WorldWideScience

Sample records for twist-coupled prototype project

  1. Sweep-twist adaptive rotor blade : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  2. TEK twisted gradient flow running coupling

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori

    2014-01-01

    We measure the running of the twisted gradient flow coupling in the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions in the large N limit.

  3. Minimizing coupling loss by selection of twist pitch lengths in multi-stage cable-in-conduit conductors

    International Nuclear Information System (INIS)

    Rolando, G; Nijhuis, A; Devred, A

    2014-01-01

    The numerical code JackPot-ACDC (van Lanen et al 2010 Cryogenics 50 139–48, van Lanen et al 2011 IEEE Trans. Appl. Supercond. 21 1926–9, van Lanen et al 2012 Supercond. Sci. Technol. 25 025012) allows fast parametric studies of the electro-magnetic performance of cable-in-conduit conductors (CICCs). In this paper the code is applied to the analysis of the relation between twist pitch length sequence and coupling loss in multi-stage ITER-type CICCs. The code shows that in the analysed conductors the coupling loss is at its minimum when the twist pitches of the successive cabling stages have a length ratio close to one. It is also predicted that by careful selection of the stage-to-stage twist pitch ratio, CICCs cabled according to long twist schemes in the initial stages can achieve lower coupling loss than conductors with shorter pitches. The result is validated by AC loss measurements performed on prototype conductors for the ITER Central Solenoid featuring different twist pitch sequences. (paper)

  4. Bend-twist coupling potential of wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Berggreen, Christian

    2014-01-01

    -twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling...

  5. Modal properties and stability of bend–twist coupled wind turbine blades

    Directory of Open Access Journals (Sweden)

    A. R. Stäblein

    2017-06-01

    Full Text Available Coupling between bending and twist has a significant influence on the aeroelastic response of wind turbine blades. The coupling can arise from the blade geometry (e.g. sweep, prebending, or deflection under load or from the anisotropic properties of the blade material. Bend–twist coupling can be utilized to reduce the fatigue loads of wind turbine blades. In this study the effects of material-based coupling on the aeroelastic modal properties and stability limits of the DTU 10 MW Reference Wind Turbine are investigated. The modal properties are determined by means of eigenvalue analysis around a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend–twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist for flapwise (flap–twist coupling or edgewise (edge–twist coupling bending. Edge–twist coupling can increase or decrease the damping of the edgewise mode relative to the reference blade, depending on the operational condition of the turbine. Edge–twist to feather coupling for edgewise deflection towards the leading edge reduces the inflow speed at which the blade becomes unstable. Flap–twist to feather coupling for flapwise deflections towards the suction side increase the frequency and reduce damping of the flapwise mode. Flap–twist to stall reduces frequency and increases damping. The reduction of blade root flapwise and tower bottom fore–aft moments due to variations in mean wind speed of a flap–twist to feather blade are confirmed by frequency response functions.

  6. Composite material bend-twist coupling for wind turbine blade applications

    Science.gov (United States)

    Walsh, Justin M.

    Current efforts in wind turbine blade design seek to employ bend-twist coupling of composite materials for passive power control by twisting blades to feather. Past efforts in this area of study have proved to be problematic, especially in formulation of the bend-twist coupling coefficient alpha. Kevlar/epoxy, carbon/epoxy and glass/epoxy specimens were manufactured to study bend-twist coupling, from which numerical and analytical models could be verified. Finite element analysis was implemented to evaluate fiber orientation and material property effects on coupling magnitude. An analytical/empirical model was then derived to describe numerical results and serve as a replacement for the commonly used coupling coefficient alpha. Through the results from numerical and analytical models, a foundation for aeroelastic design of wind turbines blades utilizing biased composite materials is provided.

  7. The $SU(\\infty)$ twisted gradient flow running coupling

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori

    2015-01-01

    We measure the running of the $SU(\\infty)$ 't Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU($N$) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter $\\tilde l = l \\sqrt{N}$, with $l$ the torus period. We set the scale for the running coupling in terms of $\\tilde l$ and use the gradient flow to define a renormalized 't Hooft coupling $\\lambda(\\tilde l)$. In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large $N$ limit taken at fixed value of $\\lambda(\\tilde l)$. The coupling constant is thus expected to coinc...

  8. The SU(∞) twisted gradient flow running coupling

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Margarita García [Instituto de Física Teórica UAM-CSIC,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); González-Arroyo, Antonio [Instituto de Física Teórica UAM-CSIC,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); Departamento de Física Teórica, C-15, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); Keegan, Liam [PH-TH, CERN,CH-1211 Geneva 23 (Switzerland); Okawa, Masanori [Graduate School of Science, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2015-01-09

    We measure the running of the SU(∞) ’t Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter l-tilde=l√N, with l the torus period. We set the scale for the running coupling in terms of l-tilde and use the gradient flow to define a renormalized ’t Hooft coupling λ(l-tilde). In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large N limit taken at fixed value of λ(l-tilde). The coupling constant is thus expected to coincide with that of the ordinary pure gauge theory at N=∞. The idea is shown to work and permits us to follow the evolution of the coupling over a wide range of scales. At weak coupling we find a remarkable agreement with the perturbative two-loop formula for the running coupling.

  9. Modal Properties and Stability of Bend-Twist Coupled Wind Turbine Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander R.; Hansen, Morten Hartvig; Verelst, David Robert

    2017-01-01

    a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend-twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist...

  10. Morphing wing structure with controllable twist based on adaptive bending-twist coupling

    Science.gov (United States)

    Raither, Wolfram; Heymanns, Matthias; Bergamini, Andrea; Ermanni, Paolo

    2013-06-01

    A novel semi-passive morphing airfoil concept based on variable bending-twist coupling induced by adaptive shear center location and torsional stiffness is presented. Numerical parametric studies and upscaling show that the concept relying on smart materials permits effective twist control while offering the potential of being lightweight and energy efficient. By means of an experimental characterization of an adaptive beam and a scaled adaptive wing structure, effectiveness and producibility of the structural concept are demonstrated.

  11. Morphing wing structure with controllable twist based on adaptive bending–twist coupling

    International Nuclear Information System (INIS)

    Raither, Wolfram; Heymanns, Matthias; Ermanni, Paolo; Bergamini, Andrea

    2013-01-01

    A novel semi-passive morphing airfoil concept based on variable bending–twist coupling induced by adaptive shear center location and torsional stiffness is presented. Numerical parametric studies and upscaling show that the concept relying on smart materials permits effective twist control while offering the potential of being lightweight and energy efficient. By means of an experimental characterization of an adaptive beam and a scaled adaptive wing structure, effectiveness and producibility of the structural concept are demonstrated. (paper)

  12. Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade

    Science.gov (United States)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon

    2000-01-01

    Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.

  13. Extension-twist coupling of composite circular tubes with application to tilt rotor blade design

    Science.gov (United States)

    Nixon, Mark W.

    1987-01-01

    This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.

  14. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    Science.gov (United States)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance

  15. Twisted sigma-model solitons on the quantum projective line

    Science.gov (United States)

    Landi, Giovanni

    2018-04-01

    On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.

  16. Demonstration of an elastically coupled twist control concept for tilt rotor blade application

    Science.gov (United States)

    Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.

    1994-01-01

    The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.

  17. The geometrical origin of the strain-twist coupling in double helices

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2011-01-01

    A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends...

  18. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy.

    Science.gov (United States)

    Huang, Shengxi; Ling, Xi; Liang, Liangbo; Kong, Jing; Terrones, Humberto; Meunier, Vincent; Dresselhaus, Mildred S

    2014-10-08

    Two-dimensional molybdenum disulfide (MoS2) is a promising material for optoelectronic devices due to its strong photoluminescence emission. In this work, the photoluminescence of twisted bilayer MoS2 is investigated, revealing a tunability of the interlayer coupling of bilayer MoS2. It is found that the photoluminescence intensity ratio of the trion and exciton reaches its maximum value for the twisted angle 0° or 60°, while for the twisted angle 30° or 90° the situation is the opposite. This is mainly attributed to the change of the trion binding energy. The first-principles density functional theory analysis further confirms the change of the interlayer coupling with the twisted angle, which interprets our experimental results.

  19. Partially coherent twisted states in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Omel' chenko, Oleh E.; Wolfrum, Matthias [Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin (Germany); Laing, Carlo R. [INMS, Massey University, Private Bag 102-904 NSMC, Auckland (New Zealand)

    2014-06-15

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.

  20. Partially coherent twisted states in arrays of coupled phase oscillators

    International Nuclear Information System (INIS)

    Omel'chenko, Oleh E.; Wolfrum, Matthias; Laing, Carlo R.

    2014-01-01

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system

  1. The geometrical origin of the strain-twist coupling in double helices

    Directory of Open Access Journals (Sweden)

    Kasper Olsen

    2011-03-01

    Full Text Available A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends only on the pitch angle. For pitch angles below 39.4° strain leads to further winding, while for larger pitch angles strain leads to unwinding. The zero-twist structure, with a pitch angle of 39.4°, is at the unique point between winding and unwinding and independent of the mechanical properties of the double helix. The existence of zero-twist structures, i.e. structures that display neither winding, nor unwinding under strain is discussed. Close-packed double helices are shown to extend rather than shorten when twisted. Numerical estimates of this elongation upon winding are given for DNA, chromatin, and RNA.

  2. Effect of Turbulence on Power for Bend-Twist Coupled Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    that it might be related to the dynamic response of bend-twist coupled blades in turbulent flow. This paper contains estimations of the power curve from nonlinear time simulations, a linear frequency domain based method and a normal distribution weighted average method. It is shown that the frequency domain...... that changes in power due to turbulence are similar for coupled and uncoupled blades. Power gains at low wind speeds are related to the curvature of the steady state power curve. Losses around rated wind speed are caused by the effects of controller switching between partial and full power operation.......Bend-twist coupling of wind turbine blades reduces the structural loads of the turbine but it also results in a decrease of the annual energy production. The main part of the power loss can be mitigated by pretwisting the blade, but some power loss remains and previous studies indicate...

  3. Investigation of Structural Behavior due to Bend-Twist Couplings in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimirov; Berggreen, Christian

    2010-01-01

    for predicting the torsional response of the wind turbine blades with built-in bend-twist couplings. Additionally, a number of improved full-scale tests using an advanced bi-axial servo-hydraulic load control have been performed on a wind turbine blade section provided by Vestas Wind Systems A/S. In the present......One of the problematic issues concerning the design of future large composite wind turbine blades is the prediction of bend-twist couplings and torsion behaviour. The current work is a continuation of a previous work [1,2], and it examines different finite element modelling approaches...... of the blade cross section as the defining surface, off-setting the location of the shell elements according to the specified thickness. The experimental full-scale tests were carried out on an 8 m section of a 23 m wind turbine blade with specially implemented bend-twist coupling. The blade was tested under...

  4. Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers.

    Science.gov (United States)

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2018-04-30

    We show that in twisted microstructured optical fibers (MOFs) the coupling between the core and cladding modes can be obtained for helix pitch much greater than previously considered. We provide an analytical model describing scaling properties of the twisted MOFs, which relates coupling conditions to dimensionless ratios between the wavelength, the lattice pitch and the helix pitch of the twisted fiber. Furthermore, we verify our model using a rigorous numerical method based on the transformation optics formalism and study its limitations. The obtained results show that for appropriately designed twisted MOFs, distinct, high loss resonance peaks can be obtained in a broad wavelength range already for the fiber with 9 mm helix pitch, thus allowing for fabrication of coupling based devices using a less demanding method involving preform spinning.

  5. Project management strategies for prototyping breakdowns

    DEFF Research Database (Denmark)

    Granlien, Maren Sander; Pries-Heje, Jan; Baskerville, Richard

    2009-01-01

    , managing the explorative and iterative aspects of prototyping projects is not a trivial task. We examine the managerial challenges in a small scale prototyping project in the Danish healthcare sector where a prototype breakdown and project escalation occurs. From this study we derive a framework...... of strategies for coping with escalation in troubled prototyping projects; the framework is based on project management triangle theory and is useful when considering how to manage prototype breakdown and escalation. All strategies were applied in the project case at different points in time. The strategies led...

  6. Using Pretwist to Reduce Power Loss of Bend-Twist Coupled Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Tibaldi, Carlo; Hansen, Morten Hartvig

    2016-01-01

    Bend-twist coupling of wind turbine blades is known as a means to reduce the structural loads of the turbine. While the load reduction is desirable, bend-twist coupling also leads to a decrease in the annual energy production of the turbine. The reduction is mainly related to a no longer optimal......, and fatigue load for the DTU 10 MW Reference Wind Turbine. The analysis was carried out by calculating the nonlinear steady state rotor deflection in an uniform inflow over the operational range of the turbine. The steady state power curve together with a Rayleigh wind speed distribution has been used...... to estimate the annual energy production. The turbine model was then linearised around the steady state and the power spectral density of the blade response, which was computed from transfer functions and the wind speed variations in the frequency domain, was used to estimate the fatigue loads by a spectral...

  7. The gradient flow running coupling with twisted boundary conditions

    International Nuclear Information System (INIS)

    Ramos, Alberto

    2014-09-01

    We study the gradient flow for Yang-Mills theories with twisted boundary conditions. The perturbative behavior of the energy density left angle E(t) right angle is used to define a running coupling at a scale given by the linear size of the finite volume box. We compute the non-perturbative running of the pure gauge SU(2) coupling constant and conclude that the technique is well suited for further applications due to the relatively mild cutoff effects of the step scaling function and the high numerical precision that can be achieved in lattice simulations. We also comment on the inclusion of matter fields.

  8. Dynamic testing and analysis of extension-twist-coupled composite tubular spars

    Science.gov (United States)

    Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.

  9. Dynamic testing and analysis of extension-twist-coupled composite tubular spars

    Science.gov (United States)

    Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.

    1992-01-01

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.

  10. Experimental conditions and monitoring items of the prototype repository project (PRP). Research document

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Ito, Akira; Kawakami, Susumu

    2003-03-01

    Various experiments are ongoing in the underground research facility 'the Hard Rock Laboratory (HRL)' of SKB in Sweden for the geological disposal of the high-level radioactive waste. International joint project Prototype Repository Project (PRP) is one of the experiments in the HRL which has some engineered barrier systems and to study the coupled behavior happening in and around the engineered barrier system. JNC has joined this international joint project PRP to obtain the information of the coupled behavior on such systematic engineered barrier system and to apply the JNC's coupled THMC analytical code to the prediction and back analysis of the PRP. The analytical code will be verified through these analyses in this project. JNC can apply the verified analytical code to assess the coupled behavior in Japan. This report summarizes the experimental conditions and monitoring items of the PRP. (author)

  11. Renormalization group coupling flow of SU(3) gauge theory

    OpenAIRE

    QCDTARO Collaboration

    1998-01-01

    We present our new results on the renormalization group coupling flow obtained i n 3 dimensional coupling space $(\\beta_{11},\\beta_{12},\\beta_{twist})$. The value of $\\beta_{twist}$ turns out to be small and the coupling flow projected on $(\\beta_{11},\\beta_{12})$ plane is very similar with the previous result obtained in the 2 dimensional coupling space.

  12. THE ROLE OF PROTOTYPING AND SIMULATION IN THE DEVELOPMENT PROCESS OF AN ELASTIC COUPLING WITH FLEXIBLE MEMBRANES

    Directory of Open Access Journals (Sweden)

    DOBRE Daniel

    2015-06-01

    Full Text Available In the conditions of a competitive market, the use of 3D modelling, visualisation and simulation tools enable the entire coupling to be designed and developed in the pre-manufacturing phase. Several advantages of introducing virtual prototyping are offered. The goal for the coupling prototype is to answer questions about performance and reliability in order to identify necessary engineering changes for the final coupling variant. Facilitating the virtual reality communication capability, different variations of the geometry and other characteristics can be studied and discussed in a more efficient mode. Virtual features of the coupling structure are described and analysed for the efficient realization of coupling project. At the end, the paper presents design simulations to prove the behaviour and functionality of the coupling for different operational scenarios: mechanical stress, buckling stability and modal analysis.

  13. Investigation of the effect of bending twisting coupling on the loads in wind turbines with superelement blade definition

    International Nuclear Information System (INIS)

    Gözcü, M O; Kayran, A

    2014-01-01

    Bending-twisting coupling in the composite blades is exploited for load alleviation in the whole turbine system. For the purpose of the study, inverse design of a reference blade is performed such that sectional beam properties of the 3D blade design approximately match the sectional beam properties of NREL's 5MW turbine blade. In order to appropriately account for the bending-twisting coupling effect, dynamic superelement of the blade is created and introduced into the multi-body dynamic model of the wind turbine system. Initially, a comparative study is conducted on the performance of wind turbines which have blades defined as superelements and geometrically nonlinear beams, and conclusions are inferred with regard to the appropriateness of the use of superelement blade definition in the transient analysis of the 5MW wind turbine system that is set up in the present study. Multi-body dynamic simulations of the wind turbine system are performed for the power production load case with the constant wind and the normal turbulence model as external wind loadings. For the internal loads, fatigue damage equivalent load is used as the metric to assess the effect of bending-twisting coupling on the load alleviation in the whole wind turbine system. Results show that in the overall, through the bending-twisting coupling induced with the use of off-axis plies in the main spar caps of the blade, damage equivalent loads associated with the critical load components can be reduced in the wind turbine system

  14. Investigation of structural behaviour due to bend-twist couplings in wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimiroy; Berggreen, Christian

    2009-01-01

    The structural behaviour of a composite wind turbine blade with implemented bend-twist coupling is examined in this paper. Several shell finite element models of the blade have been developed and validated against full-scale tests. All shell models performed well for flap-wise bending......, but performed poorly in torsion, when employing material off-sets....

  15. Properties of the twisted Polyakov loop coupling and the infrared fixed point in the SU(3) gauge theories

    Science.gov (United States)

    Itou, Etsuko

    2013-08-01

    We report the nonperturbative behavior of the twisted Polyakov loop (TPL) coupling constant for the SU(3) gauge theories defined by the ratio of Polyakov loop correlators in finite volume with twisted boundary condition. We reveal the vacuum structures and the phase structure for the lattice gauge theory with the twisted boundary condition. Carrying out the numerical simulations, we determine the nonperturbative running coupling constant in this renormalization scheme for the quenched QCD and N_f=12 SU(3) gauge theories. First, we study the quenched QCD theory using the plaquette gauge action. The TPL coupling constant has a fake fixed point in the confinement phase. We discuss this fake fixed point of the TPL scheme and obtain the nonperturbative running coupling constant in the deconfinement phase, where the magnitude of the Polyakov loop shows the nonzero values. We also investigate the system coupled to fundamental fermions. Since we use the naive staggered fermion with the twisted boundary condition in our simulation, only multiples of 12 are allowed for the number of flavors. According to the perturbative two-loop analysis, the N_f=12 SU(3) gauge theory might have a conformal fixed point in the infrared region. However, recent lattice studies show controversial results for the existence of the fixed point. We point out possible problems in previous work, and present our careful study. Finally, we find the infrared fixed point (IRFP) and discuss the robustness of the nontrivial IRFP of a many-flavor system under the change of the analysis method. Some preliminary results were reported in the proceedings [E. Bilgici et al., PoS(Lattice 2009), 063 (2009); Itou et al., PoS(Lattice 2010), 054 (2010)] and the letter paper [T. Aoyama et al., arXiv:1109.5806 [hep-lat

  16. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and

  17. Structures of Highly Twisted Amides Relevant to Amide N-C Cross-Coupling: Evidence for Ground-State Amide Destabilization.

    Science.gov (United States)

    Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-10-04

    Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Twisted injectivity in projected entangled pair states and the classification of quantum phases

    Energy Technology Data Exchange (ETDEWEB)

    Buerschaper, Oliver, E-mail: obuerschaper@perimeterinstitute.ca

    2014-12-15

    We introduce a class of projected entangled pair states (PEPS) which is based on a group symmetry twisted by a 3-cocycle of the group. This twisted symmetry is expressed as a matrix product operator (MPO) with bond dimension greater than 1 and acts on the virtual boundary of a PEPS tensor. We show that it gives rise to a new standard form for PEPS from which we construct a family of local Hamiltonians which are gapped, frustration-free and include fixed points of the renormalization group flow. Based on this insight, we advance the classification of 2D gapped quantum spin systems by showing how this new standard form for PEPS determines the emergent topological order of these local Hamiltonians. Specifically, we identify their universality class as DIJKGRAAF–WITTEN topological quantum field theory (TQFT). - Highlights: • We introduce a new standard form for projected entangled pair states via a twisted group symmetry which is given by nontrivial matrix product operators. • We construct a large family of gapped, frustration-free Hamiltonians in two dimensions from this new standard form. • We rigorously show how this new standard form for low energy states determines the emergent topological order.

  19. DOE Project 353: TAMS Prototype and production coupling alignment units

    Energy Technology Data Exchange (ETDEWEB)

    Field, K.V.

    1996-02-01

    TAMS is an electronic measurement system used to determine the alignment of turbine-generator shafts at the coupling interface. The displacement transducer is a strain gage based sensor mounted in a portable probe. The measurement system was experiencing zero input drift and temperature induced drift. This project endeavored to determine the source of these problems and to revise a unit to be returned to a customer, Baltimore Gas and Electric (BGE), within a period of five weeks.

  20. Twisted network programming essentials

    CERN Document Server

    Fettig, Abe

    2005-01-01

    Twisted Network Programming Essentials from O'Reilly is a task-oriented look at this new open source, Python-based technology. The book begins with recommendations for various plug-ins and add-ons to enhance the basic package as installed. It then details Twisted's collection simple network protocols, and helper utilities. The book also includes projects that let you try out the Twisted framework for yourself. For example, you'll find examples of using Twisted to build web services applications using the REST architecture, using XML-RPC, and using SOAP. Written for developers who want to s

  1. Prototypical Consolidation Demonstration Project: Final report

    International Nuclear Information System (INIS)

    Gili, J.A.; Poston, V.K.

    1993-11-01

    This is the final report of the Prototypical Consolidation Demonstration Project, which was funded by the US Department of Energy's Office of Civilian Radioactive Waste Management. The project had two objectives: (a) to develop and demonstrate a prototype of production-scale equipment for the dry, horizontal consolidation and packaging of spent nuclear fuel rods from commercial boiling water reactor and pressurized water reactor fuel assemblies, and (b) to report the development and demonstration results to the US Department of Energy, Idaho Operations Office. This report summarizes the activities and conclusions of the project management contractor, EG ampersand G Idaho, Inc., and the fabrication and testing contractor, NUS Corporation (NUS). The report also presents EG ampersand G Idaho's assessments of the equipment and procedures developed by NUS

  2. Stability of coupled tearing and twisting modes in tokamaks

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1994-03-01

    A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD behavior at only one rational surface at a time in the plasma are decoupled via sheared rotation and diamagnetic flows. At higher amplitude, more unstable open-quote compound close-quote modes develop which have nonideal behavior simultaneously at many surfaces. Such modes possess tearing parity layers at some of the nonideal surfaces, and twisting parity layers at others, but mixed parity layers are generally disallowed. At low mode number, open-quote compound close-quote modes are likely to have tearing parity layers at all of the nonideal surfaces in a very low-β plasma, but twisting parity layers become more probable as the plasma β is increased. At high mode number, unstable twisting modes which exceed a critical amplitude drive conventional magnetic island chains on alternate rational surfaces, to form an interlocking structure in which the O-points and X-points of neighboring chains line up

  3. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 1 of Volume IV, discusses: Process overview functional descriptions; Control system descriptions; Support system descriptions; Maintenance system descriptions; and Process equipment descriptions

  4. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 4 of Volume IV, discusses: Off-normal operating and recovery procedures; Emergency response procedures; Troubleshooting procedures; and Preventive maintenance procedures

  5. The Yucca Mountain Project Prototype Testing Program

    International Nuclear Information System (INIS)

    1989-10-01

    The Yucca Mountain Project is conducting a Prototype Testing Program to ensure that the Exploratory Shaft Facility (ESF) tests can be completed in the time available and to develop instruments, equipment, and procedures so the ESF tests can collect reliable and representative site characterization data. This report summarizes the prototype tests and their status and location and emphasizes prototype ESF and surface tests, which are required in the early stages of the ESF site characterization tests. 14 figs

  6. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    Science.gov (United States)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  7. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3

  8. Development of a 352 MHz Cell-Coupled Drift Tube Linac Prototype

    CERN Document Server

    Cuvet, Y; Völlinger, C; Vretenar, M; Gerigk, F

    2004-01-01

    At linac energies above 40 MeV, alternative structures to the conventional Drift Tube Linac can be used to increase efficiency and to simplify construction and alignment. In the frame of the R&D activities for the CERN SPL and Linac4, a prototype of Cell-Coupled Drift Tube Linac (CCDTL) at 352 MHz has been designed and built. This particular CCDTL concept is intended to cover the energy range from 40 to 90 MeV and consists of modules of ~5 m length made of 3-gap DTL tanks linked by coupling cells. The focusing quadrupoles are placed between tanks, and are aligned independently from the RF structure. The CCDTL prototype consists of two half tanks connected by a coupling cell and requires an RF power of 120 kW to achieve the design gradient. RF tests will be made at low and high power, the latter up to a 20% duty cycle. This paper introduces the main features of this CCDTL design and describes the RF and mechanical design of the prototype.

  9. Habitat Demonstration Unit Project: Leadership and Management Strategies for a Rapid Prototyping Project

    Science.gov (United States)

    Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project

  10. On the twisted N=2 superconformal structure in 2d gravity coupled to matter

    International Nuclear Information System (INIS)

    Panda, S.; Roy, S.

    1993-05-01

    It is shown that the two dimensional gravity, described either in the conformal gauge (Liouville theory) or in the light cone gauge, when coupled to matter processes an infinite number of twisted N=2 superconformal symmetries. The central charges of the N=2 algebra for the two gauge choices are in general different. Further, it is argued that the physical states in the light cone gauge theory can be obtained from the Liouville theory by a field redefinition. (author). 18 refs

  11. Hybrid molecular–continuum methods: From prototypes to coupling software

    KAUST Repository

    Neumann, Philipp

    2014-02-01

    In this contribution, we review software requirements in hybrid molecular-continuum simulations. For this purpose, we analyze a prototype implementation which combines two frameworks-the Molecular Dynamics framework MarDyn and the framework Peano for spatially adaptive mesh-based simulations-and point out particular challenges of a general coupling software. Based on this analysis, we discuss the software design of our recently published coupling tool. We explain details on its overall structure and show how the challenges that arise in respective couplings are resolved by the software. © 2013 Elsevier Ltd. All rights reserved.

  12. Yucca Mountain project prototype testing

    International Nuclear Information System (INIS)

    Hughes, W.T.; Girdley, W.A.

    1990-01-01

    The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs

  13. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: II. Significant reduction of strand movement and strand damage in short twist pitch CICCs

    International Nuclear Information System (INIS)

    Sanabria, Carlos; Lee, Peter J; Starch, William; Larbalestier, David C; Devred, Arnaud

    2015-01-01

    Prototype cable-in-conduit-conductors (CICCs) destined for use in the toroidal field and central solenoid coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3%–7% void fraction increase on the low pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb 3 Sn filament fractures observed in the longer twist pitch conductors. We report here a detailed strand-to-cable analysis of short and longer ‘baseline’ twist pitch CICCs. It was found that the use of internal tin (IT) strands in the longer ‘baseline’ twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of bronze process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the IT strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Conversely, the short twist pitch CICC made from bronze process strands preserved diffusion barrier integrity. (paper)

  14. Four-point functions with a twist

    Energy Technology Data Exchange (ETDEWEB)

    Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2017-01-15

    We study the OPE of correlation functions of local operators in planar N=4 super Yang-Mills theory. The considered operators have an explicit spacetime dependence that is defined by twisting the translation generators with certain R-symmetry generators. We restrict to operators that carry a small number of excitations above the twisted BMN vacuum. The OPE limit of the four-point correlator is dominated by internal states with few magnons on top of the vacuum. The twisting directly couples all spacetime dependence of the correlator to these magnons. We analyze the OPE in detail, and single out the extremal states that have to cancel all double-trace contributions.

  15. Electronic and Optical Properties of Twisted Bilayer Graphene

    Science.gov (United States)

    Huang, Shengqiang

    The ability to isolate single atomic layers of van der Waals materials has led to renewed interest in the electronic and optical properties of these materials as they can be fundamentally different at the monolayer limit. Moreover, these 2D crystals can be assembled together layer by layer, with controllable sequence and orientation, to form artificial materials that exhibit new features that are not found in monolayers nor bulk. Twisted bilayer graphene is one such prototype system formed by two monolayer graphene layers placed on top of each other with a twist angle between their lattices, whose electronic band structure depends on the twist angle. This thesis presents the efforts to explore the electronic and optical properties of twisted bilayer graphene by Raman spectroscopy and scanning tunneling microscopy measurements. We first synthesize twisted bilayer graphene with various twist angles via chemical vapor deposition. Using a combination of scanning tunneling microscopy and Raman spectroscopy, the twist angles are determined. The strength of the Raman G peak is sensitive to the electronic band structure of twisted bilayer graphene and therefore we use this peak to monitor changes upon doping. Our results demonstrate the ability to modify the electronic and optical properties of twisted bilayer graphene with doping. We also fabricate twisted bilayer graphene by controllable stacking of two graphene monolayers with a dry transfer technique. For twist angles smaller than one degree, many body interactions play an important role. It requires eight electrons per moire unit cell to fill up each band instead of four electrons in the case of a larger twist angle. For twist angles smaller than 0.4 degree, a network of domain walls separating AB and BA stacking regions forms, which are predicted to host topologically protected helical states. Using scanning tunneling microscopy and spectroscopy, these states are confirmed to appear on the domain walls when inversion

  16. Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI

    Science.gov (United States)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.

    2016-07-01

    The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.

  17. Geometry of the toroidal N-helix: optimal-packing and zero-twist

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2012-01-01

    Two important geometrical properties of N-helix structures are influenced by bending. One is maximizing the volume fraction, which is called optimal-packing, and the other is having a vanishing strain-twist coupling, which is called zero-twist. Zero-twist helices rotate neither in one nor...... helix. General N-helices are discussed, as well as zero-twist helices for N > 1. The derived geometrical restrictions are gradually modified by changing the aspect ratio of the torus....

  18. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 8 discusses Control System SOT Tests Results and Analysis Report. This is a continuation of Book 7

  19. Processing mechanics of alternate twist ply (ATP) yarn technology

    Science.gov (United States)

    Elkhamy, Donia Said

    Ply yarns are important in many textile manufacturing processes and various applications. The primary process used for producing ply yarns is cabling. The speed of cabling is limited to about 35m/min. With the world's increasing demands of ply yarn supply, cabling is incompatible with today's demand activated manufacturing strategies. The Alternate Twist Ply (ATP) yarn technology is a relatively new process for producing ply yarns with improved productivity and flexibility. This technology involves self plying of twisted singles yarn to produce ply yarn. The ATP process can run more than ten times faster than cabling. To implement the ATP process to produce ply yarns there are major quality issues; uniform Twist Profile and yarn Twist Efficiency. The goal of this thesis is to improve these issues through process modeling based on understanding the physics and processing mechanics of the ATP yarn system. In our study we determine the main parameters that control the yarn twist profile. Process modeling of the yarn twist across different process zones was done. A computational model was designed to predict the process parameters required to achieve a square wave twist profile. Twist efficiency, a measure of yarn torsional stability and bulk, is determined by the ratio of ply yarn twist to singles yarn twist. Response Surface Methodology was used to develop the processing window that can reproduce ATP yarns with high twist efficiency. Equilibrium conditions of tensions and torques acting on the yarns at the self ply point were analyzed and determined the pathway for achieving higher twist efficiency. Mechanistic modeling relating equilibrium conditions to the twist efficiency was developed. A static tester was designed to zoom into the self ply zone of the ATP yarn. A computer controlled, prototypic ATP machine was constructed and confirmed the mechanistic model results. Optimum parameters achieving maximum twist efficiency were determined in this study. The

  20. Magnetization Modeling of Twisted Superconducting Filaments

    CERN Document Server

    Satiramatekul, T; Devred, Arnaud; Leroy, Daniel

    2007-01-01

    This paper presents a new Finite Element numerical method to analyze the coupling between twisted filaments in a superconducting multifilament composite wire. To avoid the large number of elements required by a 3D code, the proposed method makes use of the energy balance principle in a 2D code. The relationship between superconductor critical current density and local magnetic flux density is implemented in the program for the Bean and modified Kim models. The modeled wire is made up of six filaments twisted together and embedded in a lowresistivity matrix. Computations of magnetization cycle and of the electric field pattern have been performed for various twist pitch values in the case of a pure copper matrix. The results confirm that the maximum magnetization depends on the matrix conductivity, the superconductor critical current density, the applied field frequency, and the filament twist pitch. The simulations also lead to a practical criterion for wire design that can be used to assess whether or not th...

  1. Feasibility investigation of coupling a desalination prototype functioning by Aero-Evapo-Condensation with solar units

    International Nuclear Information System (INIS)

    Bourouni, K.; Bouden, C.; Chaibi, M.

    2003-01-01

    The rural regions of south Mediterranean countries suffer from problems of drinking water supply. However, the majority of these regions have important resources of brackish salt water. Thus, brackish water desalination on a small scale presents a potential solution to this problem. For this reason, a number of small desalination prototypes are being developed worldwide. Bourouni et al. have developed a water desalination unit functioning by the Aero-Evapo-Condensation-Process (AECP) in order to satisfy this kind of water demand. One of the advantages of this prototype is that it allows the use of low temperature energy such as geothermal and solar energies abundant in these countries. An initial experiment was carried on an AECP prototype coupled to a geothermal spring in the south of Tunisia. The results relative to the technical and economic performances of the unit have shown that this kind of coupling is promising. On the other hand, the brackish water springs in these countries are often non-geothermal. In this case, the use of solar energy can be considered. Thus, we develop, in the present article, a feasibility investigation on the coupling of the AECP prototype with solar units. In fact, we analyse, in the first part of this article, the possibilities of this coupling in a manner that the functioning mode of the solar units will be compatible with that of the AECP prototype. To attempt this objective, two kinds of solar installation scenarios are considered and modelled to obtain their energetic contribution. Hence, the elaborated models are coupled to the one developed by Bourouni et al. for the AECP prototype to determine the technical and economic performances of the whole installation. In the last part of this article, a solar unit dimensioning is performed in order to minimise the total cost of the distilled water. (author)

  2. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    International Nuclear Information System (INIS)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs

  3. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs.

  4. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports

  5. Projected coupled cluster theory.

    Science.gov (United States)

    Qiu, Yiheng; Henderson, Thomas M; Zhao, Jinmo; Scuseria, Gustavo E

    2017-08-14

    Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock theory captures the essential physics of many kinds of strong correlations via symmetry breaking and restoration. In this work, we combine and try to retain the merits of these two methods by applying symmetry projection to broken symmetry coupled cluster wave functions. The non-orthogonal nature of states resulting from the application of symmetry projection operators furnishes particle-hole excitations to all orders, thus creating an obstacle for the exact evaluation of overlaps. Here we provide a solution via a disentanglement framework theory that can be approximated rigorously and systematically. Results of projected coupled cluster theory are presented for molecules and the Hubbard model, showing that spin projection significantly improves unrestricted coupled cluster theory while restoring good quantum numbers. The energy of projected coupled cluster theory reduces to the unprojected one in the thermodynamic limit, albeit at a much slower rate than projected Hartree-Fock.

  6. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 9 discusses the following topics: Integrated System Normal Operations Test Results and Analysis Report; Integrated System Off-Normal Operations Test Results and Analysis Report; and Integrated System Maintenance Operations Test Results and Analysis Report

  7. Prototypical Rod Construction Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report

  8. Continuous Static Gait with Twisting Trunk of a Metamorphic Quadruped Robot

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2018-01-01

    Full Text Available The natural quadrupeds, such as geckos and lizards, often twist their trunks when moving. Conventional quadruped robots cannot perform the same motion due to equipping with a trunk which is a rigid body or at most consists of two blocks connected by passive joints. This paper proposes a metamorphic quadruped robot with a reconfigurable trunk which can implement active trunk motions, called MetaRobot I. The robot can imitate the natural quadrupeds to execute motion of trunk twisting. Benefiting from the twisting trunk, the stride length of this quadruped is increased comparing to that of conventional quadruped robots.In this paper a continuous static gait benefited from the twisting trunk performing the increased stride length is introduced. After that, the increased stride length relative to the trunk twisting will be analysed mathematically. Other points impacting the implementation of the increased stride length in the gait are investigated such as the upper limit of the stride length and the kinematic margin. The increased stride length in the gait will lead the increase of locomotion speed comparing with conventional quadruped robots, giving the extent that natural quadrupeds twisting their trunks when moving. The simulation and an experiment on the prototype are then carried out to illustrate the benefits on the stride length and locomotion speed brought by the twisting trunk to the quadruped robot.

  9. Twisted supersymmetry: Twisted symmetry versus renormalizability

    International Nuclear Information System (INIS)

    Dimitrijevic, Marija; Nikolic, Biljana; Radovanovic, Voja

    2011-01-01

    We discuss a deformation of superspace based on a Hermitian twist. The twist implies a *-product that is noncommutative, Hermitian and finite when expanded in a power series of the deformation parameter. The Leibniz rule for the twisted supersymmetry transformations is deformed. A minimal deformation of the Wess-Zumino action is proposed and its renormalizability properties are discussed. There is no tadpole contribution, but the two-point function diverges. We speculate that the deformed Leibniz rule, or more generally the twisted symmetry, interferes with renormalizability properties of the model. We discuss different possibilities to render a renormalizable model.

  10. Prototype road weather performance management tool : project report : draft report.

    Science.gov (United States)

    2016-09-30

    This report is the Project Report for the Road Weather Performance Management (RW-PM) Tool developed for the project on Development and Demonstration of a Prototype Road Weather Performance Management Application that Uses Connected Vehicle Data (RW-...

  11. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 4 discusses the following topics: Rod Compaction/Loading System Test Results and Analysis Report; Waste Collection System Test Results and Analysis Report; Waste Container Transfer Fixture Test Results and Analysis Report; Staging and Cutting Table Test Results and Analysis Report; and Upper Cutting System Test Results and Analysis Report

  12. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 5 discusses the following topics: Lower Cutting System Test Results and Analysis Report; NFBC Loading System Test Results and Analysis Report; Robotic Bridge Transporter Test Results and Analysis Report; RM-10A Remotec Manipulator Test Results and Analysis Report; and Manipulator Transporter Test Results and Analysis Report

  13. Electrically Controllable Magnetism in Twisted Bilayer Graphene.

    Science.gov (United States)

    Gonzalez-Arraga, Luis A; Lado, J L; Guinea, Francisco; San-Jose, Pablo

    2017-09-08

    Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.

  14. Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2.

    Science.gov (United States)

    Huang, Shengxi; Liang, Liangbo; Ling, Xi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2016-02-10

    van der Waals homo- and heterostructures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (frequency and intensity changes of low-frequency modes. The frequency variation can be up to 8 cm(-1) and the intensity can vary by a factor of ∼5 for twisting angles near 0° and 60°, where the stacking is a mixture of high-symmetry stacking patterns and is thus sensitive to twisting. For twisting angles between 20° and 40°, the interlayer coupling is nearly constant because the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Note that for some samples, multiple breathing mode peaks appear, indicating nonuniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling. This research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2 and potentially other two-dimensional materials and heterostructures.

  15. Twisting perturbed parafermions

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-07-01

    Full Text Available The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang–Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6 nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current–current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3 sigma model which is reformulated as perturbed parafermions.

  16. New look at the dynamics of twisted accretion disks

    International Nuclear Information System (INIS)

    Hatchett, S.P.; Begelman, M.C.; Sarazin, C.L.

    1981-01-01

    We reexamine the dynamic response of a thin, accretion disk to twisting torques, guided by the earlier analyses by Bardeen and Petterson. We make several corrections to this earlier work, and present a new version of the twist equations consistent with their physical assumptions. By describing the distortion of the disk in terms Cartesian direction cosines rather than the Euler angles used by the earlier authors, we are able to transform the twist equations from a pair of coupled, nonlinear, partial differential equations to a single, linear, complex one. We write down formulae for the external twisting torques likley to be encountered in astrophysic, and we show that even with these driving torques our twist equation remains linear. We find exact, analytic solutions for steady state structure of a disk subject to Lense-Thirring torques by a nonaligned central Kerr black hole and also for the time-dependent problem of the structure of a slaved disk with its oscillating boundary conditions. Finally, we discuss the stability of disks against twisting modes and show that undriven disks and disks subject to time-independent driving torques are stable

  17. Twisted light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-12-01

    Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...

  18. Vacuum fluctuations of twisted fields in the space time of cosmic strings

    International Nuclear Information System (INIS)

    Matsas, G.E.A.

    1990-01-01

    A twisted scalar field conformally coupled to gravitation is used to calculate the vacuum stress-energy tensor in the background spacetime generated by an infinite straight gauge cosmic string. The result has an absolute numerical value close to the one obtained with a non-twisted conformal scalar field but their signals are opposite. (author) [pt

  19. Twisting the N=2 string

    International Nuclear Information System (INIS)

    Ketov, S.V.; Lechtenfeld, O.; Parkes, A.J.

    1993-12-01

    The most general homogeneous monodromy conditions in N= 2 string theory are classified in terms of the conjugacy classes of the global symmetry group U(1, 1) x Z 2 . For classes which generate a discrete subgroup Γ, the corresponding target space backgrounds C 1,1 /Γ include half spaces, complex orbifolds and tori. We propose a generalization of the intercept formula to matrix-valued twists, and find massless physical states in a number of twisted cases. In particular, the sixteen Z 2 -twisted sectors of the N = 2 string are investigated, and the corresponding ground states are identified via bosonization and BRST cohomology. We find enough room for an extended multiplet of 'spacetime' supersymmetry, with the number of supersymmetries being dependent on global 'spacetime' topology. Unfortunately, world-sheet locality for the chiral vertex operators does not permit interactions for the massless 'spacetime' fermions; however possibly, an asymmetric GSO projection could evade this problem. (orig.)

  20. Topological twist in four dimensions, R-duality and hyperinstantons

    International Nuclear Information System (INIS)

    Anselmi, D.; Fre, P.

    1993-01-01

    In this paper we continue the programme of topologically twisting N=2 theories in D=4, focusing on the coupling of vector multiplets to N=2 supergravity. We show that in the minimal case, namely when the special gometry prepotential F(X) is a quadratic polynomial, the theory has a so far unknown on-shell U(1) symmetry, that we name R-duality. R-duality is a generalization of the chiral-dual on-shell symmetry of N=2 pure supergravity and of the R-symmetry of N=2 super Yang-Mills theory. Thanks to this, the theory can be topologically twisted and topologically shifted, precisely as pure N=2 supergravity, to yield a natural coupling of topological gravity to topological Yang-Mills theory. The gauge-fixing condition that emerges from the twisting is the self-duality condition on the gauge field strength and on the spin connection. Hence our theory reduces to intersection theory in the moduli-space of gauge instantons living in gravitational instanton backgrounds. We remark that, for deep properties of the parent N=2 theory, the topological Yang-Mills theory we obtain by taking the flat space limit of our gravity-coupled lagrangian is different from the Donaldson theory constructed by Witten. Whether this difference is substantial and what its geometrical implications may be is yet to be seen. We also discuss the topological twist of the hypermultiplets leading to topological quaternionic sigma-models. The instantons of these models, named by us hyperinstantons, correspond to a notion of triholomorphic mappings discussed in the paper. In all cases the new ghost number is the sum of the old ghost number plus the R-duality charge. The observables described by the theory are briefly discussed. In conclusion, the topological twist of the complete N=2 theory defines intersection theory in the moduli-space of gauge instantons plus gravitational instantons plus hyperinstantons. This is possibly a new subject for further mathematical investigation. (orig.)

  1. Twist limits for late twisting double somersaults on trampoline.

    Science.gov (United States)

    Yeadon, M R; Hiley, M J

    2017-06-14

    An angle-driven computer simulation model of aerial movement was used to determine the maximum amount of twist that could be produced in the second somersault of a double somersault on trampoline using asymmetrical movements of the arms and hips. Lower bounds were placed on the durations of arm and hip angle changes based on performances of a world trampoline champion whose inertia parameters were used in the simulations. The limiting movements were identified as the largest possible odd number of half twists for forward somersaulting takeoffs and even number of half twists for backward takeoffs. Simulations of these two limiting movements were found using simulated annealing optimisation to produce the required amounts of somersault, tilt and twist at landing after a flight time of 2.0s. Additional optimisations were then run to seek solutions with the arms less adducted during the twisting phase. It was found that 3½ twists could be produced in the second somersault of a forward piked double somersault with arms abducted 8° from full adduction during the twisting phase and that three twists could be produced in the second somersault of a backward straight double somersault with arms fully adducted to the body. These two movements are at the limits of performance for elite trampolinists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation

    Science.gov (United States)

    Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  3. Overview and status of the prototype project for Wendelstein 7-X control system

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, Joerg [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: joerg.schacht@ipp.mpg.de; Bluhm, Torsten; Herbst, Uwe; Hennig, Christine; Heinrich, Stefan; Kuehner, Georg; Koester, Erik; Laqua, Heike; Lewerentz, Marc; Marquardt, Mirco; Meyer, Christiane; Mueller, Ina; Pingel, Steffen; Sachtleben, Juergen; Spring, Anett; Werner, Andreas; Woelk, Andreas [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)

    2009-06-15

    This contribution gives an overview of the project 'Prototype W7-X control system'. The objective of this prototype project is to demonstrate the applicability of the segment orientated control system at a running fusion experiment including steady-state operation, interaction of all relevant components, real time control, data acquisition and on-line data analysis. Furthermore, the W7-X safety concept will be implemented at WEGA and tested.

  4. A method to estimate the necessary twist pitch in multi-filamentary superconductors

    International Nuclear Information System (INIS)

    Lindau, S; Magnusson, N; Taxt, H

    2014-01-01

    Twisting of multi-filamentary superconductors is an important step in the development of wires with AC losses at an acceptable level for AC applications. The necessary twist pitch depends on wire architecture, critical current density, matrix material, and external factors such as temperature, frequency and applied magnetic field. The development of an AC optimized MgB 2 superconductor would be facilitated by a fast method to set the requirements for the twist pitch. A problem often encountered when comparing wires with different twist pitches is the degradation in critical current occurring at small twist pitches due to mechanical deformation. In this work we propose to use a non-twisted conductor to estimate the influence of twisting on the AC losses. A long superconductor is cut into smaller lengths, each simulating one third of the twist pitch, and the AC losses due to applied magnetic fields are compared between samples of different lengths. With this method, the effect of reducing the size of the loop of the coupling currents is studied without changing the superconducting parameters. AC loss measurement results are presented for a round titanium matrix MgB 2 wire with simulated twist pitches between 9 mm and 87 mm.

  5. Waveguides with asymptotically diverging twisting

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David

    2015-01-01

    Roč. 46, AUG (2015), s. 7-10 ISSN 0893-9659 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguide * exploding twisting * Quasi-bounded * Quasi-cylindrical * discrete spectrum Subject RIV: BE - Theoretical Physics Impact factor: 1.659, year: 2015

  6. Advanced prototyping tools for project- and problem-based learning

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Bech, Michael Møller; Holm, Allan J.

    2002-01-01

    A new approach in prototyping for project- and problem-based learning is achieved by using the new Total Development Environment concept introduced by dSPACE that allows a full visual block-oriented programming of dynamic real-time systems to be achieved  using the Matlab/Simulink environment...

  7. Second LaBr3 Compton Telescope Prototype

    International Nuclear Information System (INIS)

    Llosa, Gabriela; Cabello, Jorge; Gillam, John-E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Solaz, Carles; Solevi, Paola; Stankova, Vera; Torres-Espallardo, Irene; Trovato, Marco

    2013-06-01

    A Compton telescope for dose delivery monitoring in hadron therapy is under development at IFIC Valencia within the European project ENVISION. The telescope will consist of three detector planes, each one composed of a LaBr 3 continuous scintillator crystal coupled to four silicon photomultiplier (SiPM) arrays. After the development of a first prototype which served to assess the principle, a second prototype with larger crystals has been assembled and is being tested. The current version of the prototype consists of two detector layers, each one composed of a 32.5 x 35 mm 2 crystal coupled to four SiPM arrays. The VATA64HDR16 ASIC has been employed as front-end electronics. The readout system consists of a custom made data acquisition board. Tests with point-like sources have been carried out in the laboratory, assessing the correct functioning of the device. The system optimization is ongoing. (authors)

  8. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    Science.gov (United States)

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  9. A New Twisting Somersault: 513XD

    Science.gov (United States)

    Tong, William; Dullin, Holger R.

    2017-12-01

    We present the mathematical framework of an athlete modelled as a system of coupled rigid bodies to simulate platform and springboard diving. Euler's equations of motion are generalised to non-rigid bodies and are then used to innovate a new dive sequence that in principle can be performed by real-world athletes. We begin by assuming that shape changes are instantaneous so that the equations of motion simplify enough to be solved analytically, and then use this insight to present a new dive (513XD) consisting of 1.5 somersaults and five twists using realistic shape changes. Finally, we demonstrate the phenomenon of converting pure somersaulting motion into pure twisting motion by using a sequence of impulsive shape changes, which may have applications in other fields such as space aeronautics.

  10. Twisting dependent properties of twisted carbon nanotube fibers: microstructure and strain transfer factors

    International Nuclear Information System (INIS)

    Zhou, Jinyuan; Xie, Erqing; Sun, Gengzhi; Zhan, Zhaoyao; Zheng, Lianxi

    2014-01-01

    The dependences of twisting parameters on the electric and mechanical properties of twisted CNT fibers were systematically studied. Results from electric and mechanical measurements showed that twisting intensity is very effective to improve the electric and mechanical properties of CNT fibers. Further calculations combined with Raman results indicate that the twisting treatments, to a certain extent, can greatly enhance the strain transfer factors of the samples, which dominates the mechanical properties of CNT fibers. In addition, studies on the effect of twisting speeds suggested that lower twisting speed can lead to higher uniformity but lower performances in the electric and mechanical properties, higher twisting speed to higher Young’s modulus and higher conductance but lower uniformities. Ultra-strong uniform CNT fibers need to be prepared with a suitable twisting speed. (paper)

  11. Stability of short wavelength tearing and twisting modes

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.

    1998-01-01

    The stability and mutual interaction of tearing and twisting modes in a torus is governed by matrices that generalize the well-known Δ' stability index. The diagonal elements of these matrices determine the intrinsic stability of modes that reconnect the magnetic field at a single resonant surface. The off-diagonal elements indicate the strength of the coupling between the different modes. The author shows how the elements of these matrices can be evaluated, in the limit of short wavelength, from the free energy driving radially extended ballooning modes. The author applies the results by calculating the tearing and twisting Δ' for a model high-beta equilibrium with circular flux surfaces

  12. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    Science.gov (United States)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority

  13. Hardy Inequalities in Globally Twisted Waveguides

    Czech Academy of Sciences Publication Activity Database

    Briet, Ph.; Hammedi, H.; Krejčiřík, David

    2015-01-01

    Roč. 105, č. 7 (2015), s. 939-958 ISSN 0377-9017 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguides * twisted tubes * Dirichlet Laplacian * Hardy inequality Subject RIV: BE - Theoretical Physics Impact factor: 1.517, year: 2015

  14. Unikabeton Prototype

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2011-01-01

    The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project was elabor......The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project...... of Architecture was to develop a series of optimisation experiments, concluding in the design and optimisation of a full scale prototype concrete structure....

  15. Analysis of quench in the NHMFL REBCO prototype coils for the 32 T Magnet Project

    International Nuclear Information System (INIS)

    Breschi, M; Cavallucci, L; Ribani, P L; Gavrilin, A V; Weijers, H W

    2016-01-01

    A 32 T all-superconductive magnet with high field REBCO inner coils is under development at the National High Magnetic Field Laboratory, Tallahassee, Florida, USA. As part of the development activity, two prototype coils with full scale radial dimensions and final design features, but with reduced axial length were constructed. The prototype coils consist of six dry-wound double pancakes modules with uninsulated conductor and insulated stainless steel cowind. Quench studies on one of the prototype coils at 4.2 K in self-field and in a background magnetic field of 15 T were performed by activating a set of quench protection heaters. In this paper, we present a numerical analysis of the experimental results of the quench tests of one of the prototype coils. The numerical analysis was carried out through a coupled electro-thermal FEM model developed at the University of Bologna. The model is based on the coupling with distributed contact resistances of the coil pancakes described as 2D elements. A homogenization procedure of the REBCO tape and other coil materials is presented, which allows reducing the number of degrees of freedom and the computational effort. The model is applied to the analysis of the current and voltage evolutions during the experimental quench tests on the prototype coil. (paper)

  16. The prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates chloramphenicol uptake into bacterial cells

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Aduri, Nanda G; Sharma, Neha

    2018-01-01

    . However, to date no report exists on any specific transport protein that facilitates Cam uptake. The proton-coupled oligopeptide transporter (POT) YdgR from Escherichia coli is a prototypical member of the POT family, functioning in proton-coupled uptake of di- and tripeptides. By following bacterial...

  17. Rethink! prototyping transdisciplinary concepts of prototyping

    CERN Document Server

    Nagy, Emilia; Stark, Rainer

    2016-01-01

    In this book, the authors describe the findings derived from interaction and cooperation between scientific actors employing diverse practices. They reflect on distinct prototyping concepts and examine the transformation of development culture in their fusion to hybrid approaches and solutions. The products of tomorrow are going to be multifunctional, interactive systems – and already are to some degree today. Collaboration across multiple disciplines is the only way to grasp their complexity in design concepts. This underscores the importance of reconsidering the prototyping process for the development of these systems, particularly in transdisciplinary research teams. “Rethinking Prototyping – new hybrid concepts for prototyping” was a transdisciplinary project that took up this challenge. The aim of this programmatic rethinking was to come up with a general concept of prototyping by combining innovative prototyping concepts, which had been researched and developed in three sub-projects: “Hybrid P...

  18. An aeroelastic analysis of helicopter rotor blades incorporating piezoelectric fiber composite twist actuation

    Science.gov (United States)

    Wilkie, W. Keats; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  19. NMSBA - Twist Resist - Rotational Exercise Module

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Aaron [Twist Resist, Albuquerque, NM (United States); Reece, Blake D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berger, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guido, Steven Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Linker, Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-01

    This report contains a summary of the work completed to develop a modular, rotational exercise device. In the report are images, diagrams, and explanations of the efforts contributed to the project since its inception. The purpose of this document is to provide a walk-through of the progress on this project, from the initial design concepts to the final design and work done, so that the customer (Twist Resist), or individuals/firms who work on this project in the future will have a springboard of ideas/concepts to work from.

  20. Performance of NCAP projection displays

    Science.gov (United States)

    Jones, Philip J.; Tomita, Akira; Wartenberg, Mark

    1991-08-01

    Prototypes of projection displays based on dispersions of liquid crystal in polymer matrices are beginning to appear. The principle of operation depends on electrically switchable light scattering. They are potentially much brighter than current cathode ray tube (CRT) or twisted nematic liquid crystal (TN LC) cell based displays. Comparisons of efficacy and efficiency show this. The contrast and brightness of such displays depend on a combination of the f- number of the projection system and the scattering characteristics of the light valve. Simplified equations can be derived to show these effects. The degree of scattering of current NCAP formulations is sufficient to produce good contrast projection displays, at convenient voltages, that are around three times brighter than TN LC projectors because of the lack of polarizers in the former.

  1. Prototypical consolidation demonstration project - Final fuel recommendation report

    International Nuclear Information System (INIS)

    Piscitella, R.R.; Paskey, W.R.

    1987-01-01

    The Prototypical Consolidation Demonstration (PCD) Project will, in its final phase, conduct a demonstration of the equipment's ability to consolidate actual spent commercial fuel. Since budget and schedule limitations do not allow this demonstration to include all types of fuel assemblies, a selection process was utilized to identify the fuel types that would represent predominate fuel inventories and that would demonstrate the equipment's abilities. The Pressurized Water Reactor (PWR) fuel assemblies that were suggested for use in the PCD Project Hot Demonstration were Babcock and Wilcox (B and W) 15 x 15's, and Westinghouse (WE) 15 x 15's. The Boiling Water Reactor (BWR) fuel suggested was the General Electric (GE) 8 x 8

  2. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.

    Science.gov (United States)

    Do, Thanh Nho; Visell, Yon

    2017-05-11

    Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.

  3. Collaborative Simulation and Testing of the Superconducting Dipole Prototype Magnet for the FAIR Project

    International Nuclear Information System (INIS)

    Zhu Yinfeng; Zhu Zhe; Wu Weiyue; Xu Houchang

    2012-01-01

    The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios. (fusion engineering)

  4. Window prototypes during the project

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1996-01-01

    The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described.......The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described....

  5. Phase structure of thermal lattice QCD with N{sub f} = 2 twisted mass Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lombardo, M. P. [INFN, Laboratori Nazionali di Frascati (Italy); Mueller-Preussker, M.; Petschlies, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Philipsen, O.; Zeidlewicz, L. [Inst. fuer Theoretische Physik, Wilhelms-Univ. Muenster (Germany)

    2009-09-15

    We present numerical results for the phase diagram of lattice QCD at finite temperature in the formulation with twisted mass Wilson fermions and a tree-level Symanzik-improved gauge action. Our simulations are performed on lattices with temporal extent N{sub {tau}}=8, and lattice coupling {beta} ranging from strong coupling to the scaling domain. Covering a wide range in the space spanned by the lattice coupling {beta} and the hopping and twisted mass parameters {kappa} and {mu}, respectively, we obtain a comprehensive picture of the rich phase structure of the lattice theory. In particular, we verify the existence of an Aoki phase in the strong coupling region and the realisation of the Sharpe-Singleton scenario at intermediate couplings. In the weak coupling region we identify the phase boundary for the physical finite temperature phase transition/crossover. Its shape in the three-dimensional parameter space is consistent with Creutz's conjecture of a cone-shaped thermal transition surface. (orig.)

  6. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    Energy Technology Data Exchange (ETDEWEB)

    Barada, Daisuke [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya 321-8585 (Japan); Juman, Guzhaliayi; Yoshida, Itsuki [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Miyamoto, Katsuhiko; Omatsu, Takashige, E-mail: omatsu@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Molecular Chirality Research Center, Chiba University, Chiba 263-8522 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Ohno, Seigo [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  7. Electric currents induced by twisted light in Quantum Rings.

    Science.gov (United States)

    Quinteiro, G F; Berakdar, J

    2009-10-26

    We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

  8. The topological B model as a twisted spinning particle

    International Nuclear Information System (INIS)

    Marcus, Neil; Yankielowicz, Shimon

    1994-01-01

    The B-twisted topological sigma model coupled to topological gravity is supposed to be described by an ordinary field theory: a type of holomorphic Chern-Simons theory for the open string, and the Kodaira-Spencer theory for the closed string. We show that the B model can be represented as a particle theory, obtained by reducing the sigma model to one dimension, and replacing the coupling to topological gravity by a coupling to a twisted one-dimensional supergravity. The particle can be defined on any Kaehler manifold - it does not require the Calabi-Yau condition - so it may provide a more generalized setting for the B model than the topological sigma model.The one-loop partition function of the particle can be written in terms of the Ray-Singer torsion of the manifold, and agrees with that of the original B model. After showing how to deform the Kaehler and complex structures in the particle, we prove the independence of this partition function on the Kaehler structure, and investigate the origin of the holomorphic anomaly. To define other amplitudes, one needs to introduce interactions into the particle. The particle will then define a field theory, which may or may not be the Chern-Simons or Kodaira-Spencer theories. ((orig.))

  9. Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields

    International Nuclear Information System (INIS)

    Nakagawa, Hidenori; Ohuchi, Mikio

    2017-01-01

    We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo. - Highlights: • The principal aim of this research is to contribute to the utilization of the twisted fields for the most effective blood-flow in vivo. • Two newly designed coil systems were used for producing a desirably twisted magnetic field under the measuring domain in the flow channel. • Further, we investigated the magnetohydrodynamic efficiencies of a prototype of a magnetic device, which was converted from use as a commercial alternating magnetic therapy apparatus. • The system was well-constructed with a successful application of a plural exposure coil; therefore, we were able to detect a maximum of induced electromotive force in a fluid of an artificial solution as a substitute for blood. • This new finding demonstrates that the process of blood massotherapy by magnetic stimuli is a therapy for many diseases.

  10. Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Hidenori, E-mail: hnakagawa-tdt@umin.ac.jp; Ohuchi, Mikio

    2017-06-01

    We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo. - Highlights: • The principal aim of this research is to contribute to the utilization of the twisted fields for the most effective blood-flow in vivo. • Two newly designed coil systems were used for producing a desirably twisted magnetic field under the measuring domain in the flow channel. • Further, we investigated the magnetohydrodynamic efficiencies of a prototype of a magnetic device, which was converted from use as a commercial alternating magnetic therapy apparatus. • The system was well-constructed with a successful application of a plural exposure coil; therefore, we were able to detect a maximum of induced electromotive force in a fluid of an artificial solution as a substitute for blood. • This new finding demonstrates that the process of blood massotherapy by magnetic stimuli is a therapy for many diseases.

  11. Wrinkles, loops, and topological defects in twisted ribbons

    Science.gov (United States)

    Chopin, Julien

    Nature abounds with elastic ribbon like shapes including double-stranded semiflexible polymers, graphene and metal oxide nanoribbons which are examples of elongated elastic structures with a strongly anisotropic cross-section. Due to this specific geometry, it is far from trivial to anticipate if a ribbon should be considered as a flat flexible filament or a narrow thin plate. We thus perform an experiment in which a thin elastic ribbon is loaded using a twisting and traction device coupled with a micro X-ray computed tomography machine allowing a full 3D shape reconstruction. A wealth of morphological behaviors can be observed including wrinkled helicoids, curled and looped configurations, and faceted ribbons. In this talk, I will show that most morphologies can be understood using a far-from-threshold approach and simple scaling arguments. Further, we find that the various shapes can be organized in a phase diagram using the twist, the tension, and the geometry of the ribbon as control parameters. Finally, I will discuss the spontaneous formation of topological defects with negatively-signed Gaussian charge at large twist and small but finite stretch.

  12. Project Management Yinyang: Coupling project success and client satisfaction

    Directory of Open Access Journals (Sweden)

    Greg Stewart Usher

    2017-06-01

    Full Text Available Our research applies paradox theory to a project management construct to help project management researchers and practitioners understand the tensions that can exist between project success and client satisfaction. Our research highlights that although project success and client satisfaction are both present within a project management construct, they also belong to different functional systems. Project success and client satisfaction have different systemic-discourses and use different language games to convey information. These distinctions can create latent and sometimes salient tensions within the project management construct that project managers must understand, embrace, and work with. We have used a Grounded Theory (GT methodology to explore the lived experience of project managers, and from this have identified a phenomenon which we have termed project management yinyang. Project management yinyang is the state that exists when both project success and Client satisfaction are tightly coupled within the project management construct. Project management yinyang highlights that these two phenomena cannot be viewed as separate elements because the ‘seed’ of each exists within the other. And to truly achieve one, you must also achieve the other. Our findings indicate that in order to create project management yinyang the project manager must embrace a paradoxical yet holistic philosophy. They must understand the complementarity, interdependency, and structural coupling that exists between the positivist and interpretivist paradigms within the project management construct. They must understand how satisfaction (Yin and success (Yang are created through focus. Furthermore, they must understand how project management yinyang is separate from, but borne from, the convergence of the other two elements.

  13. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  14. Twisted classical Poincare algebras

    International Nuclear Information System (INIS)

    Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.

    1993-11-01

    We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

  15. How the embryonic brain tube twists

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Forsch, Nickolas; Taber, Larry

    2014-03-01

    During early development, the tubular brain of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This deformation is one of the major organ-level symmetry-breaking events in development. Available evidence suggests that bending is caused by differential growth, but the mechanism for torsion remains poorly understood. Since the heart almost always loops in the same direction that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is virtually nonexistent, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. In addition, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model is used to interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''.

  16. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  17. Virtual environment and computer-aided technologies used for system prototyping and requirements development

    Science.gov (United States)

    Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk

    1993-01-01

    The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.

  18. `Twisted' electrons

    Science.gov (United States)

    Larocque, Hugo; Kaminer, Ido; Grillo, Vincenzo; Leuchs, Gerd; Padgett, Miles J.; Boyd, Robert W.; Segev, Mordechai; Karimi, Ebrahim

    2018-04-01

    Electrons have played a significant role in the development of many fields of physics during the last century. The interest surrounding them mostly involved their wave-like features prescribed by the quantum theory. In particular, these features correctly predict the behaviour of electrons in various physical systems including atoms, molecules, solid-state materials, and even in free space. Ten years ago, new breakthroughs were made, arising from the new ability to bestow orbital angular momentum (OAM) to the wave function of electrons. This quantity, in conjunction with the electron's charge, results in an additional magnetic property. Owing to these features, OAM-carrying, or twisted, electrons can effectively interact with magnetic fields in unprecedented ways and have motivated materials scientists to find new methods for generating twisted electrons and measuring their OAM content. Here, we provide an overview of such techniques along with an introduction to the exciting dynamics of twisted electrons.

  19. Architectures of prototypes and architectural prototyping

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Christensen, Michael; Sandvad, Elmer

    1998-01-01

    together as a team, but developed a prototype that more than fulfilled the expectations of the shipping company. The prototype should: - complete the first major phase within 10 weeks, - be highly vertical illustrating future work practice, - continuously live up to new requirements from prototyping......This paper reports from experience obtained through development of a prototype of a global customer service system in a project involving a large shipping company and a university research group. The research group had no previous knowledge of the complex business of shipping and had never worked...... sessions with users, - evolve over a long period of time to contain more functionality - allow for 6-7 developers working intensively in parallel. Explicit focus on the software architecture and letting the architecture evolve with the prototype played a major role in resolving these conflicting...

  20. Twist-stretch profiles of DNA chains

    Science.gov (United States)

    Zoli, Marco

    2017-06-01

    Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule’s free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.

  1. Spectral estimates for Dirichlet Laplacians on perturbed twisted tubes

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Barseghyan, Diana

    2014-01-01

    Roč. 8, č. 1 (2014), s. 167-183 ISSN 1846-3886 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Drichlet Laplacian * twisted tube * discrete spectrum * eigenvalue estimates Subject RIV: BE - Theoretical Physics Impact factor: 0.583, year: 2014

  2. Noncommutative geometry and twisted conformal symmetry

    International Nuclear Information System (INIS)

    Matlock, Peter

    2005-01-01

    The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra

  3. On the twist-2 and twist-3 contributions to the spin-dependent electroweak structure functions

    International Nuclear Information System (INIS)

    Bluemlein, J.; Kochelev, N.

    1997-01-01

    The twist-2 and twist-3 contributions of the polarized deep-inelastic structure functions are calculated both for neutral and charged current interactions using the operator product expansion in lowest order in QCD. The relations between the different structure functions are determined. New integral relations are derived between the twist-2 contributions of the structure functions g 3 (x,Q 2 ) and g 5 (x,Q 2 ) and between combinations of the twist-3 contributions to the structure functions g 2 (x,Q 2 ) and g 3 (x,Q 2 ). The sum rules for polarized deep-inelastic scattering are discussed in detail. (orig.)

  4. Twisted rudder for reducing fuel-oil consumption

    Directory of Open Access Journals (Sweden)

    Jung-Hun Kim

    2014-09-01

    Full Text Available Three twisted rudders fit for large container ships have been developed; 1 the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2 the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3 the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed.

  5. Prototype of a Standards-Based EHR and Genetic Test Reporting Tool Coupled with HL7-Compliant Infobuttons

    Science.gov (United States)

    Crump, Jacob K.; Del Fiol, Guilherme; Williams, Marc S.; Freimuth, Robert R.

    2018-01-01

    Integration of genetic information is becoming increasingly important in clinical practice. However, genetic information is often ambiguous and difficult to understand, and clinicians have reported low-self-efficacy in integrating genetics into their care routine. The Health Level Seven (HL7) Infobutton standard helps to integrate online knowledge resources within Electronic Health Records (EHRs) and is required for EHR certification in the US. We implemented a prototype of a standards-based genetic reporting application coupled with infobuttons leveraging the Infobutton and Fast Healthcare Interoperability Resources (FHIR) Standards. Infobutton capabilities were provided by Open Infobutton, an open source package compliant with the HL7 Infobutton Standard. The resulting prototype demonstrates how standards-based reporting of genetic results, coupled with curated knowledge resources, can provide dynamic access to clinical knowledge on demand at the point of care. The proposed functionality can be enabled within any EHR system that has been certified through the US Meaningful Use program.

  6. Duality in twisted N=4 supersymmetric gauge theories in four dimensions

    CERN Document Server

    Labastida, J.M.F.; Lozano, Carlos

    1999-01-01

    We consider a twisted version of the four-dimensional N=4 supersymmetric Yang-Mills theory with gauge groups SU(2) and SO(3), and bare masses for two of its chiral multiplets, thereby breaking N=4 down to N=2. Using the wall-crossing technique introduced by Moore and Witten within the u-plane approach to twisted topological field theories, we compute the partition function and all the topological correlation functions for the case of simply-connected spin four-manifolds of simple type. By including 't Hooft fluxes, we analyse the properties of the resulting formulae under duality transformations. The partition function transforms in the same way as the one first presented by Vafa and Witten for another twist of the N=4 supersymmetric theory in their strong coupling test of S-duality. Both partition functions coincide on K3. The topological correlation functions turn out to transform covariantly under duality, following a simple pattern which seems to be inherent in a general type of topological quantum field ...

  7. Linear analysis of coupled lattices

    Directory of Open Access Journals (Sweden)

    D. Sagan

    1999-07-01

    Full Text Available A formalism for describing the coupled two-dimensional motion of high energy particle beams in a storage ring is developed and extended to circumstances where the coupling is very strong, such as for the Möbius twist accelerator.

  8. Examination of higher-order twist contributions in parity-violating deep-inelastic electron-deuteron scattering

    International Nuclear Information System (INIS)

    Mantry, Sonny; Ramsey-Musolf, Michael J.; Sacco, Gian Franco

    2010-01-01

    We show that parity-violating deep-inelastic scattering (PVDIS) of longitudinally polarized electrons from deuterium can in principle be a relatively clean probe of higher twist quark-quark correlations beyond the parton model. As first observed by Bjorken and Wolfenstein, the dominant contribution to the electron polarization asymmetry, proportional to the axial vector electron coupling, receives corrections at twist four from the matrix element of a single four-quark operator. We reformulate the Bjorken-Wolfenstein argument in a matter suitable for the interpretation of experiments planned at the Thomas Jefferson National Accelerator Facility (JLab). In particular, we observe that because the contribution of the relevant twist-four operator satisfies the Callan-Gross relation, the ratio of parity-violating longitudinal and transverse cross sections, R γZ , is identical to that for purely electromagnetic scattering, R γ , up to perturbative and power-suppressed contributions. This result simplifies the interpretation of the asymmetry in terms of other possible novel hadronic and electroweak contributions. We use the results of MIT Bag Model calculations to estimate contributions of the relevant twist-four operator to the leading term in the asymmetry as a function of Bjorken x and Q 2 . We compare these estimates with possible leading twist corrections from violation of charge symmetry in the parton distribution functions.

  9. Partial twisting for scalar mesons

    International Nuclear Information System (INIS)

    Agadjanov, Dimitri; Meißner, Ulf-G.; Rusetsky, Akaki

    2014-01-01

    The possibility of imposing partially twisted boundary conditions is investigated for the scalar sector of lattice QCD. According to the commonly shared belief, the presence of quark-antiquark annihilation diagrams in the intermediate state generally hinders the use of the partial twisting. Using effective field theory techniques in a finite volume, and studying the scalar sector of QCD with total isospin I=1, we however demonstrate that partial twisting can still be performed, despite the fact that annihilation diagrams are present. The reason for this are delicate cancellations, which emerge due to the graded symmetry in partially quenched QCD with valence, sea and ghost quarks. The modified Lüscher equation in case of partial twisting is given

  10. Elastic strain and twist analysis of protein structural data and allostery of the transmembrane channel KcsA

    Science.gov (United States)

    Mitchell, Michael R.; Leibler, Stanislas

    2018-05-01

    The abundance of available static protein structural data makes the more effective analysis and interpretation of this data a valuable tool to supplement the experimental study of protein mechanics. Structural displacements can be difficult to analyze and interpret. Previously, we showed that strains provide a more natural and interpretable representation of protein deformations, revealing mechanical coupling between spatially distinct sites of allosteric proteins. Here, we demonstrate that other transformations of displacements yield additional insights. We calculate the divergence and curl of deformations of the transmembrane channel KcsA. Additionally, we introduce quantities analogous to bend, splay, and twist deformation energies of nematic liquid crystals. These transformations enable the decomposition of displacements into different modes of deformation, helping to characterize the type of deformation a protein undergoes. We apply these calculations to study the filter and gating regions of KcsA. We observe a continuous path of rotational deformations physically coupling these two regions, and, we propose, underlying the allosteric interaction between these regions. Bend, splay, and twist distinguish KcsA gate opening, filter opening, and filter-gate coupling, respectively. In general, physically meaningful representations of deformations (like strain, curl, bend, splay, and twist) can make testable predictions and yield insights into protein mechanics, augmenting experimental methods and more fully exploiting available structural data.

  11. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  12. Twisted equivariant K-theory, groupoids and proper actions

    OpenAIRE

    Cantarero, Jose

    2009-01-01

    In this paper we define twisted equivariant K-theory for actions of Lie groupoids. For a Bredon-compatible Lie groupoid, this defines a periodic cohomology theory on the category of finite CW-complexes with equivariant stable projective bundles. A classification of these bundles is shown. We also obtain a completion theorem and apply these results to proper actions of groups.

  13. Composite beam analysis linear analysis of naturally curved and twisted anisotropic beams

    Science.gov (United States)

    Borri, Marco; Ghiringhelli, Gian L.; Merlini, Teodoro

    1992-05-01

    The aim of this report is to present a consistent theory for the deformation of a naturally curved and twisted anisotropic beam. The proposed formulation naturally extends the classical Saint-Venant approach to the case of curved and twisted anisotropic beams. The mathematical model developed under the assumption of span-wise uniform cross-section, curvature and twist, can take into account any kind of elastic coupling due to the material properties and the curved geometry. The consistency of the presented math-model and its generality about the cross-sectional shape, make it a useful tool even in a preliminary design optimization context such as the aeroelastic tailoring of helicopter rotor blades. The advantage of the present procedure is that it only requires a two-dimensional discretization; thus, very detailed analyses can be performed and interlaminar stresses between laminae can be evaluated. Such analyses would be extremely time consuming if performed with standard finite element codes: that prevents their recursive use as for example when optimizing a beam design. Moreover, as a byproduct of the proposed formulation, one obtains the constitutive law of the cross-section in terms of stress resultant and moment and their conjugate strain measures. This constitutive law takes into account any kind of elastic couplings, e.g., torsion-tension, tension-shear, bending-shear, and constitutes a fundamental input in aeroelastic analyses of helicopter blades. Four simple examples are given in order to show the principal features of the method.

  14. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Science.gov (United States)

    An, Q.; Bai, Y. X.; Bi, X. J.; Cao, Z.; Chang, J. F.; Chen, G.; Chen, M. J.; Chen, S. M.; Chen, S. Z.; Chen, T. L.; Chen, X.; Chen, Y. T.; Cui, S. W.; Dai, B. Z.; Du, Q.; Danzengluobu; Feng, C. F.; Feng, S. H.; Gao, B.; Gao, S. Q.; Ge, M. M.; Gu, M. H.; Hao, X. J.; He, H. H.; Hou, C.; Hu, H. B.; Hu, X. B.; Huang, J.; Huang, W. P.; Jia, H. Y.; Jiang, K.; Liu, J.; Liu, J. L.; Liu, J. S.; Liu, S. B.; Liu, Y.; Liu, Y. N.; Li, Q. J.; Li, C.; Li, F.; Li, H. C.; Li, X. R.; Lu, H.; Lv, H. K.; Mao, Y. J.; Ma, L. L.; Ma, X. H.; Shao, J.; Shao, M.; Sheng, X. D.; Sun, G. X.; Sun, Z. B.; Tang, Z. B.; Wu, C. Y.; Wu, H. R.; Wu, Q.; Xiao, G.; Xu, Y.; Yang, Q. Y.; Yang, R.; Yao, Z. G.; You, X. H.; Yuan, A. F.; Zhang, B. K.; Zhang, H. M.; Zhang, S. R.; Zhang, S. S.; Zhang, X. Y.; Zhang, Y.; Zhang, L.; Zhai, L. M.; Zhao, J.; Zhao, L.; Zhao, Z. G.; Zha, M.; Zhou, B.; Zhu, F. R.; Zhu, K. J.; Zhuang, J.; Zuo, X.

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given.

  15. Analysis list: Twist1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Twist1 Embryo,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Tw...ist1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Twist1.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/target/Twist1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Twist1.Embryo.tsv,http://dbarchive.bioscien...cedbc.jp/kyushu-u/mm9/colo/Twist1.Neural.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Embryo.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Neural.gml ...

  16. Modeling and control of active twist aircraft

    Science.gov (United States)

    Cramer, Nicholas Bryan

    The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.

  17. Teaching Spatial Awareness for Better Twisting Somersaults.

    Science.gov (United States)

    Hennessy, Jeff T.

    1985-01-01

    The barani (front somersault with one-half twist) and the back somersault with one twist are basic foundation skills necessary for more advanced twisting maneuvers. Descriptions of these movements on a trampoline surface are offered. (DF)

  18. Critical Current and Stability of MgB$_2$ Twisted-Pair DC Cable Assembly Cooled by Helium Gas

    CERN Document Server

    AUTHOR|(CDS)2069632; Ballarino, Amalia; Yang, Yifeng; Young, Edward Andrew; Bailey, Wendell; Beduz, Carlo

    2013-01-01

    Long length superconducting cables/bus-bars cooled by cryogenic gases such as helium operating over a wider temperature range are a challenging but exciting technical development prospects, with applications ranging from super-grid transmission to future accelerator systems. With limited existing knowledge and previous experiences, the cryogenic stability and quench protection of such cables are crucial research areas because the heat transfer is reduced and temperature gradient increased compared to liquid cryogen cooled cables. V-I measurements on gas-cooled cables over a significant length are an essential step towards a fully cryogenic stabilized cable with adequate quench protection. Prototype twisted-pair cables using high-temperature superconductor and MgB2 tapes have been under development at CERN within the FP7 EuCARD project. Experimental studies have been carried out on a 5-m-long multiple MgB$_2$ cable assembly at different temperatures between 20 and 30 K. The subcables of the assembly showed sim...

  19. Twist deformations of the supersymmetric quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Castro, P.G.; Chakraborty, B.; Toppan, F., E-mail: pgcastro@cbpf.b, E-mail: biswajit@bose.res.i, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2009-07-01

    The N-extended supersymmetric quantum mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its universal enveloping superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed. (author)

  20. Band engineering in twisted molybdenum disulfide bilayers

    Science.gov (United States)

    Zhao, Yipeng; Liao, Chengwei; Ouyang, Gang

    2018-05-01

    In order to explore the theoretical relationship between interlayer spacing, interaction and band offset at the atomic level in vertically stacked two-dimensional (2D) van der Waals (vdW) structures, we propose an analytical model to address the evolution of interlayer vdW coupling with random stacking configurations in MoS2 bilayers based on the atomic-bond-relaxation correlation mechanism. We found that interlayer spacing changes substantially with respect to the orientations, and the bandgap increases from 1.53 eV (AB stacking) to 1.68 eV (AA stacking). Our results reveal that the evolution of interlayer vdW coupling originates from the interlayer interaction, leading to interlayer separations and electronic properties changing with stacking configurations. Our predictions constitute a demonstration of twist engineering the band shift in the emergent class of 2D crystals, transition-metal dichalcogenides.

  1. The 150 ns detector project: Prototype preamplifier results

    Science.gov (United States)

    Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.

    1994-08-01

    The long-term goal of the 150 ns detector project is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1×256 1D and 8×8 2D detectors, 256×256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front-end preamplifiers are integrated first, since their design and performance are the most unusual and also critical to the project's success. Similarly, our early work is concentrated on devising and perfecting detector structures. In this paper we demonstrate the performance of prototypes of our integrated preamplifiers. While the final design will have 64 preamps to a chip, including a switchable gain stage, the prototypes were integrated 8 channels to a "Tiny Chip" and tested in 4 configurations (feedback capacitor Cf equal 2.5 or 4.0 pF, output directly or through a source follower). These devices have been tested thoroughly for reset settling times, gain, linearity, and electronic noise. They generally work as designed, being fast enough to easily integrate detector charge, settle, and reset in 150 ns. Gain and linearity appear to be acceptable. Current values of electronic noise, in double-sampling mode, are about twice the design goal of {2}/{3} of a single photon at 6 keV. We expect this figure to improve with the addition of the onboard amplifier stage and improved packaging. Our next test chip will include these improvements and allow testing with our first detector samples, which will be 1×256 (50 μm wide pixels) and 8×8 (1 mm 2 pixels) element detector on 1 mm thick silicon.

  2. A 110 m long prototype helium transfer line for the HERA project

    International Nuclear Information System (INIS)

    Horvath, I.; Ming, P.; Von Burg, M.; Horlitz, G.; Sindt, H.

    1986-01-01

    A prototype helium transfer line of 110-m length was designed and constructed at SIN for the HERA project. This rendered a study of the assembly and handling processes as well as the determination of the heat losses into the transfer line. In this paper the transfer line structure is described and first results of heat transfer measurement for the specially developed super-insulation are presented

  3. The quiver at the bottom of the twisted nilpotent cone on $\\mathbb P^1$

    OpenAIRE

    Rayan, Steven

    2016-01-01

    For the moduli space of Higgs bundles on a Riemann surface of positive genus, critical points of the natural Morse-Bott function lie along the nilpotent cone of the Hitchin fibration and are representations of $\\mbox{A}$-type quivers in a twisted category of holomorphic bundles. The critical points that globally minimize the function are representations of $\\mbox{A}_1$. For twisted Higgs bundles on the projective line, the quiver describing the bottom of the cone is more complicated. We deter...

  4. EUROPAIRS: The European project on coupling of High Temperature Reactors with industrial processes

    International Nuclear Information System (INIS)

    Angulo, C.; Bogusch, E.; Bredimas, A.; Delannay, N.; Viala, C.; Ruer, J.; Muguerra, Ph.; Sibaud, E.; Chauvet, V.; Hittner, D.; Fütterer, M.A.; Groot, S. de; Lensa, W. von; Verfondern, K.; Moron, R.; Baudrand, O.; Griffay, G.; Baaten, A.; Segurado-Gimenez, J.

    2012-01-01

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. A strong alliance between nuclear and process heat user industries is a necessity for developing such a nuclear system for the conventional process heat market, just as the electro-nuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project ( (www.europairs.eu)) presently on-going in the frame of the Euratom 7th Framework Programme (FP7). Although small and of short duration (21 months), EUROPAIRS is of strategic importance: it generates the boundary conditions for rapid demonstration of collocating HTR with industrial processes as proposed by the European High Temperature Reactor Technology Network (HTR-TN). This paper presents the main goals, the organization and the working approach of EUROPAIRS. It also presents the status of the viability assessment studies for coupling HTR with industrial end-user systems as one of the main pillars of the project. The main goal of the viability assessment is to identify developments required to remove the last technological and licensing barriers for a viable coupling scheme. The study is expected to result in guidelines for directing the choice of an industrial scale prototype.

  5. EUROPAIRS: The European project on coupling of High Temperature Reactors with industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Angulo, C., E-mail: carmen.angulo@gdfsuez.com [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium); Bogusch, E. [AREVA NP GmbH, Paul-Gossen-Strasse 100, 91052 Erlangen (Germany); Bredimas, A. [LGI Consulting, 37 rue de la Grange aux Belles, 75010 Paris (France); Delannay, N. [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium); Viala, C. [AREVA NP SAS, 10 rue Juliette Recamier, 69456 Lyon Cedex 06 (France); Ruer, J.; Muguerra, Ph.; Sibaud, E. [SAIPEM S.A., 1/7 Avenue San Fernando, 78884 Saint Quentin en Yvelines Cedex (France); Chauvet, V. [LGI Consulting, 37 rue de la Grange aux Belles, 75010 Paris (France); Hittner, D. [AREVA NP Inc., 3315 Old Forest Road, Lynchburg, VA 24501 (United States); Fuetterer, M.A. [European Commission, Joint Research Centre, 1755ZG Petten (Netherlands); Groot, S. de [Nuclear Research and Consultancy Group, 1755ZG Petten (Netherlands); Lensa, W. von; Verfondern, K. [Forschungszentrum Juelich GmbH, Leo-Brandt-Strasse,52425 Juelich (Germany); Moron, R. [Solvay SA, rue du Prince Albert 33, 1050 Brussels (Belgium); Baudrand, O. [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP 17, 92262 Fontenay-aux-Roses cedex (France); Griffay, G. [Arcelor Mittal Maizieres Research SA, rue Luigi Cherubini 1A5, 39200 Saint Denis (France); Baaten, A. [USG/Baaten Energy Consulting, Burgermeester-Ceulen-Straat 78, 6212CT Maastricht (Netherlands); Segurado-Gimenez, J. [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium)

    2012-10-15

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. A strong alliance between nuclear and process heat user industries is a necessity for developing such a nuclear system for the conventional process heat market, just as the electro-nuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project ( (www.europairs.eu)) presently on-going in the frame of the Euratom 7th Framework Programme (FP7). Although small and of short duration (21 months), EUROPAIRS is of strategic importance: it generates the boundary conditions for rapid demonstration of collocating HTR with industrial processes as proposed by the European High Temperature Reactor Technology Network (HTR-TN). This paper presents the main goals, the organization and the working approach of EUROPAIRS. It also presents the status of the viability assessment studies for coupling HTR with industrial end-user systems as one of the main pillars of the project. The main goal of the viability assessment is to identify developments required to remove the last technological and licensing barriers for a viable coupling scheme. The study is expected to result in guidelines for directing the choice of an industrial scale prototype.

  6. Ten helical twist angles of B-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Kabsch, W; Sander, C; Trifonov, E N

    1982-01-01

    On the assumption that the twist angles between adjacent base-pairs in the DNA molecule are additive a linear system of 40 equations was derived from experimental measurements of the total twist angles for different pieces of DNA of known sequences. This system of equations is found to be statistically consistent providing a solution for all ten possible twist angles of B-DNA by a least squares fitting procedure. Four of the calculated twist angles were not known before. The other six twist angles calculated are very close to the experimentally measured ones. The data used were obtained by the electrophoretic band-shift method, crystallography and nuclease digestion of DNA adsorbed to mica or Ca-phosphate surface. The validity of the principle of additivity of the twist angles implies that the angle between any particular two base-pairs is a function of only these base-pairs, independent of nearest neighbors.

  7. PRMS Data Warehousing Prototype

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  8. Prototype for the ALEPH Time Projection Chamber

    CERN Multimedia

    1980-01-01

    This is a prototype endplate piece constructed during R&D for the ALEPH Time Projection Chamber (TPC). ALEPH was one of 4 experiments at CERN's 27km Large Electron Positron collider (LEP) that ran from 1989 to 2000. ALEPH's TPC was a large-volume tracking chamber, 4.4 metres long and 3.6 metres in diameter - the largest TPC in existance at the time. This object is one of the endplates of a “Kind” sector, the smallest of the three types of sectors. The patterns etched into the copper form the cathode pads that measured particle track coordinates in the r-phi direction. It included a laser calibration system, a gating system to prevent space charge buildup, and a new radial pad geometry to improve resolution. the ALEPH TPC allowed for precise momentum measurements of the high-momentum particles from W and Z decays. The following institutes participated: CERN, Athens, Glasgow, Mainz, MPI Munich, INFN-Pisa, INFN-Trieste, Wisconsin.

  9. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...... beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps...

  10. Twisted electron-acoustic waves in plasmas

    International Nuclear Information System (INIS)

    Aman-ur-Rehman; Ali, S.; Khan, S. A.; Shahzad, K.

    2016-01-01

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q_e_f_f accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  11. Remarks on twisted noncommutative quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2006-04-15

    We review recent results on twisted noncommutative quantum field theory by embedding it into a general framework for the quantization of systems with a twisted symmetry. We discuss commutation relations in this setting and show that the twisted structure is so rigid that it is hard to derive any predictions, unless one gives up general principles of quantum theory. It is also shown that the twisted structure is not responsible for the presence or absence of UV/IR-mixing, as claimed in the literature. (Orig.)

  12. Self-plied and twist-stable carbon nanotube yarn artificial muscles driven by organic solvent adsorption.

    Science.gov (United States)

    Jin, Kaiyun; Zhang, Silan; Zhou, Susheng; Qiao, Jian; Song, Yanhui; Di, Jiangtao; Zhang, Dengsong; Li, Qingwen

    2018-05-03

    Artificial yarn/fiber muscles have recently attracted considerable interest for various applications. These muscles can provide large-stroke tensile and torsional actuations, resulting from inserted twists. However, tensional tethering of twisted muscles is generally needed to avoid muscle snarling and untwisting. In this paper a carbon nanotube (CNT) yarn muscle that is tethering-free and twist-stable is reported. The yarn muscle is prepared by allowing the self-plying of a coiled CNT yarn. When driven by acetone adsorption, this muscle shows decoupled actuations, which provide fast and reversible ∼13.3% contraction strain against a constant stress corresponding to ∼38 000 times the muscle weight but almost zero torsional strokes. The cycling test shows that the self-plied muscle has very good structural stability and actuation reversibility. Applied joule heating can help increase the desorption of acetone and increase the operation frequency of the self-plied muscle. Furthermore, by controlling the coupling between the joule heating and acetone adsorption/desorption, tensile actuations from negative to positive have been achieved. This twist-stable feature could considerably facilitate the practical applications of such muscle.

  13. Conical twist fields and null polygonal Wilson loops

    Science.gov (United States)

    Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide

    2018-06-01

    Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.

  14. Renormalization constants for 2-twist operators in twisted mass QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Constantinou, M.; Panagopoulos, H.; Stylianou, F.; Korzec, T.

    2011-01-01

    Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to β=3.9, 4.05, 4.20. Subtraction of O(a 2 ) terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to O(a 2 ). The renormalization conditions are defined in the RI ' -MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.

  15. How to Twist a Knot

    DEFF Research Database (Denmark)

    Randrup, Thomas; Røgen, Peter

    1997-01-01

    is an invariant of ambient isotopy measuring the topological twist of the closed strip. We classify closed strips in euclidean 3-space by their knots and their twisting number. We prove that this classification exactly divides closed strips into isotopy classes. Using this classification we point out how some...

  16. Supporting Active User Involvment in Prototyping

    DEFF Research Database (Denmark)

    Grønbæk, Kaj

    1990-01-01

    The term prototyping has in recent years become a buzzword in both research and practice of system design due to a number of claimed advantages of prototyping techniques over traditional specification techniques. In particular it is often stated that prototyping facilitates the users' involvement...... in the development process. But prototyping does not automatically imply active user involvement! Thus a cooperative prototyping approach aiming at involving users actively and creatively in system design is proposed in this paper. The key point of the approach is to involve users in activities that closely couple...... development of prototypes to early evaluation of prototypes in envisioned use situations. Having users involved in such activities creates new requirements for tool support. Tools that support direct manipulation of prototypes and simulation of behaviour have shown promise for cooperative prototyping...

  17. Transverse kink oscillations in the presence of twist

    Science.gov (United States)

    Terradas, J.; Goossens, M.

    2012-12-01

    Context. Magnetic twist is thought to play an important role in coronal loops. The effects of magnetic twist on stable magnetohydrodynamic (MHD) waves is poorly understood because they are seldom studied for relevant cases. Aims: The goal of this work is to study the fingerprints of magnetic twist on stable transverse kink oscillations. Methods: We numerically calculated the eigenmodes of propagating and standing MHD waves for a model of a loop with magnetic twist. The azimuthal component of the magnetic field was assumed to be small in comparison to the longitudinal component. We did not consider resonantly damped modes or kink instabilities in our analysis. Results: For a nonconstant twist the frequencies of the MHD wave modes are split, which has important consequences for standing waves. This is different from the degenerated situation for equilibrium models with constant twist, which are characterised by an azimuthal component of the magnetic field that linearly increases with the radial coordinate. Conclusions: In the presence of twist standing kink solutions are characterised by a change in polarisation of the transverse displacement along the tube. For weak twist, and in the thin tube approximation, the frequency of standing modes is unaltered and the tube oscillates at the kink speed of the corresponding straight tube. The change in polarisation is linearly proportional to the degree of twist. This has implications with regard to observations of kink modes, since the detection of this variation in polarisation can be used as an indirect method to estimate the twist in oscillating loops.

  18. WORKSHOP: Let's twist again..

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos Baillie, Orlando

    1988-12-15

    In the quantum chromodynamics (QCD) candidate theory of interquark forces, calculations involve summing the effects from many different possible quark/gluon interactions. In addition to the 'leading term' frequently used as the basis for QCD calculations, additional contributions — so-called 'higher twists' — are modulated by powers of kinematical factors. An illuminating international workshop to discuss higher twist QCD was held at the College de France, Paris, from 21-23 September.

  19. DVCS amplitude with kinematical twist-3 terms

    International Nuclear Information System (INIS)

    Radyushkin, A.V.; Weiss, C.

    2000-01-01

    The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term

  20. The description of N=1, d=4 supergravity using twisted supersymmetric fields

    CERN Document Server

    Baulieu, Laurent

    2015-01-01

    This chapter describes how the method of twisted supersymmetric fields used for describing global supersymmetry, as in the context of topological field theories, can be extended to the description of local supersymmetry. As an example, the method is applied to the case of N = 1 Euclidean supergravity on a 4-manifold with an almost complex structure, with its couplings to scalar and vector multiplets.

  1. M(atrix) theory on an orbifold and twisted membrane

    International Nuclear Information System (INIS)

    Kim, N.

    1997-01-01

    M(atrix) theory on an orbifold and classical two-branes therein are studied with particular emphasis on heterotic M(atrix) theory on S 1 / Z 2 relevant to strongly coupled heterotic and dual type IA string theories. By analyzing the orbifold condition on Chan-Paton factors, we show that three choices of gauge group are possible for heterotic M(atrix) theory: SO(2N), SO(2N+1) or USp(2N). By examining the area-preserving diffeomorphism that underlies the M(atrix) theory, we find that each choice of gauge group restricts the possible topologies of two-branes. The result suggests that only the choice of SO(2N) or SO(2N+1) allows open two-branes, and hence, is relevant to heterotic M(atrix) theory. We show that the requirement of both local vacuum energy cancellation and of world-sheet anomaly cancellation of the resulting heterotic string identifies supersymmetric twisted sector spectra with sixteen fundamental representation spinors from each of the two fixed points. Twisted open and closed two-brane configurations are obtained in the large N limit. (orig.)

  2. Design and fabrication of the prototype superconducting quadrupole for the CERN LHC project

    International Nuclear Information System (INIS)

    Baze, J.M.; Cacaut, D.; Jacquemin, J.P.; Lyraud, C.; Michez, C.; Pabot, Y.; Perot, J.; Rifflet, J.M.; Toussaint, J.C.; Vedrine, P.

    1992-01-01

    Within the framework of the LHC R and D program, CERN and CEA/Saclay have established a collaboration to carry out, amongst others, the design, building and testing of a superconducting LHC prototype quadrupole at the Saclay laboratory. The cold mass of this quadrupole is presently under construction at Saclay. The quadrupole design features a twin aperture configuration, a gradient design features a twin aperture configuration, a gradient of 250T/m, a length of 3m and a free coil aperture of 56mm. European industries participate in this project by delivering components and fabrication the tooling according to specifications prepared by Saclay. This paper gives details of the magnet design and construction. Coil winding will start in summer 1991 and the first prototype should be assembled and ready for testing by mid 1992

  3. Twisted boundary conditions: a non-perturbative probe for pure non-abelian gauge theories

    International Nuclear Information System (INIS)

    Baal, P. van.

    1984-01-01

    In this thesis the author describes a pure non-abelian gauge theory on the hypertorus with gauge group SU(N). To test the flux tube picture he has studied the large distance limit of this theory, leading to a large coupling constant. To tackle this problem, he describes two approaches, in both of which twisted boundary conditions play an important role. (Auth.)

  4. The construction and evaluation of a prototype system for an image intensifier-based volume computed tomography imager

    International Nuclear Information System (INIS)

    Ning, R.

    1989-01-01

    A volumetric reconstruction of a three-dimensional (3-D) object has been at the forefront of exploration in medical applications for a long time. To achieve this goal, a prototype system for an image intensifier(II)-based volume computed tomography (CT) imager has been constructed. This research has been concerned with constructing and evaluating such a prototype system by phantom studies. The prototype system consists of a fixed x-ray tube, a specially designed aluminum filter that will reduce the dynamic range of projection data, an antiscatter grid, a conventional image intensifier optically coupled to a charge-coupled device (CCC) camera, a computer controlled turntable on which phantoms are placed, a digital computer including an A/D converter and a graphic station that displays the reconstructed images. In this study, three different phantoms were used: a vascular phantom, a resolution phantom and a Humanoid reg-sign chest phantom. The direct 3-D reconstruction from the projections was performed using a cone beam algorithm and vascular reconstruction algorithms. The image performance of the system for the direct 3-D reconstruction was evaluated. The spatial resolution limits of the system were estimated through observing the reconstructed images of the resolution phantom. By observing the images reconstructed from the projections, it can be determined that the image performance of the prototype system for a direct 3-D reconstruction is reasonably good and that the vascular reconstruction algorithms work very well. The results also indicate that the 3-D reconstructions obtained with the 11-based volume CT imager have nearly equally good resolution in x, y and z directions and are superior to a conventional CT in the resolution of the z direction

  5. Dynamical twisted mass fermions and baryon spectroscopy

    International Nuclear Information System (INIS)

    Drach, V.

    2010-06-01

    The aim of this work is an ab initio computation of the baryon masses starting from quantum chromodynamics (QCD). This theory describes the interaction between quarks and gluons and has been established at high energy thanks to one of its fundamental properties: the asymptotic freedom. This property predicts that the running coupling constant tends to zero at high energy and thus that perturbative expansions in the coupling constant are justified in this regime. On the contrary the low energy dynamics can only be understood in terms of a non perturbative approach. To date, the only known method that allows the computation of observables in this regime together with a control of its systematic effects is called lattice QCD. It consists in formulating the theory on an Euclidean space-time and to evaluating numerically suitable functional integrals. First chapter is an introduction to the QCD in the continuum and on a discrete space time. The chapter 2 describes the formalism of maximally twisted fermions used in the European Twisted Mass (ETM) collaboration. The chapter 3 deals with the techniques needed to build hadronic correlator starting from gauge configuration. We then discuss how we determine hadron masses and their statistical errors. The numerical estimation of functional integral is explained in chapter 4. It is stressed that it requires sophisticated algorithm and massive parallel computing on Blue-Gene type architecture. Gauge configuration production is an important part of the work realized during my Ph.D. Chapter 5 is a critical review on chiral perturbation theory in the baryon sector. The two last chapter are devoted to the analysis in the light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed. (author)

  6. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Twist operators in N=4 beta-deformed theory

    NARCIS (Netherlands)

    de Leeuw, M.; Łukowski, T.

    2010-01-01

    In this paper we derive both the leading order finite size corrections for twist-2 and twist-3 operators and the next-to-leading order finite-size correction for twist-2 operators in beta-deformed SYM theory. The obtained results respect the principle of maximum transcendentality as well as

  8. Higher twist contributions to deep-inelastic structure functions

    International Nuclear Information System (INIS)

    Bluemlein, J.; Boettcher, H.

    2008-07-01

    We report on a recent extraction of the higher twist contributions to the deep inelastic structure functions F ep,ed 2 (x,Q 2 ) in the large x region. It is shown that the size of the extracted higher twist contributions is strongly correlated with the higher order corrections applied to the leading twist part. A gradual lowering of the higher twist contributions going from NLO to N 4 LO is observed, where in the latter case only the leading large x terms were considered. (orig.)

  9. Numerical study of Langevin equation in twisted Eguchi-Kawai model: distribution of eigenvalues of the plaquette matrix

    International Nuclear Information System (INIS)

    Migdal, A.A.; Polikarpov, M.I.; Veselov, A.I.; Yurov, V.P.

    1983-01-01

    The Langevin equation for the lattice theory with arbitrary gauge group is derived. The four-dimensional twisted Eguchi-Kawai model is investigated numerically. The results for the plaquette energy agree with those of the known Monte Carlo calculations. The new result is the distribution of eigenvalues of the plaquette matrix. In the strong coupling phase this distribution is smooth, whereas in the weak coupling phase a gap is clearly seen

  10. A novel role for Twist-1 in pulp homeostasis.

    Science.gov (United States)

    Galler, K M; Yasue, A; Cavender, A C; Bialek, P; Karsenty, G; D'Souza, R N

    2007-10-01

    The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/-) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.

  11. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Energy Technology Data Exchange (ETDEWEB)

    An, Q. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Bai, Y.X.; Bi, X.J.; Cao, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chang, J.F. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Chen, G.; Chen, M.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, S.M. [Tsinghua University, Beijing 100084 (China); Chen, S.Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, T.L. [University of Tibet, Lhasa 851600 (China); Chen, X. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Y.T. [University of Yunnan, Kunming 650091 (China); Cui, S.W. [Normal University of Hebei, Shijiazhuang 050016 (China); Dai, B.Z. [University of Yunnan, Kunming 650091 (China); Du, Q. [Tsinghua University, Beijing 100084 (China); Danzengluobu [University of Tibet, Lhasa 851600 (China); Feng, C.F. [University of Shandong, Jinan 250100 (China); Feng, S.H.; Gao, B. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao, S.Q. [National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); and others

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured.

  12. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Chang, J.F.; Chen, G.; Chen, M.J.; Chen, S.M.; Chen, S.Z.; Chen, T.L.; Chen, X.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Du, Q.; Danzengluobu; Feng, C.F.; Feng, S.H.; Gao, B.; Gao, S.Q.

    2013-01-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured

  13. SpaceTwist

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Jensen, Christian Søndergaard; Xuegang, Huang

    2008-01-01

    -based matching generally fall short in offering practical query accuracy guarantees. Our proposed framework, called SpaceTwist, rectifies these shortcomings for k nearest neighbor (kNN) queries. Starting with a location different from the user's actual location, nearest neighbors are retrieved incrementally...

  14. Prototype development and demonstration for integrated dynamic transit operations.

    Science.gov (United States)

    2016-01-01

    This document serves as the Final Report specific to the Integrated Dynamic Transit Operations (IDTO) Prototype Development and Deployment Project, hereafter referred to as IDTO Prototype Deployment or IDTO PD project. This project was performed unde...

  15. The asymptotic behaviour of the heat equation in a twisted Dirichlet-Neumann waveguide

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David; Zuazua, E.

    2011-01-01

    Roč. 250, č. 5 (2011), s. 2334-2346 ISSN 0022-0396 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : Laplacian * Dirichlet and Neumann boundary conditions * Twist Subject RIV: BE - Theoretical Physics Impact factor: 1.277, year: 2011

  16. The StarLite Project Prototyping Real-Time Software

    Science.gov (United States)

    1991-10-01

    multiversion data objects using the prototyping environment. Section 5 concludes the paper. 2. Message-Based Simulation When prototyping distributed...phase locking and priority-based synchronization algorithms, and between a multiversion database and its corresponding single-version database, through...its deadline, since the transaction is only aborted in the validation phase. 4.5. A Multiversion Database System To illustrate the effctivcness of the

  17. Twisting short dsDNA with applied tension

    Science.gov (United States)

    Zoli, Marco

    2018-02-01

    The twisting deformation of mechanically stretched DNA molecules is studied by a coarse grained Hamiltonian model incorporating the fundamental interactions that stabilize the double helix and accounting for the radial and angular base pair fluctuations. The latter are all the more important at short length scales in which DNA fragments maintain an intrinsic flexibility. The presented computational method simulates a broad ensemble of possible molecule conformations characterized by a specific average twist and determines the energetically most convenient helical twist by free energy minimization. As this is done for any external load, the method yields the characteristic twist-stretch profile of the molecule and also computes the changes in the macroscopic helix parameters i.e. average diameter and rise distance. It is predicted that short molecules under stretching should first over-twist and then untwist by increasing the external load. Moreover, applying a constant load and simulating a torsional strain which over-twists the helix, it is found that the average helix diameter shrinks while the molecule elongates, in agreement with the experimental trend observed in kilo-base long sequences. The quantitative relation between percent relative elongation and superhelical density at fixed load is derived. The proposed theoretical model and computational method offer a general approach to characterize specific DNA fragments and predict their macroscopic elastic response as a function of the effective potential parameters of the mesoscopic Hamiltonian.

  18. Studies on the separation between higher-twist and minimum-twist in the photoproduction experiment WA69 at the CERN-OMEGA spectrometer

    International Nuclear Information System (INIS)

    Kingler, J.

    1990-01-01

    A Lund type Monte Carlo program (LUCIFER) is used to describe in perturbative QCD the pointlike component of the photon interacting on a hydrogen target. Kinematical and topological variables are developed to enhance higher twist events on the lowest order minimum twist background. The emphasis is laid on π ± , K ± higher twist mesons. (orig.)

  19. Development of annular coupled structure

    International Nuclear Information System (INIS)

    Kageyama, T.; Morozumi, Y.; Yoshino, K.; Yamazaki, Y.

    1992-01-01

    A π/2-mode standing-wave linac of an Annular Coupled Structure (ACS) has been developed for the 1-GeV proton linac of the Japanese Hadron Project (JHP). This ACS has four coupling slots between accelerating and coupling cells in order to overcome difficulties in putting the ACS to practical use. Two prototypes of a four-slot ACS (f = 1296 MHz, β = v/c = 0.8) have been constructed and tested: one with a staggered slot-orientation from cell to cell; and the other with a uniform one. The staggered configuration gives a larger coupling constant and a larger shunt impedance than the uniform one with the same size of coupling slot. Both models have been conditioned up to the design input RF power. The four-slot ACS gives a distortion-free accelerating field around the beam axis, while a Side-Coupled Structure cavity gives an accelerating field mixed with a TE111-like mode. (Author) 7 figs., 2 tabs., 9 refs

  20. Stability of twisted rods, helices and buckling solutions in three dimensions

    KAUST Repository

    Majumdar, Apala; Raisch, Alexander

    2014-01-01

    © 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.

  1. Stability of twisted rods, helices and buckling solutions in three dimensions

    KAUST Repository

    Majumdar, Apala

    2014-11-03

    © 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.

  2. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  3. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  4. Simulating QCD at the physical point with Nf=2 Wilson twisted mass fermions at maximal twist

    International Nuclear Information System (INIS)

    Abdel-Rehim, A.; Alexandrou, C.; Cyprus Univ. Nicosia; Burger, F.

    2015-12-01

    We present simulations of QCD using N f =2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at a∼0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces O(a 2 ) cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.

  5. An IPMC-enabled bio-inspired bending/twisting fin for underwater applications

    Science.gov (United States)

    Palmre, Viljar; Hubbard, Joel J.; Fleming, Maxwell; Pugal, David; Kim, Sungjun; Kim, Kwang J.; Leang, Kam K.

    2013-01-01

    This paper discusses the design, fabrication, and characterization of an ionic polymer-metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a ‘fin’) is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or ‘activating’ the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long × 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s-1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure. These

  6. Twist-1 Up-Regulation in Carcinoma Correlates to Poor Survival

    Directory of Open Access Journals (Sweden)

    Alimujiang Wushou

    2014-11-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT facilitates tumor metastasis. Twist is a basic helix-loop-helix protein that modulates many target genes through E-box-responsive elements. There are two twist-like proteins, Twist-1 and Twist-2, sharing high structural homology in mammals. Twist-1 was found to be a key factor in the promotion of metastasis of cancer cells, and is known to induce EMT. Twist-1 participation in carcinoma progression and metastasis has been reported in a variety of tumors. However, controversy exists concerning the correlation between Twist-1 and prognostic value with respect to carcinoma. A systematic review and meta-analysis were performed to determine whether the expression of Twist-1 was associated with the prognosis of carcinoma patients. This analysis included 17 studies: four studies evaluated lung cancer, three evaluated head and neck cancer, two evaluated breast cancer, two evaluated esophageal cancer, two evaluated liver cancer and one each evaluated osteosarcoma, bladder, cervical and ovarian cancer. A total of 2006 patients were enrolled in these studies, and the median trial sample size was 118 patients. Twist-1 expression was associated with worse overall survival (OS at both 3 years (hazard ratio “HR” for death = 2.13, 95% CI = 1.86 to 2.45, p < 0.001 and 5 years (HR for death = 2.01, 95% CI = 1.76 to 2.29, p < 0.001. Expression of Twist-1 is associated with worse survival in carcinoma.

  7. Euclidean supersymmetry, twisting and topological sigma models

    International Nuclear Information System (INIS)

    Hull, C.M.; Lindstroem, U.; Santos, L. Melo dos; Zabzine, M.; Unge, R. von

    2008-01-01

    We discuss two dimensional N-extended supersymmetry in Euclidean signature and its R-symmetry. For N = 2, the R-symmetry is SO(2) x SO(1, 1), so that only an A-twist is possible. To formulate a B-twist, or to construct Euclidean N = 2 models with H-flux so that the target geometry is generalised Kahler, it is necessary to work with a complexification of the sigma models. These issues are related to the obstructions to the existence of non-trivial twisted chiral superfields in Euclidean superspace.

  8. Oliver Twist

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and

  9. Duality and braiding in twisted quantum field theory

    International Nuclear Information System (INIS)

    Riccardi, Mauro; Szabo, Richard J.

    2008-01-01

    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality

  10. Twisting gravitational waves and eigenvector fields for SL(2,C on an infinite jet

    Directory of Open Access Journals (Sweden)

    J. D. Finley III

    2000-07-01

    Full Text Available A system of coupled vector-field-valued partial differential equations is presented, the solutions to which would determine two coupled, infinite-dimensional vector-field realizations of the group SL(2,C. While the general solution is (partially presented, the complicated nature of that solution is deplored, and the hope expressed that someone can replace it by something much more natural. The physical origins of the problem are briefly described. The problem arises out of searches for Backlund transforms of a system of PDE's that describe twisting, Petrov type N solutions of Einstein's vacuum field equations.

  11. Twisted Acceleration-Enlarged Newton-Hooke Hopf Algebras

    International Nuclear Information System (INIS)

    Daszkiewicz, M.

    2010-01-01

    Ten Abelian twist deformations of acceleration-enlarged Newton-Hooke Hopf algebra are considered. The corresponding quantum space-times are derived as well. It is demonstrated that their contraction limit τ → ∞ leads to the new twisted acceleration-enlarged Galilei spaces. (author)

  12. Prototype coupling of the CFD software ansys CFX with the 3D neutron kinetic core model DYN3D - 249

    International Nuclear Information System (INIS)

    Kliem, S.; Rohde, U.; Schutze, J.; Frank, Th.

    2010-01-01

    The CFD code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactor's coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for a small-size test problem confirm the correctness of the implementation of the prototype coupling. This test problem was a mini-core consisting of nine real-size fuel assemblies. Comparison was performed with the DYN3D standalone code. In the steady state, the effective multiplication factor obtained by the ANSYS CFX/DYN3D codes shows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. (authors)

  13. TWIST1 promotes invasion through mesenchymal change in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wakimoto Hiroaki

    2010-07-01

    Full Text Available Abstract Background Tumor cell invasion into adjacent normal brain is a mesenchymal feature of GBM and a major factor contributing to their dismal outcomes. Therefore, better understandings of mechanisms that promote mesenchymal change in GBM are of great clinical importance to address invasion. We previously showed that the bHLH transcription factor TWIST1 which orchestrates carcinoma metastasis through an epithelial mesenchymal transition (EMT is upregulated in GBM and promotes invasion of the SF767 GBM cell line in vitro. Results To further define TWIST1 functions in GBM we tested the impact of TWIST1 over-expression on invasion in vivo and its impact on gene expression. We found that TWIST1 significantly increased SNB19 and T98G cell line invasion in orthotopic xenotransplants and increased expression of genes in functional categories associated with adhesion, extracellular matrix proteins, cell motility and locomotion, cell migration and actin cytoskeleton organization. Consistent with this TWIST1 reduced cell aggregation, promoted actin cytoskeletal re-organization and enhanced migration and adhesion to fibronectin substrates. Individual genes upregulated by TWIST1 known to promote EMT and/or GBM invasion included SNAI2, MMP2, HGF, FAP and FN1. Distinct from carcinoma EMT, TWIST1 did not generate an E- to N-cadherin "switch" in GBM cell lines. The clinical relevance of putative TWIST target genes SNAI2 and fibroblast activation protein alpha (FAP identified in vitro was confirmed by their highly correlated expression with TWIST1 in 39 human tumors. The potential therapeutic importance of inhibiting TWIST1 was also shown through a decrease in cell invasion in vitro and growth of GBM stem cells. Conclusions Together these studies demonstrated that TWIST1 enhances GBM invasion in concert with mesenchymal change not involving the canonical cadherin switch of carcinoma EMT. Given the recent recognition that mesenchymal change in GBMs is

  14. Renormalization of quark propagator, vertex functions, and twist-2 operators from twisted-mass lattice QCD at Nf=4

    Science.gov (United States)

    Blossier, Benoît.; Brinet, Mariane; Guichon, Pierre; Morénas, Vincent; Pène, Olivier; Rodríguez-Quintero, Jose; Zafeiropoulos, Savvas

    2015-06-01

    We present a precise nonperturbative determination of the renormalization constants in the mass independent RI'-MOM scheme. The lattice implementation uses the Iwasaki gauge action and four degenerate dynamical twisted-mass fermions. The gauge configurations are provided by the ETM Collaboration. Renormalization constants for scalar, pseudoscalar, vector and axial operators, as well as the quark propagator renormalization, are computed at three different values of the lattice spacing, two volumes and several twisted-mass parameters. The method we developed allows for a precise cross-check of the running, thanks to the particular proper treatment of hypercubic artifacts. Results for the twist-2 operator O44 are also presented.

  15. Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene

    Science.gov (United States)

    Zuo, Wei-Jie; Qiao, Jia-Bin; Ma, Dong-Lin; Yin, Long-Jing; Sun, Gan; Zhang, Jun-Yang; Guan, Li-Yang; He, Lin

    2018-01-01

    Twist, as a simple and unique degree of freedom, could lead to enormous novel quantum phenomena in bilayer graphene. A small rotation angle introduces low-energy van Hove singularities (VHSs) approaching the Fermi level, which result in unusual correlated states in the bilayer graphene. It is reasonable to expect that the twist could also affect the electronic properties of few-layer graphene dramatically. However, such an issue has remained experimentally elusive. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we systematically studied a twisted trilayer graphene (TTG) with two different small twist angles between adjacent layers. Two sets of VHSs, originating from the two twist angles, were observed in the TTG, indicating that the TTG could be simply regarded as a combination of two different twisted bilayers of graphene. By using high-resolution STS, we observed a split of the VHSs and directly imaged the spatial symmetry breaking of electronic states around the VHSs. These results suggest that electron-electron interactions play an important role in affecting the electronic properties of graphene systems with low-energy VHSs.

  16. Twisted boundary states in c=1 coset conformal field theories

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Yamaguchi, Atsushi

    2003-01-01

    We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the charge-conjugation modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n) 1 +so(2n) 1 /so(2n) 2 , which is equivalent to the orbifold S 1 /Z 2 at a particular radius. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield conformal boundary states that preserve only the Virasoro algebra. (author)

  17. Twisted covariant noncommutative self-dual gravity

    International Nuclear Information System (INIS)

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.

    2008-01-01

    A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the θ expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in θ for the Plebanski action is explicitly obtained.

  18. Soft tissue twisting injuries of the knee

    International Nuclear Information System (INIS)

    Magee, T.; Shapiro, M.

    2001-01-01

    Twisting injuries occur as a result of differential motion of different tissue types in injuries with some rotational force. These injuries are well described in brain injuries but, to our knowledge, have not been described in the musculoskeletal literature. We correlated the clinical examination and MR findings of 20 patients with twisting injuries of the soft tissues around the knee. Design and patients: We prospectively followed the clinical courses of 20 patients with knee injuries who had clinical histories and MR findings to suggest twisting injuries of the subcutaneous tissues. Patients with associated internal derangement of the knee (i.e., meniscal tears, ligamentous or bone injuries) were excluded from this study. MR findings to suggest twisting injuries included linear areas of abnormal dark signal on T1-weighted sequences and abnormal bright signal on T2-weighted or short tau inversion recovery (STIR) sequences and/or signal to suggest hemorrhage within the subcutaneous tissues. These MR criteria were adapted from those established for indirect musculotendinous junction injuries. Results: All 20 patients presented with considerable pain that suggested internal derangement on physical examination by the referring orthopedic surgeons. All presented with injuries associated with rotational force. The patients were placed on a course of protected weight-bearing of the affected extremity for 4 weeks. All patients had pain relief by clinical examination after this period of protected weight-bearing. Twisting injuries of the soft tissues can result in considerable pain that can be confused with internal derangement of the knee on physical examination. Soft tissue twisting injuries need to be recognized on MR examinations as they may be the cause of the patient's pain despite no MR evidence of internal derangement of the knee. The demonstration of soft tissue twisting injuries in a patient with severe knee pain but no documented internal derangement on MR

  19. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    Science.gov (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  20. A twisted generalization of Novikov-Poisson algebras

    OpenAIRE

    Yau, Donald

    2010-01-01

    Hom-Novikov-Poisson algebras, which are twisted generalizations of Novikov-Poisson algebras, are studied. Hom-Novikov-Poisson algebras are shown to be closed under tensor products and several kinds of twistings. Necessary and sufficient conditions are given under which Hom-Novikov-Poisson algebras give rise to Hom-Poisson algebras.

  1. Studies of the LHC detection systems: scintillating fibers projective electromagnetic calorimeter prototype and light reading by avalanche photodiodes

    International Nuclear Information System (INIS)

    Bouhemaid, N.

    1995-01-01

    In this thesis a study concerning the hardware detection system of ATLAS experiment in preparation for L.H.C. is presented. The study is divided in two parts. After a general introduction of the L.H.C. and the ATLAS detector, the first part concerning the electromagnetic calorimeter, and the second part concerning the readout with avalanche photodiodes, are discussed. For both subjects the basic principles are presented before various test results are described. Within the RD1 program three different electromagnetic calorimeter prototypes, which all use the lead scintillating fibres technique, have been built. The first is a non-projective, compensating calorimeter called ''500μm'', the second is a pseudo projective, non-compensating, called ''1 mm'', and the third is fully projective, called ''Radial''. The last prototype is discussed in more detail. Avalanches photodiodes which are used as readout of the ''1 mm'' calorimeter, have been exposed to both, a dedicated test bench in the laboratory as well as to test beams. The results of these tests are also presented. (author). 35 refs., 96 figs., 30 tabs

  2. Electrospinning of continuous poly (L-lactide) yarns : Effect of twist on the morphology, thermal properties and mechanical behavior

    NARCIS (Netherlands)

    Maleki, H.; Gharehaghaji, A.A.; Dijkstra, P. J.

    2017-01-01

    Electrospinning PLLA solutions from two oppositely charged nozzles gives a triangle of fibers, also called E-triangle, that assemble into yarns at the convergence point. The formed yarn at the E-triangle was taken up by a unit comprising a take up roller and coupled twister plate, which twist rate

  3. Introduction to twisted conformal fields

    International Nuclear Information System (INIS)

    Kazama, Y.

    1988-01-01

    A pedagogical account is given of the recent developments in the theory of twisted conformal fields. Among other things, the main part of the lecture concerns the construction of the twist-emission vertex operator, which is a generalization of the fermion emission vertex in the superstring theory. Several different forms of the vertex are derived and their mutural relationships are clarified. In this paper, the authors include a brief survey of the history of the fermion emission vertex, as it offers a good perspective in which to appreciate the logical development

  4. On the performance analysis of Savonius rotor with twisted blades

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Rajkumar, M. Jaya [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781 039 (India)

    2006-09-15

    The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0{sup o}). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle. (author)

  5. Reversible Twisting of Primary Amides via Ground State N-C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides.

    Science.gov (United States)

    Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2018-01-17

    Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.

  6. The role of leading twist operators in the Regge and Lorentzian OPE limits

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Miguel S. [Centro de Física do Porto, Departamento de Física e Astronomia,Faculdade de Ciências da Universidade do Porto,Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Drummond, James [CERN,Geneva 23 (Switzerland); School of Physics and Astronomy, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom); LAPTH, CNRS et Université de Savoie,F-74941 Annecy-le-Vieux Cedex (France); Gonçalves, Vasco; Penedones, João [Centro de Física do Porto, Departamento de Física e Astronomia,Faculdade de Ciências da Universidade do Porto,Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2014-04-14

    We study two kinematical limits, the Regge limit and the Lorentzian OPE limit, of the four-point function of the stress-tensor multiplet in Super Yang-Mills at weak coupling. We explain how both kinematical limits are controlled by the leading twist operators. We use the known expression of the four-point function up to three loops, to extract the pomeron residue at next-to-leading order. Using this data and the known form of pomeron spin up to next-to-leading order, we predict the behaviour of the four-point function in the Regge limit at higher loops. Specifically, we determine the leading log behaviour at any loop order and the next-to-leading log at four loops. Finally, we check the consistency of our results with conformal Regge theory. This leads us to predict the behaviour around J=1 of the OPE coefficient of the spin J leading twist operator in the OPE of two chiral primary operators.

  7. Extension-torsion coupling behavior of advanced composite tilt-rotor blades

    Science.gov (United States)

    Kosmatka, J. B.

    1989-01-01

    An analytic model was developed to study the extension-bend-twist coupling behavior of an advanced composite helicopter or tilt-rotor blade. The outer surface of the blade is defined by rotating an arbitrary cross section about an initial twist axis. The cross section can be nonhomogeneous and composed of generally anisotropic materials. The model is developed based upon a three dimensional elasticity approach that is recast as a coupled two-dimensional boundary value problem defined in a curvilinear coordinate system. Displacement solutions are written in terms of known functions that represent extension, bending, and twisting and unknown functions for local cross section deformations. The unknown local deformation functions are determined by applying the principle of minimum potential energy to the discretized two-dimensional cross section. This is an application of the Ritz method, where the trial function family is the displacement field associated with a finite element (8-node isoparametric quadrilaterals) representation of the section. A computer program was written where the cross section is discretized into 8-node quadrilateral subregions. Initially the program was verified using previously published results (both three-dimensional elasticity and technical beam theory) for pretwisted isotropic bars with an elliptical cross section. In addition, solid and thin-wall multi-cell NACA-0012 airfoil sections were analyzed to illustrate the pronounced effects that pretwist, initial twist axis location, and spar location has on coupled behavior. Currently, a series of advanced composite airfoils are being modeled in order to assess how the use of laminated composite materials interacts with pretwist to alter the coupling behavior of the blade. These studies will investigate the use of different ply angle orientations and the use of symmetric versus unsymmetric laminates.

  8. A higher twist correction to heavy quark production

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Gunion, J.F.; Soper, D.E.

    1987-06-01

    The leading twist prediction for heavy quark production and a model for a higher twist correction that may be important for charm production was discussed. The correction arises from the interaction of the charm quark with spectator quarks

  9. The Twist Tensor Nuclear Norm for Video Completion.

    Science.gov (United States)

    Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui

    2017-12-01

    In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.

  10. Optical yarn assessment system for twist measurement in rotor-spun yarn

    International Nuclear Information System (INIS)

    Jhatial, R.A.

    2015-01-01

    This paper presents the development of an optical yarn assessment system for evaluation of twist and structure of twisted yarn. The system comprises a yarn carriage unit, a video microscope and a personal computer. This system was used in conjunction with the well-known tracer fibre technique. This system enables digital images to be grabbed and continuous movies of the yarn to be recorded in order to facilitate the measurement of twist and the analysis of yarn structure. Yarn samples from polyester, viscose and cotton with 35 tex and 485 turns/meter were spun from the roving with 2.3% of black fibres on the SKF laboratory ring frame. In order to measure the twist in the rotor yarns with the optical yarn assessment system, a set of yarn samples from same fibres were spun on RU 14 rotor machine with 35 tex and 475 turns/meter. The twist was measured with the optical yarn assessment system and sixty tests of each sample were carried out on the Zweigle D301. It is clear from the results that there is consistency in the twist of ring-spun yarn measured by the optical yarn assessment system. However, the measured twist with the Zwiegle D301 is inconsistent in the different yarns. The difference in the mean twist measured with the optical twist measuring system and the double untwist-twist method was not significant at a 5% probability level when data was analyzed with t test by using SPSS (Statistical Package for Social Sciences). (author)

  11. Generalized nematohydrodynamic boundary conditions with application to bistable twisted nematic liquid-crystal displays

    KAUST Repository

    Fang, Angbo

    2008-12-08

    Parallel to the highly successful Ericksen-Leslie hydrodynamic theory for the bulk behavior of nematic liquid crystals (NLCs), we derive a set of coupled hydrodynamic boundary conditions to describe the NLC dynamics near NLC-solid interfaces. In our boundary conditions, translational flux (flow slippage) and rotational flux (surface director relaxation) are coupled according to the Onsager variational principle of least energy dissipation. The application of our boundary conditions to the truly bistable π -twist NLC cell reveals a complete picture of the dynamic switching processes. It is found that the thus far overlooked translation-rotation dissipative coupling at solid surfaces can accelerate surface director relaxation and enhance the flow rate. This can be utilized to improve the performance of electro-optical nematic devices by lowering the required switching voltages and reducing the switching times. © 2008 The American Physical Society.

  12. Level-rank duality of untwisted and twisted D-branes

    International Nuclear Information System (INIS)

    Naculich, Stephen G.; Schnitzer, Howard J.

    2006-01-01

    Level-rank duality of untwisted and twisted D-branes of WZW models is explored. We derive the relation between D0-brane charges of level-rank dual untwisted D-branes of su-bar (N) K and sp-bar (n) k , and of level-rank dual twisted D-branes of su-bar (2n+1) 2k+1 . The analysis of level-rank duality of twisted D-branes of su-bar (2n+1) 2k+1 is facilitated by their close relation to untwisted D-branes of sp-bar (n) k . We also demonstrate level-rank duality of the spectrum of an open string stretched between untwisted or twisted D-branes in each of these cases

  13. Bound states on the lattice with partially twisted boundary conditions

    International Nuclear Information System (INIS)

    Agadjanov, D.; Guo, F.-K.; Ríos, G.; Rusetsky, A.

    2015-01-01

    We propose a method to study the nature of exotic hadrons by determining the wave function renormalization constant Z from lattice simulations. It is shown that, instead of studying the volume-dependence of the spectrum, one may investigate the dependence of the spectrum on the twisting angle, imposing twisted boundary conditions on the fermion fields on the lattice. In certain cases, e.g., the case of the DK bound state which is addressed in detail, it is demonstrated that the partial twisting is equivalent to the full twisting up to exponentially small corrections.

  14. Effect of Twist Pitch in the Strands on the Saturation and Losses in the Nb3Sn Strands for the ITER TF CICC

    International Nuclear Information System (INIS)

    Martovetsky, N.N.

    2007-01-01

    cryostability limit (by Stekly), or if there are enough losses to bring the temperature above the current sharing temperature taking into account limited heat capacity of the CICC, the strand will not recover, and the CICC will go normal. Conservatively, we will consider that if we find an instantaneous unstable situation, it is not acceptable. In presence of a transport current, the situation is sensitive to the direction of the strand twist, direction of the pulsed field and direction of the transport current. Recently, ITER decided to increase the twist pitch of the TF strands from 15 mm to 30 mm to improve the stability of the strands against the longitudinal field. In this report we will quantify the effects of this proposed change and perform a trade off study. The issue is that by increasing the twist pitch of the strands we not only increase the coupling losses in the transverse magnetic field, as expected in classical multifilamentary composite superconductors, but also increase the hysteresis losses in the strands with internal tin. In classical multifilamentary superconductors, twist pitch change should not cause an increase of the hysteresis losses in the transverse field. However the high Nb3Sn content internal tin strands develop transverse links, which couple the filaments into clusters. These links turn out to contribute a significant fraction to hysteresis losses [5]. If we project the results of [5] onto the ITER proposal to increase the twist pitch from 15 to 30 mm, we should expect the hysteresis losses to increase by a factor of two, which will likely disqualify strands with 30 mm twist pitch. This very strand twisted to 15 mm twist pitch would likely pass the ITER criteria. So, increasing the twist pitch has a very negative consequence and we need to make sure that it is absolutely necessary. Recently, A. Vostner (private communication) reported preliminary results on the losses in candidate TF strands. In agreement with what was reported in [5]; he found

  15. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    The objective of this work was to design a prototype fusion reactor based on fusion plasmas confined as ''Compact Toruses.' Six major criteria guided the prototype design. The prototype must: (1) produce net electricity decisively (P/sub net/ >70% of P/sub gross/), with P/sub net/ approximately 100 MW(e); (2) have small physical size (low project cost) but commercial plant; (3) have all features required of commerical plants; (4) avoid unreasonable extrapolation of technology; (5) minimize nuclear issues substantially, i.e. accident and waste issues of public concern, and (6) be modular (to permit repetitive fabrication of parts) and be maintainable with low occupational radiological exposures

  16. OAM mode converter in twisted fibers

    DEFF Research Database (Denmark)

    Usuga Castaneda, Mario A.; Beltran-Mejia, Felipe; Cordeiro, Cristiano

    2014-01-01

    We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA.......We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA....

  17. Twisted Vanes Would Enhance Fuel/Air Mixing In Turbines

    Science.gov (United States)

    Nguyen, H. Lee; Micklow, Gerald J.; Dogra, Anju S.

    1994-01-01

    Computations of flow show performance of high-shear airblast fuel injector in gas-turbine engine enhanced by use of appropriately proportioned twisted (instead of flat) dome swirl vanes. Resultant more nearly uniform fuel/air mixture burns more efficiently, emitting smaller amounts of nitrogen oxides. Twisted-vane high-shear airblast injectors also incorporated into paint sprayers, providing advantages of low pressure drop characteristic of airblast injectors in general and finer atomization of advanced twisted-blade design.

  18. Novice designers’ use of prototypes in engineering design

    Science.gov (United States)

    Deininger, Michael; Daly, Shanna R.; Sienko, Kathleen H.; Lee, Jennifer C.

    2017-01-01

    Prototypes are essential tools in product design processes, but are often underutilized by novice designers. To help novice designers use prototypes more effectively, we must first determine how they currently use prototypes. In this paper, we describe how novice designers conceptualized prototypes and reported using them throughout a design project, and compare reported prototyping use to prototyping best practices. We found that some of the reported prototyping practices by novice designers, such as using inexpensive prototypes early and using prototypes to define user requirements, occurred infrequently and lacked intentionality. Participants’ initial descriptions of prototypes were less sophisticated than how they later described using them and only upon prompted reflection did participants recognize more specific benefits of using prototypes. PMID:29398740

  19. Coupling two iteratives algorithms for density measurements by computerized tomography

    International Nuclear Information System (INIS)

    Silva, L.E.M.C.; Santos, C.A.C.; Borges, J.C.; Frenkel, A.D.B.; Rocha, G.M.

    1986-01-01

    This work develops a study for coupling two iteratives algotithms for density measurements by computerized tomography. Tomographies have been obtained with an automatized prototype, controled by a microcomputer, projected and assembled in the Nuclear Instrumentation Laboratory, at COPPE/UFRJ. Results show a good performance of the tomographic system, and demonstrate the validity of the method of calculus adopted. (Author) [pt

  20. Yukawa couplings in SO(10) heterotic M-theory vacua

    International Nuclear Information System (INIS)

    Faraggi, Alon E.; Garavuso, Richard S.

    2003-01-01

    We demonstrate the existence of a class of N=1 supersymmetric nonperturbative vacua of Horava-Witten M-theory compactified on a torus fibered Calabi-Yau 3-fold Z with first homotopy group π 1 (Z)=Z 2 , having the following properties: (1) SO(10) grand unification group, (2) net number of three generations of chiral fermions in the observable sector, and (3) potentially viable matter Yukawa couplings. These vacua correspond to semistable holomorphic vector bundles V Z over Z having structure group SU(4) C , and generically contain M5-branes in the bulk space. The nontrivial first homotopy group allows Wilson line breaking of the SO(10) symmetry. Additionally, we propose how the 11-dimensional Horava-Witten M-theory framework may be used to extend the perturbative calculation of the top quark Yukawa coupling in the realistic free-fermionic models to the nonperturbative regime. The basic argument being that the relevant coupling couples twisted-twisted-untwisted states and can be calculated at the level of the Z 2 xZ 2 orbifold without resorting to the full three generation models

  1. Hybrid molecular–continuum methods: From prototypes to coupling software

    KAUST Repository

    Neumann, Philipp; Eckhardt, Wolfgang; Bungartz, Hans-Joachim

    2014-01-01

    In this contribution, we review software requirements in hybrid molecular-continuum simulations. For this purpose, we analyze a prototype implementation which combines two frameworks-the Molecular Dynamics framework MarDyn and the framework Peano

  2. Comparison of split double and triple twists in pair figure skating.

    Science.gov (United States)

    King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I

    2008-05-01

    In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.

  3. Phosphorylation of basic helix-loop-helix transcription factor Twist in development and disease.

    Science.gov (United States)

    Xue, Gongda; Hemmings, Brian A

    2012-02-01

    The transcription factor Twist plays vital roles during embryonic development through regulating/controlling cell migration. However, postnatally, in normal physiological settings, Twist is either not expressed or inactivated. Increasing evidence shows a strong correlation between Twist reactivation and both cancer progression and malignancy, where the transcriptional activities of Twist support cancer cells to disseminate from primary tumours and subsequently establish a secondary tumour growth in distant organs. However, it is largely unclear how this signalling programme is reactivated or what signalling pathways regulate its activity. The present review discusses recent advances in Twist regulation and activity, with a focus on phosphorylation-dependent Twist activity, potential upstream kinases and the contribution of these factors in transducing biological signals from upstream signalling complexes. The recent advances in these areas have shed new light on how phosphorylation-dependent regulation of the Twist proteins promotes or suppresses Twist activity, leading to differential regulation of Twist transcriptional targets and thereby influencing cell fate.

  4. An IPMC-enabled bio-inspired bending/twisting fin for underwater applications

    International Nuclear Information System (INIS)

    Palmre, Viljar; Pugal, David; Kim, Sungjun; Kim, Kwang J; Hubbard, Joel J; Fleming, Maxwell; Leang, Kam K

    2013-01-01

    This paper discusses the design, fabrication, and characterization of an ionic polymer–metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a ‘fin’) is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or ‘activating’ the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long × 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s −1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure

  5. Further Generalisations of Twisted Gabidulin Codes

    DEFF Research Database (Denmark)

    Puchinger, Sven; Rosenkilde, Johan Sebastian Heesemann; Sheekey, John

    2017-01-01

    We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes.......We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes....

  6. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.

    Science.gov (United States)

    Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan

    2012-07-01

    A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Development of high power models of four-slot Annular Coupled Structure

    International Nuclear Information System (INIS)

    Kageyama, T.; Morozumi, Y.; Yoshino, K.; Yamazaki, Y.

    1994-01-01

    A π/2-mode standing-wave linac (f=1.296 GHz) of an Annular Coupled Structure (ACS) has been developed for the 1-GeV proton linac of the Japanese Hadron Project (JHP). This ACS has four coupling slots between accelerating and coupling cells in order to suppress higher order mode mixing with the π/2 coupling mode. High-β(β=v/c=0.78) and low-β(0.52) prototypes were constructed and tested up to each design RF power. Concerning the effect of the coupling slots on the fields of a coupled-cavity linac, it was found that the slot configuration of the side-coupled structure (SCS) tilts the accelerating field. On the other hand, the four-slot configuration of the ACS gives an almost axially symmetric accelerating field to the beam. (author)

  8. New twist on artificial muscles.

    Science.gov (United States)

    Haines, Carter S; Li, Na; Spinks, Geoffrey M; Aliev, Ali E; Di, Jiangtao; Baughman, Ray H

    2016-10-18

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.

  9. Live Piloting and Prototyping

    Directory of Open Access Journals (Sweden)

    Francesca Rizzo

    2013-07-01

    Full Text Available This paper presents current trends in service design research concerning large scale projects aimed at generating changes at a local scale. The strategy adopted to achieve this, is to co-design solutions including future users in the development process, prototyping and testing system of products and services before their actual implementation. On the basis of experience achieved in the European Project Life 2.0, this paper discusses which methods and competencies are applied in the development of these projects, eliciting the lessons learnt especially from the piloting phase in which the participatory design (PD approach plays a major role. In the first part, the topic is introduced jointly with the theoretical background where the user center design and participatory design methods are presented; then the Life 2.0 project development is described; finally the experience is discussed from a service design perspective, eliciting guidelines for piloting and prototyping services in a real context of use. The paper concludes reflecting on the designers’ role and competencies needed in this process.

  10. The endo-rectal probe prototype for the TOPEM project

    Energy Technology Data Exchange (ETDEWEB)

    Musico, Paolo, E-mail: Paolo.Musico@ge.infn.it

    2016-07-11

    The TOPEM project was funded by INFN with the aim of studying the design of a TOF-PET system dedicated to prostate imaging. During last year a big effort was put into building the prototype of the endo-rectal probe from all point of view: mechanical, thermal, electrical. A dedicated integrated circuit was adopted to have the minimum dimensions: the TOFPET ASIC. The system is composed by a LYSO pixellated crystal which is seen by a 128 SiPM matrix on both surfaces: this permits Depth Of Interaction (DOI) measurement. The 4 needed ASICs are handled by a FPGA board which transmits the acquired data over an UDP connection. The external container was made using 3-D printing technology: internal channels on the external surface permit the flowing of controlled temperature (≈35 °C) water. Electronic components power is dissipated using an internal air flow kept at lower temperature (≈20 °C). The probe is MR compatible: a dedicated small antenna can be accommodated in the container. This will permit simultaneous imaging in MRI and PET systems.

  11. Optimal deployment schedule of an active twist rotor for performance enhancement and vibration reduction in high-speed flights

    Directory of Open Access Journals (Sweden)

    Young H. YOU

    2017-08-01

    Full Text Available The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm (PSGA is employed for the optimizer. A rotorcraft Computational Structural Dynamics (CSD code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics (CFD code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.

  12. Non compact continuum limit of two coupled Potts models

    International Nuclear Information System (INIS)

    Vernier, Éric; Jacobsen, Jesper Lykke; Saleur, Hubert

    2014-01-01

    We study two Q-state Potts models coupled by the product of their energy operators, in the regime 2  3 (2) vertex model. It corresponds to a selfdual system of two antiferromagnetic Potts models, coupled ferromagnetically. We derive the Bethe ansatz equations and study them numerically for two arbitrary twist angles. The continuum limit is shown to involve two compact bosons and one non compact boson, with discrete states emerging from the continuum at appropriate twists. The non compact boson entails strong logarithmic corrections to the finite-size behaviour of the scaling levels, an understanding of which allows us to correct an earlier proposal for some of the critical exponents. In particular, we infer the full set of magnetic scaling dimensions (watermelon operators) of the Potts model. (paper)

  13. A beam test of prototype time projection chamber using micro ...

    Indian Academy of Sciences (India)

    High Energy Accelerator Organization (KEK), Tsukuba 305-0801, Japan. E-mail: makoto.kobayashi.exp@kek.jp. Abstract. We conducted a series of beam tests of prototype TPCs for the international linear collider (ILC) experiment, equipped with an MWPC, a MicroMEGAS, or GEMs as a readout device. The prototype ...

  14. Axure RP 6 Prototyping Essentials

    CERN Document Server

    Schwartz, Ezra

    2012-01-01

    Axure RP 6 Prototyping Essentials is a detailed, practical primer on the leading rapid prototyping tool. Short on jargon and high on concepts, real-life scenarios and step-by-step guidance through hands-on examples, this book will show you how to integrate Axure into your UX workflow. This book is written for UX practitioners, business analysts, product managers, and anyone else who is involved in UX projects. The book assumes that you have no or very little familiarity with Axure. It will help you if you are evaluating the tool for an upcoming project or are required to quickly get up to spee

  15. Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project

    Energy Technology Data Exchange (ETDEWEB)

    Pialla, David, E-mail: david.pialla@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Tenchine, Denis [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Li, Simon [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 91191 Gif-sur-Yvette Cedex (France); Gauthe, Paul; Vasile, Alfredo [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DER/SESI, 13108 Saint Paul Lez Durance Cedex (France); Baviere, Roland; Tauveron, Nicolas; Perdu, Fabien [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Maas, Ludovic; Cocheme, François [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN/SEMIA/BAST, B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); Huber, Klaus; Cheng, Xu [Karlsruhe Institute of Technology (KIT), Institute of Fusion and Reactor Technology (IFRT), Kaiserstraße 12, Building 07.08, 76131 Karlsruhe (Germany)

    2015-08-15

    Highlights: • The PHENIX natural convection test performed during the end of life tests program. • The calculation with system codes and theirs limits. • The calculation with coupling CFD and system code, which allows better prediction. • The tasks of code validation have been done in the frame of the THINS project. - Abstract: The PHENIX sodium cooled fast reactor started operation in 1973 and was shut down in 2009. Before decommissioning, an ultimate test program was designed and performed to provide valuable data for the development of future sodium cooled fast reactors, as the so-called Astrid prototype in France. Among these ultimate tests, a thermal-hydraulic Natural Convection Test (NCT) was set-up in June 2009. Starting from a reduced power state of 120 MWt, the NCT consists of a loss of the heat sink combined with a reactor scram and a primary pumps trip leading to stabilized natural circulation in the primary sodium system. The thermal-hydraulics innovative system project (THINS project), sponsored by the European Community in the frame of the 7th FP has selected this transient for validation of both stand-alone system code simulations and coupled simulations using system and CFD codes. Participants from three organizations (CEA, IRSN and KIT) have addressed this transient using different system codes (CATHARE, DYN2B and ATHLET) and CFD codes (TRIO-U and OPEN FOAM). The present paper depicts the different modeling approaches, methodologies and compares the numerical results with the available experimental data. Finally, the main lessons learned from the work performed within the THINS project on the PHENIX NCT with respect to code development and validation are summarized.

  16. Supersymmetric gauged double field theory: systematic derivation by virtue of twist

    International Nuclear Information System (INIS)

    Cho, Wonyoung; Fernández-Melgarejo, J.J.; Jeon, Imtak; Park, Jeong-Hyuck

    2015-01-01

    In a completely systematic and geometric way, we derive maximal and half-maximal supersymmetric gauged double field theories in lower than ten dimensions. To this end, we apply a simple twisting ansatz to the D=10 ungauged maximal and half-maximal supersymmetric double field theories constructed previously within the so-called semi-covariant formalism. The twisting ansatz may not satisfy the section condition. Nonetheless, all the features of the semi-covariant formalism, including its complete covariantizability, are still valid after the twist under alternative consistency conditions. The twist allows gaugings as supersymmetry preserving deformations of the D=10 untwisted theories after Scherk-Schwarz-type dimensional reductions. The maximal supersymmetric twist requires an extra condition to ensure both the Ramond-Ramond gauge symmetry and the 32 supersymmetries unbroken.

  17. Nonlinear physics of twisted magnetic field lines

    International Nuclear Information System (INIS)

    Yoshida, Zensho

    1998-01-01

    Twisted magnetic field lines appear commonly in many different plasma systems, such as magnetic ropes created through interactions between the magnetosphere and the solar wind, magnetic clouds in the solar wind, solar corona, galactic jets, accretion discs, as well as fusion plasma devices. In this paper, we study the topological characterization of twisted magnetic fields, nonlinear effect induced by the Lorentz back reaction, length-scale bounds, and statistical distributions. (author)

  18. Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator

    Science.gov (United States)

    Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit

    1995-04-01

    An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.

  19. The hadronic vacuum polarization and automatic O(a) improvement for twisted mass fermions

    International Nuclear Information System (INIS)

    Burger, Florian; Hotzel, Grit

    2014-12-01

    The vacuum polarization tensor and the corresponding vacuum polarization function are the basis for calculations of numerous observables in lattice QCD. Examples are the hadronic contributions to lepton anomalous magnetic moments, the running of the electroweak and strong couplings and quark masses. Quantities which are derived from the vacuum polarization tensor often involve a summation of current correlators over all distances in position space leading thus to the appearance of short-distance terms. The mechanism of O(a) improvement in the presence of such short-distance terms is not directly covered by the usual arguments of on-shell improvement of the action and the operators for a given quantity. If such short-distance contributions appear, the property of O(a) improvement needs to be reconsidered. We discuss the effects of these short-distance terms on the vacuum polarization function for twisted mass lattice QCD and find that even in the presence of such terms automatic O(a) improvement is retained if the theory is tuned to maximal twist.

  20. Observations on discretization errors in twisted-mass lattice QCD

    International Nuclear Information System (INIS)

    Sharpe, Stephen R.

    2005-01-01

    I make a number of observations concerning discretization errors in twisted-mass lattice QCD that can be deduced by applying chiral perturbation theory including lattice artifacts. (1) The line along which the partially conserved axial current quark mass vanishes in the untwisted-mass-twisted-mass plane makes an angle to the twisted-mass axis which is a direct measure of O(a) terms in the chiral Lagrangian, and is found numerically to be large; (2) Numerical results for pionic quantities in the mass plane show the qualitative properties predicted by chiral perturbation theory, in particular, an asymmetry in slopes between positive and negative untwisted quark masses; (3) By extending the description of the 'Aoki regime' (where m q ∼a 2 Λ QCD 3 ) to next-to-leading order in chiral perturbation theory I show how the phase-transition lines and lines of maximal twist (using different definitions) extend into this region, and give predictions for the functional form of pionic quantities; (4) I argue that the recent claim that lattice artifacts at maximal twist have apparent infrared singularities in the chiral limit results from expanding about the incorrect vacuum state. Shifting to the correct vacuum (as can be done using chiral perturbation theory) the apparent singularities are summed into nonsingular, and furthermore predicted, forms. I further argue that there is no breakdown in the Symanzik expansion in powers of lattice spacing, and no barrier to simulating at maximal twist in the Aoki regime

  1. Higher-twist correlations in polarized hadrons

    International Nuclear Information System (INIS)

    Tangerman, R.D.

    1996-01-01

    In this thesis we studied the response of polarized hadrons to several high-energy probes, working in the framework of the field theoretic model. Emphasis is laid upon higher-twist effects such as quark transverse momentum. The inclusive DIS process is very well suited to study QCD. From general principles we were able to derive four positivity constraints on the structure functions without invoking the helicity formalism. The on-shell quark model is used to illustrate these constraints. Subseqeuently, we concentrated on the higher-twist structure function g 2 (x,Q 2 ). (orig./HSI)

  2. Threshold corrections and gauge symmetry in twisted superstring models

    International Nuclear Information System (INIS)

    Pierce, D.M.

    1994-01-01

    Threshold corrections to the running of gauge couplings are calculated for superstring models with free complex world sheet fermions. For two N=1 SU(2)xU(1) 5 models, the threshold corrections lead to a small increase in the unification scale. Examples are given to illustrate how a given particle spectrum can be described by models with different boundary conditions on the internal fermions. We also discuss how complex twisted fermions can enhance the symmetry group of an N=4, SU(3)xU(1)xU(1) model to the gauge group SU(3)xSU(2)xU(1). It is then shown how a mixing angle analogous to the Weinberg angle depends on the boundary conditions of the internal fermions

  3. A beam test of prototype time projection chamber using micro ...

    Indian Academy of Sciences (India)

    We conducted a series of beam tests of prototype TPCs for the international linear collider (ILC) experiment, equipped with an MWPC, a MicroMEGAS, or GEMs as a readout device. The prototype operated successfully in a test beam at KEK under an axial magnetic field of up to 1 T. The analysis of data is now in progress ...

  4. Transcription factors zeb1, twist and snai1 in breast carcinoma

    International Nuclear Information System (INIS)

    Soini, Ylermi; Tuhkanen, Hanna; Sironen, Reijo; Virtanen, Ismo; Kataja, Vesa; Auvinen, Päivi; Mannermaa, Arto; Kosma, Veli-Matti

    2011-01-01

    Epitheliomesenchymal transition (EMT) is the process where cancer cells attain fibroblastic features and are thus able to invade neighboring tissues. Transcriptional factors zeb1, snai1 and twist regulate EMT. We used immunohistochemistry to investigate the expression of zeb1, twist and snai1 in tumor and stromal compartments by in a large set of breast carcinomas. The results were compared with estrogen and progesterone receptor status, HER2 amplification, grade, histology, TNM status and survival of the patients. Nuclear expression for twist was seen in the epithelial tumor cell compartment in 3.6% and for snai1 in 3.1% of the cases while zeb1 was not detected at all in these areas. In contrast, the tumor stromal compartment showed nuclear zeb1 and twist expression in 75% and 52.4% of the cases, respectively. Although rare, nuclear expression of twist in the epithelial tumor cell compartment was associated with a poor outcome of the patients (p = 0.054 log rank, p = 0.013, Breslow, p = 0.025 Tarone-Ware). Expression of snai1, or expression of zeb1 or twist in the stromal compartment did not have any prognostic significance. Furthermore, none of these factors associated with the size of the tumors, nor with the presence of axillary or distant metastases. Expression of zeb1 and twist in the stromal compartment was positively associated with a positive estrogen or progesterone receptor status of the tumors. Stromal zeb1 expression was significantly lower in ductal in situ carcinomas than in invasive carcinomas (p = 0.020). Medullary carcinomas (p = 0.017) and mucinous carcinomas (p = 0.009) had a lower stromal expression of zeb1 than ductal carcinomas. Stromal twist expression was also lower in mucinous (p = 0.017) than in ductal carcinomas. Expression of transcriptional factors zeb1 and twist mainly occur in the stromal compartment of breast carcinomas, possibly representing two populations of cells; EMT transformed neoplastic cells and stromal fibroblastic cells

  5. Conformal invariance and pion wave functions of nonleading twist

    International Nuclear Information System (INIS)

    Braun, V.M.; Filyanov, I.E.

    1989-01-01

    The restrictions are studied for the general structure of pion wave functions of twist 3 and twist 4 imposed by the conformal symmetry and the equations of motion. A systematic expansion of wave functions in the conformal spin is built and the first order corrections to asymptotic formulae are calculated by the QCD sum rule method. In particular, we have found a multiplicatively renormalizable contribution into the two-particle wave function of twist 4 which cannot be expanded in a finite set of Gegenbauer polynomials. 19 refs.; 5 figs

  6. Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus

    Science.gov (United States)

    Abdi, Azzedine; Mallet, Nicolas; Mohamed, Foad Y.; Sharott, Andrew; Dodson, Paul D.; Nakamura, Kouichi C.; Suri, Sana; Avery, Sophie V.; Larvin, Joseph T.; Garas, Farid N.; Garas, Shady N.; Vinciati, Federica; Morin, Stéphanie; Bezard, Erwan

    2015-01-01

    Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called “prototypic” and “arkypallidal” neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a “persistent” sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe. PMID:25926446

  7. A micro-coupling for micro mechanical systems

    Science.gov (United States)

    Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya

    2016-05-01

    The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and

  8. Enhancement of turbulent flow heat transfer in a tube with modified twisted tapes

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Y.G.; Zhao, C.H.; Song, C.F. [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan (China)

    2012-12-15

    Numerical simulations were performed to study the fluid flow and heat transfer in a tube with staggered twisted tapes with central holes. In the range of Reynolds numbers between 6000 and 28 000, the modified twisted tapes increased the Nusselt number by 76.2 {proportional_to} 149.7 % and the friction factor by 380.2 {proportional_to} 443.8 % compared to the smooth tube. Compared to the typical twisted tapes, the modified twisted tapes produced an acceleration flow through the triangle regions leading to the enhancement of heat transfer, and the holes in the modified tapes reduced the severe pressure loss. It was found that the modified twisted tapes decreased the friction factor by 8.0 {proportional_to} 16.1 % and enhanced the heat transfer by 34.1 {proportional_to} 46.8 % in comparison with the typical tapes. These results indicated that the performance ratio values of the tube with modified twisted tapes were higher than 1.0 in the range of Reynolds numbers studied. The computed performance ratios of the tube with modified twisted tapes were much higher than those of the tube with typical twisted tapes. This means that the integrated performance of the tube with staggered twisted tapes with central holes is superior to that of the tube with typical twisted tapes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Gauging the twisted Poincare symmetry as a noncommutative theory of gravitation

    International Nuclear Information System (INIS)

    Chaichian, M.; Tureanu, A.; Oksanen, M.; Zet, G.

    2009-01-01

    Einstein's theory of general relativity was formulated as a gauge theory of Lorentz symmetry by Utiyama in 1956, while the Einstein-Cartan gravitational theory was formulated by Kibble in 1961 as the gauge theory of Poincare transformations. In this framework, we propose a formulation of the gravitational theory on canonical noncommutative space-time by covariantly gauging the twisted Poincare symmetry, in order to fulfil the requirement of covariance under the general coordinate transformations, an essential ingredient of the theory of general relativity. It appears that the twisted Poincare symmetry cannot be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by introducing a more general covariant twist element. The advantages of such a formulation as well as the related problems are discussed and possible ways out are outlined.

  10. Iterative methods for overlap and twisted mass fermions

    International Nuclear Information System (INIS)

    Chiarappa, T.; Jansen, K.; Shindler, A.; Wetzorke, I.; Scorzato, L.; Urbach, C.; Wenger, U.

    2006-09-01

    We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

  11. Iterative methods for overlap and twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa, T. [Univ. di Milano Bicocca (Italy); Jansen, K.; Shindler, A.; Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Nagai, K.I. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy); Scorzato, L. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), Villazzano (Italy); Urbach, C. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Wenger, U. [ETH Zuerich (Switzerland). Inst. fuer Theoretische Physik

    2006-09-15

    We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

  12. Template preparation of twisted nanoparticles of mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen

    2011-01-01

    Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.

  13. Correlation Between Expression of Twist and Podoplanin in Ductal Breast Carcinoma.

    Science.gov (United States)

    Grzegrzolka, Jedrzej; Wojtyra, Patrycja; Biala, Martyna; Piotrowska, Aleksandra; Gomulkiewicz, Agnieszka; Rys, Janusz; Podhorska-Okolow, Marzenna; Dziegiel, Piotr

    2017-10-01

    As a result of activation of transcription factors engaged in epithelial-mesenchymal transition (EMT), such as Twist, inhibition of epithelial markers and an increased expression of mesenchymal markers are observed. One of the specific markers of cancer-associated fibroblasts is podoplanin (PDPN) - a mucin-type membrane glycoprotein. The aim of this work was to study the localisation and intensity of expression of Twist and PDPN on the mRNA and protein level in cases of invasive ductal breast carcinoma (IDC), and its association with patients' clinico-pathological data. The study included archival material in a form of 80 paraffin IDC blocks and 11 IDC fragments frozen in liquid nitrogen. Immunohistochemical expression of Twist and PDPN was evaluated using light microscope and semiquantitative scale for evaluation of nuclear expression or immunoreactive scale (IRS) for evaluation of cytoplasmic expression. Material was isolated from frozen IDC fragments using laser micro-dissection (from cancer and stromal cells, separately) and was used to perform real-time PCR. Twist expression was higher in stromal cells in comparison to cancer cells. Analysis of patients' survival rate showed, that higher expression of Twist in cancer cells was associated with shorter overall survival time and shorter event-free survival time. The expression of PDPN was also higher in stromal cells in comparison with cancer cells. In addition, positive correlation was observed between expression of Twist and PDPN in stromal cells of IDC (r=0.267; p<0.05). The relationship between the higher expression of Twist in both cancer and stromal cells and shorter patients' survival indicates Twist as a potential useful prognostic marker in IDC. Positive correlation of Twist and PDPN expression may indicate the role of PDPN in EMT in IDC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Twisted entire cyclic cohomology, J-L-O cocycles and equivariant spectral triples

    International Nuclear Information System (INIS)

    Goswami, D.

    2002-07-01

    We study the 'quantized calculus' corresponding to the algebraic ideas related to 'twisted cyclic cohomology'. With very similar definitions and techniques, we define and study 'twisted entire cyclic cohomology' and the 'twisted Chern character' associated with an appropriate operator theoretic data called 'twisted spectral data', which consists of a spectral triple in the conventional sense of noncommutative geometry and an additional positive operator having some specified properties. Furthermore, it is shown that given a spectral triple (in the conventional sense) which is equivariant under the action of a compact matrix pseudogroup, it is possible to obtain a canonical twisted spectral data and hence the corresponding (twisted) Chern character, which will be invariant under the action of the pseudogroup, in contrast to the fact that the Chern character coming from the conventional noncommutative geometry need not be invariant under the above action. (author)

  15. On the space of connections having non-trivial twisted harmonic spinors

    International Nuclear Information System (INIS)

    Bei, Francesco; Waterstraat, Nils

    2015-01-01

    We consider Dirac operators on odd-dimensional compact spin manifolds which are twisted by a product bundle. We show that the space of connections on the twisting bundle which yields an invertible operator has infinitely many connected components if the untwisted Dirac operator is invertible and the dimension of the twisting bundle is sufficiently large

  16. On the space of connections having non-trivial twisted harmonic spinors

    Energy Technology Data Exchange (ETDEWEB)

    Bei, Francesco, E-mail: bei@math.hu-berlin.de [Institut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin (Germany); Waterstraat, Nils, E-mail: n.waterstraat@kent.ac.uk [School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury, Kent CT2 7NF (United Kingdom)

    2015-09-15

    We consider Dirac operators on odd-dimensional compact spin manifolds which are twisted by a product bundle. We show that the space of connections on the twisting bundle which yields an invertible operator has infinitely many connected components if the untwisted Dirac operator is invertible and the dimension of the twisting bundle is sufficiently large.

  17. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  18. Performance of a prototype water Cherenkov detector for LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Cao, Zhe; Chang, J.F.; Chen, G.; Chen, L.H.; Chen, M.J.; Chen, T.L.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Danzengluobu; Feng, C.F.; Gao, B.; Gu, M.H.; Hao, X.J.; He, H.H.; Hu, H.B.

    2011-01-01

    A large high-altitude air shower observatory is to be built at Yang-Ba-Jing, Tibet, China. One of its main purposes is to survey the northern sky for very-high-energy (above 100 GeV) gamma ray sources via its ground-based water Cherenkov detector array. To gain full knowledge of water Cherenkov technique in detecting air showers, a prototype water Cherenkov detector is built at the Institute of High Energy Physics, Beijing. The performance of the prototype water Cherenkov detector is studied by measuring its response to cosmic muons. The results are compared with those from a full Monte Carlo simulation to provide a series of information regarding the prototype detector in guiding electronics design and detector optimization.

  19. Aeroelastic response and stability of tiltrotors with elastically-coupled composite rotor blades. Ph.D. Thesis

    Science.gov (United States)

    Nixon, Mark W.

    1993-01-01

    There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via

  20. Quadratic Twists of Rigid Calabi–Yau Threefolds Over

    DEFF Research Database (Denmark)

    Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko

    2013-01-01

    of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...

  1. miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huaize [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029 (China); Wang, Han [The First Clinical Medical College of Nanjing Medical University, Nanjing 210029 (China); Liu, Xiaoxiao [Department of Biotechnology, Nanjing Medical University, Nanjing 210029 (China); Yu, Tingting, E-mail: tingting@njmu.edu.cn [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029 (China)

    2016-04-01

    Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.

  2. miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Liu, Huaize; Wang, Han; Liu, Xiaoxiao; Yu, Tingting

    2016-01-01

    Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.

  3. N = 4 Superconformal Chern-Simons theories with hyper and twisted hyper multiplets

    International Nuclear Information System (INIS)

    Hosomichi, Kazuo; Lee, Ki-Myeong; Lee, Sungjay; Lee, Sangmin; Park, Jaemo

    2008-01-01

    We extend the N = 4 superconformal Chern-Simons theories of Gaiotto and Witten to those with additional twisted hyper-multiplets. The new theories are generically linear quiver gauge theories with the two types of hyper-multiplets alternating between gauge groups. Our construction includes the Bagger-Lambert model of SO(4) gauge group. A family of abelian theories are identified with those proposed earlier in the context of the M-crystal model for M2-branes probing (C 2 /Z n ) 2 orbifolds. Possible extension with non-abelian BF couplings and string/M-theory realization are briefly discussed.

  4. The geometric Langlands twist in five and six dimensions

    International Nuclear Information System (INIS)

    Bak, Dongsu; Gustavsson, Andreas

    2015-01-01

    Abelian 6d (2,0) theory has SO(5) R symmetry. We twist this theory by identifying the R symmetry group with the SO(5) subgroup of the SO(1,5) Lorentz group. This twisted theory can be put on any five-manifold M, times R, while preserving one scalar supercharge. We subsequently assume the existence of one unit normalized Killing vector field on M, and we find a corresponding SO(4) twist that preserves two supercharges and is a generalization of the geometric Langlands twist of 4d SYM. We generalize the story to non-Abelian gauge group for the corresponding 5d SYM theories on M. We derive a vanishing theorem for BPS contact instantons by identifying the 6d potential energy and its BPS bound, in the 5d theory. To this end we need to perform a Wick rotation that complexifies the gauge field.

  5. Higher-Twist Dynamics in Large Transverse Momentum Hadron Production

    International Nuclear Information System (INIS)

    Francois, Alero

    2009-01-01

    A scaling law analysis of the world data on inclusive large-p # perpendicular# hadron production in hadronic collisions is carried out. A significant deviation from leading-twist perturbative QCD predictions at next-to-leading order is reported. The observed discrepancy is largest at high values of x # perpendicular# = 2p # perpendicular#/√s. In contrast, the production of prompt photons and jets exhibits the scaling behavior which is close to the conformal limit, in agreement with the leading-twist expectation. These results bring evidence for a non-negligible contribution of higher-twist processes in large-p # perpendicular# hadron production in hadronic collisions, where the hadron is produced directly in the hard subprocess rather than by gluon or quark jet fragmentation. Predictions for scaling exponents at RHIC and LHC are given, and it is suggested to trigger the isolated large-p # perpendicular# hadron production to enhance higher-twist processes.

  6. Mechanical Prototyping and Manufacturing Internship

    Science.gov (United States)

    Grenfell, Peter

    2016-01-01

    The internship was located at the Johnson Space Center (JSC) Innovation Design Center (IDC), which is a facility where the JSC workforce can meet and conduct hands-on innovative design, fabrication, evaluation, and testing of ideas and concepts relevant to NASA's mission. The tasks of the internship included mechanical prototyping design and manufacturing projects in service of research and development as well as assisting the users of the IDC in completing their manufacturing projects. The first project was to manufacture hatch mechanisms for a team in the Systems Engineering and Project Advancement Program (SETMAP) hexacopter competition. These mechanisms were intended to improve the performance of the servomotors and offer an access point that would also seal to prevent cross-contamination. I also assisted other teams as they were constructing and modifying their hexacopters. The success of this competition demonstrated a proof of concept for aerial reconnaissance and sample return to be potentially used in future NASA missions. I also worked with Dr. Kumar Krishen to prototype an improved thermos and a novel, portable solar array. Computer-aided design (CAD) software was used to model the parts for both of these projects. Then, 3D printing as well as conventional techniques were used to produce the parts. These prototypes were then subjected to trials to determine the success of the designs. The solar array is intended to work in a cluster that is easy to set up and take down and doesn't require powered servomechanisms. It could be used terrestrially in areas not serviced by power grids. Both projects improve planetary exploration capabilities to future astronauts. Other projects included manufacturing custom rail brackets for EG-2, assisting engineers working on underwater instrument and tool cases for the NEEMO project, and helping to create mock-up parts for Space Center Houston. The use of the IDC enabled efficient completion of these projects at

  7. Function-oriented display system: background and first prototypes

    International Nuclear Information System (INIS)

    Andresen, Gisle; Friberg, Maarten; Teigen, Arild; Pirus, Dominique

    2004-04-01

    The objective of the function-oriented displays and alarm project is to design, implement and evaluate Human System Interfaces (HSI) based on a function-oriented design philosophy. Function-oriented design is an approach for designing HSIs where the plant's functions, identified through a function analysis, are used for determining the content, organisation, and management of displays. The project has used the 'FITNESS approach', originally developed by EDF in France, as a starting point. FITNESS provides an integrated display system consisting of process operating displays, operating procedures, alarms and trend displays - all based on a functional decomposition of the plant. So far, two prototypes have been implemented on the FRESH PWR simulator in HAMMLAB. The first prototype focused on the condensate pumps. Three process operating displays representing functions at different levels of the functional hierarchy were implemented. Computerised startup and shutdown procedures for the condensate pumps function were also implemented. In the second prototype, the scope was increased to cover the main feedwater system. The displays of the first prototype were redesigned and additional displays were created. In conclusion, the first phase of the project has been completed successfully, and we are now ready to enter the second phase. In the second phase, the scope of the prototype will be increased further to include the steam-generators and function-oriented disturbance operating procedures. The prototype will be evaluated in a user test conducted later in 2004. (Author)

  8. Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)

    2010-05-15

    In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)

  9. Higher-Twist Distribution Amplitudes of the K Meson in QCD

    CERN Document Server

    Ball, P; Lenz, A; Ball, Patricia

    2006-01-01

    We present a systematic study of twist-3 and twist-4 light-cone distribution amplitudes of the K meson in QCD. The structure of SU(3)-breaking corrections is studied in detail. Non-perturbative input parameters are estimated from QCD sum rules and renormalons. As a by-product, we give a complete reanalysis of the twist-3 and -4 parameters of the pi-meson distribution amplitudes; some of the results differ from those usually quoted in the literature.

  10. Cerclage handling for improved fracture treatment. A biomechanical study on the twisting procedure.

    Science.gov (United States)

    Wähnert, D; Lenz, M; Schlegel, U; Perren, S; Windolf, M

    2011-01-01

    Twisting is clinically the most frequently applied method for tightening and maintaining cerclage fixation. The twisting procedure is controversially discussed. Several factors during twisting affect the mechanical behaviour of the cerclage. This in vitro study investigated the influence of different parameters of the twisting procedure on the fixation strength of the cerclage in an experimental setup with centripetal force application. Cortical half shells of the femoral shaft were mounted on a testing fixture. 1.0 mm, 1.25 mm and 1.5 mm stainless ste- el wire cerclages as well as a 1.0mm cable cerclage were applied to the bone. Pretension of the cerclage during the installation was measured during the locking procedure. Subsequently, cyclic testing was performed up to failure. Higher pretension could be achieved with increasing wire diameter. However, with larger wire diameter the drop of pre- tension due to the bending and cutting the twist also increased. The cable cerclage showed the highest pretension after locking. Cerclages twisted under traction revealed significantly higher initial cerclage tension. Plastically deformed twists offered higher cerclage pretension compared to twists which were deformed in the elastic region of the material. Cutting the wire within the twist caused the highest loss of cerclage tension (44% initial tension) whereas only 11 % was lost when cutting the wire ends separately. The bending direction of the twist significantly influenced the cerclage pretension. 45% pretension was lost in forward bending of the twist, 53% in perpendicular bending and 90% in backward bending. Several parameters affect the quality of a cerclage fixation. Adequate installation of cerclage wires could markedly improve the clinical outcome of cerclage.

  11. AKT-ions with a TWIST between EMT and MET.

    Science.gov (United States)

    Tang, Huifang; Massi, Daniela; Hemmings, Brian A; Mandalà, Mario; Hu, Zhengqiang; Wicki, Andreas; Xue, Gongda

    2016-09-20

    The transcription factor Twist is an important regulator of cranial suture during embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular transition from an epithelial to mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in cell motility. In the absence of Twist activity, EMT and associated phenotypic changes in cell morphology and motility can also be induced, albeit moderately, by other transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist in human mammary tumour cells was first reported to drive metastasis to the lung in a metastatic breast cancer model. Subsequent analysis of many types of carcinoma demonstrated overexpression of these unique EMT transcription factors, which statistically correlated with worse outcome, indicating their potential as biomarkers in the clinic. However, the mechanisms underlying their activation remain unclear. Interestingly, increasing evidence indicates they are selectively activated by distinct intracellular kinases, thereby acting as downstream effectors facilitating transduction of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-epithelial transition (MET) transcription to control cell plasticity. Understanding these relationships and emerging data indicating differential phosphorylation of Twist leads to complex and even paradoxical functionalities, will be vital to unlocking their potential in clinical settings.

  12. Conductive sub-layer of twisted-tape-induced swirl-flow heat transfer in vertical circular tubes with various twisted-tape inserts

    Science.gov (United States)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2018-04-01

    Twisted-tape-induced swirl-flow heat transfer due to exponentially increasing heat inputs with various exponential periods ( Q = Q 0 exp(t/τ), τ = 6.04 to 23.07 s) and twisted-tape-induced pressure drop was systematically measured for various mass velocities ( G = 4115 to 13,656 kg/m2 s), inlet liquid temperatures ( T in = 285.88 to 299.09 K), and inlet pressures ( P in = 847.45 to 943.29 kPa) using an experimental water loop flow. Measurements were made over a 59.2-mm effective length and three sections (upper, middle, and lower positions), within which four potential taps were spot-welded onto the outer surface of a 6-mm-inner-diameter, 69.6-mm-heated length, 0.4-mm-thickness platinum circular test tube. Type SUS304 twisted tapes with a width w = 5.6 mm, a thickness δ T = 0.6 mm, a total length l = 372 mm, and twist ratios y = 2.39 and 4.45 were employed in this study. The RANS equations (Reynolds Averaged Navier-Stokes Simulation) with a k-ɛ turbulence model for a circular tube 6 mm in diameter and 636 mm in length were numerically solved for heating of water with a heated section 6 mm in diameter and 70 mm in length using the CFD code, under the same conditions as the experimental ones and considering the temperature dependence of the thermo-physical properties concerned. The theoretical values of surface heat flux q on the circular tubes with twisted tapes with twist ratios y of 2.39 and 4.45 were found to be almost in agreement with the corresponding experimental values of heat flux q, with deviations of less than 30% for the range of temperature difference between the average heater inner surface temperature and the liquid bulk mean temperature ΔT L [ = T s,av - T L , T L = ( T in + T out )/2] considered in this study. The theoretical values of the local surface temperature T s , local average liquid temperature T f,av , and local liquid pressure drop ΔP x were found to be within almost 15% of the corresponding experimental ones. The thickness of the

  13. Development and test of prototype components for ITER

    International Nuclear Information System (INIS)

    Biel, Wolfgang; Behr, Wilfried; Castano-Bardawil, David

    2015-08-01

    The scientific program of the project is divided into the following partial projects: (1.) ITER Diagnostic Port Plug for the charge-exchange spectroscopy (CXRS) with the subthemes: (a) Development of prototypes for critical mechanical components, (b) development of a roboter for the laser welding of vacuum seals and pipings at the Port Plug, (c) mirror studies, (d) CXRS prototype spectrometer, (2.) ITER tritium retention diagnostics (TR), (3.) ITER disruption mitigation ventile (DMV).

  14. 'Twisted' strings and higher level Kac-Moody representations

    International Nuclear Information System (INIS)

    Horvath, Z.; Palla, L.

    1989-01-01

    Using an orbifold-like construction the twisted sector of a closed string moving on GxG (with G simply laced) is determined. A level-two G current operating there is constructed explicitly. The decomposition of the twisted sector into products between appropriate conformal and level-two G representations is given if 2 rank G-2 dim G/(2+g)<1. (orig.)

  15. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1

    International Nuclear Information System (INIS)

    Pei, Xin-Hong; Lv, Xin-Quan; Li, Hui-Xiang

    2014-01-01

    Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cells and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression

  16. Structural Polymorphism of the Actin-Espin System: A Prototypical System of Filaments and Linkers in Stereocilia

    International Nuclear Information System (INIS)

    Purdy, Kirstin R.; Wong, Gerard C. L.; Bartles, James R.

    2007-01-01

    We examine the interaction between cytoskeletal F-actin and espin 3A, a prototypical actin bundling protein found in sensory cell microvilli, including ear cell stereocilia. Espin induces twist distortions in F-actin as well as facilitates bundle formation. Mutations in one of the two F-actin binding sites of espin, which have been implicated in deafness, can tune espin-actin interactions and radically transform the system's phase behavior. These results are compared to recent theoretical work on the general phase behavior linker-rod systems

  17. Twisted spin Sutherland models from quantum Hamiltonian reduction

    International Nuclear Information System (INIS)

    Feher, L; Pusztai, B G

    2008-01-01

    Recent general results on Hamiltonian reductions under polar group actions are applied to study some reductions of the free particle governed by the Laplace-Beltrami operator of a compact, connected, simple Lie group. The reduced systems associated with arbitrary finite-dimensional irreducible representations of the group by using the symmetry induced by twisted conjugations are described in detail. These systems generically yield integrable Sutherland-type many-body models with spin, which are called twisted spin Sutherland models if the underlying twisted conjugations are built on non-trivial Dynkin diagram automorphisms. The spectra of these models can be calculated, in principle, by solving certain Clebsch-Gordan problems, and the result is presented for the models associated with the symmetric tensorial powers of the defining representation of SU(N)

  18. Prototype Theory Based Feature Representation for PolSAR Images

    OpenAIRE

    Huang Xiaojing; Yang Xiangli; Huang Pingping; Yang Wen

    2016-01-01

    This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our...

  19. PARTIAL ERUPTION OF A FILAMENT WITH TWISTING NON-UNIFORM FIELDS

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Xiang, Yongyuan; Cai, Yunfang; Liu, Weiwei

    2015-01-01

    The eruption of a filament in a kinklike fashion is often regarded as a signature of kink instability. However, the kink instability threshold for the filament’s magnetic structure is not widely understood. Using Hα observations from the New Vacuum Solar Telescope, we present a partial eruptive filament. During the eruption, the filament thread appeared to split from its middle and to break out in a kinklike fashion. In this period, the remaining filament material stayed below and erupted without the kinking motion later on. The coronal magnetic field lines associated with the filament are obtained from nonlinear force-free field extrapolations using the twelve-minute-cadence vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory. We studied the extrapolated field lines passing through the magnetic dips which are in good agreement with the observed filament. The field lines are non-uniformly twisted and appear to be composed of two twisted flux ropes winding around each other. One of them has a higher twist than the other, and the flux rope with the higher twist has its dips aligned with the kinking eruptive thread at the beginning of its eruption. Before the eruption, moreover, the flux rope with the higher twist was found to expand with an approximately constant field twist. In addition, the helicity flux maps deduced from the HMI magnetograms show that some helicity is injected into the overlying magnetic arcade, but no significant helicity is injected into the flux ropes. Accordingly, we suggest that the highly twisted flux rope became kink unstable when the instability threshold declined with the expansion of the flux rope

  20. Dynamical twisted mass fermions with light quarks. Simulation and analysis details

    Energy Technology Data Exchange (ETDEWEB)

    Boucaud, P. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Dimopoulos, P. [Rome-2 Univ. (Italy). Dipt. di Fisica; Farchioni, F. [Muenster Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2008-03-15

    In a recent paper (2007) we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theory formulae. (orig.)

  1. Dynamical twisted mass fermions with light quarks. Simulation and analysis details

    International Nuclear Information System (INIS)

    Boucaud, P.; Dimopoulos, P.; Farchioni, F.

    2008-03-01

    In a recent paper (2007) we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theory formulae. (orig.)

  2. Complex Toda theories and twisted reality conditions

    International Nuclear Information System (INIS)

    Evans, J.M.

    1993-01-01

    The Toda equations (based on a finite-dimensional or affine Lie algebra of superalgebra) are discussed as integrable non-linear differential equations for a set of complex scalar fields. We show that such complex Toda fields can either be restricted to take real values in the standard way or else they can be subjected to a 'twisted' reality condition associated to any Z 2 symmetry of the Cartan matrix or Dynkin diagram of the underlying algebra. Different reality conditions give rise to different lagrangian field theories. In the conformal case, however, these theories have the same central charge, while in the affine case they have the same mass spectrum. The construction of N=2 superconformal theories based on the superalgebras A(n, n-1) is clarified, and a new class of conformal field theories with positive kinetic energy based on the superalgebras C(n) is presented. The ideas developed are also relevant to understanding solition solutions in affine Toda theories with imaginary coupling constant. (orig.)

  3. Flux Density through Guides with Microstructured Twisted Clad DB Medium

    Directory of Open Access Journals (Sweden)

    M. A. Baqir

    2014-01-01

    Full Text Available The paper deals with the study of flux density through a newly proposed twisted clad guide containing DB medium. The inner core and the outer clad sections are usual dielectrics, and the introduced twisted windings at the core-clad interface are treated under DB boundary conditions. The pitch angle of twist is supposed to greatly contribute towards the control over the dispersion characteristics of the guide. The eigenvalue equation for the guiding structure is deduced, and the analytical investigations are made to explore the propagation patterns of flux densities corresponding to the sustained low-order hybrid modes under the situation of varying pitch angles. The emphasis has been put on the effects due to the DB twisted pitch on the propagation of energy flux density through the guide.

  4. Study on development of virtual reactor core laboratory (1). Development of prototype coupled neutronic, thermal-hydraulic and structural analysis system

    International Nuclear Information System (INIS)

    Uto, Nariaki; Sugaya, Toshio; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sakai, Takaaki

    1999-09-01

    A study on development of virtual reactor core laboratory, which is to conduct numerical experiments representative of complicated physical phenomena in practical reactor core systems on a computational environment, has progressed at Japan Nuclear Cycle Development Institute (JNC). The study aims at systematic evaluation of these phenomena into which nuclear reactions, thermal-hydraulic characteristics, structural responses and fuel behaviors combine, and effective utilization of the obtained comprehension for core design. This report presents a production of a prototype computational system which is required to construct the virtual reactor core laboratory. This system is to evaluate reactor core performance under the coupled neutronic, thermal-hydraulic and structural phenomena, and is composed of two analysis tools connected by a newly developed interface program; 1) an existing space-dependent coupled neutronic and thermal-hydraulic analysis system arranged at JNC and 2) a core deformation analysis code. It acts on a cluster of several DEC/Alpha workstations. A specific library called MPI1 (Message Passing Interface 1) is incorporated as a tool for communicating among the analysis modules consisting of the system. A series of calculations for simulating a sequence of Unprotected Loss Of Heat Sink (ULOHS) coupled with rapid drop of some neutron absorber devices in a prototype fast reactor is tried to investigate how the system works. The obtained results show the core deformation behavior followed by the reactivity change that can be properly evaluated. The results of this report show that the system is expected to be useful for analyzing sensitivity of reactor core performance with respect to uncertainties of various design parameters and establishing a concept of passive safety reactor system, taking into account space distortion of neutron flux distribution during abnormal events as well as reactivity feedback from core deformation. (author)

  5. MPACT Fast Neutron Multiplicity System Prototype Development

    Energy Technology Data Exchange (ETDEWEB)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  6. Effect of Twisting and Stretching on Magneto Resistance and Spin Filtration in CNTs

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singh

    2017-08-01

    Full Text Available Spin-dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT and non-equilibrium green’s function (NEGF formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC, which results in higher magneto resistance (MR. Twisting allows spin-up current almost equivalent to the pristine CNT case, resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones, with pristine giving a higher spin filtration than twisted CNT.

  7. The Ec prototype repository project: implications of assessments for refining repository design

    International Nuclear Information System (INIS)

    Svemar, C.

    2004-01-01

    The most important issue in the evaluation of the repository performance is the long term safety of the repository. Analyses for this issue focuses on the 'steady state' conditions which start at the time when the repository has been saturated and the groundwater table returned to its normal level. The bentonite buffer around the canisters is saturated and homogeneous, and the canister is located exactly in the centre of the buffer. The backfill in the tunnel has been saturated as well and fills the earlier open spaces in the tunnel completely. The task of the activities taking places prior to the start of the 'steady state' conditions, like excavation, deposition, backfilling and sealing, with due consideration to the processes a consequences they may cause in the long run, is to provide for these 'ideal' conditions, as close as possible. While studying these activities in detail it has become obvious that development of methods and techniques needs to be carefully addressed before the decision is made on how to apply them in the repository. One general finding is that the situation in engineering of details is not that much different from the situation in geological characterisation of a site in detail; one more detail of engineering and the consequences it brings often complicates the situation rather than supports the solution prioritized so far. Many of the practical issues have been studied in the Prototype Repository project in the AEspoe Hard Rock Laboratory (Pusch et al., 2000). The Prototype Repository consists of two sections with four respectively two deposition holes with bentonite buffer and canister, the latter holding electrical heaters. The sections are separated by a concrete plug, and the whole test is to be separated from the rest of the laboratory by an outer plug. The project has two objectives: 1. To demonstrate the integrated function of tile deep repository components under realistic conditions and to compare results with models and

  8. Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction.

    Science.gov (United States)

    Rai, Rishika; Krishnan, Baiju P; Sureshan, Kana M

    2018-03-20

    Crystals that show mechanical response against various stimuli are of great interest. These stimuli induce polymorphic transitions, isomerizations, or chemical reactions in the crystal and the strain generated between the daughter and parent domains is transcribed into mechanical response. We observed that the crystals of modified dipeptide LL (N 3 -l-Ala-l-Val-NHCH 2 C≡CH) undergo spontaneous twisting to form right-handed twisted crystals not only at room temperature but also at 0 °C over time. Using various spectroscopic techniques, we have established that the twisting is due to the spontaneous topochemical azide-alkyne cycloaddition (TAAC) reaction at room temperature or lower temperatures. The rate of twisting can be increased by heating, exploiting the faster kinetics of the TAAC reaction at higher temperatures. To address the role of molecular chirality in the direction of twisting the enantiomer of dipeptide LL, N 3 -d-Ala-d-Val-NHCH 2 C≡CH (DD), was synthesized and topochemical reactivity and mechanoresponse of its crystals were studied. We have found that dipeptide DD not only underwent TAAC reaction, giving 1,4-triazole-linked pseudopolypeptides of d-amino acids, but also underwent twisting with opposite handedness (left-handed twisting), establishing the role of molecular chirality in controlling the direction of mechanoresponse. This paper reports ( i ) a mechanical response due to a thermal reaction and ( ii ) a spontaneous mechanical response in crystals and ( iii ) explains the role of molecular chirality in the handedness of the macroscopic mechanical response.

  9. The Starlite Project - Prototyping Real-Time Software.

    Science.gov (United States)

    1992-11-01

    by ONR under contract ledge of transactions and a temporal data model. A N00014-91-J-l 102, by DOE, and by NOSC. multiversion data object is one...environment. Section 4 presents experimentations of priority-based synchronization algorithms and multiversion data objects using the prototyping environment...priority-based .yn- chronization algorithms and between a multiversion database and its corresponding single- version database, through the sensitivity

  10. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    Science.gov (United States)

    Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-10-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6l/R radians, where l/R is the aspect ratio of a MFR, with a cutoff at about 12π radians AU-1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2l/R radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.

  11. Twisting the Mirror TBA

    NARCIS (Netherlands)

    Arutyunov, G.E.; de Leeuw, M.; van Tongeren, S.J.

    2010-01-01

    We study finite-size corrections to the magnon dispersion relation in three models which differ from string theory on AdS5 x S5 in their boundary conditions. Asymptotically, this is accomplished by twisting the transfer matrix in a way which manifestly preserves integrability. In model I all

  12. Development of coupled models and their validation against experiments -DECOVALEX project

    International Nuclear Information System (INIS)

    Stephansson, O.; Jing, L.; Kautsky, F.

    1995-01-01

    DECOVALEX is an international co-operative research project for theoretical and experimental studies of coupled thermal, hydrological and mechanical processes in hard rocks. Different mathematical models and computer codes have been developed by research teams from different countries. These models and codes are used to study the so-called Bench Mark Test and Test Case problems developed within this project. Bench-Mark Tests are defined as hypothetical initial-boundary value problems of a generic nature, and Test Cases are experimental investigations of part or full aspects of coupled thermo-hydro-mechanical processes in hard rocks. Analytical and semi-analytical solutions related to coupled T-H-M processes are also developed for problems with simpler geometry and initial-boundary conditions. These solutions are developed to verify algorithms and their computer implementations. In this contribution the motivation, organization and approaches and current status of the project are presented, together with definitions of Bench-Mark Tests and Test Case problems. The definition and part of results for a BMT problem (BMT3) for a near-field repository model are described as an example. (authors). 3 refs., 11 figs., 3 tabs

  13. Design, Fabrication and Testing of Medium-Beta 650 MHz SRF Cavity Prototypes for Project-X

    International Nuclear Information System (INIS)

    Marhauser, F.; Clemens, W.A.; Henry, J.; Kneisel, P.; Martin, R.; Rimmer, R.A.; Slack, G.; Turlington, L.; Williams, R.S.

    2011-01-01

    A new type of superconducting radio frequency (SRF) cavity shape with a shallow equator dome to reduce electron impact energies for suppressing multipacting barriers has been proposed. The shape is in consideration for the first time in the framework of Project-X to design a potential multi-cell cavity candidate for the medium-beta section of the SRF proton CW linac operating at 650 MHz. Rationales covering the design of the multi-cell cavity, the manufacture, post-processing and high power testing of two single-cell prototypes are presented.

  14. Finite element and analytical models for twisted and coiled actuator

    Science.gov (United States)

    Tang, Xintian; Liu, Yingxiang; Li, Kai; Chen, Weishan; Zhao, Jianguo

    2018-01-01

    Twisted and coiled actuator (TCA) is a class of recently discovered artificial muscle, which is usually made by twisting and coiling polymer fibers into spring-like structures. It has been widely studied since discovery due to its impressive output characteristics and bright prospects. However, its mathematical models describing the actuation in response to the temperature are still not fully developed. It is known that the large tensile stroke is resulted from the untwisting of the twisted fiber when heated. Thus, the recovered torque during untwisting is a key parameter in the mathematical model. This paper presents a simplified model for the recovered torque of TCA. Finite element method is used for evaluating the thermal stress of the twisted fiber. Based on the results of the finite element analyses, the constitutive equations of twisted fibers are simplified to develop an analytic model of the recovered torque. Finally, the model of the recovered torque is used to predict the deformation of TCA under varying temperatures and validated against experimental results. This work will enhance our understanding of the deformation mechanism of TCAs, which will pave the way for the closed-loop position control.

  15. Investigation of Shielding Properties of Yarns, Twisted with Metal Wire

    Directory of Open Access Journals (Sweden)

    Sandra VARNAITĖ-ŽURAVLIOVA

    2014-04-01

    Full Text Available The development level of the modern techniques and information technologies creates diverse nature electromagnetic fields and electric field accumulations in the human environment. Electrically conductive textiles that protect against electromagnetic waves and electric charge accumulations can be usable as protective covers for work in computer equipment rooms, measuring stands, air and gas filters and so on. One of the methods used in increase of electrical conductivity in textiles is the development of their specific structures (including the development of threads with the metal component. In this paper, unlike the currently used in the world conductive material production method, where different metal fibres are used as an additives to the main fibre composition in order to create a variety of fibres and yarns, a spun yarn with metal wire was prototyped as samples for this research and the parameters of protective properties of these samples were investigated (such as surface resistivity, vertical resistance, etc.. The protective and shielding properties of woven network with prototyped twisted electro conductive thread with a wire (metal wire diameter of 15 microns were investigated. During the investigation the influence of the following factors, such as conductive fibre composition, electrically conductive thread distribution frequency of the longitudinal and transverse direction, on the protective shielding properties of conductive network were analyzed. The research enabled the assessment of influence of electrically conductive fibre yarn composition and its distribution in the woven mesh on protective shielding properties. DOI: http://dx.doi.org/10.5755/j01.ms.20.1.2492

  16. New dualities and misleading anomaly matchings from outer-automorphism twists

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sridip; Song, Jaewon [Department of Physics, University of California, San Diego,La Jolla, CA 92093 (United States)

    2017-03-29

    We study four-dimensional N=1,2 superconformal theories in class S obtained by compactifying the 6d N=(2,0) theory on a Riemann surface C with outer-automorphism twist lines. From the pair-of-pants decompositions of C, we find various dual descriptions for the same theory having distinct gauge groups. We show that the various configurations of the twist line give rise to dual descriptions for the identical theory. We compute the ’t Hooft anomaly coefficients and the superconformal indices to test dualities. Surprisingly, we find that the class S theories with twist lines wrapping 1-cycles of C have the identical ’t Hooft anomalies as the ones without the twist line, whereas the superconformal indices differ. This provides a large set of examples where the anomaly matching is insufficient to test dualities.

  17. Leading twist moments of the neutron structure function F_2n

    Energy Technology Data Exchange (ETDEWEB)

    M. Osipenko; W. Melnitchouk; S. Simula; S. Kulagin; G. Ricco

    2005-10-20

    We perform a global analysis of neutron $F_2^n$ structure function data, obtained by combining proton and deuteron measurements over a large range of kinematics. From these data the lowest moments ($n \\leq 10$) of the leading twist neutron $F_2^n$ structure function are extracted. Particular attention is paid to nuclear effects in the deuteron, which become increasingly important for the higher moments. Our results for the nonsinglet, isovector $p - n$ combination of the leading twist moments are compared with those of available lattice simulations. We also determine the lowest few moments of the higher twist contributions, obtained by subtracting the leading twist from the total structure function, and analyze their isospin dependence.

  18. Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Wahlen-Strothman, J. M. [Rice Univ., Houston, TX (United States); Henderson, T. H. [Rice Univ., Houston, TX (United States); Hermes, M. R. [Rice Univ., Houston, TX (United States); Degroote, M. [Rice Univ., Houston, TX (United States); Qiu, Y. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)

    2018-01-03

    Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.

  19. Intermittent energy bursts and recurrent topological change of a twisting magnetic flux tube

    International Nuclear Information System (INIS)

    Amo, Hiroyoshi; Sato, Tetsuya; Kageyama, Akira.

    1994-09-01

    When continuously twisted, a magnetic flux tube suffers a large kink distortion in the middle part of the tube, like a knot-of-tension instability of a bundle of twisted rubber strings, and reconnection is triggered starting with the twisted field lines and quickly proceeding to the untwisted field lines at the twist-untwist boundary, whereby a giant burst-like energy release takes place. Subsequently, bursts occur intermittently and reconnection advances deeper into the untwisted region. Then, a companion pair of the linked twist-untwist flux tubes reconnect with each other to return to the original axisymmetric tube. The process is thus repeatable. (author)

  20. A Transformation Called "Twist"

    Science.gov (United States)

    Hwang, Daniel

    2010-01-01

    The transformations found in secondary mathematics curriculum are typically limited to stretches and translations (e.g., ACARA, 2010). Advanced students may find the transformation, twist, to be of further interest. As most available resources are written for professional-level readers, this article is intended to be an introduction accessible to…

  1. First Compton telescope prototype based on continuous LaBr3-SiPM detectors

    International Nuclear Information System (INIS)

    Llosá, G.; Cabello, J.; Callier, S.; Gillam, J.E.; Lacasta, C.; Rafecas, M.; Raux, L.; Solaz, C.; Stankova, V.; La Taille, C. de; Trovato, M.; Barrio, J.

    2013-01-01

    A first prototype of a Compton camera based on continuous scintillator crystals coupled to silicon photomultiplier (SiPM) arrays has been successfully developed and operated. The prototype is made of two detector planes. The first detector is made of a continuous 16×18×5 mm 3 LaBr 3 crystal coupled to a 16-elements SiPM array. The elements have a size of 3×3 mm 3 in a 4.5×4.05 mm 2 pitch. The second detector, selected by availability, consists of a continuous 16×18×5 mm 3 LYSO crystal coupled to a similar SiPM array. The SPIROC1 ASIC is employed in the readout electronics. Data have been taken with a 22 Na source placed at different positions and images have been reconstructed with the simulated one-pass list-mode (SOPL) algorithm. Detector development for the construction of a second prototype with three detector planes is underway. LaBr 3 crystals of 32×36 mm 2 size and 5/10 mm thickness have been acquired and tested with a PMT. The resolution obtained is 3.5% FWHM at 511 keV. Each crystal will be coupled to four MPPC arrays. Different options are being tested for the prototype readout

  2. κ-Minkowski spacetime as the result of Jordanian twist deformation

    International Nuclear Information System (INIS)

    Borowiec, A.; Pachol, A.

    2009-01-01

    Two one-parameter families of twists providing κ-Minkowski * product deformed spacetime are considered: Abelian and Jordanian. We compare the derivation of quantum Minkowski space from two perspectives. The first one is the Hopf module algebra point of view, which is strictly related with Drinfeld's twisting tensor technique. The other one relies on an appropriate extension of ''deformed realizations'' of nondeformed Lorentz algebra by the quantum Minkowski algebra. This extension turns out to be de Sitter Lie algebra. We show the way both approaches are related. The second path allows us to calculate deformed dispersion relations for toy models ensuing from different twist parameters. In the Abelian case, one recovers κ-Poincare dispersion relations having numerous applications in doubly special relativity. Jordanian twists provide a new type of dispersion relations which in the minimal case (related to Weyl-Poincare algebra) takes an energy-dependent linear mass deformation form.

  3. Performance improvement of small-scale rotors by passive blade twist control

    OpenAIRE

    Lv, Peng; Prothin, Sebastien; Mohd Zawawi, Fazila; Bénard, Emmanuel; Morlier, Joseph; Moschetta, Jean-Marc

    2015-01-01

    A passive twist control is proposed as an adaptive way to maximize the overall efficiency of the small-scale rotor blade for multifunctional aircrafts. Incorporated into a database of airfoil characteristics, Blade Element Momentum Theory is implemented to obtain the blade optimum twist rates for hover and forward flight. In order to realize the required torsion of blade between hover and forward flight, glass/epoxy laminate blade is proposed based on Centrifugal Force Induced Twist concept. ...

  4. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines

    International Nuclear Information System (INIS)

    Ohkuma, Mizue; Funato, Noriko; Higashihori, Norihisa; Murakami, Masanori; Ohyama, Kimie; Nakamura, Masataka

    2007-01-01

    TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-κB sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells

  5. Valve-aided twisted Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Rajkumar, M.; Saha, U.K.

    2006-05-15

    Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].

  6. Twisting failure of centrally loaded open-section columns in the elastic range

    Science.gov (United States)

    Kappus, Robert

    1938-01-01

    In the following report a complete theory of twisting failure by the energy method is developed, based on substantially the same assumptions as those employed by Wagner and Bleich. Problems treated in detail are: the stress and strain condition under St. Venant twist and in twist with axial constraint; the concept of shear center and the energy method for problems of elastic stability.

  7. Exploring exotic states with twisted boundary conditions

    International Nuclear Information System (INIS)

    Agadjanov, Dimitri

    2017-01-01

    he goal of this thesis is to develop methods to study the nature and properties of exotic hadrons from lattice simulations. The main focus lies in the application of twisted boundary conditions. The thesis consists of a general introduction and the collection of three papers, represented respectively in three chapters. The introduction of the thesis reviews the theoretical background, which is further used in the rest of the thesis. Further implementing partially twisted boundary conditions in the scalar sector of lattice QCD is studied. Then we develop a method to study the content of the exotic hadrons by determining the wave function renormalization constant from lattice simulations, exploiting the dependence of the spectrum on the twisted boundary conditions. The final chapter deals with a novel method to study the multi-channel scattering problem in a finite volume, which is relevant for exotic states. Its key idea is to extract the complex hadron-hadron optical potential, avoiding the difficulties, associated with the solution of the multi-channel Luescher equation.

  8. Exploring exotic states with twisted boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Agadjanov, Dimitri

    2017-09-11

    he goal of this thesis is to develop methods to study the nature and properties of exotic hadrons from lattice simulations. The main focus lies in the application of twisted boundary conditions. The thesis consists of a general introduction and the collection of three papers, represented respectively in three chapters. The introduction of the thesis reviews the theoretical background, which is further used in the rest of the thesis. Further implementing partially twisted boundary conditions in the scalar sector of lattice QCD is studied. Then we develop a method to study the content of the exotic hadrons by determining the wave function renormalization constant from lattice simulations, exploiting the dependence of the spectrum on the twisted boundary conditions. The final chapter deals with a novel method to study the multi-channel scattering problem in a finite volume, which is relevant for exotic states. Its key idea is to extract the complex hadron-hadron optical potential, avoiding the difficulties, associated with the solution of the multi-channel Luescher equation.

  9. Fine tuning of optical transition energy of twisted bilayer graphene via interlayer distance modulation

    Czech Academy of Sciences Publication Activity Database

    del Corro, Elena; Peňa-Álvarez, Miriam; Sato, K.; Morales-García, A.; Bouša, Milan; Mračko, Michal; Kolman, Radek; Pacáková, Barbara; Kavan, Ladislav; Kalbáč, Martin; Frank, Otakar

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 085138. ISSN 2469-9950 R&D Projects: GA ČR GA14-15357S; GA MŠk LL1301; GA ČR GA16-03823S Institutional support: RVO:61388955 ; RVO:61388998 ; RVO:68378271 Keywords : twisted bilayer graphene * tuning * silicon Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  10. Twist deformation in anticlinic antiferroelectric structure in smectic B.sub.2./sub. imposed by the surface anchoring

    Czech Academy of Sciences Publication Activity Database

    Lejček, Lubor; Novotná, Vladimíra; Glogarová, Milada

    2008-01-01

    Roč. 35, č. 1 (2008), s. 11-19 ISSN 0267-8292 R&D Projects: GA ČR GA202/05/0431 Institutional research plan: CEZ:AV0Z10100520 Keywords : smectic liquid crystals * bent-shaped molecules * anticlinic antiferroelectric structure * ferroelectric structure * twist deformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2008

  11. dc readout experiment at the Caltech 40m prototype interferometer

    International Nuclear Information System (INIS)

    Ward, R L; Adhikari, R; Abbott, B; Abbott, R; Bork, R; Fricke, T; Heefner, J; Ivanov, A; Miyakawa, O; Smith, M; Taylor, R; Vass, S; Waldman, S; Weinstein, A; Barron, D; Frolov, V; McKenzie, K; Slagmolen, B

    2008-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) operates a 40m prototype interferometer on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO interferometers and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique will be employed in Advanced LIGO, and the latter in both Enhanced and Advanced LIGO. Using dc readout for gravitational wave signal extraction has several technical advantages, including reduced laser and oscillator noise couplings as well as reduced shot noise, when compared to the traditional rf readout technique (optical heterodyne detection) currently in use in large-scale ground-based interferometric gravitational wave detectors. The Caltech 40m laboratory is currently prototyping a dc readout system for a fully suspended interferometric gravitational wave detector. The system includes an optical filter cavity at the interferometer's output port, and the associated controls and optics to ensure that the filter cavity is optimally coupled to the interferometer. We present the results of measurements to characterize noise couplings in rf and dc readout using this system

  12. Measurement of curvature and twist of a deformed object using digital holography

    International Nuclear Information System (INIS)

    Chen Wen; Quan Chenggen; Cho Jui Tay

    2008-01-01

    Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method

  13. On the twisted chiral potential in 2d and the analogue of rigid special geometry for 4-folds

    CERN Document Server

    Kaste, P

    1999-01-01

    We discuss how to obtain an N=(2,2) supersymmetric SU(3) gauge theory in two dimensions via geometric engineering from a Calabi-Yau 4-fold and compute its non-perturbative twisted chiral potential. The relevant compact part of the 4-fold geometry consists of two intersecting P^1's fibered over P^2. The rigid limit of the local mirror of this geometry is a complex surface that generalizes the Seiberg-Witten curve and on which there exist two holomorphic 2-forms. These stem from the same meromorphic 2-form as derivatives w.r.t. the two moduli, respectively. The middle periods of this meromorphic form give directly the twisted chiral potential. The explicit computation of these and of the four-point Yukawa couplings allows for a non-trivial test of the analogue of rigid special geometry for a 4-fold with several moduli.

  14. Twisted quantum doubles

    Directory of Open Access Journals (Sweden)

    Daijiro Fukuda

    2004-01-01

    Full Text Available Using diagrammatic pictures of tensor contractions, we consider a Hopf algebra (Aop⊗ℛλA** twisted by an element ℛλ∈A*⊗Aop corresponding to a Hopf algebra morphism λ:A→A. We show that this Hopf algebra is quasitriangular with the universal R-matrix coming from ℛλ when λ2=idA, generalizing the quantum double construction which corresponds to the case λ=idA.

  15. Structural and electronic transformation in low-angle twisted bilayer graphene

    Science.gov (United States)

    Gargiulo, Fernando; Yazyev, Oleg V.

    2018-01-01

    Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.

  16. Innovation of Methods for Measurement and Modelling of Twisted Pair Parameters

    Directory of Open Access Journals (Sweden)

    Lukas Cepa

    2011-01-01

    Full Text Available The goal of this paper is to optimize a measurement methodology for the most accurate broadband modelling of characteristic impedance and other parameters for twisted pairs. Measured values and theirs comparison is presented in this article. Automated measurement facility was implemented at the Department of telecommunication of Faculty of electrical engineering of Czech technical university in Prague. Measurement facility contains RF switches allowing measurements up to 300 MHz or 1GHz. Measured twisted pair’s parameters can be obtained by measurement but for purposes of fundamental characteristics modelling is useful to define functions that model the properties of the twisted pair. Its primary and secondary parameters depend mostly on the frequency. For twisted pair deployment, we are interested in a frequency band range from 1 MHz to 100 MHz.

  17. Unconfined twist : a simple method to prepare ultrafine grained metallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y. (Yonghao); Liao, Xiaozhou; Zhu, Y. T. (Yuntian Theodore)

    2004-01-01

    A new simple method - unconfined twist was employed to prepare ultrafine grained (UFG) Fe,wire. A coarse grained (CG) Fe wire with a diameter of 0.85 mm was fixed at one end, and twisted at the other end. After maximum twist before fracture, in the cross-sectional plane, concentrically deformed layers with a width of several micrometers formed surrounding the center axis of the wire. The near-surface deformed layers consist of lamella grains with a width in submicrometer range. In the longitudinal plane, deformed bands (with a width of several micrometers) formed uniformly, which were composed of lamella crystallites (with a width in submicrometer range). The tensile yield strength and ultimate strength of the twisted Fe wire are increased by about 150% and 100% compared with the values of its CG counterpart.

  18. Developing a Computational Environment for Coupling MOR Data, Maps, and Models: The Virtual Research Vessel (VRV) Prototype

    Science.gov (United States)

    Wright, D. J.; O'Dea, E.; Cushing, J. B.; Cuny, J. E.; Toomey, D. R.; Hackett, K.; Tikekar, R.

    2001-12-01

    ) and model coupling (e.g., ability to run tool composition locally but access input data from the web, APIs to support coupling such as invoking programs that are running remotely, and help in writing data wrappers to publish programs); (5) support of migration paths for prototyped model coupling; and (6) export of marine geological data and data analysis to the undergraduate classroom (VRV-ET, "Educational Tool"). See the main VRV web site at http://oregonstate.edu/dept/vrv and the VRV-ET web site at: http://www.cs.uoregon.edu/research/vrv-et.

  19. Evaluation of FOXFET biased ac-coupled silicon strip detector prototypes for CDF SVX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M. (Fermi National Accelerator Lab., Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland))

    1992-03-01

    Silicon microstrip detectors for high-precision charged particle position measurements have been used in nuclear and particle physics for years. The detectors have evolved from simple surface barrier strip detectors with metal strips to highly complicated double-sided AC-coupled junction detectors. The feature of AC-coupling the readout electrodes from the diode strips necessitates the manufacture of a separate biasing structure for the strips, which comprises a common bias line together with a means for preventing the signal from one strip from spreading to its neighbors through the bias line. The obvious solution to this is to bias the strips through individual high value resistors. These resistors can be integrated on the detector wafer by depositing a layer of resistive polycrystalline silicon and patterning it to form the individual resistors. To circumvent the extra processing step required for polysilicon resistor processing and the rather difficult tuning of the process to obtain uniform and high enough resistance values throughout the large detector area, alternative methods for strip biasing have been devised. These include the usage of electron accumulation layer resistance for N{sup +}{minus} strips or the usage of the phenomenon known as the punch-through effect for P{sup +}{minus} strips. In this paper we present measurement results about the operation and radiation resistance of detectors with a punch-through effect based biasing structure known as a Field OXide Field-Effect Transistor (FOXFET), and present a model describing the FOXFET behavior. The studied detectors were prototypes for detectors to be used in the CDF silicon vertex detector upgrade.

  20. Evaluation of FOXFET biased ac-coupled silicon strip detector prototypes for CDF SVX upgrade

    International Nuclear Information System (INIS)

    Laakso, M.

    1992-03-01

    Silicon microstrip detectors for high-precision charged particle position measurements have been used in nuclear and particle physics for years. The detectors have evolved from simple surface barrier strip detectors with metal strips to highly complicated double-sided AC-coupled junction detectors. The feature of AC-coupling the readout electrodes from the diode strips necessitates the manufacture of a separate biasing structure for the strips, which comprises a common bias line together with a means for preventing the signal from one strip from spreading to its neighbors through the bias line. The obvious solution to this is to bias the strips through individual high value resistors. These resistors can be integrated on the detector wafer by depositing a layer of resistive polycrystalline silicon and patterning it to form the individual resistors. To circumvent the extra processing step required for polysilicon resistor processing and the rather difficult tuning of the process to obtain uniform and high enough resistance values throughout the large detector area, alternative methods for strip biasing have been devised. These include the usage of electron accumulation layer resistance for N + - strips or the usage of the phenomenon known as the punch-through effect for P + - strips. In this paper we present measurement results about the operation and radiation resistance of detectors with a punch-through effect based biasing structure known as a Field OXide Field-Effect Transistor (FOXFET), and present a model describing the FOXFET behavior. The studied detectors were prototypes for detectors to be used in the CDF silicon vertex detector upgrade

  1. Characterization of the first true coaxial 18-fold segmented n-type prototype HPGe detector for the gerda project

    International Nuclear Information System (INIS)

    Abt, I.; Caldwell, A.; Gutknecht, D.; Kroeninger, K.; Lampert, M.; Liu, X.; Majorovits, B.; Quirion, D.; Stelzer, F.; Wendling, P.

    2007-01-01

    The first true coaxial 18-fold segmented n-type HPGe prototype detector produced by Canberra-France for the GERDA neutrinoless double beta-decay project was tested both at Canberra-France and at the Max-Planck-Institut fur Physik in Munich. The main characteristics of the detector are given and measurements concerning detector properties are described. A novel method to establish contacts between the crystal and a Kapton cable is presented

  2. Effective potentials for twisted fields

    International Nuclear Information System (INIS)

    Banach, R.

    1981-01-01

    Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)

  3. User prototypes as partly unconscious communication

    DEFF Research Database (Denmark)

    Glasemann, Marie; Kanstrup, Anne Marie

    2010-01-01

    In this paper, we introduce user prototypes as a technique that supports users’ articulation of emotions relevant for design: dreams, fears, motivations – their feelings and aspirations. Following Bateson’s writings about communication through art, we consider user prototypes as “partly unconscious...... communication” and propose to analyze them by focusing on the emotional articulations integrated in the users’ design language. We illustrate this with an example from a design research project on designing learning technology for young diabetics. The example shows how young people with diabetes can express...... emotional themes related to youth identity, the burden of being young with a chronic illness, and the need to be connected and feel safe through design of prototypes. The new conceptual space that arises from user prototypes shows potential for addressing emotions when designing for health and for further...

  4. GRID Prototype for imagery processing in scientific applications

    International Nuclear Information System (INIS)

    Stan, Ionel; Zgura, Ion Sorin; Haiduc, Maria; Valeanu, Vlad; Giurgiu, Liviu

    2004-01-01

    The paper presents the results of our study which is part of the InGRID project. This project is supported by ROSA (ROmanian Space Agency). In this paper we will show the possibility to take images from the optical microscope through web camera. The images are then stored on the PC in Linux operating system and distributed to other clusters through GRID technology (using http, php, MySQL, Globus or AliEn systems). The images are provided from nuclear emulsions in the frame of Becquerel Collaboration. The main goal of the project InGRID is to actuate developing and deploying GRID technology for images technique taken from space, different application fields and telemedicine. Also it will create links with the same international projects which use advanced Grid technology and scalable storage solutions. The main topics proposed to be solved in the frame of InGRID project are: - Implementation of two GRID clusters, minimum level Tier 3; - Adapting and updating the common storage and processing computing facility; - Testing the middelware packages developed in the frame of this project; - Testbed production of the prototype; - Build-up and advertise the InGRID prototype in scientific community through current dissemination. InGRID Prototype developed in the frame of this project, will be used by partner institutes as deploying environment of the imaging applications the dynamical features of which will be defined by conditions of contract. Subsequent applications will be deployed by the partners of this project with governmental, nongovernmental and private institutions. (authors)

  5. Quantum communication through a spin ring with twisted boundary conditions

    International Nuclear Information System (INIS)

    Bose, S.; Jin, B.-Q.; Korepin, V.E.

    2005-01-01

    We investigate quantum communication between the sites of a spin ring with twisted boundary conditions. Such boundary conditions can be achieved by a magnetic flux through the ring. We find that a nonzero twist can improve communication through finite odd-numbered rings and enable high-fidelity multiparty quantum communication through spin rings (working near perfectly for rings of five and seven spins). We show that in certain cases, the twist results in the complete blockage of quantum-information flow to a certain site of the ring. This effect can be exploited to interface and entangle a flux qubit and a spin qubit without embedding the latter in a magnetic field

  6. The possibility of superconductivity in twisted bilayer graphene

    International Nuclear Information System (INIS)

    Manaf, Muhamad Nasruddin; Santoso, Iman; Hermanto, Arief

    2015-01-01

    We discuss the possibility of superconductivity in Twisted Bilayer Graphene (TBG). In this study we use TBG model with commensurate rotation θ=1.16° in which the van-Hove singularities (VHS) arise at 6 meV from the Fermi level. We use BCS standard formula that include Density of States (DOS) to calculate the critical temperature (T C ). Based on our calculation we predict that superconductivity will not arise in Pristine TBG because pairing potential has infinity value. In this situation, Dirac Fermions do not interact with each other since they do not form the bound states. Superconductvity may arise when the Fermi level is shifted towards the VHS. Based on this calculation, we predict that T C has value between 0.04 K and 0.12 K. The low value of T C is due to highly energetic of in plane phonon vibration which reduce the effective electron-phonon coupling. We conclude that doped TBG is candidate for Dirac Fermion superconductor

  7. Dual-Drive Production Prototype Project

    Science.gov (United States)

    2009-06-01

    This project was an initiative to engineer, develop and build a plug-in hybrid-electric vehicle using the Dual-Drive system. The project aimed to build a plug-in hybrid utilitarian vehicle on a light commercial vehicle platform. The hybrid vehicle wi...

  8. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates

    Czech Academy of Sciences Publication Activity Database

    Güixens-Gallardo, Pedro; Hocek, Michal; Perlíková, Pavla

    2016-01-01

    Roč. 26, č. 2 (2016), s. 288-291 ISSN 0960-894X R&D Projects: GA ČR GBP206/12/G151 Institutional support: RVO:61388963 Keywords : DNA polymerases * nucleotide addition * primer extension * oligonucleotides * twisted intercalating nucleic acid Subject RIV: CC - Organic Chemistry Impact factor: 2.454, year: 2016

  9. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Phuoc T Tran

    Full Text Available KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.

  10. Geometrically exact nonlinear analysis of pre-twisted composite rotor blades

    Directory of Open Access Journals (Sweden)

    Li'na SHANG

    2018-02-01

    Full Text Available Modeling of pre-twisted composite rotor blades is very complicated not only because of the geometric non-linearity, but also because of the cross-sectional warping and the transverse shear deformation caused by the anisotropic material properties. In this paper, the geometrically exact nonlinear modeling of a generalized Timoshenko beam with arbitrary cross-sectional shape, generally anisotropic material behavior and large deflections has been presented based on Hodges’ method. The concept of decomposition of rotation tensor was used to express the strain in the beam. The variational asymptotic method was used to determine the arbitrary warping of the beam cross section. The generalized Timoshenko strain energy was derived from the equilibrium equations and the second-order asymptotically correct strain energy. The geometrically exact nonlinear equations of motion were established by Hamilton’s principle. The established modeling was used for the static and dynamic analysis of pre-twisted composite rotor blades, and the analytical results were validated based on experimental data. The influences of the transverse shear deformation on the pre-twisted composite rotor blade were investigated. The results indicate that the influences of the transverse shear deformation on the static deformation and the natural frequencies of the pre-twisted composite rotor blade are related to the length to chord ratio of the blade. Keywords: Geometrically exact, Nonlinear, Pre-twisted composite blade, Transverse shear deformation, Variational asymptotic, Warping

  11. A twisted flux-tube model for solar prominences. I. General properties

    International Nuclear Information System (INIS)

    Priest, E.R.; Hood, A.W.; Anzer, U.

    1989-01-01

    It is proposed that a solar prominence consists of cool plasma supported in a large-scale curved and twisted magnetic flux tube. As long as the flux tube is untwisted, its curvature is concave toward the solar surface, and so it cannot support dense plasma against gravity. However, when it is twisted sufficiently, individual field lines may acquire a convex curvature near their summits and so provide support. Cool plasma then naturally tends to accumulate in such field line dips either by injection from below or by thermal condensation. As the tube is twisted up further or reconnection takes place below the prominence, one finds a transition from normal to inverse polarity. When the flux tube becomes too long or is twisted too much, it loses stability and its true magnetic geometry as an erupting prominence is revealed more clearly. 56 refs

  12. THOR-a commodity component prototype for the ATLAS Event Filter

    CERN Document Server

    Davis, R; MacKinnon, S; Pinfold, James L

    1999-01-01

    The ATLAS Event Filter prototype developed at the University of Alberta (the THOR project) is being used in the context of the DAQ-1 project to study issues related to the implementation of the sub-farm model using commodity components and open source software. The prototype consists of seven dual Pentium II 450 MHz machines connected via a fast Ethernet switch and will soon be upgraded to nine dual Pentium 450 MHz machines connected in a 3*3 array using Scalable Coherent Interconnect (SCI). The entire prototype is placed behind a firewall machine which serves as the control centre for the processor farm. (8 refs).

  13. Development of Side Coupled Cavities

    International Nuclear Information System (INIS)

    Conto, J.M. de; Carretta, J.M.; Gomez-Martinez, Y.; Micoud, R.

    2008-01-01

    Side coupled Cavities are good candidates for proton accelerations in the 90-180 MeV range, as it has been first proposed for the CERN LINAC4 project. A side coupled Linac is made of a lump chain of resonant cavities, alternatively accelerating and coupling. A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 requirements. After RF studies, a complete thermal study has been done, showing that 10-15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have been developed. They have shown that a tuning ring is mandatory and that a K equals 3% coupling factor is a good choice. A prototype has been built and each cell has been measured and tuned. A simple and accurate method has been used to get both the resonant frequency and the coupling factor, with a movable tuner and a linear fit. A similar method has been used to get the second order coupling factor. A large dispersion is observed on K. This is mainly due to the shape of the coupling apertures, which are very sensitive to mechanical errors. A future and realistic design must be very careful to guarantee a constant aperture (the important parameter is more the dispersion of k than its exact value). Finally, we analyse how to tune the cavity. This has to checked carefully and probably improved or corrected. Results are expected for mid-2008

  14. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    user

    enhancement of heat transfer with twisted tape inserts as compared to plain ... studies for heat transfer and pressure drop of laminar flow in horizontal tubes ... flow in rectangular and square plain ducts and ducts with twisted-tape inserts .... presence of the insert in the pipe causes resistance to flow and increases turbulence.

  15. Prototypical Rod Construction Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report.

  16. Gerbes over posets and twisted C*-dynamical systems

    OpenAIRE

    Vasselli, Ezio

    2017-01-01

    A base $\\Delta$ generating the topology of a space $M$ becomes a partially ordered set (poset), when ordered under inclusion of open subsets. Given a precosheaf over $\\Delta$ of fixed-point spaces (typically C*-algebras) under the action of a group $G$, in general one cannot find a precosheaf of $G$-spaces having it as fixed-point precosheaf. Rather one gets a gerbe over $\\Delta$, that is, a "twisted precosheaf" whose twisting is encoded by a cocycle with coefficients in a suitable 2-group. W...

  17. Factorising the 3D topologically twisted index

    Science.gov (United States)

    Cabo-Bizet, Alejandro

    2017-04-01

    We explore the path integration — upon the contour of hermitian (non-auxliary) field configurations — of topologically twisted N=2 Chern-Simons-matter theory (TTCSM) on {S}_2 times a segment. In this way, we obtain the formula for the 3D topologically twisted index, first as a convolution of TTCSM on {S}_2 times halves of {S}_1 , second as TTCSM on {S}_2 times {S}_1 — with a puncture, — and third as TTCSM on {S}_2× {S}_1 . In contradistinction to the first two cases, in the third case, the vector multiplet auxiliary field D is constrained to be anti-hermitian.

  18. Obstructions for twist star products

    Science.gov (United States)

    Bieliavsky, Pierre; Esposito, Chiara; Waldmann, Stefan; Weber, Thomas

    2018-05-01

    In this short note, we point out that not every star product is induced by a Drinfel'd twist by showing that not every Poisson structure is induced by a classical r-matrix. Examples include the higher genus symplectic Pretzel surfaces and the symplectic sphere S^2.

  19. Optics of twisted nematic and supertwisted nematic liquid-crystal displays

    Science.gov (United States)

    Leenhouts, F.; Schadt, M.

    1986-11-01

    For the first time calculations of the off-state transmission of twisted nematic liquid-crystal displays (LCD's) are presented which exhibit twist angles greater than the conventional 90 °. The transmission has been calculated using a treatment introduced by Priestley. In addition, the CIE (Commission Internationale d'Eclairage) color coordinates were evaluated which, together with the brightness, determine the optical appearance of an LCD. The finite efficiency of the polarizers was taken into account. The results are compared with those obtained for conventional 90 ° twisted nematic LCD's. From the calculations follow the conditions required to obtain optimal contrast and steep electro-optical characteristics in 180 ° supertwisted LCD's designed for high information content applications.

  20. miR-151-3p Targets TWIST1 to Repress Migration of Human Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ting-Chih Yeh

    Full Text Available TWIST1 is a highly conserved basic helix-loop-helix transcription factor that contributes to cancer metastasis by promoting an epithelial-mesenchymal transition and repressing E-cadherin gene expression in breast cancer. In this study, we explored the potential role of miR-151 in TWIST1 expression and cancer properties in human breast cancer cells. We found that the human TWIST1 3'UTR contains a potential binging site for miR-151-3p at the putative target sequence 5'-CAGUCUAG-3'. Using a TWIST1-3'UTR luciferase reporter assay, we demonstrated that the target sequence within the TWIST1 3'UTR is required for miR-151-3p regulation of TWIST1 expression. Moreover, we found that ectopic expression of miR-151-3p by infection with adenoviruses expressing miR-151 significantly decreased TWIST1 expression, migration and invasion, but did not affect cell growth and tumorsphere formation of human breast cancer cells. In addition, overexpression of the protein coding region without the 3'UTR of TWIST1 reversed the repression of cell migration by miR-151-3p. Furthermore, knockdown of miR-151-3p increased TWIST1 expression, reduced E-cadherin expression, and enhanced cell migration. In conclusion, these results suggest that miR-151-3p directly regulates TWIST1 expression by targeting the TWIST1 3'UTR and thus repressing the migration and invasion of human breast cancer cells by enhancing E-cadherin expression. Our findings add to accumulating evidence that microRNAs are involved in breast cancer progression by modulating TWIST1 expression.

  1. Generalized projective synchronization of two coupled complex networks of different sizes

    International Nuclear Information System (INIS)

    Li Ke-Zan; He En; Zeng Zhao-Rong; Chi, K. Tse

    2013-01-01

    We investigate a new generalized projective synchronization between two complex dynamical networks of different sizes. To the best of our knowledge, most of the current studies on projective synchronization have dealt with coupled networks of the same size. By generalized projective synchronization, we mean that the states of the nodes in each network can realize complete synchronization, and the states of a pair of nodes from both networks can achieve projective synchronization. Using the stability theory of the dynamical system, several sufficient conditions for guaranteeing the existence of the generalized projective synchronization under feedback control and adaptive control are obtained. As an example, we use Chua's circuits to demonstrate the effectiveness of our proposed approach

  2. PERFORMANCE CHARACTERISTICS OF PARABOLIC SOLAR COLLECTOR WATER HEATER SYSTEM FITTED WITH NAIL TWISTED TAPES ABSORBER

    Directory of Open Access Journals (Sweden)

    K. SYED JAFAR

    2017-03-01

    Full Text Available In this paper, the experimental heat transfer, friction loss and thermal performance data for water flowing through the absorber tube fitted with two different twisted tape configurations in parabolic trough collector (PTC are presented. In the present work, a relative experimental study is carried out to investigate the performance of a PTC influenced by heat transfer through fluidabsorber wall mixing mechanism. The major findings of this experiment show that heat transport enhancement in the nail twisted tape collector perform significantly better than plain twisted tapes and also show that the smallest twisted tape ratio enhances the system performance remarkably maximizing the collector efficiency. The results suggest that the twisted tape and nail twisted tape would be a better option for high thermal energy collection in laminar region of the PTC system.

  3. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  4. From starproducts to Drinfeld-twists. Present and future applications

    International Nuclear Information System (INIS)

    Koch, Florian

    2008-01-01

    Physics comes up with models that invoke noncommutative structures in configuration space. Such structures are dual to the deformed coalgebra sector of a represented symmetry algebra. In the mean time such deformations are performed in terms of the symmetry algebra itself via twists or quasitriangular structures. One might thus find oneself in the bad situation that the symmetry algebra is not large enough to provide the required twist that dually matches the noncommutative structure found. It thus has to remain in the unpleasant state of being without any notion of symmetry. We show how starproducts can be pushed to twists by introducing a larger algebra that accommodates any finite dimensional representation of a Lie-algebra. This new algebra is similar to a Heisenberg-algebra but in contrast to the latter can be enhanced to a Hopf-algebra. Some Examples are given. (author)

  5. Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics

    Science.gov (United States)

    Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.

    2017-05-01

    The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected

  6. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    Science.gov (United States)

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  7. Anomalous phase shift in a twisted quantum loop

    International Nuclear Information System (INIS)

    Taira, Hisao; Shima, Hiroyuki

    2010-01-01

    The coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm-like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.

  8. Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2016-11-01

    Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.

  9. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  10. Prototype of time digitizing system for BESⅢ endcap TOF upgrade

    International Nuclear Information System (INIS)

    Cao Ping; Sun Weijia; Fan Huanhuan; Wang Siyu; Liu Shubin; An Qi; Ji Xiaolu

    2014-01-01

    The prototype of a time digitizing system for the BESⅢ endcap TOF (ETOF) upgrade is introduced in this paper. The ETOF readout electronics has a distributed architecture. Hit signals from the multi-gap resistive plate chamber (MRPC) are signaled as LVDS by front-end electronics (FEE) and are then sent to the back-end time digitizing system via long shield differential twisted pair cables. The ETOF digitizing system consists of two VME crates, each of which contains modules for time digitization, clock, trigger, fast control, etc. The time digitizing module (TDIG) of this prototype can support up to 72 electrical channels for hit information measurement. The fast control (FCTL) module can operate in barrel or endcap mode. The barrel FCTL fans out fast control signals from the trigger system to the endcap FCTLs, merges data from the endcaps and then transfers to the trigger system. Without modifying the barrel TOF (BTOF) structure, this time digitizing architecture benefits from improved ETOF performance without degrading the BTOF performance. Lab experiments show that the time resolution of this digitizing system can be lower than 20 ps, and the data throughput to the DAQ can be about 92 Mbps. Beam experiments show that the total time resolution can be lower than 45 ps. (authors)

  11. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    Science.gov (United States)

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  12. Study of Implosion of Twisted Nested Arrays at the Angara-5-1 Facility

    Science.gov (United States)

    Mitrofanov, K. N.; Zukakishvili, G. G.; Aleksandrov, V. V.; Grabovski, E. V.; Frolov, I. N.; Gribov, A. N.

    2018-01-01

    Results are presented from experimental studies of the implosion of twisted nested arrays in which the wires of the outer and inner arrays are twisted about the array axis in opposite directions (clockwise and counterclockwise). Experiments with twisted arrays were carried out at the Angara-5-1 facility at currents of up to 4 MA. The currents through the arrays were switched either simultaneously or the current pulse through the outer array was delayed by 10-15 ns with the help of an anode spark gap. It is shown that, in such arrays, the currents flow along the inclined wires and, accordingly, there are both the azimuthal and axial components of the discharge current. The process of plasma implosion in twisted arrays depends substantially on the value of the axial (longitudinal) magnetic field generated inside the array by the azimuthal currents. Two-dimensional simulations of the magnetic field in twisted nested arrays were performed in the ( r, z) geometry with allowance for the skin effect in the discharge electrodes. It is shown that, depending on the geometry of the discharge electrodes, different configurations of the magnetic field can be implemented inside twisted nested arrays. The calculated magnetic configurations are compared with the results of measurements of the magnetic field inside such arrays. It is shown that the configuration of the axial magnetic field inside a twisted nested array depends substantially on the distribution of the azimuthal currents between the inner and outer arrays.

  13. A COMPUTERIZED OPERATOR SUPPORT SYSTEM PROTOTYPE

    Energy Technology Data Exchange (ETDEWEB)

    Thomas A. Ulrich; Roger Lew; Ronald L. Boring; Ken Thomas

    2015-03-01

    A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. A prototype COSS was developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, piping and instrumentation diagram system representations, and a recommender module for mitigation actions. The initial version of the prototype is now operational at the Idaho National Laboratory using the Human System Simulation Laboratory.

  14. Realizations of κ-Minkowski space, Drinfeld twists, and related symmetry algebras

    Energy Technology Data Exchange (ETDEWEB)

    Juric, Tajron; Meljanac, Stjepan; Pikutic, Danijel [Ruder Boskovic Institute, Theoretical Physics Division, Zagreb (Croatia)

    2015-11-15

    Realizations of κ-Minkowski space linear in momenta are studied for time-, space- and light-like deformations. We construct and classify all such linear realizations and express them in terms of the gl(n) generators. There are three one-parameter families of linear realizations for timelike and space-like deformations, while for light-like deformations, there are only four linear realizations. The relation between a deformed Heisenberg algebra, the star product, the coproduct of momenta, and the twist operator is presented. It is proved that for each linear realization there exists a Drinfeld twist satisfying normalization and cocycle conditions. κ-Deformed igl(n)-Hopf algebras are presented for all cases. The κ-Poincare-Weyl and κ-Poincare-Hopf algebras are discussed. The left-right dual κ-Minkowski algebra is constructed from the transposed twists. The corresponding realizations are nonlinear. All Drinfeld twists related to κ-Minkowski space are obtained from our construction. Finally, some physical applications are discussed. (orig.)

  15. Realizations of κ-Minkowski space, Drinfeld twists, and related symmetry algebras

    International Nuclear Information System (INIS)

    Juric, Tajron; Meljanac, Stjepan; Pikutic, Danijel

    2015-01-01

    Realizations of κ-Minkowski space linear in momenta are studied for time-, space- and light-like deformations. We construct and classify all such linear realizations and express them in terms of the gl(n) generators. There are three one-parameter families of linear realizations for timelike and space-like deformations, while for light-like deformations, there are only four linear realizations. The relation between a deformed Heisenberg algebra, the star product, the coproduct of momenta, and the twist operator is presented. It is proved that for each linear realization there exists a Drinfeld twist satisfying normalization and cocycle conditions. κ-Deformed igl(n)-Hopf algebras are presented for all cases. The κ-Poincare-Weyl and κ-Poincare-Hopf algebras are discussed. The left-right dual κ-Minkowski algebra is constructed from the transposed twists. The corresponding realizations are nonlinear. All Drinfeld twists related to κ-Minkowski space are obtained from our construction. Finally, some physical applications are discussed. (orig.)

  16. Automatic O(a) improvement for twisted mass QCD in the presence of spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Aoki, Sinya; Baer, Oliver

    2006-01-01

    In this paper we present a proof for automatic O(a) improvement in twisted mass lattice QCD at maximal twist, which uses only the symmetries of the leading part in the Symanzik effective action. In the process of the proof we clarify that the twist angle is dynamically determined by vacuum expectation values in the Symanzik theory. For maximal twist according to this definition, we show that scaling violations of all quantities which have nonzero values in the continuum limit are even in a. In addition, using Wilson chiral perturbation theory, we investigate this definition for maximal twist and compare it to other definitions which were already employed in actual simulations

  17. Bioinspired twisted composites based on Bouligand structures

    Science.gov (United States)

    Pinto, F.; Iervolino, O.; Scarselli, G.; Ginzburg, D.; Meo, M.

    2016-04-01

    The coupling between structural support and protection makes biological systems an important source of inspiration for the development of advanced smart composite structures. In particular, some particular material configurations can be implemented into traditional composites in order to improve their impact resistance and the out-of-plane properties, which represents one of the major weakness of commercial carbon fibres reinforced polymers (CFRP) structures. Based on this premise, a three-dimensional twisted arrangement shown in a vast multitude of biological systems (such as the armoured cuticles of Scarabei, the scales of Arapaima Gigas and the smashing club of Odontodactylus Scyllarus) has been replicated to develop an improved structural material characterised by a high level of in-plane isotropy and a higher interfacial strength generated by the smooth stiffness transition between each layer of fibrils. Indeed, due to their intrinsic layered nature, interlaminar stresses are one of the major causes of failure of traditional CFRP and are generated by the mismatch of the elastic properties between plies in a traditional laminate. Since the energy required to open a crack or a delamination between two adjacent plies is due to the difference between their orientations, the gradual angle variation obtained by mimicking the Bouligand Structures could improve energy absorption and the residual properties of carbon laminates when they are subjected to low velocity impact event. Two different bioinspired laminates were manufactured following a double helicoidal approach and a rotational one and were subjected to a complete test campaign including low velocity impact loading and compared to a traditional quasi-isotropic panel. Fractography analysis via X-Ray tomography was used to understand the mechanical behaviour of the different laminates and the residual properties were evaluated via Compression After Impact (CAI) tests. Results confirmed that the biological

  18. Twist effects in quantum vortices and phase defects

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L.

    2018-02-01

    In this paper we show that twist, defined in terms of rotation of the phase associated with quantum vortices and other physical defects effectively deprived of internal structure, is a property that has observable effects in terms of induced axial flow. For this we consider quantum vortices governed by the Gross-Pitaevskii equation (GPE) and perform a number of test cases to investigate and compare the effects of twist in two different contexts: (i) when this is artificially superimposed on an initially untwisted vortex ring; (ii) when it is naturally produced on the ring by the simultaneous presence of a central straight vortex. In the first case large amplitude perturbations quickly develop, generated by the unnatural setting of the initial condition that is not an analytical solution of the GPE. In the second case much milder perturbations emerge, signature of a genuine physical process. This scenario is confirmed by other test cases performed at higher twist values. Since the second setting corresponds to essential linking, these results provide new evidence of the influence of topology on physics.

  19. Multi-channel Spiral Twist Extrusion (MCSTE): A Novel Severe Plastic Deformation Technique for Grain Refinement

    Science.gov (United States)

    El-Garaihy, W. H.; Fouad, D. M.; Salem, H. G.

    2018-04-01

    Multi-channel Spiral Twist Extrusion (MCSTE) is introduced as a novel severe plastic deformation (SPD) technique for producing superior mechanical properties associated with ultrafine grained structure in bulk metals and alloys. The MCSTE design is based on inserting a uniform square cross-sectioned billet within stacked disks that guarantee shear strain accumulation. In an attempt to validate the technique and evaluate its plastic deformation characteristics, a series of experiments were conducted. The influence of the number of MCSTE passes on the mechanical properties and microstructural evolution of AA1100 alloy were investigated. Four passes of MCSTE, at a relatively low twisting angle of 30 deg, resulted in increasing the strength and hardness coupled with retention of ductility. Metallographic observations indicated a significant grain size reduction of 72 pct after 4 passes of MCSTE compared with the as-received (AR) condition. Moreover, the structural uniformity increased with the number of passes, which was reflected in the hardness distribution from the peripheries to the center of the extrudates. The current study showed that the MCSTE technique could be an effective, adaptable SPD die design with a promising potential for industrial applications compared to its counterparts.

  20. Factorising the 3D topologically twisted index

    Energy Technology Data Exchange (ETDEWEB)

    Cabo-Bizet, Alejandro [Instituto de Astronomía y Física del Espacio (CONICET-UBA),Ciudad Universitaria, C.P. 1428, Buenos Aires (Argentina)

    2017-04-20

    We explore the path integration — upon the contour of hermitian (non-auxliary) field configurations — of topologically twisted N=2 Chern-Simons-matter theory (TTCSM) on S{sub 2} times a segment. In this way, we obtain the formula for the 3D topologically twisted index, first as a convolution of TTCSM on S{sub 2} times halves of S{sub 1}, second as TTCSM on S{sub 2} times S{sub 1} — with a puncture, — and third as TTCSM on S{sub 2}×S{sub 1}. In contradistinction to the first two cases, in the third case, the vector multiplet auxiliary field D is constrained to be anti-hermitian.

  1. Leibniz algebroids, twistings and exceptional generalized geometry

    Science.gov (United States)

    Baraglia, D.

    2012-05-01

    We investigate a class of Leibniz algebroids which are invariant under diffeomorphisms and symmetries involving collections of closed forms. Under appropriate assumptions we arrive at a classification which in particular gives a construction starting from graded Lie algebras. In this case the Leibniz bracket is a derived bracket and there are higher derived brackets resulting in an L∞-structure. The algebroids can be twisted by a non-abelian cohomology class and we prove that the twisting class is described by a Maurer-Cartan equation. For compact manifolds we construct a Kuranishi moduli space of this equation which is shown to be affine algebraic. We explain how these results are related to exceptional generalized geometry.

  2. Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.

    Science.gov (United States)

    Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen

    2017-08-29

    In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.

  3. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    OpenAIRE

    Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-01-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs,...

  4. Exclusive processes beyond leading twist: {gamma}*T {yields} {rho}T impact factor with twist three accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland); Anikin, Igor V. [Joint Institute for Nuclear Research - JINR, Joliot-Curie st., 6, Moskovskaya obl., 141980, Dubna (Russian Federation); Ivanov, Dmitry Yu [Sobolev Institute of Mathematics, Acad. Koptyug pr., 4, 630090 Novosibirsk (Russian Federation); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France)

    2010-07-01

    We describe a consistent approach to factorization of scattering amplitudes for exclusive processes beyond the leading twist approximation. The method is based on the Taylor expansion of the scattering amplitude in the momentum space around the dominant light-cone direction and thus naturally introduces an appropriate set of non-perturbative correlators which encode effects not only of the lowest but also of the higher Fock states of the produced particle. The reduction of original set of correlators to a set of independent ones is achieved with the help of equations of motion and invariance of the scattering amplitude under rotation on the light-cone. As a concrete application, we compute the expressions of the impact factor for the transition of virtual photon to transversally polarised {rho}-meson up to the twist 3 accuracy. (Phys.Lett.B682:413-418,2010 and Nucl.Phys.B828:1-68,2010.). (authors)

  5. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  6. Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    International Nuclear Information System (INIS)

    Nijhuis, A; Van Lanen, E P A; Rolando, G

    2012-01-01

    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain-sensitive superconductors, i.e. Nb 3 Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. At present, this is a great challenge for the ITER central solenoid (CS) CICCs and the solution presented here could be a breakthrough for not only the ITER CS but also for CICC applications in general. After proposing longer twist pitches in 2006 and successful confirmation by short sample tests later on, the ITER toroidal field (TF) conductor cable pattern was improved accordingly. As the restrictions for coupling loss are more demanding for the CS conductors than for the TF conductors, it was believed that longer pitches would not be applicable for the conductors in the CS coils. In this paper we explain how, with the use of the TEMLOP model and the newly developed models JackPot-ACDC and CORD, the design of a CICC can be improved appreciably, particularly for the CS conductor layout. For the first time a large improvement is predicted not only providing very low sensitivity to electromagnetic load and thermal axial cable stress variations but at the same time much lower AC coupling loss. Reduction of the transverse load and warm-up–cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3% with practically no degradation from bending. This is probably explained

  7. Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.

    Science.gov (United States)

    Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang

    2015-11-01

    Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. © 2015 Wiley Periodicals, Inc.

  8. A secure communication system using projective-lag and/or projective-anticipating synchronizations of coupled multidelay feedback systems

    International Nuclear Information System (INIS)

    Thang Manh Hoang; Nakagawa, Masahiro

    2008-01-01

    In this paper, a chaotic secure communication system is proposed by using the schemes of projective-lag and/or projective-anticipating synchronizations of coupled multidelay feedback systems and the modulation technique of synchronization-manifold shift keying. Further, the security of the proposed system is enhanced by using non-stationary dynamics in the master and/or non-stationary synchronization manifolds. The specific examples using modified Ikeda systems demonstrate and verify the effectiveness of the proposed system

  9. Osserman and conformally Osserman manifolds with warped and twisted product structure

    OpenAIRE

    Brozos-Vazquez, M.; Garcia-Rio, E.; Vazquez-Lorenzo, R.

    2008-01-01

    We characterize Osserman and conformally Osserman Riemannian manifolds with the local structure of a warped product. By means of this approach we analyze the twisted product structure and obtain, as a consequence, that the only Osserman manifolds which can be written as a twisted product are those of constant curvature.

  10. An improved hazard rate twisting approach for the statistic of the sum of subexponential variates

    KAUST Repository

    Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2015-01-01

    In this letter, we present an improved hazard rate twisting technique for the estimation of the probability that a sum of independent but not necessarily identically distributed subexponential Random Variables (RVs) exceeds a given threshold. Instead of twisting all the components in the summation, we propose to twist only the RVs which have the biggest impact on the right-tail of the sum distribution and keep the other RVs unchanged. A minmax approach is performed to determine the optimal twisting parameter which leads to an asymptotic optimality criterion. Moreover, we show through some selected simulation results that our proposed approach results in a variance reduction compared to the technique where all the components are twisted.

  11. Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes

    Science.gov (United States)

    Terradas, J.; Magyar, N.; Van Doorsselaere, T.

    2018-01-01

    Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin–Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube or by the continuous small length scales produced by phase mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability, but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.

  12. A generalized public goods game with coupling of individual ability and project benefit

    Science.gov (United States)

    Zhong, Li-Xin; Xu, Wen-Juan; He, Yun-Xin; Zhong, Chen-Yang; Chen, Rong-Da; Qiu, Tian; Shi, Yong-Dong; Ren, Fei

    2017-08-01

    Facing a heavy task, any single person can only make a limited contribution and team cooperation is needed. As one enjoys the benefit of the public goods, the potential benefits of the project are not always maximized and may be partly wasted. By incorporating individual ability and project benefit into the original public goods game, we study the coupling effect of the four parameters, the upper limit of individual contribution, the upper limit of individual benefit, the needed project cost and the upper limit of project benefit on the evolution of cooperation. Coevolving with the individual-level group size preferences, an increase in the upper limit of individual benefit promotes cooperation while an increase in the upper limit of individual contribution inhibits cooperation. The coupling of the upper limit of individual contribution and the needed project cost determines the critical point of the upper limit of project benefit, where the equilibrium frequency of cooperators reaches its highest level. Above the critical point, an increase in the upper limit of project benefit inhibits cooperation. The evolution of cooperation is closely related to the preferred group-size distribution. A functional relation between the frequency of cooperators and the dominant group size is found.

  13. 'Duality twisted'boundary conditions in n-state Potts Models

    International Nuclear Information System (INIS)

    Schuetz, G.

    1992-11-01

    We discuss a new class of toroidal boundary conditions for one-dimensional quantum Hamiltonian with S n symmetry which are related to two-dimensional n-state Potts models in the extreme anisotropic Hamiltonian limit. At their self-dual point (a point were a second-order phase transition occurs for n=2,3,4) the duality transformation is shown to be an additional symmetry giving rise to a new class of 'duality twisted' toroidal boundary conditions. This corresponding Hamiltonians are given in terms of generators of the periodic Temprely-Lieb algebra with an odd number of generators. We discuss as an example the critical Ising model. Here the complete spectrum for the new boundary conditions can be obtained from a projection mechanism in the spin-1/2 XXZ Heisenberg chain. (author)

  14. Project management of the build of the shore test facility for the prototype of PWR II

    International Nuclear Information System (INIS)

    Clarkson, D.T.

    1987-01-01

    The PWR II is a new design of nuclear steam raising plant for the Royal Navy's submarines. It features improved engineering for safety, increased power, increased shock resistance, reduced noise transmission to sea and reduced manning requirement. It is to be tested in a new prototype testing facility, the Shore Test Facility, which is a section of submarine hull containing a prototype of the nuclear steam raising plant and its support system. It is installed at the Vulcan Naval Reactor Test establishment at Dounreay in Scotland. The function of the establishment is to test new designs of core and reactor plant, validate the mathematical models used in their design, develop improved methods of operation and maintenance of the plant and test new items of equipment. The Shore Test Facility was built in large sections at Barrow-in-Furness and transported to Scotland. The project management for the construction of the Shore Test Facility is explained. It involves personnel from the Royal Navy, and a large number of people working for the contractors involved in the buildings, transportation, operation and maintenance of the Facility. (U.K.)

  15. Challenge Based Innovation @ mediterranean - final presentations & prototype expo

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Challenge Based Innovation @ mediterranean - Final presentations & prototype expo Note - presentation location has been changed to the council chamber (503-1-001) due to the large amount of signups. External participants are guided from the main reception (building 33), more information over email on Wednesday. Prototype presentations are still at IdeaSquare (3179) 18.00 - 19.30, guided walking from the presentations.  Challenge Based Innovation (CBI) is a four month project course, where multidisciplinary student teams and their instructors collaborate with researchers at CERN to discover novel solutions for the future of humankind. The projects are an elaborate mixture, where societal, human-driven needs meet research at CERN. More info about CBI from the course website, cbi-course.com The Gala on 1.12. will introduce the proof-of concept prototypes the five student teams have developed to answer a wide range of societal challenges, inspired by people and r...

  16. Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics

    Directory of Open Access Journals (Sweden)

    S. Sippel

    2017-05-01

    Full Text Available The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T and evapotranspiration (ET benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5 archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T–ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T–ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand

  17. Fast Torsional Artificial Muscles from NiTi Twisted Yarns.

    Science.gov (United States)

    Mirvakili, Seyed M; Hunter, Ian W

    2017-05-17

    Torsional artificial muscles made of multiwalled carbon nanotube/niobium nanowire yarns have shown remarkable torsional speed and gravimetric torque. The muscle structure consists of a twisted yarn with half of its length infiltrated with a stimuli-responsive guest material such as paraffin wax. The volumetric expansion of the guest material creates the torsional actuation in the yarn. In the present work, we show that this type of actuation is not unique to wax-infiltrated carbon multiwalled nanotube (MWCNT) or niobium nanowire yarns and that twisted yarn of NiTi alloy fibers also produces fast torsional actuation. By gold-plating half the length of a NiTi twisted yarn and Joule heating it, we achieved a fully reversible torsional actuation of up to 16°/mm with peak torsional speed of 10 500 rpm and gravimetric torque of 8 N·m/kg. These results favorably compare to those of MWCNTs and niobium nanowire yarns.

  18. Twisted vertex algebras, bicharacter construction and boson-fermion correspondences

    International Nuclear Information System (INIS)

    Anguelova, Iana I.

    2013-01-01

    The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras

  19. Rapid prototyping and stereolithography in dentistry

    Science.gov (United States)

    Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor

    2015-01-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  20. Rapid prototyping and stereolithography in dentistry.

    Science.gov (United States)

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  1. Light hadrons from Nf=2+1+1 dynamical twisted mass fermions

    NARCIS (Netherlands)

    Baron, R.; Blossier, B.; Boucaud, P.; Carbonell, J.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM

    2011-01-01

    We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a~0.06

  2. On the Compton Twist-3 Asymmetries

    International Nuclear Information System (INIS)

    Korotkiyan, V.M.; Teryaev, O.V.

    1994-01-01

    The 'fermionic poles' contribution to the twist-3 single asymmetry in the gluon Compton process is calculated. The 'gluonic poles' existence seems to contradict the density matrix positivity. Qualitative predictions for the direct photon and jets asymmetries are presented. 13 refs., 2 figs

  3. TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Karine Pallier

    Full Text Available Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT. The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33 and showed that TWIST1 expression was linked to EGFR mutations (P<0.001, to low CDH1 expression (P<0.05 and low disease free survival (P = 0.044. To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.

  4. Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    Science.gov (United States)

    Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.

    2002-05-01

    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.

  5. Study of twist boundaries in aluminium. Structure and intergranular diffusion

    International Nuclear Information System (INIS)

    Lemuet, Daniel

    1981-01-01

    This research thesis addresses the study of grain boundaries in oriented crystals, and more particularly the systematic calculation of intergranular structures and energies of twist boundaries of <001> axis in aluminium, the determination of intergranular diffusion coefficients of zinc in a set of twist bi-crystals of same axis encompassing a whole range of disorientations, and the search for a correlation between these experimental results and calculated structures

  6. High performance twisted and coiled soft actuator with spandex fiber for artificial muscles

    Science.gov (United States)

    Yang, Sang Yul; Cho, Kyeong Ho; Kim, Youngeun; Song, Min-Geun; Jung, Ho Sang; Yoo, Ji Wang; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-do; Ryeol Choi, Hyouk

    2017-10-01

    This paper reports the twisted and coiled soft actuator (abbreviated with STCA) with spandex fiber. The STCA exhibits higher actuation strain at lower temperature than the previous nylon twisted and coiled soft actuators (abbreviated with NTCAs). While NTCAs are fabricated using a twist-insertion process until coils are formed, a new method is developed to fabricate the STCA using the ultra-stretch of spandex, whereby the STCA is twisted again after the coil has been formed. A 6-gear-twist-insertion device that increases the stability and the fabrication speed is developed to fabricate the STCA. The superior performance exhibited by the STCA is due to the 14% contraction strain of the bare spandex (bare nylon: 4%) and the low spring constant of 0.0115 N mm-1. The maximum tensile actuation strain of STCA was 45% at 130 °C, and the maximum specific work was 1.523 kJ kg-1 at 130 °C. STCA could repeatedly actuate 100 times with a strain change of less than 0.4%.

  7. The possibility of superconductivity in twisted bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Manaf, Muhamad Nasruddin, E-mail: muhamad.nasruddin.manaf@mail.ugm.ac.id; Santoso, Iman, E-mail: iman.santoso@ugm.ac.id; Hermanto, Arief [Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Bulaksumur 55281, Yogyakarta (Indonesia); Yayasan Hikmah Teknosains, Jl. Kaliurang Km 5,3 Gg. Pamungkas No. 16 A, Yogyakarta (Indonesia)

    2015-09-30

    We discuss the possibility of superconductivity in Twisted Bilayer Graphene (TBG). In this study we use TBG model with commensurate rotation θ=1.16° in which the van-Hove singularities (VHS) arise at 6 meV from the Fermi level. We use BCS standard formula that include Density of States (DOS) to calculate the critical temperature (T{sub C}). Based on our calculation we predict that superconductivity will not arise in Pristine TBG because pairing potential has infinity value. In this situation, Dirac Fermions do not interact with each other since they do not form the bound states. Superconductvity may arise when the Fermi level is shifted towards the VHS. Based on this calculation, we predict that T{sub C} has value between 0.04 K and 0.12 K. The low value of T{sub C} is due to highly energetic of in plane phonon vibration which reduce the effective electron-phonon coupling. We conclude that doped TBG is candidate for Dirac Fermion superconductor.

  8. IRONY IN CHARLES DICKEN'S OLIVER TWIST

    Directory of Open Access Journals (Sweden)

    Ika Kana Trisnawati

    2016-05-01

    Full Text Available This paper describes the types of irony used by Charles Dickens in his notable early work, Oliver Twist, as well as the reasons the irony was chosen. As a figurative language, irony is utilized to express one’s complex feelings without truly saying them. In Oliver Twist, Dickens brought the readers some real social issues wrapped in dark, deep written expressions of irony uttered by the characters of his novel. Undoubtedly, the novel had left an impact to the British society at the time. The irony Dickens displayed here includes verbal, situational, and dramatic irony. His choice of irony made sense as he intended to criticize the English Poor Laws and to touch the public sentiment. He wanted to let the readers go beyond what was literally written and once they discovered what the truth was, they would eventually understand Dickens’ purposes.

  9. Accelerator Tests of the Prototype Energetic Heavy Ion Sensor (EHIS) for GOES-R

    Science.gov (United States)

    Connell, J. J.; Lopate, C.; McKibben, R. B.

    2010-12-01

    The Energetic Heavy Ion Sensor (EHIS) is part of the Space Environmental In-Situ Suite (SEISS) for the Geostationary Operational Environment Satellite series R (GOES-R) program. It will measure energetic protons from 10-200 MeV and ions through nickel (Z=28) with similar penetrating power. By use of an Angle Detecting Inclined Sensor (ADIS) system, EHIS achieves single element resolution with extensive on-board event processing. A prototype or "brass-board" instrument, fully functional but not intended for environmental testing, has been completed. In November of 2009, we exposed the prototype to protons at Massachusetts General Hospital (MGH) and in March of 2010, we exposed it to Ni primary and fragment beams at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). In both cases, the instrument was rotated over a range of angles and a moving degrader spread the energy from full beam energy to zero energy. We will present results of these tests. These show an angular resolution for the prototype which results in a one sigma charge resolution of ~0.25 e at Ni. The prototype also demonstrated the capability for calculating the charge of 2500 events per second with its internal processor, accumulating those events in on-board charge histograms, and thus providing unprecedented statistics in high flux conditions. The EHIS represents a major advance in capabilities for operational space weather instruments while also providing data quality suitable for scientific research. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  10. Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest

    Science.gov (United States)

    Vincentz, Joshua W.; Firulli, Beth A.; Lin, Andrea; Spicer, Douglas B.; Howard, Marthe J.; Firulli, Anthony B.

    2013-01-01

    Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. PMID:23555309

  11. Higher twist effects in QCD description of light meson exclusive formfactors

    International Nuclear Information System (INIS)

    Gorskij, A.S.

    1987-01-01

    The general approach to a quantitative description of higher twist effects in hard exclusive processes in QCD is proposed. The consistent calculations in coordinate space and the choice of special gauges for quantum and classical gluon fields are essential ingradients of this method. The self consistent system of twist three wave functions for π-meson has been built

  12. Status report on ESF-related prototype testing

    International Nuclear Information System (INIS)

    Oliver, R.D.; Kalia, H.N.

    1992-12-01

    This report provides information on the Prototype Testing performed in the G-Tunnel on the Nevada Test Site by the Yucca Mountain Project form April 1988 to November 1989. The Testing Program was implemented to ensure that the Exploratory Shaft Facility (ESF) tests can be completed in the time available and to develop instruments, equipment, and procedures so the ESF tests can collect reliable and representative site characterization data. This report summarizes the ESF prototype tests and presents preliminary results

  13. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review.

    Science.gov (United States)

    Budinski, Vedran; Donlagic, Denis

    2017-02-23

    Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper.

  14. Resonant MHD modes with toroidal coupling

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Taylor, J.B.

    1990-07-01

    This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions

  15. Design and Prototyping of a High Granularity Scintillator Calorimeter

    International Nuclear Information System (INIS)

    Zutshi, Vishnu

    2016-01-01

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  16. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  17. Twist deformations leading to κ-Poincaré Hopf algebra and their application to physics

    International Nuclear Information System (INIS)

    Jurić, Tajron; Meljanac, Stjepan; Samsarov, Andjelo

    2016-01-01

    We consider two twist operators that lead to kappa-Poincaré Hopf algebra, the first being an Abelian one and the second corresponding to a light-like kappa-deformation of Poincaré algebra. The adventage of the second one is that it is expressed solely in terms of Poincaré generators. In contrast to this, the Abelian twist goes out of the boundaries of Poincaré algebra and runs into envelope of the general linear algebra. Some of the physical applications of these two different twist operators are considered. In particular, we use the Abelian twist to construct the statistics flip operator compatible with the action of deformed symmetry group. Furthermore, we use the light-like twist operator to define a star product and subsequently to formulate a free scalar field theory compatible with kappa-Poincaré Hopf algebra and appropriate for considering the interacting ϕ 4 scalar field model on kappa-deformed space. (paper)

  18. Modeling and development of a twisting wing using inductively heated shape memory alloy actuators

    Science.gov (United States)

    Saunders, Robert N.; Hartl, Darren J.; Boyd, James G.; Lagoudas, Dimitris C.

    2015-04-01

    Wing twisting has been shown to improve aircraft flight performance. The potential benefits of a twisting wing are often outweighed by the mass of the system required to twist the wing. Shape memory alloy (SMA) actuators repeatedly demonstrate abilities and properties that are ideal for aerospace actuation systems. Recent advances have shown an SMA torsional actuator that can be manufactured and trained with the ability to generate large twisting deformations under substantial loading. The primary disadvantage of implementing large SMA actuators has been their slow actuation time compared to conventional actuators. However, inductive heating of an SMA actuator allows it to generate a full actuation cycle in just seconds rather than minutes while still . The aim of this work is to demonstrate an experimental wing being twisted to approximately 10 degrees by using an inductively heated SMA torsional actuator. This study also considers a 3-D electromagnetic thermo-mechanical model of the SMA-wing system and compare these results to experiments to demonstrate modeling capabilities.

  19. Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji

    2014-06-01

    We study the six-point gluon scattering amplitudes in N=4 super Yang-Mills theory at strong coupling based on the twisted Z 4 -symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.

  20. Borel resummation of soft gluon radiation and higher twists

    International Nuclear Information System (INIS)

    Forte, Stefano; Ridolfi, Giovanni; Rojo, Joan; Ubiali, Maria

    2006-01-01

    We show that the well-known divergence of the perturbative expansion of resummed results for processes such as deep-inelastic scattering and Drell-Yan in the soft limit can be treated by Borel resummation. The divergence in the Borel inversion can be removed by the inclusion of suitable higher twist terms. This provides us with an alternative to the standard 'minimal prescription' for the asymptotic summation of the perturbative expansion, and it gives us some handle on the role of higher twist corrections in the soft resummation region

  1. Note on twisted elliptic genus of K3 surface

    International Nuclear Information System (INIS)

    Eguchi, Tohru; Hikami, Kazuhiro

    2011-01-01

    We discuss the possibility of Mathieu group M 24 acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M 24 so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M 24 . In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.

  2. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    Energy Technology Data Exchange (ETDEWEB)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl [Photonic Nanostructure Facility, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  3. An in-line fiber-optic modal interferometer for simultaneous measurement of twist and ambient temperature

    Directory of Open Access Journals (Sweden)

    Yongqin Yu

    2014-12-01

    Full Text Available A novel and simple sensor based on fiber-optic modal interferometer fabricated by a segment of low elliptical hollow-core photonic bandgap fiber for simultaneous temperature and twist measurements is demonstrated. Meanwhile the sensor can also measure the twist angle and determine the twist direction simultaneously. The mode distribution of EHC-PBGF is demonstrated both in theory and experiments. There is an obvious difference of two transmission dips on the temperature and twist. The twist sensitivities of Dip 1 and Dip 2 are obtained to be −31.95 and −585.8 pm/(rad/m, respectively. The temperature sensitivities are 12.99 pm/°C for Dip 1 and 5.09 pm/°C for Dip 2, respectively. Two parameters of twist and temperature can be distinguished and measured simultaneously by using a sensing matrix. Meanwhile the structure is found to be weakly sensitive to the axial strain. It has the advantage of avoiding the crosstalk of strain in the applications.

  4. Thermodynamic properties of the S =1 /2 twisted triangular spin tube

    Science.gov (United States)

    Ito, Takuya; Iino, Chihiro; Shibata, Naokazu

    2018-05-01

    Thermodynamic properties of the twisted three-leg spin tube under magnetic field are studied by the finite-T density-matrix renormalization group method. The specific heat, spin, and chiral susceptibilities of the infinite system are calculated for both the original and its low-energy effective models. The obtained results show that the presence of the chirality is observed as a clear peak in the specific heat at low temperature and the contribution of the chirality dominates the low-temperature part of the specific heat as the exchange coupling along the spin tube decreases. The peak structures in the specific heat, spin, and chiral susceptibilities are strongly modified near the quantum phase transition where the critical behaviors of the spin and chirality correlations change. These results confirm that the chirality plays a major role in characteristic low-energy behaviors of the frustrated spin systems.

  5. Prototype HL-LHC magnet undergoes testing

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A preliminary short prototype of the quadrupole magnets for the High-Luminosity LHC has passed its first tests.   The first short prototype of the quadrupole magnet for the High Luminosity LHC. (Photo: G. Ambrosio (US-LARP and Fermilab), P. Ferracin and E. Todesco (CERN TE-MSC)) Momentum is gathering behind the High-Luminosity LHC (HL-LHC) project. In laboratories on either side of the Atlantic, a host of tests are being carried out on the various magnet models. In mid-March, a short prototype of the quadrupole magnet underwent its first testing phase at the Fermilab laboratory in the United States. This magnet is a pre-prototype of the quadrupole magnets that will be installed near to the ATLAS and CMS detectors to squeeze the beams before collisions. Six quadrupole magnets will be installed on each side of each experiment, giving a total of 24 magnets, and will replace the LHC's triplet magnets. Made of superconducting niobium-tin, the magnets will be more powerful than their p...

  6. Twisted Vector Bundles on Pointed Nodal Curves

    Indian Academy of Sciences (India)

    Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.

  7. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, and jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses

  8. One-dimensional structures behind twisted and untwisted superYang-Mills theory

    CERN Document Server

    Baulieu, Laurent

    2011-01-01

    We give a one-dimensional interpretation of the four-dimensional twisted N=1 superYang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N=1 superYang-Mills theory.

  9. Preliminary design report: Prototypical Spent Fuel Consolidation Equipment Demonstration Project: Phase 1

    International Nuclear Information System (INIS)

    Blissell, W.H.; Ciez, A.P.; Mitchell, J.L.; Winkler, C.J.

    1986-12-01

    This document describes the Westinghouse Preliminary Design for the Prototypical Consolidation Demonstration Project per Department of Energy (DOE) Contract No. DE-AC07-86ID12649 and under direction of the DOE Idaho Operations Office. The preliminary design is the first step to providing the Department of Energy with a fully qualified, licensable, cost-effective spent fuel rod consolidation system. The design was developed using proven technologies and equipment to create an innovative approach to previous rod consolidation concepts. These innovations will better enable the Westinghouse system to: consolidate fuel rods in a precise, fully-controlled, accountable manner; package all rods from two PWR fuel assemblies or from four BWR fuel assemblies in one 8.5 inch square consolidated rods canister; meet all functional requirements; operate with all fuel types common to the US commercial nuclear industry with minimal tooling changeouts; and meet consolidation production process rates, while maintaining operator and public health and safety. This Preliminary Design Report provides both detailed descriptions of the equipment required to perform the rod consolidation process and the supporting analyses to validate the design

  10. FY97 ICCS prototype specification

    International Nuclear Information System (INIS)

    Woodruff, J.

    1997-01-01

    The ICCS software team will implement and test two iterations of their software product during FY97. This document specifies the products to be delivered in that first prototype and projects the direction that the second prototype will take. Detailed specification of the later iteration will be written when the results of the first iteration are complete. The selection of frameworks to be implemented early is made on a basis of risk analysis from the point of view of future development in the ICCS project. The prototype will address risks in integration of object- oriented components, in refining our development process, and in emulation testing for FEP devices. This document is a specification that identifies products and processes to undertake for resolving these risks. The goals of this activity are to exercise our development process at a modest scale and to probe our architecture plan for fundamental limits and failure modes. The product of the iterations will be the framework software which will be useful in future ICCS code. Thus the FY97 products are intended for internal usage by the ICCS team and for demonstration to the FEP software developers of the strategy for integrating supervisory software with FEP computers. This will be the first of several expected iterations of the software development process and the performance measurements that ICCS will demonstrate, intended to support confidence in our ability to meet project RAM goals. The design of the application software is being carried out in a separate WBS 1.5.2 activity. The design activity has as its FY97 product a series of Software Design Documents that will specify the functionality of the controls software of ICCS. During the testing of this year''s prototypes, the application functionality needed for test will be provided by sample maintenance controls. These are early precursors of controls that can be used for low level device control. Since the devices under test will be represented by

  11. Improving design processes through structured reflection : a prototype software tool

    OpenAIRE

    Reymen, I.M.M.J.; Melby, E.

    2001-01-01

    A prototype software tool facilitating the use of a design method supporting structured reflection on design processes is presented. The prototype, called Echo, has been developed to explore the benefits of using a software system to facilitate the use of the design method. Both the prototype software tool and the design method are developed as part of the Ph.D. project of Isabelle Reymen. The goal of the design method is supporting designers with reflection on design processes in a systemati...

  12. Twisted mass, overlap and Creutz fermions. Cut-off effects at tree-level of perturbation theory

    International Nuclear Information System (INIS)

    Cichy, K.; Kujawa, A.; Jansen, K.; Shindler, A.

    2008-02-01

    We study cutoff effects at tree-level of perturbation theory for maximally twisted mass Wilson, overlap and the recently proposed Creutz fermions. We demonstrate that all three kind of lattice fermions exhibit the expected O(a 2 ) scaling behaviour in the lattice spacing. In addition, the sizes of these cutoff effects are comparable for the three kinds of lattice fermions considered here. Furthermore, we analyze situations when twisted mass fermions are not exactly at maximal twist and when overlap fermions are studied in comparison to twisted mass fermions when the quark masses are not matched. (orig.)

  13. Twist and snai1 expression in pharyngeal squamous cell carcinoma stroma is related to cancer progression

    International Nuclear Information System (INIS)

    Jouppila-Mättö, Anna; Närkiö-Mäkelä, Mervi; Soini, Ylermi; Pukkila, Matti; Sironen, Reijo; Tuhkanen, Hanna; Mannermaa, Arto; Kosma, Veli-Matti

    2011-01-01

    Epithelial-mesenchymal transition (EMT) is a crucial process in tumorigenesis since tumor cells attain fibroblast-like features enabling them to invade to surrounding tissue. Two transcription factors, TWIST and SNAI1, are fundamental in regulating EMT. Immunohistochemistry was used to study the expression of TWIST and SNAI1 in 109 pharyngeal squamous cell carcinomas. Tumors with intense stromal staining of TWIST relapsed more frequently (p = 0.04). Tumors with both positive TWIST and SNAI1 immunoreactivity in the stroma were at least Stage II (p = 0.05) and located more often in hypopharynx (p = 0.035). Tumors with negative immunostaining of TWIST and SNAI1 in the stromal compartment were smaller (T1-2) (p = 0.008), less advanced (SI-II) (p = 0.031) and located more often in the oropharynx (p = 0.007). Patients with negative SNAI1 and TWIST immunostaining in tumor stroma had a better 5-year disease-specific and overall survival (p = 0.037 and p = 0.014 respectively). TWIST and SNAI1 expression in stromal cells is associated with clinical and histopathological characteristics that indicate progressive disease. Negative expression of these EMT-promoting transcription factors predicts a better outcome

  14. Adaptive super twisting vibration control of a flexible spacecraft with state rate estimation

    Science.gov (United States)

    Malekzadeh, Maryam; Karimpour, Hossein

    2018-05-01

    The robust attitude and vibration control of a flexible spacecraft trying to perform accurate maneuvers in spite of various sources of uncertainty is addressed here. Difficulties for achieving precise and stable pointing arise from noisy onboard sensors, parameters indeterminacy, outer disturbances as well as un-modeled or hidden dynamics interactions. Based on high-order sliding-mode methods, the non-minimum phase nature of the problem is dealt with through output redefinition. An adaptive super-twisting algorithm (ASTA) is incorporated with its observer counterpart on the system under consideration to get reliable attitude and vibration control in the presence of sensor noise and momentum coupling. The closed-loop efficiency is verified through simulations under various indeterminate situations and got compared to other methods.

  15. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review

    Directory of Open Access Journals (Sweden)

    Vedran Budinski

    2017-02-01

    Full Text Available Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper

  16. Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

  17. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    International Nuclear Information System (INIS)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately

  18. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    Science.gov (United States)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.

  19. 'Twisted tape sign': Its significance in recurrent sigmoid volvulus

    International Nuclear Information System (INIS)

    Gopal, K.; Lim, Y.; Banerjee, B.

    2005-01-01

    Aim: Sigmoid volvulus is a common cause of intestinal obstruction in the elderly. Mild attacks of sigmoid volvulus may be more difficult to diagnose due to the lack of severity of symptoms which may resolve spontaneously only to recur after an interval. This study was a review of patients to assess the incidence of the 'twisted tape sign' and to evaluate the significance of its presence in cases of recurrent sigmoid volvulus. Methods and materials: A retrospective study over eight years revealed six cases of surgically confirmed recurrent sigmoid volvulus. Case records and barium enemas of all patients were reviewed. Results: Six patients were identified, including four men and two women, with a median age of 56 years. Diagnostic difficulties were encountered in four (67%) patients with a delay ranging between 10 and 37 months with a mean 17.3 months. Twisted tape sign was confirmed on all barium examinations retrospectively. Conclusion: Recognition of twisted tape sign on barium enema examination along with an appropriate clinical history would suggest a diagnosis of recurrent sigmoid volvulus

  20. DataCollection Prototyping

    CERN Multimedia

    Beck, H.P.

    DataCollection is a subsystem of the Trigger, DAQ & DCS project responsible for the movement of event data from the ROS to the High Level Triggers. This includes data from Regions of Interest (RoIs) for Level 2, building complete events for the Event Filter and finally transferring accepted events to Mass Storage. It also handles passing the LVL1 RoI pointers and the allocation of Level 2 processors and load balancing of Event Building. During the last 18 months DataCollection has developed a common architecture for the hardware and software required. This involved a radical redesign integrating ideas from separate parts of earlier TDAQ work. An important milestone for this work, now achieved, has been to demonstrate this subsystem in the so-called Phase 2A Integrated Prototype. This prototype comprises the various TDAQ hardware and software components (ROSs, LVL2, etc.) under the control of the TDAQ Online software. The basic functionality has been demonstrated on small testbeds (~8-10 processing nodes)...

  1. Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    International Nuclear Information System (INIS)

    Trottier, H.D.; Shakespeare, N.H.; Lepage, G.P.; Mackenzie, P.B.

    2002-01-01

    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 3 4 to 16 4 ) and couplings (from β≅9 to β≅60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported

  2. Integrated Plan-Procedures-Telemetry Ops Concept and Prototype

    Data.gov (United States)

    National Aeronautics and Space Administration — The project scope includes developing the ops concept and prototype for a near-seamless interface between mission plans, electronic procedures and live telemetry...

  3. Prototyping phase of the high heat flux scraper element of Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max Planck Institute for Plasma Physics, Garching (Germany); Greuner, H. [Max Planck Institute for Plasma Physics, Garching (Germany); Ehrke, G. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Böswirth, B.; Wang, Z. [Max Planck Institute for Plasma Physics, Garching (Germany); Clark, E. [University of Tennessee, Knoxville (United States); Lumsdaine, A. [Oak Ridge National Laboratory, USA National Laboratory, Oak Ridge, Tennessee (United States); Tretter, J. [Max Planck Institute for Plasma Physics, Garching (Germany); McGinnis, D.; Lore, J. [Oak Ridge National Laboratory, USA National Laboratory, Oak Ridge, Tennessee (United States); Ekici, K. [University of Tennessee, Knoxville (United States)

    2016-11-01

    Highlights: • Aim of scraper element: reduction of heat loads on high heat flux divertor ends. • Design: actively water-cooled for 20 MW/m{sup 2} local heat loads. • Technology: CFC NB31 monoblocks bonded by HIP to CuCrZr cooling tube. • Successful high heat flux testing up to 20 MW/m{sup 2}. - Abstract: The water-cooled high heat flux scraper element aims to reduce excessive heat loads on the target element ends of the actively cooled divertor of Wendelstein 7-X. Its purpose is to intercept some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper element has 24 identical plasma facing components (PFCs) divided into 6 modules. One module has 4 PFCs hydraulically connected in series by 2 water boxes. A PFC, 247 mm long and 28 mm wide, has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equipped with a copper twisted tape. 4 full-scale prototypes of PFCs have been successfully tested in the GLADIS facility up to 20 MW/m{sup 2}. The difference observed between measured and calculated surface temperatures is probably due to the inhomogeneity of CFC properties. The design of the water box prototypes has been detailed to allow the junction between the cooling pipe of the PFCs and the water boxes by internal orbital welding. The prototypes are presently under fabrication.

  4. Twist-3 effect from the longitudinally polarized proton for ALT in hadron production from pp collisions

    Directory of Open Access Journals (Sweden)

    Yuji Koike

    2016-08-01

    Full Text Available We compute the contribution from the longitudinally polarized proton to the twist-3 double-spin asymmetry ALT in inclusive (light hadron production from proton–proton collisions, i.e., p↑p→→hX. We show that using the relevant QCD equation-of-motion relation and Lorentz invariance relation allows one to eliminate the twist-3 quark-gluon correlator (associated with the longitudinally polarized proton in favor of one-variable twist-3 quark distributions and the (twist-2 transversity parton density. Including this result with the twist-3 pieces associated with the transversely polarized proton and unpolarized final-state hadron (which have already been calculated in the literature, we now have the complete leading-order cross section for this process.

  5. Calculations of higher twist distribution functions in the MIT bag model

    International Nuclear Information System (INIS)

    Signal, A.I.

    1997-01-01

    We calculate all twist-2, -3 and -4 parton distribution functions involving two quark correlations using the wave function of the MIT bag model. The distributions are evolved up to experimental scales and combined to give the various nucleon structure functions. Comparisons with recent experimental data on higher twist structure functions at moderate values of Q 2 give good agreement with the calculated structure functions. (orig.)

  6. One-dimensional structures behind twisted and untwisted super Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Baulieu, Laurent [CERN, Geneve (Switzerland). Theoretical Div.; Toppan, Francesco, E-mail: baulieu@lpthe.jussieu.f, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    We give a one-dimensional interpretation of the four-dimensional twisted N = 1 super Yang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N = 1 super Yang-Mills theory. (author)

  7. One-dimensional structures behind twisted and untwisted super Yang-Mills theory

    International Nuclear Information System (INIS)

    Baulieu, Laurent

    2010-01-01

    We give a one-dimensional interpretation of the four-dimensional twisted N = 1 super Yang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N = 1 super Yang-Mills theory. (author)

  8. Overlap valence quarks on an twisted mass sea

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, K. [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Drach, V.; Garcia-Ramos, E.; Herdoiza, G.; Jansen, K. [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC

    2010-12-15

    We present the results of an investigation of a mixed action approach of overlap valence and maximally twisted mass sea quarks. Employing a particular matching condition on the pion mass, we analyze the continuum limit scaling of the pion decay constant and the role of chiral zero modes of the overlap operator in this process. We employ gauge field configurations generated by the European Twisted Mass Collaboration with linear lattice size L ranging from 1.3 to 1.9 fm. The continuum limit is taken at a fixed value of L=1.3 fm, employing three values of the lattice spacing and two values of the pion mass constructed from sea quarks only. (orig.)

  9. Twisted tachyon condensation in closed string field theory

    International Nuclear Information System (INIS)

    Okawa, Yuji; Zwiebach, Barton

    2004-01-01

    We consider twisted tachyons on C/Z N orbifolds of bosonic closed string theory. It has been conjectured that these tachyonic instabilities correspond to decays of the orbifolds into flat space or into orbifolds with smaller deficit angles. We examine this conjecture using closed string field theory, with the string field truncated to low-level tachyons. We compute the tachyon potentials for C/Z 2 and C/Z 3 orbifolds and find critical points at depths that generate about 70% of the expected change in the deficit angle. We find that both twisted fields and untwisted modes localized near the apex of the cone acquire vacuum expectation values and contribute to the potential. (author)

  10. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    of the prototyping process, the actual prototype was used as a tool for communication or development, thus serving as a platform for the cross-fertilization of knowledge. In this way, collaborative prototyping leads to a better balance between functionality and usability; it translates usability problems into design......This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...

  11. Anticipating and projective-anticipating synchronization of coupled multidelay feedback systems

    International Nuclear Information System (INIS)

    Hoang, Thang Manh; Nakagawa, Masahiro

    2007-01-01

    In this Letter, the model of coupled multidelay feedback systems is investigated with the schemes of anticipating and projective-anticipating synchronizations. Under these synchronization schemes, the slave anticipates the master's trajectory. Moreover, with projective-anticipating synchronization there exists a scale factor in the amplitudes of the master's and slave's state variables. In the both cases, the driving signals are in the form of multiple nonlinear transformations of delayed state variable. The Krasovskii-Lyapunov theory is used to consider the sufficient condition for synchronization. The effectiveness of the proposed schemes is confirmed by the numerical simulation of specific examples with modified Ikeda and Mackey-Glass systems

  12. Construction of a drift chamber prototype for the CMS experiment

    International Nuclear Information System (INIS)

    Berdugo, J.; Cerrada, M.; Daniel, M.; Martin, F.; Mocholi, J.; Romero, L.

    1997-01-01

    General design features of a small size drift chamber prototype are described in this report. Prototype construction has taken place at CIEMAT and we explain in detail the assembly procedure. This activity is part of a long term project to mass produce chambers for the muon barrel detector of the CMS experiment which will be installed at CERN. (Author)

  13. Twisted Bilayer Graphene. Interlayer configuration and magnetotransport signatures

    Energy Technology Data Exchange (ETDEWEB)

    Rode, Johannes C.; Smirnov, Dmitri; Belke, Christopher; Schmidt, Hennrik; Haug, Rolf J. [Institut fuer Festkoerperphysik, Hannover (Germany)

    2017-11-15

    Twisted Bilayer Graphene may be viewed as very first representative of the now booming class of artificially layered 2D materials. Consisting of two sheets from the same structure and atomic composition, its decisive degree of freedom lies in the rotation between crystallographic axes in the individual graphene monolayers. Geometrical consideration finds angle-dependent Moire patterns as well as commensurate superlattices of opposite sublattice exchange symmetry. Beyond the approach of rigidly interposed lattices, this review takes focus on the evolving topic of lattice corrugation and distortion in response to spatially varying lattice registry. The experimental approach to twisted bilayers requires a basic control over preparation techniques; important methods are summarized and extended on in the case of bilayers folded from monolayer graphene via AFM nanomachining. Central morphological parameters to the twisted bilayer, rotational mismatch and interlayer separation are studied in a broader base of samples. Finally, experimental evidence for a number of theoretically predicted, controversial electronic scenarios are reviewed; magnetotransport signatures are discussed in terms of Fermi velocity, van Hove singularities and Berry phase and assessed with respect to the underlying experimental conditions, thereby referring back to the initially considered variations in relaxed lattice structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Higher-twist effects in the B → π transition form factor from QCD light-cone sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Khodjamirian, Alexander; Rusov, Aleksey [Universitaet Siegen (Germany). Fakultaet IV, Department Physik, Theoretische Physik 1 Walter-Flex-Strasse 3 57068 Siegen

    2016-07-01

    I report on the progress in calculating new higher-twist corrections to the QCD light-cone sum rule for the B → π transition form factor. First, the expansion of the massive heavy-quark propagator in the external gluonic field near the light-cone was extended to include new terms containing the gluon-field strength derivatives. The resulting analytical expressions for the twist-5 and twist-6 contributions to the correlation function were obtained in a factorized approximation, expressed via the product of the quark-condensate density and the lower-twist pion distribution amplitudes. The numerical analysis of new higher-twist effects is in progress.

  15. From research plots to prototype biomass plantations

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, W.A.; Vanstone, B.J.; Gambles, R.L.; Zsuffa, L. [Univ. of Toronto, Ontario (Canada)

    1993-12-31

    The development of biomass energy plantations is now expanding from the research plot phase into the next level of development at larger scale plantings. This is necessary to provide: more accurate information on biomass yields, realistic production cost figures, venues to test harvesting equipment, demonstration sites for potential producers, and a supply of feedstock for prototype conversion facilities. The paper will discuss some of these objectives and some of the challenges encountered in the scale-up process associated with a willow prototype plantation project currently under development in Eastern Canada.

  16. DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder

    Science.gov (United States)

    Andelković, M.; Covaci, L.; Peeters, F. M.

    2018-03-01

    The in-plane dc conductivity of twisted bilayer graphene is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding approach the transport properties as a function of rotation angle, applied perpendicular electric field, and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the dc conductivity, despite the appearance of localized states in the AA regions. The results agree qualitatively with recent transport experiments in low-angle twisted bilayer graphene.

  17. Note on twisted elliptic genus of K3 surface

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Tohru, E-mail: eguchi@yukawa.kyoto-u.ac.j [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hikami, Kazuhiro, E-mail: KHikami@gmail.co [Department of Mathematics, Naruto University of Education, Tokushima 772-8502 (Japan)

    2011-01-03

    We discuss the possibility of Mathieu group M{sub 24} acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M{sub 24} so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M{sub 24}. In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.

  18. Baryon spectrum with Nƒ=2+1+1 twisted mass fermions

    DEFF Research Database (Denmark)

    Alexandrou, C.; Drach, V.; Jansen, K.

    2014-01-01

    The masses of the low-lying baryons are evaluated using a total of ten ensembles of dynamical twisted mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values....... The light sea quarks correspond to pseudo scalar masses in the range of about 210 to 430 MeV. We use the Iwasaki improved gluonic action at three values of the coupling constant corresponding to lattice spacing a = 0.094, 0.082 and 0.065 fm determined from the nucleon mass. We check for both finite volume...... and cutoff effects on the baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. We performed a chiral extrapolation of the forty...

  19. Latest Changes to NASA's Laser Communication Relay Demonstration Project

    Science.gov (United States)

    Edwards, Bernard L.; Israel, David J.; Vithlani, Seema K.

    2018-01-01

    Over the last couple of years, NASA has been making changes to the Laser Communications Relay Demonstration Project (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). The changes made makes LCRD more like a future Earth relay system that has both high speed optical and radio frequency links. This will allow LCRD to demonstrate a more detailed concept of operations for a future operational mission critical Earth relay. LCRD is expected to launch in June 2019 and is expected to be followed a couple of years later with a prototype user terminal on the International Space Station. LCRD's architecture will allow it to serve as a testbed in space and this paper will provide an update of its planned capabilities and experiments.

  20. Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Meljanac, Daniel [Ruder Boskovic Institute, Division of Materials Physics, Zagreb (Croatia); Meljanac, Stjepan; Pikutic, Danijel [Ruder Boskovic Institute, Division of Theoretical Physics, Zagreb (Croatia)

    2017-12-15

    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincare-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ-Minkowski spaces and (iii) κ-Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed. (orig.)

  1. Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries

    International Nuclear Information System (INIS)

    Meljanac, Daniel; Meljanac, Stjepan; Pikutic, Danijel

    2017-01-01

    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincare-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ-Minkowski spaces and (iii) κ-Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed. (orig.)

  2. Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries

    Science.gov (United States)

    Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel

    2017-12-01

    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.

  3. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    International Nuclear Information System (INIS)

    Ahsan, M.; Bolton, T.; Carnes, K.; Demarteau, M.; Demina, R.; Gray, T.; Korjenevski, S.; Lehner, F.; Lipton, R.; Mao, H.S.; McCarthy, R.

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10 14 p/cm 2 at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  4. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, M.; Bolton, T.; Carnes, K.; /Kansas State U.; Demarteau, M.; /Fermilab; Demina, R.; /Rochester U.; Gray, T.; /Kansas State U.; Korjenevski, S.; /Rochester U.; Lehner, F.; /Zurich U.; Lipton, R.; Mao, H.S.; /Fermilab; McCarthy, R.; /SUNY, Stony Brook /Kansas State U. /Fermilab

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10{sup 14} p/cm{sup 2} at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  5. Chiral tunneling in a twisted graphene bilayer.

    Science.gov (United States)

    He, Wen-Yu; Chu, Zhao-Dong; He, Lin

    2013-08-09

    The perfect transmission in a graphene monolayer and the perfect reflection in a Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in a twisted graphene bilayer show an adjustable probability of chiral tunneling for normal incidence: they can be changed from perfect tunneling to partial or perfect reflection, or vice versa, by controlling either the height of the barrier or the incident energy. As well as addressing basic physics about how the chiral fermions with different chiralities tunnel through a barrier, our results provide a facile route to tune the electronic properties of the twisted graphene bilayer.

  6. gVSγ coupling constant in light cone QCD

    International Nuclear Information System (INIS)

    Aydin, C.; Keskin, F.; Yilmaz, A. H.; Aydin, S. H.

    2011-01-01

    We recalculated the coupling constants g φσγ , g φa 0 γ , g ωσγ , g a 0 ωγ , g ρσγ , and g a 0 ργ by taking into account the contributions of the three-particle up to twist-4 distribution amplitudes of the photon involving quark-gluon and quark-anti-quark-photon fields in the light-cone sum-rule framework.

  7. TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts

    Science.gov (United States)

    Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.

    2018-05-01

    Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.

  8. The final measurements of the muon decay parameters from the TWIST experiment

    International Nuclear Information System (INIS)

    Bayes, R

    2013-01-01

    The TWIST (TRIUMF Weak Interaction Symmetry Test) experiment probes the Lorentz structure of the weak interaction using muon decay. This structure has a very well defined form under the Standard Model (SM) which makes precise predictions for the shape of the decay positron spectrum with respect to momentum and angle. The shape of the spectrum may be described under some rather general assumptions using a set of decay parameters whose values according to the SM are ρ = δ = 3/4, η = 0, and ξ = 1. TWIST uses a large sample of muon decays in a large acceptance spectrometer to measure the decay parameters to an order of magnitude greater precision than previous measurements. This experiment saw its last year of data collection in 2007. As TWIST is a systematics dominated experiment, much effort has been spent on refinements of the estimates of the systematic uncertainties over previous TWIST results. These proceedings will discuss the measures taken to achieve the precision goal of parts in 10 4 , and the physics implications of the experiment.

  9. Synthesis and structural determination of twisted MoS2 nanotubes

    International Nuclear Information System (INIS)

    Santiago, P.; Schabes-Retchkiman, P.; Ascencio, J.A.; Mendoza, D.; Perez-Alvarez, M.; Espinosa, A.; Reza-SanGerman, C.; Camacho-Bragado, G.A.; Jose-Yacaman, M.

    2004-01-01

    In the present work we report the synthesis of MoS 2 nanotubes with diameters greater than 10 nm using a template method. The length and properties of these nanotubes are a direct result of the preparation method. High-resolution transmission electron microscopy is used to study the structure of these highly curved entities. Molecular dynamics simulations of MoS 2 nanotubes reveal that one of the stable forms of the nanotubes is a twisted one. The twisting of the nanotubes produces a characteristic contrast in the images, which is also studied using simulation methods. The analysis of the local contrast close to the perpendicular orientation shows geometrical arrays of dots in domain-like structures, which are demonstrated to be a product of the atomic overlapping of irregular curvatures in the nanotubes. The configuration of some of the experimentally obtained nanotubes is demonstrated to be twisted with a behavior suggesting partial plasticity. (orig.)

  10. Output Feedback Control of Electro-Hydraulic Cylinder Drives using the Twisting Algorithm

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    contributions in literature. This paper considers the twisting algorithm when applied directly for output feedback control, and with the design based on a reduced order model representation of an arbitrary valve driven hydraulic cylinder drive. The consequence of implementing such a controller with the well......This paper discusses the utilization of the so-called twisting algorithm when applied in output feedback position control schemes for electro-hydraulic cylinder drives. The twisting controller was the first second order sliding controller ever introduced, and can structure-wise be considered...... feedback controller may be successfully applied to hydraulic valve driven cylinder drives, with performance being on the level with a conventional surface based first order sliding mode controller....

  11. Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Paavilainen, S.; Rog, T.; Vattulainen, I.

    2011-01-01

    We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile......, no significant bending or stretching of nanocellulose is discovered. Considerations of atomic-scale interaction patterns bring about that the twisting arises from hydrogen bonding within and between the chains in a fibril....

  12. Tilting-Twisting-Rolling: a pen-based technique for compass geometric construction

    Institute of Scientific and Technical Information of China (English)

    Fei LYU; Feng TIAN; Guozhong DAI; Hongan WANG

    2017-01-01

    This paper presents a new pen-based technique,Tilting-Twisting-Rolling,to support compass geometric construction.By leveraging the 3D orientation information and 3D rotation information of a pen,this technique allows smooth pen action to complete multi-step geometric construction without switching task states.Results from a user study show this Tilting-Twisting-Rolling technique can improve user performance and user experience in compass geometric construction.

  13. Impact of higher twist terms on the analysis of scaling violation

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1979-09-01

    A critical discussion is given of analyses of scaling violation in deep-inelastic scattering in the context of QCD. Several possible approaches are examined. Higher twist contributions are defined, and it is shown that they can have a crucial impact on tests of QCD. Higher twist terms can dramatically affect R = sigma/sub L//sigma/sub T/. QCD may be harder to test than previously realized. 17 references

  14. STM and synchrotron radiation studies of prototypical metal/semiconductor systems

    DEFF Research Database (Denmark)

    Lay, G. le; Aristov, V.Y.; Seehofer, L.

    1994-01-01

    Since the origin of surface science noble metal/elemental semiconductor couples have been considered as ''prototypical'' systems. After three decades of research their structural and electronic properties remain an intriguing maze despite recent advances made, especially thanks to the development...

  15. Characterization of a high-energy in-line phase contrast tomosynthesis prototype.

    Science.gov (United States)

    Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2015-05-01

    In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. This research successfully demonstrated a high-energy in-line phase contrast tomosynthesis

  16. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review †

    Science.gov (United States)

    Budinski, Vedran; Donlagic, Denis

    2017-01-01

    Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation. PMID:28241510

  17. Bogoliubov coefficients for the twist operator in the D1D5 CFT

    Directory of Open Access Journals (Sweden)

    Zaq Carson

    2014-12-01

    Full Text Available The D1D5 CFT is a holographic dual of a near-extremal black hole in string theory. The interaction in this theory involves a twist operator which joins together different copies of a free CFT. Given a large number of D1 and D5 branes, the effective length of the circle on which the CFT lives is very large. We develop a technique to study the effect of the twist operator in the limit where the wavelengths of excitations are short compared to this effective length, which we call the ‘continuum limit’. The method uses Bogoliubov coefficients to compute the effect of the twist operator in this limit. For bosonic fields, we use the method to reproduce recent results describing the effect of the twist operator when it links together CFT copies with windings M and N, producing a copy of winding M+N. We also comment on possible generalizations of our results. The methods developed here may help in understanding the twist interaction at higher orders. This in turn should provide insight into the thermalization process in the D1D5 CFT, which gives a holographic description of black hole formation.

  18. Twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Shindler, A.

    2007-07-01

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  19. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  20. Harmonizing the prototypes concerning the fast reactors of 4. generation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    In january 2008, an agreement was signed between the Japan Atomic Energy Agency (JAEA), the American Department of Energy (DOE) and the French Atomic Energy Commission, in order to harmonize the projects of the 3 countries for the development of prototypes of sodium-cooled fast reactors. This cooperation concerns the following issues: -) the purpose of the prototypes, -) common set of safety rules, -) technical innovations for reducing construction, operating and maintenance costs, and -) information exchange about the level of power, the type of nuclear fuels and the time schedule of these prototypes. (A.C.)

  1. Magnetic refrigeration at room temperature - from magnetocaloric materials to a prototype

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Pryds, Nini; Bahl, Christian Robert Haffenden

    2011-01-01

    Based on the magnetocaloric effect, magnetic refrigeration at room temperature has for the past decade been a promising, environmentally friendly new energy technology predicted to have a significantly higher efficiency than the present conventional methods. However, so far only a few prototype...... refrigeration machines have been presented worldwide and there are still many scientific and technological challenges to be overcome. We report here on the MagCool project, which spans all the way from basic materials studies to the construction of a prototype. Emphasis has been on ceramic magnetocaloric...... materials, their shaping and graded composition for technological use. Modelling the performance of a permanent magnet with optimum use of the flux and relatively low weight, and designing and constructing a prototype continuous magnetic refrigeration device have also been major tasks in the project...

  2. Magnetic refrigeration at room temperature - from magnetocaloric materials to a prototype

    International Nuclear Information System (INIS)

    Kuhn, L Theil; Pryds, N; Bahl, C R H; Smith, A

    2011-01-01

    Based on the magnetocaloric effect, magnetic refrigeration at room temperature has for the past decade been a promising, environmentally friendly new energy technology predicted to have a significantly higher efficiency than the present conventional methods. However, so far only a few prototype refrigeration machines have been presented worldwide and there are still many scientific and technological challenges to be overcome. We report here on the MagCool project, which spans all the way from basic materials studies to the construction of a prototype. Emphasis has been on ceramic magnetocaloric materials, their shaping and graded composition for technological use. Modelling the performance of a permanent magnet with optimum use of the flux and relatively low weight, and designing and constructing a prototype continuous magnetic refrigeration device have also been major tasks in the project.

  3. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    International Nuclear Information System (INIS)

    Parro Albeniz, M.

    2015-01-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  4. Modeling higher twist contributions to deep inelastic scattering with diquarks

    International Nuclear Information System (INIS)

    Anselmino, M.

    1994-01-01

    The most recent detailed data on the unpolarized nucleon structure functions allow a precise determination of higher twist contributions. Quark-quark correlations induced by color forces are expected to be a natural explanation for such effects; indeed, a quark-diquark picture of the nucleon, previously introduced in the description of several exclusive processes at intermediate Q 2 values, is found to model the proton higher twist data with great accuracy. The resulting parameters are consistent with the diquark properties suggested by other experimental and theoretical analyses. (author)

  5. An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles

    Science.gov (United States)

    Ni, Zao; Su, Tsung-chow; Dhanak, Manhar

    2018-04-01

    Experimental data for untwisted airfoils are utilized to propose a model for predicting the lift coefficients of twisted airfoils with leading-edge tubercles. The effectiveness of the empirical model is verified through comparison with results of a corresponding computational fluid-dynamic (CFD) study. The CFD study is carried out for both twisted and untwisted airfoils with tubercles, the latter shown to compare well with available experimental data. Lift coefficients of twisted airfoils predicted from the proposed empirically-based model match well with the corresponding coefficients determined using the verified CFD study. Flow details obtained from the latter provide better insight into the underlying mechanism and behavior at stall of twisted airfoils with leading edge tubercles.

  6. A torsional artificial muscle from twisted nitinol microwire

    Science.gov (United States)

    Mirvakili, Seyed M.; Hunter, Ian W.

    2017-04-01

    Nitinol microwires of 25 μm in diameter can have tensile actuation of up to 4.5% in less than 100 ms. A work density of up to 480 MPa can be achieved from these microwires. In the present work, we are showing that by twisting the microwires in form of closed-loop two-ply yarn we can create a torsional actuator. We achieved a revisable torsional stroke of 46°/mm with peak rotational speed of up to 10,000 rpm. We measured a gravimetric torque of up to 28.5 N•m/kg which is higher than the 3 - 6 N•m/kg for direct-drive commercial electric motors. These remarkable performance results are comparable to those of guest-infiltrated carbon nanotube twisted yarns.

  7. Biosphere 2: a prototype project for a permanent and evolving life system for Mars base.

    Science.gov (United States)

    Nelson, M; Allen, J P; Dempster, W F

    1992-01-01

    As part of the ground-based preparation for creating long-term life systems needed for space habitation and settlement, Space Biospheres Ventures (SBV) is undertaking the Biosphere 2 project near Oracle, Arizona. Biosphere 2, currently under construction, is scheduled to commence its operations in 1991 with a two-year closure period with a crew of eight people. Biosphere 2 is a facility which will be essentialy materially-closed to exchange with the outside environment. It is open to information and energy flow. Biosphere 2 is designed to achieve a complex life-support system by the integration of seven areas or "biomes"--rainforest, savannah, desert, marsh, ocean, intensive agriculture and human habitat. Unique bioregenerative technologies, such as soil bed reactors for air purification, aquatic waste processing systems, real-time analytic systems and complex computer monitoring and control systems are being developed for the Biosphere 2 project. Its operation should afford valuable insight into the functioning of complex life systems necessary for long-term habitation in space. It will serve as an experimental ground-based prototype and testbed for the stable, permanent life systems needed for human exploration of Mars.

  8. Biosphere 2: A prototype project for a permanent and evolving life system for Mars base

    Science.gov (United States)

    Nelson, Mark; Allen, John P.; Dempster, William F.

    As part of the ground-based preparation for creating long-term life systems needed for space habitation and settlement, Space Biopsheres Ventures (SBV) is undertaking the Biosphere 2 project near Oracle, Arizona. Biosphere 2, currently under construction, is scheduled to commence its operations in 1991 with a two-year closure period with a crew of eight people. Biosphere 2 is a facility which will be essentially materially-closed to exchange with the outside environment. It is open to information and energy flow. Biosphere 2 is designed to achieve a complex life-support system by the integration of seven areas or ``biomes'' - rainforest, savannah, desert, marsh, ocean, intensive agriculture and human habitat. Unique bioregenerative technologies, such as soil bed reactors for air purification, aquatic waste processing systems, real-time analytic systems and complex computer monitoring and control systems are being developed for the Biosphere 2 project. Its operation should afford valuable insight into the functioning of complex life systems necessary for long-term habitation in space. It will serve as an experimental ground-based prototype and testbed for the stable, permanent life systems needed for human exploration of Mars.

  9. Effect of Lowering Twist Levels on Quality Parameters of Rotor Spun Cotton Yarn

    Directory of Open Access Journals (Sweden)

    FAROOQ AHMED

    2016-07-01

    Full Text Available Investigations were made to explore the influence of lowering twist level on quality characteristics of rotor spun yarn. Three levels of yarn linear density (i.e. 40, 35 and 30 tex and five levels of twist (i.e. 700, 600, 550, 500, and 450 were employed during yarn spinning trials. Each twist multiple was investigated at all linear densities for tensile strength, elongation, total CVm (Coefficient of Mass Variation imperfection index and hairiness. 100% cotton yarn samples were prepared on Reiter R-40 at rotor speed of 90,000 rpm. Determination of elongation, yarn strength, hairiness, mass variation, and total imperfections index was carried out on Uster Tensorapid-4 and Uster Tester-4 as per set standards of ISO standard test methods. Based on investigations it is established that yarn strength and elongation declined minutely (Insignificant with lowering twist levels but still can be confidently used for knitting yarns. However, significant improvement in total imperfection index and marginal enhancement in CVm were experienced.

  10. Closing Gaps in Geometrically Frustrated Symmetric Clusters: Local Equivalence between Discrete Curvature and Twist Transformations

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2018-05-01

    Full Text Available In geometrically frustrated clusters of polyhedra, gaps between faces can be closed without distorting the polyhedra by the long established method of discrete curvature, which consists of curving the space into a fourth dimension, resulting in a dihedral angle at the joint between polyhedra in 4D. An alternative method—the twist method—has been recently suggested for a particular case, whereby the gaps are closed by twisting the cluster in 3D, resulting in an angular offset of the faces at the joint between adjacent polyhedral. In this paper, we show the general applicability of the twist method, for local clusters, and present the surprising result that both the required angle of the twist transformation and the consequent angle at the joint are the same, respectively, as the angle of bending to 4D in the discrete curvature and its resulting dihedral angle. The twist is therefore not only isomorphic, but isogonic (in terms of the rotation angles to discrete curvature. Our results apply to local clusters, but in the discussion we offer some justification for the conjecture that the isomorphism between twist and discrete curvature can be extended globally. Furthermore, we present examples for tetrahedral clusters with three-, four-, and fivefold symmetry.

  11. Cell-free synthetic biology for in vitro prototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  12. Twisted boundary states and representation of generalized fusion algebra

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Tani, Taro

    2006-01-01

    The mutual consistency of boundary conditions twisted by an automorphism group G of the chiral algebra is studied for general modular invariants of rational conformal field theories. We show that a consistent set of twisted boundary states associated with any modular invariant realizes a non-negative integer matrix representation (NIM-rep) of the generalized fusion algebra, an extension of the fusion algebra by representations of the twisted chiral algebra associated with the automorphism group G. We check this result for several concrete cases. In particular, we find that two NIM-reps of the fusion algebra for su(3) k (k=3,5) are organized into a NIM-rep of the generalized fusion algebra for the charge-conjugation automorphism of su(3) k . We point out that the generalized fusion algebra is non-commutative if G is non-Abelian and provide some examples for G-bar S 3 . Finally, we give an argument that the graph fusion algebra associated with simple current extensions coincides with the generalized fusion algebra for the extended chiral algebra, and thereby explain that the graph fusion algebra contains the fusion algebra of the extended theory as a subalgebra

  13. Twisted Frobenius Identities from Vertex Operator Superalgebras

    Directory of Open Access Journals (Sweden)

    Alexander Zuevsky

    2017-01-01

    Full Text Available In consideration of the continuous orbifold partition function and a generating function for all n-point correlation functions for the rank two free fermion vertex operator superalgebra on the self-sewing torus, we introduce the twisted version of Frobenius identity.

  14. Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning

    OpenAIRE

    Harfe, Brian D.; Gomes, Ana Vaz; Kenyon, Cynthia; Liu, Jun; Krause, Michael; Fire, Andrew

    1998-01-01

    Mesodermal development is a multistep process in which cells become increasingly specialized to form specific tissue types. In Drosophila and mammals, proper segregation and patterning of the mesoderm involves the bHLH factor Twist. We investigated the activity of a Twist-related factor, CeTwist, during Caenorhabditis elegans mesoderm development. Embryonic mesoderm in C. elegans derives from a number of distinct founder cells that are specified during the early lineages; in contrast, a singl...

  15. Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C-N Rotational Pathway.

    Science.gov (United States)

    Szostak, Roman; Aubé, Jeffrey; Szostak, Michal

    2015-08-21

    Twisted amides containing nitrogen at the bridgehead position are attractive practical prototypes for the investigation of the electronic and structural properties of nonplanar amide linkages. Changes that occur during rotation around the N-C(O) axis in one-carbon-bridged twisted amides have been studied using ab initio molecular orbital methods. Calculations at the MP2/6-311++G(d,p) level performed on a set of one-carbon-bridged lactams, including 20 distinct scaffolds ranging from [2.2.1] to [6.3.1] ring systems, with the C═O bond on the shortest bridge indicate significant variations in structures, resonance energies, proton affinities, core ionization energies, frontier molecular orbitals, atomic charges, and infrared frequencies that reflect structural changes corresponding to the extent of resonance stabilization during rotation along the N-C(O) axis. The results are discussed in the context of resonance theory and activation of amides toward N-protonation (N-activation) by distortion. This study demonstrates that one-carbon-bridged lactams-a class of readily available, hydrolytically robust twisted amides-are ideally suited to span the whole spectrum of the amide bond distortion energy surface. Notably, this study provides a blueprint for the rational design and application of nonplanar amides in organic synthesis. The presented findings strongly support the classical amide bond resonance model in predicting the properties of nonplanar amides.

  16. Modelling higher twist contributions to deep inelastic scattering with diquarks

    International Nuclear Information System (INIS)

    Anselmino, M.; Caruso, F.; Penna Firme, A.; Soares, J.; Mello Neto, J.R.T. de

    1994-08-01

    The most recent detailed data on the unpolarized nucleon structure functions allow a precise determination of higher twist contributions. Quark-quark correlations induced by colour forces are expected to be a natural explanation for such effects: indeed, a quark-diquark picture of the nucleon, previously introduced in the description of several exclusive processes at intermediate Q 2 values, is found to model the proton higher twist data with great accuracy. The resulting parameters are consistent with the diquark properties suggested by other experimental and theoretical analyses. (author). 15 refs, 5 figs

  17. Radiative capture of cold neutrons by protons and deuteron photodisintegration with twisted beams

    Science.gov (United States)

    Afanasev, Andrei; Serbo, Valeriy G.; Solyanik, Maria

    2018-05-01

    We consider two basic nuclear reactions: capture of neutrons by protons, n + p → γ + d, and its time-reversed counterpart, photodisintegration of the deuteron, γ + d → n + p. In both of these cases we assume that the incoming beam of neutrons or photons is ‘twisted’ by having an azimuthal phase dependence, i.e., it carries an additional angular momentum along its direction of propagation. Taking a low-energy limit of these reactions, we derive relations between corresponding transition amplitudes and cross sections with plane-wave beams and twisted beams. Implications for experiments with twisted cold neutrons and twisted photon beams are discussed.

  18. A tale with a Twist: a developmental gene with potential relevance for metabolic dysfunction and inflammation in adipose tissue

    Directory of Open Access Journals (Sweden)

    Anca Dana Dobrian

    2012-08-01

    Full Text Available The Twist proteins (Twist-1 and -2 are highly conserved developmental proteins with key roles for the transcriptional regulation in mesenchymal cell lineages. They belong to the super-family of bHLH proteins and exhibit bi-functional roles as both activators and repressors of gene transcription. The Twist proteins are expressed at low levels in adult tissues but may become abundantly re-expressed in cells undergoing malignant transformation. This observation prompted extensive research on the roles of Twist proteins in cancer progression and metastasis. Very recent studies indicate a novel role for Twist-1 as a potential regulator of adipose tissue remodeling and inflammation. Several studies suggested that developmental genes are important determinants of obesity, fat distribution and remodeling capacity of different adipose depots. Twist-1 is abundantly and selectively expressed in the adult adipose tissue and its constitutive expression is significantly higher in subcutaneous vs. visceral fat in both mice and humans. Moreover, Twist1 expression is strongly correlated with BMI and insulin resistance in humans. However, the functional roles and transcriptional downstream targets of Twist1 in adipose tissue are largely unexplored. The purpose of this review is to highlight the major findings related to Twist1 expression in different fat depots and cellular components of adipose tissue and to discuss the potential mechanisms suggesting a role for Twist1 in adipose tissue metabolism, inflammation and remodeling.

  19. Zero-Shot Learning via Attribute Regression and Class Prototype Rectification.

    Science.gov (United States)

    Luo, Changzhi; Li, Zhetao; Huang, Kaizhu; Feng, Jiashi; Wang, Meng

    2018-02-01

    Zero-shot learning (ZSL) aims at classifying examples for unseen classes (with no training examples) given some other seen classes (with training examples). Most existing approaches exploit intermedia-level information (e.g., attributes) to transfer knowledge from seen classes to unseen classes. A common practice is to first learn projections from samples to attributes on seen classes via a regression method, and then apply such projections to unseen classes directly. However, it turns out that such a manner of learning strategy easily causes projection domain shift problem and hubness problem, which hinder the performance of ZSL task. In this paper, we also formulate ZSL as an attribute regression problem. However, different from general regression-based solutions, the proposed approach is novel in three aspects. First, a class prototype rectification method is proposed to connect the unseen classes to the seen classes. Here, a class prototype refers to a vector representation of a class, and it is also known as a class center, class signature, or class exemplar. Second, an alternating learning scheme is proposed for jointly performing attribute regression and rectifying the class prototypes. Finally, a new objective function which takes into consideration both the attribute regression accuracy and the class prototype discrimination is proposed. By introducing such a solution, domain shift problem and hubness problem can be mitigated. Experimental results on three public datasets (i.e., CUB200-2011, SUN Attribute, and aPaY) well demonstrate the effectiveness of our approach.

  20. Generalized Weyl modules for twisted current algebras

    Science.gov (United States)

    Makedonskyi, I. A.; Feigin, E. B.

    2017-08-01

    We introduce the notion of generalized Weyl modules for twisted current algebras. We study their representation-theoretic and combinatorial properties and also their connection with nonsymmetric Macdonald polynomials. As an application, we compute the dimension of the classical Weyl modules in the remaining unknown case.

  1. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  2. On the description of exclusive processes beyond the leading twist approximation

    International Nuclear Information System (INIS)

    Anikin, I.V.; Ivanov, D.Yu.; Pire, B.; Szymanowski, L.; Wallon, S.

    2010-01-01

    We describe hard exclusive processes beyond the leading twist approximation in a framework based on the Taylor expansion of the amplitude around the dominant light-cone directions. This naturally introduces an appropriate set of non-perturbative correlators whose number is minimalized after taking into account QCD equations of motion and the invariance under rotation on the light-cone. We exemplify this method at the twist 3 level and show that the coordinate and momentum space descriptions are fully equivalent.

  3. On the description of exclusive processes beyond the leading twist approximation

    Energy Technology Data Exchange (ETDEWEB)

    Anikin, I.V. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Ivanov, D.Yu. [Institute of Mathematics, 630090 Novosibirsk (Russian Federation); Pire, B., E-mail: pire@cpht.polytechnique.f [CPhT, Ecole Polytechnique, CNRS, F-91128 Palaiseau (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Wallon, S. [LPT, Universite d' Orsay, CNRS, 91404 Orsay (France); UPMC Univ. Paris 6, Faculte de Physique, 4 place Jussieu, 75252 Paris Cedex 05 (France)

    2010-01-04

    We describe hard exclusive processes beyond the leading twist approximation in a framework based on the Taylor expansion of the amplitude around the dominant light-cone directions. This naturally introduces an appropriate set of non-perturbative correlators whose number is minimalized after taking into account QCD equations of motion and the invariance under rotation on the light-cone. We exemplify this method at the twist 3 level and show that the coordinate and momentum space descriptions are fully equivalent.

  4. US NDC Modernization Iteration E2 Prototyping Report: OSD & PC Software Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Marger, Bernard L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chiu, Ailsa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    During the second iteration of the US NDC Modernization Elaboration phase (E2), the SNL US NDC Modernization project team completed follow-on COTS surveys & exploratory prototyping related to the Object Storage & Distribution (OSD) mechanism, and the processing control software infrastructure. This report summarizes the E2 prototyping work.

  5. Using Affinity Diagrams to Evaluate Interactive Prototypes

    DEFF Research Database (Denmark)

    Lucero, Andrés

    2015-01-01

    our particular use of affinity diagramming in prototype evaluations. We reflect on a decade’s experience using affinity diagramming across a number of projects, both in industry and academia. Our affinity diagramming process in interaction design has been tailored and consists of four stages: creating...

  6. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  7. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  8. Studies of the LHC detection systems: scintillating fibers projective electromagnetic calorimeter prototype and light reading by avalanche photodiodes; Etudes de systemes de detection pour LHC: prototype d`un calorimetre electromagnetique projectif a fibres scintillantes et lecture de la lumiere par des photodiodes a avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Bouhemaid, N

    1995-09-22

    In this thesis a study concerning the hardware detection system of ATLAS experiment in preparation for L.H.C. is presented. The study is divided in two parts. After a general introduction of the L.H.C. and the ATLAS detector, the first part concerning the electromagnetic calorimeter, and the second part concerning the readout with avalanche photodiodes, are discussed. For both subjects the basic principles are presented before various test results are described. Within the RD1 program three different electromagnetic calorimeter prototypes, which all use the lead scintillating fibres technique, have been built. The first is a non-projective, compensating calorimeter called ``500{mu}m``, the second is a pseudo projective, non-compensating, called ``1 mm``, and the third is fully projective, called ``Radial``. The last prototype is discussed in more detail. Avalanches photodiodes which are used as readout of the ``1 mm`` calorimeter, have been exposed to both, a dedicated test bench in the laboratory as well as to test beams. The results of these tests are also presented. (author). 35 refs., 96 figs., 30 tabs.

  9. γγ → M{sup +}M{sup -}(M = π, K) processes with twist-3 corrections in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong [Southwest University, School of Physical Science and Technology, Chongqing (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Zhou, Ming-Zhen; Chen, Hong [Southwest University, School of Physical Science and Technology, Chongqing (China)

    2017-04-15

    We study the γγ → M{sup +}M{sup -}(M = π, K) processes with the contributions from the two-particle twist-2 and twist-3 distribution amplitudes of pion and kaon mesons on BHL prescription in the standard hard-scattering approach. The results show that the contributions from twist-3 parts are actually not power suppressed compared with the leading-twist contributions in the low energy region. The cross sections with twist-3 corrections agree well with the experimental data in the two-photon center-of-mass energy W > 2.8 GeV and we also predict the cross section ratio σ{sub 0}(K{sup +}K{sup -})/σ{sub 0}(π{sup +}π{sup -}), which is compatible with the experimental data from TPC and Belle. (orig.)

  10. An estimate of higher twist at small xB and low Q2 based upon a saturation model

    International Nuclear Information System (INIS)

    Bartels, J.; Peters, K.

    2000-03-01

    We investigate the influence of higher twist corrections to deep inelastic structure functions in the low-Q 2 and small-x HERA region. We review the general features of the lowest-order QCD diagrams which contribute to twist-4 at small-x, in particular the sign structure of longitudinal and transverse structure functions which offers the possibility of strong cancellations in F 2 . For a numerical analysis we perform a twist analysis of the saturation model which has been very successful both in describing the structure function and the DIS diffractive cross section at HERA. As the main conclusion, twist 4 corrections are not small in F L or F T but in F 2 = F L + F T they almost cancel. We point out that F L analysis needs a large twist-4 correction. We also indicate the region of validity of the twist expansion. (orig.)

  11. Numerical investigation of heat transfer and friction factor characteristics in a circular tube fitted with V-cut twisted tape inserts.

    Science.gov (United States)

    Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar

    2013-01-01

    Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.

  12. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.

    Science.gov (United States)

    Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi

    2016-12-01

    The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.

  13. RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Giagkiozis, I.; Verth, G. [Solar Plasma Physics Research Centre, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH (United Kingdom); Goossens, M.; Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Amy Johnson Building, Sheffield, S1 3JD (United Kingdom)

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  14. Twist and YB-1 gene expression in cervical cancer and precancerous tissue and their correlation with cell invasion

    Directory of Open Access Journals (Sweden)

    Qin Tian

    2017-04-01

    Full Text Available Objective: To study the correlation of Twist and YB-1 gene expression in cervical cancer and precancerous tissue with cell invasion. Methods: Cervical cancer tissue, precancerous tissue and normal cervical tissue surgically removed in our hospital between May 2013 and April 2015 were collected; immunohistochemical staining kits were used to detect the positive protein expression rate of Twist and YB-1 gene; fluorescence quantitative PCR kits were used to detect Twist, YB-1 and invasion gene mRNA expression. Results: Twist and YB-1 mRNA expression and positive protein expression rate as well as USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue and precancerous tissue were significantly higher than those in normal cervical tissue, Twist and YB-1 mRNA expression and positive protein expression rate as well as USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue were significantly higher than those in precancerous tissue; USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue and precancerous tissue with positive Twist and YB-1 expression were significantly higher than those in cervical cancer tissue and precancerous tissue with negative Twist and YB-1 expression. Conclusion: Highly expressed Twist and YB-1 in cervical cancer and precancerous tissue can promote cell invasion.

  15. MAML1 and TWIST1 co-overexpression promote invasion of head and neck squamous cell carcinoma.

    Science.gov (United States)

    Ardalan Khales, Sima; Ebrahimi, Ehsan; Jahanzad, Eisa; Ardalan Khales, Sahar; Forghanifard, Mohammad Mahdi

    2018-01-15

    Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with considerable morbidity and mortality. Invasion and metastasis of HNSCC is a complex process involving multiple molecules and signaling pathways. Twist Family BHLH Transcription Factor 1 (TWIST1) and Mastermind-like 1 (MAML1) are essential in induction of epithelial-mesenchymal transition through direct regulation of implicated molecules in cellular adhesion, migration and invasion. Our aim in this study was to assess the clinical significance of MAML1 and TWIST1 expression in HNSCC, and elucidate the probable correlation between these genes to exhibit their possible associations with progression and metastasis of the disease. The gene expression profile of MAML1 and TWIST1 was assessed in fresh tumoral compared to distant tumor-free tissues of 55 HNSCC patients using quantitative real-time Polymerase chain reaction (PCR). Significant overexpression of MAML1 and TWIST1 mRNA was observed in 49.1% and 38.2% (P ˂ 0.05) of tumor specimens, respectively. Overexpression of MAML1 was associated with vascular invasion (P = 0.048). Concomitant overexpression of MAML1 and TWIST1 was significantly correlated to each other (P = 0.004). Co-overexpression of the genes was significantly correlated to the various clinicopathological indices of poor prognosis including depth of tumor invasion (P < 0.01), lymphatic invasion and grade of tumor cell differentiation (P < 0.05). Significant correlation between MAML1 and TWIST1 in HNSCC was revealed. This study was the first report elucidating MAML1 clinical relevance in HNSCC. These new findings suggest an oncogenic role for concomitant expression of MAML1 and TWIST1 genes in HNSCC invasion and metastasis. © 2018 John Wiley & Sons Australia, Ltd.

  16. Status and Operation of the Linac4 Ion Source Prototypes

    CERN Document Server

    Lettry, J; Andersson, P; Bertolo, S; Butterworth, A; Coutron, Y; Dallocchio, A; Chaudet, E; Gil-Flores, J; Guida, R; Hansen, J; Hatayama, A; Koszar, I; Mahner, E; Mastrostefano, C; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; Nishida, K; O’Neil, M; Ohta, M; Paoluzzi, M; Pasquino, C; Pereira, H; Rochez, J; Sanchez Alvarez, J; Sanchez Arias, J; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Yamamoto, T

    2014-01-01

    CERN’s Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma and pulsed high voltages are described. The first experimental results of two prototypes relying on 2MHz RF- plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator and chopper of Linac4.

  17. Design of a prototype gap shaping spiral dipole for a variable energy protontherapy FFAG

    International Nuclear Information System (INIS)

    Planche, T.; Fourrier, J.; Lancelot, J.L.; Meot, F.; Neuveglise, D.; Pasternak, J.

    2009-01-01

    The design, fabrication and measurement of a prototype magnet is part of the RACCAM ANR medical FFAG project. This magnet prototyping work, started in early 2006, is being performed in collaboration between the IN2P3/LPSC laboratory team and the magnet engineering firm SIGMAPHI. Magnetic computations and parameters of the magnet prototype will be presented in this paper.

  18. Twisting formula of epsilon factors

    Indian Academy of Sciences (India)

    Sazzad Ali Biswas

    2017-08-07

    Aug 7, 2017 ... In this article, we give a generalized twisting formula for ϵ(χ1χ2,ψ), when both χ1 and χ2 are ramified via the following local Jacobi sums. Let UF be the group of units in OF (ring of integers of F). For characters χ1, χ2 of F. × and a positive integer n, we define the local Jacobi sum. Jt(χ1,χ2, n) = ∑ x∈UF. Un.

  19. Operations management system advanced automation: Fault detection isolation and recovery prototyping

    Science.gov (United States)

    Hanson, Matt

    1990-01-01

    The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.

  20. US NDC Modernization Iteration E2 Prototyping Report: User Interface Framework

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jennifer E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Palmer, Melanie A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vickers, James Wallace [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voegtli, Ellen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    During the second iteration of the US NDC Modernization Elaboration phase (E2), the SNL US NDC Modernization project team completed follow-on Rich Client Platform (RCP) exploratory prototyping related to the User Interface Framework (UIF). The team also developed a survey of browser-based User Interface solutions and completed exploratory prototyping for selected solutions. This report presents the results of the browser-based UI survey, summarizes the E2 browser-based UI and RCP prototyping work, and outlines a path forward for the third iteration of the Elaboration phase (E3).