WorldWideScience

Sample records for twinned zns nanowires

  1. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  2. Do Twin Boundaries Always Strengthen Metal Nanowires?

    OpenAIRE

    Zhang Yongfeng; Huang Hanchen

    2008-01-01

    Abstract It has been widely reported that twin boundaries strengthen nanowires regardless of their morphology—that is, the strength of nanowires goes up as twin spacing goes down. This article shows that twin boundaries do not always strengthen nanowires. Using classical molecular dynamics simulations, the authors show that whether twin boundaries strengthen nanowires depends on the necessary stress for dislocation nucleation, which in turn depends on surface morphologies. When nanowire...

  3. Do Twin Boundaries Always Strengthen Metal Nanowires?

    Science.gov (United States)

    Zhang, Yongfeng; Huang, Hanchen

    2009-01-01

    It has been widely reported that twin boundaries strengthen nanowires regardless of their morphology-that is, the strength of nanowires goes up as twin spacing goes down. This article shows that twin boundaries do not always strengthen nanowires. Using classical molecular dynamics simulations, the authors show that whether twin boundaries strengthen nanowires depends on the necessary stress for dislocation nucleation, which in turn depends on surface morphologies. When nanowires are circular cylindrical, the necessary stress of dislocation nucleation is high and the presence of twin boundaries lowers this stress; twin boundaries soften nanowires. In contrast, when nanowires are square cylindrical, the necessary stress of dislocation nucleation is low, and a higher stress is required for dislocations to penetrate twin boundaries; they strengthen nanowires.

  4. Do Twin Boundaries Always Strengthen Metal Nanowires?

    Directory of Open Access Journals (Sweden)

    Zhang Yongfeng

    2008-01-01

    Full Text Available Abstract It has been widely reported that twin boundaries strengthen nanowires regardless of their morphology—that is, the strength of nanowires goes up as twin spacing goes down. This article shows that twin boundaries do not always strengthen nanowires. Using classical molecular dynamics simulations, the authors show that whether twin boundaries strengthen nanowires depends on the necessary stress for dislocation nucleation, which in turn depends on surface morphologies. When nanowires are circular cylindrical, the necessary stress of dislocation nucleation is high and the presence of twin boundaries lowers this stress; twin boundaries soften nanowires. In contrast, when nanowires are square cylindrical, the necessary stress of dislocation nucleation is low, and a higher stress is required for dislocations to penetrate twin boundaries; they strengthen nanowires.

  5. Optical Properties of Rotationally Twinned Nanowire Superlattices

    DEFF Research Database (Denmark)

    Bao, Jiming; Bell, David C.; Capasso, Federico

    2008-01-01

    We have developed a technique so that both transmission electron microscopy and microphotoluminescence can be performed on the same semiconductor nanowire over a large range of optical power, thus allowing us to directly correlate structural and optical properties of rotationally twinned zinc ble...

  6. Investigations on the mechanical behavior of nanowires with twin boundaries by atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xia, E-mail: tianxia@lsec.cc.ac.cn [College of Mechanics and Materials, HoHai University, Nanjing 210098 (China)

    2015-03-10

    Atomistic simulations are used to study the deformation behavior of twinned Cu nanowires with a <111> growth orientation under tension. Due to the existence of the twin boundaries, the strength of the twinned nanowires is higher than that of the twin-free nanowire and the yielding stress of twinned nanowires is inversely proportional to the spacings of the twin boundaries. Moreover, The ductility of the twin-free nanowire is the highest of all and it grows with the increasing spacings of the twin boundaries for twinned nanowires. Besides, we find that the twin boundaries can be served as dislocation sources as well as the free surfaces and grain boundaries.

  7. Paired twins and [112] morphology in GaP nanowires.

    Science.gov (United States)

    Algra, Rienk E; Verheijen, Marcel A; Feiner, Lou-Fé; Immink, George G W; Theissmann, Ralf; van Enckevort, Willem J P; Vlieg, Elias; Bakkers, Erik P A M

    2010-07-14

    Formation of random as well as periodic planar defects can occur during vapor-liquid-solid growth of nanowires with the zinc-blende crystal structure. Here we investigate the formation of pairs of twin planes in GaP nanowires. In such pairs, the first twin plane is formed at a random position, rapidly followed by the formation of a second twin plane of which the position is directly related to that of the first one. We show that the triangular [112] morphology of the nanowire is a key element in the formation of these twin pairs. We have extended our previous kinetic nucleation model and show that this describes the development of the nanowire morphology and its relation with the formation of single and paired twin planes.

  8. Precise Determination of the Crystallographic Orientations in Single ZnS Nanowires by Second-Harmonic Generation Microscopy

    CERN Document Server

    Hongbo, Hu; Hua, Long; Weiwei, Liu; Bing, Wang; Peixiang, Lu

    2015-01-01

    We report on the systematical study of the second-harmonic generation (SHG) in single zinc sulfide nanowires (ZnS NWs). The high quality ZnS NWs with round cross-section were fabricated by chemical vapor deposition method. The transmission electron microscopy images show that the actual growth-axis has a deviation angle of 0o~20o with the preferential growth direction [120], which leads to the various polarization-dependent SHG response patterns in different individual ZnS NWs. The SHG response is quite sensitive to the orientations of c-axis as well as the (100) and (010) crystal-axis of ZnS NWs, thus all the three crystal-axis orientations of ZnS NWs are precisely determined by the SHG method. A high SHG conversion efficiency of 7*10^(-6) is obtained in single ZnS NWs, which shows potential applications in nanoscale ultraviolet light source, nonlinear optical microscopy and nanophotonic devices.

  9. Essential role of catalysts (Mn, Au, and Sn) in the vapor liquid solid growth kinematics of ZnS nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, S.; Shehzad, M. A.; Hafeez, M.; Bhatti, A. S., E-mail: asbhatti@comsats.edu.pk [Center for Micro and Nano Devices (CMND), Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2014-01-14

    In this paper, we demonstrate that surface energy of the catalyst is a vital parameter for the growth rate, self doping of the self assembled nanowires synthesized by employing vapor liquid solid growth technique. The synthesis of ZnS nanowires was done by selectively using three different catalysts (Mn, Au, and Sn), where Au, is the most common catalyst, was used as a reference. The distinctive difference in the growth rate was due to the surface energy of the metal alloy droplet and the interface energies, as explained theoretically using thermodynamic approach. We have found that the activation energy of diffusion of (Zn, S) species in the catalyst droplet was low in Sn (0.41 eV for Zn and 0.13 eV for S) and high in Mn (1.79 eV for Zn and 0.61 eV for S) compared to Au (0.62 eV for Zn and 0.21 eV for S) catalyzed ZnS nanostructures. The thermodynamic calculations predicted the growth rates of Sn (7.5 nm/s) catalyzed nanowires was faster than Au (5.1 nm/s) and Mn (4.6 nm/s) catalyzed ZnS nanostructures, which were in agreement with the experimental results. Finally, the location of the catalyst as dopant in the grown nanostructure was predicted and compared with experimental observations.

  10. Cold welding of copper nanowires with single-crystalline and twinned structures: A comparison study

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Wen, Yu-Hua

    2016-09-01

    In this article, molecular simulations were adopted to explore the cold welding processes of copper nanowires with both single-crystalline and fivefold twinned structures. It was verified that the twinned nanowires exhibited enhanced strength but lowered elastic limit and ductility. Both nanowires could be successfully welded through rather small loadings, although their stress-strain responses toward compression were different. Meanwhile, more stress was accumulated in the twinned nanowire due to repulsive force of the twin boundaries against the nucleation and motions of dislocations. Moreover, by characterizing the structure evolutions in the welding process, it can be ascertained that perfect atomic order was finally built at the weld region in both nanowires. This comparison study will be of great importance to future mechanical processing of metallic nanowires.

  11. Sidewall morphology-dependent formation of multiple twins in Si nanowires.

    Science.gov (United States)

    Shin, Naechul; Chi, Miaofang; Filler, Michael A

    2013-09-24

    Precise placement of twin boundaries and stacking faults promises new opportunities to fundamentally manipulate the optical, electrical, and thermal properties of semiconductor nanowires. Here we report on the appearance of consecutive twin boundaries in Si nanowires and show that sidewall morphology governs their spacing. Detailed electron microscopy analysis reveals that thin {111} sidewall facets, which elongate following the first twin boundary (TB1), are responsible for deforming the triple-phase line and favoring the formation of the second twin boundary (TB2). While multiple, geometrically correlated defect planes are known in group III-V nanowires, our findings show that this behavior is also possible in group IV materials.

  12. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiapeng, E-mail: sun.jiap@gmail.com [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Fang, Liang [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province (China); Ma, Aibin, E-mail: aibin-ma@hhu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Jiang, Jinghua [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Han, Ying [Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, Jilin Province (China); Chen, Huawei [Department of Applied Physics, School of Science, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province (China); Han, Jing [School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province (China)

    2015-05-14

    The molecular dynamics simulations are performed to explore the fracture behavior and the ductility of the twinned Cu nanowires containing orthogonally oriented growth CTBs due to the uniaxial tensile deformation. The results reveal that, the fracture behavior and the ductility of the twinned nanowires are not related to the length of the nanowires but also intensively related to the twin boundary spacing. When the twin boundary space is changed, the twinned nanowires undergo three distinct failure modes which include ductile fracture, brittle fracture and ductile-to-brittle transition depending on the length of the nanowires. We also find a reduction in the ductility of the twinned nanowires, which is ascribed to the deformation localization induced by the Lomer dislocation and the rapid necking resulted from the twinning partial slipping. Finally, the atomic-level process that occurs during deformation until final fracture are examined in detail, and a new formation mechanism of the Lomer dislocation is observed when a 90° partial dislocation transmits across a coherent twin boundary.

  13. Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires

    Institute of Scientific and Technical Information of China (English)

    FU Xin; JIANG Jun; LIU Chao; YU Zhi-Yang; Steffan LEA; YUAN Jun

    2009-01-01

    We report a preferential growth of boron carbide nanowires with a Eve-fold twinned internal structure.The nanowires are found to grow catalytically via iron boron nanoparticles,but unusually the catalytic particle is in contact with the low-energy surfaces of boron carbide with V-shaped contact lines.We propose that this catalytical growth may be caused by preferential nucleation at the re-entrant grooves due to the twinning planes,followed by rapid spreading of atomic steps.This is consistent with the observed temperature dependence of the five-fold twinned nanowire growth.

  14. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.

    Science.gov (United States)

    Narayanan, Sankar; Cheng, Guangming; Zeng, Zhi; Zhu, Yong; Zhu, Ting

    2015-06-10

    Metallic nanowires usually exhibit ultrahigh strength but low tensile ductility owing to their limited strain hardening capability. Here we study the unique strain hardening behavior of the five-fold twinned Ag nanowires by nanomechanical testing and atomistic modeling. In situ tensile tests within a scanning electron microscope revealed strong strain hardening behavior of the five-fold twinned Ag nanowires. Molecular dynamics simulations showed that such strain hardening was critically controlled by twin boundaries and pre-existing defects. Strain hardening was size dependent; thinner nanowires achieved more hardening and higher ductility. The size-dependent strain hardening was found to be caused by the obstruction of surface-nucleated dislocations by twin boundaries. Our work provides mechanistic insights into enhancing the tensile ductility of metallic nanostructures by engineering the internal interfaces and defects.

  15. Role of five-fold twin boundary on the enhanced mechanical properties of fcc Fe nanowires.

    Science.gov (United States)

    Wu, J Y; Nagao, S; He, J Y; Zhang, Z L

    2011-12-14

    The role of 5-fold twin boundary on the structural and mechanical properties of fcc Fe nanowire under tension is explored by classical molecular dynamics. Twin-stabilized fcc nanowire with various diameters (6-24 nm) are examined by tension tests at several temperatures ranging from 0.01 to 1100 K. Significant increase in the Young's modulus of the smaller nanowires is revealed to originate from the central area of quinquefoliolate-like stress-distribution over the 5-fold twin, rather than from the surface tension that is often considered as the main source of such size-effects found in nanostructures. Because of the excess compressive stress caused by crossing twin-boundaries, the atoms in the center behave stiffer than those in bulk and even expand laterally under axial tension, providing locally negative Poisson's ratio. The yield strength of nanowire is also enhanced by the twin boundary that suppresses dislocation nucleation within a fcc twin-domain; therefore, the plasticity of nanowire is initiated by strain-induced fcc→bcc phase transformation that destroys the twin structure. After the yield, the nucleated bcc phase immediately spreads to the entire area, and forms a multigrain structure to realize ductile deformation followed by necking. As temperature elevated close to the critical temperature between bcc and fcc phases, the increased stability of fcc phase competes with the phase transformation under tension, and hence dislocation nucleations in fcc phase are observed exclusively at the highest temperature in our study.

  16. Size-dependent hardness of five-fold twin structured Ag nanowires.

    Science.gov (United States)

    Jung, Joo Young; Qaiser, Nadeem; Feng, Gang; Hwang, Byung-Il; Kim, Taegeon; Kim, Jae Hyun; Han, Seung Min

    2017-01-04

    In this study, the size dependent hardness of silver nanowires with a five-fold twin structure was examined using nanoindentation. As the diameter of the nanowires is reduced, the five-fold twin boundaries restrict the dislocation motion, and therefore a size dependent plasticity is expected for these uniquely structured nanowires. The polyol reduction method with modifications was used to synthesize silver nanowires with different diameters in the range of 70 nm to 144 nm. The nanoindentation experiments were performed on silver nanowires deposited on a stiff MgO substrate, and the resulting h, P, and S data were analyzed using the analytical double contact model for nanowire indentation. The hardness of the nanowires determined using the double contact model showed an increase in the hardness with reduction in the diameter of the nanowires, as expected due to the presence of the twin boundaries. The hardness values determined using the analytical double contact model compared favorably to the hardness values calculated from the contact areas that were extracted from finite element method simulations of an elastic indentation into the silver nanowires on the MgO substrate.

  17. Intrinsic nanotwin effect on thermal boundary conductance in bulk and single-nanowire twinning superlattices

    Science.gov (United States)

    Porter, Aaron; Tran, Chan; Sansoz, Frederic

    2016-05-01

    Coherent twin boundaries form periodic lamellar twinning in a wide variety of semiconductor nanowires, and they are often viewed as near-perfect interfaces with reduced phonon and electron scattering behaviors. Such unique characteristics are of practical interest for high-performance thermoelectrics and optoelectronics; however, insufficient understanding of twin-size effects on thermal boundary resistance poses significant limitations for potential applications. Here, using atomistic simulations and ab initio calculations, we report direct computational observations showing a crossover from diffuse interface scattering to superlatticelike behavior for thermal transport across nanoscale twin boundaries present in prototypical bulk and nanowire Si examples. Intrinsic interface scattering is identified for twin periods ≥22.6 nm, but it also vanishes below this size to be replaced by ultrahigh Kapitza thermal conductances. Detailed analysis of vibrational modes shows that modeling twin boundaries as atomically thin 6 H -Si layers, rather than phonon scattering interfaces, provides an accurate description of effective cross-plane and in-plane thermal conductivities in twinning superlattices, as a function of the twin period thickness.

  18. Effects of twin and stacking faults on the deformation behaviors of Al nanowires under tension loading

    Institute of Scientific and Technical Information of China (English)

    An Min-Rong; Song Hai-Yang; Su Jin-Fang

    2012-01-01

    The effects of twin spacing and temperature on the deformation behavior of nanotwinned A1 under tensile loading are investigated using a molecular dynamic (MD) simulation method. The result shows that the yield strength of nanotwinned A1 decreases with the increase of twin spacing,which is related to the repulsive force between twin boundary and the dislocation. The result also shows that there is no strain-hardening at the yield point. On the contrary,the stress is raised by strain hardening in the plastic stage.In addition,we also investigate the effects of stacking fault thickness and temperature on the yield strength of the Al nanowire.The simulation results indicate that the stacking fault may strengthen the A1 nanowire when the thickness of the stacking fault is below a critical value.

  19. Molecular Dynamics Study on the Distributed Plasticity of Penta-twinned Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Sangryun eLee

    2015-08-01

    Full Text Available The distributed plasticity of pentatwinned silver nanowires has been revealed in recent computational and experimental studies. However, the molecular dynamics (MD simulations have not considered the imperfections seen in experiments, such as irregular surface undulations, the high aspect ratio of nanowires, and the stiffness of loading devices. In this work, we report the effect of such inherent imperfections on the distributed plasticity of penta-twinned silver nanowires in MD simulations. We find that the distributed plasticity occurs for nanowires having undulations that are less than 5% of the nanowire diameter. The elastic stress field induced by a stacking fault promotes the nucleation of successive stacking fault decahedrons (SFDs at long distance, making it hard for necking to occur. By comparing the tensile simulation using the steered molecular dynamics (SMD method with the tensile simulation with periodic boundary condition (PBC, we show that a sufficiently long nanowire must be used in the constant strain rate simulations with PBC, because the plastic displacement burst caused by the SFD formation induces compressive stress, promoting the removal of other SFDs. Our finding can serve as a guidance for the molecular dynamics simulation of crystalline materials with large plastic deformation, and in the design of mechanically reliable devices based on silver nanowires.

  20. Superelasticity in bcc Nanowires by a Reversible Twinning Mechanism

    Science.gov (United States)

    2010-11-29

    example, a stacking fault forms at first from the perfect nanowires. The embryo subsequently forms in a layer-by-layer manner with respect to the...Kondo and K. Takayanagi, Phys. Rev. Lett. 79, 3455 1997. 30 J. W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 1995. 31 B. Q. Li, M. L. Sui, B...Froseth, Nature Mater. 3, 399 2004. 36 S. Kibey, J. B. Liu, D. D. Johnson, and H. Sehitoglu, Acta Mater. 55, 6843 2007. 37 J. W. Christian , Metall

  1. Size and strain rate effects in tensile strength of penta-twinned Ag nanowires

    Science.gov (United States)

    Zhang, Xuan; Li, Xiaoyan; Gao, Huajian

    2017-08-01

    Penta-twinned Ag nanowires (pt-AgNWs) have recently attracted much attention due to their interesting mechanical and physical properties. Here we perform large-scale atomistic simulations to investigate the influence of sample size and strain rate on the tensile strength of pt-AgNWs. The simulation results show an apparent size effect in that the nanowire strength (defined as the critical stress for dislocation nucleation) increases with decreasing wire diameter. To account for such size effect, a theoretical model involving the interaction between an emerging dislocation and the twin boundary has been developed for the surface nucleation of dislocations. It is shown that the model predictions are in quantitative agreement with the results from atomistic simulations and previous experimental studies in the literatures. The simulations also reveal that nanowire strength is strain-rate dependent, which predicts an activation volume for dislocation nucleation in the range of 1-10b3, where b is the magnitude of the Burgers vector for a full dislocation.

  2. Tension-compression asymmetry and twin boundaries spacings effects in polycrystalline Ni nanowires

    Science.gov (United States)

    Zhang, Feng; Zhou, Jianqiu

    2016-07-01

    Tension-compression asymmetry could be a notable feature in many nanocrystalline (NC) materials. The scientific and practical research on the tension-compression asymmetry may play an important role of improving the mechanical behavior of NC materials. Using large-scale molecular dynamics (MD) simulations at the strain rate of 109 s-1, both tension and compression tests are complemented in twin-structural polycrystalline Ni nanowires (NWs). The MD simulation suggests that twin boundaries spacing (TBS) has an interesting effect on the tension-compression asymmetry. For NW (radius = 9 nm) with different TBSs, the flow stresses are totally higher under compression than under tension. The asymmetry gets a minimum value at a particular TBS. Such results can be explained by the interplay of the work of dislocations mechanism under various TBSs and the free surface in NWs.

  3. Deformation mechanism of kink-step distorted coherent twin boundaries in copper nanowire

    Directory of Open Access Journals (Sweden)

    Bobin Xing

    2017-01-01

    Full Text Available In the construction of nanotwinned (NT copper, inherent kink-like steps are formed on growth twin boundaries (TBs. Such imperfections in TBs play a crucial role in the yielding mechanism and plastic deformation of NT copper. Here, we used the molecular dynamic (MD method to examine the influence of kink-step characteristics in depth, including kink density and kink-step height, on mechanical behavior of copper nanowire (NW in uniaxial tension. The results showed that the kink-step, a stress-concentrated region, is preferential in nucleating and emitting stress-induced partial dislocations. Mixed dislocation of hard mode I and II and hard mode II dislocation were nucleated from kink-step and surface atoms, respectively. Kink-step height and kink density substantially affected the yielding mechanism and plastic behavior, with the yielding stress functional-related to kink-step height. However, intense kink density (1 kink per 4.4 nm encourages dislocation nucleation at kink-steps without any significant decline in tensile stress. Defective nanowires with low kink-step height or high kink density offered minimal resistance to kink migration, which has been identified as one of the primary mechanisms of plastic deformation. Defective NWs with refined TB spacing were also studied. A strain-hardening effect due to the refined TB spacing and dislocation pinning was observed for defective NWs. This study has implications for designing NT copper to obtain optimum mechanical performance.

  4. Structure-Sensitive CO2 Electroreduction to Hydrocarbons on Ultrathin 5-fold Twinned Copper Nanowires.

    Science.gov (United States)

    Li, Yifan; Cui, Fan; Ross, Michael B; Kim, Dohyung; Sun, Yuchun; Yang, Peidong

    2017-02-08

    Copper is uniquely active for the electrocatalytic reduction of carbon dioxide (CO2) to products beyond carbon monoxide, such as methane (CH4) and ethylene (C2H4). Therefore, understanding selectivity trends for CO2 electrocatalysis on copper surfaces is critical for developing more efficient catalysts for CO2 conversion to higher order products. Herein, we investigate the electrocatalytic activity of ultrathin (diameter ∼20 nm) 5-fold twinned copper nanowires (Cu NWs) for CO2 reduction. These Cu NW catalysts were found to exhibit high CH4 selectivity over other carbon products, reaching 55% Faradaic efficiency (FE) at -1.25 V versus reversible hydrogen electrode while other products were produced with less than 5% FE. This selectivity was found to be sensitive to morphological changes in the nanowire catalyst observed over the course of electrolysis. Wrapping the wires with graphene oxide was found to be a successful strategy for preserving both the morphology and reaction selectivity of the Cu NWs. These results suggest that product selectivity on Cu NWs is highly dependent on morphological features and that hydrocarbon selectivity can be manipulated by structural evolution or the prevention thereof.

  5. Shape dependent synthesis and field emission induced rectification in single ZnS nanocrystals.

    Science.gov (United States)

    Thupakula, Umamahesh; Dalui, Amit; Debangshi, Anupam; Bal, Jayanta K; Kumar, Gundam S; Acharya, Somobrata

    2014-05-28

    We report on the synthesis of shape controlled ZnS nanocrystals designed into nanodots, nanorods, and nanowires retaining the same diameter and crystallographic phase. We used UHV scanning tunneling microscopy and spectroscopy to study rectification behavior from single nanocrystals. The nanorod and nanowire show large tunneling current at the negative bias in comparison to the positive bias demonstrating current rectification, while the nanodot shows symmetric current-voltage behavior. We proposed a tunneling mechanism where direct tunneling is followed by resonant tunneling mechanism through ZnS nanocrystal at lower applied bias voltages. Stimulation of field emission in Fowler-Nordheim tunneling regime at higher negative bias voltages enables the rectification behavior from the ZnS nanorod or nanowire. Absence of rectification from the ZnS nanodot is associated with spherical shape where the field emission becomes less significant. Realizing functional electronic component from such shape dependent single ZnS nanocrystal may provide a means in realizing nanocrystal based miniaturized devices.

  6. One-Dimensional (1D) ZnS Nanomaterials and Nanostructures

    Institute of Scientific and Technical Information of China (English)

    Xiaosheng FANG; Lide ZHANG

    2006-01-01

    One-dimensional (1D) nanomaterials and nanostructures have received much attention due to their potential interest for understanding fundamental physical concepts and for applications in constructing nanoscale electric and optoelectronic devices. Zinc sulfide (ZnS) is an important semiconductor compound of Ⅱ-Ⅵ group,and the synthesis of 1D ZnS nanomaterials and nanostructures has been of growing interest owing to their promising application in nanoscale optoelectronic devices. This paper reviews the recent progress on 1D ZnS nanomaterials and nanostructures, including nanowires, nanowire arrays, nanorods, nanobelts or nanoribbons,nanocables, and hierarchical nanostructures etc. This article begins with a survey of various methods that have been developed for generating 1D nanomaterials and nanostructures, and then mainly focuses on structures,synthesis, characterization, formation mechanisms and optical property tuning, and luminescence mechanisms of 1D ZnS nanomaterials and nanostructures. Finally, this review concludes with personal views towards future research on 1D ZnS nanomaterials and nanostructures.

  7. KxWO3有序孪晶纳米线的合成和TEM表征%The formation and TEM characterizations of the ordered Kx WO3 twinned nanowires

    Institute of Scientific and Technical Information of China (English)

    张文菁; 贾双凤; 王建波

    2012-01-01

    Potassium tungsten bronze (KxWO3) nanowires were obtained using a simple method on glass substrates. The structure and growth direction of the nanowires were investigated by selected area electron diffraction method, combined with bright field and high resolution transmission electron microscopy techniques. It is noted that KiW03 nanowires possess an ordered monoclinic super-structure and grow along the [001 ] m direction. The monoclinic KxWO3 phase exists in the form of 120°rotational twinning variants with [001 ] m as the twinning axis. Each single wire is composed of numerous thinner nanowires according to dark field images analysis. Considering the transmission electron microscopy analysis and growth process, the formation mechanism of the novel KxWO3 twinning nanowires is proposed.%通过简单的实验方法在玻璃衬底上得到了钾钨青铜(KxWO3)纳米线.利用透射电镜选区电子衍射方法结合明场像及高分辨电子显微像分析确定了KxWO3纳米线的结构及生长方向,发现KxWO3纳米线具有有序的单斜超结构,该单斜KxWO3相以[001]m为孪晶轴的120°三次旋转孪晶的形式存在,纳米线的生长方向为[001]m.通过暗场像分析,确定了纳米线是由更小尺度的纳米单元构成的.根据透射电子显微分析结果并结合实验过程,对KxWO3纳米线可能的形成机制进行了讨论.

  8. 碳化硼五次孪晶纳米线的结构弛豫现象研究%Investigation on the structural relaxation of boron carbide five-fold twinned nanowires

    Institute of Scientific and Technical Information of China (English)

    付新; 袁俊

    2011-01-01

    Interface and defects are the important factors controlling the properties of nanoscale materials. Electron microscopy provides comprehensive characterization methods for revealing these nanostructures. Combining systematic electron diffraction analysis and dark field imaging, the internal defects related to the elastic stress relaxation for accommodating the 5° angular excess of boron carbide fivefold twinned nanowires has been analyzed. Meanwhile, a structural relaxation model has been proposed, that is the shifting of twinning axis towards the nanowire periphery which results in the uncompleted cyclically twinned structure with 3 single crystalline segments. Statistic analysis indicates that this structural relaxation is rarely happened in boron carbide five-fold twinned nanowires synthesized by a solid-state reaction at 1100 ℃ , that probably because of the emergence of interface and surfaces with higher energy induced by the lost of the two single crystalline segments and the shift of twinning axis, respectively.%通过透射电子显微学方法研究纳米材料内部结构有助于理解界面与缺陷对纳米材料性能的影响.在碳化硼五次孪晶纳米线体系中,为了缓解5°角度过剩引起的五次孪晶轴心区域的弹性应变能,在纳米线内部会产生一些结构缺陷.本文通过系列电子衍射分析结合暗场成像技术揭示了碳化硼五次循环孪晶纳米线中的一种结构弛豫模式.孪晶轴向纳米线边缘偏移从而导致其中2片单晶结构单元的缺失,形成仅具有3个单晶结构单元的非完整循环孪晶结构.统计分析发现此类结构弛豫现象少量存在于1100C固相烧结合成的碳化硼五次孪晶纳米线中,从能量角度定性分析表明这可能与该结构弛豫发生过程中会产生具有较高能量的界面及表面有关.

  9. Molecular Dynamics Simulation of the Deformation Behavior of Ag Nanowires with Different Twin Boundary Density under Tension Loading%不同孪晶界密度银纳米线拉伸形变行为的分子动力学模拟

    Institute of Scientific and Technical Information of China (English)

    孙倩; 杨熊博; 高亚军; 赵健伟

    2014-01-01

    采用分子动力学方法模拟了不同孪晶界密度银纳米线的拉伸形变行为,分析了孪晶界密度对多晶银纳米线屈服强度、弹性模量和塑性变形机理的影响。在弹性形变区域,孪晶界的存在对杨氏模量变化的作用不明显。在塑性形变阶段,首先从表面边缘开始产生位错成核,然后延伸并受阻于孪晶界。在进一步拉伸载荷作用下,孪晶界将作为位错源产生新的位错。模拟结果表明,银纳米线的强度与孪晶界和晶粒的尺寸有关。孪晶界密度较小(即晶粒的长径比大于1)时,此纳米线的屈服应力比单晶纳米线还要小,只有当孪晶界密度较大时(即晶粒的长径比小于1),孪晶界使得纳米线得到强化。综合分析了孪晶界和晶粒尺寸对银纳米线的影响,为构建高强度金属纳米线打下基础。最后讨论了温度和拉伸速度对孪晶纳米线屈服应力所产生的影响,随着温度的升高,孪晶纳米线与单晶纳米线的屈服应力差先升高后趋于稳定;当拉伸速度逐渐增大,孪晶纳米线与单晶纳米线的屈服应力差先稳定后增大。%The deformation mechanisms and mechanical tensile behavior of Ag nanowires containing different densities of paral el twin boundaries were investigated using molecular dynamics simulations. The effect of twin boundaries on the Young′s modulus in nanowires was not obvious in the elastic deformation stage. After the elastic deformation stage, the initial dislocation from the edge of the free surfaces in nanowires resulted in plastic deformation. The existence of the twin boundary in nanowires wil cause the spread of the dislocation and act as sources of dislocations with the assistance of the newly formed defects with further tension load. The simulation showed that the mechanical strength of Ag nanowires was highly dependent on the twin boundary spacing and the size of the grain, resulting from the aspect

  10. Deformation mechanisms of Cu nanowires with planar defects

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xia, E-mail: tianxia@lsec.cc.ac.cn; Yang, Haixia; Wan, Rui [College of Mechanics and Materials, HoHai University, Nanjing 210098 (China); Cui, Junzhi [LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Yu, Xingang [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-01-21

    Molecular dynamics simulations are used to investigate the mechanical behavior of Cu nanowires (NWs) with planar defects such as grain boundaries (GBs), twin boundaries (TBs), stacking faults (SFs), etc. To investigate how the planar defects affect the deformation and fracture mechanisms of naowires, three types of nanowires are considered in this paper: (1) polycrystalline Cu nanowire; (2) single-crystalline Cu nanowire with twin boundaries; and (3) single-crystalline Cu nanowire with stacking faults. Because of the large fraction of atoms at grain boundaries, the energy of grain boundaries is higher than that of the grains. Thus, grain boundaries are proved to be the preferred sites for dislocations to nucleate. Moreover, necking and fracture prefer to occur at the grain boundary interface owing to the weakness of grain boundaries. For Cu nanowires in the presence of twin boundaries, it is found that twin boundaries can strength nanowires due to the restriction of the movement of dislocations. The pile up of dislocations on twin boundaries makes them rough, inducing high energy in twin boundaries. Hence, twin boundaries can emit dislocations, and necking initiates at twin boundaries. In the case of Cu nanowires with stacking faults, all pre-existing stacking faults in the nanowires are observed to disappear during deformation, giving rise to a fracture process resembling the samples without stacking fault.

  11. Rational defect introduction in silicon nanowires.

    Science.gov (United States)

    Shin, Naechul; Chi, Miaofang; Howe, Jane Y; Filler, Michael A

    2013-05-08

    The controlled introduction of planar defects, particularly twin boundaries and stacking faults, in group IV nanowires remains challenging despite the prevalence of these structural features in other nanowire systems (e.g., II-VI and III-V). Here we demonstrate how user-programmable changes to precursor pressure and growth temperature can rationally generate both transverse twin boundaries and angled stacking faults during the growth of oriented Si nanowires. We leverage this new capability to demonstrate prototype defect superstructures. These findings yield important insight into the mechanism of defect generation in semiconductor nanowires and suggest new routes to engineer the properties of this ubiquitous semiconductor.

  12. In Situ Study of Noncatalytic Metal Oxide Nanowire Growth

    DEFF Research Database (Denmark)

    Rackauskas, Simas; Jiang, Hua; Wagner, Jakob Birkedal

    2014-01-01

    energy planes. Atomic layers nucleate at the edge of twin boundary ridges and form a long-range ordering along the twin boundary. We anticipate our study to be a starting point to employ defects for nanowire growth control and consequently shaping the geometry of nanowires in a similar manner...

  13. One-step fabrication of single-crystalline ZnS nanotubes with a novel hollow structure and large surface area for photodetector devices

    Science.gov (United States)

    An, Qinwei; Meng, Xianquan; Xiong, Ke; Qiu, Yunlei; Lin, Weihua

    2017-03-01

    ZnS nanotubes (NTs) were successfully prepared via a one-step thermal evaporation process without using any templates. The resulting NTs were single crystalline and structurally uniform. Based on experimental analysis, a tube-growth vapor–liquid–solid process was proposed as the growth mechanism of ZnS NTs. A metal–semiconductor–metal full-nanostructured ultraviolet (UV) photodetector with ZnS NTs as the active layer, and Ag nanowires of low resistivity and high transmissivity as electrodes, was fabricated and characterized. The ZnS NT-based device displayed a high I on/I off ratio of up to ∼1.56 × 105 with a high response to UV incident light at low operation voltage. This work is a meaningful exploration for preparing other one-dimensional semiconductor NTs, and developing a high-performance and power-saving UV sensor.

  14. Synthesis and Characterization of ZnO/ZnS Core/Shell Nanowires

    Directory of Open Access Journals (Sweden)

    Taher Ghrib

    2014-01-01

    Full Text Available ZnO nanowires of approximately 3 µm length and 200 nm diameter are prepared and implanted vertically on substrate glass which is coated with thin layer of ITO which is too covered with bulk ZnO thin layer via electrodeposition process by cyclic voltammetry-chronoamperometry and with a chemical process that is described later; we have synthesized a ZnS nanolayer. ZnO/ZnS core/shell nanowires are formed by ZnO nanowires core surrounded by a very thin layer of porous ZnS shell principally constituted with a crystal which is about 15–20 nm in diameter. In the method, ZnS nanoparticles were prepared by reaction of ZnO nanowires with Na2S in aqueous solution at low temperature and also we have discussed the growth mechanism of ZnO/ZnS nanowires. The morphology, structure, and composition of the obtained nanostructures were obtained by using X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS. For the structure, SEM and XRD measurements indicated that the as-grown ZnO nanowires microscale was of hexagonal wurtzite phase with a high crystalline quality, and TEM shows that the ZnS is uniformly distributed on the surface of the ZnO nanowires.

  15. EDITORIAL: Nanowires Nanowires

    Science.gov (United States)

    Jagadish, Chennupati

    2010-02-01

    Nanowires are considered as building blocks for the next generation of electronics, photonics, sensors and energy applications. One-dimensional nanostructures offer unique opportunities to control the density of states of semiconductors, and in turn their electronic and optical properties. Nanowires allow the growth of axial heterostructures without the constraints of lattice mismatch. This provides flexibility to create heterostructures of a broad range of materials and allows integration of compound semiconductor based optoelectronic devices with silicon based microelectronics. Nanowires are widely studied and the number of papers published in the field is growing exponentially with time. Already nanowire lasers, nanowire transistors, nanowire light emitting diodes, nanowire sensors and nanowire solar cells have been demonstrated. This special issue on semiconductor nanowires features 17 invited papers from leading experts in the field. In this special issue, the synthesis and growth of semiconductor nanowires of a broad range of materials have been addressed. Both axial and radial heterostructures and their structural properties have been discussed. Electrical transport properties of nanowires have been presented, as well as optical properties and carrier dynamics in a range of nanowires and nanowire heterostructures. Devices such as nanowire lasers and nanowire sensors have also been discussed. I would like to thank the Editorial Board of the journal for suggesting this special issue and inviting me to serve as the Guest Editor. Sincere thanks are due to all the authors for their contributions to this special issue. I am grateful to the reviewers and editorial staff at Semiconductor Science and Technology and the Institute of Physics Publishing for their excellent efforts. Special thanks are due to Dr Claire Bedrock for coordinating this special issue.

  16. Conjoined Twins

    Science.gov (United States)

    ... sites of conjoined twins. Abdomen. Omphalopagus (om-fuh-LOP-uh-gus) twins are joined near the bellybutton. ... brain tissue. Head and chest. Cephalopagus (sef-uh-LOP-uh-gus) twins are joined at the face ...

  17. ACARDIAC TWIN

    OpenAIRE

    Vinayachandran; Jyothi,; Bindu; Umadevi

    2014-01-01

    Acardiac twin is a very rare complication occurring in monozygotic twins in which one fetus develops normally (pump twin) and the other (recipient twin) demonstrate cardiac non development and othe r anomalies. This may represent an extreme form of TTTS, also referred to as TRAP sequence. 1,2,

  18. Nanotwinned gold nanowires obtained by chemical synthesis.

    Science.gov (United States)

    Bernardi, Marco; Raja, Shilpa N; Lim, Sung Keun

    2010-07-16

    We demonstrate a facile method for synthesizing and isolating Au nanowires with a high density of twin boundary defects normal to the growth axis. In this process, oleylamine conveniently plays the role of the solvent, the reducing agent and the ligand. The geometry of the twin boundaries in the nanowires is in sharp contrast with the pentagonal twinning commonly observed in metal nanowires, and is of particular interest for its ultrahigh tensile strength. The nanostructure geometry and twin-twin average spacing were characterized using high-resolution electron microscopy, and the tensile strength of the nanowires was estimated in solution using a Ti ultrasonication probe. We present a model for explaining the role of the bulky ligand oleylamine in the formation of the twin boundaries that could be extended to include elastic terms in the ligand shell. Our work demonstrates that the use of bulky, asymmetric ligands can induce extensive formation of twin boundary defects that in turn control the mechanical properties at the nanoscale.

  19. Twin births

    DEFF Research Database (Denmark)

    Hoffmann, Elise; Oldenburg, Anna; Rode, Line;

    2012-01-01

    To assess morbidity and mortality in twin pregnancy deliveries, according to chorionicity and mode of delivery.......To assess morbidity and mortality in twin pregnancy deliveries, according to chorionicity and mode of delivery....

  20. Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Al-Shamery, Katharina;

    Single crystalline nanowires from fluorescing organic molecules like para-phenylenes or thiophenes are supposed to become key elements in future integrated optoelectronic devices [1]. For a sophisticated design of devices based on nanowires the basic principles of the nanowire formation have...

  1. Twin pregnancy

    DEFF Research Database (Denmark)

    Sperling, Lene; Tabor, A

    2001-01-01

    Determination of chorionicity is one of the most important issues in the management of twin pregnancy. Modern ultrasound equipment has made it possible to accurately assess placentation already in the first trimester with the lambda sign. With regard to prenatal diagnosis, it is important to know...... for clinicians caring for twin pregnancies....

  2. Defect studies of ZnSe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Philipose, U; Saxena, Ankur; Ruda, Harry E [Centre for Nanotechnology, University of Toronto, 170 College Street, Toronto, ON, M5S 3E4 (Canada); Simpson, P J [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada); Wang, Y Q; Kavanagh, K L [Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 (Canada)

    2008-05-28

    During the synthesis of ZnSe nanowires various point and extended defects can form, leading to observed stacking faults and twinning defects, and strong defect related emission in photoluminescence spectra. In this paper, we report on the development of a simple thermodynamic model for estimating the defect concentration in ZnSe nanowires grown under varying Se vapour pressure and for explaining the results of our experimental findings. Positron annihilation spectroscopy was used successfully for the first time for nanowires and the results support predictions from the defect model as well as agreeing well with our structural and optical characterization results. Under very high Se vapour pressure, Se nodules were observed to form on the sidewalls of the nanowire, indicating that beyond a limit, excess Se will begin to precipitate out of the liquid alloy droplet in the vapour-liquid-solid growth of nanowires.

  3. Synthesis of nanostructures in nanowires using sequential catalyst reactions

    Science.gov (United States)

    Panciera, F.; Chou, Y.-C.; Reuter, M. C.; Zakharov, D.; Stach, E. A.; Hofmann, S.; Ross, F. M.

    2015-08-01

    Nanowire growth by the vapour-liquid-solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a `mixing bowl’, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.

  4. Photoluminescence of Eu2+ Doped ZnS Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-Man; GUO Hai-Qing; ZHANG Zhi-Hua; LIU Feng-Qi; WANG Zhan-Guo

    2000-01-01

    Eu2+ doped ZnS nanocrystals exhibit new luminescence properties because of the enlarged energy gap of nanocrys talline ZnS host due to quantum confinement effects. Photoluminescence emission at about 520nm from Eu2+ doped ZnS nanocrystals at room temperature is investigated by using photoluminescence emission and excitation spectroscopy. Such green emission with long lifetime (ms) is proposed to be a result of excitation, ionization, carriers recapture and recombination via Eu2+ centers in nanocrystalline ZnS host.

  5. Helical Growth of Ultrathin Gold-Copper Nanowires.

    Science.gov (United States)

    Mendoza-Cruz, Rubén; Bazán-Díaz, Lourdes; Velázquez-Salazar, J Jesús; Plascencia-Villa, Germán; Bahena-Uribe, Daniel; Reyes-Gasga, José; Romeu, David; Guisbiers, Grégory; Herrera-Becerra, Raúl; José-Yacamán, Miguel

    2016-03-09

    In this work, we report the synthesis and detailed structural characterization of novel helical gold-copper nanowires. The nanowires possess the Boerdijk-Coxeter-Bernal structure, based on the pile up of octahedral, icosahedral, and/or decahedral seeds. They are self-assembled into a coiled manner as individual wires or into a parallel-ordering way as groups of wires. The helical nanowires are ultrathin with a diameter of less than 10 nm and variable length of several micrometers, presenting a high density of twin boundaries and stacking faults. To the best of our knowledge, such gold-copper nanowires have never been reported previously.

  6. Nanowire Lasers

    OpenAIRE

    Couteau C.; Larrue A.; Wilhelm C.; Soci C.

    2015-01-01

    We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs), solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D) nature, fl...

  7. Dimensional effects in semiconductor nanowires; Dimensionseffekte in Halbleiternanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Stichtenoth, Daniel

    2008-06-23

    Nanomaterials show new physical properties, which are determined by their size and morphology. These new properties can be ascribed to the higher surface to volume ratio, to quantum size effects or to a form anisotropy. They may enable new technologies. The nanowires studied in this work have a diameter of 4 to 400 nm and a length up to 100 {mu}m. The semiconductor material used is mainly zinc oxide (ZnO), zinc sulfide (ZnS) and gallium arsenide (GaAs). All nanowires were synthesized according to the vapor liquid solid mechanism, which was originally postulated for the growth of silicon whiskers. Respective modifications for the growth of compound semiconductor nanowires are discussed. Detailed luminescence studies on ZnO nanowires with different diameters show pronounced size effects which can be attributed to the origins given above. Similar to bulk material, a tuning of the material properties is often essential for a further functionalization of the nanowires. This is typical realized by doping the source material. It becomes apparent, that a controlled doping of nanowires during the growth process is not successful. Here an alternative method is chosen: the doping after the growth by ion implantation. However, the doping by ion implantation goes always along with the creation of crystal defects. The defects have to be annihilated in order to reach an activation of th introduced dopants. At high ion fluences and ion masses the sputtering of surface atoms becomes more important. This results in a characteristic change in the morphology of the nanowires. In detail, the doping of ZnO and ZnS nanowires with color centers (manganese and rare earth elements) is demonstrated. Especially, the intra 3d luminescence of manganese implanted ZnS nanostructures shows a strong dependence of the nanowire diameter and morphology. This dependence can be described by expanding Foersters model (which describes an energy transfer to the color centers) by a dimensional parameter

  8. Luminescent Processes Elucidated by Simple Experiments on ZnS.

    Science.gov (United States)

    Schwankner, R.; And Others

    1981-01-01

    Describes some impurity-related optical properties of semiconductors, with special emphasis on the luminescence of zinc sulfide (ZnS). Presents and interprets five experiments using a ZnS screen, ultraviolet lamp, transparent Dewar liquid nitrogen, and a helium/neon gas base. Includes application of luminescence measurements to archaeology. (SK)

  9. Lasing and ion beam doping of semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Geburt, Sebastian

    2013-01-31

    Semiconductor nanowires exhibit extraordinary optical properties like highly localized light emission, efficient waveguiding and light amplification. Even the stimulation of laser oscillations can be achieved at optical pumping, making nanowires promising for optoelectronic applications. For successful integration into future devices, three major key challenges have to be faced: (1) the understanding of the fundamental properties, (2) the modification of the emission characteristics and (3) the investigation of the efficiency-limiting factors. All key challenges are addressed in this thesis: (1) The fundamental properties of CdS nanowire have been investigated to uncover the size limits for photonic nanowire lasers. Laser oscillations were observed at room temperature and the emission characteristics were correlated to the morphology, which allowed the determination of a minimum diameter and length necessary for lasing. (2) The emission characteristics of ZnO nanowires have been successfully modified by ion beam doping with Co. The structural investigations revealed a good recovery of the ion induced damage in the crystal lattice. Optical activation of the implanted Co ions was achieved and an intense intra-3d-emission confirmed successful modification. (3) The temporal decay of excited luminescence centers strongly depends on the interplay of luminescent ions and defects, thus offering an approach to investigate the efficiency-limiting processes. Mn implanted ZnS nanowires were investigated, as the temporal decay of the incorporated Mn ions can be described by a Foerster energy transfer model modified for nanostructures. The defect concentration was varied systematically by several approaches and the model could successfully fit the transients in all cases. The emission properties of Tb implanted ZnS nanowires were investigated and the temporal decay of the intra-4f-emission could also be fitted by the model, proving its accuracy for an additional element.

  10. Twin Baryogenesis

    CERN Document Server

    Farina, Marco; Shin, Chang Sub

    2016-01-01

    In the context of Twin Higgs models, we study a simple mechanism that simultaneously generates asymmetries in the dark and visible sector through the out-of-equilibrium decay of a TeV scale particle charged under a combination of baryon and twin baryon number. We predict the dark matter to be a 5 GeV twin baryon, which is easy to achieve because of the similarity between the two confinement scales. Dark matter is metastable and can decay to three quarks, yielding indirect detection signatures. The mechanism requires the introduction of a new colored particle, typically within the reach of the LHC, of which we study the rich collider phenomenology, including prompt and displaced dijets, multi-jets, monojets and monotops.

  11. Tuning photoluminescence of ZnS nanoparticles by silver

    Indian Academy of Sciences (India)

    A Murugadoss; Arun Chattopadhyay

    2008-06-01

    We report the results of investigation of the interaction of silver with presynthesized ZnS nanoparticles (NPs) that was stabilized by cetyl trimethyl ammonium bromide (CTAB). The photoluminescence properties of ZnS NPs were followed in the presence of Ag+ ions, Ag NPs and by the synthesis of Ag@ZnS core-shell nanoparticles. We observed that CTAB stabilized ZnS NPs emitted broadly in the region from 350–450 nm, when excited by 309 nm light. In the presence of Ag+ ions the emission peak intensity up to 400 nm was reduced, while two new and stronger peaks at 430 nm and 550 nm appeared. Similar results were obtained when Ag NPs solution was added to ZnS solution. However, when Ag@ZnS NPs were synthesized, the emission in the 350–450 nm region was much weaker in comparison to that at 540 nm, which itself appeared at a wavelength shorter than that of Ag+ ion added ZnS NPs. The observations have been explained by the presence of interstitial sulfur and Zn2+, especially near the surface of the nanocrystals and their interaction with various forms of silver. In addition, our observations suggest that Ag+ ions diffuse into the lattice of the preformed ZnS NPs just like the formation of Ag+ doped ZnS NPs and thus changes the emission characteristics. We also have pursued similar experiments with addition of Mn2+ ions to ZnS and observed similar results of emission characteristics of Mn2+ doped ZnS NPs. We expect that results would stimulate further research interests in the development of fluoremetric metal ion sensors based on interaction with quantum dots.

  12. Non-Radiative Step Facets in Semiconductor Nanowires.

    Science.gov (United States)

    Sanchez, Ana M; Zhang, Yunyan; Tait, Edward W; Hine, Nicholas D M; Liu, Huiyun; Beanland, Richard

    2017-03-24

    One of the main advantages of nanowires for functional applications is their high perfection, which results from surface image forces that act on line defects such as dislocations, rendering them unstable and driving them out of the crystal. Here we show that there is a class of linear defects that are stable in nanowires, with no long-range strain field or dislocation character. In zinc-blende semiconductors, they take the form of Ʃ3 (112) facets with heights constrained to be a multiple of three {111} monolayers. Density functional theory calculations show that they act as non-radiative recombination centres and have deleterious effects on nanowire properties. We present experimental observations of these defects on twin boundaries and twins that terminate inside GaAsP nanowires and find that they are indeed always multiples of three monolayers in height. Strategies to use the three-monolayer rule during growth to prevent their formation are discussed.

  13. Nanowire photonics

    Directory of Open Access Journals (Sweden)

    Peter J. Pauzauskie

    2006-10-01

    Full Text Available The development of integrated electronic circuitry ranks among the most disruptive and transformative technologies of the 20th century. Even though integrated circuits are ubiquitous in modern life, both fundamental and technical constraints will eventually test the limits of Moore's law. Nanowire photonic circuitry constructed from myriad one-dimensional building blocks offers numerous opportunities for the development of next-generation optical information processors and spectroscopy. However, several challenges remain before the potential of nanowire building blocks is fully realized. We cover recent advances in nanowire synthesis, characterization, lasing, integration, and the eventual application to relevant technical and scientific questions.

  14. Nanowire Lasers

    Science.gov (United States)

    Couteau, C.; Larrue, A.; Wilhelm, C.; Soci, C.

    2015-05-01

    We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs), solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D) nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  15. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  16. Magnetism in undoped ZnS nanotetrapods.

    Science.gov (United States)

    Shan, Aixian; Liu, Wei; Wang, Rongming; Chen, Chinping

    2013-02-21

    The magnetism of undoped ZnS nanotetrapods, synthesized by a solvothermal method, has been investigated by magnetization measurements and first principle numerical calculations. The background magnetic impurity concentrations of Fe, Co and Ni were determined at ppm level by inductively coupled plasma mass spectrometry (ICP-MS). Hysteresis loops of weak ferromagnetism were observed, attributable to the magnetic impurities. However, the total magnetic moments analyzed from the paramagnetism are far beyond the explanations from the presence of these magnetic impurities, by about two orders of magnitude larger. It implies a different origin of the magnetic moments. Electron microscopy analysis reveals that there are defects in the sample. Numerical simulations indicate that the excessive magnetic moments might arise from the local band structure of polarized electrons associated with the defects of cation deficiency. This study elaborates on the understanding of magnetic properties in the non-magnetic II-VI semiconductor nanomaterials.

  17. Electrical conduction mechanism in ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Hassan [Micro and Nano Devices Group, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore 45650, Islamabad (Pakistan); Karim, S. [Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad (Pakistan); Rafiq, M.A. [Micro and Nano Devices Group, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore 45650, Islamabad (Pakistan); Maaz, K., E-mail: maaz@impcas.ac.cn [Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad (Pakistan); Rahman, Atta ur [Material Laboratory, Department of Physics, Abul Wali Khan University, Mardan, Khyber Pakhtunkhwa (Pakistan); Nisar, A.; Ahmad, M. [Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad (Pakistan)

    2014-11-05

    Highlights: • ZnS nanoparticles have been prepared by coprecipitation route with diameter of 20 nm. • The bandgap energy shows small shift as compared to the bulk value of ZnS. • This is explained by weak quantum confinement effects resulted from the quantization of exciton motion. • The photoluminescence spectrum shows two peaks that are assigned to the recombination of electrons and holes. • And to the transitions of electrons from the sulfur to zinc vacancy states. - Abstract: ZnS nanoparticles with hexagonal wurtzite crystal structure have been prepared by coprecipitation method at 70 °C and subsequently annealed at 400 °C for 4 h. The average particle size has been found to be ∼20 nm. ZnS nanopowder has been characterized by UV–Vis spectrophotometry. The band gap has been calculated in the range of 3.9 eV. Impedance spectroscopic technique has been used to examine the electrical properties of ZnS nanoparticles pressed to pellet form in the temperature range of 300–400 K. Correlated barrier hopping has been the prevailing conduction mechanism in ZnS. The activation energy calculated from the Arrhenius relation is consistent with bipolaron and single polaron hopping in correlated barrier hopping model.

  18. Bandgap Tuning of GaAs/GaAsSb Core-Shell Nanowires Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    2015-09-21

    Transmission electron microscope (TEM) images show the presence of stacking faults and twins. Based on photoluminescence (PL) peak energies and their...compositional instability in the nanowires. Transmission electron microscope (TEM) images show the presence of stacking faults and twins. Based on...T B, van Helvoort A T J, Fimland B O and Weman H 2010 Nanowires ( InTech ) [9] Kauko H, Grieb T, Bjørge R, Schowalter M, Munshi A M, Weman H, Rosenauer

  19. Fabrication of Si/ZnS radial nanowire heterojunction arrays for white light emitting devices on Si substrates.

    Science.gov (United States)

    Katiyar, Ajit K; Sinha, Arun Kumar; Manna, Santanu; Ray, Samit K

    2014-09-10

    Well-separated Si/ZnS radial nanowire heterojunction-based light-emitting devices have been fabricated on large-area substrates by depositing n-ZnS film on p-type nanoporous Si nanowire templates. Vertically oriented porous Si nanowires on p-Si substrates have been grown by metal-assisted chemical etching catalyzed using Au nanoparticles. Isolated Si nanowires with needle-shaped arrays have been made by KOH treatment before ZnS deposition. Electrically driven efficient white light emission from radial heterojunction arrays has been achieved under a low forward bias condition. The observed white light emission is attributed to blue and green emission from the defect-related radiative transition of ZnS and Si/ZnS interface, respectively, while the red arises from the porous surface of the Si nanowire core. The observed white light emission from the Si/ZnS nanowire heterojunction could open up the new possibility to integrate Si-based optical sources on a large scale.

  20. The Qingdao Twin Registry

    DEFF Research Database (Denmark)

    Duan, Haiping; Ning, Feng; Zhang, Dongfeng;

    2013-01-01

    In 1998, the Qingdao Twin Registry was initiated as the main part of the Chinese National Twin Registry. By 2005, a total of 10,655 twin pairs had been recruited. Since then new twin cohorts have been sampled, with one longitudinal cohort of adolescent twins selected to explore determinants...... of metabolic disorders and health behaviors during puberty and young adulthood. Adult twins have been sampled for studying heritability of multiple phenotypes associated with metabolic disorders. In addition, an elderly twin cohort has been recruited with a focus on genetic studies of aging-related phenotypes...

  1. Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth.

    Science.gov (United States)

    Wang, Junli; Chen, Kangmin; Gong, Ming; Xu, Bin; Yang, Qing

    2013-09-11

    The catalytic mechanism offers an efficient tool to produce crystalline semiconductor nanowires, in which the choice, state, and structure of catalysts are active research issues of much interest. Here we report a novel solution-solid-solid (SSS) mechanism for nanowire growth catalyzed by solid-phase superionic conductor nanocrystals in low-temperature solution. The preparation of Ag2Se-catalyzed ZnSe nanowires at 100-210 °C is exampled to elucidate the SSS model, which can be extendable to grow other II-VI semiconductor (e.g., CdSe, ZnS, and CdS) nanowires by the catalysis of nanoscale superionic-phase silver or copper(I) chalcogenides (Ag2Se, Ag2S, and Cu2S). The exceptional catalytic ability of these superionic conductors originates from their structure characteristics, known for high-density vacancies and fast mobility of silver or copper(I) cations in the rigid sublattice of Se(2-) or S(2-) ions. Insights into the SSS mechanism are provided based on the formation of solid solution and the solid-state ion diffusion/transport at solid-solid interface between catalyst and nanowire.

  2. In situ transmission electron microscopy analyses of thermally annealed self catalyzed GaAs nanowires grown by molecular beam epitaxy

    DEFF Research Database (Denmark)

    Ambrosini, S.; Wagner, Jakob Birkedal; Booth, Tim;

    2011-01-01

    Self catalyzed GaAs nanowires grown on Si-treated GaAs substrates were studied with a transmission electron microscope before and after annealing at 600◦C. At room temperature the nanowires have a zincblende structure and are locally characterized by a high density of rotational twins and stackin...

  3. Twin Jet

    Science.gov (United States)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  4. Isolated vasculitis of the CNS; Isolierte Vaskulitis des ZNS

    Energy Technology Data Exchange (ETDEWEB)

    Block, F. [RWTH Aachen (Germany). Neurologische Klinik; Reith, W. [Universitaet des Saarlandes, Homburg/Saar (Germany). Radiologische Klinik

    2000-11-01

    Vasculitis is a rare cause for disease of the CNS. The isolated vasculitis of the CNS is restricted to the CNS whereas other forms of vasculitis affect various organs including the CNS. Headache, encephalopathy, focal deficits and epileptic seizures are the major symptoms suggestive for vasculitis. One major criterion of the isolated vasculitis of the CNS is the lack of evidence for other vasculitis forms or for pathology of other organs. Angiography displays multifocal segmental stenosis of intracranial vessels. MRI demonstrates multiple lesions which in part show enhancement after gadolinium. A definite diagnosis can only be made on the grounds of biopsy from leptomeninges and parenchyma. Therapy consists of corticosteroids and cyclophosphamid. (orig.) [German] Vaskulitiden sind eine seltene Ursache fuer Erkrankungen des ZNS. Die Vaskulitiden lassen sich in primaere und sekundaere einteilen, von denen sich die ueberwiegende Mehrzahl an verschiedenen Organsystemen einschliesslich dem ZNS manifestieren kann. Die isolierte ZNS-Vaskulitis ist auf das ZNS beschraenkt, bei ihr stehen klinisch-neurologisch wie bei den anderen Vaskulitisformen Kopfschmerzen, Enzephalopathie, fokale Defizite und epileptische Anfaelle im Vordergrund. Ein Kriterium der isolierten ZNS-Vaskulitis ist der klinische und laborchemische Ausschluss anderer Vaskulitiden bzw. der Beteiligung anderer Organsysteme. Multiple Kaliberspruenge intrakranieller Arterien in der zerebralen Angiographie und multiple, kleine, z.T. kontrastmittelaufnehmende Laesionen in der MRT des Schaedels sind vaskulitistypische Befunde, die allerdings auch bei anderen Vaskulitiden zu finden sind. Einzig beweisend ist eine Hirnhaut- und Hirnparenchymbiopsie. Besonders vor dem Hintergrund der therapeutischen Option, Immunsuppression mit Kortison und Cyclophosphamid, ist eine moeglichst genaue Diagnose erforderlich. (orig.)

  5. Structural, Surface Morphology and Optical Properties of ZnS Films by Chemical Bath Deposition at Various Zn/S Molar Ratios

    Directory of Open Access Journals (Sweden)

    Fei-Peng Yu

    2014-01-01

    Full Text Available In this study, ZnS thin films were prepared on glass substrates by chemical bath deposition at various Zn/S molar ratios from 1/50 to 1/150. The effects of Zn/S molar ratio in precursor on the characteristics of ZnS films were demonstrated by X-ray diffraction, scanning electron microscopy, optical transmittance, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. It was found that more voids were formed in the ZnS film prepared using the precursor with Zn/S molar ratio of 1/50, and the other ZnS films showed the denser structure as the molar ratio was decreased from 1/75 to 1/150. From the analyses of chemical bonding states, the ZnS phase was indeed formed in these films. Moreover, the ZnO and Zn(OH2 also appeared due to the water absorption on film surface during deposition. This would be helpful to the junction in cell device. With changing the Zn/S molar ratio from 1/75 to 1/150, the ZnS films demonstrate high transmittance of 75–88% in the visible region, indicating the films are potentially useful in photovoltaic applications.

  6. Deformation twinning in monazite

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R.S.; Marshall, D.B

    2003-10-20

    Polycrystalline monazite (LaPO{sub 4}) was deformed at room temperature by a spherical indenter. Deformation twins were identified by TEM in 70 grains. Five twin planes were found: (100) was by far the most common; (001) and (120) were less common; (122-bar)was rare, and kinks in (120) twins were identified as irrational '(483)' twin planes. The twinning modes on these planes were inferred from the expression of twinning shear at free surfaces, predictions of classical deformation twinning theory, and various considerations of twin morphology and crystal structure. Atomic shuffle calculations that allow formation of either a glide plane or a mirror plane at the twin interface were used to analyze twin modes. The inferred twin modes all have small atomic shuffles. For (001) twins, the smallest shuffles were obtained with a glide plane at the interface, with displacement vector R=((1)/(2))[010]. The results do not uniquely define a twin mode on (100), leaving open the possibility of more than one mode operating on this plane. Factors that may determine the operative deformation twinning modes are discussed. Crystal structure considerations suggest that the relative abundance of twinning modes may correlate with low shear modulus on the twin plane in the direction of twinning shear, and with a possible low-energy interface structure consisting of a layer of xenotime of one half-unit-cell thickness that could form at (100) and (001) twins. The three most common twins have low strains to low {sigma} coincidence site lattices (CSLs)

  7. Electron Momentum Density and Phase Transition in ZnS

    Directory of Open Access Journals (Sweden)

    N. Munjal

    2013-01-01

    Full Text Available The electron momentum density distribution and phase transition in ZnS are reported in this paper. The calculations are performed on the basis of density functional theory (DFT based on the linear combination of atomic orbitals (LCAO method. To compare the theoretical Compton profile, the measurement on polycrystalline ZnS has been made using a Compton spectrometer employing 59.54 keV gamma rays. The spherically averaged theoretical Compton profile is in agreement with the measurement. On the basis of equal valence-electron-density Compton profiles, it is found that ZnS is less covalent as compared to ZnSe. The present study suggests zincblende (ZB to rocksalt (RS phase transition at 13.7 GPa. The calculated transition pressure is found in good agreement with the previous investigations.

  8. Coupling between ferromagnetic electrodes through ZnS barrier

    Energy Technology Data Exchange (ETDEWEB)

    Fix, T. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France)]. E-mail: thomas.fix@ipcms.u-strasbg.fr; Colis, S. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France); Schmerber, G. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France); Ulhaq, C. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France); Dinia, A. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France)

    2005-02-01

    Magnetization measurements are performed on CoFe{sub 2}/ZnS/CoFe{sub 2}/NiFe structures to investigate the interactions between ferromagnetic electrodes through the ZnS barrier. Negative shifts observed in magnetization minor loops indicate a ferromagnetic interaction. The influence of the hard-layer deposition temperature on this shift and on the hard-layer coercive field is considered. The amplitude of the shift decreases as the thickness of the ZnS layer increases. The decrease in this shift at low temperature confirms the presence of an indirect exchange coupling between the magnetic electrodes mediated by spin-polarized quantum tunneling through the ZnS layer.

  9. Richardson-Schottky transport mechanism in ZnS nanoparticles

    Science.gov (United States)

    Ali, Hassan; Khan, Usman; Rafiq, M. A.; Falak, Attia; Narain, Adeela; Jing, Tang; Xu, Xiulai

    2016-05-01

    We report the synthesis and electrical transport mechanism in ZnS semiconductor nanoparticles. Temperature dependent direct current transport measurements on the compacts of ZnS have been performed to investigate the transport mechanism for temperature ranging from 300 K to 400 K. High frequency dielectric constant has been used to obtain the theoretical values of Richardson-Schottky and Poole-Frenkel barrier lowering coefficients. Experimental value of the barrier lowering coefficient has been calculated from conductance-voltage characteristics. The experimental value of barrier lowering coefficient βexp lies close to the theoretical value of Richardson-Schottky barrier lowering coefficient βth,RS showing Richardson-Schottky emission has been responsible for conduction in ZnS nanoparticles for the temperature range studied.

  10. Richardson-Schottky transport mechanism in ZnS nanoparticles

    Directory of Open Access Journals (Sweden)

    Hassan Ali

    2016-05-01

    Full Text Available We report the synthesis and electrical transport mechanism in ZnS semiconductor nanoparticles. Temperature dependent direct current transport measurements on the compacts of ZnS have been performed to investigate the transport mechanism for temperature ranging from 300 K to 400 K. High frequency dielectric constant has been used to obtain the theoretical values of Richardson-Schottky and Poole-Frenkel barrier lowering coefficients. Experimental value of the barrier lowering coefficient has been calculated from conductance-voltage characteristics. The experimental value of barrier lowering coefficient βexp lies close to the theoretical value of Richardson-Schottky barrier lowering coefficient βth,RS showing Richardson-Schottky emission has been responsible for conduction in ZnS nanoparticles for the temperature range studied.

  11. Phase transition in ZnS thin film phosphor

    Science.gov (United States)

    Kryshtab, T.; Khomchenko, V. S.; Andraca-Adame, J. A.; Khachatryan, V. B.; Mazin, M. O.; Rodionov, V. E.; Mukhlio, M. F.

    2005-02-01

    The effect of an original non-vacuum annealing of thin ZnS films according to the annealing conditions and type of substrate on the film's crystalline structure and surface morphology in relation with photoluminescent (PL) properties was investigated. ZnS thin films were deposited by electron-beam evaporation (EBE) on ceramic (BaTiO 3) and glass substrates heated to 150-200 °C. Three types of the targets such as ZnS, ZnS:Cu and ZnS:Cu, Al were used. The film thickness varied from 0.6 to 1 μm. As-deposited films were annealed at the atmospheric pressure in S 2-rich ambient atmosphere at 600-950 °C for 1 h. The ZnS:Cu films were Ga co-doped by annealing in the same atmosphere and temperature with additional Ga vapor. The ZnS films were doped with Cu, Cl using the thermal diffusion method by embedding the samples in ZnS:Cu, Cl powder. X-ray diffraction (XRD) technique, atomic force microscopy (AFM) and the measurements of PL parameters were used for investigation. The temperature of the ZnS phase transition from the sphalerite to wurtzite structure depends on the presence, type and ratio of additional impurities. It was revealed that Ga and Cl act not only as co-dopant to improve the luminescent properties, but also as activators of recrystallization processes. The transition of ZnS film's sphalerite lattice to wurtzite leads to the displacement of the blue emission band position towards the short-wavelength range by 10 nm.

  12. The Norwegian Twin Registry.

    Science.gov (United States)

    Nilsen, Thomas S; Brandt, Ingunn; Magnus, Per; Harris, Jennifer R

    2012-12-01

    Norway has a long-standing tradition in twin research, but the data collected in several population-based twin studies were not coordinated centrally or easily accessible to the scientific community. In 2009, the Norwegian Twin Registry was established at the Norwegian Institute of Public Health (NIPH) in Oslo with the purpose of creating a single research resource for Norwegian twin data. As of today, the Norwegian Twin Registry contains 47,989 twins covering birth years 1895-1960 and 1967-1979; 31,440 of these twins consented to participate in health-related research. In addition, DNA from approximately 4,800 of the twins is banked at the NIPH biobank and new studies are continually adding new data to the registry. The value of the Norwegian twin data is greatly enhanced by the linkage opportunities offered by Norway's many nationwide registries, spanning a broad array of medical, demographic, and socioeconomic information.

  13. Characterization of Zns-GaP Naon-composites

    Energy Technology Data Exchange (ETDEWEB)

    Todd, V.

    1993-12-09

    It proved possible to produce consistent, high-quality nanocrystalline ZnS powders with grain sizes as small as 8 nm. These powders are nano-porous and are readily impregnated with GaP precursor, although inconsistently. Both crystal structure and small grain size of the ZnS can be maintained through the use of GaP. Heat treatment of the impregnated powders results in a ZnS-GaP composite structure where the grain sizes of the phases are on the order of 10--20 nm. Conventional powder processing should be able to produce optically dense ceramic compacts with improved mechanical properties and suitable IR transmission.

  14. Influence of catalyst droplet diameter on the growth direction of InP nanowires grown on Si(001) substrate

    Science.gov (United States)

    Naji, K.; Saint-Girons, G.; Penuelas, J.; Patriarche, G.; Largeau, L.; Dumont, H.; Rojo-Romeo, P.; Gendry, M.

    2013-06-01

    It is demonstrated that the growth direction of InP nanowires grown on (001)-oriented silicon substrate strongly depends on the diameter of the gold catalyst droplets. Small droplets with diameter less than about 15 nm lead to the formation of nanowires leaning on the {111} planes of the zinc blende InP seeds formed in the early stages of growth. Larger droplets lead to the formation of twins in the InP seeds and to the formation of nanowires leaning on the {111} planes of these twinned InP variants, inducing growth directions corresponding to the directions of the silicon substrate.

  15. Effect of Cr doping on structural and magnetic properties of ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Virpal,; Singh, Jasvir; Sharma, Sandeep; Singh, Ravi Chand, E-mail: ravichand.singh@gmail.com [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-05-23

    The structural, optical and magnetic properties of pure and Cr doped ZnS nanoparticles were studied at room temperature. X-ray diffraction analysis confirmed the absence of any mixed phase and the cubic structure of ZnS in pure and Cr doped ZnS nanoparticles. Fourier transfer infrared spectra confirmed the Zn-S stretching bond at 664 cm{sup −1} of ZnS in all prepared nanoparticles. The UV-Visible absorption spectra showed blue shift which became even more pronounced in Cr doped ZnS nanoparticles. However, at relatively higher Cr concentrations a slower red shift was shown by the doped nanoparticles. This phenomenon is attributed to sp-d exchange interaction that becomes prevalent at higher doping concentrations. Further, magnetic hysteresis measurements showed that Cr doped ZnS nanoparticles exhibited ferromagnetic behavior at room temperature.

  16. Joule heating in nanowires

    OpenAIRE

    Fangohr, H.; Chernyshenko, D.; Franchin, Matteo; Fischbacher, Thomas; Meier, G.

    2011-01-01

    We study the effect of Joule heating from electric currents flowing through ferromagnetic nanowires on the temperature of the nanowires and on the temperature of the substrate on which the nanowires are grown. The spatial current density distribution, the associated heat generation, and diffusion of heat is simulated within the nanowire and the substrate. We study several different nanowire and constriction geometries as well as different substrates: (thin) silicon nitride membranes, (thick) ...

  17. Phonon spectroscopy in a Bi2Te3 nanowire array

    Science.gov (United States)

    Bessas, Dimitrios; Töllner, William; Aabdin, Zainul; Peranio, Nicola; Sergueev, Ilya; Wille, Hans-Christian; Eibl, Oliver; Nielsch, Kornelius; Hermann, Raphaël P.

    2013-10-01

    The lattice dynamics in an array of 56 nm diameter Bi2Te3 nanowires embedded in a self-ordered amorphous alumina membrane were investigated microscopically using 125Te nuclear inelastic scattering. The element specific density of phonon states is measured on nanowires in two perpendicular orientations and the speed of sound is extracted. Combined high energy synchrotron radiation diffraction and transmission electron microscopy was carried out on the same sample and the crystallinity was investigated. The nanowires grow almost perpendicular to the c-axis, partly with twinning. The average speed of sound in the 56 nm diameter Bi2Te3 nanowires is ~7% smaller with respect to bulk Bi2Te3 and a decrease in the macroscopic lattice thermal conductivity by ~13% due to nanostructuration and to the reduced speed of sound is predicted.

  18. Electrical transport and thermoelectric properties of boron carbide nanowires

    Science.gov (United States)

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-01

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200–450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  19. The Danish Twin Register

    DEFF Research Database (Denmark)

    Kyvik, K O; Christensen, Kaare; Skytthe, A;

    1996-01-01

    BACKGROUND: Population based twin registers represent a valuable tool for genetic epidemiological research, since twin studies aim at separating the effect of genes and environment for complex traits. The Danish Twin Register's history, size, ascertainment and completeness of data, as well as data...... accessibility and availability are described. RESULTS: The Danish Twin Register comprises 14,051 twin pairs born 1870-1930, representing all twins surviving to age six years, and 20,888 twin pairs born 1953-1982, representing 75% of those born 1953-1967 and 95% of those born 1968-1982. The birth cohorts 1931......-1952 og 1983-1993 are being ascertained at the moment. The register is available for research given certain conditions are fulfilled. CONCLUSION: This register will in a few years be the most comprehensive twin register in the world. It is a very valuable Danish research resource....

  20. The Danish Twin Register

    DEFF Research Database (Denmark)

    Kyvik, K O; Christensen, Kaare; Skytthe, A

    1996-01-01

    BACKGROUND: Population based twin registers represent a valuable tool for genetic epidemiological research, since twin studies aim at separating the effect of genes and environment for complex traits. The Danish Twin Register's history, size, ascertainment and completeness of data, as well as data...... accessibility and availability are described. RESULTS: The Danish Twin Register comprises 14,051 twin pairs born 1870-1930, representing all twins surviving to age six years, and 20,888 twin pairs born 1953-1982, representing 75% of those born 1953-1967 and 95% of those born 1968-1982. The birth cohorts 1931......-1952 og 1983-1993 are being ascertained at the moment. The register is available for research given certain conditions are fulfilled. CONCLUSION: This register will in a few years be the most comprehensive twin register in the world. It is a very valuable Danish research resource....

  1. Surface dislocation nucleation controlled deformation of Au nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Roos, B.; Kapelle, B.; Volkert, C. A., E-mail: volkert@ump.gwdg.de [Institute of Materials Physics, Georg August University, Göttingen 37077 (Germany); Richter, G. [Max-Plank-Institute for Intelligent Systems, Stuttgart 70569 (Germany)

    2014-11-17

    We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of the deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.

  2. ZnS nanostructure arrays: a developing material star.

    Science.gov (United States)

    Fang, Xiaosheng; Wu, Limin; Hu, Linfeng

    2011-02-01

    Semiconductor nanostructure arrays are of great scientific and technical interest because of the strong non-linear and electro-optic effects that occur due to carrier confinement in three dimensions. The use of such nanostructure arrays with tailored geometry, array density, and length-diameter-ratio as building blocks are expected to play a crucial role in future nanoscale devices. With the unique properties of a direct wide-bandgap semiconductor, such as the presence of polar surfaces, excellent transport properties, good thermal stability, and high electronic mobility, ZnS nanostructure arrays has been a developing material star. The research on ZnS nanostructure arrays has seen remarkable progress over the last five years due to the unique properties and important potential applications of nanostructure arrays, which are summarized here. Firstly, a survey of various methods to the synthesis of ZnS nanostructure arrays will be introduced. Next recent efforts on exploiting the unique properties and applications of ZnS nanostructure arrays are discussed. Potential future directions of this research field are also highlighted.

  3. Dynamic modelling and process control of ZnS precipitation

    NARCIS (Netherlands)

    König, J.; Keesman, K.J.; Veeken, A.H.M.; Lens, P.N.L.

    2006-01-01

    This paper presents the dynamic modelling and design of a control strategy for the ZnS precipitation process. During lab¿scale experiments, the sulfide concentration in a precipitator was controlled at a prespecified pS value by manipulating the flow from a buffer vessel. Batch tests showed that the

  4. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires.

    Science.gov (United States)

    Xiong, Yujie; Xie, Yi; Li, Zhengquan; Li, Xiaoxu; Gao, Shanmin

    2004-02-06

    A general synthetic route has been developed for the growth of metal phosphide, oxide, sulfide, and tungstate nanowires in aqueous solution. In detail, cetyltrimethylammonium cations (CTA(+)) can be combined with anionic inorganic species along a co-condensation mechanism to form lamellar inorganic-surfactant intercalated mesostructures, which serve as both microreactors and reactants for the growth of nanowires. For example, GaP, InP, gamma-MnO(2), ZnO, SnS(2), ZnS, CdWO(4), and ZnWO(4) nanowires have been grown by this route. To the best of our knowledge, this is the first time that the synthesis of GaP and InP nanowires in aqueous solution has been achieved. This strategy is expected to extend to grow nanowires of other materials in solution or by vapor transport routes, since the nanowire growth of any inorganic materials can be realized by selecting an appropriate reaction and its corresponding lamellar inorganic-surfactant precursors.

  5. Monochorionic twin pregnancies

    NARCIS (Netherlands)

    Hack, K.E.A.

    2008-01-01

    Following widespread application of assisted reproductive technology modalities and the increased age of motherhood, the incidence of twin gestations has increased markedly. Twins are either monozygotic or dizygotic. Dizygotic (i.e. fraternal) twins result from the fertilization of two different egg

  6. Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays

    Directory of Open Access Journals (Sweden)

    Ma Li

    2011-01-01

    Full Text Available Abstract The fabrication of three kinds of ZnO nanowire arrays with different structural parameters over Au-coated silicon (100 by facile thermal evaporation of ZnS precursor is reported, and the growth mechanism are proposed based on structural analysis. Field emission (FE properties and wetting behavior were revealed to be strongly morphology dependent. The nanowire arrays in small diameter and high aspect ratio exhibited the best FE performance showing a low turn-on field (4.1 V/μm and a high field-enhancement factor (1745.8. The result also confirmed that keeping large air within the films was an effective way to obtain super water-repellent properties. This study indicates that the preparation of ZnO nanowire arrays in an optimum structural model is crucial to FE efficiency and wetting behavior.

  7. Synthesis and characterization of ZnO/ZnS/MoS2 core-shell nanowires

    Science.gov (United States)

    Butanovs, Edgars; Kuzmin, Alexei; Butikova, Jelena; Vlassov, Sergei; Polyakov, Boris

    2017-02-01

    Hybrid nanostructures composed of layered materials have recently attracted a lot of attention due to their promising electronic and catalytic properties. In this study, we describe a novel synthesis strategy of ZnO/ZnS/MoS2 core-shell nanowire growth using a three-step route. First, ZnO nanowire array was grown on a silicon wafer. Second, the sample was immersed in ammonium molybdate solution and dried. At the third step, the sample was annealed in a sulfur atmosphere at 700 °C. Two solid state chemical reactions occur simultaneously during the annealing and result in a formation of ZnS and MoS2 phases. Produced ZnO/ZnS/MoS2 core-shell nanowires were characterized by scanning and transmission electron microscopy, whereas their chemical composition was confirmed by selected area electron diffraction and micro-Raman spectroscopy.

  8. A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper

    Science.gov (United States)

    Mahata, Avik; Mukhopadhyay, Tanmoy; Adhikari, Sondipon

    2016-03-01

    Nano-twinned structures are mechanically stronger, ductile and stable than its non-twinned form. We have investigated the effect of varying twin spacing and twin boundary width (TBW) on the yield strength of the nano-twinned copper in a probabilistic framework. An efficient surrogate modelling approach based on polynomial chaos expansion has been proposed for the analysis. Effectively utilising 15 sets of expensive molecular dynamics simulations, thousands of outputs have been obtained corresponding to different sets of twin spacing and twin width using virtual experiments based on the surrogates. One of the major outcomes of this work is that there exists an optimal combination of twin boundary spacing and twin width until which the strength can be increased and after that critical point the nanowires weaken. This study also reveals that the yield strength of nano-twinned copper is more sensitive to TBW than twin spacing. Such robust inferences have been possible to be drawn only because of applying the surrogate modelling approach, which makes it feasible to obtain results corresponding to 40 000 combinations of different twin boundary spacing and twin width in a computationally efficient framework.

  9. Chemical Sensing with Nanowires

    Science.gov (United States)

    Penner, Reginald M.

    2012-07-01

    Transformational advances in the performance of nanowire-based chemical sensors and biosensors have been achieved over the past two to three years. These advances have arisen from a better understanding of the mechanisms of transduction operating in these devices, innovations in nanowire fabrication, and improved methods for incorporating receptors into or onto nanowires. Nanowire-based biosensors have detected DNA in undiluted physiological saline. For silicon nanowire nucleic acid sensors, higher sensitivities have been obtained by eliminating the passivating oxide layer on the nanowire surface and by substituting uncharged protein nucleic acids for DNA as the capture strands. Biosensors for peptide and protein cancer markers, based on both semiconductor nanowires and nanowires of conductive polymers, have detected these targets at physiologically relevant concentrations in both blood plasma and whole blood. Nanowire chemical sensors have also detected several gases at the parts-per-million level. This review discusses these and other recent advances, concentrating on work published in the past three years.

  10. Structural and optical properties of ZnS thin film grown by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennayaka, H.M.M.N.; Lee, Ho Seong, E-mail: hs.lee@knu.ac.kr

    2013-12-02

    ZnS thin films were grown on indium–tin-oxide coated glass substrates using pulsed electrodeposition and the effect of the deposition temperature on the structural and optical properties of the ZnS films was investigated. Polycrystalline cubic ZnS films were obtained at all the deposition temperatures. At temperatures below 70 °C, less dense films were obtained and particle agglomeration was visible. On the other hand, at temperatures above 70 °C, more dense films with well-defined grains were obtained. With increasing deposition temperatures, the optical transmittance and bandgap of the ZnS films decreased. These results are attributed to the increase in the thickness of ZnS films and their particle size. The ZnS films grown at 90 °C exhibited the highly (200) preferred orientation and n-type conductivity with a wide bandgap of 3.75 eV. - Highlights: • This study describes the effect of the deposition temperature on the growth of the ZnS thin films. • ZnS thin films were grown using pulsed electrodeposition. • ZnS thin films exhibited the good crystal quality and chemical composition. • ZnS thin films exhibited n-type conductivity with a wide bandgap of 3.75 eV.

  11. Nanowire Optoelectronics

    Directory of Open Access Journals (Sweden)

    Wang Zhihuan

    2015-12-01

    Full Text Available Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs, lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in “volumetric modes,”which have so far been presented in terms of Fabry–Perot (FP, and helical resonance modes. We report on finite-difference timedomain (FDTD simulations with the aim of identifying the dependence of these modes on geometry (length, width, tapering, shape (cylindrical, hexagonal, core–shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption and downward transitions (emission of light inNWs; rather, the electronic transition rates should be considered. We discuss this “rate management” scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.

  12. Molten-salt Synthesis and Properties of ZnS with Hexagonal Prism Morphology

    Institute of Scientific and Technical Information of China (English)

    LIU, Jin-Song; JI, Guang-Bin; LI, Zi-Quan; CAO, Jie-Ming; ZHENG, Ming-Bo; KE, Xing-Fei

    2007-01-01

    ZnS with hexagonal prism morphology has been synthesized successfully by molten-salt method with ZnS nanoparticles as precursors, and the ZnS nanoparticles were prepared by one-step solid-state reaction of Zn(CH3COO)2·2H2O with Na2S·9H2O at ambient temperature. Crystal structure and morphology of the product were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and HRTEM. Ultraviolet-visible optical absorption spectrum of the ZnS hexagonal prism shows a distinct red shift from that of bulk ZnS crystals and photoluminescence spectrum exhibits strong emissions at 380 and 500 nm, respectively. Further experiments were designed and the formation mechanism of the ZnS hexagonal prism has been also discussed in brief.

  13. Optical and photocatalytic properties of Corymbia citriodora leaf extract synthesized ZnS nanoparticles

    Science.gov (United States)

    Chen, Jinfeng; Hu, Binjie; Zhi, Jinhu

    2016-05-01

    ZnS nanoparticles were biosynthesized via a green and simple method using Corymbia citriodora leaf extract as reducing and stabilizing agent. The biosynthesized ZnS nanoparticles were in the size range of 45 nm with a surface plasmon resonance band at 325 nm. XRD analysis revealed that the nanoparticles were in the sphalerite phase. Quantum confinement effects of biosynthesized ZnS nanoparticles were observed using photoluminescence spectroscopy. The photocatalytic activity of the ZnS nanoparticles has been investigated by degradation methylene blue under UV light irradiation. Due to the smaller size and excellent dispersicity, the biosynthesized ZnS nanoparticles showed a superior photocatalytic performance compared with that of chemical synthesize ZnS nanoparticles.

  14. Plasmon assisted enhanced second-harmonic generation in single hybrid Au/ZnS nanowires

    Science.gov (United States)

    Jassim, Nadia M.; Wang, Kai; Han, Xiaobo; Long, Hua; Wang, Bing; Lu, Peixiang

    2017-02-01

    We demonstrate the enhanced second-harmonic generation (SHG) in single ZnS nanowires (NWs) attached with gold nanoparticles (Au NPs). The hybrid Au/ZnS NWs with different densities of the attached Au NPs were prepared by a simple solution impregnation method. By comparing with bare ZnS NWs, ∼1.3, ∼6.6, ∼7 and ∼2 times enhancement of SH intensity was achieved in the hybrid Au/ZnS NWs with low, moderate, high and ultrahigh densities of the attached Au NPs, respectively. The enhanced SHG in the hybrid Au/ZnS NWs is attributed to the strong local-fields from the Au cluster under the near-resonant condition, which is supported by the related dark-field scattering spectra. This hybrid Au/ZnS NWs provide a simple platform for enhancing nonlinear optical responses, which have potential applications in nano-probing and nano-sensing.

  15. Effect of ZnS nanoparticles on the photoluminescence of Sm3+ ions in methanol

    Science.gov (United States)

    Kakoti, D.; Rajkonwar, N.; Dehingia, N.; Boruah, A.; Gogoi, P.; Dutta, P.

    2016-10-01

    ZnS nanoparticles co-doped with Sm3+ ions were prepared in methanol medium for fixed Sm3+ and varying ZnS concentrations. Enhancements in absorption as well as photoluminescence efficiency of the co-doped samples were observed. This enhanced efficiency is attributed to the effective increase in oscillator strengths of the Sm3+ transitions because of the addition of ZnS nanoparticles.

  16. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  17. Vertical nanowire architectures

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfl-Tempfli, M.; Piraux, L.

    2010-01-01

    Nanowires and statistics: A statistical process for reading ultradense arrays of nanostructured materials is presented (see image). The experimental realization is achieved through selective nanowire growth using porous alumina templates. The statistical patterning approach is found to provide ri...

  18. Induced Nucleation of Diamond Films on ZnS Substrates Precoated with Ceramic Interlayer

    Institute of Scientific and Technical Information of China (English)

    GAO Xu-Hui; YANG Hai; LU Fan-Xiu; TONG Yu-Mei; GUO Hui-Bin; TANG Wei-Zhong; LI Cheng-Ming; CHEN Guang-Chao; YU Huai-Zhi; CHENG Hong-Fan

    2004-01-01

    @@ We attempt to coat a multi-spectrum chemical-vapour-deposition ZnS substrate with smooth crystalline diamond films on the top of properly designed ceramic interlayer, which provides protection for ZnS against corrosion by the H2-CH4 microwave plasma and mitigates the thermal expansion coefficient mismatching between diamond and ZnS. However, difficulties in the homogeneous diamond nucleation on a ceramic interlayer were encountered.It was found that high rate nucleation of diamond could be induced by a metal or semiconductor mask placed on the top of ZnS.

  19. Formation of ZnS nanorods by simple evaporation technique

    Science.gov (United States)

    Velumani, S.; Ascencio, J. A.

    Semiconductor nanocrystals and nanorods whose properties are largely determined by the quantum confinement effect are currently being intensively studied by materials scientists, physicists and chemists. Zinc sulphide (ZnS), a II-VI group semiconductor material possessing a direct band gap of 3.66 eV, has recently been extensively investigated due to its multifaceted applications. We report the synthesis of ZnS nanorods by a simple physical vapor deposition method and an in-detail surface analysis for device applications. Our interest in this material mainly lies behind its use as an n-window layer for our investigations on different window layers for CdTe- and CIS (Copper Indium diselenide) based solar cells and for photocatalytic production of hydrogen from water using the photocatalysts CdS/ZnS. ZnS films are deposited onto well-cleaned glass substrates at a vacuum of 5×10-5 Torr and various parameters are determined. The distance between the substrate and the source was maintained at 0.15 cm. The deposition time was about 20 min at a constant rate of evaporation and the substrates were maintained at room temperature. Structural analysis reveals the cubic nature of the crystallites, which is confirmed from atomic force microscopy (AFM) analysis. The AFM analysis reveals the formation of nanorods due to coalescence, which is substantiated from sectional analysis. A further analysis reveals the preferential growth of the nanorods and the coalescence limited by the energy in the (002) face. The composition was analyzed using an energy-dispersive X-ray method (EDX) and the film was found to possess excess sulfur. The band gap of the vacuum-deposited ZnS film was found to be 3.6 eV.

  20. Malaysian Twin Registry.

    Science.gov (United States)

    Jahanfar, Shayesteh; Jaffar, Sharifah Halimah

    2013-02-01

    The National Malaysian Twin Registry was established in Royal College of Medicine, Perak, University Kuala Lumpur (UniKL) in June 2008 through a grant provided by UniKL. The general objective is to facilitate scientific research involving participation of twins and their family members in order to answer questions of health and wellbeing relevant to Malaysians. Recruitment is done via mass media, poster, and pamphlets. We now have 266 adult and 204 children twins registered. Several research projects including reproductive health study of twins and the role of co-bedding on growth and development of children are carried out. Registry holds annual activities for twins and seeks to provide health-related information for twins. We seek international collaboration.

  1. Perinatal hepatic infarction in twin-twin transfusion.

    LENUS (Irish Health Repository)

    O'Sullivan, M J

    2012-02-03

    We report a case of a twin pregnancy which was complicated by a twin-twin transfusion in which the recipient twin was noted to have an intra-abdominal echogenic mass. This twin died at two days of age of hepatic infarction. The donor twin was healthy at birth, at thirty weeks\\' gestation, and did not have any subsequent problems. Fetal intra-abdominal echogenicity may be a marker of hepatic infarction.

  2. The Brazilian Twin Registry.

    Science.gov (United States)

    Ferreira, Paulo H; Oliveira, Vinicius C; Junqueira, Daniela R; Cisneros, Lígia C; Ferreira, Lucas C; Murphy, Kate; Ordoñana, Juan R; Hopper, John L; Teixeira-Salmela, Luci F

    2016-12-01

    The Brazilian Twin Registry (BTR) was established in 2013 and has impelled twin research in South America. The main aim of the initiative was to create a resource that would be accessible to the Brazilian scientific community as well as international researchers interested in the investigation of the contribution of genetic and environmental factors in the development of common diseases, phenotypes, and human behavior traits. The BTR is a joint effort between academic and governmental institutions from Brazil and Australia. The collaboration includes the Federal University of Minas Gerais (UFMG) in Brazil, the University of Sydney and University of Melbourne in Australia, the Australian Twin Registry, as well as the research foundations CNPq and CAPES in Brazil. The BTR is a member of the International Network of Twin Registries. Recruitment strategies used to register twins have been through participation in a longitudinal study investigating genetic and environmental factors for low back pain occurrence, and from a variety of sources including media campaigns and social networking. Currently, 291 twins are registered in the BTR, with data on demographics, zygosity, anthropometrics, and health history having been collected from 151 twins using a standardized self-reported questionnaire. Future BTR plans include the registration of thousands of Brazilian twins identified from different sources and collaborate nationally and internationally with other research groups interested on twin studies.

  3. Delivery in Twin Gestation

    Directory of Open Access Journals (Sweden)

    Mark T. Peters

    1995-01-01

    Full Text Available Objective: The objective of this study was to determine whether prophylactic treatment with oral broad-spectrum antimicrobial therapy improves pregnancy outcomes in twin gestations.

  4. The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ji Changjiang; Park, Harold S [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235 (United States)

    2007-08-01

    We have performed atomistic simulations of the tensile loading of <100> and <110> copper nanowires to investigate the coupled effects of geometry and surface orientation on their mechanical behaviour and properties. By varying the nanowire cross section from square to rectangular, nanowires with dominant surface facets are created that exhibit distinct mechanical properties due to the different inelastic deformation mechanisms that are activated. In particular, we find that non-square nanowires generally exhibit lower yield stresses and strains, lower toughness, elevated fracture strains, and a propensity to deform via twinning; we quantify the links between the observed deformation mechanisms due to non-square cross section and the resulting mechanical properties, while illustrating that geometry can be utilized to tailor the mechanical properties of nanowires.

  5. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

    Science.gov (United States)

    Huang, Xing; Willinger, Marc-Georg; Fan, Hua; Xie, Zai-lai; Wang, Lei; Klein-Hoffmann, Achim; Girgsdies, Frank; Lee, Chun-Sing; Meng, Xiang-Min

    2014-08-07

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

  6. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    Solar cells commercial success is based on an efficiency/cost calculation. Nanowire solar cells is one of the foremost candidates to implement third generation photo voltaics, which are both very efficient and cheap to produce. This thesis is about our progress towards commercial nanowire solar...... cells. Resonance effects between the light and nanowire causes an inherent concentration of the sunlight into the nanowires, and means that a sparse array of nanowires (less than 5% of the area) can absorb all the incoming light. The resonance effects, as well as a graded index of refraction, also traps...... the light. The concentration and light trapping means that single junction nanowire solar cells have a higher theoretical maximum efficiency than equivalent planar solar cells. We have demonstrated the built-in light concentration of nanowires, by growing, contacting and characterizing a solar cell...

  7. Stability of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, F.; Schiek, M.; Wallmann, I.;

    2011-01-01

    The morphological stability of organic nanowires over time and under thermal load is of major importance for their use in any device. In this study the growth and stability of organic nanowires from a naphthyl end-capped thiophene grown by organic molecular beam deposition is investigated via...... atomic force microscopy (AFM). Aging experiments under ambient conditions already show substantial morphological changes. Nanoscopic organic clusters, which initially coexist with the nanowires, vanish within hours. Thermal annealing of nanowire samples leads to even more pronounced morphology changes......, such as a strong decrease in nanowire number density, a strong increase in nanowire height, and the formation of new types of crystallites. This happens even before sublimation of organic material starts. These experiments also shine new light on the formation process of the nanowires....

  8. Twin anemia polycythemia sequence

    NARCIS (Netherlands)

    Slaghekke, Femke

    2014-01-01

    In this thesis we describe that Twin Anemia Polycythemia Sequence (TAPS) is a form of chronic feto-fetal transfusion in monochorionic (identical) twins based on a small amount of blood transfusion through very small anastomoses. For the antenatal diagnosis of TAPS, Middle Cerebral Artery – Peak Syst

  9. The Danish Twin Registry

    DEFF Research Database (Denmark)

    Skytthe, Axel; Ohm Kyvik, Kirsten; Vilstrup Holm, Niels

    2011-01-01

    Introduction: The Danish Twin Registry is a unique source for studies of genetic, familial and environmental factors on life events, health conditions and diseases. Content: More than 85,000 twin pairs born 1870-2008 in Denmark. Validity and coverage: Four main ascertainment methods have been emp...

  10. Twin anemia polycythemia sequence

    NARCIS (Netherlands)

    Slaghekke, Femke

    2014-01-01

    In this thesis we describe that Twin Anemia Polycythemia Sequence (TAPS) is a form of chronic feto-fetal transfusion in monochorionic (identical) twins based on a small amount of blood transfusion through very small anastomoses. For the antenatal diagnosis of TAPS, Middle Cerebral Artery – Peak

  11. New co-spray way to synthesize high quality ZnS films

    Energy Technology Data Exchange (ETDEWEB)

    Bouznit, Y., E-mail: Bouznit80@gmail.com [Laboratory of Materials Study, Jijel University, Jijel 18000 (Algeria); Beggah, Y. [Laboratory of Materials Study, Jijel University, Jijel 18000 (Algeria); Boukerika, A. [Laser Department, Nuclear Research Centre of Algeria, Algiers 16000 (Algeria); Lahreche, A. [Science and Technology Department, University of Bejaia, Bejaia 06000 (Algeria); Ynineb, F. [Laboratory of Thin Films and Interface, University Mentouri, Constantine 25000 (Algeria)

    2013-11-01

    In the present study, we report for the first time the synthesis of ZnS films using co-spray method, in which the reactants were mixed in the vapor state contrary to that seen in previous spray configurations. In order to obtain the optimum conditions for growing high quality ZnS thin films related to this approach, a series of samples with different Zn:S atomic ratios were investigated. X-ray diffraction (XRD) analysis indicated that both solid state and phase formation were strongly dependent on Zn:S atomic ratio. In the absence of sulfur element, pure ZnO phase showing hexagonal wurtzite structure with (0 0 2) preferential orientation was obtained. When one eighth of sulfur was implicated, the (0 0 2) diffraction peak of ZnO was broadened and displaced toward lower angles. Once one quarter of sulfur was involved, no discernible diffraction peaks could be seen. Films deposited using solutions with Zn:S ratio of 1:1/2, 1:1 and 1:2 have pure ZnS phase showing hexagonal wurtzite structure with a strong preferential orientation. Near stoichiometric ZnS films were achieved with Zn:S atomic ratio close to 1:1. All films have high transmittance of about 80% in the visible region.

  12. ZnS films for infrared optical coatings: improvement of adhesion to Ge substrates

    Science.gov (United States)

    Sánchez-Agudo, M.; Génova, I.; Orr, H. J. B.; Harris, G.; Pérez, G.

    2008-09-01

    In this work, physical and optical properties of ZnS films grown at different evaporation conditions have been studied. ZnS 3000 nm thick films have been deposited on Ge substrates at 200°C, 120°C and without substrate heating. In addition, evaporation rates of 4, 2 and 1 nm/s have been considered. The structural and morphological properties of the films have been analysed by XRD and AFM, respectively and the refractive index in the 2.4-11.5 microns range has been determined from transmittance spectra through reverse synthesis. From this analysis, the most suitable evaporation conditions for ZnS thin films deposition have been defined in terms of film properties and intended applications on thermal IR multilayer coatings. Afterwards, adhesion properties of ZnS films deposited under the optimised conditions have been analysed. ZnS films deposited at 120°C and 4 nm/s peeled off when subjected to MIL-F-48616 standard surface durability testing. The use of a MgO bonding layer to enhance the ZnS film adherence to the substrate has been proposed and its effect on the ZnS film properties has been studied. Finally, the mechanical stability of the ZnS coating under MIL-F-48616 standard testing has been confirmed for films grown onto MgO coated substrates.

  13. Solution assisted growth mechanism and characterization of ZnS microspheres

    Science.gov (United States)

    Ghoderao, Karuna P.; Jamble, Shweta N.; Sawant, Jitendra P.; Kale, Rohidas B.

    2017-02-01

    The ZnS microspheres were synthesized via simple, efficient and cost-effective hydrothermal method. The x-ray diffraction study revealed nanocrystalline nature of the synthesized ZnS with the cubic crystal structure. Scanning and transmission electron microscopy observations revealed the formation of 3D microspheres that consist of numerous ZnS nanocrystals. The grown microspheres are also interconnected with each other by driving force of attachment. The obtained product has excellent elemental stoichiometric proportion as evidenced by the EDS technique. The electron diffraction pattern reveals the polycrystalline nature of obtained ZnS product. The band gap was measured from UV–Vis spectroscopic study and found to be blue shifted from the bulk band gap value. The PL study exhibits negligibly weak band edge emission and dominant, widespread defect-related green emission. The nucleation of a ZnS nanocrystals and subsequent growth into the microspheres is also discussed.

  14. Photocatalytic degradation of methylene blue with Fe doped ZnS nanoparticles.

    Science.gov (United States)

    Chauhan, Ruby; Kumar, Ashavani; Chaudhary, Ram Pal

    2013-09-01

    Fe doped ZnS nanoparticles (Zn1-xFexS; where x=0.00, 0.03, 0.05 and 0.10) were synthesized by a chemical precipitation method. The synthesized products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, UV-Vis and photoluminescence spectrometer. The X-ray diffraction and transmission electron microscope studies show that the size of crystallites is in the range of 2-5 nm. Photocatalytic activities of ZnS and 3, 5 and 10 mol% Fe doped ZnS were evaluated by decolorization of methylene blue in aqueous solution under ultraviolet and visible light irradiation. It was found that the Fe doped ZnS bleaches methylene blue much faster than the undoped ZnS upon its exposure to the visible light as compared to ultraviolet light. The optimal Fe/Zn ratio was observed to be 3 mol% for photocatalytic applications.

  15. Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy.

    Science.gov (United States)

    Han, Jiaguang; Zhang, Weili; Chen, Wei; Thamizhmani, L; Azad, Abul K; Zhu, Zhiyuan

    2006-02-01

    The optical and dielectric properties of ZnS nanoparticles are studied by use of terahertz time-domain spectroscopy (THz-TDS) over the frequency range from 0.3 to 3.0 THz. The effective medium approach combined with the pseudo-harmonic model of the dielectric response, where nanoparticles are embedded in the host medium, provides a good fit on the experimental results. The extrapolation of the measured data indicates that the absorption is dominated by the transverse optical mode localized at 11.6+/-0.2 THz. Meanwhile, the low-frequency phonon resonance of ZnS nanoparticles is compared with the single-crystal ZnS. The THz-TDS clearly reveals the remarkable distinction in the low-frequency phonon resonances between ZnS nanoparticles and single-crystal ZnS. The results demonstrate that the acoustic phonons become confined in small-size nanoparticles.

  16. Synthesis of ZnS thin films from aqueous caustic of trisodium citrate and their properties

    Directory of Open Access Journals (Sweden)

    Martyn A. Sozanskyi

    2015-12-01

    Full Text Available Zinc sulfide (ZnS thin films due to their properties are widely used in various electronic optical devices. They are produced by several methods, among which – vacuum sublimation, high frequency sputtering method, quasiclosed volume method, sol-gel method, electrodeposition. These methods have high energy consumption which increases the price of ZnS thin films. Aim: The aim of this work is to establish the optimal parameters of the synthesis of ZnS thin films of the aqueous caustic and the correlation between content of zinc in the synthesized films determined by the method of stripping voltammetry and thickness, structural, morphological and optical parameters. Materials and Methods: The ZnS thin films were obtained from aqueous caustics of zinc-containing salt using chemical deposition. Fresh solution of zinc-containing salt, trisodium citrate (Na3C6H5O7 as a complexing agent, thiourea ((NH22CS and ammonium hydroxide (NH4OH was used for the synthesis of ZnS films by chemical deposition. The deposition was performed on prepared glass substrates with the area of 5,76 cm2. Results: The phase mixture of the films has been determined. It showed the presence of ZnS compounds in the cubic modification (sphalerite. Stripping voltammetry was used to determine the mass of zinc in the ZnS films on various conditions of synthesis, namely on the concentration of the initial zinc-containing salt, trisodium citrate, thiourea, deposition time and temperature. The surface morphology, optical properties, the thickness of the ZnS resulting films have been studied. Conclusions: The optimal conditions for the synthesis of ZnS films were found based on these data. Three-dimensional surface morphology of ZnS film studies showed its smoothness, uniformity, integrity and confirmed the correctness of determining the optimal synthesis parameters.

  17. Neonatal status of twins

    Directory of Open Access Journals (Sweden)

    Božinović Dragica

    2012-01-01

    Full Text Available Multiple pregnancy is a pregnancy where more than one fetus develops simultaneously in the womb, as a result of the ovulation and fertilization of more than one egg. It is relatively rare in humans and represents the rest of the phylogenetic stages. The most common are twins and they indicate the development of two fetuses in the womb. The frequency of twin pregnancies is about 1%. Multiple pregnancies belong to a group of high-risk pregnancies because of the many complications that occur during the pregnancy: higher number of premature deliveries, bleeding, early neonatal complications and higher perinatal morbidity and mortality. Such pregnancies and infants require greater supervision and monitoring. The aim of this study was to determine the percentage of baby twins born at the maternity ward of the General Hospital in Prokuplje and their morbidity and mortality. Data on the total number of deliveries, number of twins, parity and maternal age, gestational age, body weight of twins, method of delivery, Apgar score and perinatal mortality were collected and statistically analyzed by means of retrospective analysis of operative birth and neonatal protocol for 6 years (2005 of 2010. Out of 4527 mothers who gave birth 43 were pairs of twins, or 0.95% of women gave birth to twins. These babies are more likely born by Caesarean section, but delivered with slightly lower birth weight.

  18. Nanotubes and nanowires

    Indian Academy of Sciences (India)

    C N R Rao; A Govindaraj

    2001-10-01

    Synthesis and characterization of nanotubes and nanowires constitute an important part of nanoscience since these materials are essential bui lding units for several devices. We have prepared aligned carbon nanotube bundles and Y-junction nanotubes by the pyrolysis of appropriate organic precursors. The aligned bundles are useful for field emission display while the Y-junction nanotubes are likely to be useful as nanochips since they exhibit diode properties at the junction. By making use of carbon nanotubes, nanowires of metals, metal oxides and GaN have be en obt a ined. Both the oxide and GaN nanowires are single crystalline. Gold nanowires exhibit plasmon bands varying markedly with the aspect ratio. GaN nanowires show excellent photoluminescence characteristics. It has been possible to synthesise nanotubes and nanowires of metal chalcogenides by employing different strategies.

  19. Advances in nanowire bioelectronics

    Science.gov (United States)

    Zhou, Wei; Dai, Xiaochuan; Lieber, Charles M.

    2017-01-01

    Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.

  20. SUSY Meets Her Twin

    CERN Document Server

    Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert

    2016-01-01

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  1. SUSY Meets Her Twin

    CERN Document Server

    Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert

    2017-01-01

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  2. SUSY Meets Her Twin

    CERN Document Server

    Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert

    2017-01-31

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  3. Joule heating in nanowires

    Science.gov (United States)

    Fangohr, Hans; Chernyshenko, Dmitri S.; Franchin, Matteo; Fischbacher, Thomas; Meier, Guido

    2011-08-01

    We study the effect of Joule heating from electric currents flowing through ferromagnetic nanowires on the temperature of the nanowires and on the temperature of the substrate on which the nanowires are grown. The spatial current density distribution, the associated heat generation, and diffusion of heat are simulated within the nanowire and the substrate. We study several different nanowire and constriction geometries as well as different substrates: (thin) silicon nitride membranes, (thick) silicon wafers, and (thick) diamond wafers. The spatially resolved increase in temperature as a function of time is computed. For effectively three-dimensional substrates (where the substrate thickness greatly exceeds the nanowire length), we identify three different regimes of heat propagation through the substrate: regime (i), where the nanowire temperature increases approximately logarithmically as a function of time. In this regime, the nanowire temperature is well described analytically by You [Appl. Phys. Lett.APPLAB0003-695110.1063/1.2399441 89, 222513 (2006)]. We provide an analytical expression for the time tc that marks the upper applicability limit of the You model. After tc, the heat flow enters regime (ii), where the nanowire temperature stays constant while a hemispherical heat front carries the heat away from the wire and into the substrate. As the heat front reaches the boundary of the substrate, regime (iii) is entered, where the nanowire and substrate temperature start to increase rapidly. For effectively two-dimensional substrates (where the nanowire length greatly exceeds the substrate thickness), there is only one regime in which the temperature increases logarithmically with time for large times, before the heat front reaches the substrate boundary. We provide an analytical expression, valid for all pulse durations, that allows one to accurately compute this temperature increase in the nanowire on thin substrates.

  4. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    Science.gov (United States)

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased.

  5. Twin-twin Transfusion Syndrome with a Single Ectopic Kidney in a Twin Donor. Case Presentation

    Directory of Open Access Journals (Sweden)

    Gerardo Rogelio Robaina Castellanos

    2016-10-01

    Full Text Available Twin-twin Transfusion Syndrome presents more frequently in diamniotic monochromic twins. In advanced stages and without prenatal intervention, is associated to high rates of peri natal mortality and neurological sequel in the survivors. It is presented a case of a pair of twins with severe depression at birth in which it was diagnosed a Twin-twin Transfusion Syndrome, later confirmed with the presence of anemia in the donor twin and polycythemia in the receptor twin. Both twins had an unfavourable evolution with an early neonatal death. Necropsy findings were comparable with secondary damage to the syndrome, with the particularity that both had evidences of pulmonary infection and a renal malformation in the donor twin which is not included in the proper malformations of this syndrome. The objective of this work is to point out the essential elements for the diagnosis and antenatal treatment for this disease through the peculiarities of the presented case.

  6. Fullerton Virtual Twin Study.

    Science.gov (United States)

    Segal, Nancy L

    2006-12-01

    Virtual twins (VTs; same-age unrelated siblings reared together from early infancy) have been studied at California State University (CSU), Fullerton since 1991. The current sample includes over 130 pairs. Past and current research have research have focused on siblings' similarities and differences in general intelligence and body size. Future research in these areas will continue as new pairs continue to be identified. These studies will be supplemented by analyses of personality, social relations and adjustment using monozygotic (MZ) twins, dizygotic (DZ) twins, full siblings and friends, as well as new VTs, who have participated in Twins, Adoptees, Peers and Siblings (TAPS), a collaborative project conducted between CSU Fullerton and the University of San Francisco, from 2002 to 2006.

  7. Growth and Raman spectroscopy studies of gold-free catalyzed semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, Ilaria

    2010-12-15

    The present Ph.D. thesis proposes two aims: the search for catalysts alternative to gold for the growth of silicon nanowires and the investigation of the structural properties of the gold-free catalyzed Si, Ge, and GaAs nanowires. The successful growth of gold free catalyzed silicon nanowires was obtained using Ga and In as catalyst. Hydrogen plasma conditions were needed during the growth process. We proposed a growth mechanism where the role of the hydrogen plasma is taken into account. The influence of the growth conditions on nanowire growth morphology and structural properties was investigated in detail. The TEM studies showed the occurrence of different kind of twin defects depending on the nanowire growth direction. The intersection of twins in different spatial directions in <111>-oriented nanowires or the periodicity of highly dense twins in <112>-oriented nanowires leads to the formation of hexagonal domains embedded in the diamond silicon structure. A simple crystallographic model which illustrates the formation of the hexagonal phase was proposed. The presence of the hexagonal domains embedded in the diamond silicon structure was investigated also by means of Raman spectroscopy. The measured frequencies of the E2g and A1g modes were found to be in agreement with frequencies expected from phonon dispersion folding. An estimation of the percentage of hexagonal structure with respect to the cubic structure was given. The relative percentage of the two structures was found to change with growth temperature. Spatially resolved Raman scattering experiments were also realized on single Si nanowires. The lattice dynamics of gold-free catalyzed Ge and GaAs nanowires was studied by means of Raman spectroscopy. We performed spatially resolved Raman spectroscopy experiments on single crystalline- amorphous core-shell Ge nanowires. The correlation with TEM studies on nanowires grown under the same conditions and with AFM measurements realized of the same nanowires

  8. Synthesis, characterization, photocatalytic and reusability studies of capped ZnS nanoparticles

    Indian Academy of Sciences (India)

    Jagdeep Kaur; Manoj Sharma; O P Pandey

    2014-06-01

    This paper presents results of a study on the structural and morphological properties of 2-mercaptoethanol (2-ME) capped ZnS nanoparticles (NPs). The photocatalytic and reusability study of the synthesized NPs to degrade dyes was also done. ZnS semiconductor NPs were synthesized via chemical precipitation route using 2-ME as a stabilizing agent. The as-prepared NPs were characterized by X-ray diffraction (XRD) technique to confirm the nanometer sized particle formation. Morphological features of capped ZnS NPs were determined by transmission electron microscopy (TEM). Dynamic light scattering (DLS) technique was used to determine the hydrodynamic size of capped ZnS NPs. UV–Vis studies were done to determine the absorption edge and bandgap of the capped ZnS NPs. Fourier transform infrared spectroscopy (FT–IR) studies were done to confirm the presence of 2-ME on the surface of NPs. Photocatalytic studies of the as-prepared ZnS NPs were done by taking Ponceau S and crystal violet dyes as model pollutants. Their comparative degradation behaviour has been discussed. Reusability study of ZnS NPs was done to ensure its applicability as recycled catalyst in photocatalysis. The result showed photocatalytic enhancement of reused catalyst. Possible reason has been discussed in this work.

  9. Evaluation of undoped ZnS single crystal materials for x-ray imaging applications

    Science.gov (United States)

    Saleh, Muad; Lynn, Kelvin G.; McCloy, John S.

    2017-05-01

    ZnS-based materials have a long history of use as x-ray luminescent materials. ZnS was one of the first discovered scintillators and is reported to have one of the highest scintillator efficiencies. The use of ZnS for high energy luminescence has been thus far limited to thin powder screens, such as ZnS:Ag which is used for detecting alpha radiation, due to opacity to its scintillation light, primarily due to scattering. ZnS in bulk form (chemical vapor deposited, powder processed, and single crystal) has high transmission and low scattering compared to powder screens. In this paper, the performance of single crystalline ZnS is evaluated for low energy x-ray (decay time, and low levels of afterglow. We present a trade study which compares the calculated scintillation gain and absolute efficiency for low energy x-rays (<10 keV) comparing thin (<100 μm) ZnS to CsI:Tl, Bi4Ge3O12 (BGO), and Y3Al5O12:Ce (YAG:Ce). The study also gives insight into the spatial resolution of these scintillators. Further, photoluminescence (PL) and PL excitation (PLE) of several undoped ZnS single crystals is compared to their Radioluminescence (RL) spectra. It was found that the ZnS emission wavelength varies on the excitation source energy.

  10. Wurtzite-type ZnS nanoparticles by pulsed electric discharge

    Science.gov (United States)

    Omurzak, Emil; Mashimo, Tsutomu; Sulaimankulova, Saadat; Takebe, Shintaro; Chen, Liliang; Abdullaeva, Zhypargul; Iwamoto, Chihiro; Oishi, Yudai; Ihara, Hirotaka; Okudera, Hiroki; Yoshiasa, Akira

    2011-09-01

    The synthesis of wurtzite-type ZnS nanoparticles by an electric discharge submerged in molten sulfur is reported. Using a pulsed plasma between two zinc electrodes of diameter 5 mm in molten sulfur, we have synthesized high-temperature phase (wurtzite-type) ZnS nanocrystals with an average size of about 20 nm. The refined lattice parameters of the synthesized wurtzite-type ZnS nanoparticles were found to be larger than those of the reported ZnS (JCPDS card no 36-1450). Synthesis of ZnMgS (solid solution of ZnS and MgS) was achieved by using ZnMg alloys as both cathode and anode electrodes. UV-visible absorption spectroscopy analysis showed that the absorption peak of the as-prepared ZnS sample (319 nm) displays a blue-shift compared to the bulk ZnS (335 nm). Photoluminescence spectra of the samples revealed peaks at 340, 397, 423, 455 and 471 nm, which were related to excitonic emission and stoichiometric defects.

  11. Effect of structure, size and copper doping on the luminescence properties of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Ch. Satya [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Mishra, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Patel, Dinesh K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, 9190401 (Israel); Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vatsa, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    Highlights: • Blue and green emission intensity form ZnS is sensitive to crystallographic form. • For ZnS nanoparticles, emission characteristics are not affected by copper doping. • Cu solubility poor in ZnS nanoparticles compared to corresponding bulk. - Abstract: Luminescence properties of wurtzite and cubic forms of bulk ZnS have been investigated in detail and compared with that of ZnS nanoparticles. Blue emission observed in both hexagonal and cubic forms of undoped bulk ZnS is explained based on electron–hole recombination involving electron in conduction band and hole trapped in Zn{sup 2+} vacancies where as green emission arises due to electron hole recombination from Zn{sup 2+} and S{sup 2−} vacancies. Conversion of wurtzite form to cubic form is associated with relative increase in intensity of green emission due to increased defect concentration brought about by high temperature heat treatment. Copper doping in ZnS, initially leads to formation of both Cu{sub Zn} and Cu{sub i} (interstitial copper) centers, and latter to mainly Cu{sub Zn} centers as revealed by variation in relative intensities of blue and green emission from the samples.

  12. Twin boundary-assisted lithium-ion transport

    KAUST Repository

    Nie, Anmin

    2015-01-14

    With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic transport within nanoscale materials. Here, we demonstrate the effects of TBs on the Li-ion transport properties in single crystalline SnO2 nanowires. It is shown that the TB-assisted lithiation pathways are remarkably different from the previously reported lithiation behavior in SnO2 nanowires without TBs. Our in situ transmission electron microscopy study combined with direct atomic-scale imaging of the initial lithiation stage of the TB-SnO2 nanowires prove that the lithium ions prefer to intercalate in the vicinity of the (101¯) TB, which acts as conduit for lithium-ion diffusion inside the nanowires. The density functional theory modeling shows that it is energetically preferred for lithium ions to accumulate near the TB compared to perfect neighboring lattice area. These findings may lead to the design of new electrode materials that incorporate TBs as efficient lithium pathways, and eventually, the development of next generation rechargeable batteries that surpass the rate performance of the current commercial Li-ion batteries.

  13. Craniofacial anomalies in twins.

    Science.gov (United States)

    Keusch, C F; Mulliken, J B; Kaplan, L C

    1991-01-01

    Studies of twins provide insight into the relative contribution of genetic and environmental factors in the causality of structural anomalies. Thirty-five affected twin pairs were identified from a group of 1114 patients with congenital craniofacial deformities evaluated from 1972 to 1989. Forty-three of these 70 twins exhibited one or more craniofacial anomalies; these were analyzed for dysmorphic characteristics, zygosity, concordance, and family history. The anomalies were categorized into two groups: malformations and deformations. The malformations (n = 36) included hemifacial microsomia (n = 10), cleft lip and palate (n = 8), cleft palate (n = 4), rare facial cleft (n = 2), craniosynostosis (n = 2), Binder syndrome (n = 2), Treacher Collins syndrome (n = 2), craniopagus (n = 2), CHARGE association (n = 1), frontonasal dysplasia (n = 2), and constricted ears (n = 1). The deformations (n = 7) included plagiocephaly (n = 5), hemifacial hypoplasia (n = 1), and micrognathia (n = 1). Twenty-one monozygotic and 14 dizygotic twin pairs were identified. The concordance rate was 33 percent for monozygotic twins and 7 percent for dizygotic twins.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Twin delivery: how should the second twin be delivered?

    Science.gov (United States)

    Olofsson, P; Rydhström, H

    1985-11-01

    In a series of 803 pairs of twins born between 1973 and 1982, 0.33% of second twins were delivered by cesarean section after vaginal delivery of the first twin. During the last year the frequency has increased to 7%, calling attention to the problem of declining obstetric skills and experience. This has caused us to update the routines of intrapartum management of twin gestations. In the present program only commonly available obstetric techniques are used. The potentially hazardous twin delivery is excluded from a trial of vaginal delivery. Hopefully, the program will help other obstetricians to decide in favor of vaginal delivery in selected twin gestations.

  15. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kasanaboina, Pavan Kumar [Department of Electrical and Computer Engineering, North Carolina A& T State University, Greensboro, North Carolina 27411 (United States); Ahmad, Estiak [Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA& T State University, Greensboro, North Carolina 27401 (United States); Li, Jia; Iyer, Shanthi [Department of Electrical and Computer Engineering, North Carolina A& T State University, Greensboro, North Carolina 27411 (United States); Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA& T State University, Greensboro, North Carolina 27401 (United States); Reynolds, C. Lewis; Liu, Yang [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-07

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region.

  16. Recent Progress in One-dimensional ZnS Nanostructures:Syntheses and Novel Properties

    Institute of Scientific and Technical Information of China (English)

    Xiaosheng FANG; Yoshio BANDO; Dmitri GOLBERG

    2008-01-01

    In this review, the progress made during the last two years with respect to the syntheses and novel properties of one-dimensional (1D) ZnS nanostructures is presented. Primarily the research on 1D ZnS nanostructures has been of growing interest owing to their promising applications in nanoscale optoelectronic devices. Diverse 1D ZnS nanostructures with delicately-tuned morphologies, sizes, and microstructures have been synthesized through relatively simple and well-controlled techniques. Some novel properties of the nanomaterials have been explored and the relationships between their structural features and functions have been understood gradually.

  17. SYNTHESIS OF HYDROPHILIC ZnS NANOCRYSTALS AND THEIR APPLICATION IN PHOTOCATALYTIC DEGRADATION OF DYE POLLUTANTS

    Institute of Scientific and Technical Information of China (English)

    Junping Li; Yao Xu; Yong Liu; Dong Wu; Yuhan Sun

    2004-01-01

    Hydrophilic ZnS nanocrystals with narrow size distribution were synthesized via homogeneous precipitation using EDTA as stabilizer. The as-synthesized products were characterized with XRD, TEM, HRTEM and UV-Vis spectrum. UV-Vis spectra showed that ZnS nanocrystals exhibited strong quantum-confined effect with a blue shift in the band gap of light absorbance. The photocatalytic activity of these nanocrystals was also investigated for the liquid phase photocatalytic degradation of Basic Violet 5BN (BV5) dye under UV irradiation. It was found that the ZnS nanocrystals had good catalytic activity for photodegradation of BV5.

  18. Ferromagnetic exchange interaction between hard and soft ferromagnetic layers through ZnS semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Dinia, A. E-mail: aziz.dinia@ipcms.u-strasbg.fr; Colis, S.; Schmerber, G.; Ayoub, J.P

    2004-05-01

    We experimentally evidenced the presence of an indirect exchange coupling between hard and soft ferromagnetic electrodes through a ZnS barrier in magnetic tunnel junctions. For a 2 nm thick ZnS barrier, a negative shift of about -25 Oe is observed in asymmetric magnetization minor loop. This is attributed to a ferromagnetic interaction between the CoFe/Fe soft bilayer and the thick CoFe layer. The amplitude of the observed shift decreased as the thickness of the ZnS barrier increased, which agrees with theoretical models that the exchange interaction is mediated by spin polarized tunneling.

  19. Ab Initio evaluation of electron transport properties of Pt, Rh, Ir, and Pd nanowires for advanced interconnect applications

    Science.gov (United States)

    Lanzillo, Nicholas A.

    2017-05-01

    The electronic and structural properties of nanowires composed of either Pt, Ir, Rh, or Pd are calculated using density functional theory and a non-equilibrium Green's function scattering approach. The results for these nanowires are compared with Cu nanowires of comparable dimensions and evaluated for potential use in interconnect technology applications. The cohesive energies of the Pt, Rh and Ir nanowires are found to be stronger than the corresponding value for bulk Cu, indicating superior structural integrity and resistance to electromigration relative to Cu. Several of the nanowires considered are found to exhibit larger values of ballistic conductance relative to Cu, with maximum conductance occurring along the [110] crystallographic direction. Electron scattering at some representative twin grain boundaries is evaluated and an empirical resistivity model is used to quantitatively estimate the impact of grain size on total resistivity.

  20. Nanowire Photovoltaic Devices

    Science.gov (United States)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  1. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    -catalyzed nanowire growth, and grown GaAs1−xPx nanowires with different inclusions of P(x) directly on silicon. The incorporation of P was generally higher in nanowires than for planar growth at identical P flux percentage. More interestingly, the percentage of P in the nanowire was found to be a concave function...... of the percentage of P in the flux, while for planar growth it was a convex function. We have demonstrated GaAs0.8P0.2 nanowires and further grown a shell surrounding the core with the same composition. The lattice matched GaAsP core-shell nanowire were doped to produce radial p-i-n junctions in each...... of the nanowires, some of which were removed from their growth substrate and turned into single nanowire solar cells (SNWSC). The best device showed a conversion efficiency of 6.8% under 1.5AMG 1-sun illumination. In order to improve the efficiency a surface passivating shell consisting of highly doped, wide...

  2. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures.

    Science.gov (United States)

    Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; Nguyen, Binh-Minh; Li, Nan; Zhang, Shixiong; Yoo, Jinkyoung

    2017-01-19

    We report on strain-induced structural defect formation in core Si nanowires of a Si/Ge core/shell nanowire heterostructure and the influence of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in the Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only the Ge shell region or in both the Ge shell and Si core regions and is associated with the increase of the shell volume fraction. The relaxation of the misfit strain in the [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of crossover of defect formation is of great importance for understanding heteroepitaxy in radial heterostructures at the nanoscale and for building three dimensional heterostructures for the various applications. Furthermore, the effect of the defect formation on the nanomaterial's functionality is investigated using electrochemical performance tests. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.

  3. Polarity and growth directions in Sn-seeded GaSb nanowires.

    Science.gov (United States)

    Zamani, Reza R; Gorji Ghalamestani, Sepideh; Niu, Jie; Sköld, Niklas; Dick, Kimberly A

    2017-03-02

    We here investigate the growth mechanism of Sn-seeded GaSb nanowires and demonstrate how the seed particle and its dynamics at the growth interface of the nanowire determine the polarity, as well as the formation of structural defects. We use aberration-corrected scanning transmission electron microscopy imaging methodologies to study the interrelationship between the structural properties, i.e. polarity, growth mechanism, and formation of inclined twin boundaries in pairs. Moreover, the optical properties of the Sn-seeded GaSb nanowires are examined. Their photoluminescence response is compared with one of their Au-seeded counterparts, suggesting the incorporation of Sn atoms from the seed particles into the nanowires.

  4. Semiconductor nanowire lasers

    Science.gov (United States)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  5. The Texas Twin Project.

    Science.gov (United States)

    Harden, K Paige; Tucker-Drob, Elliot M; Tackett, Jennifer L

    2013-02-01

    Socioeconomic position, racial/ethnic minority status, and other characteristics of the macro-environment may be important moderators of genetic influence on a wide array of psychosocial outcomes. Designed to maximize representation of low socioeconomic status families and racial/ethnic minorities, the Texas Twin Project is an ongoing study of school-age twins (preschool through 12th grade) enrolled in public schools in the Austin, Texas and Houston, Texas metropolitan areas. School rosters are used to identify twin families from a target population with sizable populations of African American (18%), Hispanic/Latino (48%), and non-Hispanic White (27%) children and adolescents, over half of whom meet US guidelines for classification as economically disadvantaged. Initial efforts have focused on a large-scale, family-based survey study involving both parent and child reports of personality, psychopathology, physical health, academic interests, parent-child relationships, and aspects of the home environment. In addition, the Texas Twin Project is the basis for an in-laboratory study of adolescent decision-making, delinquency, and substance use. Future directions include geographic expansion of the sample to the entire state of Texas (with a population of over 25 million) and genotyping of participating twins.

  6. Structural study of ZnS thin films prepared by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, H.H. [Minai Univ. (Egypt). Dept. of Phys.; Mahmoud, S.A. [Minai Univ. (Egypt). Dept. of Phys.; Ashour, A. [Minai Univ. (Egypt). Dept. of Phys.

    1995-06-15

    Thin films of ZnS were prepared by spray pyrolysis. The effect of substrate temperature as well as deposition time and annealing in air and in a nitrogen atmosphere on some structural features was investigated by X-ray diffraction. At a substrate temperature of 300 C, ZnS appears almost in amorphous form. With rising substrate temperature, the crystallinity was improved. At 550 C, a well-crystallized cubic phase of ZnS was obtained. The films were preferably oriented with the left angle 111 right angle direction perpendicular to the surface. Annealing in air created ZnO, no evidence for oxides was found when annealing was carried out in a nitrogen atmosphere. Therefore, using a spray pyrolysis technique with a substrate temperature of 500 C and annealing in a non-oxidizing atmosphere for about 120 min, one can obtain well-crystallized single-phase cubic ZnS thin films. ((orig.))

  7. Infrared Radiation Assisted Stokes’ Law Based Synthesis and Optical Characterization of ZnS Nanoparticles

    National Research Council Canada - National Science Library

    Singh, Beer Pal; Upadhyay, Ravish Kumar; Kumar, Rakesh; Yadav, Kamna; Areizaga-Martinez, Hector I

    2016-01-01

    .... Nanoparticles of zinc sulfide (ZnS) have been synthesized by new infrared radiation (IR) assisted and Stokes' law based controlled bottom-up approach without using any capping agent and stirring...

  8. Structural Phase Transformations of ZnS Nanocrystalline Under High Pressure

    Institute of Scientific and Technical Information of China (English)

    潘跃武; 曲胜春; 高春晓; 韩永昊; 骆继锋; 崔启良; 刘景; 邹广田

    2004-01-01

    In-situ energy dispersive x-ray diffraction on ZnS nanocrystalline was carried out under high pressure by using a diamond anvil cell. Phase transition of wurtzite of 10nm ZnS to rocksalt occurred at 16.0GPa, which was higher than that of the bulk materials. The structures of ZnS nanocrystalline at different pressures were built by using materials studio and the bulk modulus, and the pressure derivative of ZnS nanocrystalline were derived by fitting the equation of Birch-Murnaghan. The resulting modulus was higher than that of the corresponding bulk material, which indicates that the nanomaterial has higher hardness than its bulk materials.

  9. Structural and Optical Properties of Chemically Synthesized ZnS Nanoparticals

    Directory of Open Access Journals (Sweden)

    R. P. PAWAR

    2013-12-01

    Full Text Available Different samples of ZnS nanoparticals were synthesized by chemical co-precipitation method at room temperature using zincsulphate as zinc source and sodium sulphide as sulphur source. Structural properties of synthesized ZnS nanoparticles were studied by X-ray diffraction pattern (XRD while optical properties were examined by UV-Visible absorption spectroscopy. XRD pattern showed the as synthesized ZnS nanoparticles have cubic zinc blended structure with 2.0-2.87 nm average crystallite size and lattice constant a=5.829 Ao. UV-Visible absorption spectrum showed the band gap energy of the ZnS nanoparticals corresponding to absorption edge are found in the range of 2.63eV-3.87eV, which shows increase in band gap with the decrease of crystallite size of the nanoparticles.

  10. Shallow chemical bath deposition of ZnS buffer layer for environmentally benign solar cell devices

    Science.gov (United States)

    Choubey, R. K.; Kumar, Sunil; Lan, C. W.

    2014-06-01

    Zinc sulfide (ZnS) thin film was grown by a shallow chemical bath deposition (SCBD) technique. In this technique a highly conducting hot plate was used to heat the substrate, while higher thermal gradient was achieved by a shallow bath of the ZnS solution. Consequently, homogeneous nucleation is reduced and quality of ZnS thin films can be improved by shaking. The main advantage of this technique over a traditional one is that the use of solution can be reduced greatly, which is crucial for cost reduction in practice. The effects of shaking on growth kinetics and film properties were investigated by characterizing the as-grown ZnS thin films by x-ray diffraction, transmittance and scanning electron microscopy (SEM).

  11. Photo-Seebeck effect in ZnS

    Science.gov (United States)

    Shiraishi, Yuuka; Okazaki, Ryuji; Taniguchi, Hiroki; Terasaki, Ichiro

    2015-03-01

    To explore the thermoelectric transport nature of photo-excited carriers, the electrical conductivity and the Seebeck coefficient are measured under ultraviolet illumination in the wide-gap semiconductor ZnS near room temperature. The conductivity increases linearly as against the photon flux density with little dependence on temperature, indicating the conduction under illumination is mostly governed by the photo-doped carriers. We have found that, in high contrast to the temperature-insensitive photoconductivity, the temperature dependence of the Seebeck coefficient is dramatically varied by illumination, which is unexplained from a simple photo-doping effect for one majority carrier. Such a distinct difference in the transport quantities is rather understood within a two-carrier model, in which only the Seebeck coefficient is strongly affected by photo-excited minority carriers. The present result is also compared with earlier reports of the photo-Hall experiments to discuss the underlying photo-transport mechanism.

  12. MBE-VLS grown zinc selenide and zinc sulfide nanowires: Growth mechanisms and photoluminescence properties

    Science.gov (United States)

    Chan, Siu Keung

    A lot of effort was recently devoted in realizing semiconducting nanowires (NWs) that are considered as a channel for electrons and photons no wider than a few thousand atoms. Such a one-dimensional structure will find potential applications in nano-optoelectronics and nano-photonics. The control of the growth orientation of NWs is particularly important because it will eventually affect their optical and transport properties. The ordering of NWs has also been a recent focus due to the fact that some of the above mentioned applications require the NWs fabricated in regular and periodic arrays. In this study, the growth of ZnSe and ZnS nanowires using the molecular beam epitaxy technique via the vapor-liquid-solid reaction with Au alloy droplets as the catalyst is successfully demonstrated. The nanowires resulting from this approach were found to orient along some specific crystallographic directions. Through detailed structural characterization, we have revealed that the preferred growth orientation of NWs depends on the chosen size of the catalyst and growth temperature. A phenomenological model based on the minimization of the total system energy of a nanowire was proposed to explain these observations. Based on these findings, we have successfully grown vertical ZnSe nanowires with a diameter around 10 nm on a GaAs(110) substrate. The interactions between the catalyst and the direct-contact materials (either the GaAs substrate or the ZnSe buffer) were analyzed in details. Through this study, it was found that thermal annealing of Au alloy catalyst droplets on a ZnSe buffer surface could result in nano-trenches along the directions. Based on the results obtained from a number of surface profiling and chemical analysis techniques, a model is proposed to describe the possible formation mechanisms of the observed nanotrenches. An ordered ZnSe NW array fabricated on a GaAs (111) substrate with a novel pre-patterning method associated with plasma etching is also

  13. Hypoalbuminemia in Donors with Twin-Twin Transfusion Syndrome

    NARCIS (Netherlands)

    Verbeek, L.; Middeldorp, J. M.; Hulzebos, C. V.; Oepkes, D.; Walther, F. J.; Lopriore, E.

    2013-01-01

    Objective: To estimate the differences in albumin levels between donors and recipients with twin-twin transfusion syndrome (TTTS). Methods: We performed a matched case-control study including twin pairs with TTTS treated conservatively (conservative group) or with fetoscopic laser surgery (laser gro

  14. Investigation of ZnS thin layers by thermal evaporation method (PVD)

    OpenAIRE

    2011-01-01

    Thin layers of ZnS in two different temperature conditions of 25 or 2000C and also with different thicknesses from 100nm to 600nm were prepared by physical vapor deposition. Absorption and also transmission spectra of the films were obtained to determine absorption coefficient, extinction constant and optical band gap of the films. It was found that by decreasing the substrate temperature or decreasing the film's thickness, optical band gap of ZnS films were increased or decreased, respective...

  15. Room temperature ferromagnetism and half metallicity in nickel doped ZnS: Experimental and DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Muhammad Saeed [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590 (Pakistan); Malik, Mohammad Azad, E-mail: Azad.malik@manchester.ac.uk [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Riaz, Saira; Naseem, Shahzad [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590 (Pakistan)

    2015-06-15

    The nickel doped nanocrystalline ZnS thin films were deposited onto glass substrates by chemical bath deposition (CBD). Also ZnS:Ni nanoparticles were synthesized by CBD/co-precipitation method. Powder X-ray diffraction (p-XRD) studies demonstrate that both thin films and nanoparticles correspond to sphalerite (cubic) phase of ZnS with slight shift towards higher 2θ values due to incorporation of nickel in the ZnS lattice. The crystallite sizes estimated by Scherrer equation were 4 and 2.6 nm for ZnNiS thin films and nanoparticles, respectively. Scanning Electron Microscopy (SEM) images reveal that the morphology of thin films is based on quasi-spherical particles with nano scale dimensions. Energy Dispersive X-ray (EDX) spectroscopy confirms that the as-deposited thin films have a stoichiometry consistent with the nickel doped ZnS. Full-potential linearized augmented plane wave (FP-L/APW) method based on spin-polarized density functional theory (DFT) was employed to investigate the electronic and magnetic properties of ZnNiS for the doping concentration. Exchange-correlation functional was studied using generalized gradient approximation (GGA + U) method. Electronic band structures and density of states (DOS) demonstrate 100% spin polarization (half metallicity) with ferromagnetic exchange interactions. Superconducting quantum interference device (SQUID) analysis confirms the theoretical observation of ferromagnetism in nickel doped ZnS. These ZnS based half metallic ferromagnets seem to have virtuous applications in future spintronic devices. - Highlights: • ZnS.Ni thin films and nanoparticles were deposited onto glass substrates by CBD. • p-XRD correspond to sphalerite (cubic) phase of ZnS with slight shift in peaks. • DFT was employed to investigate the properties of ZnS.Ni. • DOS demonstrate 100% spin polarization with ferromagnetic exchange interactions. • SQUID analysis confirms the theoretical observations of nickel doped ZnS.

  16. Effect of Ni on the growth and photoelectrochemical properties of ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Ming [Department of Environmental Engineering, Kun Shan University, Yung Kang City, Tainan, Taiwan (China); Chen, Lung-Chuan [Department of Polymer Materials, Kun Shan University, Yung Kang City, Tainan, Taiwan (China); Pan, Guan-Ting; Yang, Thomas C.K. [Department of Chemical Engineering and Biotechology, National Taipei University of Technology, Taipei, Taiwan (China); Chang, Wei-Sheng [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Cheng, Kong-Wei, E-mail: kwcheng@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, No. 259 Wen-Hwa 1st Rd., Kwei-Shan, Taoyuan 333, Taiwan (China)

    2009-09-15

    Undoped and Ni-doped ZnS thin film photoelectrodes were prepared using the chemical bath deposition process. X-ray diffraction patterns of a hexagonal wurtzite structure with preferential orientation along the (0 0 8) plane appeared on undoped ZnS films. An increase in the molar ratios of Ni, x, in the starting solution resulted in a decrease in the intensity of the (0 0 8) plane. Images from a scanning electron microscope revealed a drastic change of the surface morphology of the Ni-doped ZnS film due to ion-by-ion deposition. The energy band gaps of Ni-doped ZnS thin films shifted to lower energy levels between 3.34 and 3.01 eV. Moreover, increasing the Ni ratio led to a shift in the flat-band potential of the film towards a more positive value compared to that of ZnS. The Ni-doped ZnS films experienced a conversion from n-type to p-type when the molar ratio of Ni changed from 0.003 to 0.005. The photocurrent densities of Ni-doped ZnS film (x = 0.003) reached 3.74 mA cm{sup -2} at an external potential of 1.5 V versus a Pt electrode and exhibited a threefold enhancement of photocurrent density compared to pure ZnS. A cathodic photocurrent of 0.82 mA cm{sup -2} at an external potential of -1.5 V was obtained for a Ni concentration of x = 0.005.

  17. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Sandoval-Paz, M.G. [Department of Physics, Faculty of Physics and Mathematics, University of Concepción, Concepción (Chile); Cabello, G. [Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Campus Fernando May, Chillán (Chile); Flores, M.; Fernández, H. [Department of Physics, Faculty of Physics and Mathematics, University of Chile, Beauchef 850, Santiago (Chile); Carrasco, C., E-mail: ccarrascoc@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile)

    2014-12-15

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however, precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.

  18. Dialysis for twins

    DEFF Research Database (Denmark)

    Gramkow, Ann-Maria; Aarup, Michael; Andersen, L. L. T.

    2014-01-01

    A 32-year-old woman with known stage-4 chronic kidney disease due to lupus nephritis presented with twin pregnancy after in vitro fertilization at a gestational age of 24 weeks + 3 days because of imminent preterm labour. Repeated ultrasound evaluations confirmed intrauterine growth restriction...... in both twins and polyhydramnios as the cause of imminent preterm labour. After initiation of haemodialysis treatment, ultrasound evaluation showed a significant decrease in amniotic fluids, and also reduction in blood urea nitrogen and in clinical complaints could be observed. At a gestational age of 28...... weeks + 4 days, delivery was performed by Caesarean section. This case study shows that effective treatment of elevated uraemic toxins significantly reduced the morbidity risks of the twins....

  19. The Danish Twin Registry

    DEFF Research Database (Denmark)

    Skytthe, Axel; Christiansen, Lene; Kyvik, Kirsten Ohm;

    2013-01-01

    decade of combining questionnaire and survey data with national demographic, social, and health registers in Statistics Denmark. Second, we describe our most recent data collection effort, which was conducted during the period 2008-2011 and included both in-person assessments of 14,000+ twins born 1931......Over the last 60 years, the resources and the research in the Danish Twin Registry (DTR) have periodically been summarized. Here, we give a short overview of the DTR and a more comprehensive description of new developments in the twenty-first century. First, we outline our experience over the last......-1969 and sampling of biological material, hereby expanding and consolidating the DTR biobank. Third, two examples of intensively studied twin cohorts are given. The new developments in the DTR in the last decade have facilitated the ongoing research and laid the groundwork for new research directions....

  20. Maternal nutrition in twin pregnancy.

    Science.gov (United States)

    Campbell, D M; MacGillivray, I; Tuttle, S

    1982-01-01

    Energy and protein intake as measured by 24-hour urinary nitrogen values are similar in twin and singleton pregnancies. The relationship between urinary nitrogen and nitrogen intake is equally significant in twin and singleton pregnancies. Dietary zinc, copper, and iron are not different in women with twins, nor are the levels of these elements in plasma. These observations are surprising in view of the extra fetal demands on the mother and the different adaptation of twin pregnancies.

  1. Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method.

    Science.gov (United States)

    da Silva, Robson Rosa; Yang, Miaoxin; Choi, Sang-Il; Chi, Miaofang; Luo, Ming; Zhang, Chao; Li, Zhi-Yuan; Camargo, Pedro H C; Ribeiro, Sidney José Lima; Xia, Younan

    2016-08-23

    Essentially all of the Ag nanowires reported in the literature have sizes larger than 30 nm in diameter. In this article, we report a simple and robust approach to the synthesis of Ag nanowires with diameters below 20 nm and aspect ratios over 1000 using a one-pot polyol method. The Ag nanowires took a penta-twinned structure, and they could be obtained rapidly (85% of the as-obtained solid product) under atmospheric pressure. The key to the success of this synthesis is to restrain the nanowires from lateral growth by employing both Br(-) ions and poly(vinylpyrrolidone) with a high molecular weight of 1 300 000 g/mol to cap the {100} side faces, together with the use of a syringe pump to slowly introduce AgNO3 into the reaction solution. By optimizing the ratios between the capping agents and AgNO3, we were able to slow down the reduction kinetics and effectively direct the Ag nanowires to grow along the longitudinal direction only. The nanowires showed great mechanical flexibility and could be bent with acute angles without breaking. Because of their small diameters, the transverse localized surface plasmon resonance peak of the Ag nanowires could be pushed down to the ultraviolet region, below 400 nm, making them ideal conductive elements for the fabrication of touch screens, solar cells, and smart windows.

  2. Nanowire-based thermoelectrics

    Science.gov (United States)

    Ali, Azhar; Chen, Yixi; Vasiraju, Venkata; Vaddiraju, Sreeram

    2017-07-01

    Research on thermoelectrics has seen a huge resurgence since the early 1990s. The ability of tuning a material’s electrical and thermal transport behavior upon nanostructuring has led to this revival. Nevertheless, thermoelectric performances of nanowires and related materials lag far behind those achieved with thin-film superlattices and quantum dot-based materials. This is despite the fact that nanowires offer many distinct advantages in enhancing the thermoelectric performances of materials. The simplicity of the strategy is the first and foremost advantage. For example, control of the nanowire diameters and their surface roughnesses will aid in enhancing their thermoelectric performances. Another major advantage is the possibility of obtaining high thermoelectric performances using simpler nanowire chemistries (e.g., elemental and binary compound semiconductors), paving the way for the fabrication of thermoelectric modules inexpensively from non-toxic elements. In this context, the topical review provides an overview of the current state of nanowire-based thermoelectrics. It concludes with a discussion of the future vision of nanowire-based thermoelectrics, including the need for developing strategies aimed at the mass production of nanowires and their interface-engineered assembly into devices. This eliminates the need for trial-and-error strategies and complex chemistries for enhancing the thermoelectric performances of materials.

  3. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi, E-mail: kamphysics@gmail.com; Gujarati, Vivek P.; Chaki, S. H. [Department of Physics, Sardar Patel University, VallabhVidyanagr-388120,Anand, Gujarat, India. (India)

    2016-05-06

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn{sup 2+} an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  4. ZnS nanosheets: Egg albumin and microwave-assisted synthesis and optical properties

    Science.gov (United States)

    Tian, Xiuying; Wen, Jin; Hu, Jilin; Chen, Zhanjun; Wang, Shumei; Peng, Hongxia; Li, Jing

    2016-09-01

    ZnS nanosheets were prepared via egg albumin and microwave-assisted method. The phases, crystalline lattice structures, morphologies, chemical and optical properties were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscope(FE-SEM), selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy and fluorescence(FL) spectrometer and growth mechanism of ZnS nanosheets was investigated. The results showed that all samples were pure cubic zinc blende with polycrystalline structure. The width of ZnS nanosheets with a rectangular nanostructure was in the range of 450-750 nm. The chemical interaction existed between egg albumin molecules and ZnS nanoparticles via the amide/carboxylate group. The band gap value calculated was 3.72 eV. The band at around 440 nm was attributed to the sulfur vacancies of the ZnS nanosheets. With increasing volumes of egg albumin, the photoluminescence (PL) intensity of ZnS samples firstly increased and then decreased, attributed to concentration quenching.

  5. Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Meerabai Devi, L; Negi, Devendra P S, E-mail: dpsnegi@nehu.ac.in [Department of Chemistry, North-Eastern Hill University, Permanent Campus, Shillong 793022 (India)

    2011-06-17

    We have used fluorescent ZnS nanoparticles as a probe for the determination of adenine. A typical 2 x 10{sup -7} M concentration of adenine quenches 39.3% of the ZnS fluorescence. The decrease in ZnS fluorescence as a function of adenine concentration was found to be linear in the concentration range 5 x 10{sup -9}-2 x 10{sup -7} M. The limit of detection (LOD) of adenine by this method is 3 nM. Among the DNA bases, only adenine quenched the fluorescence of ZnS nanoparticles in the submicromolar concentration range, thus adding selectivity to the method. The amino group of adenine was important in determining the quenching efficiency. Steady-state fluorescence experiments suggest that one molecule of adenine is sufficient to quench the emission arising from a cluster of ZnS consisting of about 20 molecules. Time-resolved fluorescence measurements indicate that the adenine molecules block the sites on the surface of ZnS responsible for emission with the longest lifetime component. This method may be applied for the determination of adenine in biological samples since the measurements have been carried out at pH 7.

  6. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  7. Imaging of conjoined twins

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kieran [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Kiely, Edward M.; Spitz, Lewis [Great Ormond Street Hospital for Children, Department of Surgery, London (United Kingdom)

    2006-09-15

    The incidence of conjoined twins is estimated to be around 1 in 250,000 live births. There is a distinct female predominance. In this paper the imaging of conjoined twins both antenatally and postnatally is reviewed, in particular taking into consideration recent advances with multidetector CT. Accurate counselling of parents regarding the likely outcome of the pregnancy and the likelihood of successful separation is dependent on good prenatal imaging with ultrasound and MRI. Planning of postnatal surgical separation is aided by accurate preoperative imaging which, depending on the conjoined area, will encompass many imaging modalities, but often relies heavily on CT scanning. (orig.)

  8. The Twin Interdisciplinary Neuroticism Study

    NARCIS (Netherlands)

    Riese, Harriette; Rijsdijk, Fruehling V.; Snieder, Harold; Ormel, Johan

    The Twin Interdisciplinary Neuroticism Study (TWINS) is a three-wave study including >800 twin pairs from the northern part of the Netherlands. The aim of the study is to unravel why neuroticism reflects vulnerability to mental disorders. In this study, we focus on possible mechanisms underlying

  9. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  10. Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Wei, Aixiang, E-mail: weiax@gdut.edu.cn; Zhao, Yu

    2014-03-05

    Highlights: • To fabricate high quality ZnS films need to promote the ion-by-ion process and restrain cluster-by-cluster process. • The complexation ability of tri-sodium citrate is stronger than that of hydrazine hydrate. • The nucleation density of nuclei determine the performance of ZnS thin films. -- Abstract: Zinc sulfide (ZnS) thin films were deposited on glass substrates using the chemical bath deposition (CBD) technique. The effects of different complexing agents (tri-sodium citrate, hydrazine hydrate) and their concentrations on the structure, composition, morphology, optical properties and growth mechanism of ZnS thin films were investigated. The results indicated that the chemical-bath-deposited ZnS thin films exhibit poor crystallinity and a high Zn/S atomic ratio with an average transmittance of 75% in the range of visible light. The ZnS thin films prepared using hydrazine hydrate as the complexing agent present a more compact surface, a smaller average particle size, and a sharper absorption edge at 300–340 nm compared with those prepared using tri-sodium citrate. Based on our experimental observations and analysis, we conclude that the predominant growth mechanism of ZnS thin films is an ion-by-ion process. The nucleation density of Zn(OH){sub 2} nuclei on the substrate in the initial stage produces the different morphologies and properties of the ZnS thin films prepared using the two complexing agents.

  11. X-ray diffraction from single GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas

    2012-11-12

    In recent years, developments in X-ray focussing optics have allowed to produce highly intense, coherent X-ray beams with spot sizes in the range of 100 nm and below. Together with the development of new experimental stations, X-ray diffraction techniques can now be applied to study single nanometer-sized objects. In the present work, X-ray diffraction is applied to study different aspects of the epitaxial growth of GaAs nanowires. Besides conventional diffraction methods, which employ X-ray beams with dimensions of several tens of {mu}m, special emphasis lies on the use of nanodiffraction methods which allow to study single nanowires in their as-grown state without further preparation. In particular, coherent X-ray diffraction is applied to measure simultaneously the 3-dimensional shape and lattice parameters of GaAs nanowires grown by metal-organic vapor phase epitaxy. It is observed that due to a high density of zinc-blende rotational twins within the nanowires, their lattice parameter deviates systematically from the bulk zinc-blende phase. In a second step, the initial stage in the growth of GaAs nanowires on Si (1 1 1) surfaces is studied. This nanowires, obtained by Ga-assisted growth in molecular beam epitaxy, grow predominantly in the cubic zinc-blende structure, but contain inclusions of the hexagonal wurtzite phase close to their bottom interface. Using nanodiffraction methods, the position of the different structural units along the growth axis is determined. Because the GaAs lattice is 4% larger than silicon, these nanowires release their lattice mismatch by the inclusion of dislocations at the interface. Whereas NWs with diameters below 50 nm are free of strain, a rough interface structure in nanowires with diameters above 100 nm prevents a complete plastic relaxation, leading to a residual strain at the interface that decays elastically along the growth direction. Finally, measurements on GaAs-core/InAs-shell nanowire heterostructures are presented

  12. Identical Twins Raised Apart

    Science.gov (United States)

    Farnsworth, David L.

    2015-01-01

    This article describes a bivariate data set that is interesting to students. Indeed, this particular data set, which involves twins and IQ, has sparked more student interest than any other set that I have presented. Specific uses of the data set are presented.

  13. Sleep Terrors in Twins

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-12-01

    Full Text Available In an attempt to clarify the genetic and environmental causes of sleep terrors in childhood, reasearchers in Canada followed 390 pairs of monozygotic and dizygotic twins by assessing the frequency of sleep terrors at 18 and 30 months of age using a questionnaire administered to the biological mothers.

  14. Twin Hub Network (poster)

    NARCIS (Netherlands)

    Kreutzberger, E.D.; Konings, J.W.

    2014-01-01

    Twin hub network, a European Interreg IVB project, aims at making intermodal rail transport within, to and from North West Europe more competitive, in particular between seaports and inland terminals. Improving rail competitiveness enables to shift freight flows from road to rail, providing a more s

  15. Amelia in Twin Pregnancy

    Directory of Open Access Journals (Sweden)

    Davari Tanha Fatemeh

    2009-04-01

    Full Text Available Limb bud first appears during the third week of gestation with the upper limb buds appearing a few days before the lower limb buds. Complete absence of one or more limbs, called Amelia, occurs prior to the eighth week of gestation. We report a case of Amelia in a twin gestation.

  16. TWIN BLOCK (Studi Pustaka

    Directory of Open Access Journals (Sweden)

    Evie Lamtiur

    2015-08-01

    Full Text Available Young patients with class II skeletal malocclusion are often found. To avoid further discrepancy of this case, myofunctional therapy is one of the options. Functional appliance often used for such treatment. Functional appliance has been modified since activator was introduced by Andresen. With its bulky shape, activator makes difficulty for patient to speak and eat. Patient unable to wear it full time due to uncomfortness and negative facial appearance. In 1977, Clark developed twin block to overcome the weakness of previous appliances. A more simple design allows patient to be more comfortable and willing to wear it longer. Twin block is myofunctional appliance to reposition the mandible forward for skeletal class II correction with retruded mandible. This paper describes the design, clinical management effects of twin block treatment and brief case presentation using twin block appliance. Similar to the study reports found, this case revealed improvement of facial appearance, decrease overjet and overbite, improvement of molar relationship and good compliance of patient.

  17. Twin-twin transfusion syndrome - diagnosis and prognosis

    Directory of Open Access Journals (Sweden)

    Hajrić-Egić Amira

    2003-01-01

    Full Text Available Twin-twin transfusion syndrome is a serious complication of monozygotic, monochorionic, diamniotic twins resulting from transplacental vascular communications. In this syndrome blood is thought to be shunted from one twin - donor,who develops anaemia,growth retardation and oligoamnios, to the other twin - recipient,who becomes plethoric,macrosomic and develops polyhydroamnios. The incidence of twin-twin transfusion syndrome ranges from 5-15% of all twin pregnancies. If this condition develops in the second trimester, it is usually associated with spontaneous abortion and death of one or both fetuses before viability. Developing the syndrome in the third trimester has better perinatal outcome. Mortality rates ranging from 56%-100%, depending on gestational age and severity of the syndrome. The ultrasound criterias for diagnosis, in this study,were the presence of twins of the same sex with discordant growth, with oligohydroamnios in one twin sac and polyhydroamnios in the other one, one placenta and thin membrane between twins. The present study shows clinical course of 14 cases and value of Doppler ultrasound to analyze the usefulness of umbilical artery blood flow velocimetry for predicting the risk of twin-twin transfusion syndrome. 14 twin pregnancies with twin-twin transfusion syndrome were diagnosed during the last four years period and prospectivelly followed. 9 cases were diagnosed before the completion od 28 weeks of gestation.The mean gestational age was 21,6_+4,2 weeks at diagnosis and 23,2+_3,6 weeks at delivery. 5 cases were diagnosed after 28 weeks of gestation. The mean gestational age in this group was 29,6+_2,1 weeks at diagnosis and 33+_3,3 weeks at delivery. The survival rate in this study was 29%(8/28.9 cases ended in spontaneous abortion between 18th and 27th weeks of pregnancy (table 1 and 5 in premature labor (table 2.There were 7 intrauterine death (5 at admission and 2 few days after admission and 13 neonatal deaths

  18. Mitral valve regurgitation in twins

    DEFF Research Database (Denmark)

    Bakkestrøm, Rine; Larsen, Lisbeth Aagaard; Møller, Jacob Eifer

    2016-01-01

    BACKGROUND: Smaller observational studies have suggested familial clustering of mitral regurgitation (MR). Using a large twin cohort, the aims were to assess MR concordance rates and assess mortality in MR twins and unaffected cotwins. METHODS: Through the Danish Twin Registry, twins...... with an International Classification of Diseases, Eighth Revision and Tenth Revision diagnosis code of MR born 1880-1989 were identified and proband-wise concordance rates were calculated. To assess whether having a cotwin with MR affected survival, 10 matched twins without MR (n = 5,575) were selected for each MR twin...... (n = 562), and all-cause mortality rates were assessed. RESULTS: Among the 87,432 twins alive January 1, 1977, or later, 494 (0.57%) MR individuals were identified. Six MR concordant pairs were found, of which 3 were monozygotic. Proband-wise concordance rate when accounting for right censoring...

  19. Biofunctionalized Magnetic Nanowires

    KAUST Repository

    Kosel, Jurgen

    2013-12-19

    Magnetic nanowires can be used as an alternative method overcoming the limitations of current cancer treatments that lack specificity and are highly cytotoxic. Nanowires are developed so that they selectively attach to cancer cells via antibodies, potentially destroying them when a magnetic field induces their vibration. This will transmit a mechanical force to the targeted cells, which is expected to induce apoptosis on the cancer cells.

  20. SYNTHESIS OF COPPER NANOWIRES

    OpenAIRE

    POLAT, Sevim; Tigan, Doğancan

    2015-01-01

    Nanotechnology is the science and engineering of functional systems conducted at nanoscale that is between 1 and 100 nanometers. In the past years, it has been demonstrated that nanowires can be used in many areas, increasing their popularity. These areas primarily include ap-plications related to energy, environment and electronics. In these applications, many prototype products have been demonstrated with nan-owires, such as solar cells, flexible displays, transistors and light emitting dio...

  1. Mechanical properties of irradiated nanowires – A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Emilio [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800002 (Chile); Tramontina, Diego [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina); Instituto de Bioingeniería, Universidad de Mendoza, 5500 Mendoza (Argentina); Gutiérrez, Gonzalo, E-mail: gonzalo@fisica.ciencias.uchile.cl [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Bringa, Eduardo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina)

    2015-12-15

    In this work we study, by means of molecular dynamics simulation, the change in the mechanical properties of a gold nanowire with pre-existing radiation damage. The gold nanowire is used as a simple model for a nanofoam, made of connected nanowires. Radiation damage by keV ions leads to the formation of a stacking fault tetrahedron (SFT), and this defect leads to a reduced plastic threshold, as expected, when the nanowire is subjected to tension. We quantify dislocation and twin density during the deformation, and find that the early activation of the SFT as a dislocation source leads to reduced dislocation densities compared to the case without radiation damage. In addition, we observed a total destruction of the SFT, as opposed to a recent simulation study where it was postulated that SFTs might act as self-generating dislocation sources. The flow stress at large deformation is also found to be slightly larger for the irradiated case, in agreement with recent experiments. - Highlights: • Stacking Fault Tetrahedra (SFT) formation proceeds by cascades, containing typically a vacancy cluster and interstitials. • Applied tension leads to the destruction of the SFT, in contrast to a recently reported case of a SFT which soften the NW. • After the initial dislocation activity, strength is controlled by a few surviving dislocations.

  2. An experimental and theoretical investigation on the optical and photocatalytic properties of ZnS nanoparticles

    Science.gov (United States)

    La Porta, F. A.; Nogueira, A. E.; Gracia, Lourdes; Pereira, W. S.; Botelho, G.; Mulinari, T. A.; Andrés, Juan; Longo, E.

    2017-04-01

    From the viewpoints of materials chemistry and physical chemistry, crystal structure directly determines the electronic structure and furthermore their optical and photocatalytic properties. Zinc sulfide (ZnS) nanoparticles (NPs) with tunable photoluminescence (PL) emission and high photocatalytic activity have been obtained by means of a microwave-assisted solvothermal (MAS) method using different precursors (i.e., zinc nitrate (ZN), zinc chloride (ZC), or zinc acetate (ZA)). The morphologies, optical properties, and electronic structures of the as-synthesized ZnS NPs were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) isotherms for N2 adsorption/desorption processes, diffuse reflectance spectroscopy (DRS), PL measurements and theoretical calculations. Density functional theory calculations were used to determine the geometries and electronic properties of bulk wurtzite (WZ) ZnS NPs and their (0001), (101 ̅0), (112 ̅0), (101 ̅1), and (101 ̅2) surfaces. The dependence of the PL emission behavior of ZnS NPs on the precursor was elucidated by examining the energy band structure and density of states. The method for degradation of Rhodamine B (RhB) was used as a probe reaction to investigate the photocatalytic activity of the as-Synthesised ZnS NPs under UV light irradiation. The PL behavior as well as photocatalytic activities of ZnS NPs were attributed to specific features of the structural and electronic structures. Increased photocatalytic degradation was observed for samples synthesized using different precursors in the following order: ZAZnS NPs were also briefly discussed.

  3. High quality antireflective ZnS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tec-Yam, S.; Rojas, J.; Rejon, V. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, AP 73-Cordemex, 97310 Merida Yucatan (Mexico); Oliva, A.I., E-mail: oliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, AP 73-Cordemex, 97310 Merida Yucatan (Mexico)

    2012-10-15

    Zinc sulfide (ZnS) thin films for antireflective applications were deposited on glass substrates by chemical bath deposition (CBD). Chemical analysis of the soluble species permits to predict the optimal pH conditions to obtain high quality ZnS films. For the CBD, the ZnCl{sub 2}, NH{sub 4}NO{sub 3}, and CS(NH{sub 2}){sub 2} were fixed components, whereas the KOH concentration was varied from 0.8 to 1.4 M. Groups of samples with deposition times from 60 to 120 min were prepared in a bath with magnetic agitation and heated at 90 Degree-Sign C. ZnS films obtained from optimal KOH concentrations of 0.9 M and 1.0 M exhibited high transparency, homogeneity, adherence, and crystalline. The ZnS films presented a band gap energy of 3.84 eV, an atomic Zn:S stoichiometry ratio of 49:51, a transmittance above 85% in the 300-800 nm wavelength range, and a reflectance below 25% in the UV-Vis range. X-ray diffraction analysis revealed a cubic structure in the (111) orientation for the films. The thickness of the films was tuned between 60 nm and 135 nm by controlling the deposition time and KOH concentration. The incorporation of the CBD-ZnS films into ITO/ZnS/CdS/CdTe and glass/Mo/ZnS heterostructures as antireflective layer confirms their high optical quality. -- Highlights: Black-Right-Pointing-Pointer High quality ZnS thin films were prepared by chemical bath deposition (CBD). Black-Right-Pointing-Pointer Better CBD-ZnS films were achieved by using 0.9 M-KOH concentration. Black-Right-Pointing-Pointer Reduction in the reflectance was obtained for ZnS films used as buffer layers.

  4. Eu(2)(+) -induced enhancement of defect luminescence of ZnS.

    Science.gov (United States)

    Xiao-Bo, Zhang; Fu-Xiang, Wei

    2016-12-01

    The Eu(2)(+) -induced enhancement of defect luminescence of ZnS was studied in this work. While photoluminescence (PL) spectra exhibited 460 nm and 520 nm emissions in both ZnS and ZnS:Eu nanophosphors, different excitation characteristics were shown in their photoluminescence excitation (PLE) spectra. In ZnS nanophosphors, there was no excitation signal in the PLE spectra at the excitation wavelength λex  > 337 nm (the bandgap energy 3.68 eV of ZnS); while in ZnS:Eu nanophosphors, two excitation bands appeared that were centered at 365 nm and 410 nm. Compared with ZnS nanophosphors, the 520 nm emission in the PL spectra was relatively enhanced in ZnS:Eu nanophosphors and, furthermore, in ZnS:Eu nanophosphors the 460 nm and 520 nm emissions increased more than 10 times in intensity. The reasons for these differences were analyzed. It is believed that the absorption of Eu(2)(+) intra-ion transition and subsequent energy transfer to sulfur vacancy, led to the relative enhancement of the 520 nm emission in ZnS:Eu nanophosphors. In addition, more importantly, Eu(2)(+) acceptor-bound excitons are formed in ZnS:Eu nanophosphors and their excited levels serve as the intermediate state of electronic relaxation, which decreases non-radiative electronic relaxation and thus increases the intensity of the 460 nm and 520 nm emission dramatically. In summary, the results in this work indicate a new mechanism for the enhancement of defect luminescence of ZnS in Eu(2)(+) -doped ZnS nanophosphors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Brazilian Twin Registry: A Bright Future for Twin Studies/Twin Research: Twin Study of Alcohol Consumption and Mortality; Oxygen Uptake in Adolescent Twins/In the News: Superfecundated Twins In Vietnam; Adolescent Twin Relations; Twin and Triplet Co-Workers; A Special Twin Ultrasound; Monozygotic Twins With Different Skin Color; Identical Twin Returns from Space.

    Science.gov (United States)

    Segal, Nancy L

    2016-06-01

    The establishment of the Brazilian Twin Registry for the study of genetic, social, and cultural influences on behavior is one of eleven newly funded projects in the Department of Psychology at the University of São Paulo. These 11 interrelated projects form the core of the university's Center for Applied Research on Well-Being and Human Behavior. An overview of the planned twin research and activities to date is presented. Next, two recent twin studies are reviewed, one on the relationship between alcohol consumption and mortality, and the other on factors affecting maximal oxygen uptake. Twins cited in the media include the first identified superfecundated twins in Vietnam, adolescent twin relations, twins and triplets who work together, monozygotic twins with different skin tones and a co-twin control study that addresses the effects of space travel.

  6. Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S S; Song, J H; Wang, Z L [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Lu, Y F, E-mail: zlwang@gatech.ed [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China)

    2009-09-09

    Based on a comparative study between the piezoelectric outputs of n-type nanowires (NWs) and n-core/p-shell NWs along with the previous study (Lu et al 2009 Nano. Lett. 9 1223), we demonstrate a one-step technique for identifying the conductivity type of individual ZnO nanowires (NWs) based on the output of a piezoelectric nanogenerator without destroying the sample. A negative piezoelectric output voltage indicates an NW is n-type and it appears after the tip scans across the center of the NW, while a positive output voltage reveals p-type conductivity and it appears before the tip scans across the central line of the NW. This atomic force microscopy based technique is reliable for statistically mapping the majority carrier type in ZnO NWs arrays. The technique may also be applied to other wurtzite semiconductors, such as GaN, CdS and ZnS.

  7. Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator

    KAUST Repository

    Lin, S S

    2009-08-18

    Based on a comparative study between the piezoelectric outputs of n-type nanowires (NWs) and n-core/p-shell NWs along with the previous study (Lu et al 2009 Nano. Lett. 9 1223), we demonstrate a one-step technique for identifying the conductivity type of individual ZnO nanowires (NWs) based on the output of a piezoelectric nanogenerator without destroying the sample. A negative piezoelectric output voltage indicates an NW is n-type and it appears after the tip scans across the center of the NW, while a positive output voltage reveals p-type conductivity and it appears before the tip scans across the central line of the NW. This atomic force microscopy based technique is reliable for statistically mapping the majority carrier type in ZnO NWs arrays. The technique may also be applied to other wurtzite semiconductors, such as GaN, CdS and ZnS. © 2009 IOP Publishing Ltd.

  8. Nanowire structures and electrical devices

    Science.gov (United States)

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  9. Molybdenum oxide nanowires: synthesis & properties

    Directory of Open Access Journals (Sweden)

    Liqiang Mai

    2011-07-01

    Full Text Available Molybdenum oxide nanowires have been found to show promise in a diverse range of applications, ranging from electronics to energy storage and micromechanics. This review focuses on recent research on molybdenum oxide nanowires: from synthesis and device assembly to fundamental properties. The synthesis of molybdenum oxide nanowires will be reviewed, followed by a discussion of recent progress on molybdenum oxide nanowire based devices and an examination of their properties. Finally, we conclude by considering future developments.

  10. Lipid nanotube or nanowire sensor

    Science.gov (United States)

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  11. Hydropic Placenta as a First Manifestation of Twin-Twin Transfusion in a Monochorionic Diamniotic Twin Pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Manten, Gwendoline T. R.; Nikkels, Peter G. J.; Stoutenbeek, Philip

    2009-01-01

    Monochorionic twin pregnancies are at a 10% to 1.5% risk of developing twin-twin transfusion syndrome (TTTS).(1) Monitoring such pregnancies is aimed at evaluating the fetal condition by measuring the amount of amniotic fluid, Doppler parameters, and fetal growth. Twin-twin transfusion syndrome may

  12. Hydropic Placenta as a First Manifestation of Twin-Twin Transfusion in a Monochorionic Diamniotic Twin Pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Manten, Gwendoline T. R.; Nikkels, Peter G. J.; Stoutenbeek, Philip

    Monochorionic twin pregnancies are at a 10% to 1.5% risk of developing twin-twin transfusion syndrome (TTTS).(1) Monitoring such pregnancies is aimed at evaluating the fetal condition by measuring the amount of amniotic fluid, Doppler parameters, and fetal growth. Twin-twin transfusion syndrome may

  13. Hydropic Placenta as a First Manifestation of Twin-Twin Transfusion in a Monochorionic Diamniotic Twin Pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Manten, Gwendoline T. R.; Nikkels, Peter G. J.; Stoutenbeek, Philip

    2009-01-01

    Monochorionic twin pregnancies are at a 10% to 1.5% risk of developing twin-twin transfusion syndrome (TTTS).(1) Monitoring such pregnancies is aimed at evaluating the fetal condition by measuring the amount of amniotic fluid, Doppler parameters, and fetal growth. Twin-twin transfusion syndrome may

  14. Zn-doping of GaAs nanowires grown by Aerotaxy

    Science.gov (United States)

    Yang, Fangfang; Messing, Maria E.; Mergenthaler, Kilian; Ghasemi, Masoomeh; Johansson, Jonas; Wallenberg, L. Reine; Pistol, Mats-Erik; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H.

    2015-03-01

    Nanowires were grown by means of a novel aerosol-based method called Aerotaxy. Here an aerosol of Au catalyst nanoparticles in N2 is mixed with MOVPE precursors in a flow-through reactor at atmospheric pressure, whereby nanowires are produced continuously in high concentrations. We demonstrate the possibility of in situ doping of the NWs and the realization of well-controlled p-type GaAs nanowires using this Aerotaxy method. By controlling the cracking and concentration of the precursors, p-doped GaAs nanowires could be grown exhibiting a wide range of Zn doping levels. DEZn was used as the dopant source and the injected DEZn/TMGa ratio was varied from 0.1% to 3.4%. The morphology, the crystalline structure and the composition of the nanowires were studied using SEM, TEM and XEDS. The nanowires were grown straight without any significant tapering and this ideal morphology could be maintained up to an injected DEZn/TMGa ratio of 3.4%. The nanowires typically grew in the direction with a pure zincblende structure, but by increasing the DEZn flow the number of twinning defects increased which we ascribe to Zn incorporation. Elemental analysis shows a high Zn content in the catalyst particle and also a gradient in the Zn content along the nanowire. The samples were analyzed optically using photoluminescence (PL). From the result we estimated the free hole concentration induced by Zn acceptors to be 1×1020 cm-3 for DEZn/TMGa ratio of 3.4%. To our knowledge this is the first report on in situ doping of GaAs nanowires grown by Aerotaxy.

  15. Reared-Apart Chinese Twins: Chance Discovery/Twin-Based Research: Twin Study of Media Use; Twin Relations Over the Life Span; Breast-Feeding Opposite-Sex Twins/Print and Online Media: Twins in Fashion; Second Twin Pair Born to Tennis Star; Twin Primes; Twin Pandas.

    Science.gov (United States)

    Segal, Nancy L

    2017-04-01

    A January 2017 reunion of 10-year-old reared-apart Chinese twin girls was captured live on ABC's morning talk show Good Morning America, and rebroadcast on their evening news program Nightline. The twins' similarities and differences, and their participation in ongoing research will be described. This story is followed by reviews of twin research concerning genetic and environmental influences on media use, twin relations across the lifespan and the breast-feeding of opposite-sex twins. Popular interest items include twins in fashion, the second twin pair born to an internationally renowned tennis star, twin primes and twin pandas.

  16. Optical Characteristics of La-Doped ZnS Thin Films Prepared by Chemical Bath Deposition

    Institute of Scientific and Technical Information of China (English)

    XIE Hai-Qing; CHEN Yuan; HUANG Wei-Qing; HUANG Gui-Fang; PENG Ping; PENG Li; WANG Tai-Hang; ZENG Yun

    2011-01-01

    Undoped and La-doped ZnS thin films are prepared by chemical bath deposition (CBD) process through the co-precipitation reaction of inorganic precursors zinc sulfate, thiosulfate ammonia and La2O3. Composition of the films is analyzed using an energy-dispersive x-ray spectroscopy (EDS). Absorption spectra and spectral transmittances of the films are measured using a double beam UV-VIS spectrophotometer (TU-1901). It is found that significant red shifts in absorption spectra and decrease in absorptivity are obtained with increasing lanthanum. Moreover, optical transmittance is increased as La is doped, with a transmittance of more than 80% for wavelength above 360 nm in La-doped ZnS thin films. Compared to pure ZnS, the band gap decreases and flat-band potential positively shifts to quasi-metal for the La-doped ZnS. These results indicate that La-doped ZnS thin films could be valuably adopted as transparent electrodes.%@@ Undoped and La-doped ZnS thin films are prepared by chemical bath deposition (CBD) process through the co-precipitation reaction of inorganic precursors zinc sulfate, thiosulfate ammonia and La2O2.Composition of the 61ms is analyzed using an energy-dispersive x-ray spectroscopy (EDS).Absorption spectra and spectral tra.nsmitta.nces of the 61ms are measured using a double beam UV-VIS spectrophotometer (TU-1901).It is found that significant red shifts in absorption spectra and decrease in absorptivity are obtained with increasing lanthanum.Moreover, optical transmittance is increased as La is doped, with a transmittance of more than 80% for wavelength above 360 nm in La-doped ZnS thin 61ms.Compared to pure ZnS, the band gap decreases and flat-band potential positively shifts to quasi-metal for the La-doped ZnS.These results indicate that La-doped ZnS thin 6hns could be valuably adopted as transparent electrodes.

  17. Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores

    Science.gov (United States)

    Nistor, L. C.; Mateescu, C. D.; Birjega, R.; Nistor, S. V.

    2008-08-01

    Pure, nanocrystalline cubic ZnS forming a stable mesoporous structure was synthesized at room temperature by a non-toxic surfactant-assisted liquid liquid reaction, in the 9.5 10.5 pH range of values. The appearance of an X-ray diffraction (XRD) peak in the region of very small angles (˜ 2°) reveals the presence of a porous material with a narrow pore size distribution, but with an irregular arrangement of the pores, a so-called worm hole or sponge-like material. The analysis of the wide angle XRD diffractograms shows the building blocks to be ZnS nanocrystals with cubic structure and average diameter of 2 nm. Transmission electron microscopy (TEM) investigations confirm the XRD results; ZnS crystallites of 2.5 nm with cubic (blende) structure are the building blocks of the pore walls with pore sizes from 1.9 to 2.5 nm, and a broader size distribution for samples with smaller pores. Textural measurements (N2 adsorption desorption isotherms) confirm the presence of mesoporous ZnS with a narrow range of small pore sizes. The relatively lower surface area of around 100 m2/g is attributed to some remaining organic molecules, which are filling the smallest pores. Their presence, confirmed by IR spectroscopy, seems to be responsible for the high stability of the resulting mesoporous ZnS as well.

  18. Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications

    Science.gov (United States)

    Bujňáková, Zdenka; Dutková, Erika; Kello, Martin; Mojžiš, Ján; Baláž, Matej; Baláž, Peter; Shpotyuk, Oleh

    2017-05-01

    The ZnS nanocrystals were prepared in chitosan solution (0.1 wt.%) using a wet ultra-fine milling. The obtained suspension was stable and reached high value of zeta potential (+57 mV). The changes in FTIR spectrum confirmed the successful surface coating of ZnS nanoparticles by chitosan. The prepared ZnS nanocrystals possessed interesting optical properties verified in vitro. Four cancer cells were selected (CaCo-2, HCT116, HeLa, and MCF-7), and after their treatment with the nanosuspension, the distribution of ZnS in the cells was studied using a fluorescence microscope. The particles were clearly seen; they passed through the cell membrane and accumulated in cytosol. The biological activity of the cells was not influenced by nanoparticles, they did not cause cell death, and only the granularity of cells was increased as a consequence of cellular uptake. These results confirm the potential of ZnS nanocrystals using in bio-imaging applications.

  19. Synthesis of ZnS hollow nanospheres with holes using different amine templates

    Institute of Scientific and Technical Information of China (English)

    Eingang LI; Yu TANG; Yuanming ZHANG; Jun YANG; Biying DU

    2008-01-01

    ZnS hollow nanospheres with holes were prepared by reacting ZnSO4 with H2S, the sulfide source formed in the reaction of CS2 with ethylenediamine, 1,3-propylenediamine, butylamine or 2-(2-aminoethylamino) ethanol, which also acted as a template agent, at 50℃ under agitation. The shape, particle size of about 100-850 nm and hole size of about 150-600 nm of ZnS hollow nanospheres with holes were shown by SEM and TEM images. These ZnS nanospheres with β cubic ZnS phase and composed of 2-5 nm nanocrystals were characterized by XRD and HRTEM. The blue shift of maximum absorption in UV-vis displayed the effect of quantum size. The two amino groups of amine templates reacted favorably with Zn2+ to form uniform and relatively smooth ZnS nanospheres with holes, while hydroxyethyl played a disadvantageous role. A reason-able mechanism of hole formation by H2S rushing out is suggested.

  20. Shape- and phase-controlled ZnS nanostructures and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin [School of Physical Science and Technology and Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002 (China); Zeng, Xianghua, E-mail: xhzeng@yzu.edu.cn [School of Physical Science and Technology and Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002 (China); Yan, Xiaoqing [Nantong College, Jiangsu Open University, Nantong 226006, Jiangsu (China); Xia, Weiwei; Zhou, Yuxue; Shen, Xiaoshuang [School of Physical Science and Technology and Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002 (China)

    2014-11-15

    Graphical abstract: (a) TEM images of the nanorods, the HRTEM images for the lower (b) and the upper (c) part of the rod in (a). - Highlights: • Stacking faults were observed for ZnS nanocrystals with the size of ∼5 nm. • Nanotwinning structures and stacking faults were observed in ZnS nanorod. • Microstructure defects were found to be formed randomly for nanocrystals and nanorods. • The 1LO phonon mode exhibits a red-shift of 6 cm{sup −1} as the particle size increases from 5 to 15 nm. - Abstract: Single-crystalline ZnS nanoparticles with a zinc-blende crystal structure have some microdefects such as stacking faults and nanotwins. In contrast, ZnS nanorods have a wurtzite crystal structure, which grows along the [0 0 0 1] direction, although some nanorods display the intergrowth of a minor zinc-blende phase and the major wurtzite phase, which forms stacking faults or zinc-blende/wurtzite ZnS nanotwins. Raman spectroscopy measurements reveal surface phonons and longitudinal optical phonons in the nanoparticles, nanorods and doublet phonons that are associated with the transversal optical phonons of the A1 and E1 modes in only the nanorods. The first-order longitudinal optical phonon mode exhibits a blueshift of 6 cm{sup −1} when the particle size increases from 5 to 15 nm, but there is no shift in the range of 15–30 nm because of quantum confinement and microdefects.

  1. Synthesis and influence of ultrasonic treatment on luminescence of Mn incorporated ZnS nanoparticles

    Science.gov (United States)

    Cadis, A.-I.; Muresan, L. E.; Perhaita, I.; Munteanu, V.; Karabulut, Y.; Garcia Guinea, J.; Canimoglu, A.; Ayvacikli, M.; Can, N.

    2017-10-01

    Manganese (Mn) doping of ZnS phosphors was achieved by precipitation method using different ultrasound (US) maturation times. The structural and luminescence properties of the samples were carried out by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), photoluminescence (PL), and cathodoluminescence (CL). The real amount of manganese incorporated in ZnS lattice was calculated based on ICP-OES results. According with XRD patterns, the phase structure of ZnS:Mn samples is cubic. EDS spectra reveal deviations of the Mn dopant concentration from the target composition. Both 300 K PL and CL emission spectra of the Mn doped ZnS phosphors display intense orange emission at 590 and 600 nm, respectively, which is characteristic emission of Mn ion corresponding to a 4T1→6A1 transition. Both PL and CL spectra confirmed manganese is substitutionally incorporated into the ZnS host as Mn2+. However, it is suggested that the origin of broad blue emission around 400 nm appeared in CL is due to the radiative recombination at deep level defect states in the ZnS. The ultrasound treatment at first enhances the luminescent intensity by ∼3 times in comparison with samples prepared by classical way. This study gives rise to an optimization guideline, which is extremely demanded for the development of new luminescent materials.

  2. Properties Study of ZnS Thin Films Prepared by Spray Pyrolysis Method

    Directory of Open Access Journals (Sweden)

    A. Djelloul

    2015-12-01

    Full Text Available Zinc sulfide (ZnS is important II-VI semiconductors material for the development of various modern technologies and photovoltaic applications. ZnS thin film was prepared by using chemical spray pyrolysis technique. The starting solution is a mixture of 0.1 M zinc chloride as source of Zn and 0.05 M thiourea as source of S. The glass substrate temperature was varied in the range of 300 °C-400 °C to investigate the influence of substrate temperature on the structure, chemical composition, morphological and optical properties of ZnS films. The DRX analyses indicated that ZnS films have polycrystalline cubic structure with (111 preferential orientation and grain size varied from 25 to 60 nm, increasing with substrate temperature. The optical properties of these films have been studied in the wavelength range 300-2500 nm using UV-VIS spectro-photometer. The ZnS films has a band gap of 3.89 eV-3.96 eV.

  3. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  4. Cytotoxicity tests of water soluble ZnS and CdS quantum dots.

    Science.gov (United States)

    Li, Hui; Li, Mengyan; Shih, Wan Y; Lelkes, Peter I; Shih, Wei-Heng

    2011-04-01

    Cytotoxicity tests of zinc sulfide (ZnS) and cadmium sulfide (CdS) quantum dots (QDs) synthesized via all-aqueous process with various surface conditions were carried out with human endothelial cells (EA hy926) using two independent viability assays, i.e., by cell counting following Trypan blue staining and by measuring Alamar Blue (AB) fluorescence. The ZnS QDs with all four distinct types of surface conditions were nontoxic at both 1 microM and 10 microM concentrations for at least 6 days. On the other hand, the CdS QDs were nontoxic only at 1 microM, and showed significant cytotoxicity at 10 microM after 3 days in the cell counting assay and after 4 days in the AB fluorescence assay. The CdS QDs with (3-mercaptopropyl)trimethoxysilane (MPS)-replacement plus silica capping were less cytotoxic than those with 3-mercaptopropionic acid (MPA) capping and those with MPS-replacement capping. Comparing the results of ZnS and CdS QDs with the same particle size, surface condition and concentration, it is indicated that the cytotoxicity of CdS QDs and the lack of it in ZnS QDs were probably due to the presence and absence of the toxic Cd element, respectively. The nontoxicity of the aqueous ZnS QDs makes them favorable for in vivo imaging applications.

  5. Minimal Mirror Twin Higgs

    CERN Document Server

    Barbieri, Riccardo; Harigaya, Keisuke

    2016-01-01

    In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z2 parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z2 breaking, can generate the Z2 breaking in the Higgs sector necessary for the Twin Higgs mechanism, and has constrained and correlated signals in invisible Higgs decays, direct Dark Matter Detection and Dark Radiation, all within reach of foreseen experiments. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z2 breaking from the vacuum expectation values of B-L breaking fields are also discussed.

  6. Emergence of Digital Twins

    OpenAIRE

    Datta, Shoumen Palit Austin

    2016-01-01

    Multiple forms of digital transformation are imminent. Digital Twins represent one concept. It is gaining momentum because it may offer real-time transparency. Rapid diffusion of digital duplicates faces hurdles due to lack of semantic interoperability between architectures, standards and ontologies. The technologies necessary for automated discovery are in short supply. Progression of the field depends on convergence of information technology, operational technology and protocol-agnostic tel...

  7. Nutrition in twin pregnancy.

    Science.gov (United States)

    MacGillivray, I

    1979-01-01

    The urinary nitrogen output appears to be related to both protein and energy intake, so that women having heavier babies probably eat more, although this may simply mean that they are larger women. Women with twin pregnancies have been found to have a lesser urinary nitrogen output, but it seems unlikely that this be due to lower intakes. They might simply utilize their diet more efficiently--a hypothesis that is now being tested.

  8. Optical, phonon and efficient visible and infrared photocatalytic activity of Cu doped ZnS micro crystals

    Science.gov (United States)

    Prasad, Neena; Balasubramanian, Karthikeyan

    2017-02-01

    We report, the enhanced photocatalytic behaviour of Cu doped ZnS micro crystals. ZnS and different concentrations of Cu doped ZnS microcrystals were prepared. X-ray diffraction confirms the crystalline and phase of the particles. Morphology and sizes were studied using Scanning Electron Microscopy (SEM). Recorded optical absorption spectra show a band for around 365 nm for pure ZnS, but there is a broad band in the near infrared regime for the Cu-doped ZnS microcrystals which are attributed to the d-d transitions of Cu2 + ions. Phonon properties of as-prepared samples were investigated using Raman spectroscopy. Present work we investigate the potential of ZnS and Cu doped ZnS as a photocatalyst. For this from the degradation of methylene blue dye in aqueous media the photocatalytic activity of pure and highest doped ZnS samples with the irradiation of white light and infrared, enhanced photocatalytic activity were observed. Mechanism of white light an IR light based photocatalytic activity is explained based on the electron-hole pair production.

  9. Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS2 nanoflakes by self-assembly approach

    Science.gov (United States)

    Vattikuti, S. V. Prabhakar; Byon, Chan; Jeon, Sora

    2016-12-01

    A hybrid consisting of ZnS nanoparticles supported on layered MoS2-ZnS was synthesized by a hydrothermal method based on self-assembly technique without using a template. XRD, SEM-EDX, TEM, HR-TEM, TG-DTA, XPS, N2 adsorption-desorption, and UV-Vis spectroscopies were used to characterize the structural features, morphology, and composition of the MoS2-ZnS hybrid. The results show that the MoS2-ZnS hybrid is mainly ZnS nanoparticles on layered MoS2 with a thickness of ca. 5-20 nm. The combination of the MoS2 and ZnS hybrid structure is beneficial for enhancing the photocatalytic degradation of rhodamine B (RhB) under visible light irradiation. A possible photoreaction mechanism of the MoS2-ZnS hybrid in the degradation is proposed. The photoexcited electrons from the ZnS could easily transfer to the conduction band of MoS2, thus decreasing the recombination of photoinduced carriers and enabling the degradation of RhB under visible light irradiation.

  10. Tribute to dr louis keith: twin and physician extraordinaire/twin research reports: influences on asthma severity; chimerism revisited; DNA strand break repair/media reports: twins born apart; elevated twin frequencies; celebrity father of twins; conjoined twinning.

    Science.gov (United States)

    Segal, Nancy L

    2014-10-01

    The International Society for Twin Studies has lost a valued friend and colleague. Dr Louis Keith, Emeritus Professor of Obstetrics and Gynecology at Northwestern University, in Chicago, passed away on Sunday, July 6, 2014. His life and work with twins will be acknowledged at the November 2014 International Twin Congress in Budapest, Hungary. Next, twin research reports on the severity of asthma symptoms, a case of chimerism, and factors affecting DNA breakage and repair mechanisms are reviewed. Media reports cover twins born apart, elevated twin frequencies, a celebrity father of twins, and a family's decision to keep conjoined twins together.

  11. Socioeconomic position and twins' health

    DEFF Research Database (Denmark)

    Osler, Merete; McGue, Matt; Christensen, Kaare

    2007-01-01

    of middle-aged Danish twins was conducted in 1998-99. The study population included 1266 like-sex twin pairs [52.5% monozygotic (MZ) and 47.6% dizygotic (DZ)]. Data were obtained on childhood and adult social class and on height, BMI, grip strength, depression symptoms, self-rated health, cognitive function......, prenatal and rearing environmental factors from environmental factor later in life, we compared the health status among male and female twin pairs who lived together during childhood and were discordant or concordant on adult socioeconomic position. METHODS: A cross-sectional survey among a random sample......, physical activity, smoking, alcohol and food intake. RESULTS: The expected associations between the individual twins' adult social class and health measures were observed. Among DZ male twins discordant on adult social class, the higher social class twin was on average significantly taller and had higher...

  12. Twin-to-twin delivery time: neonatal outcome of the second twin.

    Science.gov (United States)

    Schneuber, Susanne; Magnet, Eva; Haas, Josef; Giuliani, Albrecht; Freidl, Thomas; Lang, Uwe; Bjelic-Radisic, Vesna

    2011-12-01

    To examine the effect of twin-to-twin delivery time (TTDT) on neonatal outcome. We evaluated twin deliveries >34 weeks of gestation. Twin pregnancies with both twins delivered by cesarean section and pregnancies with antenatal complications were excluded. We analyzed TTDT and neonatal outcomes of the second twin (umbilical arterial pH value (pH(art)), Apgar scores at 1, 5 and 10 minutes, need for intensive care). The study population was divided into two homogenous groups based on the mode of delivery: (A) vertex presentation and vaginal delivery of both twins, (B) vertex presentation and vaginal or vaginal operative delivery of twin I, breech or transverse presentation and vaginal breech delivery or cesarean section (CS) of twin II. A total of 207 twin pairs were included in our study. In Group A (n = 151) there were no significant correlations between TTDT and pH(art) or Apgar scores at 1,5 and 10 minutes of twin II (p = .156; 0.861; 0.151 and 0.384, respectively). In Group B (n = 56), the mean pH(art) of twin II was inversely correlated to TTDT, but not significantly (p = .417). TTDT was inversely related to 1-min and 5-min Apgar scores, but not significantly (p = .330; p = .138, respectively). The 10-min Apgar score showed no correlation with TTDT (p = .638). Increasing TTDT was not associated with adverse fetal outcome. Expectant management of the second twin appears possible and elapsed time alone does not appear to be an indication for intervention.

  13. The role of oxidative etching in the synthesis of ultrathin single-crystalline Au nanowires.

    Science.gov (United States)

    Kisner, Alexandre; Heggen, Marc; Fernández, Enrique; Lenk, Steffi; Mayer, Dirk; Simon, Ulrich; Offenhäusser, Andreas; Mourzina, Yulia

    2011-08-16

    The fabrication of ultrathin single-crystal Au nanowires with high aspect ratio and that are stable in air is challenging. Recently, a simple wet-chemical approach using oleylamine has been reported for the synthesis of Au nanowires with micrometer length and 2 nm in diameter. Despite efforts to understand the mechanism of the reaction, an ultimate question about the role of oxygen (O(2)) during the synthesis remained unclear. Here we report that the synthesis of ultrathin Au nanowires employing oleylamine is strongly affected by the amount of O(2) absorbed in the reaction solution. Saturating the solution with O(2) leads to both a high-yield production of nanowires and an increase in their length. Nanowires with diameters of about 2 nm and lengths of 8 μm, which corresponds to an aspect ratio of approximately 4000, were produced. The role of oxygen is attributed to the enhanced oxidation of twin defects on Au nanoparticles formed in the first stage of the reaction. Understanding the role of oxidative etching is crucial to significantly increasing the yield and the length of ultrathin Au nanowires.

  14. The Novel Semiconductor Nanowire Heterostructures

    Institute of Scientific and Technical Information of China (English)

    J.Q.Hu; Y.Bando; J.H.Zhan; D.Golberg

    2007-01-01

    1 Results If one-dimensional heterostructures with a well-defined compositional profile along the wire radial or axial direction can be realized within semiconductor nanowires, new nano-electronic devices,such as nano-waveguide and nano-capcipator, might be obtained. Here,we report the novel semiconducting nanowire heterostructures:(1) Si/ZnS side-to-side biaxial nanowires and ZnS/Si/ZnS sandwich-like triaxial nanowires[1],(2) Ga-Mg3N2 and Ga-ZnS metal-semiconductor nanowire heterojunctions[2-3]and (3) ...

  15. Nanowire mesh solar fuels generator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  16. Impact of growth conditions on morphology, structure and electrical properties of MOVPE grown InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Penz, A.; Ahe, M. von der; Sladek, K.; Wirths, S.; Weis, K.; Bloemers, C.; Volk, C.; Schaepers, T.; Hardtdegen, H.; Gruetzmacher, D. [Institute of Bio- and Nanosystems (IBN-1), Forschungszentrum Juelich, 52428 Juelich (Germany); JARA - Fundamentals of Future Information Technology (Germany); Dorn, F.; Weirich, T. [GFE, Gemeinschaftslabor fuer Elektronenmikroskopie (Germany); JARA - Fundamentals of Future Information Technology (Germany)

    2011-07-01

    The bottom-up assembly of semiconductor nanowires holds promise for future nanoelectronic devices. The high room temperature carrier mobility and the narrow direct bandgap make InAs an eligible material for this application. However, as recently reported, the conductivity of InAs nanowires could be influenced detrimentally by crystal defects such as twin planes and stacking faults. In this contribution, we report on different strategies to affect the nanowire crystallographic structure. Growth is performed by selective area MOVPE on partially masked substrates. The influence of growth rate, substrate orientation and Si doping on morphological, structural and electrical properties was investigated by scanning and transmission electron microscopy and two-and four-terminal measurements. It is found that especially the growth rate reduces the stacking fault density. Furthermore we observe an increase of conductivity and a decrease of nanowire aspect ratio with higher doping concentration. A correlation between doping, growth rate and electrical characteristics will be presented.

  17. Trojan twin planets

    Science.gov (United States)

    Dvorak, R.; Loibnegger, B.; Schwarz, R.

    2017-03-01

    The Trojan asteroids are moving in the vicinity of the stable Lagrange points L_4 and L_5 of the gas giants Jupiter, Uranus and Neptune. Their motion can be described and understood with the aid of the restricted three-body problem. As an extension of this problem we investigate how stable motion close to the Lagrange points of two massive bodies can exist. This configuration can be described as the Trojan Twin Problem when we regard the two additional bodies as having a mass significantly smaller than the the two primary bodies: a star in the center (m_1) and an additional Jupiter-like mass (m_2). Using this 4-body problem we have undertaken numerical investigations concerning possible stable "twin orbits". However, these two bodies (m_3 and m_4) in Trojan-like orbits may have quite different masses. We decided to choose 6 different scenaria for this problem: as primary body, m2, we have taken a Jupiter-like planet, a Saturn-like one, and a super-Earth with 10 Earthmasses (m_{Earth}) respectively. As quasi twin planets, we have used different mass ratios namely objects for m3 and m4 from 10m_{Earth} to Moon like ones. We found different stable configurations depending on the involved masses and the initial distances between the twins (always close to the Lagrange point). Although the formation of such a configuration seems to be not very probable we should not exclude that it exists regarding the huge number of planets even in our own galaxy. This model is of special interest when the most massive planet (m_2) is moving on an orbit in the habitable zone around a main sequence star. One can use our results of stable orbits of Trojan Twin Planets (or asteroids) for extrasolar systems having as second primary a Jupiter-like, a Saturn-like or a super-Earth like planet around a star similar to our Sun.

  18. Effect of effective mass and spontaneous polarization on photocatalytic activity of wurtzite and zinc-blende ZnS

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2015-10-01

    Full Text Available Semiconductor zinc sulphide (ZnS has two common phases: hexagonal wurtzite and cubic zinc-blende structures. The crystal structures, energy band structures, density of states (DOS, bond populations, and optical properties of wurtzite and zinc-blende ZnS were investigated by the density functional theory of first-principles. The similar band gaps and DOS of wurtzite and zinc-blende ZnS were found and implied the similarities in crystal structures. However, the distortion of ZnS4 tetrahedron in wurtzite ZnS resulted in the production of spontaneous polarization and internal electric field, which was beneficial for the transfer and separation of photogenerated electrons and holes.

  19. Measurement of XUV-absorption spectra of ZnS radiatively heated foils

    CERN Document Server

    Kontogiannopoulmos, Nikolaos; Thais, Frédéric; Chenais-Popovics, Claude; Sauvan, Pascal; Schott, R; Fölsner, Wolfgang; Arnault, Philippe; Poirier, Michel; Blenski, Thomas

    2008-01-01

    Time-resolved absorption of zinc sulfide (ZnS) and aluminum in the XUV-range has been measured. Thin foils in conditions close to local thermodynamic equilibrium were heated by radiation from laser-irradiated gold spherical cavities. Analysis of the aluminum foil radiative hydrodynamic expansion, based on the detailed atomic calculations of its absorption spectra, showed that the cavity emitted flux that heated the absorption foils corresponds to a radiation temperature in the range 55 60 eV. Comparison of the ZnS absorption spectra with calculations based on a superconfiguration approach identified the presence of species Zn6+ - Zn8+ and S5+ - S6+. Based on the validation of the radiative source simulations, experimental spectra were then compared to calculations performed by post-processing the radiative hydrodynamic simulations of ZnS. Satisfying agreement is found when temperature gradients are accounted for.

  20. Kinetics of oxygen adsorption on ZnS nanoparticles synthesized by precipitation process

    Directory of Open Access Journals (Sweden)

    Ahmadi Reza

    2016-06-01

    Full Text Available ZnS nanoparticles were synthesized through a one-step precipitation process. Effect of time and temperature on the formation reaction was investigated. The synthesized samples were characterized by X-ray diffraction (XRD, ultraviolet (UV visible absorption and photoluminescence (PL spectrophotometry. Based on XRD and UV-Vis data, the particles produced at 70 °C had a mean particle size of about 5 nm. Increasing time and temperature of the synthesis reaction resulted in photoluminescence intensification. PL spectroscopy helped understanding the adsorption kinetics of oxygen on ZnS nanoparticles during the precipitation synthesis process. Fabrication of ZnS structures with appropriate oxygen adsorption capacity was suggested as a means of PL emission intensity control.

  1. Controlling crystalline structure of ZnS nanocrystals only by tuning sulfur precursor addition rate.

    Science.gov (United States)

    Bi, Chong; Pan, Liqing; Xu, Mei; Xiao, John Q

    2010-12-01

    Unlike previous studies that emphasize the important role of thermodynamics or surface energy on the structure stabilization of ZnS nanocrystals, we successfully controlled the crystalline structure of ZnS nanocrystals simply by tuning sulfur precursor addition rate under exactly the same other conditions. We observed the structure of as prepared ZnS nanocrystals was evolved from wurtzite into zinc blende with increasing the addition rate of sulfur precursor. The method may extend to engineer other nanomaterials with desired physicochemical properties by controlling crystalline structure. On the other hand, it also makes a new approach to understand the crucial factors that determine the growth mechanism and the crystal structure of nanomaterials in theory.

  2. Synthesis and characterization of ZnS doped with metallic impurities.

    Science.gov (United States)

    Gomez, Estela; Sanchez-Mora, Enrique; Silva, Rutilo; Perez-Hernandez, Leticia; Lopez-Garcia, Cesar; Lozada-Dircio, Victor

    2007-03-01

    Zinc sulfide (ZnS) is a wide band gap and direct transition semiconductor. It is an important material for detection emission and modulation of visible and ultraviolet light, and for electroluminescent devices among other applications. The object of this work was to deposit by the sol-gel method/deep coating, ZnS, ZnS:Mn and ZnS:Sm films (5 coatings) on glass substrate. The samples were characterized to study the surface morphology, composition and some optical properties. SEM micrographs show a porous surface morphology with agglomerate type defects. FTIR spectra show the presence of surface O-H and S-O groups. By AES it was determined the composition of the films, and UV-Vis spectra confirmed the ZnS compound formation. This work has been partially supported by VIEP-BUAP, Project No. 11/EXC/06/G.

  3. ZnS thin film deposited with chemical bath deposition process directed by different stirring speeds

    Science.gov (United States)

    Zhang, Y.; Dang, X. Y.; Jin, J.; Yu, T.; Li, B. Z.; He, Q.; Li, F. Y.; Sun, Y.

    2010-09-01

    In this combined film thickness, scanning electron microscopy (SEM), X-ray diffraction and optical properties study, we explore the effects of different stirring speeds on the growth and optical properties of ZnS film deposited by CBD method. From the disclosed changes of thickness of ZnS film, we conclude that film thickness is independent of the stirring speeds in the heterogeneous process (deposition time less than 40 min), but increases with the stirring speeds and/or deposition time increasing in the homogeneous process. Grazing incident X-ray diffraction (GIXRD) and the study of optical properties disclosed that the ZnS films grown with different stirring speeds show partially crystallized film and exhibit good transmittance (70-88% in the visible region), but the stirring speeds cannot give much effects on the structure and optical properties in the homogeneous process.

  4. Role of magnesium in ZnS structure: Experimental and theoretical investigation

    Directory of Open Access Journals (Sweden)

    M. Y. Shahid

    2016-02-01

    Full Text Available Wide band gap semiconductor materials are extending significant applications in electronics and optoelectronics industry. They are showing continued advancement in ultraviolet to infrared LEDs and laser diodes. Likewise the band gap tunability of ZnS with intentional impurities such as Mg and Mn are found useful for optoelectronic devices. Information from literature indicates slight blue shift in the band gap energy of ZnS by Mg doping but nevertheless, we report a reasonable red shift (3.48 eV/356 nm to 2.58 eV/480 nm in ZnS band gap energy in Mg-ZnS structure. Theoretical model based on first principle theory using local density approximation revealed consistent results on Mg-ZnS structure. Similarly, structural, morphological, optical and electrical properties of the as grown Mg-ZnS were studied by XRD, SEM, FTIR, EDS, UV-Vis Spectrophotometer and Hall measurement techniques.

  5. Synthesis of Cu doped ZnS nanostructures on flexible substrate using low cost chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitin, E-mail: nitinmishra97@gmail.com; Purohit, L. P., E-mail: lppurohit@gmail.com [Gurukula Kangari University, Haridwar UK (India); Goswami, Y. C., E-mail: y-goswami@yahoo.com [ITM University, Turari, Gwalior, MP (India)

    2015-08-28

    Flexible electronics is one of the emerging area of this era. In this paper we have reported synthesis of Cu doped Zinc sulphide nanostructures on filter paper flexible substrates. Zinc chloride and Thio urea were used as a precursor for Zinc and Sulphur. The structures were characterized by XRD, FE-SEM and UV visible spectrometer. All the peaks identified for cubic structure of ZnS. Appearance of small Cu peaks indicates incorporation of Cu into ZnS lattice. Zns nanostructures assembled as nanobelts and nanofibers as shown in FE-SEM micrographs. Compound Structures provide the reasonable electrical conductivity on filter paper. Absorption in UV region makes them suitable for flexible electronic devices.

  6. Spin coating of ZnS nanostructures on filter paper and their characterization

    Science.gov (United States)

    Kumar, Nitin; Purohit, L. P.; Goswami, Y. C.

    2016-09-01

    In this paper we have reported spin coating of Cu doped Zinc sulphide nanostructures on filter paper flexible substrates. Zinc chloride and thiourea were used as precursors of zinc and sulphur. The samples were characterized by XRD, FE-SEM, EDAX and UV-visible spectrum studies. All the diffractogram peaks confirm the cubic structure of ZnS with small peak of Cu indicates incorporation of Cu into ZnS lattice. FE-SEM micrographs exhibit fibrous morphologies of ZnS structures on filter paper. Compound structures on flexible substrates show ohmic behavior with conductivity about 3.07×106 (Ωcm)-1 to 4.27×106 (Ωcm)-1. Excellent photoluminescence property doped with copper makes them suitable for flexible opto-electronic devices.

  7. Structural, morphological and optical properties of Mn doped ZnS nanocrystals

    Directory of Open Access Journals (Sweden)

    V. D. Mote

    2013-09-01

    Full Text Available Mn doped ZnS samples with composition formula Zn1-xMn xS where x = 0.00, 0.02, 0.05 and 0.10 were prepared by chemical method. Samples characterized for its structural, morphological and optical properties by X-ray diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR and UV-vis spectrometer. XRD patterns confirm cubic zinc blend structure with no secondary phases for pure and Mn doped ZnS. Lattice constant value increases slightly with Mn concentration due to the substitution of Mn in ZnS lattice. TEM images show that the particles have spherical in shape with an average particle size between 3-4 nm. The chemical species of the grown crystals are identified by FTIR spectra. Optical absorption spectra show decrement in band gap with increasing Mn concentration.

  8. Observation of two-photon absorption at UV radiation in ZnS quantum dots

    Indian Academy of Sciences (India)

    Manajit Chattopadhyay; Pathik Kumbhakar; Udit Chatterjee

    2014-02-01

    Research studies on quantum dots (QDs) of semiconductor materials are of potential interest in present days having promising applications in different optoelectronic devices. Among other materials, ZnS is a direct bandgap semiconductor material having a wide bandgap of 3.6 eV for its cubic phase at room temperature and it shows excellent optical properties. However, here the nonlinear optical (NLO) properties of chemically synthesized ZnS QDs of average size of ∼ 1.5 nm have been reported which are measured by using an indigenously developed Z-scan technique. The pump radiation is 355 nm which is the third harmonic of the Q-switched Nd:YAG laser radiation having pulsed duration of 10 ns with the repetition rate of 10 Hz. The measured experimental data have been analysed by using analytical models and two-photon absorption coefficients of the ZnS QDs at 355 nm have been extracted.

  9. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang

    2016-02-18

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  10. Piezoresistive boron doped diamond nanowire

    Science.gov (United States)

    Sumant, Anirudha V.; Wang, Xinpeng

    2016-09-13

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  11. Piezoresistive boron doped diamond nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Wang, Xinpeng

    2017-07-04

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  12. When You Are a Twin or Triplet

    Science.gov (United States)

    ... be a twin? Are you a twin and wonder why everyone thinks it's so special? It's fascinating ... the way the egg is fertilized when a woman becomes pregnant . In fraternal twins, two different eggs ...

  13. Surfactant and template free synthesis of porous ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Muhammad Saeed [Division of Science and Technology, University of Education, College Road Township, Lahore (Pakistan); Schools of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Riaz, Saira [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore-54590 (Pakistan); Mehmood, Rana Farhat [University of Education, Lahore, D.G. Khan Campus, Kangan Road, Dera Ghazi Khan (Pakistan); Ahmad, Khuram Shahzad [Environmental Sciences Department, Fatima Jinnah Women University, The Mall, Rawalpindi (Pakistan); Alghamdi, Yousef [Department of Chemistry, Faculty of Science & Art –Rabigh, King Abdulaziz University, Jeddah (Saudi Arabia); Malik, Mohammad Azad, E-mail: Azad.malik@manchester.ac.uk [Schools of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Department of Chemistry, University of Zululand, Private Bag X1001, Kwa-Dlangezwa, 3886 (South Africa); Naseem, Shahzad [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore-54590 (Pakistan)

    2017-03-01

    ZnS thin films composed of porous nanoparticles have been deposited on to glass substrates by combining three simple synthesis methodologies i.e. chemical bath deposition, co-precipitation and spin coating. The XRD results reveal the cubic phase of ZnS thin films crystallized at nano scale. The crystallite size estimated by Scherrer formula was 3.4 nm. The morphology of the samples was analyzed through scanning electron microscopy (SEM) and is evident that thin films are composed of porous nanoparticles with an average size of 150 nm and pores of 40 nm on almost every grain. Crystallinity, phase and morphology were further confirmed via transmission electron microscopy (TEM). The stoichiometry and phase purity of thin films were determined by energy dispersive X-ray (EDX) spectrum and X-ray photoelectron spectroscopy (XPS) analysis, respectively. The surface topography and homogeneity of thin films were analyzed by atomic force microscopy (AFM) and obtained root mean square roughness (4.0326 nm) reveals the morphologically homogeneous growth of ZnS on glass substrates. The UV–Vis spectroscopy and photoluminescence (PL) were carried out to estimate the band gap and observe the emission spectra in order to speculate the viability of ZnS porous nanoparticles in optoelectronic devices and sensors. - Highlights: • ZnS thin films composed of porous nanoparticles have been deposited. • Methodology is based on a combination of three techniques. • Cubic phase ZnS nanoparticles deposited onto glass substrates. • Films characterized by UV/Vis, PL, XRD, SEM, TEM, AFM and XPS.

  14. Advancements in the Quantification of the Crystal Structure of ZNS Materials Produced in Variable Gravity

    Science.gov (United States)

    Castillo, Martin

    2016-07-01

    Screens and displays consume tremendous amounts of power. Global trends to significantly consume less power and increase battery life have led to the reinvestigation of electroluminescent materials. The state of the art in ZnS materials has not been furthered in the past 30 years and there is much potential in improving electroluminescent properties of these materials with advanced processing techniques. Self-propagating high temperature synthesis (SHS) utilises a rapid exothermic process involving high energy and nonlinearity coupled with a high cooling rate to produce materials formed outside of normal equilibrium boundaries thus possessing unique properties. The elimination of gravity during this process allows capillary forces to dominate mixing of the reactants which results in a superior and enhanced homogeneity in the product materials. ZnS type materials have been previously conducted in reduced gravity and normal gravity. It has been claimed in literature that a near perfect phases of ZnS wurtzite was produced. Although, the SHS of this material is possible at high pressures, there has been no quantitative information on the actual crystal structures and lattice parameters that were produced in this work. Utilising this process with ZnS doped with Cu, Mn, or rare earth metals such as Eu and Pr leads to electroluminescence properties, thus making this an attractive electroluminescent material. The work described here will revisit the synthesis of ZnS via high pressure SHS and will re-examine the work performed in both normal gravity and in reduced gravity within the ZARM drop tower facility. Quantifications in the lattice parameters, crystal structures, and phases produced will be presented to further explore the unique structure-property performance relationships produced from the SHS of ZnS materials.

  15. Magnetoimpedance of Permalloy nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Getlawi, Saleh; Gao, Haibin; Koblischka, Michael; Hartmann, Uwe [Inst. of Experimental Physics, Saarland University, P.O. Box 151150, 66041 Saarbruecken (Germany)

    2011-07-01

    The magneto-impedance (MI) effect was studied extensively on amorphous wires, ribbons, and on multilayer thin films. This effect involves huge changes of the complex impedance of soft magnetic materials upon applying an external magnetic field. In this contribution we explore the MI effect on Permalloy nanowires. Nanowires of lengths of 40-60 mu and widths of 200-400 nm were prepared by electron beam lithography (EBL) and a lift-off process. Electrodes for the transport measurements and platinum contacts were fabricated by focused-ion-beam(FIB)-based methods. Magnetic force microscopy (MFM) was employed to observe the magnetic domain structures of the nanowires. For high frequency measurement, the sample was placed on a microwave transmission line consisting of two gold microstrip lines. MI measurements were performed in the range from 10 MHz to 3 GHz.

  16. Contemporary management of complicated monochorionic twins.

    Science.gov (United States)

    Moise, Karen Y; Kugler, Lisa; Jones, Tyra

    2012-01-01

    Monochorionic twins are at increased risk for unique complications including twin-twin transfusion syndrome (TTTS), selective intrauterine growth restriction (sIUGR), and twin-reversed arterial perfusion (TRAP) sequence. Twin-twin transfusion syndrome is treated with laser photocoagulation whereas selective reduction is an option in previable sIUGR or TRAP sequence. The nurse is integral in the management, education, care and support of women with complicated pregnancies. © 2012 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  17. Solvothermal Synthesis of Well-Disperse ZnS Nanorods with Efficient Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2012-01-01

    Full Text Available Well-disperse short-range-ordered ZnS nanorods with efficient photocatalytic property for photodegradation of Rhodamin B have been successfully synthesized through a solvothermal method. Solvent used can be recovered and reused, which makes the route environment-friendly. Dodecylamine was found effective in organizing nanorods to ordered monolayer. Characterization showed that these nanorods were uniform with the diameter of about 3 nm and length of nearly 30 nm. And it is expected that these monodisperse ZnS nanorods have potential applications in electroluminescence materials.

  18. Synthesis and photoluminescence properties of Mn-doped ZnS nanobelts

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-yan; YANG Xiao-ling; HOU De-dong; LIU Ying-kai

    2009-01-01

    Mn-doped ZnS nanobelts have been prepared through a thermal evaporation method at 1100℃. The synthesized nanobelts are characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectroscopy. The results show that the nanobelts have an uniform single-crystal hexagonal wurtzite structure and grow along [0001] direction. Room-temperature photoluminescence reveals that the intrinsic PL of the nanobelts disappears and a new PL peak of the Mn-doped ZnS nanobelts emerges at 575 nm.

  19. Investigation of ZnS thin layers by thermal evaporation method (PVD

    Directory of Open Access Journals (Sweden)

    MR Khanlary

    2011-03-01

    Full Text Available Thin layers of ZnS in two different temperature conditions of 25 or 2000C and also with different thicknesses from 100nm to 600nm were prepared by physical vapor deposition. Absorption and also transmission spectra of the films were obtained to determine absorption coefficient, extinction constant and optical band gap of the films. It was found that by decreasing the substrate temperature or decreasing the film's thickness, optical band gap of ZnS films were increased or decreased, respectively. These phenomena can be attributed to the quantum size effect.

  20. ZnS (Mn Nanoparticles as Luminescent Centers for Siloxane Based Scintillators

    Directory of Open Access Journals (Sweden)

    S. Carturan

    2016-08-01

    Full Text Available Synthesis of oleic acid stabilized ZnS nanocrystals activated with Mn is pursued. A hydrothermal method where high pressure and temperature are applied to control the nanocrystals growth is adopted. Capping the nanoparticle surface with oleic acid (OA improved light output. Samples loaded with both the phosphor and the neutron sensitizer have been produced and tested in a preliminary test as alpha particle detectors and secondly as thermal neutron detectors. The results support further development for siloxane-based scintillator detectors employing ZnS (Mn nanoparticles.

  1. Size dependent optical characteristics of chemically deposited nanostructured ZnS thin films

    Indian Academy of Sciences (India)

    A U Ubale; V S Sangawar; D K Kulkarni

    2007-04-01

    ZnS thin films of different thicknesses were prepared by chemical bath deposition using thiourea and zinc acetate as S2- and Zn2+ source. The effect of film thickness on the optical and structural properties was studied. The optical absorption studies in the wavelength range 250–750 nm show that band gap energy of ZnS increases from 3.68–4.10 eV as thickness varied from 332–76 nm. The structural estimation shows variation in grain size from 6.9–17.8 nm with thickness. The thermoemf measurement indicates that films prepared by this method are of -type.

  2. Electrodeposition of Cobalt Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sungbok; Hong, Kimin [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-03-15

    We developed an electroplating process of cobalt nanowires of which line-widths were between 70 and 200 nm. The plating electrolyte was made of CoSO{sub 4} and an organic additive, dimethyldithiocarbamic acid ester sodium salt (DAESA). DAESA in plating electrolytes had an accelerating effect and reduced the surface roughness of plated cobalt thin films. We obtained void-free cobalt nanowires when the plating current density was 6.25 mA/cm{sup 2} and DAESA concentration was 1 mL/L.

  3. EDITORIAL: Nanowires for energy Nanowires for energy

    Science.gov (United States)

    LaPierre, Ray; Sunkara, Mahendra

    2012-05-01

    This special issue of Nanotechnology focuses on studies illustrating the application of nanowires for energy including solar cells, efficient lighting and water splitting. Over the next three decades, nanotechnology will make significant contributions towards meeting the increased energy needs of the planet, now known as the TeraWatt challenge. Nanowires in particular are poised to contribute significantly in this development as presented in the review by Hiralal et al [1]. Nanowires exhibit light trapping properties that can act as a broadband anti-reflection coating to enhance the efficiency of solar cells. In this issue, Li et al [2] and Wang et al [3] present the optical properties of silicon nanowire and nanocone arrays. In addition to enhanced optical properties, core-shell nanowires also have the potential for efficient charge carrier collection across the nanowire diameter as presented in the contribution by Yu et al [4] for radial junction a-Si solar cells. Hybrid approaches that combine organic and inorganic materials also have potential for high efficiency photovoltaics. A Si-based hybrid solar cell is presented by Zhang et al [5] with a photoconversion efficiency of over 7%. The quintessential example of hybrid solar cells is the dye-sensitized solar cell (DSSC) where an organic absorber (dye) coats an inorganic material (typically a ZnO nanostructure). Herman et al [6] present a method of enhancing the efficiency of a DSSC by increasing the hetero-interfacial area with a unique hierarchical weeping willow ZnO structure. The increased surface area allows for higher dye loading, light harvesting, and reduced charge recombination through direct conduction along the ZnO branches. Another unique ZnO growth method is presented by Calestani et al [7] using a solution-free and catalyst-free approach by pulsed electron deposition (PED). Nanowires can also make more efficient use of electrical power. Light emitting diodes, for example, will eventually become the

  4. Twinning across the Developing World.

    Directory of Open Access Journals (Sweden)

    Jeroen Smits

    Full Text Available BACKGROUND: Until now, little was known about the variation in incidence of twin births across developing countries, because national representative data was lacking. This study provides the first comprehensive overview of national twinning rates across the developing world on the basis of reliable survey data. METHODS: Data on incidence of twinning was extracted from birth histories of women aged 15-49 interviewed in 150 Demographic and Health Surveys, held between 1987 and 2010 in 75 low and middle income countries. During the interview, information on all live births experienced by the women was recorded, including whether it was a singleton or multiple birth. Information was available for 2.47 million births experienced by 1.38 million women in a period of ten years before the interview. Twinning incidence was measured as the number of twin births per thousand births. Data for China were computed on the basis of published figures from the 1990 census. Both natural and age-standardized twinning rates are presented. RESULTS/CONCLUSIONS: The very low natural twinning rates of 6-9 per thousand births previously observed in some East Asian countries turn out to be the dominant pattern in the whole South and South-East Asian region. Very high twinning rates of above 18 per thousand are not restricted to Nigeria (until now seen as the world's twinning champion but found in most Central-African countries. Twinning rates in Latin America turn out to be as low as those in Asia. Changes over time are small and not in a specific direction. SIGNIFICANCE: We provide the most complete and comparable overview of twinning rates across the developing world currently possible.

  5. Twin Legacies: Victor and Vincent McKusick/Twin Studies: Twinning Rates I; Twinning Rates II; MZ Twin Discordance for Russell-Silver Syndrome; Twins' Language Skills/Headlines: Babies Born to Identical Twin Couples; Identity Exchange; Death of Princess Ashraf (Twin); Yahoo CEO Delivers Identical Twins.

    Science.gov (United States)

    Segal, Nancy L

    2016-04-01

    The lives of the illustrious monozygotic (MZ) twins, Victor A. and Vincent L. McKusick, are described. Victor earned the distinction as the 'Father of Medical Genetics', while Vincent was a legendary Chief Justice of the Maine Supreme Court. This dual biographical account is followed by two timely reports of twinning rates, a study of MZ twin discordance for Russell-Silver Syndrome (RSS) and a study of twins' language skills. Twin stories in the news include babies born to identical twin couples, a case of switched identity, the death of Princess Ashraf (Twin) and a new mother of twins who is also Yahoo's CEO.

  6. Twinning and heteropaternity in chimpanzees (Pan troglodytes).

    Science.gov (United States)

    Ely, John J; Frels, William I; Howell, Sue; Izard, M Kay; Keeling, Michale E; Lee, D Rick

    2006-05-01

    Unlike monozygotic (MZ) twins, dizygotic (DZ) twins develop from separate ova. The resulting twins can have different sires if the fertilizing sperm comes from different males. Routine paternity testing of a pair of same-sexed chimpanzee twins born to a female housed with two males indicated that the twins were sired by two different males. DNA typing of 22 short-tandem repeat (STR) loci demonstrated that these twins were not MZ twins but heteropaternal DZ twins. Reproductive data from 1926-2002 at five domestic chimpanzee colonies, including 52 twins and two triplets in 1,865 maternities, were used to estimate total twinning rates and the MZ and DZ components. The average chimpanzee MZ twinning rate (0.43%) equaled the average human MZ rate (0.48%). However, the chimpanzee DZ twinning rate (2.36%) was over twice the human average, and higher than all but the fertility-enhanced human populations of Nigeria. Similarly high twinning rates among African chimpanzees indicated that these estimates were not artifacts of captivity. Log-linear analyses of maternal and paternal effects on recurrent twinning indicated that females who twinned previously had recurrence risks five times greater than average, while evidence for a paternal twinning effect was weak. Chimpanzee twinning rates appear to be elevated relative to corresponding estimated human rates, making twinning and possibly heteropaternity more important features of chimpanzee reproductive biology than previously recognized.

  7. Estimating twin concordance for bivariate competing risks twin data

    DEFF Research Database (Denmark)

    Scheike, Thomas Harder; Holst, Klaus Kähler; von Bornemann Hjelmborg, Jacob

    2014-01-01

    For twin time-to-event data, we consider different concordance probabilities, such as the casewise concordance that are routinely computed as a measure of the lifetime dependence/correlation for specific diseases. The concordance probability here is the probability that both twins have experienced...... over time, and covariates may be further influential on the marginal risk and dependence structure. We establish the estimators large sample properties and suggest various tests, for example, for inferring familial influence. The method is demonstrated and motivated by specific twin data on cancer...... the event of interest. Under the assumption that both twins are censored at the same time, we show how to estimate this probability in the presence of right censoring, and as a consequence, we can then estimate the casewise twin concordance. In addition, we can model the magnitude of within pair dependence...

  8. Confronting Twin Paradox Acceleration

    Science.gov (United States)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  9. Holographic twin Higgs model.

    Science.gov (United States)

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  10. Oliver Sacks: Our Correspondence About Twins/Twin Research: Vanishing Twins Syndrome; Discordant Sex in MZ Twins; Pregnancy Outcomes in IVF and ICSI Conceived Twins/Print and Media: Superfetated Twins; Twins Discordant for Smoking; Twins in Fashion; Yale University Twin Hockey Players; Conjoined Twin-Visiting Professor.

    Science.gov (United States)

    Segal, Nancy L

    2017-08-01

    The late neurologist and author, Oliver Sacks, published an insightful 1986 review of Marjorie Wallace's book, The Silent Twins, in the New York Times. Taking exception to his assertion about Sir Francis Galton, I wrote a letter to the Times' editor. The letter was unpublished, but it brought a wonderful response from Sacks himself that is reproduced and examined. Next, brief reviews of twin research concerning the vanishing twin syndrome (VTS), discordant sex in a monozygotic (MZ) twin pair, and multiple pregnancy outcomes from assisted reproductive technology (ART) are presented. This section is followed by popular coverage of superfetated twins, smoking-discordant co-twins, twins in fashion, Yale University twin hockey players, and a visiting professor who was a conjoined twin.

  11. Lithographically patterned nanowire electrodeposition

    Science.gov (United States)

    Xiang, Chengxiang

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M1 = silver or nickel) layer, 5 - 100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut ≈300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of theM1 layer. Within this trench, a nanowire of metal M2 is electrodeposited (M2 = gold, platinum, palladium, or bismuth). Finally the PR layer and M1 layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 um sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowirenanowire junctions. The resistance, R, of single gold nanowires was measured in situ during electrooxidation in aqueous 0.10 M sulfuric acid. Electrooxidation caused the formation of a gold oxide that is approximately 0.8 monolayers (ML) in thickness at +1.1 V vs saturated mercurous sulfate reference electrode (MSE) based upon coulometry and ex situ X-ray photoelectron spectroscopic analysis. As the gold nanowires were electrooxidized, R increased by an amount that depended on the wire thickness, ranging from

  12. Transformation: From Twin to Individual

    Science.gov (United States)

    Magagna, Jeanne

    2007-01-01

    This article explores some of the complexities of psychotherapy with an identical twin. The difficulty of developing in psychotherapy while so much of what is oneself is located in the other twin will also be explored. The use of the countertransference as a therapeutic method will be considered as the young person develops her unique, separate…

  13. Twin Studies of Atopic Dermatitis

    DEFF Research Database (Denmark)

    Elmose, Camilla; Thomsen, Simon Francis

    2015-01-01

    Aim. The aim of this study was to conduct a systematic review of population-based twin studies of (a) the concordance and heritability of AD and (b) the relationship between AD and asthma and, furthermore, to reinterpret findings from previous twin studies in the light of the emerging knowledge a...

  14. Twin methodology in epigenetic studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob

    2015-01-01

    Since the final decades of the last century, twin studies have made a remarkable contribution to the genetics of human complex traits and diseases. With the recent rapid development in modern biotechnology of high-throughput genetic and genomic analyses, twin modelling is expanding from analysis ...

  15. Twin Higgs WIMP Dark Matter

    CERN Document Server

    García, Isabel García; March-Russell, John

    2015-01-01

    Dark matter (DM) without a matter asymmetry is studied in the context of Twin Higgs (TH) theories in which the LHC naturalness problem is addressed. These possess a twin sector related to the Standard Model (SM) by a (broken) $\\mathbb{Z}_2$ symmetry, and interacting with the SM via a specific Higgs portal. We focus on the minimal realisation of the TH mechanism, the Fraternal Twin Higgs, with only a single generation of twin quarks and leptons, and $SU(3)'\\times SU(2)'$ gauge group. We show that a variety of natural twin-WIMP DM candidates are present (directly linked to the weak scale by naturalness), the simplest and most attractive being the $\\tau^\\prime$ lepton with a mass $m_{\\tau^\\prime} > m_{\\rm Higgs}/2$, although spin-1 $W^{\\prime\\pm}$ DM and multicomponent DM are also possible (twin baryons are strongly disfavoured by tuning). We consider in detail the dynamics of the possibly (meta)stable glueballs in the twin sector, the nature of the twin QCD phase transition, and possible new contributions to th...

  16. Hypertensive disorders in twin pregnancy

    NARCIS (Netherlands)

    J.G. Santema (Job); E. Koppelaar (Elin); H.C.S. Wallenburg (Henk)

    1995-01-01

    textabstractObjective: To compare the incidence and severity of pregnancy-induced hypertensive disorders in twin pregnancy and in singleton gestation. Study design: Case-control study in the setting of a University Hospital. Each pregnancy of a consecutive series of 187 twin pregnancies attending th

  17. Embedding Ba Monolayers and Bilayers in Boron Carbide Nanowires

    Science.gov (United States)

    Yu, Zhiyang; Luo, Jian; Shi, Baiou; Zhao, Jiong; Harmer, Martin P.; Zhu, Jing

    2015-11-01

    Aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was employed to study the distribution of barium atoms on the surfaces and in the interiors of boron carbide based nanowires. Barium based dopants, which were used to control the crystal growth, adsorbed to the surfaces of the boron-rich crystals in the form of nanometer-thick surficial films (a type of surface complexion). During the crystal growth, these dopant-based surface complexions became embedded inside the single crystalline segments of fivefold boron-rich nanowires collectively, where they were converted to more ordered monolayer and bilayer modified complexions. Another form of bilayer complexion stabilized at stacking faults has also been identified. Numerous previous works suggested that dopants/impurities tended to segregate at the stacking faults or twinned boundaries. In contrast, our study revealed the previously-unrecognized possibility of incorporating dopants and impurities inside an otherwise perfect crystal without the association to any twin boundary or stacking fault. Moreover, we revealed the amount of barium dopants incorporated was non-equilibrium and far beyond the bulk solubility, which might lead to unique properties.

  18. Embedding Ba Monolayers and Bilayers in Boron Carbide Nanowires.

    Science.gov (United States)

    Yu, Zhiyang; Luo, Jian; Shi, Baiou; Zhao, Jiong; Harmer, Martin P; Zhu, Jing

    2015-11-26

    Aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was employed to study the distribution of barium atoms on the surfaces and in the interiors of boron carbide based nanowires. Barium based dopants, which were used to control the crystal growth, adsorbed to the surfaces of the boron-rich crystals in the form of nanometer-thick surficial films (a type of surface complexion). During the crystal growth, these dopant-based surface complexions became embedded inside the single crystalline segments of fivefold boron-rich nanowires collectively, where they were converted to more ordered monolayer and bilayer modified complexions. Another form of bilayer complexion stabilized at stacking faults has also been identified. Numerous previous works suggested that dopants/impurities tended to segregate at the stacking faults or twinned boundaries. In contrast, our study revealed the previously-unrecognized possibility of incorporating dopants and impurities inside an otherwise perfect crystal without the association to any twin boundary or stacking fault. Moreover, we revealed the amount of barium dopants incorporated was non-equilibrium and far beyond the bulk solubility, which might lead to unique properties.

  19. A Computational Discriminability Analysis on Twin Fingerprints

    Science.gov (United States)

    Liu, Yu; Srihari, Sargur N.

    Sharing similar genetic traits makes the investigation of twins an important study in forensics and biometrics. Fingerprints are one of the most commonly found types of forensic evidence. The similarity between twins’ prints is critical establish to the reliability of fingerprint identification. We present a quantitative analysis of the discriminability of twin fingerprints on a new data set (227 pairs of identical twins and fraternal twins) recently collected from a twin population using both level 1 and level 2 features. Although the patterns of minutiae among twins are more similar than in the general population, the similarity of fingerprints of twins is significantly different from that between genuine prints of the same finger. Twins fingerprints are discriminable with a 1.5%~1.7% higher EER than non-twins. And identical twins can be distinguished by examine fingerprint with a slightly higher error rate than fraternal twins.

  20. Dramatically different dizygotic twins: will we include them in Research? Twin research reviews: congenital anomalies, mirror-image effects in conjoined twins, older mothers of twins; Twin statistics: 'Massachusetts, land of twins'; Tribute: Dr Victor A. McKusick.

    Science.gov (United States)

    Segal, Nancy L

    2008-10-01

    The increased frequency of interracial marriage is a likely source of unusual-looking dizygotic (DZ) twins. Some members of DZ twin pairs born to mixed-race couples inherit very different physical features from their parents. This raises several questions, such as: Will researchers wish to include such twins in their ongoing studies? Next, new twin research concerned with congenital anomalies, mirror-image effects in conjoined twins and older mothers of twins will be reviewed. New statistics on twinning rates in Massachusetts will also be summarized, followed by a tribute to the late medical geneticist Dr. Victor A. McKusick.

  1. Nanowire Photonic Systems

    Science.gov (United States)

    2009-12-22

    analogy with the etching technique used to delineate the axial p-i-n diode regions, an SEM image of the cross-section of a radial p-i-n Si-nanowire...on Adaptive Nanostructures and Nanodevices (CRANN), Dublin, Ireland Plenary Address: “The Opportunities & Challenges Facing Nanotechnology” 7

  2. [Hereditary phaeochromocytoma in twins].

    Science.gov (United States)

    Tóth, Géza; Patócs, Attila; Tóth, Miklós

    2016-08-01

    Phaeochromocytoma is a tumor of the catecholamine-producing cells of the adrenal gland. Extraadrenal phaeochromocytomas are frequently called paragangliomas. The majority of phaeochromocytomas are sporadic, however, about 25-30% are caused by genetic mutation. These tumor are frequently referred as hereditary phaeochromocytomas/paragangliomas. Their incidence increases continuously which can be attributed to availability of genetic examination and to the discovery of novel genes. The 47-year-old female patient underwent abdominal computed tomography which revealed bilateral adrenal gland enlargement. Abdominal magnetic resonance imaging, the 131-I- metaiodobenzylguanidine scintigraphy, urinary catecholamines and serum chomogranin A measurements confirmed the diagnosis of bilateral phaeochromocytomas. The genetically identical twin sister of the patient was also diagnosed with hormonally active bilateral phaechromocytoma, suggesting the genetic origin of phaeochromocytoma. Mutation screening confirmed a germline mutation of the transmembrane protein 127 tumorsupressor gene in both patients. Both patients underwent cortical-sparing adrenalectomy. The adrenal gland with the larger tumor was totally resected, while in the opposite side only the tumor was resected and a small part of the cortex was saved. After the operation urinary catecholamines and serum chromogranin A returned to normal in both patients. Adrenocortical deficiency was absent in the first patient, but her sister developed adrenal insufficiency requiring glucocorticoid replacement. To the best of the authors' knowledge phaeochromocytoma affecting twins has never been described earlier. Genetic examination performed in siblings confirmed the presence of the mutant gene through four generations. Orv. Hetil., 2016, 157(33), 1326-1330.

  3. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Long, Xianhao [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Jianhua, E-mail: jhchen@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Colleges and University Key Laboratory of Minerals Engineering, 530004 (China); Chen, Ye, E-mail: fby18@126.com [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China)

    2016-05-01

    Graphical abstract: - Highlights: • Adsorption of water molecules decreases the reactivity of surface Zn atom. • Copper impurities decrease the band gap of ZnS surface. • Copper impurities enhance the adsorption of xanthate on the ZnS surface. • Water molecules have little influence on the properties of Cu-substituted ZnS surface. • The xanthate S atom can interact with the surface S atom of Cu-substituted ZnS surface. - Abstracts: The interaction of collector with the mineral surface plays a very important role in the froth flotation of sphalerite. The adsorptions occurred at the interface between the mineral surface and waters; however most of DFT simulations are performed in vacuum, without consideration of water effect. Semiconductor surface has an obvious proximity effect, which will greatly influence the surface reactivity. To understand the mechanism of xanthate interacting with sphalerite surface in the presence of water molecules, the ethyl xanthate molecule adsorption on un-activated and Cu-activated ZnS(110) surface in the absence and presence of water molecules were performed using the density functional theory (DFT) method. The calculated results show that the adsorption of water molecules dramatically changes the properties of ZnS surface, resulting in decreasing the reactivity of surface Zn atoms with xanthate. Copper activation of ZnS surface changes the surface properties, leading to the totally different adsorption behaviors of xanthate. The presence of waters has little influence on the properties of Cu-activated ZnS surface. The xanthate S atom can interact with the surface S atom of Cu-substituted ZnS surface, which would result in the formation of dixanthogen.

  4. Factors affecting the shape of MBE-grown laterally aligned Fe nanowires.

    Science.gov (United States)

    Lok, Shu K; Tian, Jia C; Wang, Yuxing; Lai, Ying H; Lortz, Rolf; Petrovic, Alexander; Panagopoulos, Christos; Wong, George K L; Wang, Gan; Sou, Iam K

    2012-12-07

    Various microstructural and chemical analysis techniques were applied to study two types (type-A and B) of self-assembled laterally aligned Fe nanowires (NWs) fabricated by molecular beam epitaxy on a ZnS buffer layer. The formation of the three-dimensional shapes of these NWs was found to be driven by the principle of surface energy minimization. We have provided phenomenological models to address the factors affecting the observed topological shape of these NWs, including the role of the lattice relationship between the Fe NWs and the underlying buffer layer, growth temperature, Fe nominal coverage and substrate orientation. Magnetic hysteresis measurements were performed at different temperature, demonstrating the Fe NWs possess a coercivity about 30 times larger than that of a Fe thin film. The observed gradual magnetization reversal indicates the magnetization process is accomplished by the rotation of magnetic moments within a single domain.

  5. Epitaxial CuIn{sub 1-x}Ga{sub x}Se{sub 2}/ZnS heterostructures grown on (001)GaAs by co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Roussak, Liudmila; Wagner, Gerald [Institute of Mineralogy, Crystallography and Materials Science, University Leipzig, Linnestr. 3, 04103 Leipzig (Germany); Makhova, Liudmila; Konovalov, Igor [Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, University Leipzig, Linnestr. 2, 04103 Leipzig (Germany)

    2009-05-15

    Epitaxial heterostructures of ZnS/Cu(In,Ga)Se{sub 2} have been successfully grown on (001)-oriented GaAs substrates by co-evaporation during one single deposition process. The influence of the growth conditions on the compositional, structural and morphological properties of thin Cu(In,Ga)Se{sub 2} (CIGSe) and ZnS films was investigated. It was found, the stoichiometry of the CIGSe films strongly depends on the p{sub Se}/(p{sub Cu}+p{sub In}+p{sub Ga})-ratio. A large Se evaporation rate is found to avoid the segregation of a Cu-rich secondary phase. The interfaces between ZnS and Cu(In,Ga)Se{sub 2}as well as GaAs und CIGSe were examined by TEM-EDX, TEM and HRTEM. At a substrate temperature of about 250 C it is possible to achieve quite chemically and structurally sharp ZnS/Cu(In,Ga)Se{sub 2} heterojunctions. The dominant structural defects in both the CIGSe and ZnS films are dislocations, stacking faults, twins and diffusion-induced defects at the GaAs/CIGSe interface. The density of the latter ones can be appreciably reduced by an additional pre-treatment of the GaAs substrate surface with Na{sub 2}S solution. Despite the relatively high crystalline quality of the epitaxial double-heterostructures, due to the high resistivity and high compensation of the ZnS as well as the modification of the ZnS/Cu(In,Ga)Se{sub 2}interface it was difficult to produce efficient CIGSe based photovoltaic devices. Moreover, due to the diffusion of copper from the CIGSe film into the GaAs substrate an undesired additional p-n junction is formed inside the GaAs. It is the main reason that the GaAs/CIGSe/ZnS double-heterostructures formed by the co-evaporation process and described here cannot be used for an effective photovoltaic application. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Selective Sulfidation of Lead Smelter Slag with Pyrite and Flotation Behavior of Synthetic ZnS

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Zhang, Tianfu; Qin, Wenqing

    2016-08-01

    The selective sulfidation of lead smelter slag with pyrite in the presence of carbon and Na salts, and the flotation behavior of synthetic ZnS were studied. The effects of temperature, time, pyrite dosage, Na salts, and carbon additions were investigated based on thermodynamic calculation, and correspondingly, the growth mechanism of ZnS particles was studied at high temperatures. The results indicated that the zinc in lead smelter slag was selectively converted into zinc sulfides by sulfidation roasting. The sulfidation degree of zinc was increased until the temperature, time, pyrite, and carbon dosages reached their optimum values, under which it was more than 95 pct. The growth of ZnS particles largely depended upon roasting temperature, and the ZnS grains were significantly increased above 1373 K (1100 °C) due to the formation of a liquid phase. After the roasting, the zinc sulfides generated had a good floatability, and 88.34 pct of zinc was recovered by conventional flotation.

  7. Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity

    Science.gov (United States)

    Wang, Lu; Wang, Peng; Huang, Baibiao; Ma, Xiaojuan; Wang, Gang; Dai, Ying; Zhang, Xiaoyang; Qin, Xiaoyan

    2017-01-01

    ZnS microspheres with a series of Mn-doping concentration were synthesized via a facile solvothermal route. The phase structures, morphologies, and chemical states were characterized by X-ray powder diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The phase structure of the synthesized Mn-ZnS microspheres is hexagonal from the XRD patterns. UV-vis diffuse reflectance spectra were employed to analyze the absorption properties of the samples. The Mn-doped ZnS exhibited stronger visible light absorption with the increasing of Mn content. Their photocatalytic activities were evaluated by H2 production from water and reducing Cr6+ under visible light irradiation. The as-prepared Mn-doped ZnS exhibited better photocatalytic performance than that of pure ZnS and the optimal doping concentration was 7%. The enhancement in photocatalytic activity can be attributed to the expansion of light absorption and the increase in life time of photogenerated carriers.

  8. Synthesis of wurtzite ZnS nanoparticles using the microwave assisted solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    La Porta, Felipe A., E-mail: felipe_laporta@yahoo.com.br [Instituto de Química, UNESP, PO Box 355, 14801-970 Araraquara, SP (Brazil); Department of Analytical and Physical Chemistry, Univ. Jaume I, Castelló de la Plana 12071 (Spain); Ferrer, Mateus M.; Santana, Yuri V.B. de; Raubach, Cristiane W. [Departamento de Química, UFSCar, PO Box 676, 13565-905 São Carlos, SP (Brazil); Longo, Valéria M. [Instituto de Química, UNESP, PO Box 355, 14801-970 Araraquara, SP (Brazil); Sambrano, Júlio R. [Laboratório de Simulação Molecular, UNESP, PO Box 473, 17033-360 Bauru, SP (Brazil); Longo, Elson [Instituto de Química, UNESP, PO Box 355, 14801-970 Araraquara, SP (Brazil); Andrés, Juan [Department of Analytical and Physical Chemistry, Univ. Jaume I, Castelló de la Plana 12071 (Spain); Li, Máximo S. [Departamento de Física, USP, PO Box 369, 13560-970 São Carlos, São Paulo (Brazil); Varela, José A. [Instituto de Química, UNESP, PO Box 355, 14801-970 Araraquara, SP (Brazil)

    2013-04-15

    Highlights: ► This work details the efficiency of microwave solvothermal synthesis in obtaining ZnS nanocrystals. ► The structure, surface chemical composition and optical properties were investigated as function of the precursor. ► According to the different precursors used, the PL behavior of ZnS causes a red shift which enables the design of LEDs with different colors. ► Photoluminescence is one more interesting property for technological applications this material. -- Abstract: In this article, we report the development of an efficient and rapid microwave assisted solvothermal (MAS) method to prepare wurtzite ZnS nanoparticles at 413 K using different precursors. The materials obtained were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (MET) ultraviolet–visible (UV–vis) and photoluminescence (PL) measurements. The structure, surface chemical composition and optical properties were investigated as a function of the precursor. In addition, effects as well as merits of microwave heating on the processing and characteristics of ZnS nanoparticles obtained are reported. The possible formation mechanism and optical properties of these nanoparticles were also reported.

  9. Potential ZnS fossilization of gastropods (Middle Jurassic claystones from Central Poland).

    Science.gov (United States)

    Szczepanik, Patrycja; Sawlowicz, Zbigniew

    2008-09-01

    The rich fossil fauna in the Middle Jurassic claystones that crop out in the Krakow-Czestochowa Upland is extensively replaced by sulfide minerals, mainly pyrite. Sphalerite (ZnS) is rare and restricted to the internal casts of gastropods, often together with framboidal and euhedral pyrite and calcite. Scanning electron microscopy-energy dispersive spectrometer study was undertaken to explain this curious association. The results show that although direct infilling of the carbonate shell, similar to processes occurring during pyritization, is probable, it does not explain all textures observed. We propose that the carbonate shells were initially infilled by calcite and iron sulfides and sphalerite subsequently replaced the calcite casts. Preferential occurrence of ZnS in gastropods could result from accumulation of higher concentration of zinc during the organisms' life. After death, this Zn was introduced into the carbonate making gastropods more prone to ZnS replacement. Formation of ZnS casts was probably a late diagenetic event as zinc content of the surrounding sediment does not appear to influence sphalerite formation.

  10. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Harish, G.S.; Sreedhara Reddy, P., E-mail: psreddy4@gmail.com

    2015-09-15

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2–3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm{sup −1}) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  11. Precipitation, stabilization and molecular modeling of ZnS nanoparticles in the presence of cetyltrimethylammonium bromide.

    Science.gov (United States)

    Praus, Petr; Dvorský, Richard; Horínková, Petra; Pospíšil, Miroslav; Kovář, Petr

    2012-07-01

    ZnS nanoparticles were precipitated in aqueous dispersions of cationic surfactant cetyltrimethylammonium bromide (CTAB). The sphere radii of ZnS nanoparticles calculated by using band-gap energies steeply decreased from 4.5 nm to 2.2 nm within CTAB concentrations of 0.4-1.5 mmol L(-1). Above the concentration of 1.5 mmol L(-1), the radii were stabilized at R=2.0 nm and increased up to R=2.5 nm after 24 h. The hydrodynamic diameters of CTAB-ZnS structures observed by the dynamic light scattering (DLS) method ranged from 130 nm to 23 nm depending on CTAB concentrations of 0.5-1.5 mmol L(-1). The complex structures were observed by transmission electron microscopy (TEM). At the higher CTAB concentrations, ZnS nanoparticles were surrounded by CTA(+) bilayers forming positively charged micelles with the diameter of 10nm. The positive zeta-potentials of the micelles and their agglomerates were from 16 mV to 33 mV. Wurtzite and sphalerite nanoparticles with R=2.0 nm and 2.5 nm covered by CTA(+) were modeled with and without water. Calculated sublimation energies confirmed that a bilayer arrangement of CTA(+) on the ZnS nanoparticles was preferred to a monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. INFLUENCE OF PH ON THE STRUCTURAL AND MORPHOLOGICAL PROPERTIES OF ZnS THIN FILMS

    Directory of Open Access Journals (Sweden)

    A KASSIM

    2010-06-01

    Full Text Available The ZnS thin films have been obtained from aqueous solution by means of cyclic voltammetry method. The electrochemical bath consisted of zinc sulphate, sodium thiosulfate and triethanolamine. The effect of electrolyte pH on the properties of ZnS thin films was investigated within the range from 3 to 9. The cyclic voltammetry was used to analyse the electrochemical bath. The structural and morphological of thin films were investigated by X-ray diffraction and atomic force microscopy, respectively. The thin films obtained have cubic structure and single phase as analysed by XRD. As the pH was reduced from 9 to 3, the intensities of the peaks corresponding to ZnS increased. AFM image shows the thin films prepared at pH 3 are homogeneous and well covered on the substrate. These thin films consist of small grains which lead to deposition of smoother films. However, as the pH increases up to 7, the number of grains decreases and larger grain size could be obtained. Therefore, the pH plays a major role in synthesis of ZnS thin film and the pH 3 is the best pH under current conditions.

  13. Fabrication of Ordered Macroporous CdS and ZnS by Colloidal Crystal Template

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ordered macroporous semiconductors CdS and ZnS with regular arrays of spherical pores have been fabricated by poly (styrene-acrylic) (PSA) colloidal crystal template. It was found that the exact three-dimensional (3D) structure of the template had been imprinted in the final material.

  14. Precipitation of CuS and ZnS in a bubble column reactor

    NARCIS (Netherlands)

    Al-Tarazi, M.; Heesink, A. Bert M.; Versteeg, G. F.; Azzam, M. O. J.; Azzam, K.

    2005-01-01

    This work presents an experimental study into the precipitation of CuS and ZnS in a semibatch-wise operated bubble column. First the applied bubble column was characterized with respect to mass transfer phenomena. The influences of ionic strength and superficial gas velocity on volumetric mass trans

  15. Preparation, characterization and study of optical properties of ZnS nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Manam, J.; Chatterjee, V. [Department of Applied Physics, Indian School of Mines University, Dhanbad-826004, Jharkhand (India); Das, S., E-mail: phy_subrata@yahoo.co.i [Department of Applied Physics, Indian School of Mines University, Dhanbad-826004, Jharkhand (India); Choubey, A.; Sharma, S.K. [Department of Applied Physics, Indian School of Mines University, Dhanbad-826004, Jharkhand (India)

    2010-02-15

    In this work the preparation, characterization and photoluminescence studies of pure and copper-doped ZnS nanophosphors are reported, which are prepared by using solid-state reaction technique at a temperature of 100 deg. C. The as-obtained samples were characterized by X-ray diffraction (XRD) and UV-VIS Reflectance spectroscopy. The XRD analysis confirms the formation of cubic phase of undoped as well as Cu{sup 2+}-doped ZnS nanoparticles. Furthermore it shows that the average size of pure as well as copper-doped samples ranges from 15 to 50 nm. The room-temperature PL spectra of the undoped ZnS sample showed two main peaks centered at around 421 and 450 nm, which are the characteristic emissions of interstitial zinc and sulfur vacancies, respectively. The PL of the doped sample showed a broad-band emission spectrum centered at 465 nm accompanied with shoulders at around 425, 450 and 510 nm, which are the characteristic emission peaks of interstitial zinc, sulfur vacancies and Cu{sup 2+} ions, respectively. Our experimental results indicate that the PL spectrum confirms the presence of Cu{sup 2+} ions in the ZnS nanoparticles as expected.

  16. Studies on Characterization, Optical Absorption, and Photoluminescence of Yttrium Doped ZnS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ranganaik Viswanath

    2014-01-01

    Full Text Available Pure ZnS and ZnS:Y nanoparticles were synthesized by a chemical coprecipitation route using EDTA-ethylenediamine as a stabilizing agent. X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectrometry (FTIR, thermogravimetric-differential scanning calorimetry (TG-DSC, and UV-visible and photoluminescence (PL spectroscopy were employed to characterize the as-synthesized ZnS and ZnS:Y nanoparticles, respectively. XRD and TEM studies show the formation of cubic ZnS:Y particles with an average size of ~4.5 nm. The doping did not alter the phase of the zinc sulphide, as a result the sample showed cubic zincblende structure. The UV-visible spectra of ZnS and ZnS:Y nanoparticles showed a band gap energy value, 3.85 eV and 3.73 eV, which corresponds to a semiconductor material. A luminescence characteristics such as strong and stable visible-light emissions in the orange region alone with the blue emission peaks were observed for doped ZnS nanoparticles at room temperature. The PL intensity of orange emission peak was found to be increased with an increase in yttrium ions concentration by suppressing blue emission peaks. These results strongly propose that yttrium doped zinc sulphide nanoparticles form a new class of luminescent material.

  17. First principles results of structural and electronic properties of ZnS clusters

    Indian Academy of Sciences (India)

    D L Lalsare; Anjali Kshirsagar

    2012-12-01

    We present results of the study of ZnS (1 ≤ ≤ 9) clusters, using the density functional formalism and projector augmented wave method within the generalized gradient approximation. Along with the structural and electronic properties, nature of bonding and overall stability of clusters has been studied.

  18. Photo physical studies of PVP arrested ZnS quantum dots

    Science.gov (United States)

    Shahi, Ashutosh Kumar; Pandey, Bishnu Kumar; Singh, Bheeshma Pratap; Gupta, Bipin Kumar; Singh, Sukhvir; Gopal, Ram

    2017-03-01

    Monodispersed polyvinylpyrrolidone (PVP) arrested ZnS quantum dots (QDs) having diameter in range 2-5 nm are synthesized by a colloidal precipitation method using PVP as the stabilizing agent. X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selective area electron diffraction (SAED) and Fourier transform infrared (FT-IR) spectroscopy are probed to investigate the structural information. The optical properties are studied using diffuse UV-visible reflectance and photoluminescence (PL) spectroscopy techniques. TEM images as well as XRD reflection peak broadening indicate the nanometer size particles formation with cubic (sphalerite) phase within the polymer matrix. Optical absorbance studies reveal an excitonic peak at around 310 nm dictates the effect of quantum confinement effect in the ZnS QDs. PL emission spectra for ZnS QDs in PVP exhibit four emission peaks at 382 nm, 414 nm, 480 nm and 527 nm are observed. These excitonic emissions from ZnS QDs are caused by the interstitial sulfur/Zn vacancies and surface states.

  19. High Resolution Cathodoluminescence of Yellow and Waterclear CVD Polycrystalline ZnS.

    Science.gov (United States)

    1983-12-01

    Japanese Journal of Applied Physics , 20...55. Kobayashi, H. et al. "Excitation Mechanism of Electro- luminescent ZnS Thin Films Doped with Rare-Earth Ions." Japanese Journal of Applied Physics , 13...Al Phosphor." Japanese Journal of Applied Physics , 19 no 9: 1647-53 (September 1980). 112 _W0%. . . 57. Kukimoto, H., S. Oda, and T.

  20. Spray pyrolysis synthesis of ZnS nanoparticles from a single-source precursor.

    Science.gov (United States)

    Liu, Sha; Zhang, Hongwang; Swihart, Mark T

    2009-06-10

    ZnS, a II-VI semiconductor with a relatively high direct bandgap (approximately 3.6 eV) in the near-UV region, has potential applications in areas such as solar cells, lasers and displays. In addition, ZnS nanoparticles can be applied as phosphors, probes for bioimaging, emitters in light emitting diodes and photocatalysts. Here, we report synthesis of cubic ZnS nanoparticles from a low-cost single-source precursor in a continuous spray pyrolysis reactor. In this approach, the evaporation and decomposition of precursor and nucleation of particles occur sequentially. Product particles were characterized by HRTEM, XRD, and EDX. Particles with diameters ranging from 2 to 7 nm were produced. HF was used to remove ZnO impurities and other surface contamination. As-synthesized ZnS nanoparticles exhibit blue photoluminescence near 440 nm under UV excitation and have quantum yields up to 15% after HF treatment. This demonstrates a potentially general approach for continuous low-cost synthesis of semiconductor quantum dots for applications where tight control of the size distribution is less important than scalable, economical production.

  1. Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, Seyed Naser [Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar 4741695447 (Iran, Islamic Republic of); Chaichi, Mohammad Javad, E-mail: jchaichi@yahoo.com [Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar 4741695447 (Iran, Islamic Republic of); Shakeri, Parmis [Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar 4741695447 (Iran, Islamic Republic of); Bekhradnia, Ahmadreza [Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2013-12-15

    A novel chemiluminescence (CL) method using water-soluble Mn-doped ZnS quantum dots (QDs) as sensitizers is proposed for the chemiluminometric determination of atropine in pharmaceutical formulation. Water-soluble Mn-doped ZnS QDs were synthesized by using L-cysteine as stabilizer in aqueous solutions. The nanoparticles were structurally and optically characterized by X-ray powder diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), UV–vis absorption spectroscopy and photoluminescence (PL) emission spectroscopy. It was found that ZnS quantum dots acted as enhancers of the weak CL emission produced upon oxidation of sulfite by Ce(IV) in acidic medium. Trace amounts of atropine improved the sensitize effect of ZnS quantum dots yielding a significant chemiluminescence enhancement of the Ce(IV)–SO{sub 3}{sup 2−}–ZnS QD system. Therefore, a new CL analysis system was developed for the determination of atropine. Under the optimum conditions, there is a good linear relationship between the relative chemiluminescence intensity and the concentration of atropine in the range of 1×10{sup −9}–1×10{sup −6} M of atropine with a correlation coefficient (R{sup 2}) of 0.9992. The limit of detection of this system was found to be 2.54×10{sup −10} M. This method is not only simple, sensitive and low cost, but also reliable for practical applications. -- Highlights: • Mn-doped ZnS quantum dots could enhance the chemiluminescence (CL) of cerium(IV)–sodium sulfite system. • ZnS quantum dots were used as the nanocatalyst. • Trace amounts of atropine improved the sensitize effect of ZnS quantum dots. • This work is introduced as a new method for the determination of atropine commercial drugs. • Detection limit of atropine was obtained 2.54×10{sup −10} mol L{sup −1}.

  2. A search for lowest energy structures of ZnS quantum dots: Genetic algorithm tight-binding study.

    Science.gov (United States)

    Pal, Sougata; Sharma, Rahul; Goswami, Biplab; Sarkar, Pranab; Bhattacharyya, S P

    2009-06-07

    The lowest energy structures of ZnS quantum dots of different sizes have been determined by an unbiased search using genetic algorithm (GA) coupled with the density-functional tight-binding method. The GA search converges to a rather new ringlike configurations of ZnS quantum dots. We have studied the structural, electronic, and optical properties of these ringlike clusters and compared these properties with those of other reported structures of ZnS quantum dots, namely, hollow, zinc-blende, wurtzite, and rocksalt structures.

  3. PbS quantum dots embedded in a ZnS dielectric matrix for bulk heterojunction solar cell applications.

    Science.gov (United States)

    Sun, Lidong; Koh, Zhen Yu; Wang, Qing

    2013-09-06

    We demonstrate a novel bulk heterojunction structure based on a mesoporous TiO2 substrate, PbS quantum dots (QDs), and a ZnS dielectric medium. The galena PbS QD arrays embedded in an amorphous ZnS matrix are adopted to fill up the mesoporous TiO2 electrode with an in situ approach, i.e., successive ionic layer adsorption and reaction. The inorganic ZnS resembles the capping material normally used in colloidal QDs to control the size of PbS. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation and characteristics of chemical bath deposited ZnS thin films: Effects of different complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Wook [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Agawane, G.L.; Gang, Myeng Gil [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V. [Department of Physics, Shivaji University, Kolhapur 416-004 (India); Moon, Jong-Ha [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Lee, Jeong Yong, E-mail: j.y.lee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thick ZnS thin films were successfully prepared by chemical bath deposition in a basic medium using less toxic complexing agents. Black-Right-Pointing-Pointer Effect of different complexing agents such as no complexing agent, Na{sub 3}-citrate and a mixture of Na{sub 3}-citrate and EDTA on the properties of ZnS thin films was investigated. Black-Right-Pointing-Pointer ZnS thin film deposited using two complexing agent showed the outstanding characteristics as compared to those using no and one complexing agent. - Abstract: Zinc sulfide (ZnS) thin films were prepared on glass substrates by a chemical bath deposition technique using aqueous zinc acetate and thiourea solutions in a basic medium (pH {approx} 10) at 80 Degree-Sign C. The effects of different complexing agents, such as a non-complexing agent, Na{sub 3}-citrate, and a mixture of Na{sub 3}-citrate and ethylenediamine tetra-acetate (EDTA), on the structural, chemical, morphological, optical, and electrical properties of ZnS thin films were investigated. X-ray diffraction pattern showed that the ZnS thin film deposited without any complexing agent was grown on an amorphous phase. However, the ZnS thin films deposited with one or two complexing agents showed a polycrystalline hexagonal structure. No secondary phase (ZnO) was observed. X-ray photoelectron spectroscopy showed that all ZnS thin films exhibited both Zn-S and Zn-OH bindings. Field emission scanning electron microscopy (FE-SEM) images showed that ZnS thin films deposited with complexing agents had thicker thicknesses than that deposited without a complexing agent. The electrical resistivity of ZnS thin films was over 10{sup 5} {Omega} cm regardless of complexing agents. The average transmittance of the ZnS thin films deposited without a complexing agent, those with Na{sub 3}-citrate, and those with a mixture of Na{sub 3}-citrate and EDTA was approximately 85%, 65%, and 70%, respectively, while the band gap

  5. Highly porous ZnS microspheres for superior photoactivity after Au and Pt deposition and thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Shilpa; Pal, Bonamali, E-mail: bpal@thapar.edu

    2013-11-15

    Graphical abstract: Highly porous ZnS microsphere of size 2–5 μm having large surface area ca. 173.14 m{sup 2} g{sup −1} exhibits superior photocatalytic activity for the oxidation of 4-nitrophenol under UV light irradiation. The rate of photooxidation has been significantly improved by Au and Pt deposition and after sintering, respectively, due to rapid electron acceptance by metal from photoexcited ZnS and growth of crystalline ZnS phase. - Highlights: • Photoactive ZnS microsphere of size 2–5 μm was prepared by hydrothermal route. • Highly porous cubic spherical ZnS crystals possess a large surface area, 173 m{sup 2} g{sup −1}. • 1 wt% Au and Pt photodeposition highly quenched the photoluminescence at 437 nm. • Sintering and metal loading notably improve the photooxidation rate of 4-nitrophenol. • Pt co-catalyst always exhibits superior photoactivity of ZnS microsphere than Au. - Abstract: This work highlights the enhanced photocatalytic activity of porous ZnS microspheres after Au and Pt deposition and heat treatment at 500 °C for 2 h. Microporous ZnS particles of size 2–5 μm with large surface area 173.14 m{sup 2} g{sup −1} and pore volume 0.0212 cm{sup 3} g{sup −1} were prepared by refluxing under an alkaline medium. Photoluminescence of ZnS at 437 nm attributed to sulfur or zinc vacancies were quenched to 30% and 49%, respectively, after 1 wt% Au and Pt loading. SEM images revealed that each ZnS microparticle consist of several smaller ZnS spheres of size 2.13 nm as calculated by Scherrer's equation. The rate of photooxidation of 4-nitrophenol (10 μM) under UV (125 W Hg arc–10.4 mW/cm{sup 2}) irradiation has been significantly improved by Au and Pt deposition followed by sintering due to better electron capturing capacity of deposited metals and growth of crystalline ZnS phase with less surface defects.

  6. Twins and Kindergarten Separation: Divergent Beliefs of Principals, Teachers, Parents, and Twins

    Science.gov (United States)

    Gordon, Lynn Melby

    2015-01-01

    Should principals enforce mandatory separation of twins in kindergarten? Do school separation beliefs of principals differ from those of teachers, parents of twins, and twins themselves? This survey questioned 131 elementary principals, 54 kindergarten teachers, 201 parents of twins, and 112 twins. A majority of principals (71%) believed that…

  7. Paternal age and telomere length in twins

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob B; Dalgård, Christine; Mangino, Massimo

    2015-01-01

    . Based on two independent (discovery and replication) twin studies, comprising 889 twin pairs, we show an increase in the resemblance of leukocyte telomere length between dizygotic twins of older fathers, which is not seen in monozygotic twins. This phenomenon might result from a paternal age...

  8. Recipient twin limb ischemia with postnatal onset.

    Science.gov (United States)

    Broadbent, Roland Spencer

    2007-02-01

    After the occurrence of 3 local cases of limb ischemia in newborn twins, we reviewed the literature to investigate this combination systematically. This review reveals a distinct condition: postnatal onset limb ischemia affecting recipient twins in twin-twin transfusion syndrome.

  9. Best Practices for Twin Placement in School

    Science.gov (United States)

    Lacina, Jan

    2012-01-01

    The children's book "Two Is for Twins" celebrates twins and illustrates the many "twos" in a child's world. The uniqueness of twos does not have to mean separate classrooms for twins in child development programs, preschool, or elementary school settings. With recent dramatic increases in the US twin population, how should educators address the…

  10. Best Practices for Twin Placement in School

    Science.gov (United States)

    Lacina, Jan

    2012-01-01

    The children's book "Two Is for Twins" celebrates twins and illustrates the many "twos" in a child's world. The uniqueness of twos does not have to mean separate classrooms for twins in child development programs, preschool, or elementary school settings. With recent dramatic increases in the US twin population, how should educators address the…

  11. Electric Conductivity of Phosphorus Nanowires

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Xiang; LI Hui; ZHANG Xue-Qing; LIEW Kim-Meow

    2009-01-01

    We present the structures and electrical transport properties of nanowires made from different strands of phosphorus chains encapsulated in carbon nanotubes. Optimized by density function theory, our results indicate that the conductance spectra reveal an oscillation dependence on the size of wires. It can be seen from the density of states and current-voltage curves that the structure of nanowires affects their properties greatly. Among them,the DNA-like double-helical phosphorus nanowire exhibits the distinct characteristic of an approximately linear I - V relationship and has a higher conductance than others. The transport properties of phosphorus nanowires are highly correlated with their microstructures.

  12. Twin Higgs Asymmetric Dark Matter.

    Science.gov (United States)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  13. Twin methodology in epigenetic studies.

    Science.gov (United States)

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob; Christensen, Kaare

    2015-01-01

    Since the final decades of the last century, twin studies have made a remarkable contribution to the genetics of human complex traits and diseases. With the recent rapid development in modern biotechnology of high-throughput genetic and genomic analyses, twin modelling is expanding from analysis of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method to molecular phenotypes offers new opportunities to study the genetic (nature) and environmental (nurture) contributions to epigenetic regulation of gene activity during developmental, ageing and disease processes. Besides the classical twin model, the case co-twin design using identical twins discordant for a trait or disease is becoming a popular and powerful design for epigenome-wide association study in linking environmental exposure to differential epigenetic regulation and to disease status while controlling for individual genetic make-up. It can be expected that novel uses of twin methods in epigenetic studies are going to help with efficiently unravelling the genetic and environmental basis of epigenomics in human complex diseases.

  14. The vector-like twin Higgs

    Science.gov (United States)

    Craig, Nathaniel; Knapen, Simon; Longhi, Pietro; Strassler, Matthew

    2016-07-01

    We present a version of the twin Higgs mechanism with vector-like top partners. In this setup all gauge anomalies automatically cancel, even without twin leptons. The matter content of the most minimal twin sector is therefore just two twin tops and one twin bottom. The LHC phenomenology, illustrated with two example models, is dominated by twin glueball decays, possibly in association with Higgs bosons. We further construct an explicit four-dimensional UV completion and discuss a variety of UV completions relevant for both vector-like and fraternal twin Higgs models.

  15. The Vector-like Twin Higgs

    CERN Document Server

    Craig, Nathaniel; Longhi, Pietro; Strassler, Matthew

    2016-01-01

    We present a version of the twin Higgs mechanism with vector-like top partners. In this setup all gauge anomalies automatically cancel, even without twin leptons. The matter content of the most minimal twin sector is therefore just two twin tops and one twin bottom. The LHC phenomenology, illustrated with two example models, is dominated by twin glueball decays, possibly in association with Higgs bosons. We further construct an explicit four-dimensional UV completion and discuss a variety of UV completions relevant for both vector-like and fraternal twin Higgs models.

  16. Failure of vincristine induce twinning

    Science.gov (United States)

    Binder, M.

    1984-01-01

    Mammalian ova do not contain axes of symmetry from which are derived embryonic axes of symmetry. Mammalian axis determination is an early embryologic event occurring at about the time that monozygous twinning in mice. (Kaufma MH & O'Shea KS, 1978, Nature 276:707) and an attempt was made to reproduce their work in several strains of mice. Over 3200 embryos were examined without any twins being found. To rule out the possibility that vincristine caused twinning plus some lethal malformation (with subsequent resorption of the embryo) the embryos were examined 36-60 hours after vincristine treatment.

  17. Static and Dynamic Magnetization of Gradient FeNi Alloy Nanowire

    Science.gov (United States)

    Yang, Haozhe; Li, Yi; Zeng, Min; Cao, Wei; Bailey, William E.; Yu, Ronghai

    2016-02-01

    FeNi binary nanowires with gradient composition are fabricated by the electrodeposition method. The energy dispersive spec-trometer line-sweep results show that the composition changes gradually along the wire axis. The gradient FeNi nanowires exhibit polycrystalline and crystal twinning at different areas along the nanowire axis, with a textured face-centered cubic structure. The static and dynamic magnetization properties are characterized by a hysteresis loop and ferromagnetic reso-nance with pumping frequencies from 12– 40 GHz. The linear dispersion of the pumping frequency vs: the resonance field has been observed with the applied bias field higher than the saturation field, corresponding to the hysteresis loop. The field-sweep linewidths decrease with increasing pumping frequency, and the frequency-sweep linewidths stay nearly constant at the unsaturated region. The linewidth is a Gilbert type at the saturated state, with damping of 0.035 ± 0.003. Compared with the damping of the homogeneous composition FeNi nanowire (a = 0.044 ± 0.005), the gradient FeNi nanowire may have less eddy current damping, which could make it an alternative candidate for spintronics and microstrip antennas.

  18. Superconductor-insulator transition in nanowires and nanowire arrays

    NARCIS (Netherlands)

    Mooij, J.E.; Schön, G.; Shnirman, A.; Fuse, T.; Harmans, C.J.P.M.; Rotzinger, H.; Verbruggen, A.H.

    2015-01-01

    Superconducting nanowires are the dual elements to Josephson junctions, with quantum phase-slip (QPS) processes replacing the tunneling of Cooper pairs. When the QPS amplitude ES is much smaller than the inductive energy EL, the nanowire responds as a superconducting inductor. When the inductive ene

  19. Nanowire Field-Effect Transistors: Sensing Simplicity?

    NARCIS (Netherlands)

    Mescher, M.

    2014-01-01

    Silicon nanowires are structures made from silicon with at least one spatial dimension in the nanometer regime (1-100 nm). From these nanowires, silicon nanowire field-effect transistors can be constructed. Since their introduction in 2001 silicon nanowire field-effect transistors have been studied

  20. Twin-to-twin transfusion syndrome : from placental anastomoses to long-term outcome

    NARCIS (Netherlands)

    Lopriore, Enrico

    2006-01-01

    Twin-to-twin transfusion syndrome (TTTS) is a severe complication of monochorionic twin pregnancies associated with high perinatal mortality and morbidity rates. Placental vascular anastomoses, almost invariably present in monochorionic placentas, are the essential anatomical substrate for the devel

  1. Twin-to-twin transfusion syndrome : from placental anastomoses to long-term outcome

    NARCIS (Netherlands)

    Lopriore, Enrico

    2006-01-01

    Twin-to-twin transfusion syndrome (TTTS) is a severe complication of monochorionic twin pregnancies associated with high perinatal mortality and morbidity rates. Placental vascular anastomoses, almost invariably present in monochorionic placentas, are the essential anatomical substrate for the

  2. Twin-to-twin transfusion syndrome : from placental anastomoses to long-term outcome

    NARCIS (Netherlands)

    Lopriore, Enrico

    2006-01-01

    Twin-to-twin transfusion syndrome (TTTS) is a severe complication of monochorionic twin pregnancies associated with high perinatal mortality and morbidity rates. Placental vascular anastomoses, almost invariably present in monochorionic placentas, are the essential anatomical substrate for the devel

  3. Aging of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Osadnik, Andreas

    2012-01-01

    attribute, making them especially interesting for light generation in OLEDs and for light-harvesting devices such as solar cells. Functionalization of the molecules allows the customization of optical and electrical properties. However, aging of the wires might lead to a considerable decrease in device...... performance over time. In this study the morphological stability of organic nanoclusters and nanowires from the methoxy functionalized quaterphenylene, 4,4'''dimethoxy-1,1':4',1''4'',1'''-quaterphenylene (MOP4), is investigated in detail. Aging experiments conducted by atomic force microscopy under ambient...... conditions already expose substantial changes in sample morphology within hours. Clusters show Ostwald ripening, whereas nanowires reveal strong faceting and even fragmentation. All these aging effects are ascribed to the influence of water vapor. Decay curves (cluster number vs. time) for clusters...

  4. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  5. Observation of 'hidden' planar defects in boron carbide nanowires and identification of their orientations.

    Science.gov (United States)

    Guan, Zhe; Cao, Baobao; Yang, Yang; Jiang, Youfei; Li, Deyu; Xu, Terry T

    2014-01-15

    The physical properties of nanostructures strongly depend on their structures, and planar defects in particular could significantly affect the behavior of the nanowires. In this work, planar defects (twins or stacking faults) in boron carbide nanowires are extensively studied by transmission electron microscopy (TEM). Results show that these defects can easily be invisible, i.e., no presence of characteristic defect features like modulated contrast in high-resolution TEM images and streaks in diffraction patterns. The simplified reason of this invisibility is that the viewing direction during TEM examination is not parallel to the (001)-type planar defects. Due to the unique rhombohedral structure of boron carbide, planar defects are only distinctive when the viewing direction is along the axial or short diagonal directions ([100], [010], or 1¯10) within the (001) plane (in-zone condition). However, in most cases, these three characteristic directions are not parallel to the viewing direction when boron carbide nanowires are randomly dispersed on TEM grids. To identify fault orientations (transverse faults or axial faults) of those nanowires whose planar defects are not revealed by TEM, a new approach is developed based on the geometrical analysis between the projected preferred growth direction of a nanowire and specific diffraction spots from diffraction patterns recorded along the axial or short diagonal directions out of the (001) plane (off-zone condition). The approach greatly alleviates tedious TEM examination of the nanowire and helps to establish the reliable structure-property relations. Our study calls attention to researchers to be extremely careful when studying nanowires with potential planar defects by TEM. Understanding the true nature of planar defects is essential in tuning the properties of these nanostructures through manipulating their structures.

  6. Observation of ‘hidden’ planar defects in boron carbide nanowires and identification of their orientations

    Science.gov (United States)

    2014-01-01

    The physical properties of nanostructures strongly depend on their structures, and planar defects in particular could significantly affect the behavior of the nanowires. In this work, planar defects (twins or stacking faults) in boron carbide nanowires are extensively studied by transmission electron microscopy (TEM). Results show that these defects can easily be invisible, i.e., no presence of characteristic defect features like modulated contrast in high-resolution TEM images and streaks in diffraction patterns. The simplified reason of this invisibility is that the viewing direction during TEM examination is not parallel to the (001)-type planar defects. Due to the unique rhombohedral structure of boron carbide, planar defects are only distinctive when the viewing direction is along the axial or short diagonal directions ([100], [010], or 1¯10) within the (001) plane (in-zone condition). However, in most cases, these three characteristic directions are not parallel to the viewing direction when boron carbide nanowires are randomly dispersed on TEM grids. To identify fault orientations (transverse faults or axial faults) of those nanowires whose planar defects are not revealed by TEM, a new approach is developed based on the geometrical analysis between the projected preferred growth direction of a nanowire and specific diffraction spots from diffraction patterns recorded along the axial or short diagonal directions out of the (001) plane (off-zone condition). The approach greatly alleviates tedious TEM examination of the nanowire and helps to establish the reliable structure–property relations. Our study calls attention to researchers to be extremely careful when studying nanowires with potential planar defects by TEM. Understanding the true nature of planar defects is essential in tuning the properties of these nanostructures through manipulating their structures. PMID:24423258

  7. Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells.

    Science.gov (United States)

    Huang, Chun-Ying; Wang, Di-Yan; Wang, Chun-Hsiung; Chen, Yung-Ting; Wang, Yaw-Tyng; Jiang, You-Ting; Yang, Ying-Jay; Chen, Chia-Chun; Chen, Yang-Fang

    2010-10-26

    A hybrid colloidal ZnS nanoparticles/Si nanotips p-n active layer has been demonstrated to have promising potential for efficient solar spectrum utilization in crystalline silicon-based solar cells. The hybrid solar cell shows an enhancement of 20% in the short-circuit current and approximately 10% in power conversion efficiency compared to its counterpart without integrating ZnS nanoparticles. The enhancement has been investigated by external quantum efficiency, photoluminescence excitation spectrum, photoluminescence, and reflectance to distinct the role of ZnS quantum dots for light harvesting. It is concluded that ZnS nanoparticles not only act as frequency downconversion centers in the ultraviolet region but also serve as antireflection coating for light trapping in the measured spectral regime. Our approach is ready to be extended to many other material systems for the creation of highly efficient photovoltaic devices.

  8. Improved Luminescence Properties and Thermal Stability of ZnS Quantum Dots by Organic and Inorganic Passivation

    Institute of Scientific and Technical Information of China (English)

    El-Khair Hatim Mohamed; 徐岭; 陈坤基; 马懿; 张宇; 李明海; 黄信凡

    2002-01-01

    ZnS quantum dots (QDs) synthesized in water and ethanol solutions were coated with polystyrene (PS) and SiO2shells, respectively. The band edge emission was enhanced by nearly five times after PS coating and by aboutthirteen times after SiO2 coating, because the surface trap states were removed. From the photoluminescenceproperties of ZnS QDs coated with PS and SiO2 shells we have detected the improvement of thermal stability.This is due to the fact that the surface passivation can prevent the further growth of the ZnS QDs and thediffusion of oxygen on the surface of ZnS QDs during thermal oxidation.

  9. Heterostructure of Au nanocluster tipping on a ZnS quantum rod: controlled synthesis and novel luminescence

    Science.gov (United States)

    Tian, Yang; Wang, Ligang; Yu, Shanshan; Zhou, Weiwei

    2015-08-01

    Heterostructures of metal nanoparticles and semiconductors are widely studied for their unique properties. However, few reports are available on the heterostructure of metal nanoclusters and semiconductors. In the present study, a heterostructure, in which gold nanoclusters selectively locate at ZnS quantum rod (QR) tips, was fabricated using a two-step solvothermal route. The composition, intrinsic crystallography, and junction of the prepared heterostructure were thoroughly investigated, and it was observed to exhibit novel luminescent behaviours. By comparison with the individual components of ZnS QRs and gold clusters, the resultant heterostructure shows an enhanced exciton emission and complete depression of defect emission for the ZnS component, and a pronounced red emission for the gold nanocluster component. The mechanism of these properties and the charge transfer between gold nanoclusters and ZnS QRs were also explored. The size and location of gold in the heterostructure were also controlled during synthesis to study their effects on the luminescence.

  10. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

    Science.gov (United States)

    Mehrabian, M.; Esteki, Z.; Shokrvash, H.; Kavei, G.

    2016-10-01

    Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

  11. Effect of effective mass and spontaneous polarization on photocatalytic activity of wurtzite and zinc-blende ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ming; Zhang, Jinfeng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-10-01

    Semiconductor zinc sulphide (ZnS) has two common phases: hexagonal wurtzite and cubic zinc-blende structures. The crystal structures, energy band structures, density of states (DOS), bond populations, and optical properties of wurtzite and zinc-blende ZnS were investigated by the density functional theory of first-principles. The similar band gaps and DOS of wurtzite and zinc-blende ZnS were found and implied the similarities in crystal structures. However, the distortion of ZnS{sub 4} tetrahedron in wurtzite ZnS resulted in the production of spontaneous polarization and internal electric field, which was beneficial for the transfer and separation of photogenerated electrons and holes.

  12. Simultaneous Intussusception in Monozygotic Twins

    Directory of Open Access Journals (Sweden)

    Mete Kaya

    2014-12-01

    Full Text Available In this case report, it was aimed to present the simultaneously occurring intussusception in the monozygotic twins. In addition to genetic predisposition, environmental factors has been hypothesized to be responsible for the development of the disease.

  13. Discordant Epilepsy in Monozygous Twins

    OpenAIRE

    2001-01-01

    Twelve monozygotic twins, discordant for epilepsy, were analysed for nonhereditary etiological factors by clinical history, MRI, and quantitative brain volume studies at the Brain Research Institute, University of Melbourne, Victoria, Australia.

  14. Low-Temperature Surface Preparation and Epitaxial Growth of ZnS and Cu2ZnSnS4 on ZnS(110) and GaP(100)

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steven P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Teeter, Glenn R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moutinho, Helio R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Norman, Andrew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilson, Samual [University of Florida

    2017-08-12

    We give a summary of the low-temperature preparation methods of ZnS(110) and GaP(100) crystals for epitaxial growth of ZnS and Cu2ZnSnS4 (CZTS) via molecular beam epitaxy. Substrates were prepared for epitaxial growth by means of room-temperature aqueous surface treatments and subsequent ultra-high vacuum transfer to the deposition system. Epitaxial growth of ZnS was successful at 500 K on both ZnS(110) and GaP(100) as only single domains were observed with electron backscatter diffraction; furthermore, transmission electron microscopy measurements confirmed an epitaxial interface. Epitaxial growth of CZTS was successful on ZnS at 700 K. However, epitaxial growth was not possible on GaP at 700 K due to GaxSy formation, which significantly degraded the quality of the GaP crystal surface. Although CZTS was grown epitaxially on ZnS, growth of multiple crystallographic domains remains a problem that could inherently limit the viability of epitaxial CZTS for model system studies.

  15. Hypertensive disorders in twin pregnancy

    OpenAIRE

    Santema, Job; Koppelaar, Elin; Wallenburg, Henk

    1995-01-01

    textabstractObjective: To compare the incidence and severity of pregnancy-induced hypertensive disorders in twin pregnancy and in singleton gestation. Study design: Case-control study in the setting of a University Hospital. Each pregnancy of a consecutive series of 187 twin pregnancies attending the antenatal clinic and booked before a gestational age of 24 weeks was matched for maternal age, parity, and gestational age at delivery with a singleton pregnancy delivered in the same year. Prima...

  16. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the line

  17. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the

  18. A novel drug delivery of 5-fluorouracil device based on TiO2/ZnS nanotubes.

    Science.gov (United States)

    Faria, Henrique Antonio Mendonça; de Queiroz, Alvaro Antonio Alencar

    2015-11-01

    The structural and electronic properties of titanium oxide nanotubes (TiO2) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO2 has typically been within ultraviolet spectrum. In this study, the surface modification of TiO2 nanotubes with ZnS quantum dots was found to produce a red shift in the ultra violet emission band. The TiO2 nanotubes used in this work were obtained by sol-gel template synthesis. The ZnS quantum dots were deposited onto TiO2 nanotube surface by a micelle-template inducing reaction. The structure and morphology of the resulting hybrid TiO2/ZnS nanotubes were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. According to the results of fluorescence spectroscopy, pure TiO2 nanotubes exhibited a high emission at 380nm (3.26eV), whereas TiO2/ZnS exhibited an emission at 410nm (3.02eV). The TiO2/ZnS nanotubes demonstrated good bio-imaging ability on sycamore cultured plant cells. The biocompatibility against mammalian cells (Chinese Hamster Ovarian Cells-CHO) suggesting that TiO2/ZnS may also have suitable optical properties for use as biological markers in diagnostic medicine. The drug release characteristic of TiO2/ZnS nanotubes was explored using 5-fluorouracil (5-FU), an anticancer drug used in photodynamic therapy. The results show that the TiO2/ZnS nanotubes are a promising candidate for anticancer drug delivery systems.

  19. Pulsed Laser Deposition ZnS Buffer Layers for CIGS Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Pai-feng Luo; Guo-shun Jiang; Chang-fei Zhu

    2009-01-01

    Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suitable alternative to chemical bath deposited (CBD) CdS as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. X-ray diffraction studies indicate the films are polycrystalline with zinc-blends structure and they exhibit preferential orientation along the cubic phase β-ZnS (111) direction, which conflicts with the conclusion of wurtzite struc-ture by Murali that the ZnS films deposited by pulse plating technique was polycrystalline with wurtzite structure. The Raman spectra of grown films show A1 mode at approxi-mately 350 cm-1, generally observed in the cubic phase β-ZnS compounds. The planar and the cross-sectional morphology were observed by scanning electron microscopic. The dense, smooth, uniform grains are formed on the quartz glass substrates through PLD technique. The grain size of ZnS deposited by PLD is much smaller than that of CdS by conventional CBD method, which is analyzed as the main reason of detrimental cell performance. The composition of the ZnS films was also measured by X-ray fluorescence. The typical ZnS films obtained in this work are near stoichiometric and only a small amount of S-rich. The energy band gaps at different temperatures were obtained by absorption spectroscopy measurement, which increases from 3.2 eV to 3.7 eV with the increasing of the deposition temperature. ZnS has a wider energy band gap than CdS (2.4 eV), which can enhance the blue response of the photovoltaic cells. These results show the high-quality of these substitute buffer layer materials are prepared through an all-dry technology, which can be used in the manufacture of CIGS thin film solar cells.

  20. Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array.

    Science.gov (United States)

    Rai, Satish C; Wang, Kai; Ding, Yong; Marmon, Jason K; Bhatt, Manish; Zhang, Yong; Zhou, Weilie; Wang, Zhong Lin

    2015-06-23

    A high-performance broad band UV/visible photodetector has been successfully fabricated on a fully wide bandgap ZnO/ZnS type-II heterojunction core/shell nanowire array. The device can detect photons with energies significantly smaller (2.2 eV) than the band gap of ZnO (3.2 eV) and ZnS (3.7 eV), which is mainly attributed to spatially indirect type-II transition facilitated by the abrupt interface between the ZnO core and ZnS shell. The performance of the device was further enhanced through the piezo-phototronic effect induced lowering of the barrier height to allow charge carrier transport across the ZnO/ZnS interface, resulting in three orders of relative responsivity change measured at three different excitation wavelengths (385, 465, and 520 nm). This work demonstrates a prototype UV/visible photodetector based on the truly wide band gap semiconducting 3D core/shell nanowire array with enhanced performance through the piezo-phototronic effect.

  1. Single-layer ZnS supported on Au(111): A combined XPS, LEED, STM and DFT study

    Science.gov (United States)

    Deng, Xingyi; Sorescu, Dan C.; Lee, Junseok

    2017-04-01

    Single-layer of ZnS, consisting of one atomic layer of ZnS(111) plane, has been grown on Au(111) and characterized using X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While the LEED measurement indicates a coincidence structure of ZnS-(3×3)/Au(111)-(4×4), high resolution STM images reveal hexagonal unit cells of 6.7×6.7 Å2 and 11.6×11.6 Å2, corresponding to √3 and 3 times the unit cell of the ideal zincblende ZnS-(1×1), respectively, depending on the tunneling conditions. Calculations based on density functional theory (DFT) indicate a significantly reconstructed non-planar structure of ZnS single-layer on Au(111) with 2/3 of the S anions being located nearly in the plane of the Zn cations and the rest 1/3 of the S anions protruding above the Zn plane. The calculated STM image shows similar characteristics to those of the experimental STM image. Additionally, the DFT calculations reveal the different bonding nature of the S anions in ZnS single-layer supported on Au(111).

  2. Photocatalytic Reduction of CO2 by Nano-Sized ZnS Supported on Silica and Polyvinyl Alcohol

    Institute of Scientific and Technical Information of China (English)

    陈静; 刘引烽; 桑文斌; 华家栋; 孟中岩

    2003-01-01

    Nanosized photocatalyst ZnS particles supported on silica and polyvinyl alcohol was successfully prepared by complex trans-formation method. The photoc~jtic reduction of CO2 was carried out in the presence of nanosized ZnS catalyst irradiated by a high-pressure mercury-vapor lamp to give the main products of formaldehyde and ethanol. The catalytic ability of ZnS characterized by the uptaken rate of CO2 volume in the reaction system depended upon the preparing conditions of nanosized ZnS catalysts. Decreasing the concentration of Na2 S and increasing the molar ratio of oxygen in the PVA to Zn2 + could result in the decreasing of the size of ZnS particles but could not result in the monotonous increasing of the reduction rate of CO2. The mechanism of reduction of CO2 may be related to the H atoms and OH radicals, which form from H2O by transmission of the electron-hole pairs from irradiated the naaosized ZnS.

  3. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei, E-mail: djw@suda.edu.cn

    2013-05-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive.

  4. The Qingdao Twin Registry: a status update.

    Science.gov (United States)

    Duan, Haiping; Ning, Feng; Zhang, Dongfeng; Wang, Shaojie; Zhang, Dong; Tan, Qihua; Tian, Xiaocao; Pang, Zengchang

    2013-02-01

    In 1998, the Qingdao Twin Registry was initiated as the main part of the Chinese National Twin Registry. By 2005, a total of 10,655 twin pairs had been recruited. Since then new twin cohorts have been sampled, with one longitudinal cohort of adolescent twins selected to explore determinants of metabolic disorders and health behaviors during puberty and young adulthood. Adult twins have been sampled for studying heritability of multiple phenotypes associated with metabolic disorders. In addition, an elderly twin cohort has been recruited with a focus on genetic studies of aging-related phenotypes using twin modeling and genome-wide association analysis. Cross-cultural collaborative studies have been carried out between China, Denmark, Finland, and US cohorts. Ongoing data collection and analysis for the Qingdao Twin Registry will be discussed in this article.

  5. Estimating twin concordance for bivariate competing risks twin data.

    Science.gov (United States)

    Scheike, Thomas H; Holst, Klaus K; Hjelmborg, Jacob B

    2014-03-30

    For twin time-to-event data, we consider different concordance probabilities, such as the casewise concordance that are routinely computed as a measure of the lifetime dependence/correlation for specific diseases. The concordance probability here is the probability that both twins have experienced the event of interest. Under the assumption that both twins are censored at the same time, we show how to estimate this probability in the presence of right censoring, and as a consequence, we can then estimate the casewise twin concordance. In addition, we can model the magnitude of within pair dependence over time, and covariates may be further influential on the marginal risk and dependence structure. We establish the estimators large sample properties and suggest various tests, for example, for inferring familial influence. The method is demonstrated and motivated by specific twin data on cancer events with the competing risk death. We thus aim to quantify the degree of dependence through the casewise concordance function and show a significant genetic component.

  6. Spina bifida occulta and monozygotic twins.

    Science.gov (United States)

    Spacca, Barbara; Buxton, Neil

    2008-10-01

    Central nervous system maldevelopment can have different presentations in twins. We report on a case of different presentations of spina bifida occulta in monozygotic twins. The first twin presented at birth with a lipomyelomeningocele; a tethered cord was diagnosed in the second twin at 2 years of age. Neural tube defects (NTDs) are a group of common congenital malformations of the brain and spine generated during neurulation. The genetic basis of this process is still not well known. Whenever an NTD is diagnosed in one of a pair of twins, the other twin should also be evaluated for NTDs.

  7. [Twin dystocia: about one case of compaction].

    Science.gov (United States)

    Desseauve, D; Voluménie, J-L

    2008-09-01

    We report a case of twin dystocia during the evacuation of full-term fetus both in cephalic presentation. A low-outlet forceps for second-phase arrest was performed for the first twin but the head remained stuck to maternal perineum, mimicking a shoulder dystocia. Digital examination found a twin compaction, that is the presence of the second twin's fetal head at the level of the first twin's chest. The discrepancy between fetal weights and the use of forceps could favor this rare complication. Various maneuvers were described previously attempted to solve the problem. Forcing back the second head may help to achieve delivery of the first twin.

  8. [The Chinese national twin cohort: an update].

    Science.gov (United States)

    Gao, W J; Li, L M

    2017-06-10

    The importance of large cohort studies in China has been increasingly emphasized. As special group in the population, twins provide excellent natural resources since they share the same birthday, maternal intrauterine environment and early family environment. Twin cohorts are unique for and benefit on controlling the confounding factors as age, gender (same-sex twins), genetic background (monozygotic twins) or early environment (being raised together) in the etiological studies on complex diseases. In this review, we briefly introduce the objectives, current situation, challenges and opportunities related to the Chinese national twin cohort, focusing on the characteristics of twins that are different from other groups in the general population.

  9. TWIN GESTATION : A CHALLENGING TASK

    Directory of Open Access Journals (Sweden)

    Vrunda V.

    2015-03-01

    Full Text Available INTRODUCTION In the era of modern obstetrics when multiple pregnancies are on increase it is very important to know the incidence and obstetric outcomes of twin deliveries. Twin pregnancy is still associated with increased maternal and perinatal morbidity and mortality as well as healthcare costs . ( 1 , 2 , 3 MATERIALS AND METHODS : This is a r etrospective study of twin deliveries done in the rural medical college teaching hospital over a period of 3 years. RESULTS : During the study period , incidence of twin delivery was 19.37 per 1000 deliveries. Majority cases of twins were young primies in ag e group (20 - 30 years . Preterm delivery occurred in 68% cases and was therefore , the most common morbidity followed by anaemia (38% and PIH (28%. Most common presentation was vertex (66% and malpresentation were present in 44% of cases. 54% were deliver ed by caesarean section. In 88% second baby delivered within 15 minutes. Uterine inertia , PROM , fetal distress , PPH , cord prolapse and abruption were complications during labour. There was no maternal mortality in present study. Average weight of first baby was 1679.63 gms and 2 nd baby was 1586.94 gms. Perinatal mortality of 1 st baby was 27.55 for 1 st baby and 37.25% for 2 nd baby . Average gestational age for patients in whom cervical encirclage was done was 34 weeks. CONCLUSION: P reterm delivery and low birth weight babies are main challenges to the obstetrician. Incidence of LSCS is quite high with malpresentation of leading (twin A baby is a major indication for LSCS . The use of antenatal care services and good intrapartum mana gement will help improve outcome in twin pregnancies.

  10. ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption and Reaction Process

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seungyeol; Lee, D. H.; Ryu, S. O.; Chang, Chih-hung

    2010-05-20

    In this article, we reported a spin successive ionic layer adsorption and reaction (SILAR) method for the first time. ZnS thin films were deposited by spin SILAR using ZnCl2 and Na2S aqueous precursor solutions at room temperature and atmosphere pressure. The optical, structural, and morphological characterizations of the films were studied by scanning electron microscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV/visible spectroscopy. Smooth (average roughness <3 nm), uniform, and highly transparent ZnS (transmittance of over 90% in the visible band) thin films could be successfully deposited using this technique with shorter cycle time and much less solvent usage.

  11. Synthesis and investigation of optical properties of ZnS nanostructures

    Indian Academy of Sciences (India)

    Neslihan Üzar; M Çetin Arikan

    2011-04-01

    Structural characterizations of wurtzite zinc sulfide (ZnS) nanostructures synthesized by vapour–liquid–solid technique (VLS) were carried out by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analyses. Spectral dependence of photoluminescence (PL) was also carried out for optical characterization. PL results indicate that the bandgap energy of bulk ZnS which is 3.68 eV at room temperature changes from 3.7 eV to 3.72 eV depending on the size of the structures. We also supported these results by calculating the bandgap energies theoretically with using the infinite potential well approximation for 1D structures.

  12. An investigation on the pressure-induced phase transition of nanocrystalline ZnS

    CERN Document Server

    Pan Yue Wu; Dong Shu Shan; Cui Qi Liang; Zhang Wei; LiuXiZhe; LiuJing; Liu Bing Bing; Gao Chun Xi; Zou Guang Tian

    2002-01-01

    An in situ energy dispersive x-ray diffraction study on nanocrystalline ZnS was carried out under high pressure up to 30.8 GPa by using a diamond anvil cell. The phase transition from the wurtzite to the zinc-blende structure occurred at 11.5 GPa, and another obvious transition to a new phase with rock-salt structure also appeared at 16.0 GPa - which was higher than the value for the bulk material. The bulk modulus and the pressure derivative of nanocrystalline ZnS were derived by fitting the Birch-Murnaghan equation. The resulting modulus was higher than that of the corresponding bulk material, indicating that the nanomaterial has higher hardness than the bulk material.

  13. Site spectroscopy of Eu3+ doped- ZnS nanocrystals embedded in sodium carboxymethyl cellulose matrix

    Science.gov (United States)

    Ahemen, I.; Meludu, O.; Dejene, F. B.; Viana, B.

    2016-11-01

    The work investigates the incorporation of Eu3+ ion in ZnS crystal through spectroscopic studies. ZnS: Eu3+ nanocrystals was synthesized via the precipitation technique. Elemental composition analysis indicates a non-stoichiometric distribution between Zn and S. X-ray diffraction studies show lattice expansion demonstrating that Eu3+ ions were incorporated in the host lattice. Annealing temperature gave rise to lattice contraction relative to the as-synthesized indicating a partial expulsion of the ion from the crystal due to heat treatment. Eu3+ ions site symmetry probing from optical features show that trivalent europium were situated both at the nanocrystals surface and at the Zn2+ ion site. Weak energy transfer from host to activator ion occurred probably mainly through exchange interaction and the transfer process was defect mediated.

  14. Influence of Rinse on Self-Activated Luminescence in ZnS Nanocrystallite

    Institute of Scientific and Technical Information of China (English)

    张晓波; 宋宏伟; 于立新; 王铁; 谢玉华; 王晓君

    2004-01-01

    The self-activated(SA) luminescence in ZnS nanoparticles was studied by comparing the UV-light irradiation induced spectral change, Raman spectra, and EPR spectra of the un-rinsed and rinsed samples. The results show that the SA centers prefer to occupy the sites near the surface and that the donor of SA emission may be related to organic functional groups such as -OH, -CH3, and -COO. The EPR signals are enhanced remarkably in the rinsed nanoparticles comparing with that in the un-rinsed ones. It is believed that organic functional groups physically combine with the surface dangling bonds of ZnS nanoparticles, leading the nonradiative transition channels to decrease, and thus the SA emission to increase.

  15. EPR study of ZnS: Mn2 + nanocrystals and pyrex glasses

    Institute of Scientific and Technical Information of China (English)

    刘俊业; 刘春旭; 郑荧光; 李丹; 窦恺; 许武; 虞家琪

    1999-01-01

    Pyrex glasses with different ZnS: Mn2+ contents were prepared by melting method. It has been found that Mn ion may occupy two sites: (Mn2+)sub and (Mn2+)int from photoluminescene (PL) and photoluminescence excitation (PLE) spectra. The results were confirmed by the further electron paramagnetic resonance (EPR) experiments and the three types of states (Mn2+)sub, (Mn2+)int and Mn clusters were identified. It was observed that the gfactor and the hyperfine structure (HFS) constant increase with the decreasing size of nanocrystallite. This may result from hybridization of sp3 electron states of ZnS and 3d5 electron states of Mn by the effects of quantum confinement and the surface states.

  16. Structure and optical properties of ZnS thin films grown by glancing angle deposition

    Science.gov (United States)

    Wang, Sumei; Fu, Xiaoyong; Xia, Guodong; Wang, Jianguo; Shao, Jianda; Fan, Zhengxiu

    2006-10-01

    The glancing angle deposition (GLAD) technique was used to deposit ZnS films by electron beam evaporation method. The cross sectional scanning electron microscopy (SEM) image illustrated a highly orientated microstructure composed of slanted column. The atomic force microscopy (AFM) analysis indicated that incident flux angle had significant effects on the nodule size and surface roughness. Under identical nominal thickness, the actual thickness of the GLAD films is related to the incident flux angle. The refractive index and in-plane birefringence of the GLAD ZnS films were discussed, and the maximum birefringence Δ n = 0.036 was obtained at incident flux angle of α = 80°. Therefore, the glancing angle deposition technique is a promising way to create a columnar structure with enhanced birefringent property.

  17. Characterization of ZnS nanoparticles synthesized by co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    Parvaneh Iranmanesh; Samira Saeedni; Mohsen Nourzpoor

    2015-01-01

    ZnS nanoparticles are prepared by homogeneous chemical co-precipitation method using EDTA as a stabilizer and capping agent. The structural, morphological, and optical properties of as-synthesized nanoparticles are investigated us-ing x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible (UV-Vis) absorption, and photoluminescence spectroscopy. The x-ray diffraction pattern exhibits a zinc-blended crystal structure at room temperature. The average particle size of the nanoparticles from the scanning electron microscopy image is about 50 nm. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The photoluminescence spectrum of ZnS nanoparticles shows a blue visible spectrum.

  18. Mechanisms of the degradation of Schottky-barrier photodiodes based on ZnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Korsunska, N. E.; Shulga, E. P.; Stara, T. R., E-mail: stara-t@ukr.net; Litvin, P. M.; Bondarenko, V. A. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine)

    2016-01-15

    The effect of ultraviolet (UV) illumination on the electrical and spectral characteristics of Schottky-barrier photodiodes based on ZnS single crystals is studied. It is found that irradiation deteriorates their photosensitivity and changes the current–voltage and capacitance–voltage characteristics and the surface profile of the blocking electrode. It is shown that the main reason for a decrease in the photosensitivity of the diodes is the photoinduced drift of mobile donors in the electric field of the barrier. This drift depends on the crystallographic orientation of the surface being irradiated. Another photoinduced process observed in the diodes is photolysis of the ZnS crystal. This process mainly determines the change in the electrical characteristics of the diodes and in the surface profile of the electrode at an insignificant change in the photosensitivity.

  19. Two-Photon Absorption Properties of Mn-Doped ZnS Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jia-Jin; ZHANG Gui-Lan; GUO Yang-Xue; WANG Xiao-Yan; CHEN Wen-Ju; ZHANG Xiao-Song; HUA Yu-Lin

    2006-01-01

    @@ We investigate the two-photon absorption and nonlinear refractive index properties of a quantum dot material based on ZnS nanocrystals doped with Mn isoelectronic impurities, using the Z-scan technique with 532nm picosecond laser pulses. The Mn-doped ZnS quantum dots have an average two-photon absorption cross section as high as 13600 Goeppert-Mayer units, which turn it into a very promising material for fluorescent label and imaging in biological samples. In addition, we also found that the two-photon absorption coeflicient initially increases and then decreases with increasing pulse irradiance, which demonstrates the presence of the higherorder nonlinearity under the strong excitation.

  20. Synthesis and Crystal Structure of Compound [ZnS6 (C12H8N2)

    Institute of Scientific and Technical Information of China (English)

    陈之荣; 李健晖; 李鸿钧; 苏卫平; 曹荣

    2000-01-01

    The title compound ZnS6(C12H8N2) was obtained by reaction of zinic powder with sulfur and 1,10-phenathtroline in DMF solvent, and its structure has been determined by single crystal X-ray diffraction analysis. The crystal data for the compound: triclinic, P-1, Z = 2, a = 8. 159(2), b = 9. 485(2), c = 11. 997(2)A , α =110. 00(3)°,β = 99.22(3)°, γ = 100.57(3)°, V = 832A3, Dc =1. 748g/cm3, μ(MoKa)=0. 2219 cm-1, F(000)=440. The structure was refined to R = 0. 0723 and Rw = 0. 0865 for 1427 independent observed reflections. The tilte crystal consists of a discrete molecules, in which the core of ZnS2N2 shows a distorted tetrahedral geometry.

  1. Structural, morphological and optical properties of Mn doped ZnS nanocrystals

    Directory of Open Access Journals (Sweden)

    V. D. Mote

    2013-12-01

    Full Text Available Mn doped ZnS samples with composition formula Zn1-xMn xS where x = 0, 0.02, 0.05 and 0.10 were prepared by chemical method. Samples characterized for its structural, morphological and optical properties by X-ray diffraction (XRD, transmission electron microscope (TEM, Fourier transform infrared spectroscopy (FTIR and UV-vis spectrometry. XRD patterns confirm cubic zinc blend structure with no secondary phases for pure and Mn doped ZnS. Lattice constant value increases slightly with Mn concentration due to the substitution of Mn in ZnO lattice. TEM images show that the particles have spherical in shape with an average particle size 3-4 nm. The chemical species of the grown crystals are identified by FTIR spectra. Optical absorption spectra show decrement in band gap with increasing Mn concentration.

  2. Electron lucky-drift impact ionization coefficients of ZnS : Mn

    Indian Academy of Sciences (India)

    F M Abou El-Ela

    2004-11-01

    Fit of the experimental data of ZnS: Mn by a modified lucky-drift formula has been performed using the least square algorithm. The fit agrees well with the experimental data only at high field. The best fitting parameters at high field are the mean free path of order 102.74 Å and Keldysh factor, 0 = 0.0138. A generalized Keldysh formula has been used, due to introduction of a soft threshold factor. The soft lucky-drift theory can also be used to calculate the impact ionization coefficients of high electron energy of ZnS: Mn without losing its physical significance compared to full band-structure Monte Carlo calculation with a remarkably reduced amount of computer resources. The curvature on semi-log plot of experimental impact ionization coefficient against the inverse of electric field is different from what is observed for other materials at low electric fields due to impact ionization of deep level impurities.

  3. Laser-induced down-conversion parameters of singly and doubly doped ZnS phosphors

    Indian Academy of Sciences (India)

    H S Bhatti; Rajesh Sharma; N K Verma

    2005-09-01

    Singly and doubly doped ZnS phosphors have been synthesized using flux method. Laser-induced photoluminescence has been observed in ZnS-doped phosphors when these were excited by the pulsed UV N2 laser radiation. Due to down-conversion phenomenon, fast phosphorescence emission in the visible region is recorded in milliseconds time domain for ZnS:Mn while in the case of ZnS:Mn:killer (Fe, Co and Ni) the lifetime reduces to microseconds time domain. Experimentally observed luminescent emission parameters of excited states such as, lifetimes, trap-depth values and decay constants have been reported here at room temperature. The high efficiency and fast recombination times observed in doped ZnS phosphors make these materials very attractive for optoelectronic applications.

  4. 2D double-layer-tube-shaped structure Bi{sub 2}S{sub 3}/ZnS heterojunction with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaoming, E-mail: dawn1026@163.com [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an University, Yanan, Shaanxi 716000 (China); Wang, Zihang; Fu, Feng [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an University, Yanan, Shaanxi 716000 (China); Li, Xiang [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an University, Yanan, Shaanxi 716000 (China); Department of Chemical Engineering, Northwest University, Xian, Shaanxi 710069 (China); Li, Wenhong [Department of Chemical Engineering, Northwest University, Xian, Shaanxi 710069 (China)

    2015-10-01

    Bi{sub 2}S{sub 3}/ZnS heterojunction with 2D double-layer-tube-shaped structures was prepared by the facile synthesis method. The corresponding relationship was obtained among loaded content to phase, morphology, and optical absorption property of Bi{sub 2}S{sub 3}/ZnS composite. The results shown that Bi{sub 2}S{sub 3} loaded could evidently change the crystallinity of ZnS, enhance the optical absorption ability for visible light of ZnS, and improve the morphologies and microstructure of ZnS. The photocatalytic activities of the Bi{sub 2}S{sub 3}/ZnS sample were evaluated for the photodegradation of phenol and desulfurization of thiophene under visible light irradiation. The results showed that Bi{sub 2}S{sub 3} loaded greatly improved the photocatalytic activity of ZnS, and the content of loaded Bi{sub 2}S{sub 3} had an impact on the catalytic activity of ZnS. Moreover, the mechanism of enhanced photocatalytic activity was also investigated by analysis of relative band positions of Bi{sub 2}S{sub 3} and ZnS, and photo-generated hole was main active radicals during photocatalytic oxidation process.

  5. A novel drug delivery of 5-fluorouracil device based on TiO{sub 2}/ZnS nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça Faria, Henrique Antonio, E-mail: henrique.fisica@ifsc.usp.br [Institute of Physics and Chemistry, Federal University of Itajubá (UNIFEI), Av. BPS, 1303, Pinheirinho, Itajubá, MG, PO Box 50, CEP: 37500-903 (Brazil); Nanomedicine and Nanotoxicology Laboratory, São Carlos Institute of Physics, University of São Paulo. Av. Trabalhador São-carlense, 400, Arnold Schimidt, São Carlos, SP CEP: 13566-590 (Brazil); Alencar de Queiroz, Alvaro Antonio, E-mail: alencar@unifei.edu.br [Institute of Physics and Chemistry, Federal University of Itajubá (UNIFEI), Av. BPS, 1303, Pinheirinho, Itajubá, MG, PO Box 50, CEP: 37500-903 (Brazil)

    2015-11-01

    The structural and electronic properties of titanium oxide nanotubes (TiO{sub 2}) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO{sub 2} has typically been within ultraviolet spectrum. In this study, the surface modification of TiO{sub 2} nanotubes with ZnS quantum dots was found to produce a red shift in the ultra violet emission band. The TiO{sub 2} nanotubes used in this work were obtained by sol–gel template synthesis. The ZnS quantum dots were deposited onto TiO{sub 2} nanotube surface by a micelle-template inducing reaction. The structure and morphology of the resulting hybrid TiO{sub 2}/ZnS nanotubes were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. According to the results of fluorescence spectroscopy, pure TiO{sub 2} nanotubes exhibited a high emission at 380 nm (3.26 eV), whereas TiO{sub 2}/ZnS exhibited an emission at 410 nm (3.02 eV). The TiO{sub 2}/ZnS nanotubes demonstrated good bio-imaging ability on sycamore cultured plant cells. The biocompatibility against mammalian cells (Chinese Hamster Ovarian Cells—CHO) suggesting that TiO{sub 2}/ZnS may also have suitable optical properties for use as biological markers in diagnostic medicine. The drug release characteristic of TiO{sub 2}/ZnS nanotubes was explored using 5-fluorouracil (5-FU), an anticancer drug used in photodynamic therapy. The results show that the TiO{sub 2}/ZnS nanotubes are a promising candidate for anticancer drug delivery systems. - Highlights: • TiO{sub 2}/ZnS nanotubes showed a redshift in fluorescence spectrum. • Cytotoxicity against mammalian cells revealed biocompatibility of the nanotubes. • TiO{sub 2}/ZnS proved an efficient delivery system for anti-tumor 5-fluorouracil.

  6. ZnS semiconductor quantum dots production by an endophytic fungus Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Uddandarao, Priyanka, E-mail: uddandaraopriyanka@gmail.com; B, Raj Mohan, E-mail: rajmohanbala@gmail.com

    2016-05-15

    Graphical abstract: - Highlights: • Endophytic fungus Aspergillus flavus isolated from a medicinal plant Nothapodytes foetida was used for the synthesis of quantum dots. • Morris-Weber kinetic model and Lagergren's pseudo-first-order rate equation were used to study the biosorption kinetics. • Polycrystalline ZnS quantum dots of 18 nm and 58.9 nm from TEM and DLS, respectively. - Abstract: The development of reliable and eco-friendly processes for the synthesis of metal sulphide quantum dots has been considered as a major challenge in the field of nanotechnology. In the present study, polycrystalline ZnS quantum dots were synthesized from an endophytic fungus Aspergillus flavus. It is noteworthy that apart from being rich sources of bioactive compounds, endophytic fungus also has the ability to mediate the synthesis of nanoparticles. TEM and DLS revealed the formation of spherical particles with an average diameter of about 18 nm and 58.9 nm, respectively. The ZnS quantum dots were further characterized using SEM, EDAX, XRD, UV–visible spectroscopy and FTIR. The obtained results confirmed the synthesis of polycrystalline ZnS quantum dots and these quantum dots are used for studying ROS activity. In addition this paper explains kinetics of metal sorption to study the role of biosorption in synthesis of quantum dots by applying Morris-Weber kinetic model. Since Aspergillus flavus is isolated from a medicinal plant Nothapodytes foetida, quantum dots synthesized from this fungus may have great potential in broad environmental and medical applications.

  7. Controlled Growth and Field-emission Application of 1D ZnS Nanostructures

    Institute of Scientific and Technical Information of China (English)

    X.S.Fang; Y.Bando; D.Golberg

    2007-01-01

    1 Results One-dimensional (1D) nanostructures have recently stimulated great interest due to their potential value for understanding fundamental physical concepts and for applications in constructing nanoscale electric and optoelectronic devices since the discovery of carbon nanotubes[1]. ZnS is one of the first semiconductors discovered and probably one of the most important materials in the electronics industry with a wide range of applications[2]. Controllable growth of nanostructures is a crucial is...

  8. Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs

    Science.gov (United States)

    Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.

    1988-01-01

    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.

  9. Microphysics of KCl and ZnS Clouds on GJ 1214 b

    Science.gov (United States)

    Gao, Peter; Benneke, Björn

    2016-10-01

    Clouds are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds are likely composed of exotic condensates such as salts, sulfides, silicates, and metals. Treatment of these clouds in current exoplanet atmosphere models do not consider the microphysical processes that govern their formation, evolution, and distribution, such as nucleation and condensation/evaporation, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work, we apply a 1D microphysical cloud model to GJ 1214 b and investigate the properties of potassium chloride (KCl) and zinc sulfide (ZnS) clouds as a function of atmospheric metallicity, the intensity of vertical mixing, and the mode of nucleation. Our cloud model has been widely applied to planets in our own Solar System, and as such our work bridges a gap between planetary science and exoplanets. Using model background atmospheres calculated by the SCARLET code, we find that (1) the cloud distribution is not significantly affected by metallicity unless [Fe/H] > 2, (2) higher intensities of vertical mixing leads to more extended cloud decks, more cloud particles at all altitudes, and smaller mean particle radii, (3) the high surface energy of solid ZnS prevents the homogeneous nucleation of pure ZnS cloud particles, such that KCl clouds dominate; solid ZnS can only manifest by nucleating onto pre-existing surfaces (heterogeneous nucleation), such as KCl cloud particles, resulting in mixed clouds, and (4) formation of KCl clouds results in a KCl vapor abundance above the cloud deck ~5 orders of magnitude less than that calculated from equilibrium chemistry. We also examine the transmission spectra that would result from these different cases. Extension of this model to other planets and condensates will shed light on the observed continuum in the "cloudiness

  10. ZnS Semiconductive Powder Doped with Transition Metal Ions via Mechanochemical Synthesis Technique

    Institute of Scientific and Technical Information of China (English)

    R.F. Louh; C.K. Lin; Oscar Lin; G.S. Chen; C.C. Chan

    2004-01-01

    The solid state synthesis can be carried out by using the initial pure metal zinc and inorganic sulfur powder mixtures by means of the mechanochemical synthesis route. The completion of solid state reaction between pure zinc and sulfur powder to produce c-ZnS and h-ZnS phases via such a route was rather fast, as compared to other non-sulfide systems by the similar method. The study was aimed to investigate the microstructure development and phase formation through the solid state reaction by controlling the processing parameters involved in this process including grinding media to powder weight ratio, solid state reaction duration, reaction atmosphere, stoichiometric ratio of zinc and sulfur elements, grinding media and choice of minor additives such as teflon-based polymeric lubricants and transition metal dopants (Mn, Cu). Both as-synthesized powders and heat-treated ZnS materials with various stoichiometric ratios were characterized by XRD, EXAFS and XANES analysis. The interesting results from X-ray absorption spectroscopy (XAS) would provide us some strong evidence whether stoichiometric and non-stoichiometric ZnS material can be successfully formed. The minor amount (0.5wt%)of Mn+2 or Cu+2 ion dopants added to the powder batch with the Zn/S stoichiometric ratio between1.00 to 1.05 was found to favor the reaction rate in the mechanochemical synthesis. Moreover, the obtained results of ZnS phase development under reaction conditions and different transition metal dopants in this study would imply that synthesis of other kind of sulfide compounds can be achieved using the demonstrated technique.

  11. Effect of laser light on the sticking coefficient in ZnS thin-film growth

    Science.gov (United States)

    Arnone, C.; Daneu, V.; Riva-Sanseverino, S.

    1980-12-01

    Some preliminary results are presented concerning an effect of laser light (λ=4880 Å) on the growth of an evaporated ZnS film. We observe an increase in thickness in the region of the film illuminated by laser light. The spatial resolution is high and the observed phenomenon is not thermal in origin. A simple and unique method for investigating the dynamics of the effect during its evolution is described.

  12. Analysis of thermal shock resistance of CVD ZnS dome

    Science.gov (United States)

    Zhang, Daijun; Luo, Haibo; Zhou, Peipei; Hou, Xinglin

    2016-10-01

    Since the dome experiences the convective heat loading, thermal stress will be generated in the thickness direction. Thus, estimation of the thermal shock and analysis of the thermal shock resistance of the dome are the key to the design of the dome. In this paper, thermal shock resistance of CVD ZnS dome is analysed based on the flight condition of 6000m altitude and 3.0 Mach. We obtained the critical Reynolds number through a rockets pry experiment, which deduced that there exists a transition from laminar flow to turbulent flow at somewhere over the dome. We calculated the heat transfer coefficient over dome through heat transfer coefficient engineering formula of high-speed sphere with turbulent boundary layer near the stagnation point. The largest heat transfer coefficient is 2590W/(m2.K). Then, we calculated the transient thermal stress of dome by using the finite element method. Then we obtained the temperature and thermal stress distribution of different time through the direction of thickness. In order to obtain the mechanical properties of CVD ZnS at high temperatures, the 3-point bending method was used to test the flexure strength of CVD ZnS at different temperature. When compared the maximum thermal stress with flexure strength at different temperature, we find that the safety factors were not less than 1.75. The result implied that the dome has good safety margin under the proposed application condition. Through the above test and analysis, we can get the conclusion that the thermal shock resistance of the CVD ZnS dome satisfied the requirements of flight conditions.

  13. The Cathodoluminescence of Cleartran: A Novel Form of Polycrystalline ZnS.

    Science.gov (United States)

    1986-12-01

    Theory and Summary of Previous Work. . . . . . . 11 Crystallography of ZnS . . . . . . . . . . . . 11 Crystal Growth Techniques. . . . . . . . . . . 15...perceived that his crystals were phosphorescent. It was not until 1888 that Verneuil ascribed the phosphorescence to the presence of a "foreign...photoconductivity studies of CdS (3). At that time, crystal growth techniques began to improve and single crystals of a variety of II-VI compounds became

  14. Twin-twin transfusion syndrome: neurodevelopmental screening test

    Directory of Open Access Journals (Sweden)

    Amabile Vessoni Arias

    2015-03-01

    Full Text Available Objective To assess the neurodevelopmental functions (cognition, language and motor function of survivors of twin-twin transfusion syndrome (TTTS. Method Observational cross-sectional study of a total of 67 monochorionic diamniotic twins who underwent fetoscopic laser coagulation (FLC for treatment of TTTS. The study was conducted at the Center for Investigation in Pediatrics (CIPED, Universidade Estadual de Campinas. Ages ranged from one month and four days to two years four months. Bayley Scales of Infant and Toddler Development Screening Test-III, were used for evaluation. Results Most children reached the competent category and were classified as having appropriate performance. The preterm children scored worse than term infants for gross motor subtest (p = 0.036. Conclusion The majority of children reached the expected development according to their age. Despite the good neurodevelopment, children classified at risk should be monitored for development throughout childhood.

  15. Lattice dislocation in Si nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.co [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Taha, H.T. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)

    2009-12-15

    Modified formulas were used to calculate lattice thermal expansion, specific heat and Bulk modulus for Si nanowires with diameters of 115, 56, 37 and 22 nm. From these values and Gruneisen parameter taken from reference, mean lattice volumes were found to be as 20.03 A{sup 3} for the bulk and 23.63, 29.91, 34.69 and 40.46 A{sup 3} for Si nanowire diameters mentioned above, respectively. Their mean bonding length was calculated to be as 0.235 nm for the bulk and 0.248, 0.269, 0.282 and 0.297 nm for the nanowires diameter mentioned above, respectively. By dividing the nanowires diameter on the mean bonding length, number of layers per each nanowire size was found to be as 230, 104, 65 and 37 for the diameters mentioned above, respectively. Lattice dislocations in 22 nm diameter wire were found to be from 0.00324 nm for the 1st central lattice to 0.2579 nm for the last surface lattice. Such dislocation was smaller for larger wire diameters. Dislocation concentration found to change in Si nanowires according to the proportionalities of surface thickness to nanowire radius ratios.

  16. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Science.gov (United States)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  17. Surface plasmon resonance in nanostructured Ag incorporated ZnS films

    Directory of Open Access Journals (Sweden)

    S. R. Chalana

    2015-10-01

    Full Text Available Silver incorporated zinc sulfide thin films are prepared by RF magnetron sputtering technique and the influence of silver incorporation on the structural, optical and luminescence properties is analyzed using techniques like grazing incidence X-Ray diffraction (GIXRD, atomic force microscopy (AFM, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDS, micro-Raman spectroscopy, UV-Vis spectroscopy and laser photoluminescence spectroscopy. XRD analysis presents hexagonal wurtzite structure for the films. A reduction of crystallinity of the films is observed due to Ag incorporation. The Raman spectral analysis confirms the reduction of crystallinity and increase of strain due to the Ag incorporation. AFM analysis reveals a rough surface morphology for the undoped film and Ag incorporation makes the films uniform, dense and smooth. A blue shift of band gap energy with increase in Ag incorporation is observed due to quantum confinement effect. An absorption band (450-650 nm region due to surface plasmon resonance of the Ag clusters present in the ZnS matrix is observed for the samples with higher Ag incorporation. The complex dielectric constant, loss factor and distribution of volume and surface energy loss of the ZnS thin films are calculated. Laser photoluminescence measurements gives an intense bluish green emission from the ZnS films and a quenching of the PL emission is observed which can be due to the metal plasmonic absorption and non-radiative energy transfer due to Ag incorporation.

  18. Synthesis mechanism of sono-chemically prepared mesoporous ZnS nanoparticles

    Science.gov (United States)

    Motejadded Emrooz, H. B.; Jalaly, M.

    2017-03-01

    The mechanism of sono-chemically synthesized mesoporous ZnS nanoparticles has been investigated. ZnS nanoparticles were synthesized with a facile and quick method. The sonication process was carried out for several times up to 60 min. The synthesized particles have been characterized with scanning electron microscopy, transmission electron microscopy, high resolution x-ray diffraction, UV–visible technique, diffuse reflectance spectroscopy, Brunauer–Emmett–Teller and Fourier transformation infrared spectroscopy. Based on x-ray diffraction patterns, crystallite size and lattice strain increase with sonication time. Adsorption–desorption results showed that applying the sono-chemistry synthesizing method in the aqueous atmosphere will cause a mesoporous structure. The obtained specific surface area of the synthesized mesoporous ZnS nanoparticles varied from 53 to 58 m2 · g‑1. Also the surface areas created from the porosity of the particles varied from 27 to 29 m2 · g‑1. Regarding these results, the mechanism of porosity formation during synthesis of nanoparticles has been explained. Photocatalytic behavior of the synthesized particles has been investigated for degradation of methylene blue from aqueous solution. Factors affecting this behavior have been discussed and it was found that interaction between opposing factors caused the specimen synthesized with 40 min sonication time has the best methylene blue degradation efficiency.

  19. Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles

    Science.gov (United States)

    Khaparde, Rohini; Acharya, Smita

    2016-06-01

    Isovalent (Mn, Cd, Cu, Co)-doped-ZnS nanoparticles having size vary in between 2 to 5 nm are synthesized by co-precipitation route. Their photocatalytic activity for decoloration of Cango Red and Malachite Green dyes is tested in visible radiation under natural conditions. Structural and morphological features of the samples are investigated by X-ray diffraction, Raman spectroscopy, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and UVsbnd Vis spectrometer. Single phase zinc blende structure of as-synthesized undoped and doped-ZnS is confirmed by XRD and revealed by Rietveld fitting. SEM and TEM images show ultrafine nanoparticles having size in the range of 2 to 5 nm. UV-Vis absorption spectra exhibit blue shift in absorption edge of undoped and doped ZnS as compared to bulk counterpart. The photocatalytic activity as a function of dopant concentration and irradiation time is systematically studied. The rate of de-coloration of dyes is detected by UVsbnd Vis absorption spectroscopy and organic dye mineralization is confirmed by table of carbon (TOC) study. The photocatalytic activity of Mn-doped ZnS is highest amongst all dopants; however Co as a dopant is found to reduce photocatalytic activity than pure ZnS.

  20. Surface plasmon resonance in nanostructured Ag incorporated ZnS films

    Energy Technology Data Exchange (ETDEWEB)

    Chalana, S. R.; Mahadevan Pillai, V. P., E-mail: vpmpillai9@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Thiruvananthapuram– 695581, Kerala (India); Ganesan, V. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore- 452017, Madhyapradesh (India)

    2015-10-15

    Silver incorporated zinc sulfide thin films are prepared by RF magnetron sputtering technique and the influence of silver incorporation on the structural, optical and luminescence properties is analyzed using techniques like grazing incidence X-Ray diffraction (GIXRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), micro-Raman spectroscopy, UV-Vis spectroscopy and laser photoluminescence spectroscopy. XRD analysis presents hexagonal wurtzite structure for the films. A reduction of crystallinity of the films is observed due to Ag incorporation. The Raman spectral analysis confirms the reduction of crystallinity and increase of strain due to the Ag incorporation. AFM analysis reveals a rough surface morphology for the undoped film and Ag incorporation makes the films uniform, dense and smooth. A blue shift of band gap energy with increase in Ag incorporation is observed due to quantum confinement effect. An absorption band (450-650 nm region) due to surface plasmon resonance of the Ag clusters present in the ZnS matrix is observed for the samples with higher Ag incorporation. The complex dielectric constant, loss factor and distribution of volume and surface energy loss of the ZnS thin films are calculated. Laser photoluminescence measurements gives an intense bluish green emission from the ZnS films and a quenching of the PL emission is observed which can be due to the metal plasmonic absorption and non-radiative energy transfer due to Ag incorporation.

  1. Thickness effect on the microstructure, morphology and optoelectronic properties of ZnS films

    Science.gov (United States)

    Prathap, P.; Revathi, N.; Venkata Subbaiah, Y. P.; Ramakrishna Reddy, K. T.

    2008-01-01

    Thin films of ZnS with thicknesses ranging from 100 to 600 nm have been deposited on glass substrates by close spaced thermal evaporation. All the films were grown at the same deposition conditions except the deposition time. The effect of thickness on the physical properties of ZnS films has been studied. The experimental results indicated that the thickness affects the structure, lattice strain, surface morphology and optoelectronic properties of ZnS films significantly. The films deposited at a thickness of 100 nm showed hexagonal structure whereas films of thickness 300 nm or more showed cubic structure. However, coexistence of both cubic and hexagonal structures was observed in the films of 200 nm thickness. The surface roughness of the films showed an increasing trend at higher thicknesses of the films. A blue-shift in the energy band gap along with an intense UV emission band was observed with the decrease of film thickness, which are ascribed to the quantum confinement effect. The behaviour of optical constants such as refractive index and extinction coefficient were analysed. The variation of refractive index and extinction coefficient with thickness was explained on the basis of the contribution from the packing density of the layers. The electrical resistivity as well as the activation energy were evaluated and found to decrease with the increase of film thickness. The thickness had a significant influence on the optical band gap as well as the luminescence intensity.

  2. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    Energy Technology Data Exchange (ETDEWEB)

    Hudlikar, Manish; Joglekar, Shreeram [University of Pune, Division of Biochemistry, Department of Chemistry (India); Dhaygude, Mayur [National Chemical Laboratory, Polymer Science and Engineering Division (India); Kodam, Kisan, E-mail: kodam@chem.unipune.ac.in [University of Pune, Division of Biochemistry, Department of Chemistry (India)

    2012-05-15

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S{sup -2}) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S{sup -2}) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S{sup -2}) ions.

  3. TWIN PREGNANCY WITH ACARDIUS ANCEPS

    Directory of Open Access Journals (Sweden)

    Padma

    2014-02-01

    Full Text Available Acardiac twin is an anomaly unique to monochorionic multiple pregnancies, characterized by formation of malformed fetus with an absent or rudimentary (nonfunctional heart. Acardiac twinning, often results from abnormal placental vascular anastomoses. A 20 year old primigravida admitted to the department of Obstetrics and Gynecology S .S. Medical College, Rewa, on 26th July 2012 at the gestation of 34 week with spontaneous monochorionic monoamniotic twin pregnancy and fetal acardius with oligohydramnios. Patient was taking her treatment from private Hospital; acardius was diagnosed at 27 week due to late booking. In view of oligohydramnios and hypoxic changes in color Doppler, elective LSCS was done on 28/7/13 at 34 week 2 day, after betnesol coverage. She delivered a live, healthy, female child with good APGAR score having apparently no congenital anomaly, with a birth weight of 2.3 kg .The other twin was fetus acardius, of about900 gm. with head and face partially developed . Upper limb was rudimentary and lower limb was partially developed and malformed. External genitalia were developed as female. Placenta was monochorionic and monoamniotic, weighing500 gm. The umbilical cord of the normal twin was20 cm with central attachment, while the other umbilical cord was10 cm long with peripheral attachment

  4. TwinMux Testing System

    CERN Document Server

    Wong, Wei Wen; CERN. Geneva. PH Department

    2015-01-01

    During the CERN summer school program, I joined the CMS Muon Drift Tube (DT) group, and mainly worked on two projects, which, both of them, are related to the electronics of a new data concentrator called the “TwinMux”. My first task within the TwinMux project was to build an integrated software test station in order to run several tests on the functionality of the TwinMux hardware. Essentially, I had to integrate existing testing scripts, adding several new ones, into a single user-friendly testing platform which can perform quick, convenient and automated hardware testing. Later, I was also involved in the design of the local technical triggering of the DT. Such system relies on some firmware functionality built in the TwinMux and controlled by software. I had attempted two different approaches to design the communication topology of all the 12 TwinMux cards in order to send a user-defined logical operation to the read-out electronics. The final goal of this system is to drive local trigger signal for...

  5. Synthesis and structural property of Si nanosheets connected to Si nanowires using MnCl{sub 2}/Si powder source

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Erchao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johuku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Ueki, Akiko [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Meng, Xiang [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johuku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Suzuki, Hiroaki [Graduate School of Engineering, Shizuoka University, 3-5-1 Johuku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Itahara, Hiroshi [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Tatsuoka, Hirokazu, E-mail: tatsuoka.hirokazu@shizuoka.ac.jp [Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johuku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan)

    2016-08-15

    Graphical abstract: Si nanosheets connected to Si nanowires synthesized using a MnCl{sub 2}/Si powder source with an Au catalyst avoid the use of air-sensitive SiH{sub 4} or SiCl{sub 4}. It was evident from these structural features of the nanosheets (leaf blade) with nanowires (petiole) that the nanosheets were formed by the twin-plane reentrant-edge mechanism. The feature of the observed lattice fringes of the Si(111) nanosheets was clearly explained by the interference with the extra diffraction spots that arose due to the reciprocal lattice streaking effect. - Highlights: • New Si nanosheets connected to Si nanowires were synthesized using MnCl{sub 2}/Si powders. • The synthesis method has benefits in terms of avoiding air sensitive SiH{sub 4} or SiCl{sub 4}. • Structural property and electron diffraction of the Si nanosheets were clarified. • Odd lattice fringes of the Si nanosheets observed by HRTEM were clearly explained. - Abstract: Si nanosheets connected to Si nanowires were synthesized using a MnCl{sub 2}/Si powder source with an Au catalyst. The synthesis method has benefits in terms of avoiding conventionally used air-sensitive SiH{sub 4} or SiCl{sub 4}. The existence of the Si nanosheets connected to the Si<111> nanowires, like sprouts or leaves with petioles, was observed, and the surface of the nanosheets was Si{111}. The nanosheets were grown in the growth direction of <211> perpendicular to that of the Si nanowires. It was evident from these structural features of the nanosheets that the nanosheets were formed by the twin-plane reentrant-edge mechanism. The feature of the observed lattice fringes, which do not appear for Si bulk crystals, of the Si(111) nanosheets obtained by high resolution transmission electron microscopy was clearly explained due to the extra diffraction spots that arose by the reciprocal lattice streaking effect.

  6. Complications arising in twin pregnancy: findings of prenatal ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Ah; Cho, Jeong Yeon; Lee, Young Ho; Song, Mi Jin; Min, Jee Yeon; Lee, Hak Jong; Han, Byoung Hee; Lee, Kyung Sang; Cho, Byung Jae; Chun, Yi Kyeong [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2003-03-01

    Multifetal gestations are high-risk pregnancies involving higher perinatal morbidity and mortality, and are subject to unique complications including twin oligohydramnios- polyhydramnios sequence, twin-to-twin transfusion syndrome, acardiac twins, conjoined twins, co-twin demise, and heterotopic pregnancies. The purpose of this study is to describe the prenatal ultrasonographic and pathologic findings of these complications.

  7. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  8. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  9. Breast-Feeding Twins: Making Feedings Manageable

    Science.gov (United States)

    ... more than one baby? Here's help breast-feeding twins or other multiples, from getting positioned and ensuring ... babies who are born prematurely, as are many twins and higher order multiples. Breast milk is easier ...

  10. Risk of Oral Clefts in Twins

    DEFF Research Database (Denmark)

    Grosen, Dorthe; Bille, Camilla; Petersen, Inge

    2011-01-01

    BACKGROUND:: Small studies have indicated that twinning increases the risk of oral cleft. METHODS:: We used data from a Danish national population-based cohort study to investigate whether twinning was associated with isolated oral cleft, and to estimate the twin probandwise concordance rate...... and heritability. Twins (207 affected/130,710) and singletons (7766 affected/4,798,526) born from 1936 through 2004 in Denmark were ascertained by linkage among the Danish Facial Cleft Database, the Danish Twin Registry, and the Civil Registration System. We computed oral cleft prevalence and prevalence proportion...... ratio for twins versus singletons, stratified for 3 subphenotypes. Probandwise concordance rates and heritability for twins were estimated for 2 phenotypes-cleft lip with or without cleft palate (CL/P) and cleft palate (CP). RESULTS:: The prevalence of oral cleft was 15.8 per 10,000 twins and 16.6 per...

  11. Having Twins? How to Stay Healthy

    Science.gov (United States)

    ... Listen Español Text Size Email Print Share Having Twins? How to Stay Healthy Page Content Article Body ... the eyes of obstetricians. Many would call a twin pregnancy a high-risk pregnancy , but don’t ...

  12. Nike Twins Seven Seven: Nigerian Batik Artist.

    Science.gov (United States)

    LaDuke, Betty

    1987-01-01

    Chronicles the personal and professional life of Nike Twins Seven Seven (born 1951), a Nigerian batik artist, and her husband, Twins Seven Seven, a musician-artist, both of whom have received international acclaim. (BJV)

  13. Preterm twin gestation and cystic periventricular leucomalacia

    NARCIS (Netherlands)

    Resch, B; Jammernegg, A; Vollaard, E; Maurer, U; Mueller, WD; Pertl, B

    2004-01-01

    Objective: To identify risk factors for the development of cystic periventricular leucomalacia (PVL) in twin gestation. Design: Retrospective case-control study. Setting: Tertiary care university hospital, Department of Paediatrics, Division of Neonatology, Graz, Austria. Patients: Preterm twin gest

  14. Nike Twins Seven Seven: Nigerian Batik Artist.

    Science.gov (United States)

    LaDuke, Betty

    1987-01-01

    Chronicles the personal and professional life of Nike Twins Seven Seven (born 1951), a Nigerian batik artist, and her husband, Twins Seven Seven, a musician-artist, both of whom have received international acclaim. (BJV)

  15. Twins or two single children

    Directory of Open Access Journals (Sweden)

    2002-08-01

    Full Text Available Based on Swedish register data, we compared the influence of a twin birth on the divorce risk with the influence of the sequential birth of two single children. The divorce risk for a woman with a very young child was lower than the risk for women without children or women with children older than 3.5 years. This behaviour was essentially independent of the number of children and whether or not the woman gave birth to twins. The effect of parity was much smaller than the effect of child age. The influence of twins on the divorce risk appeared to fall between that of a first and a second singleton.

  16. Twin TQFTs and Frobenius Algebras

    Directory of Open Access Journals (Sweden)

    Carmen Caprau

    2013-01-01

    Full Text Available We introduce the category of singular 2-dimensional cobordisms and show that it admits a completely algebraic description as the free symmetric monoidal category on a twin Frobenius algebra, by providing a description of this category in terms of generators and relations. A twin Frobenius algebra (C,W,z,z∗ consists of a commutative Frobenius algebra C, a symmetric Frobenius algebra W, and an algebra homomorphism z:C→W with dual z∗:W→C, satisfying some extra conditions. We also introduce a generalized 2-dimensional Topological Quantum Field Theory defined on singular 2-dimensional cobordisms and show that it is equivalent to a twin Frobenius algebra in a symmetric monoidal category.

  17. Interactions between semiconductor nanowires and living cells.

    Science.gov (United States)

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  18. Twins' injuries: genetic and environmental risks / twin research reports / human interest stories.

    Science.gov (United States)

    Segal, Nancy L

    2011-04-01

    The relative contributions of genetic and environmental factors to unintentional injuries are of interest to families with young twins. A recent study found that childhood injuries are explained mostly by child-specific environmental factors. Next, twin research reviews of the association between periodontal disease and cancer, secular trends in gestational age and birthweight, and language development in hearing and deaf co-twins are also summarized. Interesting reports of newborn twins, twin-like relationships, twin interactions and missed twin relationships are presented.

  19. The Fourth International Network of Twin Registries: Overview from Osaka/Research Reviews: Familial Fraternal Twinning; Twin Study of Masculine Faces; Physical Aggression and Epigenetics; Prenatal Education for Parents of Twins/Current Events: 2016 Guinness Book of World Records; Oldest Living Male Twins; Twins Reunited at Sixty-Nine; Panda Twins; Twins.com.

    Science.gov (United States)

    Segal, Nancy L

    2015-12-01

    The 4th International Network of Twin Registries (INTR) Consortium Meeting took place in Osaka, Japan, September 28-29, 2015. The venue was the Osaka Medical Center for Medical Innovation and Translational Research. An overview of presentations and other activities is provided. Next, 1930s research on familial fraternal twinning, preference for masculine faces, physical aggression and epigenetics, and a prenatal education program for parents of multiples are described. Current twin-related events include the 2016 Guinness Book of World Records (GWR), the oldest living male twins, newly reunited twins, the birth of panda twins and a controversial twin-based website.

  20. Twins reunited: scientific and personal perspectives/twin research studies: multiple birth effects on IQ and body size; life style, muscles, and metabolism; monochorionic dizygotic twin with blood chimerism; amniocentesis for twins/twins in the media: identical doctors; freedom fighter for twins; twin scholarships; Auguste and Jean-Felix Piccard; twins born apart.

    Science.gov (United States)

    Segal, Nancy L; Mulligan, Christy A

    2014-04-01

    A reunion of 38-year-old female monozygotic twins took place in Daegu, South Korea, on January 14, 2014. Scientific and personal perspectives on this extraordinary event are provided. A review of timely twin research follows, covering the effects of multiple births on IQ and body size, lifestyle and physical fitness associations, a rare case of a dizygotic twin with blood chimerism and definitional issues surrounding amniocentesis-related loss in multiple birth pregnancies. Interesting and informative mention of twins in the media includes twin doctors, a twin freedom fighter, the availability of college scholarships for twins, a new book about the Piccard family (two of whose members were twins), and co-twins born before and after the new year. A follow-up to a previous mention of identical twin biatheletes is also provided.

  1. Multiple rectal carcinoid tumors in monozygotic twins.

    Science.gov (United States)

    Doi, Momoko; Ikawa, Osamu; Taniguchi, Hiroki; Kawamura, Takuji; Katsura, Kanade

    2016-08-01

    We report multiple rectal carcinoid tumors in monozygotic twins who, respectively, had 42 and 36 carcinoid tumors in the lower rectum. This is the first report about carcinoid tumors in monozygotic twins. Both twins developed a similar number of rectal carcinoids with a similar distribution. Investigation of their genetic background may provide information about the origin of these tumors.

  2. Postpartum Mental State of Mothers of Twins

    Science.gov (United States)

    Brantmüller, Éva; Gyúró, Mónika; Galgán, Kitti; Pakai, Annamária

    2016-01-01

    Twin birth is a relevant risk factor for postnatal depression (PND). The primary objective of our study is to reveal the prevalence of suspected cases of depression and to identify some background factors among mothers of twins. We applied convenience sampling method within a retrospective, quantitative study among mothers given birth to twins for…

  3. A RARE CASE OF ACARDIAC TWIN

    OpenAIRE

    Padmaja; Nirmala,

    2015-01-01

    Fetus Acardiacus is a very rare manifestation of twin gestation . This happens due to TRAP sequence . That is Twin reversed arterial perfusion . In this case an amorphous mass was seen on a routine antenatal scan and followed as there was a live twin also . The case report highlights the importance of careful scanning and ...

  4. MIR phasing using merohedrally twinned crystals

    NARCIS (Netherlands)

    Terwisscha van Scheltinga, Anke C.; Valegård, Karin; Hajdu, Janos; Andersson, Inger

    2003-01-01

    Merohedral twinning is a crystal-growth disorder that seriously hinders the determination of macromolecular crystal structures by isomorphous replacement. The strategies used in the structures solved so far are discussed. Several methods can be used to determine the extent of twinning, the twin frac

  5. Epigenetic Epidemiology of Complex Diseases Using Twins

    DEFF Research Database (Denmark)

    Tan, Qihua

    2013-01-01

    through multiple epigenetic mechanisms. This paper reviews the new developments in using twins to study disease-related epigenetic alterations, links them to lifetime environmental exposure with a focus on the discordant twin design and proposes novel data-analytical approaches with the aim of promoting...... a more efficient use of twins in epigenetic studies of complex human diseases....

  6. [The diagnostic algorithm in twin pregnancy].

    Science.gov (United States)

    Ropacka-Lesiak, Mariola; Szaflik, Krzysztof; Breborowicz, Grzegorz H

    2015-03-01

    This paper presents the diagnostic algorithm in twin pregnancy. The most important sonographic parameters in the assessment of twins have been discussed. Moreover, the most significant complications of twin pregnancy as well as diagnostic possibilities and management, have been also presented and defined.

  7. Natal Influences and Twin Differences: Draft.

    Science.gov (United States)

    Van den Daele, Leland D.

    1972-01-01

    A classification of natal influences is proposed with a model of their operation. Natal influences affect maternal capacity, maternal load, and maternal efficiency. Since maternal load is increased in twin pregnancy, results of twin studies must be generalized with caution. The method of co-twin control is exemplified by examination of a small…

  8. Twin and genetic effects on life events

    NARCIS (Netherlands)

    Middeldorp, C.M.; Cath, D.C.; Vink, J.M.; Boomsma, D.I.

    2005-01-01

    Twin studies that examine the effect of specific environmental risk factors on psychiatric disorders assume that there are no differences in prevalences of these risk factors between twins and singletons. Violation of this assumption signifies that the results from twin studies might not generalize

  9. Concordance for multiple sclerosis in Danish twins

    DEFF Research Database (Denmark)

    Hansen, T; Skytthe, Axel; Stenager, Egon

    2005-01-01

    The occurrence of multiple sclerosis (MS) in twins has not previously been studied in complete nationwide data sets. The existence of almost complete MS and twin registries in Denmark ensures that essentially unbiased samples of MS cases among twins can be obtained. In this population-based study...

  10. The Charles Perkins Centre's Twins Research Node.

    Science.gov (United States)

    Ferreira, Lucas C; Craig, Jeffrey M; Hopper, John L; Carrick, Susan E

    2016-08-01

    Twins can help researchers disentangle the roles of genes from those of the environment on human traits, health, and diseases. To realize this potential, the Australian Twin Registry (ATR), University of Melbourne, and the Charles Perkins Centre (CPC), University of Sydney, established a collaboration to form the Twins Research Node, a highly interconnected research facility dedicated specifically to research involving twins. This collaboration aims to foster the adoption of twin designs as important tools for research in a range of health-related domains. The CPC hosted their Twins Research Node's launch seminar entitled 'Double the power of your research with twin studies', in which experienced twin researchers described how twin studies are supporting scientific discoveries and careers. The launch also featured twin pairs who have actively participated in research through the ATR. Researchers at the CPC were surveyed before the event to gauge their level of understanding and interest in utilizing twin research. This article describes the new Twins Research Node, discusses the survey's main results and reports on the launch seminar.

  11. Actuation of polypyrrole nanowires

    Science.gov (United States)

    Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu

    2008-04-01

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  12. Actuation of polypyrrole nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou Chongwu [Laboratory for Molecular Robotics, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail: requicha@usc.edu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 {mu}m, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  13. Actuation of polypyrrole nanowires.

    Science.gov (United States)

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  14. Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature.

    Science.gov (United States)

    Deng, Su-Zi; Fan, Hai-Ming; Wang, Miao; Zheng, Min-Rui; Yi, Jia-Bao; Wu, Rong-Qin; Tan, Hui-Ru; Sow, Chorng-Haur; Ding, Jun; Feng, Yuan-Ping; Loh, Kian-Ping

    2010-01-26

    The present study reports room-temperature ferromagnetic behaviors in three-dimensional (3D)-aligned thiol-capped single-crystalline ZnO nanowire (NW) and nanotube (NT) arrays as well as polycrystalline ZnO NT arrays. Besides the observation of height-dependent saturation magnetization, a much higher M(s) of 166 microemu cm(-2) has been found in NTs compared to NWs (36 microemu cm(-2)) due to larger surface area in ZnO NTs, indicating morphology-dependent magnetic properties in ZnO NW/NT systems. Density functional calculations have revealed that the origin of ferromagnetism is mainly attributed to spin-polarized 3p electrons in S sites and, therefore, has a strong correlation with Zn-S bond anisotropy. The preferential magnetization direction of both single-crystalline NTs and NWs lies perpendicular to the tube/wire axis due to the aligned high anisotropy orientation of the Zn-S bonds on the lateral (100) face of ZnO NWs and NTs. Polycrystalline ZnO NTs, however, exhibit a preferential magnetization direction parallel to the tube axis which is ascribed to shape anisotropy dominating the magnetic response. Our results demonstrate the interplay of morphology, dimensions, and crystallinity on spin alignment and magnetic anisotropy in a 3D semiconductor nanosystem with interfacial magnetism.

  15. Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires

    Science.gov (United States)

    Li, Ruxue; Wei, Zhipeng; Zhao, Fenghuan; Gao, Xian; Fang, Xuan; Li, Yongfeng; Wang, Xinwei; Tang, Jilong; Fang, Dan; Wang, Haizhu; Chen, Rui; Wang, Xiaohua

    2017-08-01

    The localized states in ZnO nanowires (NWs) through the growth of ZnS shell have been introduced in this paper. Morphology and optical properties of the ZnO/ZnS core-shell heterostructured NWs after different rapid thermal annealing (RTA) treatments are investigated. Transmission electron microscopy measurements show the gradual disappearing of the jagged boundary between ZnO and ZnS with the increase of RTA temperature, while a decrease of interfacial composition fluctuation and a formation of ZnOS phase can be found after a RTA treatment of 300°C. Temperature-dependent photoluminescence exhibits the features of "S-shape" peak positions and a "valley shape" for the emission width, implying the existence of localized excitons in the core-shell NWs. Moreover, it is noted that the RTA treatments can lower the localized degree which is confirmed by optical measurement. The results indicate that the optical behavior of excitons in ZnO/ZnS core-shell heterostructured NWs can be manipulated by appropriate thermal treatments, which is very important for their practical device applications.

  16. Glide twinning and pseudotwinning in peristerite: twin morphology and propagation

    Science.gov (United States)

    Brown, William L.

    1989-07-01

    Optically visible Albite glide “twins” in a peristerite (˜An9Or1.6), identified from their tapering shape and relationship to grain boundaries, were studied by transmission electron microscopy. Near the tips in sections ⊥ a, the microstructure consists of small (˜400 nm long) lensshaped Albite twins centred exclusively on the oligoclase lamellae. The lenses extend partly outwards into the two adjacent low albite lamellae and induce strong inhomogeneous strain. Where the lenses are closer together, they form, depending on the sense of shear, nearly linear left or right-stepping en échelon arrays, with overlap of the strain fields. Slightly farther in from the tip, the twin domains coalesce to form continuous pinch-and-swell lamellae, being always thicker in the oligoclase. Because of Si,Al order, only elastic glide pseudotwins are possible in low albite. In oligoclase glide pseudotwins may be mechanically stable (metastable relative to Si,Al order) and may deviate only slightly from true twins. Pseudotwins develop first in the oligoclase, propagate dynamically by jumping across the intervening albite lamellae, extend lengthways and thicken sideways and finally coalesce. They are stabilized by diffusion-controlled inversion of Si,Al order giving rise to true twins described in a companion paper.

  17. Growth of ZnO nanowires on fibers for one-dimensional flexible quantum dot-sensitized solar cells.

    Science.gov (United States)

    Chen, Haining; Zhu, Liqun; Liu, Huicong; Li, Weiping

    2012-02-24

    One-dimensional flexible solar cells were fabricated through vertical growth of ZnO nanowires on freestanding carbon fibers and subsequent deposition of CdS quantum dots (QDs). Under light illumination, excitons were generated in the CdS QDs and dissociated in the ZnO/CdS interface. Photoelectrochemical characterization indicates that fiber quantum dot-sensitized solar cells (QDSCs) could effectively absorb visible light and convert it to electric energy. The photoelectrochemical performance was enhanced after the deposition of a ZnS passivating layer on the CF/ZnO/CdS surface. The highest conversion efficiency of about 0.006% was achieved by the fiber QDSCs. A higher conversion efficiency was expected to be achieved after some important parameters and cell structure were optimized and improved.

  18. Strong Ionization in carbon Nanowires

    CERN Document Server

    Kaymak, Vural; Shlyaptsev, Vyacheslav N; Rocca, Jorge J

    2015-01-01

    Surfaces covered with nanostructures, such as nanowire arrays, have shown to facilitate a significantly higher absorption of laser energy as compared to flat surfaces. Due to the efficient coupling of the laser energy, highly energetic electrons are produced, which in turn can emit intense ultrafast X-ray pulses. In the present work we use full three dimensional PIC simulations to analyze the behavior of arrays of carbon nanowires $400 nm$ in diameter, irradiated by a $\\lambda_0 = 400 nm$ laser pulse of $60 fs$ duration at FWHM and a vector potential of $a_0 = 18$. We analyze the ionization dynamics of the nanowires. We investigate the difference of the ionization strength and structure between linearly and circularly polarized laser beam. The nanowires are found to be fully ionized after about 30 laser cycles. Circularly polarized light reveals a slightly stronger ionization effect.

  19. NOTE: Increasing cardiac output and decreasing oxygenation sequence in pump twins of acardiac twin pregnancies

    Science.gov (United States)

    van Gemert, Martin J. C.; Umur, Asli; van den Wijngaard, Jeroen P. H. M.; Van Bavel, Ed; Vandenbussche, Frank P. H. A.; Nikkels, Peter G. J.

    2005-02-01

    An acardiac twin pregnancy is a rare but serious complication of monochorionic twinning and consists of an acardiac twin and a pump twin. The acardiac twin is a severely malformed fetus that lacks most organs, particularly a heart, but grows during pregnancy because it is perfused by the developmentally normal pump twin via a set of arterioarterial and venovenous placental anastomoses. Pump twins die intrauterine or neonatally in about 50% of the cases. Because the effects of an acardiac mass on the pump twin's development are incompletely known, methods for outcome prognosis are currently not available. We sought to derive simple relations for the pump twin's excess cardiac output and decreased oxygenation and to use available clinical cases for a preliminary test of the model. As a method, we used a theoretical flow model to represent the fetoplacental circulation of an acardiac twin pregnancy and estimated blood deoxygenation and reoxygenation following perfusion of the two bodies and placentas, respectively. The results show the pump twin's excess cardiac output and decrease of venous oxygen saturation to depend on the ratio of pump twin to acardiac twin umbilical blood flow, whose ratio can be measured by ultrasonography. The clinical cases show a decreasing umbilical flow ratio with gestation. In conclusion, prospective serial study is necessary to test whether measurement of umbilical flow ratios allows monitoring the pump twin's pathophysiologic development, possibly resulting in a guideline for prognosis of pump twin survival.

  20. Increasing cardiac output and decreasing oxygenation sequence in pump twins of acardiac twin pregnancies

    Energy Technology Data Exchange (ETDEWEB)

    Gemert, Martin J C van [Laser Center and Department of Obstetrics and Gynecology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Umur, Asli [Laser Center and Department of Obstetrics and Gynecology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Wijngaard, Jeroen P H M van den [Laser Center and Department of Obstetrics and Gynecology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); VanBavel, Ed [Department of Medical Physics, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Vandenbussche, Frank P H A [Department of Obstetrics, Leiden University Medical Center, Leiden (Netherlands); Nikkels, Peter G J [Department of Pathology, University Medical Center, Utrecht (Netherlands)

    2005-02-07

    An acardiac twin pregnancy is a rare but serious complication of monochorionic twinning and consists of an acardiac twin and a pump twin. The acardiac twin is a severely malformed fetus that lacks most organs, particularly a heart, but grows during pregnancy because it is perfused by the developmentally normal pump twin via a set of arterioarterial and venovenous placental anastomoses. Pump twins die intrauterine or neonatally in about 50% of the cases. Because the effects of an acardiac mass on the pump twin's development are incompletely known, methods for outcome prognosis are currently not available. We sought to derive simple relations for the pump twin's excess cardiac output and decreased oxygenation and to use available clinical cases for a preliminary test of the model. As a method, we used a theoretical flow model to represent the fetoplacental circulation of an acardiac twin pregnancy and estimated blood deoxygenation and reoxygenation following perfusion of the two bodies and placentas, respectively. The results show the pump twin's excess cardiac output and decrease of venous oxygen saturation to depend on the ratio of pump twin to acardiac twin umbilical blood flow, whose ratio can be measured by ultrasonography. The clinical cases show a decreasing umbilical flow ratio with gestation. In conclusion, prospective serial study is necessary to test whether measurement of umbilical flow ratios allows monitoring the pump twin's pathophysiologic development, possibly resulting in a guideline for prognosis of pump twin survival. (note)

  1. Photoactivation and perturbation of photoluminescent properties of aqueous ZnS nanoparticles: Probing the surfactant-semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, S.K., E-mail: skmehta@pu.ac.in [Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014 (India); Kumar, Sanjay [Department of Chemistry, Government College, Chowari, Chamba, H.P. 176302 (India)

    2011-12-15

    Graphical abstract: The variation in PL emission intensity of growing ZnS NPs during first hour of their growth depends upon the nature of surfactants used for their stabilization. Highlights: Black-Right-Pointing-Pointer Photoluminescence (PL) intensity of growing ZnS NPs increases linearly with time. Black-Right-Pointing-Pointer Significant PL enhancement in anionic surfactant stabilized ZnS NPs on irradiation. Black-Right-Pointing-Pointer PL decay with delay time after removing from UV-irradiation in all the surfactants. Black-Right-Pointing-Pointer Better PL stability of ZnS NPs stabilized in anionic surfactants than cationic ones. - Abstract: The in situ photochemistry of aqueous colloidal ZnS has been studied in relation to variety of the surfactants as surface passivating agents. The photoluminescence (PL) intensity of ZnS nanoparticles (NPs) has been drastically enhanced as compared to their bare counterparts due to surface passivation by surfactants depending upon their molecular structure. Cationic surfactants of alkyltrimethylammonium bromide series with different chain lengths (C{sub 16}, C{sub 14} and C{sub 12}) have been tested. The PL emission of ZnS NPs decreases with decrease in chain length because of ineffective stabilization and passivation of surface because the larger sized NPs were produced in the surfactant with smaller chain length. On the other hand, three anionic surfactants with C{sub 12} chain length with different head groups have been capable of comparatively effective passivation to produce stable NPs with better luminescence. The changing nature of surface states during growth and long time ripening of ZnS NPs has also been monitored by comparing time evolution PL emission in different surfactants. The influence of UV-light irradiation in enhancing the PL emission has been found to be surfactant structure dependent with maximum enhancement observed with the surfactants having {pi}-electrons in their head group functionalities. The

  2. The 'Planemo' Twins

    Science.gov (United States)

    2006-08-01

    The cast of exoplanets has an extraordinary new member. Using ESO's telescopes, astronomers have discovered an approximately seven-Jupiter-mass companion to an object that is itself only twice as hefty. Both objects have masses similar to those of extra-solar giant planets, but they are not in orbit around a star - instead they appear to circle each other. The existence of such a double system puts strong constraints on formation theories of free-floating planetary mass objects. ESO PR Photo 29a/06 ESO PR Photo 29a/06 Double System of Planetary Mass Objects (Artist's View) Ray Jayawardhana of the University of Toronto (Canada) and Valentin D. Ivanov of ESO report the discovery in the August 3 issue of Science Express, the rapid online publication service of the journal Science. "This is a truly remarkable pair of twins - each having only about one percent the mass of our Sun," said Jayawardhana. "Its mere existence is a surprise, and its origin and fate a bit of a mystery." Roughly half of all Sun-like stars come in pairs. So do about a sixth of brown dwarfs, 'failed stars' that have less than 75 Jupiter masses and are unable to sustain nuclear fusion in their cores. During the past five years, astronomers have identified a few dozen of even smaller free-floating planetary mass objects, or planemos, in nearby star forming regions. Oph 162225-240515, or Oph1622 for short, is the first planemo found to be a double. The researchers discovered the companion candidate in an optical image taken with ESO's 3.5-m New Technology Telescope at La Silla, Chile. They decided to take optical spectra and infrared images of the pair with ESO's 8.2-m Very Large Telescope to make sure that it is a true companion, instead of a foreground or background star that happens to be in the same line of sight. These follow up observations indeed confirmed that both objects are young, at the same distance, and much too cool to be stars. This suggests the two are physically associated. ESO PR

  3. Electrical and optical characterization of surface passivation in GaAs nanowires.

    Science.gov (United States)

    Chang, Chia-Chi; Chi, Chun-Yung; Yao, Maoqing; Huang, Ningfeng; Chen, Chun-Chung; Theiss, Jesse; Bushmaker, Adam W; Lalumondiere, Stephen; Yeh, Ting-Wei; Povinelli, Michelle L; Zhou, Chongwu; Dapkus, P Daniel; Cronin, Stephen B

    2012-09-12

    We report a systematic study of carrier dynamics in Al(x)Ga(1-x)As-passivated GaAs nanowires. With passivation, the minority carrier diffusion length (L(diff)) increases from 30 to 180 nm, as measured by electron beam induced current (EBIC) mapping, and the photoluminescence (PL) lifetime increases from sub-60 ps to 1.3 ns. A 48-fold enhancement in the continuous-wave PL intensity is observed on the same individual nanowire with and without the Al(x)Ga(1-x)As passivation layer, indicating a significant reduction in surface recombination. These results indicate that, in passivated nanowires, the minority carrier lifetime is not limited by twin stacking faults. From the PL lifetime and minority carrier diffusion length, we estimate the surface recombination velocity (SRV) to range from 1.7 × 10(3) to 1.1 × 10(4) cm·s(-1), and the minority carrier mobility μ is estimated to lie in the range from 10.3 to 67.5 cm(2) V(-1) s(-1) for the passivated nanowires.

  4. Fabrication of high-quality ZnS buffer and its application in Cd-free CIGS solar cells

    Science.gov (United States)

    Li, Feng-yan; Dang, Xiang-yu; Zhang, Li; Liu, Fang-fang; Sun, Ding; He, Qing; Li, Chang-jian; Li, Bao-zhang; Zhu, Hong-bing

    2014-07-01

    This paper provides the fabrication of Cd-free Cu(In,Ga)Se2 (CIGS) solar cells on soda-lime glass substrates. A high quality ZnS buffer layer is grown by chemical bath deposition (CBD) process with ZnSO4-NH3-SC (NH2)2 aqueous solution system. The X-ray diffraction (XRD) result shows that the as-deposited ZnS film has cubic (111) and (220) diffraction peaks. Scanning electron microscope (SEM) images indicate that the ZnS film has a dense and compact surface with good crystalline quality. Transmission measurement shows that the optical transmittance is about 90% when the wavelength is beyond 500 nm. The bandgap ( E g ) value of the as-deposited ZnS film is estimated to be 3.54 eV. Finally, a competitive efficiency of 11.06% is demonstrated for the Cd-free CIGS solar cells with ZnS buffer layer after light soaking.

  5. Role of precursors on morphology and optical properties of ZnS thin films prepared by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Fenollosa, M.A. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n, 46071 - Valencia (Spain)], E-mail: mhernan@fis.upv.es; Lopez, M.C. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Dptos Fisica Aplicada and Dpto. Ingenieria Quimica, Facultad de Ciencias, Unversidad de Malaga, E29071 Malaga (Spain); Donderis, V. [Departamento de Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n, 46071 - Valencia (Spain); Gonzalez, M.; Mari, B. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n, 46071 - Valencia (Spain); Ramos-Barrado, J.R. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Dptos Fisica Aplicada and Dpto. Ingenieria Quimica, Facultad de Ciencias, Unversidad de Malaga, E29071 Malaga (Spain)

    2008-02-15

    This study investigates the effect of different growth parameters on the structural and optical properties of ZnS thin films, prepared using spray pyrolysis. The films were prepared using different Zn:S ratios (between 1:1 and 1:6) and in different growth solutions: (A), zinc chloride and thiourea and (B) dehydrated zinc acetate and thiourea, both in distilled water. By varying the Zn:S ratio in the films, the optical properties (absorption and photoluminescence) show that different species are created during film growth. This was deduced from the wide emission band appearing in the green region of the photoluminescence spectra, and from the change in band gap, which varies between 3.2 and 3.5 eV. Films formed from solution (A) with a Zn:S ratio of 1:3 or 1:4 show the best morphology and transmission. ZnS has a wider band gap than other conventional II-VI semiconductors utilized in various electronic and optical devices and can be expected to provide a useful window layer of solar cells which leads to an improvement in overall efficiency by decreasing absorption loss.

  6. Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection

    Science.gov (United States)

    Li, Yangping; Zhang, Tianhui; Fan, Siling; Cheng, Guanghua

    2017-04-01

    Chemical vapor deposited (CVD) ZnS is a promising long-wave infrared (8-12 μm) window material. Yet antireflection is necessary since Fresnel reflection from its surface is high due to the high refractive index of ZnS. Sub-wavelength structured surface of micro hole array was fabricated on CVD ZnS by scanning ultrafast pulse laser ablation. The effects of beam profile, pulse width and beam power on the radius and morphology of the holes were studied. Gaussian beam can cause severe melted-resolidified layers around the hole, yet Bessel beam only resulted in thin ribbon around the hole. The picosecond Bessel laser is more suitable than femtosecond laser for ablating holes on ZnS. The radius of the holes increases with increasing the Bessel beam pulse width and the beam power. But larger power may cause circle grooves around the central holes. Ordered hole array was fabricated on single side of CVD ZnS and antireflection was realized.

  7. Epigenetic Epidemiology of Complex Diseases Using Twins

    DEFF Research Database (Denmark)

    Tan, Qihua

    2013-01-01

    In the past decades, studies on twins have had a great impact on dissecting the genetic and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable samples of twins help to bridge the gap between gene activity and environmental conditions...... through multiple epigenetic mechanisms. This paper reviews the new developments in using twins to study disease-related epigenetic alterations, links them to lifetime environmental exposure with a focus on the discordant twin design and proposes novel data-analytical approaches with the aim of promoting...... a more efficient use of twins in epigenetic studies of complex human diseases....

  8. Structural and tunneling properties of Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2013-12-06

    We investigate the electronic structure and electron transport properties of Si nanowires attached to Au electrodes from first principles using density functional theory and the nonequilibrium Green\\'s function method. We systematically study the dependence of the transport properties on the diameter of the nanowires, on the growth direction, and on the length. At the equilibrium Au-nanowire distance we find strong electronic coupling between the electrodes and nanowires, which results in a low contact resistance. With increasing nanowire length we study the transition from metallic to tunneling conductance for small applied bias. For the tunneling regime we investigate the decay of the conductance with the nanowire length and rationalize the results using the complex band structure of the pristine nanowires. The conductance is found to depend strongly on the growth direction, with nanowires grown along the ⟨110⟩ direction showing the smallest decay with length and the largest conductance and current.

  9. Electrochemically grown rough-textured nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Pawan; Postetter, David; Saragnese, Daniel [Johns Hopkins University, Department of Chemical and Biomolecular Engineering (United States); Papadakis, Stergios J. [Johns Hopkins University, Applied Physics Laboratory (United States); Gracias, David H., E-mail: dgracias@jhu.ed [Johns Hopkins University, Department of Chemical and Biomolecular Engineering (United States)

    2010-03-15

    Nanowires with a rough surface texture show unusual electronic, optical, and chemical properties; however, there are only a few existing methods for producing these nanowires. Here, we describe two methods for growing both free standing and lithographically patterned gold (Au) nanowires with a rough surface texture. The first strategy is based on the deposition of nanowires from a silver (Ag)-Au plating solution mixture that precipitates an Ag-Au cyanide complex during electrodeposition at low current densities. This complex disperses in the plating solution, thereby altering the nanowire growth to yield a rough surface texture. These nanowires are mass produced in alumina membranes. The second strategy produces long and rough Au nanowires on lithographically patternable nickel edge templates with corrugations formed by partial etching. These rough nanowires can be easily arrayed and integrated with microscale devices.

  10. The Danish political twin study

    DEFF Research Database (Denmark)

    Klemmensen, Robert; Hobolt, Sara B; Dinesen, Peter Thisted

    2012-01-01

    We compare a recent Danish twin survey on political attitudes and behaviors to a nationally representative survey covering similar topics. We find very similar means and variances for most of our constructed scales of political attitudes and behaviors in the two surveys, although even small...

  11. Twin-Arginine Protein Translocation

    NARCIS (Netherlands)

    Goosens, Vivianne J; van Dijl, Jan Maarten

    2016-01-01

    Twin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which a

  12. Optically stimulated luminescence of ZnO obtained by thermal treatment of ZnS chemically synthesized; Luminiscencia opticamente estimulada de ZnO obtenido por tratamiento termico de ZnS sintetizado quimicamente

    Energy Technology Data Exchange (ETDEWEB)

    Cruz V, C.; Burruel I, S.E.; Orante B, V.R.; Grijalva M, H.; Perez S, R.; Bernal, R. [Universidad de Sonora, A.P. 130, Hermosillo (Mexico)

    2005-07-01

    In this work, we report the optically stimulated luminescence (OSL) dosimetry of new nano phosphors of ZnO obtained by thermal annealing of chemically synthesized ZnS powder. The synthesized ZnS nano powder was compressed in order to form pellet shaped pellets, which were afterwards subjected to a thermal annealing at 700 C during 24 h under air atmosphere. X-ray diffraction (XRD) patterns and energy-disperse X-ray Spectrometry (EDS) analyses confirmed the transformation of ZnS to ZnO. Samples were exposed to several doses of beta radiation up to 600 Gy, and the optically stimulated luminescence with 470 nm wavelength light was recorded as a function of dose. The intensity of the OSL signal increases by increasing dose, for what it is concluded that these new phosphor materials are suitable to be used in optically stimulated luminescence dosimetry. (Author)

  13. Nonlinear optical property and fluorescence quenching behavior of PVP capped ZnS nanoparticles co-doped with Mn{sup 2+} and Sm{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Prasanth, S.; Irshad, P.; Raj, D. Rithesh; Vineeshkumar, T.V. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686562 (India); Philip, Reji [Optics group, Raman Research Institute, C.V. Raman Avenue, Bangalore 560080 (India); Sudarsanakumar, C., E-mail: c.sudarsan.mgu@gmail.com [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686562 (India)

    2015-10-15

    ZnS nanoparticles co-doped with different percentages of Mn{sup 2+} and Sm{sup 3+} were synthesized by the chemical co-precipitation method using polyvinylpyrrolidone (PVP) as capping agent. Cubic zinc blende phase of the samples was confirmed from X-ray diffraction. The strong interaction between PVP and ZnS nanoparticles was studied from Fourier Transform Infrared (FTIR) spectrum. The band gap values of ZnS and co-doped ZnS nanoparticles were calculated from UV‐Visible spectra. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 436 nm and when doped with Mn{sup 2+} and Sm{sup 3+} an extra peak with high intensity was observed at 596 nm. On increasing the mole percentage of dopants the intensity of the extra peak showed an enhancement until a certain concentration and then a reduction with further increase in concentration. The binding parameters were determined by Stern‐Volmer relation. The nonlinear absorption coefficients of the doped and undoped samples were calculated using Z-scan technique. - Highlights: • PVP capped ZnS nanoparticles co-doped with Mn{sup 2+} and Sm{sup 3+} were synthesized. • The band gap of ZnS and co-doped ZnS nanoparticles were determined. • On increasing the percentage of dopants quenching of PL intensity was observed. • The nonlinear absorption coefficients of the samples were investigated.

  14. Twin vaginal delivery: innovate or abdicate.

    Science.gov (United States)

    Easter, Sarah Rae; Taouk, Laura; Schulkin, Jay; Robinson, Julian N

    2017-02-07

    Neonatal safety data along with national guidelines have prompted renewed interest in vaginal delivery of twins, particularly in the case of the noncephalic second twin. Yet, the rising rate of twin cesarean deliveries, coupled with the national decline in operative obstetrics, raises concerns about the availability of providers who are skilled in twin vaginal birth. Providers are key stakeholders for increasing rates of twin vaginal delivery. We surveyed a group of practicing obstetricians to explore potential barriers to the vaginal birth of twins with a focus on delivery of the noncephalic second twin. Among 107 responding providers, only 57% would deliver a noncephalic second twin by breech extraction. Providers who preferred breech extraction had a higher rate of maternal-fetal medicine subspecialty training (26.2% vs 4.3%; P30 sets of twins annually (57.4% vs 34.8%; P=.02). Most providers (54.2%) were familiar with the findings from the recent randomized trial that demonstrated the safety of twin vaginal birth. However, knowledge of the trial was not associated statistically with a preference for breech extraction (62.3% vs 43.5%; P=.05). Providers who preferred breech extraction were more likely to agree with recent society guidelines that encourage the vaginal birth of twins (86.9% vs 63.0%; Pinnovation. Without novel provider-focused strategies, we may relinquish passively the requisite skills for not only our patients but also for future generations of obstetricians.

  15. Fetal growth disorders in twin gestations.

    LENUS (Irish Health Repository)

    Breathnach, Fionnuala M

    2012-06-01

    Twin growth is frequently mismatched. This review serves to explore the pathophysiologic mechanisms that underlie growth aberrations in twin gestations, the prenatal recognition of abnormal twin growth, and the critical importance of stratifying management of abnormal twin growth by chorionicity. Although poor in utero growth of both twins may reflect maternal factors resulting in global uteroplacental dysfunction, discordant twin growth may be attributed to differences in genetic potential between co-twins, placental dysfunction confined to one placenta only, or one placental territory within a shared placenta. In addition, twin-twin transfusion syndrome represents a distinct entity of which discordant growth is a common feature. Discordant growth is recognized as an independent risk factor for adverse perinatal outcome. Intertwin birth weight disparity of 18% or more should be considered to represent a discordance threshold, which serves as an independent risk factor for adverse perinatal outcome. At this cutoff, perinatal morbidity is found to increase both for the larger and the smaller twin within a discordant pair. There remains uncertainty surrounding the sonographic parameters that are most predictive of discordance. Although heightening of fetal surveillance in the face of discordant twin growth follows the principles applied to singleton gestations complicated by fetal growth restriction, the timing of intervention is largely influenced by chorionicity.

  16. Using Twins to Better Understand Sibling Relationships.

    Science.gov (United States)

    Mark, Katharine M; Pike, Alison; Latham, Rachel M; Oliver, Bonamy R

    2017-03-01

    We compared the nature of the sibling relationship in dyads of varying genetic relatedness, employing a behavioural genetic design to estimate the contribution that genes and the environment have on this familial bond. Two samples were used-the Sisters and Brothers Study consisted of 173 families with two target non-twin children (mean ages = 7.42 and 5.22 years respectively); and the Twins, Family and Behaviour study included 234 families with two target twin children (mean age = 4.70 years). Mothers and fathers reported on their children's relationship with each other, via a postal questionnaire (the Sisters and Brothers Study) or a telephone interview (the Twins, Family and Behaviour study). Contrary to expectations, no mean level differences emerged when monozygotic twin pairs, dizygotic twin pairs, and non-twin pairs were compared on their sibling relationship quality. Behavioural genetic analyses also revealed that the sibling bond was modestly to moderately influenced by the genetic propensities of the children within the dyad, and moderately to substantially influenced by the shared environment common to both siblings. In addition, for sibling negativity, we found evidence of twin-specific environmental influence-dizygotic twins showed more reciprocity than did non-twins. Our findings have repercussions for the broader application of results from future twin-based investigations.

  17. Nanowire Field-Effect Transistors: Sensing Simplicity?

    OpenAIRE

    Mescher, M

    2014-01-01

    Silicon nanowires are structures made from silicon with at least one spatial dimension in the nanometer regime (1-100 nm). From these nanowires, silicon nanowire field-effect transistors can be constructed. Since their introduction in 2001 silicon nanowire field-effect transistors have been studied because of their promising application as selective sensors for biological and chemical species. Their large surface-to-volume ratio promises an increased sensitivity compared to conventional, plan...

  18. Controlling nanowire emission profile using conical taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    2008-01-01

    The influence of a conical taper on nanowire light emission is studied. For nanowires with divergent output beams, the introduction of tapers improves the emission profile and increase the collection efficiency of the detection optics.......The influence of a conical taper on nanowire light emission is studied. For nanowires with divergent output beams, the introduction of tapers improves the emission profile and increase the collection efficiency of the detection optics....

  19. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  20. TRAP Sequence - An Interesting Entity in Twins

    Directory of Open Access Journals (Sweden)

    R H Srinivas Prasad

    2012-01-01

    Full Text Available Twin reversed arterial perfusion (TRAP sequence, is a rare malformation occurring in monozygotic multiple gestations. One well-developed normal (pump twin and the other twin with absent cardiac structure (acardiac, who is hemodynamically dependent on the normal (pump twin are characteristic of this syndrome. The acardiac twin develops multiple anomalies that make survival difficult. The prognosis of the pump twin is variable with mortality rate ranging from 50% to 70%. Complications that affect the prognosis of the pump twin include complications of congestive cardiac failure due to increased cardiac demand, prematurity secondary to preterm delivery, and polyhydramnios. Because of these complications prompt detection, follow-up, and treatment of this condition is very important. We report two cases of TRAP sequence that emphasizes the importance of gray-scale and color Doppler imaging in diagnosis, detection of poor prognostic features, follow-up, and management of TRAP sequence.

  1. Mapping the local structure of nanowires

    DEFF Research Database (Denmark)

    Persson, Johan Mikael; Wagner, Jakob Birkedal

    2013-01-01

    . Nano Beam Electron Diffraction (NBED) is shown to be a powerful technique to reveal strain near the interface of compositional change in heterostructured semiconductor nanowires. Furthermore, the relative orientation of the nanowires is studied by means of NBED revealing the nanowires to be very...

  2. Indium Arsenide Nanowires

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal

    -ray diffraction is performed with a MBE system attached to a synchrotron beam line. The evolution in crystal structure is monitored for different growth conditions and can be correlated to post growth analysis in TEM. This type of studies gives much more detailed information on formation of the crystal structure......This thesis is about growth of Au-assisted and self-assisted InAs nanowires (NWs). The wires are synthesized using a solid source molecular beam epitaxy (MBE) system and characterized with several techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x...... by a systematic study to optimize the growth conditions; first the Au deposition, then the growth temperature and finally the beam fluxes. For further control of the growth, Au droplets have been positioned with electron beam lithography and large scale arrays with a > 99 % yield have been made on 2 inch...

  3. Mechanical behaviors of nanowires

    Science.gov (United States)

    Chen, Yujie; An, Xianghai; Liao, Xiaozhou

    2017-09-01

    The mechanical behaviors of nanowires (NWs) are significantly different from those of their bulk materials because of their small dimensions. Determining the mechanical performance of NWs and understanding their deformation behavior are crucial for designing and manufacturing NW-based devices with predictable and reproducible operation. Owing to the difficulties to manipulate these nanoscale materials, nanomechanical testing of NWs is always challenging, and errors can be readily introduced in the measured mechanical data. Here, we survey the techniques that have been developed to quantify the mechanical properties and to understand the deformation mechanisms of NWs. We also provide a general review of the mechanical properties and deformation behaviors of NWs and discuss possible sources responsible for the discrepancy of measured mechanical properties. The effects of planar defects on the mechanical behavior of NWs are also reviewed.

  4. Te-doping of self-catalyzed GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Suomalainen, S., E-mail: soile.suomalainen@tut.fi; Hakkarainen, T. V.; Salminen, T.; Koskinen, R.; Guina, Mircea [Optoelectronics Research Centre, Tampere University of Technology, FI-33101 Tampere (Finland); Honkanen, M. [Department of Material Science, Tampere University of Technology, FI-33101 Tampere (Finland); Luna, E. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2015-07-06

    Tellurium (Te)-doping of self-catalyzed GaAs nanowires (NWs) grown by molecular beam epitaxy is reported. The effect of Te-doping on the morphological and crystal structure of the NWs is investigated by scanning electron microscopy and high-resolution transmission electron microscopy. The study reveals that the lateral growth rate increases and axial growth rate decreases with increasing Te doping level. The changes in the NW morphology can be reverted to some extent by changing the growth temperature. At high doping levels, formation of twinning superlattice is observed alongside with the (111)-facetted sidewalls. Finally, the incorporation of Te is confirmed by Raman spectroscopy.

  5. Solid-state ZnS quantum dot-sensitized solar cell fabricated by the Dip-SILAR technique

    Science.gov (United States)

    Mehrabian, M.; Mirabbaszadeh, K.; Afarideh, H.

    2014-08-01

    Solid-state quantum dot sensitized solar cells (QDSSCs) were fabricated with zinc sulfide quantum dots (ZnS QDs), which served as the light absorber and the recombination blocking layer simultaneously. ZnS QDs were prepared successfully by a novel successive ionic layer adsorption and reaction technique based on dip-coating (Dip-SILAR). The dependences of the photovoltaic parameters on the number of SILAR cycles (n) were investigated. The cell with n = 6 (particle average size ˜9 nm) showed an energy conversion efficiency of 2.72% under the illumination of one sun (AM 1.5, 100 mW cm-2). Here we investigate also the cohesion between ZnS QDs and ZnO film to obtain a well-covering QD layer.

  6. Influence of solvent on the morphology and photocatalytic properties of ZnS decorated CeO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Raubach, Cristiane W., E-mail: cristiane@liec.ufscar.br; Polastro, Lisânias; Ferrer, Mateus M.; Perrin, Andre; Perrin, Christiane [INCTMN-UFSCar, Universidade Federal de São Carlos, Rod.Washington Luís Km 235, São Carlos 13565-905, SP (Brazil); Albuquerque, Anderson R.; Buzolin, Prescila G. C.; Sambrano, Julio R. [Grupo de Modelagem e Simulação Molecular, INCTMN-UNESP, São Paulo State University, P.O. Box 47 3, Bauru 17033-360, SP (Brazil); Santana, Yuri B. V. de; Varela, José A.; Longo, Elson [INCTMN-UNESP, Universidade Estadual Paulista, P.O. Box 355, Araraquara 14801-907, SP (Brazil)

    2014-06-07

    Herein, we report a theoretical and experimental study on the photocatalytic activity of CeO{sub 2} ZnS, and ZnS decorated CeO{sub 2} nanoparticles prepared by a microwave-assisted solvothermal method. Theoretical models were established to analyze electron transitions primarily at the interface between CeO{sub 2} and ZnS. As observed, the particle morphology strongly influenced the photocatalytic degradation of organic dye Rhodamine B. A model was proposed to rationalize the photocatalytic behavior of the prepared decorated systems taking into account different extrinsic and intrinsic defect distributions, including order-disorder effects at interfacial and intra-facial regions, and vacancy concentration.

  7. Theoretical study of the low-lying electronic states of ZnO and ZnS

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.

    1986-01-01

    Theoretical spectroscopic constants and dipole moments are determined for the 1 Sigma(+), 1,3 Pi, and 3 Sigma(+) states of ZnO and ZnS, using extended Gaussian basis sets and incorporating correlation using both configuration-interaction and coupled pair (CPF) methods. Relativistic corrections (Darwin plus mass velocity), included using first-order perturbation theory, are relatively small. At the CPF level, both ZnO and ZnS have 1 Sigma(+) ground states, with the 3 Pi state lying 209 and 2075/cm higher, respectively. The 3 Sigma(+) state lies about 1.5 eV higher in ZnO and 2.1 eV higher in ZnS. The 1,3 Pi states are relatively close together since the exchange splitting is small with the sigma electron localized on Zn and the pi electron on oxygen (or sulfur).

  8. Nano-photocatalysts based on ZnS quantum dots/chitosan for the photodegradation of dye pollutants

    Science.gov (United States)

    Mansur, H. S.; Mansur, A. A. P.

    2015-03-01

    In this work, nano-photocatalysts based on ZnS quantum dots (QD) functionalized by chitosan were developed using "green" colloidal chemical process in aqueous media at room temperature. The ZnS/chitosan nano-photocatalysts were extensively characterized and the results demonstrated that chitosan was an effective capping ligand for the direct production of water-soluble ZnS QDs with average nanocrystal sizes of approximately 3.5 nm. Methylene blue dye was used as "model organic pollutant", which was effectively oxidized by the photocatalytic surface activity of the ZnS/chitosan nanostructured systems under UV irradiation. In summary, innovative "green" nano-photocatalyst nanomaterials were produced based on a fluorescent inorganic "core" of ZnS QDs and a biocompatible organic "shell" of chitosan for potential use on the photodegradation of hazardous dye pollutants present in industrial wastewater.

  9. First-principles investigation of Cu-doped ZnS with enhanced photocatalytic hydrogen production activity

    Science.gov (United States)

    Dong, Ming; Zhou, Peng; Jiang, Chuanjia; Cheng, Bei; Yu, Jiaguo

    2017-01-01

    The band structure and electronic properties of Cu-doped wurtzite ZnS were investigated by density functional theory calculations. According to the formation energies, the substitutional Cu and S vacancy defects are stable among the examined doping species. Particularly, the hybridization of substitutional Cu 3d and S 3p orbitals narrows the band gap of substitutional Cu-doped ZnS (CuZn-ZnS), while the high effective mass ratio of photogenerated holes and electrons (mh∗/me∗) in the CuZn-ZnS is beneficial for the separation and migration of the photogenerated charge carriers. Lab-synthesized CuZn-ZnS sample exhibited enhanced visible-light absorption and photocatalytic hydrogen production activity compared to pure ZnS.

  10. Origin of luminescence from ZnO/CdS core/shell nanowire arrays

    Science.gov (United States)

    Wang, Zhiqiang; Wang, Jian; Sham, Tsun-Kong; Yang, Shaoguang

    2014-07-01

    Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the BGE of CdS and defect emission (DE, zinc vacancies) of ZnO; the IR luminescence is attributed to the DE (bulk defect related to the S site) of CdS; ZnS contributes little to the luminescence of the ZnO/CdS NW arrays. Interestingly, the BGE and DE from oxygen vacancies of ZnO in the ZnO/CdS nano-composites are almost entirely quenched, while DE from zinc vacancies changes little.Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the

  11. Hepatotoxicity assessment of Mn-doped ZnS quantum dots after repeated administration in mice

    Directory of Open Access Journals (Sweden)

    Yang YJ

    2015-09-01

    Full Text Available Yanjie Yang,1,2 Shuang-Yu Lv,2 Bianfei Yu,1 Shuang Xu,1 Jianmin Shen,3 Tong Zhao,1 Haixia Zhang1 1Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu, 2School of Medicine, Henan University, Kaifeng, Henan, 3Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People’s Republic of China Abstract: Doped ZnS quantum dots (QDs have a longer dopant emission lifetime and potentially lower cytotoxicity compared to other doped QDs. The liver is the key organ for clearance and detoxification of xenobiotics by phagocytosis and metabolism. The present study was designed to synthesize and evaluate the hepatotoxicity of Mn-doped ZnS QDs and their polyethylene glycol-coated counterparts (1 mg/kg and 5 mg/kg in mice. The results demonstrated that daily injection of Mn-doped ZnS QDs and polyethylene glycol-coated QDs via tail vein for 7 days did not influence body weight, relative liver weight, serum aminotransferases (alanine aminotransferase and aspartate aminotransferase, the levels of antioxidant enzymes (catalase, glutathione peroxidase, and superoxide dismutase, or malondialdehyde in the liver. Analysis of hepatocyte ultrastructure showed that Mn-doped ZnS QDs and polyethylene glycol-coated QDs mainly accumulated in mitochondria at 24 hours after repeated intravenous injection. No damage to cell nuclei or mitochondria was observed with either of the QDs. Our results indicate that Mn-doped ZnS QDs did not cause obvious damage to the liver. This study will assist in the development of Mn-doped ZnS QDs-based bioimaging and biomedical applications in the future. Keywords: liver, serum aminotransferases, antioxidant enzymes, ultrastructure

  12. Room temperature fabrication of dielectric Bragg reflectors composed of a CaF2/ZnS multilayered coating.

    Science.gov (United States)

    Muallem, Merav; Palatnik, Alex; Nessim, Gilbert D; Tischler, Yaakov R

    2015-01-14

    We describe the design, fabrication, and characterization of mechanically stable, reproducible, and highly reflecting distributed Bragg reflectors (DBR) composed of thermally evaporated thin films of calcium fluoride (CaF2) and zinc sulfide (ZnS). CaF2 and ZnS were chosen as the low and high refractive index components of the multilayer DBR structures, with n = 1.43 and n = 2.38 respectively, because neither material requires substrate heating during the deposition process in order to produce optical quality thin films. DBRs consisting of seven pairs of CaF2 and ZnS layers, were fabricated with thicknesses of 96 and 58 nm, respectively, as characterized by high-resolution scanning electron microscopy (HR-SEM), and exhibited a center wavelength of λc = 550 nm and peak reflectance exceeding 99%. The layers showed good adhesion to each other and to the glass substrate, resulting in mechanically stable DBR coatings. Complete optical microcavities consisting of two such DBR coatings and a CaF2 spacer layer between them could be fabricated in a single deposition run. Optically, these structures exhibited a resonator quality factor of Q > 160. When a CaF2/ZnS DBR was grown, without heating the substrate during deposition, on top of a thin film containing the fluorescent dye Rhodamine 6G, the fluorescence intensity showed no degradation compared to an uncoated film, in contrast to a MgF2/ZnS DBR coating grown with substrate heating which showed a 92% reduction in signal. The ability to fabricate optical quality CaF2/ZnS DBRs without substrate heating, as introduced here, can therefore enable formation of low-loss high-reflectivity coatings on top of more delicate heat-sensitive materials such as organics and other nanostructured emitters, and hence facilitate the development of nanoemitter-based microcavity device applications.

  13. Zn₃P₂-Zn₃As₂ solid solution nanowires.

    Science.gov (United States)

    Im, Hyung Soon; Park, Kidong; Jang, Dong Myung; Jung, Chan Su; Park, Jeunghee; Yoo, Seung Jo; Kim, Jin-Gyu

    2015-02-11

    Semiconductor alloy nanowires (NWs) have recently attracted considerable attention for applications in optoelectronic nanodevices because of many notable properties, including band gap tunability. Zinc phosphide (Zn3P2) and zinc arsenide (Zn3As2) belong to a unique pseudocubic tetragonal system, but their solid solution has rarely been studied. Here In this study, we synthesized composition-tuned Zn3(P1-xAsx)2 NWs with different crystal structures by controlling the growth conditions during chemical vapor deposition. A first type of synthesized NWs were single-crystalline and grew uniformly along the [110] direction (in a cubic unit cell) over the entire compositional range (0 ≤ x ≤ 1) explored. The use of an indium source enabled the growth of a second type of NWs, with remarkable cubic-hexagonal polytypic twinned superlattice and bicrystalline structures. The growth direction of the Zn3P2 and Zn3As2 NWs was also switched to [111] and [112], respectively. These structural changes are attributable to the Zn-depleted indium catalytic nanoparticles which favor the growth of hexagonal phases. The formation of a solid solution at all compositions allowed the continuous tuning of the band gap (1.0-1.5 eV). Photocurrent measurements were performed on individual NWs by fabricating photodetector devices; the single-crystalline NWs with [110] growth direction exhibit a higher photoconversion efficiency compared to the twinned crystalline NWs with [111] or [112] growth direction.

  14. High durability antireflection coatings for silicon and multispectral ZnS

    Science.gov (United States)

    Joseph, Shay; Marcovitch, Orna; Yadin, Ygal; Klaiman, Dror; Koren, Nitzan; Zipin, Hedva

    2007-04-01

    In the current complex battle field, military platforms are required to operate on land, at sea and in the air in all weather conditions both day and night. In order to achieve such capabilities, advanced electro-optical systems are being constantly developed and improved. These systems such as missile seeker heads, reconnaissance and target acquisition pods and tracking, monitoring and alert systems have external optical components (window or dome) which must remain operational even at extreme environmental conditions. Depending on the intended use of the system, there are a few choices of window and dome materials. Amongst the more common materials one can point out sapphire, ZnS, germanium and silicon. Other materials such as spinel, ALON and yittria may also be considered. Most infrared materials have high indices of refraction and therefore they reflect a large part of radiation. To minimize the reflection and increase the transmission, antireflection (AR) coatings are the most common choice. Since these systems operate at different environments and weather conditions, the coatings must be made durable to withstand these extreme conditions. In cases where the window or dome is made of relatively soft materials such as multispectral ZnS, the coating may also serve as protection for the window or dome. In this work, several antireflection coatings have been designed and manufactured for silicon and multispectral ZnS. The coating materials were chosen to be either oxides or fluorides which are known to have high durability. Ellipsometry measurements were used to characterize the optical constants of the thin films. The effects of the deposition conditions on the optical constants of the deposited thin films and durability of the coatings will be discussed. The coatings were tested according to MIL-STD-810E and were also subjected to rain erosion tests at the University of Dayton Research Institute (UDRI) whirling arm apparatus in which one of the coatings showed

  15. Biomolecularly capped uniformly sized nanocrystalline materials: glutathione-capped ZnS nanocrystals

    Science.gov (United States)

    Torres-Martínez, Claudia L.; Nguyen, Liem; Kho, Richard; Bae, Weon; Bozhilov, Krassimir; Klimov, Victor; Mehra, Rajesh K.

    1999-09-01

    Micro-organisms such as bacteria and yeasts form CdS to detoxify toxic cadmium ions. Frequently, CdS particles formed in yeasts and bacteria were found to be associated with specific biomolecules. It was later determined that these biomolecules were present at the surface of CdS. This coating caused a restriction in the growth of CdS particles and resulted in the formation of nanometre-sized semiconductors (NCs) that exhibited typical quantum confinement properties. Glutathione and related phytochelatin peptides were shown to be the biomolecules that capped CdS nanocrystallites synthesized by yeasts Candida glabrata and Schizosaccharomyces pombe. Although early studies showed the existence of specific biochemical pathways for the synthesis of biomolecularly capped CdS NCs, these NCs could be formed in vitro under appropriate conditions. We have recently shown that cysteine and cysteine-containing peptides such as glutathione and phytochelatins can be used in vitro to dictate the formation of discrete sizes of CdS and ZnS nanocrystals. We have evolved protocols for the synthesis of ZnS or CdS nanocrystals within a narrow size distribution range. These procedures involve three steps: (1) formation of metallo-complexes of cysteine or cysteine-containing peptides, (2) introduction of stoichiometric amounts of inorganic sulfide into the metallo-complexes to initiate the formation of nanocrystallites and finally (3) size-selective precipitation of NCs with ethanol in the presence of Na+. The resulting NCs were characterized by optical spectroscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction and electron diffraction. HRTEM showed that the diameter of the ZnS-glutathione nanocrystals was 3.45+/-0.5 nm. X-ray diffraction and electron diffraction analyses indicated ZnS-glutathione to be hexagonal. Photocatalytic studies suggest that glutathione-capped ZnS nanocrystals prepared by our procedure are highly efficient in degrading a test model

  16. Synthesis and characterization of sol–gel derived ZnS : Mn2+ nanocrystallites embedded in a silica matrix

    Indian Academy of Sciences (India)

    B Bhattacharjee; D Ganguli; K Iakoubovskii; A Stesmans; S Chaudhuri

    2002-06-01

    Synthesis and characterization of undoped and Mn2+ doped ZnS nanocrystallites (radius 2–3 nm) embedded in a partially densified silica gel matrix are presented. Optical transmittance, photoluminescence (PL), ellipsometric and electron spin resonance measurements revealed manifestation of quantum size effect. PL spectra recorded at room temperature revealed broad blue emission signal centred at ∼ 420 nm and Mn2+ related yellow–orange band centred at ∼ 590 nm while ESR indicated that Mn in ZnS was present as dispersed impurity rather than Mn cluster.

  17. Sample depolarization effects from thin films of ZnS on GaAs as measured by spectroscopic ellipsometry

    Science.gov (United States)

    Jellison, G. E., Jr.; McCamy, J. W.

    1992-08-01

    Thin films of ZnS grown on GaAs by laser ablation are examined using spectroscopic two-channel polarization modulation ellipsometry (2-C PME). It is found that variations in the film thickness over the illumination spot result in the quasidepolarization of the incident light, which can be measured directly using 2-C PME. Quantitative fits of the ellipsometry data using a distribution-of-thicknesses model agree with independent reflectivity measurements of the thickness gradient, and allow for the accurate determination of the optical functions of the ZnS film.

  18. Influence of Fe, Ni, and Cu Doping on the Photocatalytic Efficiency of ZnS: Implications for Prebiotic Chemistry

    CERN Document Server

    Wang, Wei

    2016-01-01

    The mineral sphalerite (ZnS) is a typical constituent at the periphery of submarine hydrothermal deposits on Earth. It has been frequently suggested to have played an important role in the prebiotic chemistry due to its prominent photocatalytic activity. Nevertheless, the need for {\\lambda} 450 nm light irradiation, the photocatalyst Zn1-xCuxS can drive the reduction of fumaric acid to produce succinic acid. Given the existence of this doped semiconductor in the hydrothermal vents on early Earth and its capability to utilize both UV and visible light, ZnS might have participated more efficiently than ever estimated in the prebiotic chemical evolution.

  19. Ion beam synthesis of CdS, ZnS, and PbS compound semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    White, C.W.; Budai, J.D.; Meldrum, A.L. [and others

    1997-12-01

    Sequential ion implantation followed by thermal annealing has been used to form encapsulated CdS, ZnS, and PbS nanocrystals in SiO{sub 2} and Al{sub 2}O{sub 3} matrices. In SiO{sub 2}, nanoparticles are nearly spherical and randomly oriented, and ZnS and PbS nanocrystals exhibit a bimodal size distribution. In Al{sub 2}O{sub 3}, nanoparticles are faceted and coherent with the matrix. Initial photoluminescence (PL) results are presented.

  20. In Situ Fabrication of ZnS Semiconductor Nanoparticles in Layered Organic-inorganic Solid Template

    Institute of Scientific and Technical Information of China (English)

    Bao Lin ZHU; Xiao CHEN; Zhen Ming SUI; Li Mei XU; Chun Jie YANG; Ji Kuan ZHAO; Jie LIU

    2004-01-01

    Ordered ZnS semiconductor nanoparticles were in situ synthesized in metal halide perovskite organic/inorganic layered hybrids (CnH2n+1NH3)2ZnCl4 (n=10 and 12) by reaction of their spin-casting films with H2S gas. Transmission electron microscopy, UV-vis spectroscopy and small-angle X-ray diffraction were used to characterize the morphology and the structure of formed nanoparticles. Obtained results indicate an effective way to incorporate functional inorganic nanoparticles into structured organic matrices.

  1. Extinction of photoemission of Mn-Doped ZnS nanofluid in weak magnetic field

    Science.gov (United States)

    Vu, Anh-Tuan; Bui, Hong-Van; Pham, Van-Ben; Le, Van-Hong; Hoang, Nam-Nhat

    2016-08-01

    The observation of extinction of photoluminescence of Mn-doped ZnS nanofluid under applying of weak magnetic field is reported. At a constant field of 270 Gauss and above, the exponential decays of photoluminescent intensity was observed in disregard of field direction. About 50% extinction was achieved after 30 minute magnetization and a total extinction after 1 hour. The memory effect preserved for more than 2 hours at room temperature. This extinction was observed in a system with no clear ferromagnetic behavior.

  2. Effect of substrate temperature on the optical properties of thermally evaporated ZnS thin films

    OpenAIRE

    2010-01-01

    Zinc Sulfide (ZnS) thin films were formed onto cleaned glass substrates using the thermal evaporation method in vacuum. The substrate temperature was varied between as- deposited and 150 °C, keeping the film thickness and the rate of evaporation fixed at 200~nm and 0.3~nm \\cdot s-1, respectively. The film thickness was measured in situ by a quartz crystal thickness monitor. The structure of the films was ascertained by x-ray diffraction (XRD) method. The XRD spectra show that the f...

  3. Fingerprint recognition with identical twin fingerprints.

    Directory of Open Access Journals (Sweden)

    Xunqiang Tao

    Full Text Available Fingerprint recognition with identical twins is a challenging task due to the closest genetics-based relationship existing in the identical twins. Several pioneers have analyzed the similarity between twins' fingerprints. In this work we continue to investigate the topic of the similarity of identical twin fingerprints. Our study was tested based on a large identical twin fingerprint database that contains 83 twin pairs, 4 fingers per individual and six impressions per finger: 3984 (83*2*4*6 images. Compared to the previous work, our contributions are summarized as follows: (1 Two state-of-the-art fingerprint identification methods: P071 and VeriFinger 6.1 were used, rather than one fingerprint identification method in previous studies. (2 Six impressions per finger were captured, rather than just one impression, which makes the genuine distribution of matching scores more realistic. (3 A larger sample (83 pairs was collected. (4 A novel statistical analysis, which aims at showing the probability distribution of the fingerprint types for the corresponding fingers of identical twins which have same fingerprint type, has been conducted. (5 A novel analysis, which aims at showing which finger from identical twins has higher probability of having same fingerprint type, has been conducted. Our results showed that: (a A state-of-the-art automatic fingerprint verification system can distinguish identical twins without drastic degradation in performance. (b The chance that the fingerprints have the same type from identical twins is 0.7440, comparing to 0.3215 from non-identical twins. (c For the corresponding fingers of identical twins which have same fingerprint type, the probability distribution of five major fingerprint types is similar to the probability distribution for all the fingers' fingerprint type. (d For each of four fingers of identical twins, the probability of having same fingerprint type is similar.

  4. Mechanical characterization of a single gold nanowire.

    Science.gov (United States)

    Chang, Ming; Liu, Xiaojun; Chang, Feng-Cheng; Deka, Juti R

    2013-08-01

    Mechanical properties of gold nanowires were individually determined in this investigation using a multifunctional nanomanipulator inside a scanning electron microscope (SEM). Gold nanowires were synthesized by an electrochemical deposition technique. Three different characterization techniques including tensile, buckling and bending tests were adapted to quantitatively determine Young's modulus, yield stress and failure stress of the gold nanowires. The mechanical characterizations show that the nanowires were highly flexible in nature. The excellent resilience and the ability to store elastic energy in these nanowires confirm their potential applications in nano electromechanical devices.

  5. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2015-05-27

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.

  6. The relationship between twin language, twins' close ties, and social competence.

    Science.gov (United States)

    Hayashi, Chisato; Mikami, Hiroshi; Nishihara, Reiko; Maeda, Chiho; Hayakawa, Kazuo

    2014-02-01

    This study investigated the relationship between twin language, twins' close ties, and social competence in a prospective longitudinal study. We hypothesized that twins whose tie is close would be more likely to develop a twin language, and these twins would be less likely to develop social competence. In addition, we hypothesize that some environmental factors, such as having an older sibling, preschool attendance, zygosity, and sex are also related to twin language, twins' close ties, and social competence. At baseline in 1999 a mailed questionnaire survey was conducted, and a follow-up questionnaire was distributed in 2004 among 958 mothers. As a result, 516 respondents returned the questionnaire (53.9%). In this study, we used 261 twin pairs aged from 6 to 12 years (school-age children) for analysis, excluding those with missing values. In the present study, we found that zygosity and sex were associated with twins' close ties. Having an older sibling and preschool attendance did not affect the twins' close tie, twin language, or social competence. One of the most important findings was that social competence was not affected directly by twins' close tie, but was affected when a twin language was found.

  7. Photoelectrochemistry of Semiconductor Nanowire Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  8. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-07-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  9. The Spread of Substance Use and Delinquency between Adolescent Twins

    Science.gov (United States)

    Laursen, Brett; Hartl, Amy C.; Vitaro, Frank; Brendgen, Mara; Dionne, Ginette; Boivin, Michel

    2017-01-01

    This investigation examines the spread of problem behaviors (substance use and delinquency) between twin siblings. A sample of 628 twins (151 male twin pairs and 163 female twin pairs) drawn from the Quebec Newborn Twin Study completed inventories describing delinquency and substance use at ages 13, 14, and 15. A 3-wave longitudinal actor-partner…

  10. Einstein's Clocks and Langevin's Twins

    CERN Document Server

    Weinstein, Galina

    2012-01-01

    In 1905 Einstein presented the Clock Paradox and in 1911 Paul Langevin expanded Einstein's result to human observers, the "Twin Paradox." I will explain the crucial difference between Einstein and Langevin. Einstein did not present the so-called "Twin Paradox." Later Einstein continued to speak about the clock paradox. Einstein might not have been interested in the question: what happens to the observers themselves. The reason for this could be the following; Einstein dealt with measurement procedures, clocks and measuring rods. Einstein's observers were measuring time with these clocks and measuring rods. Einstein might not have been interested in so-called biology of the observers, whether these observers were getting older, younger, or whether they have gone any other changes; these changes appeared to be out of the scope of his "Principle of relativity" or kinematics. The processes and changes occurring within observers seemed to be good for philosophical discussions. Later writers criticized Einstein's c...

  11. Methods for synthesizing metal oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  12. Electrically Injected UV-Visible Nanowire Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, George T.; Li, Changyi; Li, Qiming; Liu, Sheng; Wright, Jeremy Benjamin; Brener, Igal; Luk, Ting -Shan; Chow, Weng W.; Leung, Benjamin; Figiel, Jeffrey J.; Koleske, Daniel D.; Lu, Tzu-Ming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

  13. Identical twins in forensic genetics

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Morling, Niels

    2015-01-01

    The increase in the number of forensic genetic loci used for identification purposes results in infinitesimal random match probabilities. These probabilities are computed under assumptions made for rather simple population genetic models. Often, the forensic expert reports likelihood ratios, where...... published results accounting for close familial relationships. However, we revisit the discussion to increase the awareness among forensic genetic practitioners and include new information on medical and societal factors to assess the risk of not considering a monozygotic twin as the true perpetrator...

  14. Geographic Tongue in Monozygotic Twins

    OpenAIRE

    Shekhar M, Guna

    2014-01-01

    This article discusses a case of 5-year-old girl monozygotic twins who were suffering from geographic tongue (GT), a benign inflammatory disorder of the tongue which is characterized by circinate, irregular erythematous lesions on the dorsum and lateral borders of the tongue caused by loss of filiform papillae of the tongue epithelium. Whilst geographic tongue is a common entity, reports on this condition are uncommon in the literature. To best of our knowledge, this is the first report which...

  15. Conjoined omphalopagus twins: a casereport

    Directory of Open Access Journals (Sweden)

    Sheila Yadira Gómez-Murillo

    2014-11-01

    Full Text Available Multiple pregnancies are 3% of the total. The most frequent are dizygotic females, however, a small group of them are of monozygotic conjoined twins in some anatomical area. This attracts the attention of physicians because of the rarity of the condition and the difficulties as well as the ethical dilemmas for their treatment. We report a case of male Siamese omphalopagus. They were separated surgically at seven weeks of age. One of them lived six months.

  16. Debye temperature of metallic nanowires--an experimental determination from the resistance of metallic nanowires in the temperature range 4.2 K-300 K.

    Science.gov (United States)

    Bid, Aveek; Bora, Achyut; Raychaudhuri, A K

    2007-06-01

    We have studied the resistance of metallic nanowires (silver and copper) as a function of the wire diameter in the temperature range 4.2 K-300 K. The nanowires with an average diameter of 15 nm-200 nm and length 6 microm were electrochemically deposited using polycarbonate membranes as template from AgNO3 and CuSO4, respectively. The wires after growth were removed from the membranes by dissolving the polymer in dichloromethane and their crystalline nature confirmed by XRD and TEM studies. The TEM study establishes that the nanowires are single crystalline and can have twin in them. The resistivity data was fitted to Bloch-Gruneisen theorem with the values of Debye temperature and the electron-acoustic phonon coupling constant as the two fit variables. The value of the Debye temperature obtained for the Ag wires was seen to match well with that of the bulk while for Cu wires a significant reduction was observed. The observed increase in resistivity with a decrease in the wire diameter could be explained as due to diffuse surface scattering of the conduction electrons.

  17. Thrombosis of anastomoses may affect the staging sequence of twin-twin transfusion syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Wijngaard, Jeroen P H M van den; Gemert, Martin J C van [Laser Center, Academic Medical Center-University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Ross, Michael G [Department of Obstetrics and Gynecology, Harbor-UCLA School of Medicine, Torrance, CA 90502 (United States)], E-mail: j.p.vandenwijngaard@amc.uva.nl

    2008-03-07

    Twin-twin transfusion syndrome (TTTS) is a severe complication of monozygotic (identical) twins, which share one single monochorionic placenta. It is caused by placental anastomoses which link the two fetoplacental circulations of the twins and allow a chronic net inter-twin transfusion to develop between the fetuses. Clinical presentation of TTTS manifestations has been classified into five different stages. In this paper, we used our computational model of TTTS and examined the possible differences between chronic and rapidly increasing inter-twin transfusion in the simulated TTTS staging sequence. Our results suggest that rapid alterations in the net inter-twin transfusion, e.g. due to thrombosis of placental anastomoses, may produce a different staging sequence than in TTTS caused by chronic inter-twin transfusion. These results may aid an improved knowledge of TTTS pathophysiology under conditions of a rapidly changing cardiovascular function, and contribute to the planning of optimal intervention under such circumstances. (note)

  18. Twins eye study in Tasmania (TEST): rationale and methodology to recruit and examine twins.

    Science.gov (United States)

    Mackey, David A; Mackinnon, Jane R; Brown, Shayne A; Kearns, Lisa S; Ruddle, Jonathan B; Sanfilippo, Paul G; Sun, Cong; Hammond, Christopher J; Young, Terri L; Martin, Nicholas G; Hewitt, Alex W

    2009-10-01

    Visual impairment is a leading cause of morbidity and poor quality of life in our community. Unravelling the mechanisms underpinning important blinding diseases could allow preventative or curative steps to be implemented. Twin siblings provide a unique opportunity in biology to discover genes associated with numerous eye diseases and ocular biometry. Twins are particularly useful for quantitative trait analysis through genome-wide association and linkage studies. Although many studies involving twins rely on twin registries, we present our approach to the Twins Eye Study in Tasmania to provide insight into possible recruitment strategies, expected participation rates and potential examination strategies that can be considered by other researchers for similar studies. Five separate avenues for cohort recruitment were adopted: (1) piggy-backing existing studies where twins had been recruited, (2) utilizing the national twin registry, (3) word-of-mouth and local media publicity, (4) directly approaching schools, and finally (5) collaborating with other research groups studying twins.

  19. The TWINS Science Data System after the launch of TWINS 1

    Science.gov (United States)

    Goldstein, J.; Valek, P.; Skoug, R.; Delapp, D.; Redfern, J.; Carruth, B.; McComas, D.

    2007-05-01

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) 1 satellite is in orbit and science data are expected to commence in the near future. TWINS-1 comprises half of the TWINS stereoscopic neutral atom imaging system that will advance our knowledge of the Earth's ring current. To support the expected data return, we have developed a Science Data System (SDS) for the TWINS mission. The TWINS SDS is an IDL- and Java- driven data interface that operates primarily via a web browser, and has as its spine an SQL-queryable database. Through this interface, TWINS science data will be provided to the TWINS team, the space science community, and the public. In this paper we present the current and future capabilities of the TWINS SDS, as well as how the SDS fits into virtual observatory infrastructure.

  20. Register-based research on twins

    DEFF Research Database (Denmark)

    Christensen, Kaare; Ohm Kyvik, Kirsten; Holm, Niels V

    2011-01-01

    Introduction: The Danish Twin Registry (DTR) has for more than 50 years been based on surveys and clinical investigations and over the two last decades also on register linkage. Currently these two approaches are merged within Statistics Denmark. Research topics: Here we report on three major...... groups of register-based research in the DTR that used the uniqueness of twinning. First, we focus on the ''long-term prognosis'' of being a twin compared with being a singleton and show that Danish twins have health trajectories in adulthood similar to singletons, which is a result of interest for twins...... and their families as well as a test of the fetal origins hypothesis that states that fetal growth restriction has long-term health consequences. Secondly, we summarise some of the most important register-based ''classical twin studies'', e.g. heritability studies on lifespan and exceptional longevity. Finally, we...

  1. Twin delivery: method, timing and conduct.

    Science.gov (United States)

    Barrett, Jon F R

    2014-02-01

    The incidence of twin pregnancy has increased worldwide over the past 10 years, largely as a consequence of the assisted reproductive technologies. Issues such as intrapartum monitoring and operative interventions, especially relating to the second twin, provide a unique challenge in labour and delivery. Epidemiological and cohort data suggest that twins have a three-fold higher mortality rate than singletons, and that the second twin might have a better outcome if delivered by lower segment caesarean section. The recently completed Twin Birth Study has found that planned vaginal lower segment caesarean section is not advantageous to the fetus. In the light of this large randomised-controlled trial, vaginal delivery if twin A presents by the vertex is recommended as long as guidelines for the conduct of such delivery are followed.

  2. A Twin Study of Perthes Disease

    DEFF Research Database (Denmark)

    Metcalfe, David; Van Dijck, Stephanie; Parsons, Nicolas

    2016-01-01

    and genetic associations with LCPD. METHODS: We extracted all twin pairs from the Danish Twin Registry (DTR) in which at least 1 individual had LCPD. The DTR captures every twin pair born alive in Denmark, and those with LCPD were identified by using health record linkage. Probanwise concordance.......00-0.18) for the dizygotic, and 0.18 (95% CI: 0.00-0.40) for the UZ twin pairs. CONCLUSIONS: This study found evidence of familial clustering in LCPD but did not show a genetic component. The absolute risk that a co-twin of an affected individual will develop LCPD is low, even in the case of monozygotic twin pairs.......BACKGROUND: Legg-Calvé-Perthes disease (LCPD) is an idiopathic avascular necrosis of the femoral head. Its etiology is poorly understood, although previous studies have implicated low birth weight and possible genetic determinants. The aim of this study was to identify potential birth weight...

  3. (120) and (122-bar) monazite deformation twins

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R.S

    2003-10-20

    Unusual features of (120) and (122-bar) deformation twins in monazite (monoclinic LaPO{sub 4}) are described and analyzed. These features are kinks and other irregularities in (120) twins, and V-shaped indentations on (120) and (122-bar) twin planes. Twinning shear analysis suggests that the kinks are a type II deformation twin mode with shear direction ({eta}{sub 1}) of [21-bar0]. This complements previous analysis based on atom shuffling considerations. Shear strain compatibility requires extensive plastic deformation in the kink. The V-shaped indentations may be analogous to similar structures in b.c.c metal deformation twins. Deformation mechanisms that may be associated with these structures are discussed.

  4. Fullerton Virtual Twin Study: an update.

    Science.gov (United States)

    Segal, Nancy L; McGuire, Shirley A; Graham, Jamie L; Stohs, Joanne Hoven

    2013-02-01

    Virtual twins (VTs) are same-age unrelated siblings reared together from early infancy. These unique sibling sets replicate twinship, but without the genetic link. The first VT pair was identified and studied at the University of Minnesota in 1990, launching the development of the Fullerton Virtual Twin Study at California State University, Fullerton (CSUF) in 1991. The registry currently includes 151 pairs, mostly children, with new pairs identified on a continuous basis. Research with VTs includes studies of general intelligence, body size, interpersonal trust, social coordination, social networks, and parenting. In some cases, VTs have been studied in conjunction with pairs of monozygotic twins, dizygotic twins, full siblings, and friends as part of TAPS (Twins, Adoptees, Peers and Siblings), a collaborative project conducted between CSUF and the University of San Francisco, 2002-2006. VTs will also serve as a comparison group for epigenetic analyses of young Chinese twins reared apart and together.

  5. Twinning of Polymer Crystals Suppressed by Entropy

    Directory of Open Access Journals (Sweden)

    Nikos Ch. Karayiannis

    2014-09-01

    Full Text Available We propose an entropic argument as partial explanation of the observed scarcity of twinned structures in crystalline samples of synthetic organic polymeric materials. Polymeric molecules possess a much larger number of conformational degrees of freedom than low molecular weight substances. The preferred conformations of polymer chains in the bulk of a single crystal are often incompatible with the conformations imposed by the symmetry of a growth twin, both at the composition surfaces and in the twin axis. We calculate the differences in conformational entropy between chains in single crystals and chains in twinned crystals, and find that the reduction in chain conformational entropy in the twin is sufficient to make the single crystal the stable thermodynamic phase. The formation of cyclic twins in molecular dynamics simulations of chains of hard spheres must thus be attributed to kinetic factors. In more realistic polymers this entropic contribution to the free energy can be canceled or dominated by nonbonded and torsional energetics.

  6. III-Nitride nanowire optoelectronics

    Science.gov (United States)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  7. Tunneling magnetoresistance in Si nanowires

    Science.gov (United States)

    Montes, E.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.

    2016-11-01

    We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green’s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.

  8. Tunneling magnetoresistance in Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2016-11-09

    We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green\\'s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.

  9. Semiconductor nanowires and templates for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Xiang

    2009-07-15

    This thesis starts by developing a platform for the organized growth of nanowires directly on a planar substrate. For this, a method to fabricate horizontal porous alumina membranes is studied. The second part of the thesis focuses on the study of nanowires. It starts by the understanding of the growth mechanisms of germanium nanowires and follows by the structural and electrical properties at the single nanowire level. Horizontally aligned porous anodic alumina (PAA) was used as a template for the nanowire synthesis. Three PAA arrangements were studied: - high density membranes - micron-sized fingers - multi-contacts Membranes formed by a high density of nanopores were obtained by anodizing aluminum thin films. Metallic and semiconducting nanowires were synthesized into the PAA structures via DC deposition, pulsed electro-depostion and CVD growth. The presence of gold, copper, indium, nickel, tellurium, and silicon nanowires inside PAA templates was verified by SEM and EDX analysis. Further, room-temperature transport measurements showed that the pores are completely filled till the bottom of the pores. In this dissertation, single crystalline and core-shell germanium nanowires are synthesized using indium and bismuth as catalyst in a chemical vapor deposition procedure with germane (GeH{sub 4}) as growth precursor. A systematic growth study has been performed to obtain high aspect-ratio germanium nanowires. The influence of the growth conditions on the final morphology and the crystalline structure has been determined via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). In the case of indium catalyzed germanium nanowires, two different structures were identified: single crystalline and crystalline core-amorphous shell. The preferential growth axis of both kinds of nanowires is along the [110] direction. The occurrence of the two morphologies was found to only depend on the nanowire dimension. In the case of bismuth

  10. Study of size dependent photoluminescence properties of copper doped sodium hexametaphosphate capped ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A., E-mail: ashish_chem@yahoo.in [Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009 (India); Khan, S.A. [Government College Seepat, Bilaspur 495555 (India); Kher, R.S. [Department of Physics, Government E.R.R. PG Science College, Bilaspur 495006 (India)

    2012-06-15

    Copper doped ZnS nanoparticles stabilized by sodium hexametaphosphate (SHMP) have been prepared via the wet chemical method using thiourea and sodium sulphide as chalcogenide sources. The XRD pattern showed that ZnS nanoparticles had zinc blende structure and line broadening suggests the formation of an amorphous compound. Absorption measurements were done for three different concentrations of dopant concentrations. The PL spectrum for the sample synthesized using Na{sub 2}S{center_dot}9H{sub 2}O showed a sharp emission peak around 510 nm with full width at half maximum (FWHM)<10 nm. The role of the capping agent and sulphide source on optical properties of as synthesized nanoparticles by steady-state photoluminescence (PL) spectroscopy has been studied. - Highlights: Black-Right-Pointing-Pointer SHMP capped ZnS:Cu nanoparticles were prepared by wet the chemical method. Black-Right-Pointing-Pointer Particle size depended on the chalcogenide source. Black-Right-Pointing-Pointer PL spectrum shows variation with different chalcogenide sources. Black-Right-Pointing-Pointer Luminescence mechanism arises due to complex interaction between host-dopant and capping agent.

  11. CdS and ZnS quantum dots embedded in hyaluronic acid films

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, G.; Khachatryan, K. [Department of Chemistry, Agricultural University, Balicka 122, 30-149 Krakow (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 48/52, 01-224 Warsaw (Poland); Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)], E-mail: lstob@ichf.edu.pl; Tomasik, P.; Fiedorowicz, M. [Department of Chemistry, Agricultural University, Balicka 122, 30-149 Krakow (Poland); Lin, H.M. [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan, ROC (China)

    2009-07-29

    An in situ synthesis of ZnS and CdS quantum dots (QDs) in an aqueous solution of sodium hyaluronate (Hyal) produced foils emitting light on excitation with a UV light. The wavelength of emission was only slightly QDs size and more QDs concentration dependent and reached up to {approx}320 nm in the case of ZnS and {approx}400-450 nm in the case of CdS. Nanoparticles remained as non-agglomerated 10-20 nm nanoclusters. CdS/Hyal and ZnS/Hyal-QDs biocomposites were characterized using photoluminescence (PL), IR spectrometric techniques, and Transmission Electron Microscopy (TEM). The absolute molecular weights, radii of gyration, R{sub g}, and thermodynamic properties of the obtained foils are given. Electric resistivity studies performed for the hyaluronic foil in the 100-1000 V range have revealed that the hyaluronate foil has very weak conducting properties and QDs only insignificantly affect those properties as QDs practically did not interact with the foil. Size exclusion chromatography showed a decrease in the molecular weight of the hyaluronate after generation of QDs in its solution, particularly in the lower molecular fraction of the hyaluronate. The generation of CdS QDs was more destructive for the polysaccharide matrix.

  12. Weak d 0 ferromagnetism: Zn vacancy condensation in ZnS nanocrystals

    Science.gov (United States)

    Proshchenko, Vitaly; Dahnovsky, Yuri

    2017-01-01

    We provide the explanation of the large discrepancy of three orders of magnitude between the experimentally measured and theoretically calculated magnetic moments in ZnS nanocrystals. We assume that the condensation of Zn vacancies into a single droplet takes place. The energy calculations reveal that the droplet phase is more favorable than the uniformly distributed vacancy configuration. The other assumption made is that a small magnetic moment could arise at the interface between the ZnS crystal and vacancy cluster. The calculations however dismiss this hypothesis because the magnetization of the layered system also vanishes. Thus we suggest that the experimentally low magnetization values could be explained from one of the two following pictures: (a) there are two phases where the vacancy cluster with the zero magnetic moment coexists along with the other phase, in which there are uniformly distributed Zn vacancies with low concentrations or (b) there is only a single vacancy phase—a vacancy droplet being in the metastable state with a weak nonvanishing magnetic moment.

  13. Coherent phonon scattering in ZnO and ZnS at sulfite and oxygen impurities

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, M.; Czerner, M.; Heiliger, C. [I. Physikalisches Institut, Justus Liebig University Giessen (Germany)

    2013-01-15

    We employ an atomistic Green's function (AGF) method which is based on ab initio interatomic force constants (IFCs) to calculate coherent phonon scattering in ZnO at sulfur impurities and ZnS at oxygen impurities. For our calculations we consider different geometries and different transport directions. In particular, we investigate the impact of the change in the mass of the impurities on the transmission function and also the change in the IFCs due to the impurities. We show that if we only consider a change in the mass the transmission function for the high energy phonons is strongly reduced. If we further take into account the change in the IFCs also the low energy phonons are affected. From these results we conclude that incorporation of sulfur in ZnO and incorporation of oxygen in ZnS can reduce the thermal lattice conductivity and therefore increase the figure of merit substantially. In addition, our results demonstrate that for a realistic description just the change of the mass is not enough but the IFCs of the impurities have to be calculated. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Kinetics of the water adsorption driven structural transformationof ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goodell, C.M.; Gilbert, B.; Weigand, S.J.; Banfield, J.F.

    2007-08-01

    Nanoparticles of certain materials can respond structurally to changes in their surface environments. We have previously shown that methanol, water adsorption, and aggregation-disaggregation can change the structure of 3 nm diameter zinc sulfide (ZnS). However, in prior observations of water-driven structure change, aggregation may also have taken place. Therefore, we investigated the structural consequences of water adsorption alone on anhydrous nanoparticles that were dried to minimize changes in aggregation. Using simultaneously collected small- and wide-angle x-ray scattering (SAXS/WAXS) data, we show that water vapor adsorption alone drives a structural transformation in ZnS nanoparticles in the temperature range 22-40 C. The transition kinetics are strongly temperature dependent, with an activation energy of 58.1 {+-} 9.8 kJ/mol, consistent with atom displacement rather than bond breaking. At 50 C, aggregate restructuring occurred, increasing the transition kinetics beyond the rate expected for water adsorption alone. The observation of isosbestic points in the WAXS data suggests that the particles do not transform continuously between the initial and final structural state but rather undergo an abrupt change from a less ordered to a more ordered state.

  15. Synthesis and characterization of Mn2+-doped ZnS nanoparticles

    Indian Academy of Sciences (India)

    B S Rema Devi; R Raveendran; A V Vaidyan

    2007-04-01

    Mn2+-doped ZnS nanoparticles were prepared by chemical arrested precipitation method. The samples were heated at 300, 500, 700 and 900°C. The average particle size was determined from the X-ray line broadening. Samples were characterized by XRD, FTIR and UV. The composition was verified by EDAX spectrum. The hexagonal structure of the sample was identified. The size of the particles increased as the annealing temperature was increased. The crystallite size varied from 5 nm to 34 nm as the calcination temperature increased. At around 700°C, ZnS is converted into ZnO phase due to oxidation. The emission peak of the sample is observed at 300 nm resulting in blue emission. The solid state theory based on the delocalized electron and hole within the confined volume can explain the blue-shifted optical absorption spectra. UV-VIS spectro-photometric measurement shows an indirect allowed band gap of 3.65 eV.

  16. Using a precursor in lamellar structure for the synthesis of uniform ZnS nanocrystals

    KAUST Repository

    Xu, Xinjiang

    2011-11-12

    Uniform ZnS nanocrystals of about 15 nm were prepared through a low temperature hydrothermal approach by treating Zn-PhPO nanosheets with Na 2S aqueous solution. Both the precursor and the final product were studied by the means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The photo-luminescent spectrum of the synthesized ZnS nanocrystals showed their good crystalline nature. Based on this study, the precursor structure-controlling effect was discussed, and in addition, the relevant factors possibly affecting the particle formation and the growth possessed were applied in the discussion to interpret the transformation mechanism. Further research showed that both the structure characters of the precursors and the mass transportation which occurred during the synthesis greatly affected the morphology and organization state of the final products. This research may provide some facts on the structure-controlling approaches along with a general method for the preparation of uniform sulfide nanocrystals. © Springer Science+Business Media B.V. 2011.

  17. Laser damage studies of ZnS via neutral Zn particle emission

    Science.gov (United States)

    Arlinghaus, H. F.; Calaway, W. F.; Young, C. E.; Pellin, M. J.; Gruen, D. M.; Chase, L. L.

    1989-10-01

    Emission of neutral atoms from ZnS surfaces due to laser irradiation has been observed at power densities two orders of magnitude below the single pulse damage threshold of the material. We have measured the velocity distribution and absolute yield of neutral Zn atoms generated by exposure of ZnS single crystals to XeCl excimer laser irradiation (308 nm) using time-of-flight and high-resolution two-photon laser-induced fluorescence spectroscpy. The distributions are in agreement with Maxwell-Boltzmann distributions. The characteristic temperature increases from 2000 to 9000 K as the fluences are raised from 17 to 80 mJ/cm2, respectively. The absolute Zn yield also increased from 108 to 1012 atoms per laser pulse as the laser fluence is increased. The insults suggest formation of a plasma that interacts with the surface and leads to catastrophic failure. For consecutive laser shots at constant lasers fluences, a nearly exponential increase in the Zn particle density is observed, yet visible damage did not occur until 150,000 laser shots. Our results show that neutral particle emission is of considerable importance in the identification of fundamental damage mechanisms and that microscopic damage occurs far below the single-pulse damage threshold.

  18. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Crow, Lowell [ORNL; Funk, Loren L [ORNL; Hannan, Bruce W [ORNL; Hodges, Jason P [ORNL; Riedel, Richard A [ORNL; Wang, Cai-Lin [ORNL

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52% higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.

  19. Temperature dependent dielectric and electric modulus properties of ZnS nano particles

    Science.gov (United States)

    Ali, Hassan; Falak, Attia; Rafiq, M. A.; Khan, Usman; Karim, Shafqat; Nairan, Adeela; Jing, Tang; Sun, Yue; Sun, Sibai; Qian, Chenjiang; Xu, Xiulai

    2017-03-01

    A comprehensive study of the dielectric and electric modulus properties of Zinc Sulfide (ZnS) semiconductor nanoparticles has been conducted using impedance spectroscopy in the frequency range of 200 Hz to 2 MHz and over the temperature range of 300 K to 400 K. Microscopic analysis confirms the formation of spherical nanoparticles with an average size of ∼20 nm. Maxwell–Wagner–Sillars (MWS) interfacial polarization is responsible for the increase in dielectric permittivity and dielectric loss at lower frequencies. Increase in dielectric permittivity and dielectric loss has been observed with a rise in temperature. The electric modulus complex plane plot reveals the presence of the grain (bulk) effect and non-Debye type relaxation processes in the material. The non-Debye type processes have also been confirmed by the asymmetric relaxation peaks of the imaginary part of the electric modulus. The frequency dependent maximum of the imaginary part of the electric modulus follows the Arrhenius law with an activation energy of 0.13 eV. The modulus analysis also establishes that the hopping mechanism is responsible for electrical conduction in the ZnS nanoparticles.

  20. Effect of ZnS as an Impurity on the Physical Properties of KDP Single Crystals

    Directory of Open Access Journals (Sweden)

    O. V. Mary Sheeja,

    2014-01-01

    Full Text Available Pure and ZnS doped KDP (KH2PO4 single crystals were grown from aquous solutions by the slow evaporation technique at room temperature. The influence of ZnS on the growth and characteristic properties of the KDP single crystals were examined. Powder X-ray diffraction, atomic absorption spectroscopic and Fourier transform infrared spectral measurements were done to characterize the grown crystals structurally and chemically. Thermal and mechanical stabilities were understood by making respectively the thermogravimetric and microhardness measurements. The optical transparency and second harmonic generation efficiency were understood by making respectively the UV-Vis-NIR spectral and nonlinear optical measurements. The AC and DC electrical measurements made on all the six grown crystals indicate a normal dielectric behaviour. The electrical parameters, viz. dielectric constant, dielectric loss factor, AC electrical conductivity and DC electrical conductivity are found to increase with the increase in temperature in the temperature range (40 – 150oC considered in the present study. The AC and DC activation energies estimated are found to vary nonlinearly with the impurity concentration.

  1. Anaesthesia for the separation of conjoined twins

    Directory of Open Access Journals (Sweden)

    Jaya Lalwani

    2011-01-01

    Full Text Available Thoraco-omphalopagus is one of the most common type of conjoint twins accounting for 74% cases of conjoint twins. We report the anaesthetic management for successful separation of thoraco-omphalopagus conjoint twins, both of them surviving till date. We highlight the responsibility of anaesthesia team in anaesthetising the two individual patients simultaneously, need of careful monitoring and anticipation of complications like massive blood loss, hypotension, hypokalemia, hypoxia and hypercabia. Detailed description of successful management is reported.

  2. Idiopathic intracranial hypertension in female homozygous twins.

    OpenAIRE

    Fujiwara, S; Sawamura, Y; Kato, T.; Abe, H.; Katusima, H

    1997-01-01

    The authors report on female homozygous twins with idiopathic intracranial hypertension. At the age of 12 years, both twins simultaneously developed visual disturbances with photophobia. At the age of 19 years, an ophthalmological examination disclosed papilloedema in both their eyes. At the age of 22 years, a lumbar puncture showed raised CSF pressure over (200 mm H2O) in both twins. Their neurological and radiological examinations were extremely similar; both of them had severely impaired v...

  3. Culture systems: embryo culture and monozygotic twinning.

    Science.gov (United States)

    Sparks, Amy E

    2012-01-01

    The incidence of monozygotic twinning in pregnancies achieved with assisted reproductive technologies (ART) is significantly higher than spontaneously conceived pregnancies. The factors associated with ART that predispose the embryos to splitting are not well-characterized. Assisted hatching and extended embryo culture are two ART laboratory methods that have been risk factors for monozygotic twinning. The methods and strategies that may be employed to avoid monozygotic twinning are discussed in this chapter.

  4. Enhanced charge recombination due to surfaces and twin defects in GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Evan; Sheng, Chunyang; Nakano, Aiichiro [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Shimamura, Kohei; Shimojo, Fuyuki [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan)

    2015-02-07

    Power conversion efficiency of gallium arsenide (GaAs) nanowire (NW) solar cells is severely limited by enhanced charge recombination (CR) at sidewall surfaces, but its atomistic mechanisms are not well understood. In addition, GaAs NWs usually contain a high density of twin defects that form a twin superlattice, but its effects on CR dynamics are largely unknown. Here, quantum molecular dynamics (QMD) simulations reveal the existence of an intrinsic type-II heterostructure at the (110) GaAs surface. Nonadiabatic quantum molecular dynamics (NAQMD) simulations show that the resulting staggered band alignment causes a photoexcited electron in the bulk to rapidly transfer to the surface. We have found orders-of-magnitude enhancement of the CR rate at the surface compared with the bulk value. Furthermore, QMD and NAQMD simulations show unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective CR centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying CR processes.

  5. College-age twins: university admission policies / twin research: birth weight and neuromotor performance; transfusion syndrome markers; vanishing twins and fetal sex determination; mz twin discordance for wilson's disease / media: big at birth; planned separation of conjoined twins; x factor twins; Cinema: the identical.

    Science.gov (United States)

    Segal, Nancy L

    2014-12-01

    There is a lack of research findings addressing the unique college admissions issues faced by twins and other multiples. The advantages and disadvantage twins face, as reported by college administrators, twins and families are reviewed. Next, recent research addressing twins' birth weight and neuromotor performance, transfusion syndrome markers, the vanishing twin syndrome and monozygotic (MZ) twin discordance for Wilson's disease is described. News items concerning the birth of unusually large twins, the planned separation of conjoined twins, twin participants in the X Factor games and a film, The Identical, are also summarized.

  6. The Solar Twin Planet Search II. A Jupiter twin around a solar twin

    CERN Document Server

    Bedell, M; Bean, J L; Ramirez, I; Asplund, M; Alves-Brito, A; Casagrande, L; Dreizler, S; Monroe, T; Spina, L; Maia, M Tucci

    2015-01-01

    Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3600-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.

  7. Silicon nanowires as intracellular devices

    Science.gov (United States)

    Zimmerman, John F.

    Semiconductor nanowire devices are an exciting class of materials for biomedical and electrophysiology applications, with current studies primarily delivering substrate bound devices through mechanical abrasion or electroporation. However, the ability to distribute these devices in a drug-like fashion is an important step in developing next-generation active therapeutic devices. In this work, we will discuss the interaction of label free Silicon nanowires (SiNWs) with cellular systems, showing that they can be internalized in multiple cell lines, and undergo an active 'burst-like' transport process. (Abstract shortened by ProQuest.).

  8. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  9. Reconfigurable nanowire electronics - A review

    Science.gov (United States)

    Weber, W. M.; Heinzig, A.; Trommer, J.; Martin, D.; Grube, M.; Mikolajick, T.

    2014-12-01

    Reconfigurable nanowire transistors merge the electrical properties of unipolar n- and p-type FETs into a single type of device with identic technology, geometry and composition. These four-terminal nanowire transistors employ an electric signal to dynamically program unipolar n- or p-type behavior. More than reducing the technological complexity, they open up the possibility of dynamically programming the functions of circuits at the device level, i.e. enabling a fine-grain reconfiguration of complex functions. We will review different reconfigurable concepts, analyze the transport properties and finally assess their maturity for building circuits.

  10. How does the inclusion of twins conceived via fertility treatments influence the results of twin studies?

    Science.gov (United States)

    Burt, S Alexandra; Klump, Kelly L

    2012-12-01

    Rates of twinning have risen dramatically over the last 30 years, from 1 in 53 births in 1980 to 1 in 30 births in 2009 (Martin et al. (January 2012). Three decades of twin births in the United States, 1980-2009. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Health Statistics). This increase is largely attributable to increases in the use of fertility treatments (i.e., ovulation induction and in vitro fertilization) combined with delays in parenthood. Although this increase means that more twins are available for recruitment into twin studies, it also has potential consequences for the heritability estimates obtained in these studies. This study sought to evaluate this possibility, making use of the ongoing Michigan Twins Project (N = 7,261 families with twins aged 3-17 years), an arm of the Michigan State University Twin Registry. Results revealed that, on average, twins conceived via fertility treatments had lower rates of behavior problems than those conceived naturally, although these behavioral differences could be explained largely by demographic and socio-economic differences across the two types of twin families. Twin similarity did not meaningfully differ across fertility treatment status. We thus conclude that estimates of genetic and environmental influences obtained from twin studies over the last 10-15 years are more or less unaffected by the inclusion of twins conceived via fertility treatments in their samples.

  11. Rapid onset of severe twin-twin transfusion syndrome caused by placental venous thrombosis

    NARCIS (Netherlands)

    Nikkels, PGJ; van Gemert, MJC; Sollie-Szarynska, KM; Molendijk, H; Timmer, B; Machin, GA

    2002-01-01

    We report a case of rapid onset of severe twin-twin transfusion syndrome (TTTS) at 25 weeks gestation in a monochorionic twin pregnancy that was uneventful before that time. Thrombosis of a main venous branch draining several arteriovenous (AV) anastomoses to the donor changed the previous hemodynam

  12. Atomistic deformation mechanisms in twinned copper nanospheres.

    Science.gov (United States)

    Bian, Jianjun; Niu, Xinrui; Zhang, Hao; Wang, Gangfeng

    2014-01-01

    In the present study, we perform molecular dynamic simulations to investigate the compression response and atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the underlying plastic deformation mechanisms are illuminated. Twin boundaries (TBs) act as obstacles to dislocation motion and lead to strengthening. As the loading direction varies, the plastic deformation transfers from dislocations intersecting with TBs, slipping parallel to TBs, and then to being restrained by TBs. The strengthening of TBs depends strongly on the twin spacing.

  13. Vascular distribution patterns in monochorionic twin placentas.

    Science.gov (United States)

    De Paepe, M E; DeKoninck, P; Friedman, R M

    2005-07-01

    Several recent publications have focused on the association between the occurrence of twin-to-twin transfusion syndrome (TTTS) in diamniotic-monochorionic twins and the presence of a number of selected anatomic placental characteristics (distribution of vascular territory, cord insertion, type and number of inter-twin anastomoses). In contrast, the potential importance of the vascular distribution patterns of the individual twins remains to be elucidated. Based on its gross architectural distribution pattern, chorionic vasculature is traditionally described as disperse, magistral or mixed. The aim of this study was (1) to determine the relative prevalence of these vascular distribution patterns in monochorionic twin placentas, and (2) to correlate these patterns with the presence of TTTS and known anatomic placental features linked to TTTS. The placentas of 89 consecutive diamniotic-monochorionic twins (15 with TTTS, 74 without TTTS), examined at Women and Infants Hospital, were studied. Disperse vascular patterns were seen in 53% of twins, and magistral or mixed patterns in 47%. The prevalence of magistral/mixed vascular patterns was significantly higher in TTTS gestations than in non-TTTS gestations (60% versus 44%, Ppatterns and marginal/velamentous cord insertion, low number of inter-twin anastomoses, and uneven distribution of the vascular territories. These findings suggest that the magistral/mixed vascular distribution pattern may represent an important placental architectural feature contributing to the complex pathophysiology of TTTS.

  14. Invasive treatment in complicated monochorionic twin pregnancies

    DEFF Research Database (Denmark)

    Sundberg, Karin; Søgaard, Kirsten; Jensen, Lisa Neerup;

    2012-01-01

    Objective. Monochorionic twin pregnancies are associated with increased risk of severe complications. Umbilical cord occlusion (UCO) and fetoscopic selective laser coagulation (FSLC) are used as invasive treatment. The study aim was to document treatment indications and pregnancy outcome where UCO...... and FSLC were used for treating fetal discrepancies and twin-to-twin transfusion syndrome (TTTS). Design. Cohort study of all consecutively treated monochorionic twin pregnancies 2004-2010. Setting. Tertiary care center. Population. One hundred and twenty pregnancies treated by FSLC (55) or UCO (65...

  15. Being Pregnant with Twins, Triplets and Other Multiples

    Science.gov (United States)

    ... twins, triplets and other multiples Being pregnant with twins, triplets and other multiples E-mail to a ... embryos that grow into two or more babies. Twins are called identical when one fertilized egg splits ...

  16. Problem in twin pregnancy: Findings of prenatal sonography and autopsy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Ah; Cho, Jeong Yeon; Song, Mi Jin; Min, Jee Yeon; Lee, Young Ho; Lee, Hak Jong; Chun, Yi Kyeong; Kim, Yee Jeong; Hong, Sung Ran [Samsung Cheil Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2001-12-15

    Multifetal gestations are high risk pregnancies with higher perinatal morbidity and mortality. Multifetal gestations are subject to unique complications including conjoined twins, twin-to-twin transfusion syndrome (TTTS), acardiac twins, twin embization of co-twin demise and heterotopic pregnancies. Prenatal sonographic diagnosis of types and complications of multifetal gestations is important for antenatal care and prediction of fetal outcome. This study was performed to present the prenatal ultrasonographic findings and pathologic findings of the unique complications of twin pregnancy. Acardia is a lethal anomaly occurring in 1% of monozygotic twin. The acardiac twin has a parasitic existence and depends on the donor (pump) twin for its blood supply via placental anastomoses and retrograde perfusion of umbilical cord. This twin reversed arterial perfusion (TRAP) sequence is a most extreme manifestation on the TTTS. Doppler verification reversed flow in umbilical cord of the acardiac twin confirms the diagnosis.

  17. Impact of twin boundaries on bulk elastic constants: Density-functional theory data for Young׳s modulus of Ag.

    Science.gov (United States)

    Klöffel, Tobias; Bitzek, Erik; Meyer, Bernd

    2015-06-01

    Experimental and theoretical studies on nanowires have reported a size-dependence of the Young׳s modulus in the axial direction, which has been attributed to the increasing influence of surface stresses with decreasing wire diameter. Internal interfaces and their associated interface stresses could lead to similar changes in the elastic properties. In Kobler et al. [1], however, we reported results from atomistic calculations which showed for Ag that twin boundaries have a negligible effect on the Young׳s modulus. Here, we present data of density-functional theory calculations of elastic constants and Young׳s modulus for defect-free bulk Ag as well as for bulk Ag containing dense arrays of twin boundaries. It is shown that rigorous convergence tests are required in order to be able to deduce changes in the elastic properties due to bulk defects in a reliable way.

  18. Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Kühnelt, M.; Langbein, Wolfgang Werner

    1998-01-01

    We have measured the absolute values of the second-harmonic generation (SHG) coefficient \\d\\ for the zinc-blende II-VI semiconductors ZnTe, ZnSe, and ZnS at room temperature. The investigated spectral region of the fundamental radiation lambda(F) ranges from 520 to 1321 nm using various pulsed...

  19. Controlled synthesis of Eu2+ and Eu3+ doped ZnS quantum dots and their photovoltaic and magnetic properties

    Science.gov (United States)

    Horoz, Sabit; Yakami, Baichhabi; Poudyal, Uma; Pikal, Jon M.; Wang, Wenyong; Tang, Jinke

    2016-04-01

    Eu-doped ZnS quantum dots (QDs) have been synthesized by wet-chemical method and found to form in zinc blende (cubic) structure. Both Eu2+ and Eu3+ doped ZnS can be controllably synthesized. The Eu2+ doped ZnS QDs show broad photoluminescence emission peak around 512 nm, which is from the Eu2+ intra-ion transition of 4f6d1 - 4f7, while the Eu3+ doped samples exhibit narrow emission lines characteristic of transitions between the 4f levels. The investigation of the magnetic properties shows that the Eu3+ doped samples exhibit signs of ferromagnetism, on the other hand, Eu2+ doped samples are paramagnetic of Curie-Weiss type. The incident photon to electron conversion efficiency is increased with the Eu doping, which suggests the QD solar cell efficiency can be enhanced by Eu doping due to widened absorption windows. This is an attractive approach to utilize benign and environmentally friendly wide band gap ZnS QDs in solar cell technology.

  20. Effects of temperature on the morphology and optical properties of ZnS thin films deposited by chemical bath

    Science.gov (United States)

    Martín-Várguez, P. E.; Ceh, O.; González-Panzo, I. J.; Tec-Yam, S.; Patiño, R.; Oliva, A. I.

    2013-06-01

    Zinc sulphide thin films were deposited on Corning glass substrates by the chemical bath deposition technique at different temperatures. The influence of the bath temperature and deposition time on the morphological and optical properties of the ZnS films are herein investigated. ZnS films were deposited by changing the bath-temperature from 50 °C to 90 °C, and deposition times from 60 to 160 min. Thin and transparent films were obtained with thicknesses from 10 to 90 nm with the increment of the bath temperature, meanwhile the band gap energy Eg values diminishes from 4.15 to 3.4 eV. The quality of the ZnS film surfaces was also influenced by increasing the bath temperature, as showed by the reduced grain size and the increase of roughness, obtained from atomic force microscopy images. ZnS films of good optical quality were obtained at 90 °C with a mean value of Eg = 3.56 ± 0.03 eV.