  10. Spectrum of Glycidyl Methacrylate—induced Mutation in Plasmid—Escherichia coli System

    Institute of Scientific and Technical Information of China (English)

    GAOHui-Lan; ZuoJin; 等

    1994-01-01

    In order to characterize the spectrum of mutation induced by glycidyl methacrylate(GMA),the plasmid pBR322 was modified with this mutagen in vitro.transfected into appropriate Escherichia coli host HB101.The mutants were then screned and defined by DNA sequencing.Sequence analysis reveals that GMA induces two classes of mutations:deletion of the mono-,di-or tetra-base or the insertion of mono-or di-base.Both types of muations,with about 10% frequency,occur predominantly at C.G runs and at 5'-CNCCN-3' sequence,which are hotspots for GMA damage and may cause frameshift muation.

  11. Aldolase B mutations and prevalence of hereditary fructose intolerance in a Polish population.

    Science.gov (United States)

    Gruchota, Jakub; Pronicka, Ewa; Korniszewski, Lech; Stolarski, Bartosz; Pollak, Agnieszka; Rogaszewska, Małgorzata; Płoski, Rafał

    2006-04-01

    We studied 28 Polish hereditary fructose intolerant (HFI) patients (26 unrelated) by direct sequencing of the ALDOB coding region/splice sites. Eight different mutations were found including two novel ones (each found in two unrelated individuals): c.250delC (frameshift) and c.522 C > G (p.Y174X). The most frequent mutation c.448 G > C (p.A150P, 67% of chromosomes) was screened for in a group of 1049 randomly selected unrelated individuals. Eight (1:131) carriers were found allowing to estimate the HFI prevalence in Poland as 1:31,000.

  12. Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts.

    Science.gov (United States)

    Polvi, Anne; Linnankivi, Tarja; Kivelä, Tero; Herva, Riitta; Keating, James P; Mäkitie, Outi; Pareyson, Davide; Vainionpää, Leena; Lahtinen, Jenni; Hovatta, Iiris; Pihko, Helena; Lehesjoki, Anna-Elina

    2012-03-09

    Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies.

  13. Stop-codon and C-terminal nonsense mutations are associated with a lower risk of cardiac events in patients with long QT syndrome type 1

    DEFF Research Database (Denmark)

    Ruwald, Martin H; Xu Parks, Xiaorong; Moss, Arthur J;

    2016-01-01

    BACKGROUND: In long QT syndrome type 1 (LQT1), the location and type of mutations have been shown to affect the clinical outcome. Although haploinsufficiency, including stop-codon and frameshift mutations, has been associated with a lower risk of cardiac events in patients with LQT1, nonsense...... on mutation type and location: missense not located in the high-risk cytoplasmic loop (c-loop) (n = 698), which is used as reference; missense c-loop (n = 192); stop-codon (n = 67); frameshift (n = 39); and others (n = 94). The primary outcome was a composite end point of syncope, aborted cardiac arrest...... in patients with stop-codon mutations (hazard ratio [HR] 0.57; 95% confidence interval [CI] 0.34-0.96; P = .035), but not in patients with frameshift mutations (HR 1.01; 95% CI 0.58-1.77; P = .97). Our data suggest that currents of the most common stop-codon mutant channel (Q530X) were larger than those...

  14. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for ‑1 ribosomal frameshifting stimulation

    Science.gov (United States)

    Zhong, Zhensheng; Yang, Lixia; Zhang, Haiping; Shi, Jiahao; Vandana, J. Jeya; Lam, Do Thuy Uyen Ha; Olsthoorn, René C. L.; Lu, Lanyuan; Chen, Gang

    2016-12-01

    Minus-one ribosomal frameshifting is a translational recoding mechanism widely utilized by many RNA viruses to generate accurate ratios of structural and catalytic proteins. An RNA pseudoknot structure located in the overlapping region of the gag and pro genes of Simian Retrovirus type 1 (SRV-1) stimulates frameshifting. However, the experimental characterization of SRV-1 pseudoknot (un)folding dynamics and the effect of the base triple formation is lacking. Here, we report the results of our single-molecule nanomanipulation using optical tweezers and theoretical simulation by steered molecular dynamics. Our results directly reveal that the energetic coupling between loop 2 and stem 1 via minor-groove base triple formation enhances the mechanical stability. The terminal base pair in stem 1 (directly in contact with a translating ribosome at the slippery site) also affects the mechanical stability of the pseudoknot. The ‑1 frameshifting efficiency is positively correlated with the cooperative one-step unfolding force and inversely correlated with the one-step mechanical unfolding rate at zero force. A significantly improved correlation was observed between ‑1 frameshifting efficiency and unfolding rate at forces of 15–35 pN, consistent with the fact that the ribosome is a force-generating molecular motor with helicase activity. No correlation was observed between thermal stability and ‑1 frameshifting efficiency.

  15. Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3.

    Science.gov (United States)

    Korenke, Georg-Christoph; Eggert, Marlene; Thiele, Holger; Nürnberg, Peter; Sander, Thomas; Steinlein, Ortrud K

    2016-03-01

    Mutations in NPRL3, one of three genes that encode proteins of the mTORC1-regulating GATOR1 complex, have recently been reported to cause cortical dysplasia with focal epilepsy. We have now analyzed a multiplex epilepsy family by whole exome sequencing and identified a frameshift mutation (NM_001077350.2; c.1522delG; p.E508Rfs*46) within exon 13 of NPRL3. This truncating mutation causes an epilepsy phenotype characterized by early childhood onset of mainly nocturnal frontal lobe epilepsy. The penetrance in our family was low (three affected out of six mutation carriers), compared to families with either ion channel- or DEPDC5-associated familial nocturnal frontal lobe epilepsy. The absence of apparent structural brain abnormalities suggests that mutations in NPRL3 are not necessarily associated with focal cortical dysplasia but might be able to cause epilepsy by different, yet unknown pathomechanisms.

  16. Effect of frameshift mutagen acriflavine on control of resistance genes in Acinetobacter baumannii.

    Science.gov (United States)

    Lopes, B S; Hamouda, A; Findlay, J; Amyes, S G B

    2011-02-01

    Acinetobacter baumannii is a Gram-negative pathogenic bacterium that often exhibits a multidrug-resistant phenotype causing infections at various sites of the body and increasingly leading to septicaemic shock. This study evaluated the role of acriflavine, a frameshift mutagen, on the movement of insertion sequence ISAba1 in clinical isolates of A. baumannii, with the focus on changes in expression levels of the bla(ADC) and bla(OXA-51-like) genes. Resistance profiles were assessed with consideration of ISAba1 acting as a promoter upstream of the bla(ADC) or bla(OXA-51-like) gene. ISAba1 movement was observed in the acriflavine mutants Ab153M and Ab1225M. Ab153M exhibited an increase in the MIC values of carbapenems and ceftazidime, with ISAba1 gained upstream of the bla(ADC) and bla(OXA-51-like) genes, correlating with an increase in gene expression. Reduced expression of the 17, 23 and 25 kDa outer-membrane proteins (OMPs) was also observed in Ab153M. There was a significant decrease in MIC values of carbapenems with the loss of ISAba1 upstream of the bla(ADC) and bla(OXA-51-like) genes in strain Ab1225M, and a significant decrease in bla(OXA-51-like) gene expression and, to a lesser extent, in bla(ADC) expression. Ab1225M and a serially subcultured Ab1225 strain (Ab1225s) exhibited overexpression of the 17, 23, 25 and 27 kDa OMPs. There was a decrease in MIC values of the carbapenems and piperacillin/tazobactam but not of ceftazidime in Ab1225s, which had ISAba1 upstream of the bla(ADC) and bla(OXA-51-like) genes. A significant decrease in bla(OXA-51-like) expression was observed in Ab1225s, whereas the expression of bla(ADC) was similar to that in the Ab1225 parental strain. The attenuation in this strain may be due to overexpression of OMPs and it is clear that, even if ISAba1 is present upstream of an antibiotic resistance gene, it may not necessarily contribute towards the overexpression of antibiotic resistance genes (bla(OXA-51-like) in Ab

  17. SERPINB11 frameshift variant associated with novel hoof specific phenotype in Connemara ponies.

    Directory of Open Access Journals (Sweden)

    Carrie J Finno

    2015-04-01

    Full Text Available Horses belong to the order Perissodactyla and bear the majority of their weight on their third toe; therefore, tremendous force is applied to each hoof. An inherited disease characterized by a phenotype restricted to the dorsal hoof wall was identified in the Connemara pony. Hoof wall separation disease (HWSD manifests clinically as separation of the dorsal hoof wall along the weight-bearing surface of the hoof during the first year of life. Parents of affected ponies appeared clinically normal, suggesting an autosomal recessive mode of inheritance. A case-control allelic genome wide association analysis was performed (ncases = 15, ncontrols = 24. Population stratification (λ = 1.48 was successfully improved by removing outliers (ncontrols = 7 identified on a multidimensional scaling plot. A genome-wide significant association was detected on chromosome 8 (praw = 1.37x10-10, pgenome = 1.92x10-5. A homozygous region identified in affected ponies spanned from 79,936,024-81,676,900 bp and contained a family of 13 annotated SERPINB genes. Whole genome next-generation sequencing at 6x coverage of two cases and two controls revealed 9,758 SNVs and 1,230 indels within the ~1.7-Mb haplotype, of which 17 and 5, respectively, segregated with the disease and were located within or adjacent to genes. Additional genotyping of these 22 putative functional variants in 369 Connemara ponies (ncases = 23, ncontrols = 346 and 169 horses of other breeds revealed segregation of three putative variants adjacent or within four SERPIN genes. Two of the variants were non-coding and one was an insertion within SERPINB11 that introduced a frameshift resulting in a premature stop codon. Evaluation of mRNA levels at the proximal hoof capsule (ncases = 4, ncontrols = 4 revealed that SERPINB11 expression was significantly reduced in affected ponies (p<0.001. Carrier frequency was estimated at 14.8%. This study describes the first genetic variant associated with a hoof wall

  18. Identification of 3 novel VHL germ-line mutations in Danish VHL patients

    Directory of Open Access Journals (Sweden)

    Dandanell Mette

    2012-07-01

    Full Text Available Abstract Background von Hippel-Lindau (VHL disease is a hereditary cancer syndrome in which the patients develop retinal and central nervous system hemangioblastomas, pheochromocytomas and clear-cell renal tumors. The autosomal dominant disease is caused by mutations in the VHL gene. Methods VHL mutational analysis was carried out by sequencing of the coding sequence and by multiplex ligation-dependent probe amplification analysis. The functional consequence of the variants was investigated using in silico prediction tools. Results A total of 289 probands suspected of having VHL syndrome have been screened for mutations in the VHL gene. Twenty-six different VHL mutations were identified in 36 families including one in-frame duplication, two frame-shift mutations, four nonsense mutations, twelve missense mutations, three intronic mutations and four large genomic rearrangements. Three of these mutations (c.319 C > T, c.342_343dupGGT and c.520_521dupAA were novel. Conclusions In this study we report the VHL germ-line mutations found in Danish families. We found three novel VHL mutations where two were classified as pathogenic and the latter was classified as a variant of unknown significance. Together, our findings contribute to the interpretation of the potential pathogenicity of VHL germ-line mutations.

  19. TP53 mutation spectrum in smokers and never smoking lung cancer patients

    Directory of Open Access Journals (Sweden)

    Ann Rita Halvorsen

    2016-05-01

    Full Text Available AbstractBackground: TP53 mutations are among the most common mutations found in lung cancers, identified as an independent prognostic factor in many types of cancers. The purpose of this study was to investigate the frequency and prognostic impact of TP53 mutations in never-smokers and in different histological subtypes of lung cancer.Methods: We analysed tumour tissue from 394 non-small cell carcinomas including adenocarcinomas (n=229, squamous cell carcinomas (n=112, large cell carcinomas (n=30 and others (n=23 for mutations in TP53 by the use of Sanger sequencing (n=394 and next generation sequencing (n=100. Results: TP53 mutations were identified in 47.2% of the samples, with the highest frequency (65% of mutations among squamous cell carcinomas. Among never-smokers, 36% carried a TP53 mutation, identified as a significant independent negative prognostic factor in this subgroup. For large cell carcinomas, a significantly prolonged progression free survival was found for those carrying a TP53 mutation. In addition, the frequency of frameshift mutations was doubled in squamous cell carcinomas (20.3% compared to adenocarcinomas (9.1%.Conclusion: TP53 mutation patterns differ between the histological subgroups of lung cancers, as also influenced by smoking history. This indicates that the histological subtypes in lung cancer are genetically different, and that smoking-induced TP53 mutations may have a different biological impact than TP53 mutations occurring in never-smokers.

  20. Mass genetics study of rhodopsin point mutations in retinitis pigmentosa

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-li; YIN Zheng-qin; ZHANG Xue; FU Wei-ling

    2004-01-01

    Objective: To evaluate the incidence and pattern of rhodopsin (RHO) mutations in Chinese patients with retinitis pigmentosa (RP). Methods: Conformation sensitive gel electrophoresis (CSGE) and direct DNA sequencing were applied to detect point mutations that occurred in the five coding exous and splice sites of RHO gene in 98 index patients with RP. Results: Four patients of one ADRP family were found to have a missense mutation at codon 347, Pro347Leu. One late-onset RP patient and her daughter, without clinical expression at present, were discovered to have a novel frameshift mutation at codon 327, Pro327 ( 1-bp del). Neither of the two mutations was found in 100 normal controls. Ala299Ser was found in one RP patient. Two control subjects also had Ala299Ser, suggesting its nonpathogenicity and just single nucleotide polymorphism (SNP). Conclusion: Two RP patients had rhodopsin mutations, thus the expected frequency of RHO mutations in RP is about 2.0% (95% confidence interval: 0.3% - 4.4% ). A highly conserved C-terminal sequence QVS (A)PA was altered due to Pro347Leu and thereby misdirecting rhodopsin to incorrect subcellular location. Loss of all phosphorylation sites at the C-terminus and a highly conserved sequence QVS(A)PA may occur because of Pro327( 1-bp del). To elucidate the predominant biochemical defects in such mutant, transgenic mice and transfected culture cells carrying Pro327( 1-bp del) would be of great value.

  1. Intronic splicing mutations in PTCH1 cause Gorlin syndrome.

    Science.gov (United States)

    Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G

    2014-09-01

    Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.

  2. X-ray-induced mutations in Escherichia coli K-12 strains with altered DNA polymerase I activities

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yuki; Kawata, Masakado; Komura, Jun-ichiro; Ono, Tetsuya; Yamamoto, Kazuo

    2003-07-25

    Spectra of ionizing radiation mutagenesis were determined by sequencing X-ray-induced endogenous tonB gene mutations in Escherichia coli polA strains. We used two polA alleles, the polA1 mutation, defective for Klenow domain, and the polA107 mutation, defective for flap domain. We demonstrated that irradiation of 75 and 50 Gy X-rays could induce 3.8- and 2.6-fold more of tonB mutation in polA1 and polA107 strains, respectively, than spontaneous level. The radiation induced spectrum of 51 tonB mutations in polA1 and 51 in polA107 indicated that minus frameshift, A:T{yields}T:A transversion and G:C{yields}T:A transversion were the types of mutations increased. Previously, we have reported essentially the same X-ray-induced tonB mutation spectra in the wild-type strain. These results indicate that (1) X-rays can induce minus frameshift, A:T{yields}T:A transversion and G:C{yields}T:A transversion in E. coli and (2) presence or absence of polymerase I (PolI) of E. coli does not have any effects on the process of X-ray mutagenesis.

  3. A Patient with an Extra-adrenal Pheochromocytoma and Germ-line SDHB Mutation Accompanied by an Atypical Meningioma.

    Science.gov (United States)

    Shiwa, Tsuguka; Oki, Kenji; Yoneda, Masayasu; Arihiro, Koji; Ohno, Haruya; Kishimoto, Rui; Kohno, Nobuoki

    2015-01-01

    The gene succinate dehydrogenase subunit B (SDHB) encodes a protein comprising part of the mitochondrial complex II, which links the Krebs cycle and the electron-transport chain. Heterozygous germ-line SDHB mutations causes familial pheochromocytoma-paraganglioma syndrome and has also been linked to gastrointestinal stromal tumors, as well as renal cell carcinomas. We herein report a patient with a germ-line SDHB mutation who presented with an atypical meningioma that was identified as originating from a somatic SDHB mutation. The 41-year-old man, who had a surgical history of extra-adrenal pheochromocytoma at 23 years of age, recently developed gait disorder and hypertension. At the radiological examination, a tumor was detected in the cervical spinal cord at the C6-7 intervertebral level. The pathological findings of the isolated tumor were atypical meningioma assessed as grade II according to the World Health Organization criteria. Inherited neoplasia syndrome was suspected because of the patient's history of early-onset extra-adrenal pheochromocytoma and the development of meningioma. We therefore performed molecular genetic analyses. A direct sequence analysis revealed a heterozygous germ-line frameshift mutation in SDHB, specifically an 11-nucleotide deletion, c.305-315delCAATGAACATC, in exon 4, resulting in a frameshift p.A102EfsX12. Additionally, the sequence analysis of the tumor DNA revealed only a mutated allele with a frameshift mutation in the germ-line SDHB. Our findings suggest that SDHB plays an important role in the pathogenesis of meningiomas as well as pheochromocytomas. Therefore, a differential diagnosis for metastatic pheochromocytoma and other new onset tumors, including meningioma, particularly in patients with germ-line SDHB mutations and a previous history of pheochromocytoma should be carefully made.

  4. Two novel RAD21 mutations in patients with mild Cornelia de Lange syndrome-like presentation and report of the first familial case.

    Science.gov (United States)

    Minor, Agata; Shinawi, Marwan; Hogue, Jacob S; Vineyard, Marisa; Hamlin, Damara R; Tan, Christopher; Donato, Kirsten; Wysinger, Latrice; Botes, Shaun; Das, Soma; Del Gaudio, Daniela

    2014-03-10

    Cornelia de Lange syndrome (CdLS) is a developmental disorder characterized by limb reduction defects, characteristic facial features and impaired cognitive development. Mutations in the NIPBL gene predominate; however, mutations in other cohesin complex genes have also been implicated, particularly in atypical and mild CdLS cases. Missense mutations and whole gene deletions in RAD21 have been identified in children with growth retardation, minor skeletal anomalies and facial features that overlap findings in individuals with CdLS. We report the first intragenic deletion and frameshift mutations identified in RAD21 in two patients presenting with atypical CdLS. One patient had an in-frame deletion of exon 13, while the second patient had a c.592_593dup frameshift mutation. The first patient presented with developmental delay, hypospadias, inguinal hernia and dysmorphic features while, the second patient presented with developmental delay, characteristic facial features, hirsutism, and hand and feet anomalies, with the first patient being milder than the second. The in-frame deletion mutation was found to be inherited from the mother who had a history of melanoma and other unspecified medical problems. This study expands the spectrum of RAD21 mutations and emphasizes the clinical utility of performing RAD21 mutation analysis in patients presenting with atypical forms of CdLS. Moreover, the variability of clinical presentation within families and low penetrance of mutations as well as the significance of performing molecular genetic testing in mildly affected patients are discussed. Published by Elsevier B.V.

  5. Screening for SH3TC2 gene mutations in a series of demyelinating recessive Charcot-Marie-Tooth disease (CMT4).

    Science.gov (United States)

    Piscosquito, Giuseppe; Saveri, Paola; Magri, Stefania; Ciano, Claudia; Gandioli, Claudia; Morbin, Michela; Bella, Daniela D; Moroni, Isabella; Taroni, Franco; Pareyson, Davide

    2016-09-01

    Charcot-Marie-Tooth disease type 4C (CMT4C) is an autosomal recessive (AR) demyelinating neuropathy associated to SH3TC2 mutations, characterized by early onset, spine deformities, and cranial nerve involvement. We screened 43 CMT4 patients (36 index cases) with AR inheritance, demyelinating nerve conductions, and negative testing for PMP22 duplication, GJB1 and MPZ mutations, for SH3TC2 mutations. Twelve patients (11 index cases) had CMT4C as they carried homozygous or compound heterozygous mutations in SH3TC2. We found six mutations: three nonsense (p.R1109*, p.R954*, p.Q892*), one splice site (c.805+2T>C), one synonymous variant (p.K93K) predicting altered splicing, and one frameshift (p.F491Lfs*32) mutation. The splice site and the frameshift mutations are novel. Mean onset age was 7 years (range: 1-14). Neuropathy was moderate-to-severe. Scoliosis was present in 11 patients (severe in 4), and cranial nerve deficits in 9 (hearing loss in 7). Scoliosis and cranial nerve involvement are frequent features of this CMT4 subtype, and their presence should prompt the clinician to look for SH3TC2 gene mutations. In our series of undiagnosed CMT4 patients, SH3TC2 mutation frequency is 30%, confirming that CMT4C may be the most common AR-CMT type.

  6. A new mutation (1062 del 16) of iduronate-2-sulfatase gene from a Chinese patient with Hunter syndrome

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To identify the mutations of iduronate-2-sulfatase (IDS) gene, to reveal its mutation features, and to establish a basis for genetic counseling and prenatal gene diagnosis of Hunter syndrome. Methods: Urine glycosaminoglycans (GAGs) assay, PCR and DNA sequencing were performed to detect mutation of IDS gene of the patient and his parents. Results:The result showed that the patient was: DS(++), HS(++), KS(-), CS(-), and that both of his parents were negative. A frame-shift deletion mutation (1062 del 16) was identified in exon 7 of the patient's IDS gene. His parents'genotypes were normal. Conclusion: The patient's mutation was not inherited by his parents but a novel one. The mutation probably altered the primary structure and tertiary structure of IDS enzyme protein remarkably and lowered the activity of IDS enzyme greatly. Therefore it is supposed to be the direct cause of the disorder.

  7. Mutations in the Hepatocyte Nuclear Factor-1β Gene Are Associated with Familial Hypoplastic Glomerulocystic Kidney Disease

    Science.gov (United States)

    Bingham, Coralie; Bulman, Michael P.; Ellard, Sian; Allen, Lisa I. S.; Lipkin, Graham W.; Hoff, William G. van't; Woolf, Adrian S.; Rizzoni, Gianfranco; Novelli, Giuseppe; Nicholls, Anthony J.; Hattersley, Andrew T.

    2001-01-01

    Familial glomerulocystic kidney disease (GCKD) is a dominantly inherited condition characterized by glomerular cysts and variable renal size and function; the molecular genetic etiology is unknown. Mutations in the gene encoding hepatocyte nuclear factor (HNF)–1β have been associated with early-onset diabetes and nondiabetic renal disease—particularly renal cystic disease. We investigated a possible role for the HNF-1β gene in four unrelated GCKD families and identified mutations in two families: a nonsense mutation in exon 1 (E101X) and a frameshift mutation in exon 2 (P159fsdelT). The family members with HNF-1β gene mutations had hypoplastic GCKD and early-onset diabetes or impaired glucose tolerance. We conclude that there is genetic heterogeneity in familial GCKD and that the hypoplastic subtype is a part of the clinical spectrum of the renal cysts and diabetes syndrome that is associated with HNF-1β mutations. PMID:11085914

  8. Role of mutation in Pseudomonas aeruginosa biofilm development.

    Directory of Open Access Journals (Sweden)

    Tim C R Conibear

    Full Text Available The survival of bacteria in nature is greatly enhanced by their ability to grow within surface-associated communities called biofilms. Commonly, biofilms generate proliferations of bacterial cells, called microcolonies, which are highly recalcitrant, 3-dimensional foci of bacterial growth. Microcolony growth is initiated by only a subpopulation of bacteria within biofilms, but processes responsible for this differentiation remain poorly understood. Under conditions of crowding and intense competition between bacteria within biofilms, microevolutionary processes such as mutation selection may be important for growth; however their influence on microcolony-based biofilm growth and architecture have not previously been explored. To study mutation in-situ within biofilms, we transformed Pseudomonas aeruginosa cells with a green fluorescent protein gene containing a +1 frameshift mutation. Transformed P. aeruginosa cells were non-fluorescent until a mutation causing reversion to the wildtype sequence occurs. Fluorescence-inducing mutations were observed in microcolony structures, but not in other biofilm cells, or in planktonic cultures of P. aeruginosa cells. Thus microcolonies may represent important foci for mutation and evolution within biofilms. We calculated that microcolony-specific increases in mutation frequency were at least 100-fold compared with planktonically grown cultures. We also observed that mutator phenotypes can enhance microcolony-based growth of P. aeruginosa cells. For P. aeruginosa strains defective in DNA fidelity and error repair, we found that microcolony initiation and growth was enhanced with increased mutation frequency of the organism. We suggest that microcolony-based growth can involve mutation and subsequent selection of mutants better adapted to grow on surfaces within crowded-cell environments. This model for biofilm growth is analogous to mutation selection that occurs during neoplastic progression and tumor

  9. Beta-thalassaemia mutations in northern India (Delhi).

    Science.gov (United States)

    Madan, N; Sharma, S; Rusia, U; Sen, S; Sood, S K

    1998-03-01

    The present study was undertaken to define beta-thalassaemia mutations prevalent in northern India (Delhi). Forty six children of beta-thalassaemia major and their families were investigated. DNA was extracted from leucocytes and screened for mutations prevalent in the Indian population. These mutations included 619bp deletion, IVS 1-1 (G-T), IVS 1-5 (G-C), frameshift mutations FS 8/9 (+G), FS 41/42 (-CTTT), Codon 16(-C), Codon 15 (G-A), codon 30 (G-C), IVS 1-110 (G-A) and -88 (C-T). 619 bp deletion mutation was detected directly by amplification of DNA by PCR followed by agarose gel electrophoresis. Other mutations were studied by DNA amplification and dot blot hybridization using synthetic normal and mutant oligonucleotide probes labelled at 5' end with gamma-32 P-ATP. Five mutations accounted for all the chromosomes in 46 patients. 619 bp deletion mutation was found to be the commonest mutation (34.8%) followed by IVS 1-5 (G-C) in 22.8 per cent, IVS 1-1 (G-T) in 19.6 per cent, FS 8/9 (+G) in 13 per cent and FS 41/42 (-CTTT) in 9.8 per cent. Nineteen (41.3%) patients were homozygous and 27 (58.7%) double heterozygous for different beta-thalassaemia mutations. This observation of limited number of mutations is significant and will be useful in planning strategies for prenatal diagnosis of beta-thalassaemia in northern India.

  10. Diverse growth hormone receptor gene mutations in Laron syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.A.; Francke, U. (Stanford Univ. School of Medicine, CA (United States)); Gracia, R.; Rosenbloom, A.; Toledo, S.P.A. (Univ. Autonoma, Madrid (Spain)); Chernausek, S. (Children' s Hospital Medical Center, Cincinnati, OH (United States)); Guevara-Aguirre, J. (Institute of Endocrinology, Metabolism, and Reproduction, Quito (Ecuador)); Hopp, M. (Univ. of Witwatersrand, Johannesburg (South Africa)); Rosenbloom, A.; Argente, J. (Univ. of Florida, Gainesville (United States)); Toledo, S.P.A. (Univ. of Sao Paulo (Brazil))

    1993-05-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), the authors analysed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. They amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). They identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71+1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, they determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. The authors conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. 35 refs., 3 figs., 1 tab.

  11. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis.

    Science.gov (United States)

    Park, J; Jeong, D-C; Yoo, J; Jang, W; Chae, H; Kim, J; Kwon, A; Choi, H; Lee, J W; Chung, N-G; Kim, M; Kim, Y

    2016-07-01

    The aim of this study was to describe the mutational characteristics in Korean hereditary spherocytosis (HS) patients. Relevant literatures including genetically confirmed cases with well-documented clinical summaries and relevant information were also reviewed to investigate the mutational gene- or domain-specific laboratory and clinical association. Twenty-five HS patients carried one heterozygous mutation of ANK1 (n = 13) or SPTB (n = 12) but not in SPTA1, SLC4A1, or EPB42. Deleterious mutations including frameshift, nonsense, and splice site mutations were identified in 91% (21/23), and non-hotspot mutations were dispersed across multiple exons. Genotype-phenotype correlation was clarified after combined analysis of the cases and the literature review; anemia was most severe in HS patients with mutations on the ANK1 spectrin-binding domain (p < 0.05), and SPTB mutations in HS patients spared the tetramerization domain in which mutations of hereditary elliptocytosis and pyropoikilocytosis are located. Splenectomy (17/75) was more frequent in ANK1 mutant HS (32%) than in HS with SPTB mutation (10%) (p = 0.028). Aplastic crisis occurred in 32.0% of the patients (8/25; 3 ANK1 and 5 SPTB), and parvovirus B19 was detected in 88%. The study clarifies ANK1 or SPTB mutational characteristics in HS Korean patients. The genetic association of laboratory and clinical aspects suggests comprehensive considerations for genetic-based management of HS.

  12. Clinical, functional and genetic analysis of twenty-four patients with chronic granulomatous disease - identification of eight novel mutations in CYBB and NCF2 genes.

    Science.gov (United States)

    Martel, Cécile; Mollin, Michelle; Beaumel, Sylvain; Brion, Jean Paul; Coutton, Charles; Satre, Véronique; Vieville, Gaëlle; Callanan, Mary; Lefebvre, Christine; Salmon, Alexandra; Pagnier, Anne; Plantaz, Dominique; Bost-Bru, Cécile; Eitenschenck, Laurence; Durieu, Isabelle; Floret, Daniel; Galambrun, Claire; Chambost, Hervé; Michel, Gérard; Stephan, Jean-Louis; Hermine, Olivier; Blanche, Stéphane; Blot, Nathalie; Rubié, Hervé; Pouessel, Guillaume; Drillon-Haus, Stephanie; Conrad, Bernard; Posfay-Barbe, Klara M; Havlicekova, Zuzana; Voskresenky-Baricic, Tamara; Jadranka, Kelecic; Arriazu, Maria Cristina; Garcia, Luis Alberto; Sfaihi, Lamia; Mansour, Lamia Sfaihi Ben; Bordigoni, Pierre; Stasia, Marie José

    2012-10-01

    Chronic granulomatous disease is an inherited disorder in which phagocytes lack a functional NADPH oxidase and cannot produce superoxide anions. The most common form is caused by mutations in CYBB encoding gp91phox. We investigated 24 CGD patients and their families. Twenty-one mutations in CYBB were classified as X91(0), X91(+) or X91(-) variants according to cytochrome b (558) expression. Point mutations in encoding regions represented 50 % of the mutations found in CYBB, splice site mutations 27 %, deletions and insertions 23 %. Eight mutations in CYBB were novel leading to X91(0)CGD cases. Two of these were point mutations: c493G>T and a double mutation c625C>G in exon 6 and c1510C>T in exon 12 leading to a premature stop codon at Gly165 in gp91phox and missense mutations His209Arg/Thr503Ile respectively. Two novel splice mutations in 5'intronic regions of introns 1 and 6 were found. A novel deletion/insertion c1024_1026delCTG/insT results in a frameshift introducing a stop codon at position 346 in gp91phox. The last novel mutation was the insertion of a T at c1373 leading to a frameshift and a premature stop codon at position 484 in gp91phox. For the first time the precise size of two large mutations in CYBB was determined by array-comparative genomic hybridization and carriers' status were evaluated by multiplex ligation-dependent probe amplification assay. No clear correlation between clinical severity and CYBB mutations could be established. Of three mutations in CYBA, NCF1 and NCF2 leading to rare autosomal recessive CGD, one nonsense mutation c29G>A in exon 1 of NCF2 was new.

  13. Mutation of RET gene in Chinese patients with Hirschsprung's disease

    Institute of Scientific and Technical Information of China (English)

    Ji-Cheng Li; Shi-Ping Ding; Ying Song; Min-Ju Li

    2002-01-01

    AIM: To investigate the pathogenic mechanism of Hirschsprung's disease (HD) at the molecular level and to elucidate the relationship between RET oncogene and Chinese patients with HD.METHODS: Exon 13 of RET oncogene from 20 unrelated HD patients was analyzed with polymerase chain reactionsingle strand conformation polymorphism (PCR-SSCP). The positive amplifying products were then sequenced. According to the results of SSCP and DNA sequence, SSCP was done as well for the samples from the family other members of some cases with mutated RET gene.RESULTS: SSCP analysis indicated that mobility abnormality existed in 4 unrelated HD patients. Direct DNA sequence analysis identified a missense mutation, T to G at the nucleotide 18 888 and a frameshift mutation at the nucleotide 18 926 insG. In a HD family, the sicked child and his father were the same heterozygous missense mutation (T to G at nucleotide 18 888).CONCLUSION: Among Chinese HD patients, RET gene mutations may exist in considerable proportion with different patterns. These new discoveries indicate that RET mutations may play an important role in the pathogenesis of unrelated HD in the Chinese population. PCR-SSCP combined with DNA sequence can be used as a tool in the genetic diagnosis of HD.

  14. Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy.

    Science.gov (United States)

    Miyake, Noriko; Fukai, Ryoko; Ohba, Chihiro; Chihara, Takahiro; Miura, Masayuki; Shimizu, Hiroshi; Kakita, Akiyoshi; Imagawa, Eri; Shiina, Masaaki; Ogata, Kazuhiro; Okuno-Yuguchi, Jiu; Fueki, Noboru; Ogiso, Yoshifumi; Suzumura, Hiroshi; Watabe, Yoshiyuki; Imataka, George; Leong, Huey Yin; Fattal-Valevski, Aviva; Kramer, Uri; Miyatake, Satoko; Kato, Mitsuhiro; Okamoto, Nobuhiko; Sato, Yoshinori; Mitsuhashi, Satomi; Nishino, Ichizo; Kaneko, Naofumi; Nishiyama, Akira; Tamura, Tomohiko; Mizuguchi, Takeshi; Nakashima, Mitsuko; Tanaka, Fumiaki; Saitsu, Hirotomo; Matsumoto, Naomichi

    2016-10-06

    We describe four families with affected siblings showing unique clinical features: early-onset (before 1 year of age) progressive diffuse brain atrophy with regression, postnatal microcephaly, postnatal growth retardation, muscle weakness/atrophy, and respiratory failure. By whole-exome sequencing, we identified biallelic TBCD mutations in eight affected individuals from the four families. TBCD encodes TBCD (tubulin folding co-factor D), which is one of five tubulin-specific chaperones playing a pivotal role in microtubule assembly in all cells. A total of seven mutations were found: five missense mutations, one nonsense, and one splice site mutation resulting in a frameshift. In vitro cell experiments revealed the impaired binding between most mutant TBCD proteins and ARL2, TBCE, and β-tubulin. The in vivo experiments using olfactory projection neurons in Drosophila melanogaster indicated that the TBCD mutations caused loss of function. The wide range of clinical severity seen in this neurodegenerative encephalopathy may result from the residual function of mutant TBCD proteins. Furthermore, the autopsied brain from one deceased individual showed characteristic neurodegenerative findings: cactus and somatic sprout formations in the residual Purkinje cells in the cerebellum, which are also seen in some diseases associated with mitochondrial impairment. Defects of microtubule formation caused by TBCD mutations may underlie the pathomechanism of this neurodegenerative encephalopathy. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Novel BRCA1 deleterious mutation (c.1949_1950delTA) in a woman of Senegalese descent with triple-negative early-onset breast cancer.

    Science.gov (United States)

    Diez, Orland; Pelegrí, Amadeu; Gadea, Neus; Gutiérrez-Enríquez, Sara; Masas, Miriam; Tenés, Anna; Bosch, Nina; Balmaña, Judith; Graña, Begoña

    2011-11-01

    Limited information exists regarding BRCA1 and BRCA2 genetic testing and genetic diversity in BRCA1 and BRCA2 in sub-Saharan African populations. We report a novel mutation that consists of a deletion of 2 bp (c.1949_1950delTA) in the exon 11 of the BRCA1 gene. This is a frameshift mutation that causes the disruption of the translational reading frame resulting in a premature stop codon downstream in the BRCA1 protein. The mutation was present in a Senegalese woman with a triple-negative breast tumor and a family history of breast cancer.

  16. RAI1 point mutations, CAG repeat variation, and SNP analysis in non-deletion Smith-Magenis syndrome.

    Science.gov (United States)

    Bi, Weimin; Saifi, G Mustafa; Girirajan, Santhosh; Shi, Xin; Szomju, Barbara; Firth, Helen; Magenis, R Ellen; Potocki, Lorraine; Elsea, Sarah H; Lupski, James R

    2006-11-15

    Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation disorder characterized by distinct craniofacial features and neurobehavioral abnormalities usually associated with an interstitial deletion in 17p11.2. Heterozygous point mutations in the retinoic acid induced 1 gene (RAI1) have been reported in nine SMS patients without a deletion detectable by fluorescent in situ hybridization (FISH), implicating RAI1 haploinsufficiency as the cause of the major clinical features in SMS. All of the reported point mutations are unique and de novo. RAI1 contains a polymorphic CAG repeat and encodes a plant homeo domain (PHD) zinc finger-containing transcriptional regulator. We report a novel RAI1 frameshift mutation, c.3103delC, in a non-deletion patient with many SMS features. The deletion of a single cytosine occurs in a heptameric C-tract (CCCCCCC), the longest mononucleotide repeat in the RAI1 coding region. Interestingly, we had previously reported a frameshift mutation, c.3103insC, in the same mononucleotide repeat. Furthermore, all five single base frameshift mutations preferentially occurred in polyC but not polyG tracts. We also investigated the distribution of the polymorphic CAG repeats in both the normal population and the SMS patients as one potential molecular mechanism for variability of clinical expression. In this limited data set, there was no significant association between the length of CAG repeats and the SMS phenotype. However, we identified a 5-year-old girl with an apparent SMS phenotype who was a compound heterozygote for an RAI1 missense mutation inherited from her father and a polyglutamine repeat of 18 copies, representing the largest known CAG repeat in this gene, inherited from her mother.

  17. A Novel Loss-of-Sclerostin Function Mutation in a First Egyptian Family with Sclerosteosis

    Directory of Open Access Journals (Sweden)

    Alaaeldin Fayez

    2015-01-01

    Full Text Available Sclerosteosis is a rare autosomal recessive condition characterized by increased bone density. Mutations in SOST gene coding for sclerostin are linked to sclerosteosis. Two Egyptian brothers with sclerosteosis and their apparently normal consanguineous parents were included in this study. Clinical evaluation and genomic sequencing of the SOST gene were performed followed by in silico analysis of the resulting variation. A novel homozygous frameshift mutation in the SOST gene, characterized as one nucleotide cytosine insertion that led to premature stop codon and loss of functional sclerostin, was identified in the two affected brothers. Their parents were heterozygous for the same mutation. To our knowledge this is the first Egyptian study of sclerosteosis and SOST gene causing mutation.

  18. Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria

    Science.gov (United States)

    Ovunc, Bugsu; Otto, Edgar A.; Vega-Warner, Virginia; Saisawat, Pawaree; Ashraf, Shazia; Ramaswami, Gokul; Fathy, Hanan M.; Schoeb, Dominik; Chernin, Gil; Lyons, Robert H.; Yilmaz, Engin

    2011-01-01

    In two siblings of consanguineous parents with intermittent nephrotic-range proteinuria, we identified a homozygous deleterious frameshift mutation in the gene CUBN, which encodes cubulin, using exome capture and massively parallel re-sequencing. The mutation segregated with affected members of this family and was absent from 92 healthy individuals, thereby identifying a recessive mutation in CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations cause a hereditary form of megaloblastic anemia secondary to vitamin B12 deficiency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both the intestinal vitamin B12-intrinsic factor complex and the tubular reabsorption of protein in the proximal tubule. In summary, we report successful use of exome capture and massively parallel re-sequencing to identify a rare, single-gene cause of nephropathy. PMID:21903995

  19. Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria.

    Science.gov (United States)

    Ovunc, Bugsu; Otto, Edgar A; Vega-Warner, Virginia; Saisawat, Pawaree; Ashraf, Shazia; Ramaswami, Gokul; Fathy, Hanan M; Schoeb, Dominik; Chernin, Gil; Lyons, Robert H; Yilmaz, Engin; Hildebrandt, Friedhelm

    2011-10-01

    In two siblings of consanguineous parents with intermittent nephrotic-range proteinuria, we identified a homozygous deleterious frameshift mutation in the gene CUBN, which encodes cubulin, using exome capture and massively parallel re-sequencing. The mutation segregated with affected members of this family and was absent from 92 healthy individuals, thereby identifying a recessive mutation in CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations cause a hereditary form of megaloblastic anemia secondary to vitamin B(12) deficiency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both the intestinal vitamin B(12)-intrinsic factor complex and the tubular reabsorption of protein in the proximal tubule. In summary, we report successful use of exome capture and massively parallel re-sequencing to identify a rare, single-gene cause of nephropathy.

  20. Infantile onset spinocerebellar ataxia caused by compound heterozygosity for Twinkle mutations and modeling of Twinkle mutations causing recessive disease

    Science.gov (United States)

    Gulsuner, Suleyman; Stapleton, Gail A.; Walsh, Tom; Lee, Ming K.; Mandell, Jessica B.; Morales, Augusto; Klevit, Rachel E.; King, Mary-Claire; Rogers, R. Curtis

    2016-01-01

    Mutations in nuclear genes required for the replication and maintenance of mitochondrial DNA cause progressive multisystemic neuromuscular disorders with overlapping phenotypes. Biallelic mutations in C10orf2, encoding the Twinkle mitochondrial DNA helicase, lead to infantile-onset cerebellar ataxia (IOSCA), as well as milder and more severe phenotypes. We present a 13-year-old girl with ataxia, severe hearing loss, optic atrophy, peripheral neuropathy, and hypergonadotropic hypogonadism. Whole-exome sequencing revealed that the patient is compound heterozygous for previously unreported variants in the C10orf2 gene: a paternally inherited frameshift variant (c.333delT; p.L112Sfs*3) and a maternally inherited missense variant (c.904C>T; p.R302W). The identification of novel C10orf2 mutations extends the spectrum of mutations in the Twinkle helicase causing recessive disease, in particular the intermediate IOSCA phenotype. Structural modeling suggests that the p.R302W mutation and many other recessively inherited Twinkle mutations impact the position or interactions of the linker region, which is critical for the oligomeric ring structure and activity of the helicase. This study emphasizes the utility of whole-exome sequencing for the genetic diagnosis of a complex multisystemic disorder. PMID:27551684

  1. A [Cu]rious Ribosomal Profiling Pattern Leads to the Discovery of Ribosomal Frameshifting in the Synthesis of a Copper Chaperone.

    Science.gov (United States)

    Atkins, John F; Loughran, Gary; Baranov, Pavel V

    2017-01-19

    In many bacteria, separate genes encode a copper binding chaperone and a copper efflux pump, but in some the chaperone encoding gene has been elusive. In this issue of Molecular Cell, Meydan et al. (2017) report that ribosomes translating the ORF that encodes the copper pump frequently frameshift and terminate to produce the copper chaperone.

  2. Analysis of the SLC4A1 gene in three Mexican patients with hereditary spherocytosis: report of a novel mutation

    Directory of Open Access Journals (Sweden)

    Josefina Y. Sánchez-López

    2010-01-01

    Full Text Available We analyzed the SLC4A1 gene in three Mexican patients with Hereditary Spherocytosis (HS. The promoter and all 20 exons were investigated through heteroduplex analysis and DNA sequencing. No DNA changes were detected in one of the three patients. Two well-known polymorphisms, Memphis I and the Diego-a blood group, were detected in another one. In the third, the HS phenotype could be explained by the novel 1885_1888dupCCGG mutation found in heterozygosis. This frameshift mutation is predicted to result in a truncated and unstable protein lacking normal functions.

  3. Whole exome sequencing reveals compound heterozygous mutations in SLC19A3 causing biotin-thiamine responsive basal ganglia disease

    Directory of Open Access Journals (Sweden)

    L.J. Sremba

    2014-01-01

    Full Text Available Biotin-thiamine responsive basal ganglia disease (BTBGD is a rare metabolic condition caused by mutations in the SLC19A3 gene. BTBGD presents with encephalopathy and significant disease progression when not treated with biotin and/or thiamine. We present a patient of Mexican and European ancestry diagnosed with BTBGD found to have compound heterozygous frameshift mutations, one novel. Our report adds to the genotype-phenotype correlation, highlighting the clinical importance of considering SLC19A3 gene defects as part of the differential diagnosis for Leigh syndrome.

  4. Five novel CNGB3 gene mutations in Polish patients with achromatopsia.

    Science.gov (United States)

    Wawrocka, Anna; Kohl, Susanne; Baumann, Britta; Walczak-Sztulpa, Joanna; Wicher, Katarzyna; Skorczyk-Werner, Anna; Krawczynski, Maciej R

    2014-01-01

    To identify the genetic basis of achromatopsia (ACHM) in four patients from four unrelated Polish families. In this study, we investigated probands with a clinical diagnosis of ACHM. Ophthalmologic examinations, including visual acuity testing, color vision testing, and full-field electroretinography (ERG), were performed in all patients (with the exception of patient p4, who had no ERG). Direct DNA sequencing encompassing the entire coding region of the CNGB3 gene, eight exons of the GNAT2 gene, and exons 5-7 of the CNGA3 gene was performed. Segregation analysis for the presence and independent inheritance of two mutant alleles was performed in the three families available for study. All patients showed typical achromatopsia signs and symptoms. Sequencing helped detect causative changes in the CNGB3 gene in all probands. Eight different mutations were detected in the CNGB3 gene, including five novel mutations: two splice site mutations (c.1579-1G>A and c.494-2A>T), one nonsense substitution (c.1194T>G), and two frame-shift mutations (c.393_394delGCinsTCCTGGTGA and c.1366delC). We also found three mutations: one splice site (c.1578+1G>A) and two frame-shift deletions that had been previously described (c.819_826del and c.1148delC). All respective parents were shown to be heterozygous carriers for the mutation detected in their children. The present study reports five novel mutations in the CNGB3 gene, and thus broadens the spectrum of probably pathogenic mutations associated with ACHM. Together with molecular data, we provide a brief clinical description of the affected individuals.

  5. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2.

    Science.gov (United States)

    Maksemous, Neven; Roy, Bishakha; Smith, Robert A; Griffiths, Lyn R

    2016-03-01

    Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo, and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type 1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilized next-generation sequencing (NGS) to screen the coding sequence, exon-intron boundaries, and Untranslated Regions (UTRs) of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which nine were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening.

  6. Dysferlin Gene Mutation Spectrum in a Large Cohort of Chinese Patients with Dysferlinopathy

    Science.gov (United States)

    Jin, Su-Qin; Yu, Meng; Zhang, Wei; Lyu, He; Yuan, Yun; Wang, Zhao-Xia

    2016-01-01

    Background: Dysferlinopathy is caused by mutations in the dysferlin (DYSF) gene. Here, we described the genetic features of a large cohort of Chinese patients with this disease. Methods: Eighty-nine index patients were included in the study. DYSF gene analysis was performed by Sanger sequencing in 41 patients and targeted next generation sequencing (NGS) in 48 patients. Multiplex ligation-dependent probe amplification (MLPA) was performed to detect exon duplication/deletion in patients with only one pathogenic mutation. Results: Among the 89 index patients, 79 patients were demonstrated to carry two disease-causing (73 cases) or possibly disease-causing mutations (6 cases), including 26 patients with homozygous mutations. We identified 105 different mutations, including 59 novel ones. Notably, in 13 patients in whom only one pathogenic mutation was initially found by Sanger sequencing or NGS, 3 were further identified to carry exon deletions by MLPA. The mutations identified in this study appeared to cluster in the N-terminal region. Mutation types included missense mutations (30.06%), nonsense mutations (17.18%), frameshift mutations (30.67%), in-frame deletions (2.45%), intronic mutations (17.79%), and exonic rearrangement (1.84%). No genotype-phenotype correlation was identified. Conclusions: DYSF mutations in Chinese patients clustered in the N-terminal region of the gene. Exonic rearrangements were found in 23% of patients with only one pathogenic mutation identified by Sanger sequencing or NGS. The novel mutations found in this study greatly expanded the mutational spectrum of dysferlinopathy. PMID:27647186

  7. Dysferlin Gene Mutation Spectrum in a Large Cohort of Chinese Patients with Dysferlinopathy

    Institute of Scientific and Technical Information of China (English)

    Su-Qin Jin; Meng Yu; Wei Zhang; He Lyu; Yun Yuan; Zhao-Xia Wang

    2016-01-01

    Background:Dysferlinopathy is caused by mutations in the dysferlin (DYSF) gene.Here,we described the genetic features of a large cohort of Chinese patients with this disease.Methods:Eighty-nine index patients were included in the study.DYSF gene analysis was performed by Sanger sequencing in 41 patients and targeted next generation sequencing (NGS) in 48 patients.Multiplex ligation-dependent probe amplification (MLPA) was performed to detect exon duplication/deletion in patients with only one pathogenic mutation.Results:Among the 89 index patients,79 patients were demonstrated to carry two disease-causing (73 cases) or possibly disease-causing mutations (6 cases),including 26 patients with homozygous mutations.We identified 105 different mutations,including 59 novel ones.Notably,in 13 patients in whom only one pathogenic mutation was initially found by Sanger sequencing or NGS,3 were further identified to carry exon deletions by MLPA.The mutations identified in this study appeared to cluster in the N-terminal region.Mutation types included missense mutations (30.06%),nonsense mutations (1 7.18%),frameshift mutations (30.67%),in-frame deletions (2.45%),intronic mutations (17.79%),and exonic rearrangement (1.84%).No genotype-phenotype correlation was identified.Conclusions:DYSF mutations in Chinese patients clustered in the N-terminal region of the gene.Exonic rearrangements were found in 23% of patients with only one pathogenic mutation identified by Sanger sequencing or NGS.The novel mutations found in this study greatly expanded the mutational spectrum of dysferlinopathy.

  8. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants

    Indian Academy of Sciences (India)

    MARYAM HAGHSHENAS; MOHAMMAD TAGHI AKBARI; SHOHREH ZARE KARIZI; FARAVAREH KHORDADPOOR DEILAMANI; SHAHRIAR NAFISSI; ZIVAR SALEHI

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progres-sive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletionsor duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to eval-uate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show anylarge deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependentprobe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50–79. Also exon 44 wassequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed fournonsense, one frameshift and two splice site mutations as well as two missense variants

  9. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    Science.gov (United States)

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  10. Frequency and Clinicopathologic Features of RUNX1 Mutations in Patients With Acute Myeloid Leukemia Not Otherwise Specified.

    Science.gov (United States)

    You, Eunkyoung; Cho, Young-Uk; Jang, Seongsoo; Seo, Eul-Ju; Lee, Jung-Hee; Lee, Je-Hwan; Lee, Kyoo-Hyung; Koh, Kyung-Nam; Im, Ho Joon; Seo, Jong Jin; Park, Young-Mi; Lee, Jong-Keuk; Park, Chan-Jeoung

    2017-07-01

    To evaluate the frequency and clinicopathologic characteristics of RUNX1 mutations, focusing on patients with acute myeloid leukemia not otherwise specified (AML NOS). Diagnostic samples from 219 patients with AML NOS were analyzed for RUNX1 mutations using standard polymerase chain reaction and direct sequencing. Thirty-one RUNX1 mutations were detected in 33 (15.1%) patients. Mutations clustered in the Runt homology (61.3%) and transactivation domains (25.8%). Frameshift mutations were most common (51.6%), followed by missense (41.9%) and nonsense (6.5%) mutations. Patients with RUNX1 mutations had a lower platelet count (P = .013) and shorter relapse-free survival (P = .045) than those without. The presence of RUNX1 and NPM1 or CEBPA mutations was mutually exclusive. A literature review, including our study, showed that patients with RUNX1 mutations were associated with intermediate risk; coexisting mutations such as FLT3-ITD, ASXL1, TET2, and DNMT3A; and a relatively cytogenetic heterogeneity. Our findings strengthen previous data concerning RUNX1 mutations in AML and support the notion that RUNX1 mutational status should be integrated into a diagnostic workup of AML, particularly for AML NOS or an intermediate-risk group.

  11. A novel silent deletion, an insertion mutation and a nonsense mutation in the TCOF1 gene found in two Chinese cases of Treacher Collins syndrome.

    Science.gov (United States)

    Wang, Yan; Yin, Xiao-Juan; Han, Tao; Peng, Wei; Wu, Hong-Lin; Liu, Xin; Feng, Zhi-Chun

    2014-12-01

    Treacher Collins syndrome (TCS) is the most common and well-known craniofacial disorder caused by mutations in the genes involved in pre-rRNA transcription, which include the TCOF1 gene. This study explored the role of TCOF1 mutations in Chinese patients with TCS. Mutational analysis of the TCOF1 gene was performed in three patients using polymerase chain reaction and direct sequencing. Among these three patients, two additional TCOF1 variations, a novel 18 bp deletion and a novel 1 bp insertion mutation, were found in patient 1, together with a novel nonsense mutation (p.Ser476X) and a previously reported 4 bp deletion (c.1872_1875delTGAG) in other patients. Pedigree analysis allowed for prediction of the character of the mutation, which was either pathological or not. The 18 bp deletion of six amino acids, Ser-Asp-Ser-Glu-Glu-Glu (798*803), which was located in the CKII phosphorylation site of treacle, seemed relatively benign for TCS. By contrast, another novel mutation of c.1072_1073insC (p.Gln358ProfsX23) was a frameshift mutation and expected to result in a premature stop codon. This study provides insights into the functional domain of treacle and illustrates the importance of clinical and family TCS screening for the interpretation of novel sequence alterations.

  12. Novel insertion mutation in a non-Jewish Caucasian type 1 Gaucher disease patient

    Energy Technology Data Exchange (ETDEWEB)

    Choy, F.Y.M.; Humphries, M.L. [Univ. of Victoria, British Columbia (Canada); Ferreira, P. [Univ. of Alberta, Edmonton (Canada)

    1997-01-20

    Gaucher disease is the most prevalent lysosomal storage disorder. It is autosomal recessive, resulting in lysosomal glucocerebrosidase deficiency. Three clinical forms of Gaucher disease have been described: type 1 (nonneuronopathic), type 2 (acute neuronopathic), and type 3 (subacute neuronopathic). We performed PCR-thermal cycle sequence analysis of glucocerebrosidase genomic DNA and identified a novel mutation in a non-Jewish type 1 Gaucher disease patient. It is a C insertion in exon 3 at cDNA nucleotide position 122 and genomic nucleotide position 1626. This mutation causes a frameshift and, subsequently, four of the five codons immediately downstream of the insertion were changed while the sixth was converted to a stop codon, resulting in premature termination of protein translation. The 122CC insertion abolishes a Cac81 restriction endonuclease cleavage site, allowing a convenient and reliable method for detection using RFLP analysis of PCR-amplified glucocerebrosidase genomic DNA. The mutation in the other Gaucher allele was found to be an A{r_arrow}G substitution at glucocerebrosidase cDNA nucleotide position 1226 that so far has only been reported among type 1 Gaucher disease patients. Since mutation 122CC causes a frameshift and early termination of protein translation, it most likely results in a meaningless transcript and subsequently no residual glucocerebrosidase enzyme activity. We speculate that mutation 122CC may result in a worse prognosis than mutations associated with partial activity. When present in the homozygous form, it could be a lethal allele similar to what has been postulated for the other known insertion mutation, 84GG. Our patient, who is a compound heterozygote 122CC/1226G, has moderately severe type 1 Gaucher disease. Her clinical response to Ceredase{reg_sign} therapy that began 31 months ago has been favorable, though incomplete. 30 refs., 3 figs., 2 tabs.

  13. Laminin gene LAMB4 is somatically mutated and expressionally altered in gastric and colorectal cancers.

    Science.gov (United States)

    Choi, Mi Ryoung; An, Chang Hyeok; Yoo, Nam Jin; Lee, Sug Hyung

    2015-01-01

    Laminins are important in tumor invasion and metastasis as well as in maintenance of normal epithelial cell structures. However, mutation status of laminin chain-encoding genes remains unknown in cancers. Aim of this study was to explore whether laminin chain genes are mutated and expressionally altered in gastric (GC) and colorectal cancers (CRC). In a public database, we found that laminin chain genes LAMA1, LAMA3, LAMB1 and LAMB4 had mononucleotide repeats in the coding sequences that might be mutation targets in the cancers with microsatellite instability (MSI). We analyzed the genes in 88 GC and 139 CRC [high MSI (MSI-H) or stable MSI/low MSI (MSS/MSI-L)] by single strand conformation polymorphism analysis and DNA sequencing. In the present study, we found LAMB4 (11.8% of GC and 7.6% of CRC with MSI-H), LAMA3 (2.9% of GC and 2.5 of CRC with MSI-H), LAMA1 (5.9% of GC with MSI-H) and LAMB1 frameshift mutations (1.3% of CRC with MSI-H). These mutations were not found in MSS/MSI-L (0/114). We also analyzed LAMB4 expression in GC and CRC by immunohistochemistry. Loss of LAMB4 expression was identified in 17-32% of the GC and CRC. Of note, the loss expression was more common in the cancers with LAMB4 mutation or those with MSI-H. Our data show that frameshift mutations of LAMA1, LAMA3, LAMB1 and LAMB4, and loss of LAMB4 may be features of GC and CRC with MSI-H.

  14. Mutational analysis of the HGSNAT gene in Italian patients with mucopolysaccharidosis IIIC (Sanfilippo C syndrome). Mutation in brief #959. Online.

    Science.gov (United States)

    Fedele, Anthony Olind; Filocamo, Mirella; Di Rocco, Maja; Sersale, Giovanna; Lübke, Torben; di Natale, Paola; Cosma, Maria Pia; Ballabio, Andrea

    2007-05-01

    Mucopolysaccharidosis (MPS) describes any inherited lysosomal storage disorder resulting from an inability to catabolize glycosaminoglycans. MPS III (or Sanfilippo syndrome) is an autosomal recessive disease caused by a failure to degrade heparan sulphate. There are four subtypes of MPS III, each categorized by a deficiency in a specific enzyme involved in the heparan sulphate degradation pathway. The genes mutated in three of these (MPS IIIA, MPS IIIB, and MPS IIID) have been cloned for some time. However, only very recently has the gene for MPS IIIC (heparin acetyl CoA: alpha-glucosaminide N-acetyltransferase, or HGSNAT) been identified. Its product (previously termed transmembrane protein 76, or TMEM76) has little sequence similarity to other proteins of known function, although it is well conserved among all species. In this study, a group of MPS IIIC patients, who are mainly of Italian origin, have been clinically characterized. Furthermore, mutational analysis of the HGSNAT gene in these patients resulted in the identification of nine alleles, of which eight are novel. Three splice-site mutations, three frameshift deletions resulting in premature stop codons, one nonsense mutation, and two missense mutations were identified. The latter are of particular interest as they are located in regions which are predicted to be of functional significance. This research will aid in determining the molecular basis of HGSNAT protein function, and the mechanisms underlying MPS IIIC.

  15. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome.

    Science.gov (United States)

    Hannibal, Mark C; Buckingham, Kati J; Ng, Sarah B; Ming, Jeffrey E; Beck, Anita E; McMillin, Margaret J; Gildersleeve, Heidi I; Bigham, Abigail W; Tabor, Holly K; Mefford, Heather C; Cook, Joseph; Yoshiura, Koh-ichiro; Matsumoto, Tadashi; Matsumoto, Naomichi; Miyake, Noriko; Tonoki, Hidefumi; Naritomi, Kenji; Kaname, Tadashi; Nagai, Toshiro; Ohashi, Hirofumi; Kurosawa, Kenji; Hou, Jia-Woei; Ohta, Tohru; Liang, Deshung; Sudo, Akira; Morris, Colleen A; Banka, Siddharth; Black, Graeme C; Clayton-Smith, Jill; Nickerson, Deborah A; Zackai, Elaine H; Shaikh, Tamim H; Donnai, Dian; Niikawa, Norio; Shendure, Jay; Bamshad, Michael J

    2011-07-01

    Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent-to-child transmission in more than a half-dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax-group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation-positive cases did not differ significantly from MLL2 mutation-negative cases with the exception that renal anomalies were more common in MLL2 mutation-positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome.

  16. GNRHR biallelic and digenic mutations in patients with normosmic congenital hypogonadotropic hypogonadism

    Directory of Open Access Journals (Sweden)

    Catarina I Gonçalves

    2017-07-01

    Full Text Available Objective: Normosmic congenital hypogonadotropic hypogonadism (nCHH is a rare disorder characterised by lack of pubertal development and infertility, due to deficient production, secretion or action of gonadotropin-releasing hormone (GnRH and, unlike Kallmann syndrome, is associated with a normal sense of smell. Mutations in the GNRHR gene cause autosomal recessive nCHH. The aim of this study was to determine the prevalence of GNRHR mutations in a group of 40 patients with nCHH. Design: Cross-sectional study of 40 unrelated patients with nCHH. Methods: Patients were screened for mutations in the GNRHR gene by DNA sequencing. Results: GNRHR mutations were identified in five of 40 patients studied. Four patients had biallelic mutations (including a novel frameshift deletion p.Phe313Metfs*3, in two families in agreement with autosomal recessive inheritance. One patient had a heterozygous GNRHR mutation associated with a heterozygous PROKR2 mutation, thus suggesting a possible role of synergistic heterozygosity in the pathogenesis of the disorder. Conclusions: This study further expands the spectrum of known genetic defects associated with nCHH. Although GNRHR mutations are usually biallelic and inherited in an autosomal recessive manner, the presence of a monoallelic mutation in a patient should raise the possibility of a digenic/oligogenic cause of nCHH.

  17. Novel mutation in forkhead box G1 (FOXG1) gene in an Indian patient with Rett syndrome.

    Science.gov (United States)

    Das, Dhanjit Kumar; Jadhav, Vaishali; Ghattargi, Vikas C; Udani, Vrajesh

    2014-03-15

    Rett syndrome (RTT) is a severe neurodevelopmental disorder characterized by the progressive loss of intellectual functioning, fine and gross motor skills and communicative abilities, deceleration of head growth, and the development of stereotypic hand movements, occurring after a period of normal development. The classic form of RTT involves mutation in MECP2 while the involvement of CDKL5 and FOXG1 genes has been identified in atypical RTT phenotype. FOXG1 gene encodes for a fork-head box protein G1, a transcription factor acting primarily as transcriptional repressor through DNA binding in the embryonic telencephalon as well as a number of other neurodevelopmental processes. In this report we have described the molecular analysis of FOXG1 gene in Indian patients with Rett syndrome. FOXG1 gene mutation analysis was done in a cohort of 34 MECP2/CDKL5 mutation negative RTT patients. We have identified a novel mutation (p. D263VfsX190) in FOXG1 gene in a patient with congenital variant of Rett syndrome. This mutation resulted into a frameshift, thereby causing an alteration in the reading frames of the entire coding sequence downstream of the mutation. The start position of the frameshift (Asp263) and amino acid towards the carboxyl terminal end of the protein was found to be well conserved across species using multiple sequence alignment. Since the mutation is located at forkhead binding domain, the resultant mutation disrupts the secondary structure of the protein making it non-functional. This is the first report from India showing mutation in FOXG1 gene in Rett syndrome.

  18. Clinical study of DMD gene point mutation causing Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ji-qing CAO

    2015-07-01

    Full Text Available Background  DMD gene point mutation, mainly nonsense mutation, always cause the most severe Duchenne muscular dystrophy (DMD. However, we also observed some cases of Becker muscular dystrophy (BMD carrying DMD point mutation. This paper aims to explore the mechanism of DMD point mutation causing BMD, in order to enhance the understanding of mutation types of BMD.  Methods  Sequence analysis was performed in 11 cases of BMD confirmed by typical clinical manifestations and muscle biopsy. The exon of DMD gene was detected non-deletion or duplication by multiplex ligation-dependent probe amplification (MLPA.  Results  Eleven patients carried 10 mutation types without mutational hotspot. Six patients carried nonsense mutations [c.5002G>T, p.(Glu1668X; c.1615C > T, p.(Arg539X; c.7105G > T, p.(Glu2369X; c.5287C > T, p.(Arg1763X; c.9284T > G, p.(Leu3095X]. One patient carried missense mutation [c.5234G > A, p.(Arg1745His]. Two patients carried frameshift mutations (c.10231dupT, c.10491delC. Two patients carried splicing site mutations (c.4518 + 3A > T, c.649 + 2T > C.  Conclusions  DMD gene point mutation may result in BMD with mild clinical symptoms. When clinical manifestations suggest the possibility of BMD and MLPA reveals non?deletion or duplication mutation of DMD gene, BMD should be considered. Study on the mechanism of DMD point mutation causing BMD is very important for gene therapy of DMD. DOI: 10.3969/j.issn.1672-6731.2015.06.005

  19. TBC1D24 Mutations in a Sibship with Multifocal Polymyoclonus

    Science.gov (United States)

    Ngoh, Adeline; Bras, Jose; Guerreiro, Rita; McTague, Amy; Ng, Joanne; Meyer, Esther; Chong, W. Kling; Boyd, Stewart; MacLellan, Linda; Kirkpatrick, Martin; Kurian, Manju A.

    2017-01-01

    Background Advances in molecular genetic technologies have improved our understanding of genetic causes of rare neurological disorders with features of myoclonus. Case Report A family with two affected siblings, presenting with multifocal polymyoclonus and neurodevelopmental delay, was recruited for whole-exome sequencing following unyielding diagnostic neurometabolic investigations. Compound heterozygous mutations in TBC1D24, a gene previously associated with various epilepsy phenotypes and hearing loss, were identified in both siblings. The mutations included a missense change c.457G>A (p.Glu157Lys), and a novel frameshift mutation c.545del (p.Thr182Serfs*6). Discussion We propose that TBC1D24-related diseases should be in the differential diagnosis for children with polymyoclonus. PMID:28428906

  20. A Novel Mutation in the EDAR Gene Causes Severe Autosomal Recessive Hypohidrotic Ectodermal Dysplasia

    DEFF Research Database (Denmark)

    Henningsen, Emil; Svendsen, Mathias Tiedemann; Lildballe, D. L.

    2014-01-01

    We report on a 2-year-old girl presenting with a severe form of hypohidrotic ectodermal dysplasia (HED). The patient presented with hypotrichosis, anodontia, hypohidrosis, frontal bossing, prominent lips and ears, dry, pale skin, and dermatitis. The patient had chronic rhinitis with malodorous na......-mediated NF-kB signalling. This complete loss-of-function mutation likely accounts for the severe clinical abnormalities in ectodermal structures in the described patient. (C) 2014 Wiley Periodicals, Inc....... nasal discharge. The girl was the second born child of first-cousin immigrants from Northern Iraq. A novel homozygous mutation (c.84delC) in the EDAR gene was identified. This mutation most likely causes a frameshift in the protein product (p.S29fs*74). This results in abolition of all ectodysplasin...

  1. Ornithine decarboxylase antizyme finder (OAF: Fast and reliable detection of antizymes with frameshifts in mRNAs

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2008-04-01

    Full Text Available Abstract Background Ornithine decarboxylase antizymes are proteins which negatively regulate cellular polyamine levels via their affects on polyamine synthesis and cellular uptake. In virtually all organisms from yeast to mammals, antizymes are encoded by two partially overlapping open reading frames (ORFs. A +1 frameshift between frames is required for the synthesis of antizyme. Ribosomes change translation phase at the end of the first ORF in response to stimulatory signals embedded in mRNA. Since standard sequence analysis pipelines are currently unable to recognise sites of programmed ribosomal frameshifting, proper detection of full length antizyme coding sequences (CDS requires conscientious manual evaluation by a human expert. The rapid growth of sequence information demands less laborious and more cost efficient solutions for this problem. This manuscript describes a rapid and accurate computer tool for antizyme CDS detection that requires minimal human involvement. Results We have developed a computer tool, OAF (ODC antizyme finder for identifying antizyme encoding sequences in spliced or intronless nucleic acid sequenes. OAF utilizes a combination of profile hidden Markov models (HMM built separately for the products of each open reading frame constituting the entire antizyme coding sequence. Profile HMMs are based on a set of 218 manually assembled antizyme sequences. To distinguish between antizyme paralogs and orthologs from major phyla, antizyme sequences were clustered into twelve groups and specific combinations of profile HMMs were designed for each group. OAF has been tested on the current version of dbEST, where it identified over six thousand Expressed Sequence Tags (EST sequences encoding antizyme proteins (over two thousand antizyme CDS in these ESTs are non redundant. Conclusion OAF performs well on raw EST sequences and mRNA sequences derived from genomic annotations. OAF will be used for the future updates of the RECODE

  2. Normosmic congenital hypogonadotropic hypogonadism due to TAC3/TACR3 mutations: characterization of neuroendocrine phenotypes and novel mutations.

    Directory of Open Access Journals (Sweden)

    Bruno Francou

    Full Text Available CONTEXT: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH (OMIM #146110. In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. OBJECTIVE: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. RESULTS: From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%. We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001 higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. CONCLUSION: The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations.

  3. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum.

    Science.gov (United States)

    Kuechler, Alma; Willemsen, Marjolein H; Albrecht, Beate; Bacino, Carlos A; Bartholomew, Dennis W; van Bokhoven, Hans; van den Boogaard, Marie Jose H; Bramswig, Nuria; Büttner, Christian; Cremer, Kirsten; Czeschik, Johanna Christina; Engels, Hartmut; van Gassen, Koen; Graf, Elisabeth; van Haelst, Mieke; He, Weimin; Hogue, Jacob S; Kempers, Marlies; Koolen, David; Monroe, Glen; de Munnik, Sonja; Pastore, Matthew; Reis, André; Reuter, Miriam S; Tegay, David H; Veltman, Joris; Visser, Gepke; van Hasselt, Peter; Smeets, Eric E J; Vissers, Lisenka; Wieland, Thomas; Wissink, Willemijn; Yntema, Helger; Zink, Alexander Michael; Strom, Tim M; Lüdecke, Hermann-Josef; Kleefstra, Tjitske; Wieczorek, Dagmar

    2015-01-01

    Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized in a mouse model. Beta-catenin is a key downstream component of the canonical Wnt signaling pathway. Somatic gain-of-function mutations have already been found in various tumor types, whereas germline loss-of-function mutations in animal models have been shown to influence neuronal development and maturation. We report on 16 additional individuals from 15 families in whom we newly identified de novo loss-of-function CTNNB1 mutations (six nonsense, five frameshift, one missense, two splice mutation, and one whole gene deletion). All patients have ID, motor delay and speech impairment (both mostly severe) and abnormal muscle tone (truncal hypotonia and distal hypertonia/spasticity). The craniofacial phenotype comprised microcephaly (typically -2 to -4 SD) in 12 of 16 and some overlapping facial features in all individuals (broad nasal tip, small alae nasi, long and/or flat philtrum, thin upper lip vermillion). With this detailed phenotypic characterization of 16 additional individuals, we expand and further establish the clinical and mutational spectrum of inactivating CTNNB1 mutations and thereby clinically delineate this new CTNNB1 haploinsufficiency syndrome.

  4. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    OpenAIRE

    Lobaccaro, J.M.; Lumbroso, S.; Poujol, Nicolas; Georget, V.; Brinkmann, Albert; Malpuech, Georges; Sultan, C.

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for a predictive frameshift in the open reading frame and introduction of a premature stop codon at position 783 instead of 919. The deletion was reproduced in androgen receptor wildtype cDNA and tran...

  5. Unique and recurrent mutations in the filaggrin gene in Singaporean Chinese patients with ichthyosis vulgaris.

    Science.gov (United States)

    Chen, Huijia; Ho, Jean C C; Sandilands, Aileen; Chan, Yuin Chew; Giam, Yoke Chin; Evans, Alan T; Lane, E Birgitte; McLean, W H Irwin

    2008-07-01

    Filaggrin is an abundant protein of the outer epidermis that is essential for terminal differentiation of keratinocytes and formation of an effective barrier against water loss and pathogen/allergen/irritant invasion. Recent investigations in Europe and Japan have revealed null mutations in the filaggrin gene (FLG) as the underlying cause of ichthyosis vulgaris (IV), a common skin disorder characterised by dry skin, palmar hyperlinearity and keratosis pilaris. Following the development of a strategy for the comprehensive analysis of FLG, we have identified five unique mutations and one recurrent mutation in Singaporean Chinese IV patients. Mutation 441delA is located in the profilaggrin S100 domain, whereas two additional frameshift mutations, 1249insG and 7945delA, occur in the first partial filaggrin repeat ("repeat 0") and in filaggrin repeat 7, respectively. Both nonsense mutations Q2147X and E2422X are found in filaggrin repeat 6, whereas R4307X was found on one of the longer size variant alleles of FLG, within duplicated repeat 10.2. Mutation E2422X, previously found in a single Dutch patient, was found in one Singaporean IV patient and at a low frequency in Asian population controls. Our study confirms the presence of population-specific as well as recurrent FLG mutations in Singapore.

  6. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes.

    Directory of Open Access Journals (Sweden)

    Jonàs Juan-Mateu

    Full Text Available DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements.

  7. Detection of a new mutation (1467-A) for the pedigree with mucopolysaccharidosis type Ⅱ from a Chinese family

    Institute of Scientific and Technical Information of China (English)

    GUO Yibin; PAN Jingxin; DU Chuanshu

    2005-01-01

    Mucopolysaccharidosis type II is of high genetic heterogeneity. PCR-DNA sequencing was used to study the mutation hot spots in the IDS gene of a Chinese MPS II pedigree. A new mutation (1467-A) not yet reported worldwide was detected. This mutation located at 448th codon in the coding region of exon 9 deletes one "A" at the end of 1467 bp (cDNA). The frame-shift mutation makes the peptide chain shorten from amino acids 550 to 459, probably altering the configuration of IDS enzyme protein remarkably and lowering the activation of IDS greatly. Therefore it is supposed to be the direct cause of the patient with MPS II and to be a necessary premise for prenatal gene diagnosis.

  8. A novel splicing mutation in COL1A1 gene caused type I osteogenesis imperfecta in a Chinese family.

    Science.gov (United States)

    Peng, Hao; Zhang, Yuhui; Long, Zhigao; Zhao, Ding; Guo, Zhenxin; Xue, Jinjie; Xie, Zhiguo; Xiong, Zhimin; Xu, Xiaojuan; Su, Wei; Wang, Bing; Xia, Kun; Hu, Zhengmao

    2012-07-10

    Osteogenesis imperfect (OI) is a heritable connective tissue disorder with bone fragility as a cardinal manifestation, accompanied by short stature, dentinogenesis imperfecta, hyperlaxity of ligaments and skin, blue sclerae and hearing loss. Dominant form of OI is caused by mutations in the type I procollagen genes, COL1A1/A2. Here we identified a novel splicing mutation c.3207+1G>A (GenBank ID: JQ236861) in the COL1A1 gene that caused type I OI in a Chinese family. RNA splicing analysis proved that this mutation created a new splicing site at c.3200, and then led to frameshift. This result further enriched the mutation spectrum of type I procollagen genes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Spectrum of mutations in Lebanese patients with phenylalanine hydroxylase deficiency.

    Science.gov (United States)

    Karam, Pascale E; Alhamra, Rasha Shahabeddeen; Nemer, Georges; Usta, Julnar

    2013-02-15

    Phenylketonuria is an autosomal recessive inborn error of metabolism resulting from phenylalanine hydroxylase deficiency. Genetic basis of phenylalanine hydroxylase deficiency has been reported in various European and Asian countries with few reports available in Arab populations of the Mediterranean region. This is the first pilot study describing phenotype and genotype of 23 Lebanese patients with phenylketonuria. 48% of the patients presented mainly with neurological signs at a mean age of 2 years 9 months, as newborn screening is not yet a nationwide policy. 56.5% of the patients had classical phenylketonuria. Thirteen different mutations were identified: splice site 52%, frameshift 31%, and missense 17% with no nonsense mutations. IVS10-11G>A was found mainly in Christians at high relative frequency whereas Muslims carried the G352fs and R261Q mutations. A rare splice mutation IVS7+1G>T, not described before, was identified in the homozygous state in one family with moderate phenylketonuria phenotype. Genotype-phenotype correlation using Guldberg arbitrary value method showed high consistency between predicted and observed phenotypes. Calculated homozygosity rate was 0.07 indicating the genetic heterogeneity in our patients. Our findings underline the admixture of different ethnicities and religions in Lebanon that might help tracing back the PAH gene flux history across the Mediterranean region.

  10. TRPC1 transcript variants, inefficient nonsense-mediated decay and low up-frameshift-1 in vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Kumar Bhaskar

    2011-07-01

    Full Text Available Abstract Background Transient Receptor Potential Canonical 1 (TRPC1 is a widely-expressed mammalian cationic channel with functional effects that include stimulation of cardiovascular remodelling. The initial aim of this study was to investigate variation in TRPC1-encoding gene transcripts. Results Extensive TRPC1 transcript alternative splicing was observed, with exons 2, 3 and 5-9 frequently omitted, leading to variants containing premature termination codons. Consistent with the predicted sensitivity of such variants to nonsense-mediated decay (NMD the variants were increased by cycloheximide. However it was notable that control of the variants by NMD was prominent in human embryonic kidney 293 cells but not human vascular smooth muscle cells. The cellular difference was attributed in part to a critical protein in NMD, up-frameshift-1 (UPF1, which was found to have low abundance in the vascular cells. Rescue of UPF1 by expression of exogenous UPF1 was found to suppress vascular smooth muscle cell proliferation. Conclusions The data suggest: (i extensive NMD-sensitive transcripts of TRPC1; (ii inefficient clearance of aberrant transcripts and enhanced proliferation of vascular smooth muscle cells in part because of low UPF1 expression.

  11. Rational design of a synthetic mammalian riboswitch as a ligand-responsive -1 ribosomal frame-shifting stimulator

    Science.gov (United States)

    Lin, Ya-Hui; Chang, Kung-Yao

    2016-01-01

    Metabolite-responsive RNA pseudoknots derived from prokaryotic riboswitches have been shown to stimulate −1 programmed ribosomal frameshifting (PRF), suggesting −1 PRF as a promising gene expression platform to extend riboswitch applications in higher eukaryotes. However, its general application has been hampered by difficulty in identifying a specific ligand-responsive pseudoknot that also functions as a ligand-dependent -1 PRF stimulator. We addressed this problem by using the −1 PRF stimulation pseudoknot of SARS-CoV (SARS-PK) to build a ligand-dependent −1 PRF stimulator. In particular, the extra stem of SARS-PK was replaced by an RNA aptamer of theophylline and designed to couple theophylline binding with the stimulation of −1 PRF. Conformational and functional analyses indicate that the engineered theophylline-responsive RNA functions as a mammalian riboswitch with robust theophylline-dependent −1 PRF stimulation activity in a stable human 293T cell-line. Thus, RNA–ligand interaction repertoire provided by in vitro selection becomes accessible to ligand-specific −1 PRF stimulator engineering using SARS-PK as the scaffold for synthetic biology application. PMID:27521370

  12. Prognostic impact of mismatch repair genes germline defects in colorectal cancer patients: are all mutations equal?

    Science.gov (United States)

    Maccaroni, Elena; Bracci, Raffaella; Giampieri, Riccardo; Bianchi, Francesca; Belvederesi, Laura; Brugiati, Cristiana; Pagliaretta, Silvia; Del Prete, Michela; Scartozzi, Mario; Cascinu, Stefano

    2015-01-01

    Background Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome, caused by germline mutations in MisMatch Repair (MMR) genes, particularly in MLH1, MSH2 and MSH6. Patients with LS seem to have a more favourable prognosis than those with sporadic CRC, although the prognostic impact of different mutation types is unknown. Aim of our study is to compare survival outcomes of different types of MMR mutations in patients with LS-related CRC. Methods 302 CRC patients were prospectively selected on the basis of Amsterdam or Revised Bethesda criteria to undergo genetic testing: direct sequencing of DNA and MLPA were used to examine the entire MLH1, MSH2 and MSH6 coding sequence. Patients were classified as mutation-positive or negative according to the genetic testing result. Results A deleterious MMR mutation was found in 38/302 patients. Median overall survival (OS) was significantly higher in mutation-positive vs mutation-negative patients (102.6 vs 77.7 months, HR:0.63, 95%CI:0.46–0.89, p = 0.0083). Different types of mutation were significantly related with OS: missense or splicing-site mutations were associated with better OS compared with rearrangement, frameshift or non-sense mutations (132.5 vs 82.5 months, HR:0.46, 95%CI:0.16–0.82, p = 0.0153). Conclusions Our study confirms improved OS for LS-patients compared with mutation-negative CRC patients. In addition, not all mutations could be considered equal: the better prognosis in CRC patients with MMR pathogenic missense or splicing site mutation could be due to different functional activity of the encoded MMR protein. This matter should be investigated by use of functional assays in the future. PMID:26485756

  13. A new monoclonal antibody (CAL2) detects CALRETICULIN mutations in formalin-fixed and paraffin-embedded bone marrow biopsies.

    Science.gov (United States)

    Stein, H; Bob, R; Dürkop, H; Erck, C; Kämpfe, D; Kvasnicka, H-M; Martens, H; Roth, A; Streubel, A

    2016-01-01

    Recent advances in the diagnostic of myeloproliferative neoplasms (MPNs) discovered CALRETICULIN (CALR) mutations as a major driver in these disorders. In contrast to JAK2 mutations being mainly associated with polycythaemia vera, CALR mutations are only associated with primary myelofibrosis (PMF) and essential thrombocythaemia (ET). CALR mutations are present in the majority of PMF and ET patients lacking JAK2 and MPL mutations. As these CALR mutations are absent from reactive bone marrow (BM) lesions their presence indicates ET or PMF. So far these mutations are detectable only by molecular assays. Their molecular detection is cumbersome because of the great CALR mutation heterogeneity. Therefore, the availability of a simple assay would be of great help. All CALR mutations reported lead to a frameshift generating a new 36 amino-acid C-terminus. We generated a monoclonal antibody (CAL2) to this C-neoterminus by immunizing mice with a representative peptide and compared its performance with Sanger sequencing data in 173 MPNs and other BM diseases. There was a 100% correlation between the molecular and the CAL2 immunohistochemical (IHC) assays. Thus, the detection of CALR mutations by the CAL2 IHC is a specific, sensitive, rapid, simple and low-cost method.

  14. Impact of two myostatin (MSTN mutations on weight gain and lamb carcass classification in Norwegian White Sheep (Ovis aries

    Directory of Open Access Journals (Sweden)

    Blichfeldt Thor

    2010-01-01

    Full Text Available Abstract Background Our aim was to estimate the effect of two myostatin (MSTN mutations in Norwegian White Sheep, one of which is close to fixation in the Texel breed. Methods The impact of two known MSTN mutations was examined in a field experiment with Norwegian White Sheep. The joint effect of the two MSTN mutations on live weight gain and weaning weight was studied on 644 lambs. Carcass weight gain from birth to slaughter, carcass weight, carcass conformation and carcass fat classes were calculated in a subset of 508 lambs. All analyses were carried out with a univariate linear animal model. Results The most significant impact of both mutations was on conformation and fat classes. The largest difference between the genotype groups was between the wild type for both mutations and the homozygotes for the c.960delG mutation. Compared to the wild types, these mutants obtained a conformation score 5.1 classes higher and a fat score 3.0 classes lower, both on a 15-point scale. Conclusions Both mutations reduced fatness and increased muscle mass, although the effect of the frameshift mutation (c.960delG was more important as compared to the 3'-UTR mutation (c.2360G>A. Lambs homozygous for the c.960delG mutation grew more slowly than those with other MSTN genotypes, but had the least fat and the largest muscle mass. Only c.960delG showed dominance effects.

  15. Common mutations in the phosphofructokinase-M gene in Ashkenazi Jewish patients with glycogenesis VII - and their population frequency

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, J.B.; Raben, N.; Nicastri, C.; Adams, E.M.; Plotz, P.H. (National Institutes of Health, Bethesda, MD (United States)); Argov, Z. (Hebrew Univ., Jerusalem (Israel)); Nakajima, Hiromu (Osaka Univ. (Japan)); Eng, C.M.; Cowan, T.M. (Univ. of Maryland School of Medicine, Baltimore, MD (United States))

    1994-08-01

    Phosphofructokinase (PFK) catalyzes the rate-limiting step of glycolysis. Deficiency of the muscle enzyme is manifested by exercise intolerance and a compensated hemolytic anemia. Case reports of this autosomal recessive disease suggest a predominance in Ashkenazi Jews in the United States. The authors have explored the genetic basis for this illness in nine affected families and surveyed the normal Ashkenazi population for the mutations found. Genomic DNA was amplified using PCR, and denaturing gradient-gel electrophoresis. The polymorphic exons were sequenced or digested with restriction enzymes. A previously described splicing mutation, [Delta]5, accounted for 11 (61%) of 18 abnormal alleles in the nine families. A single base deletion leading to a frameshift mutation in exon 22 ([Delta]C-22) was found in six of seven alleles. A third mutation, resulting in a nonconservative amino acid substitution in exon 4, accounted for the remaining allele. Thus, three mutations could account for an illness in this group, and two mutations could account for 17 of 18 alleles. In screening 250 normal Ashkenazi individuals for all three mutations, they found only one [Delta]5 allele. Clinical data revealed no correlation between the particular mutations and symptoms, but male patients were more symptomatic than females, and only males had frank hemolysis and hyperuricemia. Because PFK deficiency in Ashkenazi Jews is caused by a limited number of mutations, screening genomic DNA from peripheral blood for the described mutations in this population should enable rapid diagnosis without muscle biopsy. 41 refs., 4 figs., 2 tabs.

  16. Bax和TGFβRⅡ基因在肺癌组织中的移码突变%Bax and TGFβRⅡ frameshift mutations in lung cancer

    Institute of Scientific and Technical Information of China (English)

    陈国安; 刘天菊; 张伟; 李申德; 杨德昌; 孙燕

    2000-01-01

    目的探讨Bax和TGFβRⅡ基因在肺癌组织中的移码突变及其与微卫星改变的关系.方法用PCR-变性聚丙烯酰胺凝胶电泳-银染法,检测50例肺癌组织Bax和TGFβRⅡ基因移码突变及微卫星改变.结果 Bax基因(G)8移码突变12例,占24%(12/50),主要是碱基丢失.TGFβRⅡ的(A)10未发现移码突变.Bax移码突变与微卫星不稳定和/或杂合性缺失有密切关系(P<0.05).结论肺癌组织中存在Bax基因移码突变且与微卫星改变密切相关,它们在肺癌发病中可能有一定作用.

  17. Identification of a novel PROS1 c.1113T -> GG frameshift mutation in a family with mixed type I/type III protein S deficiency

    NARCIS (Netherlands)

    ten Kate, Min Ki; Mulder, Rene; Platteel, Mathieu; Brouwer, Jan-Leendert P.; van der Steege, Gerrit; van der Meer, Jan

    2006-01-01

    We report a family with type I and type III protein S (PS) deficiency, which showed to be phenotypic variants of the same genetic disease. Direct sequencing analysis of the PROS1 gene was performed to establish the genotype. The ratio of protein C antigen and total PS antigen levels (protein C/S rat

  18. Founding BRCA1 mutations in hereditary breast and ovarian cancer in southern Sweden.

    Science.gov (United States)

    Johannsson, O; Ostermeyer, E A; Håkansson, S; Friedman, L S; Johansson, U; Sellberg, G; Brøndum-Nielsen, K; Sele, V; Olsson, H; King, M C; Borg, A

    1996-03-01

    Nine different germ-line mutations in the BRCA1 breast and ovarian cancer susceptibility gene were identified in 15 of 47 kindreds from southern Sweden, by use of SSCP and heteroduplex analysis of all exons and flanking intron region and by a protein-truncation test for exon 11, followed by direct sequencing. All but one of the mutations are predicted to give rise to premature translation termination and include seven frameshift insertions or deletions, a nonsense mutation, and a splice acceptor site mutation. The remaining mutation is a missense mutation (Cys61Gly) in the zinc-binding motif. Four novel Swedish founding mutations were identified: the nucleotide 2595 deletion A was found in five families, the C 1806 T nonsense mutation in three families, the 3166 insertion TGAGA in three families, and the nucleotide 1201 deletion 11 in two families. Analysis of the intragenic polymorphism D17S855 supports common origins of the mutations. Eleven of the 15 kindreds manifesting BRCA1 mutations were breast-ovarian cancer families, several of them with a predominant ovarian cancer phenotype. The set of 32 families in which no BRCA1 alterations were detected included 1 breast-ovarian cancer kindred manifesting clear linkage to the BRCA1 region and loss of the wild-type chromosome in associated tumors. Other tumor types found in BRCA1 mutation/haplotype carriers included prostatic, pancreas, skin, and lung cancer, a malignant melanoma, an oligodendroglioma, and a carcinosarcoma. In all, 12 of 16 kindreds manifesting BRCA1 mutation or linkage contained ovarian cancer, as compared with only 6 of the remaining 31 families (P<.001). The present study confirms the involvement of BRCA1 in disease predisposition for a subset of hereditary breast cancer families often characterized by ovarian cancers.

  19. Founding BRCA1 mutations in hereditary breast and ovarian cancer in southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Johannsson, O.; Hakansson, S.; Johannson, U. [Univ. Hospital, Lund (Sweden)] [and others

    1996-03-01

    Nine different germ-line mutations in the BRCA1 breast and ovarian cancer susceptibility gene were identified in 15 of 47 kindreds from southern Sweden, by use of SSCP and heteroduplex analysis of all exons and flanking intron region and by a protein-truncation test for exon 11, followed by direct sequencing. All but one of the mutations are predicted to give rise to premature translation termination and include seven frameshift insertions or deletions, a nonsense mutation, and a splice acceptor site mutation. The remaining mutation is a missense mutation (Cys61Gly) in the zinc-binding motif. Four novel Swedish founding mutations were identified: the nucleotide 2595 deletion A was found in five families, the C 1806 T nonsense mutation in three families, the 3166 insertion TGAGA in three families, and the nucleotide 1201 deletion 11 in two families. Analysis of the intragenic polymorphism D17S855 supports common origins of the mutations. Eleven of the 15 kindreds manifesting BRCA1 mutations were breast-ovarian cancer families, several of them with a predominant ovarian cancer phenotype. The set of 32 families in which no BRCA1 alterations were detected included 1 breast-ovarian cancer kindred manifesting clear linkage to the BRCA1 region and loss of the wild-type chromosome in associated tumors. Other tumor types found in BRCA1 mutation/haplotype carriers included prostatic, pancreas, skin, and lung cancer, a malignant melanoma, an oligodendroglioma, and a carcinosarcoma. In all, 12 of 16 kindreds manifesting BRCA1 mutation or linkage contained ovarian cancer, as compared with only 6 of the remaining 31 families (P < .001). The present study confirms the involvement of BRCA1 in disease predisposition for a subset of hereditary breast cancer families often characterized by ovarian cancers. 28 refs., 3 figs., 4 tabs.

  20. GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment

    Directory of Open Access Journals (Sweden)

    Tang Liang

    2009-04-01

    Full Text Available Abstract Background Mutations in GJB2 are the most common molecular defects responsible for autosomal recessive nonsyndromic hearing impairment (NSHI. The mutation spectra of this gene vary among different ethnic groups. Methods In order to understand the spectrum and frequency of GJB2 mutations in the Chinese population, the coding region of the GJB2 gene from 2063 unrelated patients with NSHI was PCR amplified and sequenced. Results A total of 23 pathogenic mutations were identified. Among them, five (p.W3X, c.99delT, c.155_c.158delTCTG, c.512_c.513insAACG, and p.Y152X are novel. Three hundred and seven patients carry two confirmed pathogenic mutations, including 178 homozygotes and 129 compound heterozygotes. One hundred twenty five patients carry only one mutant allele. Thus, GJB2 mutations account for 17.9% of the mutant alleles in 2063 NSHI patients. Overall, 92.6% (684/739 of the pathogenic mutations are frame-shift truncation or nonsense mutations. The four prevalent mutations; c.235delC, c.299_c.300delAT, c.176_c.191del16, and c.35delG, account for 88.0% of all mutantalleles identified. The frequency of GJB2 mutations (alleles varies from 4% to 30.4% among different regions of China. It also varies among different sub-ethnic groups. Conclusion In some regions of China, testing of the three most common mutations can identify at least one GJB2 mutant allele in all patients. In other regions such as Tibet, the three most common mutations account for only 16% the GJB2 mutant alleles. Thus, in this region, sequencing of GJB2 would be recommended. In addition, the etiology of more than 80% of the mutant alleles for NSHI in China remains to be identified. Analysis of other NSHI related genes will be necessary.

  1. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome.

    Science.gov (United States)

    Frank, Valeska; den Hollander, Anneke I; Brüchle, Nadina Ortiz; Zonneveld, Marijke N; Nürnberg, Gudrun; Becker, Christian; Du Bois, Gabriele; Kendziorra, Heide; Roosing, Susanne; Senderek, Jan; Nürnberg, Peter; Cremers, Frans P M; Zerres, Klaus; Bergmann, Carsten

    2008-01-01

    Meckel-Gruber syndrome (MKS) is an autosomal recessive, lethal multisystemic disorder characterized by meningooccipital encephalocele, cystic kidney dysplasia, hepatobiliary ductal plate malformation, and postaxial polydactyly. Recently, genes for MKS1 and MKS3 were identified, putting MKS on the list of ciliary disorders (ciliopathies). By positional cloning in a distantly related multiplex family, we mapped a novel locus for MKS to a 3-Mb interval on 12q21. Sequencing of the CEP290 gene located in the minimal critical region showed a homozygous 1-bp deletion supposed to lead to loss of function of the encoded centrosomal protein CEP290/nephrocystin-6. CEP290 is thought to be involved in chromosome segregation and localizes to cilia, centrosomes, and the nucleus. Subsequent analysis of another consanguineous multiplex family revealed homozygous haplotypes and the same frameshift mutation. Our findings add to the increasing body of evidence that ciliopathies can cause a broad spectrum of disease phenotypes, and pleiotropic effects of CEP290 mutations range from single organ involvement with isolated Leber congenital amaurosis to Joubert syndrome and lethal early embryonic multisystemic malformations in Meckel-Gruber syndrome. We compiled clinical and genetic data of all patients with CEP290 mutations described so far. No clear-cut genotype-phenotype correlations were apparent as almost all mutations are nonsense, frameshift, or splice-site changes and scattered throughout the gene irrespective of the patients' phenotypes. Conclusively, other factors than the type and location of CEP290 mutations may underlie phenotypic variability. (c) 2007 Wiley-Liss, Inc.

  2. Two novel mutations of FBN1 in Jordanian patients with Marfan syndrome.

    Science.gov (United States)

    Jaradat, Saied A; Abujamous, Lama A; Al-Hawamdeh, Ali A; Alawneh, Khaldoon M; Rawashdeh, Tamara A; Jaradat, Zaher M

    2015-01-01

    Marfan syndrome is an autosomal dominant inheritance disorder with a 1/5000-live-birth prevalence. More than 3000 mutations have been characterized thus far in the FBN1 gene. The goal of this study is to facilitate Marfan syndrome diagnosis in Jordanian patients using a molecular genetic testing. All of the 65 coding exons and flanking intronic sequences of the FBN1 gene were amplified using polymerase chain reaction and were subjected to sequencing in five unrelated Jordanian patients suspected of having Marfan syndrome. Four different mutations were identified, including two novel mutations: the c.1553dupG frame-shift (p.Tyr519Ilefs*14) and the c.6650G>A (p.Cys2217Tyr) missense mutations. Two other missense mutations, c.2243G>A (p.Cys748Tyr) and c.2432G>A (p.Cys811Tyr), have been previously detected. Patient number five was heterozygous for the synonymous substitution variant c.1875T>C (p.Asn625Asn; rs#25458). Additionally, eight variants in the intronic sequence of the FBN1 gene were identified, of which the c.2168-46A>G mutation was a new variant. The data provide molecular-based evidence linking Marfan syndrome to pathogenic mutations in the FBN1 gene among Jordanians for the first time. Thus, our results will contribute to the better management of the disease using molecular tools and will help in genetic counseling of the patients' families.

  3. Spectrum of NSD1 gene mutations in southern Chinese patients with Sotos syndrome

    Institute of Scientific and Technical Information of China (English)

    Tony M.F. Tong; Edgar W.L. Hau; Ivan F.M. Lo; Daniel H.C. Chan; Stephen T.S. Lam

    2005-01-01

    Background Sotos syndrome is an overgrowth syndrome with characteristic facial gestalt and mental retardation of variable severity. Haploinsufficiency of the NSD1 gene has been implicated as the major cause of Sotos syndrome, with a predominance of microdeletions reported in Japanese patients. This study was conducted to investigate into the spectrum of NSD1 gene mutations in southern Chinese patients with Sotos syndrome. Methods Thirty-six Chinese patients with Sotos syndrome and two patients with Weaver syndrome were subject to molecular testing. Results NSD1 gene mutations were detected in 26 (72%) Sotos patients. Microdeletion was found in only 3 patients, while the other 23 had point mutations (6 frameshift, 8 nonsense, 2 spice site, and 7 missense). Of these, 19 mutations were never reported. NSD1 gene mutations were not found in the two patients with Weaver syndrome. Conclusions Most cases of Sotos syndrome are caused by NSD1 gene defects, but the spectrum of mutations is different from that of Japanese patients. Genotype-phenotype correlation showed that patients with microdeletions might be more prone to congenital heart disease but less likely to have somatic overgrowth. The two patients with Weaver syndrome were not found to have NSD1 gene mutations, but the number was too small for any conclusion to be drawn.

  4. Two novel STK11 mutations in three Chinese families with Peutz-Jeghers syndrome

    Institute of Scientific and Technical Information of China (English)

    ZUO Ya-gang; XU Ke-jian; SU Bin; Michael G. Ho; LIU Yue-hua

    2007-01-01

    Background Peutz-Jeghers syndrome (PJS) is an autosomal dominantly inherited disease. STK11/LKB1 gene germline mutations have been identified as responsible for PJS. In our study, we investigated the molecular basis of PJS and evaluated correlation between the STK11 mutations and the Chinese population.Methods We collected three pedigrees of PJS and screened the 9 exons and their flanking intronic sequences of STK11/LKB1 gene in the probands and normal individuals in the families using polymerase chain reaction (PCR) and direct sequencing.Results Sequencing of the STK11 gene in the probands of 3 families revealed two novel mutations (c180C→G and c998-1002delGCAGC) in exon 1 and exon 8, respectively. The mutation of c180C→G resulted in a premature termination codon. The other mutation, a deletion of five nucleotides (998-1002delGCAGC) in exon 8, predicted to generate a translational frameshift and a termination at codon 1070.Conclusions The growing number of mutations in PJS pedigrees suggests the molecular basis of PJS. STK11 gene mutation can be detected in most patients with PJS.

  5. Mutations in the hedgehog pathway genes SMO and PTCH1 in human gastric tumors.

    Directory of Open Access Journals (Sweden)

    Xi-De Wang

    Full Text Available The causal role of the hedgehog pathway in cancer has been best documented in basal cell carcinoma of the skin. To assess potential DNA alterations of the hedgehog pathway in gastric cancer, we sequenced SMO and PTCH1 genes in a set of 39 gastric tumors. Tumors were classified by histology based on the Lauren classification and Sanger sequencing was performed to obtain full length coding sequences. Genomic instability was evident in these tumors as a number of silent or missense mutations were found. In addition to those that are potential germline polymorphisms, we found three SMO missense mutations, and one PTCH1 frameshift mutation that are novel and have not been documented in basal cell carcinoma. Mutations were found in both intestinal and diffuse type gastric tumors as well as in tumors that exhibit both intestinal and diffuse features. mRNA expression of hedgehog pathway genes was also examined and their levels do not indicate unequivocal higher pathway activity in tumors with mutations than those without. In summary, SMO and/or PTCH1 mutations are present at low frequency in different histologic subtypes of gastric tumors and these do not appear to be driver mutations.

  6. Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome.

    Science.gov (United States)

    Olson, Heather E; Tambunan, Dimira; LaCoursiere, Christopher; Goldenberg, Marti; Pinsky, Rebecca; Martin, Emilie; Ho, Eugenia; Khwaja, Omar; Kaufmann, Walter E; Poduri, Annapurna

    2015-09-01

    Rett syndrome and neurodevelopmental disorders with features overlapping this syndrome frequently remain unexplained in patients without clinically identified MECP2 mutations. We recruited a cohort of 11 patients with features of Rett syndrome and negative initial clinical testing for mutations in MECP2. We analyzed their phenotypes to determine whether patients met formal criteria for Rett syndrome, reviewed repeat clinical genetic testing, and performed exome sequencing of the probands. Using 2010 diagnostic criteria, three patients had classical Rett syndrome, including two for whom repeat MECP2 gene testing had identified mutations. In a patient with neonatal onset epilepsy with atypical Rett syndrome, we identified a frameshift deletion in STXBP1. Among seven patients with features of Rett syndrome not fulfilling formal diagnostic criteria, four had suspected pathogenic mutations, one each in MECP2, FOXG1, SCN8A, and IQSEC2. MECP2 mutations are highly correlated with classical Rett syndrome. Genes associated with atypical Rett syndrome, epilepsy, or intellectual disability should be considered in patients with features overlapping with Rett syndrome and negative MECP2 testing. While most of the identified mutations were apparently de novo, the SCN8A variant was inherited from an unaffected parent mosaic for the mutation, which is important to note for counseling regarding recurrence risks.

  7. An analysis of substitution, deletion and insertion mutations in cancer genes.

    Science.gov (United States)

    Iengar, Prathima

    2012-08-01

    Cancer-associated mutations in cancer genes constitute a diverse set of mutations associated with the disease. To gain insight into features of the set, substitution, deletion and insertion mutations were analysed at the nucleotide level, from the COSMIC database. The most frequent substitutions were c → t, g → a, g → t, and the most frequent codon changes were to termination codons. Deletions more than insertions, FS (frameshift) indels more than I-F (in-frame) ones, and single-nucleotide indels, were frequent. FS indels cause loss of significant fractions of proteins. The 5'-cut in FS deletions, and 5'-ligation in FS insertions, often occur between pairs of identical bases. Interestingly, the cut-site and 3'-ligation in insertions, and 3'-cut and join-pair in deletions, were each found to be the same significantly often (p Proto-oncogenes undergo fewer, less-disruptive mutations, in selected protein regions, to activate a single allele. Finally, catalogues, in ranked order, of genes mutated in each cancer, and cancers in which each gene is mutated, were created. The study highlights the nucleotide level preferences and disruptive nature of cancer mutations.

  8. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    Science.gov (United States)

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients.

  9. Nucleotide sequence of Zygosaccharomyces bailii virus Z: Evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae.

    Science.gov (United States)

    Depierreux, Delphine; Vong, Minh; Nibert, Max L

    2016-06-02

    Zygosaccharomyces bailii virus Z (ZbV-Z) is a monosegmented dsRNA virus that infects the yeast Zygosaccharomyces bailii and remains unclassified to date despite its discovery >20years ago. The previously reported nucleotide sequence of ZbV-Z (GenBank AF224490) encompasses two nonoverlapping long ORFs: upstream ORF1 encoding the putative coat protein and downstream ORF2 encoding the RNA-dependent RNA polymerase (RdRp). The lack of overlap between these ORFs raises the question of how the downstream ORF is translated. After examining the previous sequence of ZbV-Z, we predicted that it contains at least one sequencing error to explain the nonoverlapping ORFs, and hence we redetermined the nucleotide sequence of ZbV-Z, derived from the same isolate of Z. bailii as previously studied, to address this prediction. The key finding from our new sequence, which includes several insertions, deletions, and substitutions relative to the previous one, is that ORF2 in fact overlaps ORF1 in the +1 frame. Moreover, a proposed sequence motif for +1 programmed ribosomal frameshifting, previously noted in influenza A viruses, plant amalgaviruses, and others, is also present in the newly identified ORF1-ORF2 overlap region of ZbV-Z. Phylogenetic analyses provided evidence that ZbV-Z represents a distinct taxon most closely related to plant amalgaviruses (genus Amalgavirus, family Amalgaviridae). We conclude that ZbV-Z is the prototype of a new species, which we propose to assign as type species of a new genus of monosegmented dsRNA mycoviruses in family Amalgaviridae. Comparisons involving other unclassified mycoviruses with RdRps apparently related to those of plant amalgaviruses, and having either mono- or bisegmented dsRNA genomes, are also discussed.

  10. T cell responses against microsatellite instability-induced frameshift peptides and influence of regulatory T cells in colorectal cancer.

    Science.gov (United States)

    Bauer, Kathrin; Nelius, Nina; Reuschenbach, Miriam; Koch, Moritz; Weitz, Jürgen; Steinert, Gunnar; Kopitz, Jürgen; Beckhove, Philipp; Tariverdian, Mirjam; von Knebel Doeberitz, Magnus; Kloor, Matthias

    2013-01-01

    High-level microsatellite-unstable (MSI-H) colorectal carcinomas (CRC) represent a distinct subtype of tumors commonly characterized by dense infiltration with cytotoxic T cells, most likely due to expression of MSI-H-related frameshift peptides (FSP). The contribution of FSP and classical antigens like MUC1 and CEA to the cellular immune response against MSI-H CRC had not been analyzed so far. We analyzed tumor-infiltrating and peripheral T cells from MSI-H (n = 4 and n = 14, respectively) and microsatellite-stable (MSS) tumor patients (n = 26 and n = 17) using interferon gamma ELISpot assays. Responses against 4 FSP antigens and peptides derived from MUC1 to CEA were compared with and without depletion of regulatory T cells, and the results were related to the presence of the respective antigens in tumor tissue. Preexisting FSP-specific T cell responses were detected in all (4 out of 4) tumor-infiltrating and in the majority (10 out of 14) of peripheral T cell samples from MSI-H CRC patients, but rarely observed in MSS CRC patients. Preexisting T cell responses in MSI-H CRC patients were significantly more frequently directed against FSP tested in the present study than against peptides derived from classical antigens MUC1 or CEA (p = 0.049). Depletion of regulatory T cells increased the frequency of effector T cell responses specific for MUC1/CEA-derived peptides and, to a lesser extent, T cell responses specific for FSP. Our data suggest that the analyzed FSP may represent an immunologically relevant pool of antigens capable of eliciting antitumoral effector T cell responses.

  11. Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift.

    Science.gov (United States)

    Choi, Min-Yeon; Park, Sang-Hyun

    2016-06-01

    Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression.

  12. GALNS mutations in Indian patients with mucopolysaccharidosis IVA.

    Science.gov (United States)

    Bidchol, Abdul Mueed; Dalal, Ashwin; Shah, Hitesh; S, Suryanarayana; Nampoothiri, Sheela; Kabra, Madhulika; Gupta, Neerja; Danda, Sumita; Gowrishankar, Kalpana; Phadke, Shubha R; Kapoor, Seema; Kamate, Mahesh; Verma, I C; Puri, Ratna Dua; Sankar, V H; Devi, A Radha Rama; Patil, S J; Ranganath, Prajnya; Jain, S Jamal Md Nurul; Agarwal, Meenal; Singh, Ankur; Mishra, Pallavi; Tamhankar, Parag M; Gopinath, Puthiya Mundyat; Nagarajaram, H A; Satyamoorthy, Kapaettu; Girisha, Katta Mohan

    2014-11-01

    Mucopolysaccharidosis IV A (Morquio syndrome A, MPS IVA) is a lysosomal storage disease caused by the deficiency of N-acetylgalactosamine-6-sulfatase (GALNS). The mutation spectrum in this condition is yet to be determined in Indians. We aimed to analyze the mutations in the GALNS gene in Asian Indians with MPS IVA. All the exons and the adjacent intronic regions of the gene were amplified and sequenced in sixty-eight unrelated Indian families. We identified 136 mutant alleles comprising of 40 different mutations. We report twenty-two novel mutations that comprise of seventeen missense (p.Asn32Thr, p.Leu36Arg, p.Pro52Leu, p.Pro77Ser, p.Cys79Arg, p.His142Pro, p.Tyr191Asp, p.Asn204Thr, p.Gly188Ser, p.Phe216Ser, p.Trp230Cys, p.Ala291Ser, p.Gly317Arg, p.His329Pro, p.Arg386Ser, p.Glu450Gly, p.Cys501Ser), three splice-site variants (c.120+1G>C, c.1003-3C>G, c.1139+1G>A), one nonsense mutation (p.Gln414*) and one frameshift mutation (p.Pro420Leufs*440). Eighteen mutations have been reported earlier. Among these p.Ser287Leu (8.82%), p.Phe216Ser (7.35%), p.Asn32Thr (6.61%) and p.Ala291Ser (5.88%) were the most frequent mutations in Indian patients but were rare in the mutational profiles reported in other populations. These results indicate that the Indian patients may have a distinct mutation spectrum compared to those of other populations. Mutant alleles in exon 1, 7 and 8 accounted for 44.8% of the mutations, and sequencing of these exons initially may be a cost-effective approach in Asian Indian patients. This is the largest study on molecular analysis of patients with MPS IVA reported in the literature, and the first report from India. © 2014 Wiley Periodicals, Inc.

  13. Germline Mutations in NFKB2 Implicate the Noncanonical NF-κB Pathway in the Pathogenesis of Common Variable Immunodeficiency

    OpenAIRE

    Chen, Karin; Coonrod, Emily M.; Kumánovics, Attila; Franks, Zechariah F.; Durtschi, Jacob D.; Margraf, Rebecca L.; Wu, Wilfred; Heikal, Nahla M.; Augustine, Nancy H.; Ridge, Perry G.; Hill, Harry R.; Jorde, Lynn B.; Weyrich, Andrew S.; Zimmerman, Guy A.; Gundlapalli, Adi V.

    2013-01-01

    Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs∗7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-a...

  14. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene.

    Science.gov (United States)

    Cunha, Karin Soares; Oliveira, Nathalia Silva; Fausto, Anna Karoline; de Souza, Carolina Cruz; Gros, Audrey; Bandres, Thomas; Idrissi, Yamina; Merlio, Jean-Philippe; de Moura Neto, Rodrigo Soares; Silva, Rosane; Geller, Mauro; Cappellen, David

    2016-12-17

    Neurofibromatosis 1 (NF1) is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns) from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11). We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G). Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns) for different types of pathogenic variations, including the deep intronic splicing mutations.

  15. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene

    Science.gov (United States)

    Cunha, Karin Soares; Oliveira, Nathalia Silva; Fausto, Anna Karoline; de Souza, Carolina Cruz; Gros, Audrey; Bandres, Thomas; Idrissi, Yamina; Merlio, Jean-Philippe; de Moura Neto, Rodrigo Soares; Silva, Rosane; Geller, Mauro; Cappellen, David

    2016-01-01

    Neurofibromatosis 1 (NF1) is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns) from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11). We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G). Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns) for different types of pathogenic variations, including the deep intronic splicing mutations. PMID:27999334

  16. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene

    Directory of Open Access Journals (Sweden)

    Karin Soares Cunha

    2016-12-01

    Full Text Available Neurofibromatosis 1 (NF1 is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11. We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G. Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns for different types of pathogenic variations, including the deep intronic splicing mutations.

  17. A novel SERPINA1 mutation causing serum alpha(1-antitrypsin deficiency.

    Directory of Open Access Journals (Sweden)

    Darren N Saunders

    Full Text Available Mutations in the SERPINA1 gene can cause deficiency in the circulating serine protease inhibitor α(1-Antitrypsin (α(1AT. α(1AT deficiency is the major contributor to pulmonary emphysema and liver disease in persons of European ancestry, with a prevalence of 1 in 2500 in the USA. We present the discovery and characterization of a novel SERPINA1 mutant from an asymptomatic Middle Eastern male with circulating α(1AT deficiency. This 49 base pair deletion mutation (T379Δ, originally mistyped by IEF, causes a frame-shift replacement of the last sixteen α(1AT residues and adds an extra twenty-four residues. Functional analysis showed that the mutant protein is not secreted and prone to intracellular aggregation.

  18. Homozygosity for a novel truncating mutation confirms TBX15 deficiency as the cause of Cousin syndrome.

    Science.gov (United States)

    Dikoglu, Esra; Simsek-Kiper, Pelin Ozlem; Utine, Gulen Eda; Campos-Xavier, Belinda; Boduroglu, Koray; Bonafé, Luisa; Superti-Furga, Andrea; Unger, Sheila

    2013-12-01

    Cousin syndrome, also called pelviscapular dysplasia (OMIM 260660), is characterized by short stature, craniofacial dysmorphism, and multiple skeletal anomalies. Following its description in two sibs in 1982, no new cases have been observed until the observation of two unrelated cases in 2008 who were homozygous for frameshift mutations in TBX15. We investigated an adult individual with short stature, a complex craniofacial dysmorphism, malformed and rotated ears, short neck, elbow contractures, hypoacusis, and hypoplasia of scapula and pelvis on radiographs. We identified homozygosity for a novel nonsense mutation (c.841C>T) in TBX15 predicted to cause a premature stop (p.Arg281*) with truncation of the protein. This observation confirms that Cousin syndrome is a consistent and clinically recognizable phenotype caused by loss of function of TBX15.

  19. Mitochondrial encephalomyopathy with cytochrome c oxidase deficiency caused by a novel mutation in the MTCO1 gene.

    Science.gov (United States)

    Debray, François-Guillaume; Seneca, Sara; Gonce, Michel; Vancampenhaut, Kim; Bianchi, Elettra; Boemer, François; Weekers, Laurent; Smet, Joél; Van Coster, Rudy

    2014-07-01

    Cytochrome c oxidase (COX) deficiency is one of the most common respiratory chain deficiencies. A woman was presented at the age of 18y with acute loss of consciousness, non-convulsive status epilepticus, slow neurological deterioration, transient cortical blindness, exercise intolerance, muscle weakness, hearing loss, cataract and cognitive decline. Muscle biopsy revealed ragged-red fibers, COX negative fibers and a significant decreased activity of complex IV in a homogenate. Using next generation massive parallel sequencing of the mtDNA, a novel heteroplasmic mutation was identified in MTCO1, m.7402delC, causing frameshift and a premature termination codon. Single fiber PCR showed co-segregation of high mutant load in COX negative fibers. Mutation in mitochondrially encoded complex IV subunits should be considered in mitochondrial encephalomyopathies and COX negative fibers after the common mtDNA mutations have been excluded.

  20. Wiskott-Aldrich Syndrome With Normal-Sized Platelets in an Eighteen-Month-Old Boy: A Rare Mutation

    Directory of Open Access Journals (Sweden)

    Jayitri Mazumdar

    2015-07-01

    Full Text Available Introduction: Wiskott-Aldrich syndrome (WAS is an X-linked recessive disorder characterized by thrombocytopenia, eczema, and recurrent infections. The disease is usually associated with small defective platelets. Case Presentation: We described an 18-month-old boy who presented with lower gastrointestinal bleeding, eczema, and recurrent infections. There was pancytopenia with normal-sized platelets. In addition, the CD4 count was significantly low and serum IgA and IgE levels were increased. The diagnosis of WAS was confirmed by detecting a mutation of WAS gene, which was due to a deletion mutation resulting in frameshift (c.177DelT. Conclusions: Usually microplatelets with mean platelet volume of 4-5 fL are seen in WAS, but in this case, the patient had normal-sized platelets with a rare mutation of WAS gene. Therefore, high index of clinical suspicion is needed to diagnose WAS.

  1. CF Mutation Panel

    Science.gov (United States)

    ... Testing; Cystic Fibrosis Transmembrane Conductance Regulator Mutation Analysis; CFTR Mutation Analysis Formal name: Cystic Fibrosis Gene Mutation ... an elevated immunoreactive trypsinogen (IRT) or positive sweat chloride test , to confirm the diagnosis of cystic fibrosis. ...

  2. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Directory of Open Access Journals (Sweden)

    Zied Riahi

    Full Text Available Usher syndrome (USH is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3 are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys, in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24, and a nonsense mutation, c.52A>T (p.Lys18*. Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  3. Pseudolysogeny and sequential mutations build multiresistance to virulent bacteriophages in Pseudomonas aeruginosa.

    Science.gov (United States)

    Latino, Libera; Midoux, Cédric; Hauck, Yolande; Vergnaud, Gilles; Pourcel, Christine

    2016-05-01

    Coevolution between bacteriophages (phages) and their prey is the result of mutualistic interactions. Here, we show that pseudolysogeny is a frequent outcome of infection by virulent phages of Pseudomonas aeruginosa and that selection of resistant bacterial mutants is favoured by continuous production of phages. We investigated the frequency and characteristics of P. aeruginosa strain PAO1 variants resisting infection by different combinations of virulent phages belonging to four genera. The frequency of resistant bacteria was 10- 5 for single phage infection and 10- 6 for infections with combinations of two or four phages. The genome of 27 variants was sequenced and the comparison with the genome of the parental PAO1 strain allowed the identification of point mutations or small indels. Four additional variants were characterized by a candidate gene approach. In total, 27 independent mutations were observed affecting 14 genes and a regulatory region. The mutations affected genes involved in biosynthesis of type IV pilus, alginate, LPS and O-antigen. Half of the variants possessed changes in homopolymer tracts responsible for frameshift mutations and these phase variation mutants were shown to be unstable. Eleven double mutants were detected. The presence of free phage DNA was observed in association with exclusion of superinfection in half of the variants and no chromosomal mutation could be found in three of them. Upon further growth of these pseudolysogens, some variants with new chromosomal mutations were recovered, presumably due to continuous evolutionary pressure.

  4. Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations.

    LENUS (Irish Health Repository)

    Geranmayeh, Fatemeh

    2010-04-01

    Merosin deficient congenital muscular dystrophy 1A (MDC1A) results from mutations in the LAMA2 gene. We report 51 patients with MDC1A and examine the relationship between degree of merosin expression, genotype and clinical features. Thirty-three patients had absence of merosin and 13 showed some residual merosin. Compared to the residual merosin group, patients with absent merosin had an earlier presentation (<7days) (P=0.0073), were more likely to lack independent ambulation (P=0.0215), or require enteral feeding (P=0.0099) and ventilatory support (P=0.0354). We identified 33 novel LAMA2 mutations; these were distributed throughout the gene in patients with absent merosin, with minor clusters in exon 27, 14, 25 and 26 (55% of mutations). Patients with residual merosin often carried at least one splice site mutation and less frequently frameshift mutations. This large study identified novel LAMA2 mutations and highlights the role of immunohistochemical studies for merosin status in predicting clinical severity of MDC1A.

  5. Screening for germline mutations in the neurofibromatosis type 2 (NF2) gene in NF2 patients

    Energy Technology Data Exchange (ETDEWEB)

    Andermann, A.A.; Ruttledge, M.H.; Rangaratnam, A. [McGill Univ. and Montreal General Hospital Research Institute, Quebec (Canada)] [and others

    1994-09-01

    Neurofibromatosis type 2 (NF2) is an autosomal dominant disease with over 95% penetrance which predisposes gene carriers to develop multiple tumors of the central nervous system. The NF2 gene is a putative tumor suppressor gene which was previously mapped to the long arm of chromosome 22, and has recently been identified, using positional cloning techniques. The gene encodes a protein, schwannomin (SCH), which is highly homologous to the band 4.1 protein family. In an attempt to identify and characterize mutations which lead to the manifestation of the disease, we have used single strand conformation analysis (SSCA) to screen for germline mutations in all 17 exons of the NF2 gene in 59 unrelated NF2 patients, representing both familial and new mutations. A total of 27 migration abnormalities was found in 26 patients. Using direct sequencing analysis, the majority of these variants were found to result in nonsense, splice-site or frameshift mutations. Mutations identified in familial NF2 patients segregate in the family, and may prove to be useful tools for a simple and direct SSCA-based technique of presymptomatic or prenatal diagnosis in relatives of patients with NF2. This may be of particular importance in children of patients who have new mutations in the NF2 gene, where linkage analysis may not be feasible.

  6. Alterations of the IKBKG locus and diseases: an update and a report of 13 novel mutations.

    Science.gov (United States)

    Fusco, Francesca; Pescatore, Alessandra; Bal, Elodie; Ghoul, Aida; Paciolla, Mariateresa; Lioi, Maria Brigida; D'Urso, Michele; Rabia, Smail Hadj; Bodemer, Christine; Bonnefont, Jean Paul; Munnich, Arnold; Miano, Maria Giuseppina; Smahi, Asma; Ursini, Matilde Valeria

    2008-05-01

    Mutations in the inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma (IKBKG), also called nuclear factor-kappaB (NF-kB) essential modulator (NEMO), gene are the most common single cause of incontinentia pigmenti (IP) in females and anhydrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males. The IKBKG gene, located in the Xq28 chromosomal region, encodes for the regulatory subunit of the inhibitor of kappaB (IkB) kinase (IKK) complex required for the activation of the NF-kB pathway. Therefore, the remarkably heterogeneous and often severe clinical presentation reported in IP is due to the pleiotropic role of this signaling transcription pathway. A recurrent exon 4_10 genomic rearrangement in the IKBKG gene accounts for 60 to 80% of IP-causing mutations. Besides the IKBKG rearrangement found in IP females (which is lethal in males), a total of 69 different small mutations (missense, frameshift, nonsense, and splice-site mutations) have been reported, including 13 novel ones in this work. The updated distribution of all the IP- and EDA-ID-causing mutations along the IKBKG gene highlights a secondary hotspot mutation in exon 10, which contains only 11% of the protein. Furthermore, familial inheritance analysis revealed an unexpectedly high incidence of sporadic cases (>65%). The sum of the observations can aid both in determining the molecular basis of IP and EDA-ID allelic diseases, and in genetic counseling in affected families.

  7. Mutations in the translated region of the lactase gene (LCT) underlie congenital lactase deficiency.

    Science.gov (United States)

    Kuokkanen, Mikko; Kokkonen, Jorma; Enattah, Nabil Sabri; Ylisaukko-Oja, Tero; Komu, Hanna; Varilo, Teppo; Peltonen, Leena; Savilahti, Erkki; Jarvela, Irma

    2006-02-01

    Congenital lactase deficiency (CLD) is a severe gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. We initially assigned the CLD locus by linkage and linkage disequilibrium on 2q21 in 19 Finnish families. Here we report the molecular background of CLD via characterization of five distinct mutations in the coding region of the lactase (LCT) gene. Twenty-seven patients out of 32 (84%) were homozygous for a nonsense mutation, c.4170T-->A (Y1390X), designated "Fin(major)." Four rare mutations--two that result in a predicted frameshift and early truncation at S1666fsX1722 and S218fsX224 and two point mutations that result in substitutions Q268H and G1363S of the 1,927-aa polypeptide--confirmed the lactase mutations as causative for CLD. These findings facilitate genetic testing in clinical practice and enable genetic counseling for this severe disease. Further, our data demonstrate that, in contrast to common adult-type hypolactasia (lactose intolerance) caused by a variant of the regulatory element, the severe infancy form represents the outcome of mutations affecting the structure of the protein inactivating the enzyme.

  8. Diversity of the clinical presentation of the MMR gene biallelic mutations.

    Science.gov (United States)

    Bougeard, Gaëlle; Olivier-Faivre, Laurence; Baert-Desurmont, Stéphanie; Tinat, Julie; Martin, Cosette; Bouvignies, Emilie; Vasseur, Stéphanie; Huet, Frédéric; Couillault, Gérard; Vabres, Pierre; Le Pessot, Florence; Chapusot, Caroline; Malka, David; Bressac-de Paillerets, Brigitte; Tosi, Mario; Frebourg, Thierry

    2014-03-01

    Constitutional mismatch repair-deficiency, due to biallelic mutations of MMR genes, results in a tumour spectrum characterized by leukaemias, lymphomas, brain tumours and adenocarcinomas of the gastro-intestinal tract, occurring mostly in childhood. We report here two families illustrating the phenotypic diversity associated with biallelic MMR mutations. In the first family, two siblings developed six malignancies including glioblastoma, lymphoblastic T cell lymphoma, rectal and small bowel adenocarcinoma with onset as early as 6 years of age. We showed that this dramatic clinical presentation was due to the presence of two complex genomic PMS2 deletions in each patient predicted to result into complete PMS2 inactivation. In the second family, the index case presented with an early form of Lynch syndrome with colorectal adenocarcinomas at ages 17 and 20 years, and urinary tract tumours at the age of 25 years. We identified in this patient two MSH6 mutations corresponding to a frameshift deletion and an in frame deletion. The latter was not predicted to result into complete inactivation of MSH6. These reports show that the clinical expression of biallelic MMR mutations depends on the biological impact of the second MMR mutation and that, in clinical practice, the presence of a second MMR mutation located in trans should also be considered in patients suspected to present a Lynch syndrome with an unusual early-onset of tumours.

  9. Somatic mutation analysis of MYH11 in breast and prostate cancer

    Directory of Open Access Journals (Sweden)

    Waltering Kati

    2008-09-01

    Full Text Available Abstract Background MYH11 (also known as SMMHC encodes the smooth-muscle myosin heavy chain, which has a key role in smooth muscle contraction. Inversion at the MYH11 locus is one of the most frequent chromosomal aberrations found in acute myeloid leukemia. We have previously shown that MYH11 mutations occur in human colorectal cancer, and may also be associated with Peutz-Jeghers syndrome. The mutations found in human intestinal neoplasia result in unregulated proteins with constitutive motor activity, similar to the mutant myh11 underlying the zebrafish meltdown phenotype characterized by disrupted intestinal architecture. Recently, MYH1 and MYH9 have been identified as candidate breast cancer genes in a systematic analysis of the breast cancer genome. Methods The aim of this study was to investigate the role of somatic MYH11 mutations in two common tumor types; breast and prostate cancers. A total of 155 breast cancer and 71 prostate cancer samples were analyzed for those regions in MYH11 (altogether 8 exons out of 42 coding exons that harboured mutations in colorectal cancer in our previous study. Results In breast cancer samples only germline alterations were observed. One prostate cancer sample harbored a frameshift mutation c.5798delC, which we have previously shown to result in a protein with unregulated motor activity. Conclusion Little evidence for a role of somatic MYH11 mutations in the formation of breast or prostate cancers was obtained in this study.

  10. [Diagnostic strategy of beta-thalassemic mutation in a Tunisian family, application in prenatal diagnosis].

    Science.gov (United States)

    Khelil, A H; Laradi, S; Ferchichi, S; Carion, N; Béjaoui, M; Saad, A; Chaieb, A; Miled, A; Ben Chibani, J; Perrin, P

    2003-01-01

    At present, the application of combined methods in molecular biology allows us to carry out the prenatal diagnosis in a more rapid and less onerous manner especially when the family presents an index case. In this study, we have analyzed a family with one case of intermediate beta-thalassemia. First, we have used the denaturing gradient gel electrophoresis (DGGE). Then, we have identified the mutations by the refractory mutation system technique (ARMS PCR) using specific primers for the most frequent mutations in the Tunisian population (codon 39 (C --> T) and IVS-I-2 (T--> G) for beta0 thalassemias and IVS-I-110 (G --> A) for beta+ thalassemias). The analyzed family has shown the IVS-I-110 (G --> A) mutation in the heterozygous state in the mother and the index case. Subsequently, sequencing in the gene revealed a frameshift 8 (-AA) mutation in the father and his daughter. This patient is thus a compound heterozygote Codon 8 (-AA)/IVS-I-110. DGGE and ARMS PCR analysis of foetal DNA extracted from trophoblast culture didn't show any of the two mutations found in the family.

  11. Osteogenesis imperfecta type 3 in South Africa: Causative mutations in FKBP10

    Directory of Open Access Journals (Sweden)

    Alvera Vorster

    2017-05-01

    Full Text Available Background. A relatively high frequency of autosomal recessively inherited osteogenesis imperfecta (OI type 3 (OI-3 is present in the indigenous black southern African population. Affected persons may be severely handicapped as a result of frequent fractures, progressive deformity of the tubular bones and spinal malalignment. Objective. To delineate the molecular basis for the condition. Methods. Molecular investigations were performed on 91 affected persons from seven diverse ethnolinguistic groups in this population. Results. Following polymerase chain reaction amplification and direct cycle sequencing, FKBP10 mutations were identified in 45.1% (41/91 OI-3-affected persons. The homozygous FKBP10 c.831dupC frameshift mutation was confirmed in 35 affected individuals in the study cohort. Haplotype analysis suggests that this mutation is identical among these OI-3-affected persons by descent, thereby confirming that they had a common ancestor. Compound heterozygosity of this founder mutation was observed, in combination with three different deleterious FKBP10 mutations, in six additional persons in the cohort. Four of these individuals had the c.831delC mutation. Conclusion. The burden of the disorder, both in frequency and severity, warrants the establishment of a dedicated service for molecular diagnostic confirmation and genetic management of persons and families with OI in southern Africa.

  12. Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12.

    Science.gov (United States)

    Mäkinen, Netta; Aavikko, Mervi; Heikkinen, Tuomas; Taipale, Minna; Taipale, Jussi; Koivisto-Korander, Riitta; Bützow, Ralf; Vahteristo, Pia

    2016-02-01

    Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS.

  13. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution.

  14. Relationship between repair processes and mutation induction in bacteria. [UV radiation; methyl methanesulfonate; N-methyl-N/sup 1/-nitro-N-nitrosoguanidine; N-methyl-N-nitrosourea; N-ethyl-N-nitrosourea; ethyl methanesulfanate; N-ethyl-nitrosoguanidine; 4-nitroquinoline 1-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, R F

    1979-01-01

    The main repair and replication-associated processes that can influence the induction of mutations by various mutagens in bacteria are reviewed. These include both constitutive and induced, error-free and error-prone systems. The mutation yield from a treatment with a mutagen can be markedly affected by which of these systems is operating in a given bacterial species or strain. The effect of these systems on mutation induction by ultraviolet light, monofunctional alkylating agents, base analogues, and frameshift mutagens is discussed in some detail. The bearing of these studies on the practical problems of estimating hazards is briefly considered. 79 references.

  15. X-Linked Agammagobulinemia in a Large Series of North African Patients: Frequency, Clinical Features and Novel BTK Mutations.

    Science.gov (United States)

    Aadam, Zahra; Kechout, Nadia; Barakat, Abdelhamid; Chan, Koon-Wing; Ben-Ali, Meriem; Ben-Mustapha, Imen; Zidi, Fethi; Ailal, Fatima; Attal, Nabila; Doudou, Fatouma; Abbadi, Mohamed-Cherif; Kaddache, Chawki; Smati, Leila; Touri, Nabila; Chemli, Jalel; Gargah, Tahar; Brini, Ines; Bakhchane, Amina; Charoute, Hicham; Jeddane, Leila; El Atiqi, Sara; El Hafidi, Naïma; Hida, Mustapha; Saile, Rachid; Alj, Hanane Salih; Boukari, Rachida; Bejaoui, Mohamed; Najib, Jilali; Barbouche, Mohamed-Ridha; Lau, Yu-Lung; Mellouli, Fethi; Bousfiha, Ahmed Aziz

    2016-04-01

    X-linked agammagobulinemia (XLA) is a primary immunodeficiency caused by Bruton's tyrosine kinase (BTK) gene defect. XLA patients have absent or reduced number of peripheral B cells and a profound deficiency in all immunoglobulin isotypes. This multicenter study reports the clinical, immunological and molecular features of Bruton's disease in 40 North African male patients. Fifty male out of 63 (male and female) patients diagnosed with serum agammaglobulinemia and non detectable to less than 2% peripheral B cells were enrolled. The search for BTK gene mutations was performed for all of them by genomic DNA amplification and Sanger sequencing. We identified 33 different mutations in the BTK gene in 40 patients including 12 missense mutations, 6 nonsense mutations, 6 splice-site mutations, 5 frameshift, 2 large deletions, one complex mutation and one in-frame deletion. Seventeen of these mutations are novel. This large series shows a lower frequency of XLA among male patients from North Africa with agammaglobulinemia and absent to low B cells compared with other international studies (63.5% vs. 85%). No strong evidence for genotype-phenotype correlation was observed. This study adds to other reports from highly consanguineous North African populations, showing lower frequency of X-linked forms as compared to AR forms of the same primary immunodeficiency. Furthermore, a large number of novel BTK mutations were identified and could further help identify carriers for genetic counseling.

  16. Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets

    DEFF Research Database (Denmark)

    Beck-Nielsen, Signe; Brixen, Kim; Gram, Jeppe

    2012-01-01

    This study aimed to identify the underlying genetic mutation in patients with hypophosphatemic rickets (HR). Genomic DNA was analysed for mutations in PHEX, FGF23 and CLCN5 by polymerase chain reaction (PCR) followed by denaturing high-performance liquid chromatography (dHPLC). Bi-directional seq......This study aimed to identify the underlying genetic mutation in patients with hypophosphatemic rickets (HR). Genomic DNA was analysed for mutations in PHEX, FGF23 and CLCN5 by polymerase chain reaction (PCR) followed by denaturing high-performance liquid chromatography (dHPLC). Bi......-directional sequencing was performed in samples with deviating chromatographic profiles. DMP1 and SLC34A3 were sequenced, only. In addition, a multiplex ligation-dependent probe amplification (MLPA) analysis was performed to detect larger deletions/duplications in PHEX or FGF23. Familial cases accounted for 12 probands...... while 12 cases were sporadic. In 20 probands, mutations were detected in PHEX of which 12 were novel, and one novel frameshift mutation was found in DMP1. Three PHEX mutations were identified by the MLPA analysis only; that is, two large deletions and one duplication. No mutations were identified in FGF...

  17. Identification of the second common Jewish Gaucher disease mutation makes possible population-based screening for the heterozygous state

    Energy Technology Data Exchange (ETDEWEB)

    Beutler, E.; Gelbart, T.; Kuhl, W.; Sorge, J.; West, C. (Scripps Research Inst., La Jolla, CA (United States))

    1991-12-01

    Gaucher disease is an autosomal recessive glycolipid storage disease characterized by a deficiency of glucocerebrosidase. The disease is most common in persons of Ashkenazi Jewish ancestry and the most common mutation, accounting for about 75% of the mutant alleles in this population, is known to be an A {yields} G substitution at cDNA nucleotide (nt) 1,226. Screening for this disease has not been possible because nearly 25% of the mutant alleles had not been identified, but linkage analysis led to the suggestion that most of these could be accounted for by a single mutation. The authors now report the discovery of this mutation. The insertion of a single nucleotide, a second guanine at cDNA nt 84 (the 84GG mutation), has been detected in the 5{prime} coding region of the glucocerebrosidase gene. The amount mRNA produced is shown to be normal but since the frameshift produces early termination, no translation product is seen. This finding is consistent with the virtual absence of antigen found in patients carrying this mutation. The 84GG mutation accounts for most of the previously unidentified Gaucher disease mutations in Jewish patients. The common Jewish mutation at nt 1,448 accounted for 95% of all of the Gaucher disease-producing alleles in 71 Jewish patients. This now makes it possible to screen for heterozygotes on a DNA level with a relatively low risk of missing couples at risk for producing infants with Gaucher disease.

  18. Matriptase-2 mutations in iron-refractory iron deficiency anemia patients provide new insights into protease activation mechanisms.

    Science.gov (United States)

    Ramsay, Andrew J; Quesada, Victor; Sanchez, Mayka; Garabaya, Cecilia; Sardà, María P; Baiget, Montserrat; Remacha, Angel; Velasco, Gloria; López-Otín, Carlos

    2009-10-01

    Mutations leading to abrogation of matriptase-2 proteolytic activity in humans are associated with an iron-refractory iron deficiency anemia (IRIDA) due to elevated hepcidin levels. Here we describe two novel heterozygous mutations within the matriptase-2 (TMPRSS6) gene of monozygotic twin girls exhibiting an IRIDA phenotype. The first is the frameshift mutation (P686fs) caused by the insertion of the four nucleotides CCCC in exon 16 (2172_2173insCCCC) that is predicted to terminate translation before the catalytic serine. The second mutation is the di-nucleotide substitution c.467C>A and c.468C>T in exon 3 that causes the missense mutation A118D in the SEA domain of the extracellular stem region of matriptase-2. Functional analysis of both variant matriptase-2 proteases has revealed that they lead to ineffective suppression of hepcidin transcription. We also demonstrate that the A118D SEA domain mutation causes an intra-molecular structural imbalance that impairs matriptase-2 activation. Collectively, these results extend the pattern of TMPRSS6 mutations associated with IRIDA and functionally demonstrate that mutations affecting protease regions other than the catalytic domain may have a profound impact in the regulatory role of matriptase-2 during iron deficiency.

  19. Functional analysis of the novel TBX5 c.1333delC mutation resulting in an extended TBX5 protein

    Directory of Open Access Journals (Sweden)

    Ekman-Joelsson Britt-Marie

    2008-10-01

    Full Text Available Abstract Background Autosomal dominant Holt-Oram syndrome (HOS is caused by mutations in the TBX5 gene and is characterized by congenital heart and preaxial radial ray upper limb defects. Most of the TBX5 mutations found in patients with HOS cause premature truncation of the primary TBX5 transcript. TBX5 missense mutations alter the three-dimensional structure of the protein and result in failed nuclear localization or reduced binding to target DNA. In this study we present our functional analyses of the novel and unusual c.1333delC mutation found in a patient with classical HOS. Methods The functional impact of this novel mutation was assessed by investigating the intracellular localization of the resulting TBX5 protein and its ability to activate the expression of its downstream target ANF. Results The deletion of the cytosine is the first TBX5 frameshift mutation predicted to result in an elongated TBX5 protein with 74 miscoding amino acids and 62 supernumerary C-terminal amino acids. The c.1333delC mutation affects neither the nuclear localization, nor its colocalization with SALL4, but severely affects the activation of the ANF promoter. Conclusion The mutation c.1333delC does not locate within functional domains, but impairs the activation of the downstream target. This suggests that misfolding of the protein prevents its biological function.

  20. Seven new mutations in hMSH2, an HNPCC Gene, identified by denaturing gradient-gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Wijnen, J.; Vasen, H.; Khan, P.M.; Klift, H. van der; Leeuwen, C. van; Broek, M. van den; Leeuwen-Cornelisse, I. van; Fodde, R.; Menko, F.H. [Univ. Medical Center, Leiden (Netherlands); Nagengast, F. [Free Univ. Hospital, Amsterdam (Netherlands)

    1995-05-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is a relatively common autosomal dominant cancer-susceptibility condition. The recent isolation of the DNA mismatch repair genes (hMSH2, hMLH1, hPMS1, and hPMS2) responsible for HNPCC has allowed the search for germ-line mutations in affected individuals. In this study we used denaturing gradient-gel electrophoresis to screen for mutations in the hMSH2 gene. Analysis of all the 16 exons of HMSH2, in 34 unrelated HNPCC kindreds, has revealed seven novel pathogenic germ-line mutations resulting in stop codons either directly or through frameshifts. Additionally, nucleotide substitutions giving rise to one missense, two silent, and one useful polymorphism have been identified. The proportion of families in which hMSH2 mutations were found is 21%. Although the spectrum of mutations spread at the hMSH2 gene among HNPCC patients appears extremely heterogeneous, we were not able to establish any correlation between the site of the individual mutations and the corresponding tumor spectrum. Our results indicate that, given the genomic size and organization of the hMSH2 gene and the heterogeneity of its mutation spectrum, a rapid and efficient mutation detection procedure is necessary for routine molecular diagnosis and presymptomatic detection of the disease in a clinical setup. 34 refs., 2 figs., 3 tabs.

  1. A novel mutation (4040-4045 nt. delA in exon 14 of the factor VIII gene causing severe hemophilia A

    Directory of Open Access Journals (Sweden)

    Habib Onsori

    2011-01-01

    Full Text Available Hemophilia A is an X-linked congenital bleeding disorder caused by Factor VIII deficiency. Different mutations including point mutations, deletions, insertions and inversions have been reported in the FVIII gene, which cause hemophilia A. In the current study, with the use of conformational sensitive gel electrophoresis (CSGE analysis, we report a novel 1-nt deletion in the A6 sequence at codons 1328-1330 (4040-4045 nt delA occurring in exon 14 of the FVIII gene in a seven-year-old Iranian boy with severe hemophilia A. This mutation that causes frameshift and premature stop-codon at 1331 has not previously been reported in the F8 Hemophilia A Mutation, Structure, Test and Resource Site (HAMSTeRS database.

  2. PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease

    Science.gov (United States)

    Vouk, Katja; Strmecki, Lana; Stekrova, Jitka; Reiterova, Jana; Bidovec, Matjaz; Hudler, Petra; Kenig, Anton; Jereb, Simona; Zupanic-Pajnic, Irena; Balazic, Joze; Haarpaintner, Guido; Leskovar, Bostjan; Adamlje, Anton; Skoflic, Antun; Dovc, Reina; Hojs, Radovan; Komel, Radovan

    2006-01-01

    Background Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder caused by mutations in at least two different loci. Prior to performing mutation screening, if DNA samples of sufficient number of family members are available, it is worthwhile to assign the gene involved in disease progression by the genetic linkage analysis. Methods We collected samples from 36 Slovene ADPKD families and performed linkage analysis in 16 of them. Linkage was assessed by the use of microsatellite polymorphic markers, four in the case of PKD1 (KG8, AC2.5, CW3 and CW2) and five for PKD2 (D4S1534, D4S2929, D4S1542, D4S1563 and D4S423). Partial PKD1 mutation screening was undertaken by analysing exons 23 and 31–46 and PKD2 . Results Lod scores indicated linkage to PKD1 in six families and to PKD2 in two families. One family was linked to none and in seven families linkage to both genes was possible. Partial PKD1 mutation screening was performed in 33 patients (including 20 patients from the families where linkage analysis could not be performed). We analysed PKD2 in 2 patients where lod scores indicated linkage to PKD2 and in 7 families where linkage to both genes was possible. We detected six mutations and eight polymorphisms in PKD1 and one mutation and three polymorphisms in PKD2. Conclusion In our study group of ADPKD patients we detected seven mutations: three frameshift, one missense, two nonsense and one putative splicing mutation. Three have been described previously and 4 are novel. Three newly described framesfift mutations in PKD1 seem to be associated with more severe clinical course of ADPKD. Previously described nonsense mutation in PKD2 seems to be associated with cysts in liver and milder clinical course. PMID:16430766

  3. PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Adamlje Anton

    2006-01-01

    Full Text Available Abstract Background Autosomal dominant polycystic kidney disease (ADPKD is a genetically heterogeneous disorder caused by mutations in at least two different loci. Prior to performing mutation screening, if DNA samples of sufficient number of family members are available, it is worthwhile to assign the gene involved in disease progression by the genetic linkage analysis. Methods We collected samples from 36 Slovene ADPKD families and performed linkage analysis in 16 of them. Linkage was assessed by the use of microsatellite polymorphic markers, four in the case of PKD1 (KG8, AC2.5, CW3 and CW2 and five for PKD2 (D4S1534, D4S2929, D4S1542, D4S1563 and D4S423. Partial PKD1 mutation screening was undertaken by analysing exons 23 and 31–46 and PKD2 . Results Lod scores indicated linkage to PKD1 in six families and to PKD2 in two families. One family was linked to none and in seven families linkage to both genes was possible. Partial PKD1 mutation screening was performed in 33 patients (including 20 patients from the families where linkage analysis could not be performed. We analysed PKD2 in 2 patients where lod scores indicated linkage to PKD2 and in 7 families where linkage to both genes was possible. We detected six mutations and eight polymorphisms in PKD1 and one mutation and three polymorphisms in PKD2. Conclusion In our study group of ADPKD patients we detected seven mutations: three frameshift, one missense, two nonsense and one putative splicing mutation. Three have been described previously and 4 are novel. Three newly described framesfift mutations in PKD1 seem to be associated with more severe clinical course of ADPKD. Previously described nonsense mutation in PKD2 seems to be associated with cysts in liver and milder clinical course.

  4. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation.

    Science.gov (United States)

    Kato, Mitsuhiro; Das, Soma; Petras, Kristin; Kitamura, Kunio; Morohashi, Ken-ichirou; Abuelo, Diane N; Barr, Mason; Bonneau, Dominique; Brady, Angela F; Carpenter, Nancy J; Cipero, Karen L; Frisone, Francesco; Fukuda, Takayuki; Guerrini, Renzo; Iida, Eri; Itoh, Masayuki; Lewanda, Amy Feldman; Nanba, Yukiko; Oka, Akira; Proud, Virginia K; Saugier-Veber, Pascale; Schelley, Susan L; Selicorni, Angelo; Shaner, Rachel; Silengo, Margherita; Stewart, Fiona; Sugiyama, Noriyuki; Toyama, Jun; Toutain, Annick; Vargas, Ana Lía; Yanazawa, Masako; Zackai, Elaine H; Dobyns, William B

    2004-02-01

    We recently identified mutations of ARX in nine genotypic males with X-linked lissencephaly with abnormal genitalia (XLAG), and in several female relatives with isolated agenesis of the corpus callosum (ACC). We now report 13 novel and two recurrent mutations of ARX, and one nucleotide change of uncertain significance in 20 genotypic males from 16 families. Most had XLAG, but two had hydranencephaly and abnormal genitalia, and three males from one family had Proud syndrome or ACC with abnormal genitalia. We obtained detailed clinical information on all 29 affected males, including the nine previously reported subjects. Premature termination mutations consisting of large deletions, frameshifts, nonsense mutations, and splice site mutations in exons 1 to 4 caused XLAG or hydranencephaly with abnormal genitalia. Nonconservative missense mutations within the homeobox caused less severe XLAG, while conservative substitution in the homeodomain caused Proud syndrome. A nonconservative missense mutation near the C-terminal aristaless domain caused unusually severe XLAG with microcephaly and mild cerebellar hypoplasia. In addition, several less severe phenotypes without malformations have been reported, including mental retardation with cryptogenic infantile spasms (West syndrome), other seizure types, dystonia or autism, and nonsyndromic mental retardation. The ARX mutations associated with these phenotypes have included polyalanine expansions or duplications, missense mutations, and one deletion of exon 5. Together, the group of phenotypes associated with ARX mutations demonstrates remarkable pleiotropy, but also comprises a nearly continuous series of developmental disorders that begins with hydranencephaly, lissencephaly, and agenesis of the corpus callosum, and ends with a series of overlapping syndromes with apparently normal brain structure.

  5. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations.

    Science.gov (United States)

    Juan-Mateu, Jonas; Gonzalez-Quereda, Lidia; Rodriguez, Maria Jose; Baena, Manel; Verdura, Edgard; Nascimento, Andres; Ortez, Carlos; Baiget, Montserrat; Gallano, Pia

    2015-01-01

    Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure.

  6. Mutational analysis of Btk, the defective gene in X-linked agammaglobulinemia

    Energy Technology Data Exchange (ETDEWEB)

    Conley, M.E.; Fitch-Hilgenberg, M.E.; Rohrer, J. [St. Jude Children`s Research Hospital, Memphis, TN (United States)

    1994-09-01

    Recent studies have shown that X-linked agammaglobulinemia (XLA), a disorder of B cell development, is due to mutations in an scr-like cytoplasmic tyrosine kinase, Btk. Thus far, mutations in this gene have been identified by sequencing of cDNA. To permit the detection of mutations in genomic DNA, we determined the structure of Btk and identified 19 exons in 37 kb of DNA. PCR primers were designed to amplify each exon with its splice sites. Two overlapping PCR products were employed for exons longer than 230 base pairs. Single strand conformation polymorphism (SSCP) analysis was used to screen genomic DNA from 30 unrelated families presumed to carry a mutation in Btk. It was possible to amplify DNA in every reaction from every patient. None of the DNA samples demonstrated more than one aberrant SSCP pattern. Twenty three mutations were detected in 25 families. Seven point mutations resulting in amino acid substitutions were seen. An additional 7 base pair substitutions gave rise to premature stop codons. Two splice defects were noted. Small insertions or deletions, all resulting in frameshifts and premature stop codons were seen in eight patients. One patient had an A to G transition in the ATG start codon. Two mutations, both at CpG dinucleotides, were seen in more than one family. Haplotype analysis, using CA repeats closely linked to Btk, demonstrated that the mutations in these families arose independently. We conclude from these studies that the mutations in Btk in patients with XLA are highly variable. Large deletions are uncommon, although small 1 to 4 bp insertions or deletions constitute as many as one third of the mutations. Further analysis of patients with amino acid substitutions will permit structure/function correlations.

  7. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations.

    Directory of Open Access Journals (Sweden)

    Jonas Juan-Mateu

    Full Text Available Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5% were exonic deletions, 64 (11.1% were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%. Small mutations were identified in 105 cases (18.2%, most being nonsense/frameshift types (75.2%. Mutations in splice sites, however, were relatively frequent (20%. In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD, with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure.

  8. Mutation of RET proto-oncogene in Hirschsprung's disease and intestinal neuronal dysplasia

    Institute of Scientific and Technical Information of China (English)

    Jin-Fa Tou; Min-Ju Li; Tao Guan; Ji-Cheng Li; Xiong-Kai Zhu; Zhi-Gang Feng

    2006-01-01

    AIM: To investigate the genetic relationship between Hirschsprung's disease (HD) and intestinal neuronal dysplasia (IND) in Chinese population.METHODS: Peripheral blood samples were obtained from 30 HD patients, 20 IND patients, 18 HD/IND combined patients and 20 normal individuals as control.Genomic DNA was extracted according to standard procedure. Exons 11,13,15,17 of RET proto-oncogene were amplified by polymerase chain reaction (PCR).The mutations of RET proto-oncogene were analyzed by single strand conformational polymorphism (SSCP)and sequencing of the positive amplified products was performed.RESULTS: Eight germline sequence variants were detected. In HD patients, 2 missense mutations in exon 11at nucleotide 15165 G→A (G667S), 2 frameshift mutations in exon 13 at nucleotide 18974 (18974insG), 1missense mutation in exon 13 at nucleotide 18919 A→G (K756E) and 1silent mutation in exon 15 at nucleotide 20692 G→A(Q916Q) were detected. In HD/IND combined patients, 1 missense mutation in exon 11 at nucleotide 15165 G→A and 1 silent mutation in exon 13at nucleotide 18888 T→G (L745L) were detected. No mutation was found in IND patients and controls.CONCLUSION: Mutation of RET proto-oncogene is involved in the etiopathogenesis of HD. The frequency of RET proto-oncogene mutation is quite different between IND and HD in Chinese population. IND is a distinct clinical entity genetically different from HD.

  9. Identification of novel mutations in Chinese Hans with autosomal dominant polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Yu Chaowen

    2011-12-01

    Full Text Available Abstract Background Autosomal dominant polycystic kidney disease (ADPKD is the most common inherited renal disease with an incidence of 1 in 400 to 1000. The disease is genetically heterogeneous, with two genes identified: PKD1 (16p13.3 and PKD2 (4q21. Molecular diagnosis of the disease in at-risk individuals is complicated due to the structural complexity of PKD1 gene and the high diversity of the mutations. This study is the first systematic ADPKD mutation analysis of both PKD1 and PKD2 genes in Chinese patients using denaturing high-performance liquid chromatography (DHPLC. Methods Both PKD1 and PKD2 genes were mutation screened in each proband from 65 families using DHPLC followed by DNA sequencing. Novel variations found in the probands were checked in their family members available and 100 unrelated normal controls. Then the pathogenic potential of the variations of unknown significance was examined by evolutionary comparison, effects of amino acid substitutions on protein structure, and effects of splice site alterations using online mutation prediction resources. Results A total of 92 variations were identified, including 27 reported previously. Definitely pathogenic mutations (ten frameshift, ten nonsense, two splicing defects and one duplication were identified in 28 families, and probably pathogenic mutations were found in an additional six families, giving a total detection level of 52.3% (34/65. About 69% (20/29 of the mutations are first reported with a recurrent mutation rate of 31%. Conclusions Mutation study of PKD1 and PKD2 genes in Chinese Hans with ADPKD may contribute to a better understanding of the genetic diversity between different ethnic groups and enrich the mutation database. Besides, evaluating the pathogenic potential of novel variations should also facilitate the clinical diagnosis and genetic counseling of the disease.

  10. CtIP Mutations Cause Seckel and Jawad Syndromes.

    Directory of Open Access Journals (Sweden)

    Per Qvist

    2011-10-01

    Full Text Available Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5 but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2. Here, we report two mutations in the CtIP (RBBP8 gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder.

  11. CtIP Mutations Cause Seckel and Jawad Syndromes.

    Directory of Open Access Journals (Sweden)

    Per Qvist

    2011-10-01

    Full Text Available Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5 but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2. Here, we report two mutations in the CtIP (RBBP8 gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder.

  12. Spectrum of SMPD1 mutations in Asian-Indian patients with acid sphingomyelinase (ASM)-deficient Niemann-Pick disease.

    Science.gov (United States)

    Ranganath, Prajnya; Matta, Divya; Bhavani, Gandham SriLakshmi; Wangnekar, Savita; Jain, Jamal Mohammed Nurul; Verma, Ishwar C; Kabra, Madhulika; Puri, Ratna Dua; Danda, Sumita; Gupta, Neerja; Girisha, Katta M; Sankar, Vaikom H; Patil, Siddaramappa J; Ramadevi, Akella Radha; Bhat, Meenakshi; Gowrishankar, Kalpana; Mandal, Kausik; Aggarwal, Shagun; Tamhankar, Parag Mohan; Tilak, Preetha; Phadke, Shubha R; Dalal, Ashwin

    2016-10-01

    Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc.

  13. Assessment of the structural and functional impact of in-frame mutations of the DMD gene, using the tools included in the eDystrophin online database

    Directory of Open Access Journals (Sweden)

    Nicolas Aurélie

    2012-07-01

    Full Text Available Abstract Background Dystrophin is a large essential protein of skeletal and heart muscle. It is a filamentous scaffolding protein with numerous binding domains. Mutations in the DMD gene, which encodes dystrophin, mostly result in the deletion of one or several exons and cause Duchenne (DMD and Becker (BMD muscular dystrophies. The most common DMD mutations are frameshift mutations resulting in an absence of dystrophin from tissues. In-frame DMD mutations are less frequent and result in a protein with partial wild-type dystrophin function. The aim of this study was to highlight structural and functional modifications of dystrophin caused by in-frame mutations. Methods and results We developed a dedicated database for dystrophin, the eDystrophin database. It contains 209 different non frame-shifting mutations found in 945 patients from a French cohort and previous studies. Bioinformatics tools provide models of the three-dimensional structure of the protein at deletion sites, making it possible to determine whether the mutated protein retains the typical filamentous structure of dystrophin. An analysis of the structure of mutated dystrophin molecules showed that hybrid repeats were reconstituted at the deletion site in some cases. These hybrid repeats harbored the typical triple coiled-coil structure of native repeats, which may be correlated with better function in muscle cells. Conclusion This new database focuses on the dystrophin protein and its modification due to in-frame deletions in BMD patients. The observation of hybrid repeat reconstitution in some cases provides insight into phenotype-genotype correlations in dystrophin diseases and possible strategies for gene therapy. The eDystrophin database is freely available: http://edystrophin.genouest.org/.

  14. Mutations within or upstream of the basic helix-loop-helix domain of the TWIST gene are specific to Saethre-Chotzen syndrome.

    Science.gov (United States)

    El Ghouzzi, V; Lajeunie, E; Le Merrer, M; Cormier-Daire, V; Renier, D; Munnich, A; Bonaventure, J

    1999-01-01

    Saethre-Chotzen syndrome (ACS III) is an autosomal dominant craniosynostosis syndrome recently ascribed to mutations in the TWIST gene, a basic helix-loop-helix (b-HLH) transcription factor regulating head mesenchyme cell development during cranial neural tube formation in mouse. Studying a series of 22 unrelated ACS III patients, we have found TWIST mutations in 16/22 cases. Interestingly, these mutations consistently involved the b-HLH domain of the protein. Indeed, mutant genotypes included frameshift deletions/insertions, nonsense and missense mutations, either truncating or disrupting the b-HLH motif of the protein. This observation gives additional support to the view that most ACS III cases result from loss-of-function mutations at the TWIST locus. The P250R recurrent FGFR 3 mutation was found in 2/22 cases presenting mild clinical manifestations of the disease but 4/22 cases failed to harbour TWIST or FGFR 3 mutations. Clinical re-examination of patients carrying TWIST mutations failed to reveal correlations between the mutant genotype and severity of the phenotype. Finally, since no TWIST mutations were detected in 40 cases of isolated coronal craniosynostosis, the present study suggests that TWIST mutations are specific to Saethre-Chotzen syndrome.

  15. Mutational spectrum of the SPG4 (SPAST and SPG3A (ATL1 genes in Spanish patients with hereditary spastic paraplegia

    Directory of Open Access Journals (Sweden)

    Ribacoba Renne

    2010-10-01

    Full Text Available Abstract Background Hereditary Spastic Paraplegias (HSP are characterized by progressive spasticity and weakness of the lower limbs. At least 45 loci have been identified in families with autosomal dominant (AD, autosomal recessive (AR, or X-linked hereditary patterns. Mutations in the SPAST (SPG4 and ATL1 (SPG3A genes would account for about 50% of the ADHSP cases. Methods We defined the SPAST and ATL1 mutational spectrum in a total of 370 unrelated HSP index cases from Spain (83% with a pure phenotype. Results We found 50 SPAST mutations (including two large deletions in 54 patients and 7 ATL1 mutations in 11 patients. A total of 33 of the SPAST and 3 of the ATL1 were new mutations. A total of 141 (31% were familial cases, and we found a higher frequency of mutation carriers among these compared to apparently sporadic cases (38% vs. 5%. Five of the SPAST mutations were predicted to affect the pre-mRNA splicing, and in 4 of them we demonstrated this effect at the cDNA level. In addition to large deletions, splicing, frameshifting, and missense mutations, we also found a nucleotide change in the stop codon that would result in a larger ORF. Conclusions In a large cohort of Spanish patients with spastic paraplegia, SPAST and ATL1 mutations were found in 15% of the cases. These mutations were more frequent in familial cases (compared to sporadic, and were associated with heterogeneous clinical manifestations.

  16. Transcriptional frameshifting rescues Citrobacter rodentium type VI secretion by the production of two length variants from the prematurely interrupted tssM gene.

    Science.gov (United States)

    Gueguen, Erwan; Wills, Norma M; Atkins, John F; Cascales, Eric

    2014-12-01

    The Type VI secretion system (T6SS) mediates toxin delivery into both eukaryotic and prokaryotic cells. It is composed of a cytoplasmic structure resembling the tail of contractile bacteriophages anchored to the cell envelope through a membrane complex composed of the TssL and TssM inner membrane proteins and of the TssJ outer membrane lipoprotein. The C-terminal domain of TssM is required for its interaction with TssJ, and for the function of the T6SS. In Citrobacter rodentium, the tssM1 gene does not encode the C-terminal domain. However, the stop codon is preceded by a run of 11 consecutive adenosines. In this study, we demonstrate that this poly-A tract is a transcriptional slippery site that induces the incorporation of additional adenosines, leading to frameshifting, and hence the production of two TssM1 variants, including a full-length canonical protein. We show that both forms of TssM1, and the ratio between these two forms, are required for the function of the T6SS in C. rodentium. Finally, we demonstrate that the tssM gene associated with the Yersinia pseudotuberculosis T6SS-3 gene cluster is also subjected to transcriptional frameshifting.

  17. Expanding the mutation spectrum in 130 probands with ARPKD: identification of 62 novel PKHD1 mutations by sanger sequencing and MLPA analysis.

    Science.gov (United States)

    Melchionda, Salvatore; Palladino, Teresa; Castellana, Stefano; Giordano, Mario; Benetti, Elisa; De Bonis, Patrizia; Zelante, Leopoldo; Bisceglia, Luigi

    2016-09-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a rare severe genetic disorder arising in the perinatal period, although a late-onset presentation of the disease has been described. Pulmonary hypoplasia is the major cause of morbidity and mortality in the newborn period. ARPKD is caused by mutations in the PKHD1 (polycystic kidney and hepatic disease 1) gene that is among the largest human genes. To achieve a molecular diagnosis of the disease, a large series of Italian affected subjects were recruited. Exhaustive mutation analysis of PKHD1 gene was carried out by Sanger sequencing and multiple ligation probe amplification (MLPA) technique in 110 individuals. A total of 173 mutations resulting in a detection rate of 78.6% were identified. Additional 20 unrelated patients, in whom it was not possible to analyze the whole coding sequence, have been included in this study. Taking into account the total number (n=130) of this cohort of patients, 107 different types of mutations have been detected in 193 mutated alleles. Out of 107 mutations, 62 were novel: 11 nonsense, 6 frameshift, 7 splice site mutations, 2 in-frame deletions and 2 multiexon deletion detected by MLPA. Thirty-four were missense variants. In conclusion, our report expands the spectrum of PKHD1 mutations and confirms the heterogeneity of this disorder. The population under study represents the largest Italian ARPKD cohort reported to date. The estimated costs and the time invested for molecular screening of genes with large size and allelic heterogeneity such as PKHD1 demand the use of next-generation sequencing (NGS) technologies for a faster and cheaper screening of the affected subjects.

  18. [Clinical features and acid alpha-glucosidase gene mutation in 7 Chinese patients with glycogen storage disease type II].

    Science.gov (United States)

    Liu, Qi; Zhao, Juan; Wang, Zhao-xia; Zhang, Wei; Yuan, Yun

    2013-07-02

    To explore the clinical features and acid alpha-glucosidase (GAA) gene mutations of Chinese patients with glycogen storage disease typeII(GSDII). Seven patients with GSDII were diagnosed by muscle pathology examination at Department of Neurology, Peking University First Hospital from 2003 to 2011. One patient with infant-onset presented development retardation, generalized muscle weakness, dyspnea, cardiomegaly and hepatomegaly. Six cases were of late-onset ranging from 1 to 29 years. Their main clinical features included progressive muscle weakness. Two patients developed respiratory insufficiency. Increased serum creatine kinase was detected in all of them. Electromyography studies showed myopathic (n = 5) and neuropathic (n = 1) changes. Muscle biopsies showed basophilic vacuoles in muscle fibers containing a large amounts of glycogen on electron microscopy. GAA gene mutation was detected by direct sequencing of polymerase chain reaction (PCR) product. Novel mutations were screened in 100 normal controls. GAA gene mutations were found in all of them, including 10 point mutations and 1 frameshift deletion. Six mutations (p. P361L, p. P266S, p.R437C, p.R600C, p.W746S and p.W746*) have been reported before. And five novel mutations (p.R168Q, p.R168P, p.E521V, p.R594H and c.827_845del) were found in this study. None of these novel mutations were found in 100 normal controls except for p.R168Q mutation in two normal controls. p. P361L and p.W746* were detected in two unrelated GSDII patients while other mutations were carried by only one patient. In our study, we found several novel GAA mutations in Chinese patients with GSDII. No hot spot mutation of GAA gene existed in our patient group. However, p. P266S, p. P361L and p.R437C might be associated with late-onset GSDII.

  19. AIP mutations in young patients with acromegaly and the Tampico Giant: the Mexican experience.

    Science.gov (United States)

    Ramírez-Rentería, Claudia; Hernández-Ramírez, Laura C; Portocarrero-Ortiz, Lesly; Vargas, Guadalupe; Melgar, Virgilio; Espinosa, Etual; Espinosa-de-Los-Monteros, Ana Laura; Sosa, Ernesto; González, Baldomero; Zúñiga, Sergio; Unterländer, Martina; Burger, Joachim; Stals, Karen; Bussell, Anne-Marie; Ellard, Sian; Dang, Mary; Iacovazzo, Donato; Kapur, Sonal; Gabrovska, Plamena; Radian, Serban; Roncaroli, Federico; Korbonits, Márta; Mercado, Moisés

    2016-08-01

    Although aryl hydrocarbon receptor-interacting protein (AIP) mutations are rare in sporadic acromegaly, their prevalence among young patients is nonnegligible. The objectives of this study were to evaluate the frequency of AIP mutations in a cohort of Mexican patients with acromegaly with disease onset before the age of 30 and to search for molecular abnormalities in the AIP gene in teeth obtained from the "Tampico Giant". Peripheral blood DNA from 71 patients with acromegaly (51 females) with disease onset T (p.Arg304Ter), well-known truncating mutation was identified; in one of these two cases and her identical twin sister, the mutation proved to be a de novo event, since neither of their parents were found to be carriers. In the remaining three patients, new mutations were identified: a frameshift mutation (c.976_977insC, p.Gly326AfsTer), an in-frame deletion (c.872_877del, p.Val291_Leu292del) and a nonsense mutation (c.868A > T, p.Lys290Ter), which are predicted to be pathogenic based on in silico analysis. Patients with AIP mutations tended to have an earlier onset of acromegaly and harboured larger and more invasive tumours. A previously described genetic variant of unknown significance (c.869C > T, p.Ala299Val) was identified in DNA from the Tampico Giant. The prevalence of AIP mutations in young Mexican patients with acromegaly is similar to that of European cohorts. Our results support the need for genetic evaluation of patients with early onset acromegaly.

  20. Heterozygous mutations of the sodium chloride cotransporter in Chinese children: prevalence and association with blood pressure.

    Science.gov (United States)

    Hsu, Yu-Juei; Yang, Sung-Sen; Chu, Nain-Feng; Sytwu, Huey-Kang; Cheng, Chih-Jen; Lin, Shih-Hua

    2009-04-01

    Gitelman's syndrome (GS), which is caused by homozygous or compound heterozygous mutations of the thiazide-sensitive sodium chloride cotransporter (NCC), usually manifests in children and is associated with low blood pressure. However, the prevalence of heterozygous NCC mutations and their association with blood pressure in children have not yet been studied. Five hundred unrelated children from the Taipei Children Heart Study were enrolled. Genomic DNA was isolated from peripheral blood and the SLC12A3 gene was amplified by polymerase chain reaction (PCR). The 15 NCC mutations previously identified in Chinese patients with GS were evaluated using restriction fragment length polymorphism (RFLP) analysis. Blood pressure, biochemistry and urine pH were measured. The allelic frequency of heterozygous NCC mutations and their association with low blood pressure were also investigated. RFLP analysis for the 15 NCC mutations revealed heterozygous T60M in 1 child, T163M in 1, S283Y in 4, R642C in 2, W844X in 2, R928C in 9 and R959frameshift in 10 children. The overall incidence of positive heterozygous NCC mutations was approximately 2.9%. There were no significant differences in systolic or diastolic blood pressure, biochemical profiles or urine pH between children with heterozygous NCC mutations (n = 29) and non-affected controls (n = 471), except for slightly higher fasting plasma glucose concentrations in NCC-heterozygous children (91 +/- 2.3 versus 88 +/- 0.4 mg/dL, P pressures. We found a relatively high prevalence of heterozygous NCC mutations in Chinese children, suggesting that GS may not be rare in this population. Heterozygous NCC mutations were not associated with lower blood pressure in these Chinese children.

  1. Molecular Analysis of CYP21A2 Gene Mutations among Iraqi Patients with Congenital Adrenal Hyperplasia

    Directory of Open Access Journals (Sweden)

    Ruqayah G. Y. Al-Obaidi

    2016-01-01

    Full Text Available Congenital adrenal hyperplasia is a group of autosomal recessive disorders. The most frequent one is 21-hydroxylase deficiency. Analyzing CYP21A2 gene mutations was so far not reported in Iraq. This work aims to analyze the spectrum and frequency of CYP21A2 mutations among Iraqi CAH patients. Sixty-two children were recruited from the Pediatric Endocrine Consultation Clinic, Children Welfare Teaching Hospital, Baghdad, Iraq, from September 2014 till June 2015. Their ages ranged between one day and 15 years. They presented with salt wasting, simple virilization, or pseudoprecocious puberty. Cytogenetic study was performed for cases with ambiguous genitalia. Molecular analysis of CYP21A2 gene was done using the CAH StripAssay (ViennaLab Diagnostics for detection of 11 point mutations and >50% of large gene deletions/conversions. Mutations were found in 42 (67.7% patients; 31 (50% patients were homozygotes, 9 (14.5% were heterozygotes, and 2 (3.2% were compound heterozygotes with 3 mutations, while 20 (32.3% patients had none of the tested mutations. The most frequently detected mutations were large gene deletions/conversions found in 12 (19.4% patients, followed by I2Splice and Q318X in 8 (12.9% patients each, I172N in 5 (8.1% patients, and V281L in 4 (6.5% patients. Del 8 bp, P453S, and R483P were each found in one (1.6% and complex alleles were found in 2 (3.2%. Four point mutations (P30L, Cluster E6, L307 frameshift, and R356W were not identified in any patient. In conclusion, gene deletions/conversions and 7 point mutations were recorded in varying proportions, the former being the commonest, generally similar to what was reported in regional countries.

  2. A structure-function study of MID1 mutations associated with a mild Opitz phenotype.

    Science.gov (United States)

    Mnayer, Laila; Khuri, Sawsan; Merheby, Hassan Al-Ali; Meroni, Germana; Elsas, Louis J

    2006-03-01

    The X-linked form of Opitz syndrome (OS) affects midline structures and produces a characteristic, but heterogeneous, phenotype that may include severe mental retardation, hypertelorism, broad nasal bridge, widow's peak, cleft lip/cleft palate, congenital heart disease, laryngotracheal defects, and hypospadias. The MID1 gene was implicated in OS by linkage to Xp22. It encodes a 667 amino acid protein that contains a RING finger motif, two B-box zinc fingers, a coiled-coil, a fibronectin type III (FNIII) domain, and a B30.2 domain. Several mutations in MID1 are associated with severe OS. Here, we describe an intelligent male with a milder phenotype characterized by hypertelorism, broad nasal bridge, widow's peak, mild hypospadias, pectus excavatum, and a surgically corrected tracheo-esophageal fistula. He has an above average intelligence and no cleft lip/palate or heart disease. We identified a novel mutation in MID1 (P441L) which is in exon 8 and functionally associated with the FNIII domain. While OS phenotypes have been attributed to mutations in the C-terminal part of MID1, little is currently known about the structure-function relationships of MID1 mutations, and how they affect phenotype. We find from a literature review that missense mutations within the FNIII domain of MID1 are associated with a milder presentation of OS than missense mutations elsewhere in MID1. All truncating mutations (frameshift, insertions/deletions) lead to severe OS. We used homology analysis of the MID1 FNIII domain to investigate structure-function changes caused by our missense mutation. This and other missense mutations probably cause disruption of protein-protein interactions, either within MID1 or between MID1 and other proteins. We correlate these protein structure-function findings to the absence of CNS or palatal changes and conclude that the FNIII domain of the MID1 protein may be involved in midline differentiation after neural tube and palatal structures are completed.

  3. Mutations in the consensus helicase domains of the Werner syndrome gene

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chang-En; Oshima, Junko; Wijsman, E.M. [Univ. of Washington, Seattle, WA (United States)] [and others

    1997-02-01

    Werner syndrome (WS) is an autosomal recessive disease with a complex phenotype that is suggestive of accelerated aging. WS is caused by mutations in a gene, WRN, that encodes a predicted 1,432-amino-acid protein with homology to DNA and RNA helicases. Previous work identified four WS mutations in the 3{prime} end of the gene, which resulted in predicted truncated protein products of 1,060-1,247 amino acids but did not disrupt the helicase domain region (amino acids 569-859). Here, additional WS subjects were screened for mutations, and the intron-exon structure of the gene was determined. A total of 35 exons were defined, with the coding sequences beginning in the second exon. Five new WS mutations were identified: two nonsense mutations at codons 369 and 889; a mutation at a splice-junction site, resulting in a predicted truncated protein of 760 amino acids; a 1-bp deletion causing a frameshift; and a predicted truncated protein of 391 amino acids. Another deletion is >15 kb of genomic DNA, including exons 19-23; the predicted protein is 1,186 amino acids long. Four of these new mutations either partially disrupt the helicase domain region or result in predicted protein products completely missing the helicase region. These results confirm that mutations in the WRN gene are responsible for WS. Also, the location of the mutations indicates that the presence or absence of the helicase domain does not influence the WS phenotype and suggests that WS is the result of complete loss of function of the WRN gene product. 63 refs., 1 fig., 5 tabs.

  4. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Qing-lin [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Xu, Jia [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Zhang, Zeng [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); He, Jin-wei [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Lu, Lian-song [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Fu, Wen-zhen [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhang, Zhen-lin, E-mail: zzl2002@medmail.com.cn [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  5. Mutations distribution and correlation with phenotypes in steroid 21-hydroxylase deficiency Italian patients

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, P.; Volorio, S.; Ferran, M. [and others

    1994-09-01

    Steroid 21-hydroxylase deficiency is recessively inherited and accounts for over 90% of the genetic disorders of steroidogenesis (CAH). We previously described the distribution of the whole deletion (14.4%) and large scale gene conversion (7.8%) at the P450c21-B locus in our population. In this study we determined the distribution of seven point mutations and searched for new mutations in patients where large rearrangements were not found. For this purpose we have studied 45 Italian families using a P450c21-B-specific PCR in combination with either dot blot analysis and allele-specific oligonucleotide hybridization or by cloning and sequencing. Molecular results have indicated a high frequency of point mutations (61%) corresponding to deleterious sequences normally present in the pseudogene. In particular, only 3 of them were prominent: the splicing mutation at codon 281 (9/16) was the most common within the non-classic form. By cloning and sequencing we detected a deletion of the C2029 residue causing a frameshift and the downstream insertion of a stop codon (2124-2126). This mutation was found in a non-classical patient who is a compound heterozygote for the mutation 281. Family genotyping revealed 5 de novo mutations, and in 8 asymptomatic parents, we detected causative mutations in both alleles. These data suggest that phenotype is not always correlated to allelic variations in P450c21-B genes. For this reason, in these families prenatal diagnosis should be performed by direct detection of mutations instead of linkage analysis.

  6. Homozygosity mapping and whole exome sequencing reveal a novel homozygous COL18A1 mutation causing Knobloch syndrome.

    Directory of Open Access Journals (Sweden)

    Alireza Haghighi

    Full Text Available The aim of this study was to identify the genetic basis of a chorioretinal dystrophy with high myopia of unknown origin in a child of a consanguineous marriage. The proband and ten family members of Iranian ancestry participated in this study. Linkage analysis was carried out with DNA samples of the proband and her parents by using the Human SNP Array 6.0. Whole exome sequencing (WES was performed with the patients' DNA. Specific sequence alterations within the homozygous regions identified by whole exome sequencing were verified by Sanger sequencing. Upon genetic analysis, a novel homozygous frameshift mutation was found in exon 42 of the COL18A1 gene in the patient. Both parents were heterozygous for this sequence variation. Mutations in COL18A1 are known to cause Knobloch syndrome (KS. Retrospective analysis of clinical records of the patient revealed surgical removal of a meningocele present at birth. The clinical features shown by our patient were typical of KS with the exception of chorioretinal degeneration which is a rare manifestation. This is the first case of KS reported in a family of Iranian ancestry. We identified a novel disease-causing (deletion mutation in the COL18A1 gene leading to a frameshift and premature stop codon in the last exon. The mutation was not present in SNP databases and was also not found in 192 control individuals. Its localization within the endostatin domain implicates a functional relevance of endostatin in KS. A combined approach of linkage analysis and WES led to a rapid identification of the disease-causing mutation even though the clinical description was not completely clear at the beginning.

  7. Multi-physiopathological consequences of the c.1392G>T CFTR mutation revealed by clinical and cellular investigations.

    Science.gov (United States)

    Farhat, Raed; El-Seedy, Ayman; El-Moussaoui, Kamal; Pasquet, Marie-Claude; Adolphe, Catherine; Bieth, Eric; Languepin, Jeanne; Sermet-Gaudelus, Isabelle; Kitzis, Alain; Ladevèze, Véronique

    2015-02-01

    This study combines a clinical approach and multiple level cellular analyses to determine the physiopathological consequences of the c.1392G>T (p.Lys464Asn) CFTR exon 10 mutation, detected in a CF patient with a frameshift deletion in trans and a TG(11)T(5) in cis. Minigene experiment, with different TG(m)T(n) alleles, and nasal cell mRNA extracts were used to study the impact of c.1392G>T on splicing in both in cellulo and in vivo studies. The processing and localization of p.Lys464Asn protein were evaluated, in cellulo, by western blotting analyses and confocal microscopy. Clinical and channel exploration tests were performed on the patient to determine the exact CF phenotype profile and the CFTR chloride transport activity. c.1392G>T affects exon 10 splicing by inducing its complete deletion and encoding a frameshift transcript. The polymorphism TG(11)T(5) aggravates the effects of this mutation on aberrant splicing. Analysis of mRNA obtained from parental airway epithelial cells confirmed these in cellulo results. At the protein level the p.Lys464Asn protein showed neither maturated form nor membrane localization. Furthermore, the in vivo channel tests confirmed the absence of CFTR activity. Thus, the c.1392G>T mutation alone or in association with the TG repeats and the poly T tract revealed obvious impacts on splicing and CFTR protein processing and functionality. The c.[T(5); 1392G>T] complex allele contributes to the CF phenotype by affecting splicing and inducing a severe misprocessing defect. These results demonstrate that the classical CFTR mutations classification is not sufficient: in vivo and in cellulo studies of a possible complex allele in a patient are required to provide correct CFTR mutation classification, adequate medical counseling, and adapted therapeutic strategies.

  8. Mutations in BRCA1 and BRCA2 in breast cancer families: Are there more breast cancer-susceptibility genes?

    Energy Technology Data Exchange (ETDEWEB)

    Serova, O.M.; Mazoyer, S.; Putet, N. [CNRS, Lyon (France)] [and others

    1997-03-01

    To estimate the proportion of breast cancer families due to BRCA1 or BRCA2, we performed mutation screening of the entire coding regions of both genes supplemented with linkage analysis of 31 families, 8 containing male breast cancers and 23 site-specific female breast cancer. A combination of protein-truncation test and SSCP or heteroduplex analyses was used for mutation screening complemented, where possible, by the analysis of expression level of BRCA1 and BRCA2 alleles. Six of the eight families with male breast cancer revealed frameshift mutations, two in BRCA1 and four in BRCA2. Although most families with female site-specific breast cancers were thought to be due to mutations in either BRCA1 or BRCA2, we identified only eight mutations in our series of 23 site-specific female breast cancer families (34%), four in BRCA1 and four in BRCA2. According to the posterior probabilities calculated for mutation-negative families, based on linkage data and mutation screening results, we would expect 8-10 site-specific female breast cancer families of our series to be due to neither BRCA1 nor BRCA2. Thus, our results suggest the existence of at least one more major breast cancer-susceptibility gene. 24 refs., 1 fig., 3 tabs.

  9. Novel mutations in PRG4 gene in two Indian families with camptodactyly-arthropathy- coxa vara- pericarditis (CACP syndrome

    Directory of Open Access Journals (Sweden)

    Rajashree S Nandagopalan

    2014-01-01

    Full Text Available Background & objectives: Camptodactyly - arthropathy- coxa vara- pericarditis (CACP syndrome is an autosomal recessive disorder caused by mutations in the PRG4 (proteoglycan 4 gene. Hallmarks of the syndrome include congenital or early-onset camptodactyly and arthropathy with synovial hyperplasia, progressive coxa vara deformity and non-inflammatory pericardial effusions. Till date only around 25 pathogenic mutations have been reported in this gene and none have been reported from India. We report here the mutations in the PRG4 gene in three patients of CACP from two unrelated families from India. Methods: Molecular genetic studies were done for the three patients with the CACP syndrome, from two unrelated Indian families, through sequence analysis of all coding exons and the exon-intron boundaries of the PRG4 gene. Results: Two novel frame-shift deletion mutations leading to premature protein termination were found. One patient was identified to be homozygous for a 2 base pair deletion in exon 6 (c.2645_2646delGA and the two affected siblings from the other family were found to be homozygous for a 4 base pair deletion in exon 6 (c.2883_2886delAAGA. Conclusions: This is perhaps the first report of PRG4 mutations from India. Further mutation studies in Indian CACP cases will help to determine the mutation spectrum of the PRG4 gene in the Indian population and also help to further elucidate the molecular pathology and the genotype-phenotype correlation of this rare disease.

  10. Paucity of Skeletal Manifestations in Hispanic Families with FBN1 mutations

    Science.gov (United States)

    Villamizar, Carlos; Regalado, Ellen S.; Fadulu, Van Tran; Hasham, Sumera N.; Gupta, Prateek; Willing, Marcia C.; Kuang, Shao-Qing; Guo, Dongchuan; Muilenburg, Ann; Yee, Richard W.; Fan, Yuxin; Towbin, Jeffrey; Coselli, Joseph S.; LeMaire, Scott A.; Milewicz, Dianna M.

    2015-01-01

    Marfan syndrome (MFS) is an autosomal dominant condition with pleiotropic manifestations involving the skeletal, ocular, and cardiovascular systems. The diagnosis is based primarily on clinical involvement of these and other systems, referred to as the Ghent criteria. We have identified three Hispanic families from Mexico with cardiovascular and ocular manifestations due to novel FBN1 mutations but with paucity of skeletal features. The largest family, hMFS001, had a frameshift mutation in exon 24 (3075delC) identified as the cause of aortic disease in the family. Assessment of eight affected adults revealed no major skeletal manifestation of MFS. Family hMFS002 had a missense mutation (R1530C) in exon 37. Four members fulfilled the criteria for ocular and cardiovascular phenotype but lacked skeletal manifestations. Family hMFS003 had two consecutive missense FBN1 mutations (C515W and R516G) in exon 12. Eight members fulfilled the ocular criteria for MFS and two members had major cardiovascular manifestations, however none of them met criteria for skeletal system. These data suggest that individuals of Hispanic descent with FBN1 mutations may not manifest skeletal features of the MFS to the same extent as Caucasians. We recommend that echocardiogram, ocular examination and FBN1 molecular testing be considered for any patients with possible MFS even in the absence of skeletal features, including Hispanic patients. PMID:19941982

  11. Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome.

    Science.gov (United States)

    Schossig, Anna; Wolf, Nicole I; Fischer, Christine; Fischer, Maria; Stocker, Gernot; Pabinger, Stephan; Dander, Andreas; Steiner, Bernhard; Tönz, Otmar; Kotzot, Dieter; Haberlandt, Edda; Amberger, Albert; Burwinkel, Barbara; Wimmer, Katharina; Fauth, Christine; Grond-Ginsbach, Caspar; Koch, Martin J; Deichmann, Annette; von Kalle, Christof; Bartram, Claus R; Kohlschütter, Alfried; Trajanoski, Zlatko; Zschocke, Johannes

    2012-04-06

    Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of autozygosity mapping and exome sequencing, we identified a homozygous frameshift deletion, c.229_230del (p.Leu77Alafs(∗)64), in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two additional KTS-affected individuals from two unrelated Austrian and Swiss families revealed homozygosity for nonsense mutation c.286C>T (p.Gln96(∗)) and compound heterozygosity for the splice-site mutations c.531+5G>C and c.532-2A>T in ROGDI, respectively. The latter mutation was also found to be heterozygous in the mother of the Swiss affected individual in whom KTS was reported for the first time in 1974. ROGDI is highly expressed throughout the brain and other organs, but its function is largely unknown. Possible interactions with DISC1, a protein involved in diverse cytoskeletal functions, have been suggested. Our finding that ROGDI mutations cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Spontaneous tyrosinase mutations identified in albinos of three wild frog species.

    Science.gov (United States)

    Miura, Ikuo; Tagami, Masataka; Fujitani, Takeshi; Ogata, Mitsuaki

    2017-06-30

    The present study reports spontaneous tyrosinase gene mutations identified in oculocutaneous albinos of three Japanese wild frog species, Pelophylax nigromaculatus, Glandirana rugosa and Fejervarya kawamurai. This represents the first molecular analyses of albinic phenotypes in frogs. Albinos of P. nigromaculatus collected from two different populations were found to suffer from frameshift mutations. These mutations were caused by the insertion of a thymine residue within each of exons 1 and 4, while albinos in a third population lacked three nucleotides encoding lysine in exon 1. Albinos from the former two P. nigromaculatus populations were also associated with splicing variants of mRNA that lacked either exons 2-4 or exon 4. In the other two frog species examined, missense mutations that resulted in amino acid substitutions from glycine to arginine and glycine to aspartic acid were identified in exons 1 and 3, respectively. The two glycines in F. kawamurai and G. rugosa, and the lysine deleted in one P. nigromaculatus albino, were highly conserved in vertebrates, which suggested that they were critically important to tyrosinase function. In fact, the glycine of G. rugosa is located within a predicted copper-binding domain. The five mutations identified in the present study are candidates for causing the albinic phenotypes, and, if directly confirmed, they are all unique to the vertebrates, which suggests that molecular analysis of albino frogs could contribute to research on albinos in humans and vertebrates by providing new information about tyrosinase structure and transcript processing.

  13. Mutations in the Motile Cilia Gene DNAAF1 Are Associated with Neural Tube Defects in Humans

    Directory of Open Access Journals (Sweden)

    Chunyue Miao

    2016-10-01

    Full Text Available Neural tube defects (NTDs are severe malformations of the central nervous system caused by complex genetic and environmental factors. Among genes involved in NTD, cilia-related genes have been well defined and found to be essential for the completion of neural tube closure (NTC. We have carried out next-generation sequencing on target genes in 373 NTDs and 222 healthy controls, and discovered eight disease-specific rare mutations in cilia-related gene DNAAF1. DNAAF1 plays a central role in cytoplasmic preassembly of distinct dynein-arm complexes, and is expressed in some key tissues involved in neural system development, such as neural tube, floor plate, embryonic node, and brain ependyma epithelial cells in zebrafish and mouse. Therefore, we evaluated the expression and functions of mutations in DNAAF1 in transfected cells to analyze the potential correlation of these mutants to NTDs in humans. One rare frameshift mutation (p.Gln341Argfs*10 resulted in significantly diminished DNAAF1 protein expression, compared to the wild type. Another mutation, p.Lys231Gln, disrupted cytoplasmic preassembly of the dynein-arm complexes in cellular assay. Furthermore, results from NanoString assay on mRNA from NTD samples indicated that DNAAF1 mutants altered the expression level of NTC-related genes. Altogether, these findings suggest that the rare mutations in DNAAF1 may contribute to the susceptibility for NTDs in humans.

  14. Identification of APC gene mutations in Italian adenomatous polyposis coli patients by PCR-SSCP analysis

    Energy Technology Data Exchange (ETDEWEB)

    Varesco, L.; Gismondi, V.; James, R.; Casarino, L.; De Benedetti, L.; Bafico, A.; Allegretti, A.; Aste, H. (Istituto Nazionale per la Ricerca sul Cancro, Genoa (Italy)); Robertson, M.; Groden, J.; White, R. (Univ. of Utah, Salt Lake City (United States)); Grammatico, P.; De Sanctis, S.; Sciarra, A.; Del Porto, G. (Universita di Roma, Rome (Italy)); Bertario, L.; Sala, P.; Rossetti, C.; Illeni, M.T. (Istituto Nazionale Tumori, Milan (Italy)); Sassatelli, R.; Ponz de Leon, M. (Universita di Modena (Italy)); Biasco, G. (Universita di Bologna (Italy)); Ferrara, G.B. (Istituto Nazionale per la Ricerca sul Cancro, Genoa (Italy) Universita di Napoli, Naples (Italy))

    1993-02-01

    The APC gene is a putative human tumor-suppressor gene responsible for adenomatous polyposis coli (APC), an inherited, autosomal dominant predisposition to colon cancer. It is also implicated in the development of sporadic colorectal tumors. The characterization of APC gene mutations in APC patients is clinically important because DNA-based tests can be applied for presymptomatic diagnosis once a specific mutation has been identified in a family. Moreover, the identification of the spectrum of APC gene mutations in patients is of great interest in the study of the biological properties of the APC gene product. The authors analyzed the entire coding region of the APC gene by the PCR-single-strand conformation polymorphism method in 42 unrelated Italian APC patients. Mutations were found in 12 cases. These consist of small (5-14 bp) base-pair deletions leading to frameshifts; all are localized within exon 15. Two of these deletions, a 5-bp deletion at position 3183-3187 and a 5-bp deletion at position 3926-3930, are present in 3/42 and 7/42 cases of the series, respectively, indicating the presence of mutational hot spots at these two sites. 17 refs., 2 figs., 1 tab.

  15. Thirty-nine novel neurofibromatosis 1 (NF1) gene mutations identified in Slovak patients.

    Science.gov (United States)

    Nemethova, Martina; Bolcekova, Anna; Ilencikova, Denisa; Durovcikova, Darina; Hlinkova, Katarina; Hlavata, Anna; Kovacs, Laszlo; Kadasi, Ludevit; Zatkova, Andrea

    2013-09-01

    We performed a complex analysis of the neurofibromatosis type 1 (NF1) gene in Slovakia based on direct cDNA sequencing supplemented by multiple ligation dependent probe amplification (MLPA) analysis. All 108 patients had café-au-lait spots, 85% had axilary and/or inguinal freckling, 61% neurofibromas, 36% Lisch nodules of the iris and 31% optic pathway glioma, 5% suffered from typical skeletal disorders, and 51% of patients had family members with NF1. In 78 of the 86 (90.7%) index patients our analysis revealed the presence of NF1 mutations, 68 of which were small changes (87.2%), including 39 (50%) novel. Among the identified mutations the most prevalent were small deletions and insertions causing frameshift (42.3%), followed by nonsense (14.1%), missense (12.8%), and typical splicing (11.5%) mutations. Type 1 NF1 deletions and intragenic deletions/duplication were identified in five cases each (6.4%). Interestingly, in five other cases nontypical splicing variants were found, whose real effect on NF1 transcript would have remained undetected if using a DNA-based method alone, thus underlying the advantage of using the cDNA-based sequencing. We show that Slovak NF1 patients have a similar repertoire of NF1 germline mutations compared to other populations, with some prevalence of small deletions/insertions and a decreased proportion of nonsense mutations.

  16. Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome

    Science.gov (United States)

    Schossig, Anna; Wolf, Nicole I.; Fischer, Christine; Fischer, Maria; Stocker, Gernot; Pabinger, Stephan; Dander, Andreas; Steiner, Bernhard; Tönz, Otmar; Kotzot, Dieter; Haberlandt, Edda; Amberger, Albert; Burwinkel, Barbara; Wimmer, Katharina; Fauth, Christine; Grond-Ginsbach, Caspar; Koch, Martin J.; Deichmann, Annette; von Kalle, Christof; Bartram, Claus R.; Kohlschütter, Alfried; Trajanoski, Zlatko; Zschocke, Johannes

    2012-01-01

    Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of autozygosity mapping and exome sequencing, we identified a homozygous frameshift deletion, c.229_230del (p.Leu77Alafs∗64), in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two additional KTS-affected individuals from two unrelated Austrian and Swiss families revealed homozygosity for nonsense mutation c.286C>T (p.Gln96∗) and compound heterozygosity for the splice-site mutations c.531+5G>C and c.532-2A>T in ROGDI, respectively. The latter mutation was also found to be heterozygous in the mother of the Swiss affected individual in whom KTS was reported for the first time in 1974. ROGDI is highly expressed throughout the brain and other organs, but its function is largely unknown. Possible interactions with DISC1, a protein involved in diverse cytoskeletal functions, have been suggested. Our finding that ROGDI mutations cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis. PMID:22424600

  17. Identification of a novel mutation in an Indian patient with CAII deficiency syndrome

    Directory of Open Access Journals (Sweden)

    Shivaprasad C

    2010-01-01

    Full Text Available Carbonic anhydrase II (CAII deficiency syndrome characterized by osteopetrosis (OP, renal tubular acidosis (RTA, and cerebral calcifications is caused by mutations in the carbonic anhydrase 2 (CA2 gene. Severity of this disorder varies depending on the nature of the mutation and its effect on the protein. We present here, the clinical and radiographic details along with, results of mutational analysis of the CA2 gene in an individual clinically diagnosed with renal tubular acidosis, osteopetrosis and mental retardation and his family members to establish genotype-phenotype correlation. A novel homozygous deletion mutation c.251delT was seen in the patient resulting in a frameshift and a premature stop codon at amino acid position 90 generating a truncated protein leading to a complete loss of function and a consequential deficiency of the enzyme making this a pathogenic mutation. Confirmation of clinical diagnosis by molecular methods is essential as the clinical features of the CAII deficiency syndrome are similar to other forms of OP but the treatment modalities are different. Genetic confirmation of the diagnosis at an early age leads to the timely institution of therapy improving the growth potential, reduces other complications like fractures, and aids in providing prenatal testing and genetic counseling to the parents planning a pregnancy.

  18. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2

    Science.gov (United States)

    Alter, Blanche P; Rosenberg, Philip S; Brody, Lawrence C

    2007-01-01

    Patients with biallelic mutations in BRCA2 are in Fanconi anaemia group D1. We analysed the severity of the mutations in 27 cases, classified according to their association with breast cancer in heterozygotes, and their predicted functional effect. Twenty mutations were frameshifts or truncations, three involved splice sites, five were missense variants of unknown severity and two were benign polymorphisms. Five patients had VACTERL‐H association. Leukaemia was reported in 13 patients, and solid tumours in 15; 6 patients had two or more malignancies. The cumulative probability of any malignancy was 97% by age 5.2 years. IVS7+1G→A and IVS7+2T→G were associated with AML, and 886delGT and 6174delT with brain tumours. However, patients with other alleles remained at very high risk of these events. Missense mutations formed a distinct cluster in a highly conserved region of the BRCA2 protein. The small group of patients with biallelic mutations in BRCA2 is distinctive in the severity of the phenotype, and early onset and high rates of leukaemia and specific solid tumours, and may comprise an extreme variant of Fanconi anaemia. Several of the alleles were not associated with cancer in presumed carriers, and thus counselling presents more uncertainties than usual. PMID:16825431

  19. Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings

    Science.gov (United States)

    Yoshihara, Ryouhei; Nozawa, Shigeki; Hase, Yoshihiro; Narumi, Issay; Hidema, Jun; Sakamoto, Ayako N.

    2013-01-01

    To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV 12C6+), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV 12C6+. Mutation spectra showed that both radiations increased the frequency of frameshifts and other mutations, including deletions and insertions, but only γ-rays increased the frequency of total base substitutions. These results suggest that the type of DNA lesions which cause base substitutions were less often induced by 320-MeV 12C6+ than by γ-rays in Arabidopsis seedlings. Furthermore, γ-rays never increased the frequencies of G:C to T:A or A:T to C:G transversions, which are caused by oxidized guanine; 320-MeV 12C6+, however, produced a slight increase in both transversions. Instead, γ-rays produced a significant increase in the frequency of G:C to A:T transitions. These results suggest that 8-oxoguanine has little effect on mutagenesis in Arabidopsis cells. PMID:23728320

  20. ETHE1 mutations are specific to ethylmalonic encephalopathy.

    Science.gov (United States)

    Tiranti, V; Briem, E; Lamantea, E; Mineri, R; Papaleo, E; De Gioia, L; Forlani, F; Rinaldo, P; Dickson, P; Abu-Libdeh, B; Cindro-Heberle, L; Owaidha, M; Jack, R M; Christensen, E; Burlina, A; Zeviani, M

    2006-04-01

    Mutations in ETHE1, a gene located at chromosome 19q13, have recently been identified in patients affected by ethylmalonic encephalopathy (EE). EE is a devastating infantile metabolic disorder, characterised by widespread lesions in the brain, hyperlactic acidaemia, petechiae, orthostatic acrocyanosis, and high levels of ethylmalonic acid in body fluids. To investigate to what extent ETHE1 is responsible for EE, we analysed this gene in 29 patients with typical EE and in 11 patients presenting with early onset progressive encephalopathy with ethylmalonic aciduria (non-EE EMA). Frameshift, stop, splice site, and missense mutations of ETHE1 were detected in all the typical EE patients analysed. Western blot analysis of the ETHE1 protein indicated that some of the missense mutations are associated with the presence of the protein, suggesting that the corresponding wild type amino acid residues have a catalytic function. No ETHE1 mutations were identified in non-EE EMA patients. Experiments based on two dimensional blue native electrophoresis indicated that ETHE1 protein works as a supramolecular, presumably homodimeric, complex, and a three dimensional model of the protein suggests that it is likely to be a mitochondrial matrix thioesterase acting on a still unknown substrate. Finally, the 625G-->A single nucleotide polymorphism in the gene encoding the short chain acyl-coenzyme A dehydrogenase (SCAD) was previously proposed as a co-factor in the aetiology of EE and other EMA syndromes. SNP analysis in our patients ruled out a pathogenic role of SCAD variants in EE, but did show a highly significant prevalence of the 625A alleles in non-EE EMA patients.

  1. Update of the pompe disease mutation database with 60 novel GAA sequence variants and additional studies on the functional effect of 34 previously reported variants.

    Science.gov (United States)

    Kroos, Marian; Hoogeveen-Westerveld, Marianne; Michelakakis, Helen; Pomponio, Robert; Van der Ploeg, Ans; Halley, Dicky; Reuser, Arnold

    2012-08-01

    Pompe disease is an autosomal recessive lysosomal glycogen storage disorder, characterized by progressive muscle weakness. Deficiency of acid α-glucosidase (EC; 3.2.1.20/3) can be caused by numerous pathogenic variants in the GAA gene. The Pompe Disease Mutation Database at http://www.pompecenter.nl aims to list all variants and their effect. This update reports on 94 variants. We examined 35 novel and 34 known mutations by site-directed mutagenesis and transient expression in COS-7 cells or HEK293T cells. Each of these mutations was given a severity rating using a previously published system, based on the level of acid α-glucosidase activity in medium and transfected cells and on the quantity and quality of the different molecular mass species in the posttranslational modification and transport of acid α-glucosidase. This approach enabled to classify 55 missense mutations as pathogenic and 13 as likely nonpathogenic. Based on their nature and the use of in silico analysis (Alamut® software), 12 of the additional 25 novel mutations were predicted to be pathogenic including 4 splicing mutations, 6 mutations leading to frameshift, and 2 point mutations causing stop codons. Seven of the additional mutations were considered nonpathogenic (4 silent and 3 occurring in intron regions), and 6 are still under investigation.

  2. Eight previously unidentified mutations found in the OA1 ocular albinism gene

    Directory of Open Access Journals (Sweden)

    Dufier Jean-Louis

    2006-04-01

    Full Text Available Abstract Background Ocular albinism type 1 (OA1 is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand.

  3. Novel MNX1 mutations and clinical analysis of familial and sporadic Currarino cases.

    Science.gov (United States)

    Merello, Elisa; De Marco, Patrizia; Ravegnani, Marcello; Riccipetitoni, Giovanna; Cama, Armando; Capra, Valeria

    2013-12-01

    Currarino Syndrome (CS) is a rare congenital malformation characterized by three major clinical aspects: sacral anomalies, anorectal malformation and presacral mass. In familial settings the disorder is transmitted as autosomal dominant trait, with a wide phenotype variability and low penetrance. The causative gene of CS is the motor neuron and pancreas homeobox-1 (MNX1), mapped at 7q36, and coding for a transcription factor. Mutations in the MNX1 have been implicated in almost all familial but only in 30% of sporadic cases. In our cohort of 28 CS cases, 8 were familiar, 18 were sporadic and 2 were not determined cases. We performed mutational analysis of MNX1 in all cases by DNA sequencing as well as by Multiplex Ligation-dependent Probe Amplification (MLPA) in those CS cases where no MNX1 mutations were found, to exclude a MNX1 heterozygous loss. We identified 10 novel and 4 recurrent mutations. Among the novel mutations, 2 were frameshift variants (p.Ser4IlefsX52, p.Phe248SerfsX35), 6 were missense variants (p.Pro27Leu, p.Gly103Arg, p.Leu254Pro, p.Leu278Pro, p.Glu282Lys, p.Arg292Gly), one was a non-sense variant (p.Lys297X), and the last one was a synonymous variant (p.Gln290Gln). Mutated patients showed a variability of phenotypes but all share at least the association of sacral agenesis and presacral mass, and this co-occurrence can constitute a pathognomonic sign to perform MNX1 analysis. Genetic heterogeneity could be a possible explanation for some of the sporadic not mutated patients even if a mis-diagnosis could not be excluded. Finally, we provide an up-date of the more recent literature, reporting a total number of 82 MNX1-CS related mutations.

  4. Mutations of the BRCA1 and BRCA2 genes in patients with bilateral breast cancer.

    Science.gov (United States)

    Steinmann, D; Bremer, M; Rades, D; Skawran, B; Siebrands, C; Karstens, J H; Dörk, T

    2001-09-14

    Mutations of the BRCA1 or BRCA2 genes have been shown to strongly predispose towards the development of contralateral breast cancer in patients from large multi-case families. In order to test the hypothesis that BRCA1 and BRCA2 mutations are more frequent in patients with bilateral breast cancer, we have investigated a hospital-based series of 75 consecutive patients with bilateral breast cancer and a comparison group of 75 patients with unilateral breast cancer, pairwise matched by age and family history, for mutations in the BRCA1 and BRCA2 genes. Five frameshift deletions (517delGT in BRCA1; 4772delA, 5946delCT, 6174delT and 8138del5 in BRCA2) were identified in patients with bilateral disease. No further mutations, apart from polymorphisms and 3 rare unclassified variants, were found after scanning the whole BRCA1 and BRCA2 coding sequence. Three pathogenic BRCA1 mutations (Cys61Gly, 3814del5, 5382insC) were identified in the group of patients with unilateral breast cancer. The frequencies of common BRCA1 and BRCA2 missense variants were not different between the 2 groups. In summary, we did not find a significantly increased prevalence of BRCA1 and BRCA2 mutations in a hospital-based cohort of German patients with bilateral breast cancer. We conclude that bilaterality of breast cancer on its own is not strongly associated with BRCA1 and BRCA2 mutations when adjusted for age and family history. The high frequency of bilateral disease in multi-case breast cancer families may be due to a familial aggregation of additional susceptibility factors modifying the penetrance of BRCA1 and BRCA2 mutations.

  5. Bcl11b mutations identified in murine lymphomas increase the proliferation rate of hematopoietic progenitor cells

    Directory of Open Access Journals (Sweden)

    Söderkvist Peter

    2007-10-01

    Full Text Available Abstract Background The telomeric region of mouse chromosome 12 has previously shown frequent allelic loss in murine lymphoma. The Bcl11b gene has been identified and suggested as a candidate tumor suppressor gene within this region. In this study, we aimed to elucidate whether Bcl11b is mutated in lymphomas with allelic loss, and whether the mutations we detected conferred any effect on cell proliferation and apoptosis. Methods Mouse lymphomas induced by 1,3-butadiene or 2',3'-dideoxycytidine were analysed for mutations in the Bcl11b gene using single strand conformation analysis and direct DNA sequencing. Effects on cell proliferation by the detected mutations were studied by expressing wild-type and mutant Bcl11b in the cytokine-dependent hematopoietic progenitor cell line FDC-P1, lacking endogenous Bcl11b expression. Results Missense and frameshift (FS mutations were identified in 7 of 47 tumors (15%. Interestingly, all mutations were found between amino acids 778–844 which encode the three C-terminal DNA-binding zinc fingers. In FDC-P1 cells, wild-type Bcl11b suppressed cell proliferation, whereas the mutated versions (S778N, K828T, Y844C and FS823 enhanced proliferation several-fold. Conclusion The genetic alterations detected in this study suggest that the three C-terminal zinc fingers of Bcl11b are important for the DNA-binding. Cell proliferation was suppressed by overexpression of wild-type Bcl11b but enhanced by mutant Bcl11b, indicating that these mutations may be an important contributing factor to lymphomagenesis in a subset of tumors.

  6. Analysis Of Solute Concentration And Concentration Derivative Distribution By Means Of Frameshift Fourier And Other Algorithms Applied To Rayleigh Interferometric And Fresnel Fringe Patterns

    Science.gov (United States)

    Rowe, Arthur J.; Jones, S. W.; Thomas, D.; Harding, Stephen E.

    1989-11-01

    The equilibrium distribution of particles dispersed in an aqueous solute situated in a centrifugal accelerative field is routinely studied by means of an optical trace recorded photographically. Rayleigh interferometric fringe patterns have been widely used to give this trace, in which the displacement of the parallel fringes is directly related to particle concentration differences. We have developed a simple but highly efficient frameshift algorithm for automatic interpretation of these patternsl . Results obtained from extensive use and further definition of this algorithm confirm its validity and utility. We have also studied algorithms for the interpretation of Fresnel fringe patterns yielded by an alternative optical system. These more complex patterns involving non parallel fringes can be analysed successfully, subject to certain conditions, with a precision similar to that obtained using Rayleigh interference optics.

  7. Birt-Hogg-Dubé (BHD) syndrome: report of two novel germline mutations in the folliculin (FLCN) gene.

    Science.gov (United States)

    Palmirotta, Raffaele; Donati, Pietro; Savonarola, Annalisa; Cota, Carlo; Ferroni, Patrizia; Guadagni, Fiorella

    2008-01-01

    Molecular analysis of the folliculin (FLCN) gene was performed in four consenting patients from two families with Birt-Hogg-Dubé (BHD) syndrome, showing the occurrence of two frameshift mutations located respectively in exons 5 (802insA) and 9 (1345delAAAG) of the FLCN gene. A novel homozygous sequence variant in the intron 9 (IVS9 +5C>T) was also found. 1345delAAAG was associated with a wide variety of tumors, including stomach, colon, breast and parotid cancer. Conversely, the family carrying 802insA only had clinical evidence of dermatological lesions. These findings further suggest the relevance of exon 9 mutations in cancer predisposition for BHD.

  8. Transgenic Animal Mutation Assays

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Ph.D.D.A.B.T.

    2005-01-01

    @@ The novel transgenic mouse and rat mutation assays have provided a tool for analyzing in vivo mutation in any tissue, thus permitting the direct comparison of cancer incidence with mutant frequency.

  9. Mutational analysis of ATP7B in Chinese Wilson disease patients

    Science.gov (United States)

    Hua, Rui; Hua, Fang; Jiao, Yonggeng; Pan, Yu; Yang, Xu; Peng, Shanshan; Niu, Junqi

    2016-01-01

    Wilson Disease (WD) is an inborn error of copper metabolism inherited in an autosomal recessive manner caused by the mutations in the P-type ATPase gene (ATP7B). In this study, we screen and detect the mutations of the ATP7B gene in unrelated Chinese WD patients. A total of 68 individuals from ten provinces of China with WD were recruited. Of them, 43 were males and 25 were females, and their onset ages were from 1 to 48 years with a median onset age of 22.2 years. All the exons and exon/intron boundaries of ATP7B gene of the patients were sequenced and aligned to the referred ATP7B gene sequence. The results suggested that 66 of the 68 patents carried with at least one mutation and 48 different mutations were identified including 34 missense, one synonymous, two nonsense, two splicing, and nine frameshift mutations (five insertion and four deletion). Among these mutations, c.2333G>T, c.2310C>G, c.2975C>T, and c.3443T>C were the most prevalent mutants and c.2310C>G always linked with c.2333G>T. The eighth, 11th, and 18th exons carried more mutations (6/48, 5/48, and 5/48, respectively) than others. After comparing with the mutations reported previously, 22 out of the 48 mutations were identified as novel mutations. A popular algorithm, Polyphen-2, was used to predict the effects of the amino-acid substitution due to the mutations on the structure and function of ATP7B function and the predicted results indicated that all the missense mutations were unfavorable except c.121A>G and c.748G>A. Phenotype/genotype correlation analysis suggested that the patients with c.2975C>T or c.3809A>G often presented WD features before 12 years old while the patients with c.3443T>C almost presented WD after 12 years old. This is the first time to identify the common mutations contributing to early onset age in Chinese WD patients. Our study will broaden our knowledge about ATP7B mutations in WD patients. PMID:27398169

  10. Mutational analysis of ATP7B in Chinese Wilson disease patients.

    Science.gov (United States)

    Hua, Rui; Hua, Fang; Jiao, Yonggeng; Pan, Yu; Yang, Xu; Peng, Shanshan; Niu, Junqi

    2016-01-01

    Wilson Disease (WD) is an inborn error of copper metabolism inherited in an autosomal recessive manner caused by the mutations in the P-type ATPase gene (ATP7B). In this study, we screen and detect the mutations of the ATP7B gene in unrelated Chinese WD patients. A total of 68 individuals from ten provinces of China with WD were recruited. Of them, 43 were males and 25 were females, and their onset ages were from 1 to 48 years with a median onset age of 22.2 years. All the exons and exon/intron boundaries of ATP7B gene of the patients were sequenced and aligned to the referred ATP7B gene sequence. The results suggested that 66 of the 68 patents carried with at least one mutation and 48 different mutations were identified including 34 missense, one synonymous, two nonsense, two splicing, and nine frameshift mutations (five insertion and four deletion). Among these mutations, c.2333G>T, c.2310C>G, c.2975C>T, and c.3443T>C were the most prevalent mutants and c.2310C>G always linked with c.2333G>T. The eighth, 11(th), and 18(th) exons carried more mutations (6/48, 5/48, and 5/48, respectively) than others. After comparing with the mutations reported previously, 22 out of the 48 mutations were identified as novel mutations. A popular algorithm, Polyphen-2, was used to predict the effects of the amino-acid substitution due to the mutations on the structure and function of ATP7B function and the predicted results indicated that all the missense mutations were unfavorable except c.121A>G and c.748G>A. Phenotype/genotype correlation analysis suggested that the patients with c.2975C>T or c.3809A>G often presented WD features before 12 years old while the patients with c.3443T>C almost presented WD after 12 years old. This is the first time to identify the common mutations contributing to early onset age in Chinese WD patients. Our study will broaden our knowledge about ATP7B mutations in WD patients.

  11. Case Report: Whole exome sequencing identifies a novel frameshift insertion c.1325dupT (p.F442fsX2 in the tyrosine kinase domain of BTK gene in a young Indian individual with X-linked agammaglobulinemia [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Amit Rawat

    2017-08-01

    Full Text Available X-linked agammaglobulinemia (XLA is an extremely rare inherited primary immunodeficiency characterized by recurrent bacterial infections, decrease in number of mature B cells and low serum immunoglobulins. XLA is caused by mutations in the gene encoding Bruton's tyrosine kinase. We report a case of a young Indian boy suspected to have XLA. Immunophenotyping was performed for the affected child using CD20, CD19 and CD3 antibodies. Whole exome sequencing was performed using trio-based approach. The variants were further analyzed using capillary sequencing in the trio as well as maternal grandmother. Initial immunophenotyping in the affected child showed decreased count of CD19+ B cells. To strengthen the clinical findings and confirm the diagnosis of XLA, we performed whole exome sequencing. Our analysis identified a novel frameshift insertion (c.1325dupT in the BTK gene, which was further validated by Sanger sequencing. Our approach shows the potential in using whole exome sequencing to pinpoint the molecular lesion, enabling timely diagnosis and genetic counseling, and potentially offering prenatal genetic testing for the family.

  12. Study of Mutation in Tyrosine Protein Kinase of Insulin Receptor Gene in Patients with Polycystic Ovarian Syndrome

    Institute of Scientific and Technical Information of China (English)

    Min LI; Hong-yu QIU; Yong-yu SUN; Hong-fa LI; Yong-li CHU

    2003-01-01

    Objective To explore the molecular mechanism of insulin resistance in the patients with polycystic ovarian syndrome (PCOS)Methods Polymerase chain reaction, silver staining-single strand conformation polymorphism(PCR-SSCP) and DNA direct sequencing were used to detect the mutation of insulin receptor(INSR) gene in exon 17~21 with the abdominal wall adipose tissue from 31 patients with PCOS (PCOS Group) and 30 patients with pure hysteromyoma in reproductive lift (Control Group).Results Twenty-two variant SSCP patterns in exon 17 of INSR gene were detected. Direct sequence analysis of exon 17 showed that homozygous nonsense mutation was two alleles single nucleotide polymorphism(SNP) at the codon 1058 (CAC→CAT). Exons 18~21 were not detected with any significantly mutation. The INSR gene His1058C→T substitution collecting rate and insulin resistance were significantly higher in the PCOS group than in the control group (P=0.0293, P<0.05, P<0.01).Conclusion It is suggested that the SNP in codon 1058 of the INSR gene might be related with the insulin resistance in PCOS patients, which has hereditary tendency. And the missense mutation,nonsense mutation and frameshift mutation at exons 18~21 in tyrosine protein kinase region of INSR gene for PCOS patients were not frequently observed.

  13. De novo IGF2 mutation on the paternal allele in a patient with Silver-Russell syndrome and ectrodactyly.

    Science.gov (United States)

    Yamoto, Kaori; Saitsu, Hirotomo; Nakagawa, Norio; Nakajima, Hisakazu; Hasegawa, Tatsuji; Fujisawa, Yasuko; Kagami, Masayo; Fukami, Maki; Ogata, Tsutomu

    2017-08-01

    Although paternally expressed IGF2 is known to play a critical role in placental and body growth, only a single mutation has been found in IGF2. We identified, through whole-exome sequencing, a de novo IGF2 indel mutation leading to frameshift (NM_000612.5:c.110_117delinsAGGTAA, p.(Leu37Glnfs*31)) in a patient with Silver-Russell syndrome, ectrodactyly, undermasculinized genitalia, developmental delay, and placental hypoplasia. Furthermore, we demonstrated that the mutation resided on the paternal allele by sequencing the long PCR product harboring the mutation- and methylation-sensitive SmaI and SalI sites before and after SmaI/SalI digestion. The results, together with the previous findings in four cases from a single family with a paternally inherited IGF2 nonsense mutation and those in patients with variable H19 differentially methylated region epimutations leading to compromised IGF2 expression, suggest that the whole phenotype of this patient is explainable by the IGF2 mutation, and that phenotypic severity is primarily determined by the IGF2 expression level in target tissues. © 2017 Wiley Periodicals, Inc.

  14. Identification of recurrent BRCA1 mutation and its clinical relevance in Chinese Triple-negative breast cancer cohort.

    Science.gov (United States)

    Liu, Xiaoran; Li, Huiping; Shao, Bin; Wu, Jianmin; Kong, Weiyao; Song, Guohong; Jiang, Hanfang; Wang, Jing; Wan, Fengling

    2017-03-01

    Triple-negative breast cancer (TNBC) accounts for 15-20% of all newly diagnosed breast cancers, and is enriched for germline mutation of BRCA. In Asian patients diagnosed with breast cancer, 268 deleterious mutations of BRCA1 and 242 of BRCA2 have been identified so far, including a reported BRCA1 frameshift mutation (rs80350973), apparently found only in Asian people, with a low prevalence of 0.3-1.7% in different breast cancer cohorts. Here, we reported the high prevalence (7.2%) of rs80350973 among 125 Chinese patients with TNBC, which implies its mutational predilection for certain breast cancer subtypes. Although its low prevalence had not indicated any particular clinical significance in previous studies, our results associated rs80350973 mutation with cell checkpoint malfunction, and was found to be more common in TNBC patients with high Ki-67 indices (P = 0.004). As Ki-67 overexpression is a predictor of poor prognosis in TNBC, inclusion of this mutation into genetic assessments may improve the clinical management of Chinese patients with TNBC.

  15. Point mutations in the murine fumarylacetoacetate hydrolase gene: Animalmodels for the human genetic disorder hereditary tyrosinemia type 1

    Energy Technology Data Exchange (ETDEWEB)

    Aponte, Jennifer [University of Tennessee, Knoxville (UTK); Sega, Gary A [ORNL; Hauser, Loren John [ORNL; Dhar, Madhu [University of Tennessee, Knoxville (UTK); Withrow, Catherine [ORNL; Carpenter, D A [ORNL; Rinchik, Eugene M. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Culiat, Cymbeline T [ORNL; Johnson, Dabney K [ORNL

    2001-01-01

    Hereditary tyrosinemia type 1 (HT1) is a severe autosomal recessive metabolic disease associated with point mutations in the human fumarylacetoacetate hydrolase (FAH) gene that disrupt tyrosine catabolism. An acute form of HT1 results in death during the first months of life because of hepatic failure, whereas a chronic form leads to gradual development of liver disease often accompanied by renal dysfunction, childhood rickets, neurological crisis, and hepatocellular carcinoma. Mice homozygous for certain chromosome 7 deletions of the albino Tyr; c locus that also include Fah die perinatally as a result of liver dysfunction and exhibit a complex syndrome characterized by structural abnormalities and alterations in gene expression in the liver and kidney. Here we report that two independent, postnatally lethal mutations induced by N-ethyl-N-nitrosourea and mapped near Tyr are alleles of Fah. The Fah6287SB allele is a missense mutation in exon 6, and Fah5961SB is a splice mutation causing loss of exon 7, a subsequent frameshift in the resulting mRNA, and a severe reduction of Fah mRNA levels. Increased levels of the diagnostic metabolite succinylacetone in the urine of the Fah6287SB and Fah5961SB mutants indicate that these mutations cause a decrease in Fah enzymatic activity. Thus, the neonatal phenotype present in both mutants is due to a deficiency in Fah caused by a point mutation, and we propose Fah5961SB and Fah6287SB as mouse models for acute and chronic forms of human HT1, respectively.

  16. Loss-of-function mutations of SURF-1 are specifically associated with Leigh syndrome with cytochrome c oxidase deficiency.

    Science.gov (United States)

    Tiranti, V; Jaksch, M; Hofmann, S; Galimberti, C; Hoertnagel, K; Lulli, L; Freisinger, P; Bindoff, L; Gerbitz, K D; Comi, G P; Uziel, G; Zeviani, M; Meitinger, T

    1999-08-01

    Mutations of SURF-1, a gene located on chromosome 9q34, have recently been identified in patients affected by Leigh syndrome (LS), associated with deficiency of cytochrome c oxidase (COX), the terminal component of the mitochondrial respiratory chain. To investigate to what extent SURF-1 is responsible for human disorders because of COX deficiency, we undertook sequence analysis of the SURF-1 gene in 46 unrelated patients. We analyzed 24 COX-defective patients classified as having typical Leigh syndrome (LS(COX)), 6 patients classified as Leigh-like (LL(COX)) cases, and 16 patients classified as non-LS(COX) cases. Frameshift, stop, and splice mutations of SURF-1 were detected in 18 of 24 (75%) of the LS(COX) cases. No mutations were found in the LL(COX) and non-LS(COX) group of patients. Rescue of the COX phenotype was observed in transfected cells from patients harboring SURF-1 mutations, but not in transfected cell lines from 2 patients in whom no mutations were detected by sequence analysis. Loss of function of SURF-1 protein is specifically associated with LS(COX), although a proportion of LS(COX) cases must be the result of abnormalities in genes other than SURF-1. SURF-1 is the first nuclear gene to be consistently mutated in a major category of respiratory chain defects. DNA analysis can now be used to accurately diagnose LS(COX), a common subtype of Leigh syndrome.

  17. Novel mutations in NEB cause abnormal nebulin expression and markedly impaired muscle force generation in severe nemaline myopathy

    Directory of Open Access Journals (Sweden)

    Lawlor Michael W

    2011-06-01

    Full Text Available Abstract Background Nemaline myopathy (NM is a congenital muscle disease associated with weakness and the presence of nemaline bodies (rods in muscle fibers. Mutations in seven genes have been associated with NM, but the most commonly mutated gene is nebulin (NEB, which is thought to account for roughly 50% of cases. Results We describe two siblings with severe NM, arthrogryposis and neonatal death caused by two novel NEB mutations: a point mutation in intron 13 and a frameshift mutation in exon 81. Levels of detectable nebulin protein were significantly lower than those in normal control muscle biopsies or those from patients with less severe NM due to deletion of NEB exon 55. Mechanical studies of skinned myofibers revealed marked impairment of force development, with an increase in tension cost. Conclusions Our findings demonstrate that the mechanical phenotype of severe NM is the consequence of mutations that severely reduce nebulin protein levels and suggest that the level of nebulin expression may correlate with the severity of disease.

  18. Mutations in the WTX - gene are found in some high-grade microsatellite instable (MSI-H colorectal cancers

    Directory of Open Access Journals (Sweden)

    Scheel Silvio K

    2010-08-01

    Full Text Available Abstract Background Genetically, colorectal cancers (CRCs can be subdivided into tumors with chromosomal instability (CIN or microsatellite instability (MSI. In both types of CRCs genes that are involved in the degradation of β-CATENIN are frequently mutated. Whereas in CIN CRCs APC (Adenomatous Polyposis Coli is affected in most cases, high grade MSI (MSI-H CRCs frequently display mutations in various genes, like the APC-, AXIN2- or CTNNBI (β-CATENIN gene itself. Recently in Wilms tumors, WTX (Wilms tumor gene on the X-chromosome was discovered as another gene involved in the destruction of β-CATENIN. As the WTX-gene harbors a short T6-microsatellite in its N-terminal coding region, we hypothesized that frameshift-mutations might occur in MSI-H CRCs in the WTX gene, thus additionally contributing to the stabilization of β-CATENIN in human CRCs. Methods DNA was extracted from 632 formalin-fixed, paraffin-embedded metastatic CRCs (UICCIV and analyzed for MSI-H by investigating the stability of the highly sensitive microsatellite markers BAT25 and BAT26 applying fluorescence capillary electrophoresis (FCE. Then, in the MSI-H cases, well described mutational hot spot regions from the APC-, AXIN2- and CTNNBI genes were analyzed for genomic alterations by didesoxy-sequencing while the WTX T6-microsatellite was analyzed by fragment analysis. Additionally, the PCR products of T5-repeats were subcloned and mutations were validated using didesoxy-sequencing. Furthermore, the KRAS and the BRAF proto-oncogenes were analyzed for the most common activating mutations applying pyro-sequencing. mRNA expression of WTX from MSI-H and MSS cases and a panel of colorectal cancer cell lines was investigated using reverse transcription (RT- PCR and FCE. Results In our cohort of 632 metastatic CRCs (UICCIV we identified 41 MSI-H cases (6.5%. Two of the 41 MSI-H cases (4.8% displayed a frameshift mutation in the T6-repeat resulting in a T5 sequence. Only one case, a

  19. The NOD2 3020insC Mutation in Women with Breast Cancer from the Bydgoszcz Region in Poland. First Results

    Directory of Open Access Journals (Sweden)

    Janiszewska Hanna

    2006-01-01

    Full Text Available Abstract The frameshift NOD2 gene mutation 3020insC is predominantly associated with Crohn's disease, but predisposes to many types of common cancers as well. We studied the frequency of this mutant NOD2 allele in 148 breast cancer women from the Bydgoszcz region in Poland. The NOD2 mutation was present in 8.8% of the patients. The mean age at breast cancer diagnosis of the mutation carriers was 43 years. We did not find any mutation in patients diagnosed with breast cancer after the age of 50 years. There was no association of the NOD2 mutation with a strong family history of breast cancer. On the contrary, the mutation frequency (11.4% was two times higher in women from families with a single case of breast cancer and with aggregation of other common types of cancer, especially digestive tract cancers. Low risk of breast cancer in the mutation carriers seems to be confirm